JP6773026B2 - 漏洩検知装置、漏洩検知システム、漏洩検知方法及びコンピュータ読み取り可能記録媒体 - Google Patents

漏洩検知装置、漏洩検知システム、漏洩検知方法及びコンピュータ読み取り可能記録媒体 Download PDF

Info

Publication number
JP6773026B2
JP6773026B2 JP2017507494A JP2017507494A JP6773026B2 JP 6773026 B2 JP6773026 B2 JP 6773026B2 JP 2017507494 A JP2017507494 A JP 2017507494A JP 2017507494 A JP2017507494 A JP 2017507494A JP 6773026 B2 JP6773026 B2 JP 6773026B2
Authority
JP
Japan
Prior art keywords
signal
spectrum
noise
sound source
moving sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017507494A
Other languages
English (en)
Other versions
JPWO2016152131A1 (ja
Inventor
友督 荒井
友督 荒井
裕三 仙田
裕三 仙田
宝珠山 治
治 宝珠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2016152131A1 publication Critical patent/JPWO2016152131A1/ja
Application granted granted Critical
Publication of JP6773026B2 publication Critical patent/JP6773026B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Description

本発明は、センサからの信号に基づき、管の漏洩の有無を検知する漏洩検知装置、漏洩検知システム、漏洩検知方法及びコンピュータ読み取り可能記録媒体に関する。
ガスや水などを運ぶ配管からの漏洩を調査する作業においては、いかに効率よく正確に調査するかが重要である。漏洩の調査のため古くから利用されている方法として、漏洩の際に発生する音や振動を聴音する方法が知られている。しかし、本方法は熟練者しか行えないため効率が悪く、また雑音の多い時間帯や場所では正しく調査できない。
調査を効率化し、雑音の多い環境でも正しく漏洩を調査する方法の一例が、特許文献1と特許文献2に記載されている。
特許文献1に記載の配管漏洩位置検知方法では、配管上の複数地点に間隔を置いて設置された配管設置振動センサが測定した漏洩音以外の雑音を、地盤上に設置した地盤設置振動センサが測定した信号を用いて適応デジタルフィルタによって抑圧する。そして、得られた複数の漏洩音の信号間での相互相関処理により漏洩位置が特定される。すなわち、特許文献1に記載の配管漏洩位置検知方法は、配管設置振動センサが捉えた信号と地盤設置振動センサが捉えた信号とのコヒーレンス(関連度を表す関数)が、雑音成分では大きく、漏洩音成分では小さいことを利用した雑音抑圧方法である。特許文献1に記載の配管漏洩位置検知方法は、主に移動のない固定された音源による雑音を抑圧することができる。
特許文献2に記載の雑音除去装置では、複数の原信号が混合された混合信号から、対象となる原信号を良好に復元することができる。
特許第4172241号公報 国際公開第2008/123315号 特開2006−138638号公報
しかしながら、特許文献1および2に記載の技術においては、配管で捉えた雑音と地盤で捉えた雑音とのコヒーレンスが低いような雑音については抑圧できないため、精度よく漏洩検知を行うことができないという問題がある。
本発明の主たる目的は、上記の問題を解決し、移動音源による雑音が発生する環境においても、精度よく配管からの漏洩を検知する漏洩検知装置を提供することである。
本発明の一態様における漏洩検知装置は、管からの漏洩音を検知可能な位置に設置されたセンサから取得される第1の信号と周囲雑音を検知可能な位置に設置されたセンサから取得される第2の信号に基づき、第1の信号から非移動音源による雑音を減算し、さらに移動音源による雑音を減算する減算手段と、第1の信号から非移動音源および移動音源による雑音が減算された結果に基づき、漏洩の有無を判定する漏洩判定手段と、を備える。
本発明の一態様における漏洩検知システムは、管からの漏洩音を検知可能な位置に設置された第1のセンサと、周囲雑音を検知可能な位置に設置された第2のセンサと、上述した漏洩検知装置と、を有する。
本発明の一態様における漏洩検知方法は、管からの漏洩音を検知可能な位置に設置されたセンサから取得される第1の信号と周囲雑音を検知可能な位置に設置されたセンサから取得される第2の信号に基づき、第1の信号から非移動音源による雑音を減算し、さらに移動音源による雑音を減算し、第1の信号から非移動音源および移動音源による雑音が減算された結果に基づき、漏洩の有無を判定する。
本発明の一態様におけるコンピュータ読み取り可能記録媒体は、管からの漏洩音を検知可能な位置に設置されたセンサから取得される第1の信号と周囲雑音を検知可能な位置に設置されたセンサから取得される第2の信号に基づき、第1の信号から非移動音源による雑音を減算し、さらに移動音源による雑音を減算する処理と、第1の信号から非移動音源および移動音源による雑音が減算された結果に基づき、漏洩の有無を判定する処理と、をコンピュータに実行させるプログラムを非一時的に格納する。
本発明は、移動音源による雑音が発生する環境においても、精度よく配管からの漏洩を検知することができる。
本発明の第1の実施形態における漏洩検知装置10の構成を示すブロック図である。 本発明の第1の実施形態における漏洩検知装置10の動作を示すフローチャートである。 本発明の第2の実施形態における漏洩検知装置20の構成を示すブロック図である。 本発明の第2の実施形態における漏洩検知装置20の動作を示すフローチャートである。 本発明の第3の実施形態における漏洩検知装置30の構成を示すブロック図である。 本発明の第3の実施形態における漏洩検知装置30の動作を示すフローチャートである。 本発明の第4の実施形態における漏洩検知装置40の構成を示すブロック図である。 本発明の第4の実施形態における漏洩検知装置40の動作を示すフローチャートである。 本発明の第5の実施形態における漏洩検知システム50の動作を示すフローチャートである。 本発明の第5の実施形態における第1のセンサ21および第2のセンサ22の設置場所の一例を示す図である。 本発明の第5の実施形態における漏洩検知システム50の動作を示すフローチャートである。 本発明の各実施形態におけるコンピュータ100の構成例を示すブロック図である。
以下、漏洩検知装置等および漏洩検知システムの各実施形態について、図面を参照して説明する。なお、各実施形態において同じ符号を付した構成要素は同様の動作を行うので、再度の説明を省略する場合がある。また、以下の各実施形態の構成を示す図面において、矢印はデータの流れの一例を示すが、データの流れは図中の矢印が示す向きに限られない。以下の各実施形態においては、管路には、気体、紛体、液体等が流れることを想定するが、これらに限定されない。
<第1の実施形態>
以下、第1の実施形態について、図面を参照して詳細に説明する。
図1は、第1の実施形態における漏洩検知装置10のブロック図である。図1を参照すると、本実施形態における漏洩検知装置10は、減算部11および漏洩判定部12を備える。
減算部11は、管からの漏洩音を検知可能に設置されたセンサから取得される第1の信号と周囲雑音を検知可能に設置されたセンサから取得される第2の信号に基づき、第1の信号から非移動音源による雑音を減算し、さらに移動音源による雑音を減算する。
第1の信号は、主に管や管を流れる気体や液体等を伝搬する音を含む信号である。管に漏洩が生じている場合には、第1の信号には漏洩音が含まれる。第1の信号を取得するセンサは、例えば管や管に付随する設備等に設置される。
また、第2の信号は、主に管の周囲地中や地表等を伝搬する雑音を含む信号である。第2の信号には、例えば非移動音源による雑音及び移動音源による雑音が含まれる。非移動音源は、例えば地面や建物等に固定された物体等、同じ地点において音を発する音源である。移動音源は、例えば車両等、移動しつつ音を発する音源である。第2の信号を取得するセンサは、例えば地表や地中などに設置される。
減算部11は、例えば、第2の信号を用いて非移動音源による雑音及び移動音源による雑音を求める。そして、減算部11は、上述のように求めた非移動音源による雑音及び移動音源による雑音を用いて、第1の信号から、非移動音源による雑音を減算し、更に移動音源による雑音を減算する。
漏洩判定部12は、第1の信号から非移動音源および移動音源による雑音が減算された結果に基づき、管からの漏洩の有無を判定する。漏洩判定部12は、当該結果を示す信号のレベル等に基づいて、漏洩の有無を判定する。例えば、漏洩判定部12は、当該結果を示す信号のレベルが所定の大きさと比較して大きい場合に、管からの漏洩があると判定する。
次に、第1の実施形態における漏洩検知装置10の動作について、図2のフローチャートを用いて説明する。図2は、漏洩検知装置10の動作を示すフローチャートである。
減算部11は、第1の信号と第2の信号に基づき、第1の信号から非移動音源による雑音を減算し、さらに移動音源による雑音を減算する(ステップS101)。漏洩判定部12は、第1の信号から非移動音源および移動音源による雑音が減算された結果に基づき、漏洩の有無を判定する(ステップS102)。
以上で、第1の実施形態における漏洩検知装置10の動作が終了する。
上記構成を有する漏洩検知装置10は、第1の信号と第2の信号に基づき、第1の信号から非移動音源による雑音を減算し、さらに移動音源による雑音を減算する。第1の信号には、一般に、漏洩に起因して生じる漏洩音と、非移動音源および移動音源による雑音とが含まれる。第2の信号には、一般に、非移動音源および移動音源による雑音とが含まれる。漏洩検知装置10は、第1の信号から非移動音源および移動音源による雑音が減算された結果に基づき、漏洩の有無を判定する。したがって、漏洩検知装置10は、非移動音源による雑音と、移動音源による雑音の両方を抑圧することで、移動音源による雑音が発生する環境においても精度よく配管からの漏洩を検知することができる。
<第2の実施形態>
以下、第2の実施形態について、図面を参照して詳細に説明する。
図3は、第2の実施形態における漏洩検知装置20のブロック図である。図3を参照すると、本実施形態における漏洩検知装置20は、減算部11および漏洩判定部12を備える。減算部11は減算スペクトル算出部13と、減算振幅スペクトル算出部14を備える。
減算スペクトル算出部13は、第1の信号および第2の信号に基づき、第1の信号の減算スペクトル、および第2の信号のスペクトルを算出する。第1の信号の減算スペクトルは、例えば第1の信号のスペクトルから非移動音源による雑音が減算されたスペクトルを示す。減算振幅スペクトル算出部14は、第1の信号の減算スペクトルと第2の信号のスペクトルに基づき、第1の信号の振幅スペクトルを算出する。第1の信号の振幅スペクトルは、例えば第1の信号のスペクトルから非移動音源および移動音源による雑音が減算された振幅スペクトルを示す。
漏洩判定部12は、非移動音源および移動音源による雑音が減算された第1の信号の振幅スペクトルから、管からの漏洩の有無を判定する。漏洩判定部12は、第1の信号の振幅スペクトルが示す振幅の大きさなどに基づいて管からの漏洩の有無を判定する。
次に、第2の実施形態における漏洩検知装置20の動作について、図4のフローチャートを用いて説明する。図4は、漏洩検知装置20の動作を示すフローチャートである。
減算スペクトル算出部13は、第1の信号と第2の信号に基づき、第1の信号の減算スペクトル、および第2の信号のスペクトルを算出する(ステップS201)。減算振幅スペクトル算出部14は、第1の信号の減算スペクトルと第2の信号のスペクトルに基づき、第1の信号の振幅スペクトルを算出する(ステップS202)。漏洩判定部12は、第1の信号の振幅スペクトルから、管の漏洩の有無を判定する(ステップS203)。
以上で、第2の実施形態における漏洩検知装置20の動作が終了する。
上記構成を有する漏洩検知装置20は、第1の信号と第2の信号に基づき、第1の信号の減算スペクトル、および第2の信号のスペクトルを算出する。第1の信号の減算スペクトルは、上述のように、例えば第1の信号のスペクトルから非移動音源による雑音が減算されたスペクトルを示す。漏洩検知装置20は、第1の信号の減算スペクトルと第2の信号のスペクトルに基づき、第1の信号の振幅スペクトルを算出する。第1の信号の振幅スペクトルは、上述のように、例えば第1の信号のスペクトルから非移動音源および移動音源による雑音が減算された振幅スペクトルを示す。漏洩検知装置20は、第1の信号の振幅スペクトルから、管からの漏洩の有無を判定する。
したがって、漏洩検知装置20は、非移動音源による雑音と、移動音源による雑音の両方が抑圧された第1の信号の振幅スペクトルを判定することで、移動音源による雑音が発生する環境においても、精度よく配管からの漏洩を検知することができる。
<第3の実施形態>
以下、第3の実施形態について、図面を参照して詳細に説明する。
図5は、第3の実施形態における漏洩検知装置30のブロック図である。図5を参照すると、本実施形態における漏洩検知装置30は、漏洩検知装置30は、減算部11および漏洩判定部12を備える。減算部11は減算スペクトル算出部13と、減算振幅スペクトル算出部14を備える。減算スペクトル算出部13は、スペクトル算出部15と、スペクトル減算部16を備える。減算振幅スペクトル算出部14は、振幅スペクトル算出部17と、振幅スペクトル減算部18を備える。
スペクトル算出部15は、第1の信号(以下、「管信号」とする場合がある)と第2の信号(以下、「地盤信号」とする場合がある)とから、管信号のスペクトルである管信号スペクトルおよび地盤信号のスペクトルである地盤信号スペクトルを算出する。管信号は、例えば管や管に付随する設備等に設置されたセンサによって取得される。また、地盤信号は、地表や地中などに設置されたセンサによって取得される。スペクトル算出部15は、例えば、管信号x1(t)から、フーリエ変換やウェーブレット変換等により管信号の周波数スペクトルである管信号スペクトルX1,i(f)を算出する。
また、スペクトル算出部15は、例えば、地盤信号x2(t)から、同様に地盤の周波数スペクトルである地盤信号スペクトルX2,i(f)を算出する。ここで、X1,i(f)およびX2,i(f)は、i番目の時間における周波数fのスペクトルである。X1,i(f)およびX2,i(f)は、振幅成分と位相成分の両方を含む。したがって、X1,i(f)およびX2,i(f)は、複素数で表される。
スペクトル減算部16は、管信号スペクトルから、減算スペクトル係数と地盤信号スペクトルの積を減算する。スペクトル減算部16は、例えば、管信号スペクトルX1,i(f)から地盤スペクトルX2,i(f)を減算した、減算スペクトルを算出する。前述のようにX1,i(f)とX2,i(f)はいずれも振幅成分と位相成分の両方を含むため、振幅の時間変化と位相の時間変化の両方に相関がある場合に、雑音を減算する効果が高くなる。つまりスペクトル減算部16では、X1,i(f)とX2,i(f)のコヒーレンスの高い雑音である、非移動音源による雑音を減算することができる。すなわち、減算スペクトルは、管信号スペクトルから非移動音源による雑音が減算されたスペクトルである。スペクトル減算部16は、例えば数式1(以降、数1と記載する)を用いて減算スペクトルを算出する。
Figure 0006773026
数1で示すように、減算スペクトルであるSa,i(f)は、管信号スペクトルX1,i(f)から減算スペクトル係数(以下、「第1の係数」とする場合がある)ka(f)と地盤スペクトルX2,i(f)との積を減算して算出される。減算スペクトル係数ka(f)は、数2を用いて算出される。
Figure 0006773026
E[|X1,i(f)|2]およびE[|X2,i(f)|2]は、iについての時間平均を表す。R12(f)は、X1,i(f)とX2,i(f)の相関係数であり、数3で表される。
Figure 0006773026
2,i *(f)はX2,i(f)の複素共役である。また、以下に記載する数4から数6を用いることで、数2が導かれる。さらに、X1,i(f)は数4を用いて書き表せる。その理由としては、地盤信号スペクトルX2,i(f)には主に雑音成分が含まれ漏洩音成分Ci(f)はほぼ含まれないと想定され、また、管信号スペクトルX1,i(f)には漏洩音成分Ci(f)および地盤から伝わってきた雑音成分ka(f)X2,i(f)が含まれるためである。
Figure 0006773026
i(f)とX2,i(f)が無相関であるため、X1,i(f)とX2,i(f)との積の時間平均は、数5によって表される。
Figure 0006773026
また、数5から、減算スペクトル係数ka(f)は数6によって表される。
Figure 0006773026
数2は、数6に数3を当てはめることで導出される。このように、数4で表される雑音は、数1に数6の減算スペクトル係数ka(f)を利用するスペクトル減算部16での減算方法を用いることで、抑圧される。雑音成分が管信号に多く含まれているほど、つまり管信号スペクトルと地盤信号スペクトルの相関が大きいほど、地盤信号を減算する割合が大きくなる。
振幅スペクトル算出部17は、減算スペクトルおよび地盤信号スペクトルから、非移動音源による雑音が減算された管信号の振幅スペクトル、および地盤信号の振幅スペクトルを算出する。管信号の振幅スペクトルは、スペクトル減算部16にて算出された、非移動音源による雑音が減算された管信号スペクトルである減算スペクトルの振幅成分を示す。振幅スペクトル算出部17は、例えば、管信号の振幅スペクトルを、数7より算出する。
Figure 0006773026
管信号の振幅スペクトルY1,i(f)は減算スペクトルSa,i(f)の絶対値である。振幅スペクトル算出部17は、スペクトル算出部15で算出した地盤信号スペクトルの振幅成分である地盤信号の振幅スペクトルを、数8より算出する。
Figure 0006773026
地盤信号の振幅スペクトルY2,i(f)は地盤信号スペクトルX2,i(f)の絶対値である。
振幅スペクトル減算部18は、管の振幅スペクトルY1,i(f)から地盤の振幅スペクトルY2,i(f)の相関のある成分を減算した、減算振幅スペクトルSb,i(f)を算出する。減算振幅スペクトルは、減算スペクトルから移動音源による雑音が減算されたスペクトルの振幅成分に相当するとみなすことができる。
以下に記載の数9から数20を用いて、減算振幅スペクトルSb,i(f)の算出方法を説明する。数9および数10は、Y1,i(f)とY2,i(f)をそれぞれ、固定的な信号成分である固定成分B1(f)およびB2(f)と、変動的な信号成分である変動成分Z1,i(f)およびZ2,i(f)で表す。ここでいう「固定的な信号成分」とは時間的な変動が小さい信号成分である。また、「変動的な信号成分」とは時間的な変動のある信号成分である。
Figure 0006773026
地盤信号の振幅スペクトルY2,i(f)は、地盤信号の変動成分Z2,i(f)と地盤信号の固定成分B2(f)との和で表される。
Figure 0006773026
管信号の振幅スペクトルY1,i(f)は、管信号の変動成分Z1,i(f)と管信号の固定成分B1(f)との和で表される。管信号の変動成分Z1,i(f)は、主に雑音成分を含む。管信号の変動成分Z1,i(f)は、数11に示すように地盤から伝わってきた雑音成分Z12,i(f)と、それ以外の雑音成分Z11,i(f)との和で表せる。
Figure 0006773026
振幅スペクトル減算部18は、地中などから伝わってきた雑音成分Z12,i(f)を減算する。これは、数12によって表される。
Figure 0006773026
地中などから伝わってきた雑音成分Z12,i(f)は、減算振幅スペクトル係数(以下、「第2の係数」とする場合がある)kb(f)と地盤の変動成分Z2,i(f)との積である。振幅スペクトル減算部18は、数13を用いて減算振幅スペクトルSb,i(f)を算出する。
Figure 0006773026
減算振幅スペクトルSb,i(f)は、管信号の振幅スペクトルY1,i(f)から、減算振幅スペクトル係数kb(f)と地盤の変動成分Z2,i(f)との積を減算して算出される。
減算振幅スペクトル係数kb(f)は、例えば雑音源までの距離が2センサ間の距離に対して十分大きいなど、管信号と地盤信号の振幅成分が同程度の場合、1となる。また、減算振幅スペクトル係数kb(f)は、例えば、減算スペクトル係数ka(f)の場合と同様に、数14を用いて算出される。
Figure 0006773026
ここで、Y’1,i(f)とY’2,i(f)は、それぞれY1,i(f)とY2,i(f)の平均からの変動成分を表し、数15,数16のそれぞれで表される。
Figure 0006773026
数15に示すように、管信号の振幅スペクトルY1,i(f)の変動成分であるY’1,i(f)は、管信号の振幅スペクトルY1,i(f)と管信号の振幅スペクトルY1,i(f)の時間平均E[Y1,i(f)]との差として表される。
Figure 0006773026
数16に示すように、地盤信号の振幅スペクトルY2,i(f)の変動成分であるY’2,i(f)は、地盤信号の振幅スペクトルY2,i(f)と地盤信号の振幅スペクトルY2,i(f)の時間平均E[Y2,i(f)]との差として表される。数14の右辺に記載のRb 12(f)は、Y’1,i(f)とY’2,i(f)とから算出された場合の相関係数であり、数17で表される。
Figure 0006773026
減算振幅スペクトル算出部14における処理と同様に、数12で表される雑音は、数13に対して、数14の減算振幅スペクトル係数kb(f)を用いることで抑圧される。数13におけるZ2,i(f)は、数9を変形した数18から求められる。
Figure 0006773026
2(f)は、例えばY2,i(f)の移動平均値の最小値や、25パーセンタイル値、中央値、平均値等として算出される。また、管信号の固定成分B1(f)が地盤信号の固定成分B1(f)から伝搬した成分であると仮定すると、数13の代わりに、数19が利用できる。
Figure 0006773026
数19の右辺第三項であるkd(f)B2(f)は、地盤信号から管に伝搬する雑音の中で、コヒーレンスや振幅コヒーレンス(振幅成分のみで算出したコヒーレンス)では捉えられない雑音成分を表す。ここで、コヒーレンスや振幅コヒーレンスでは捉えられない雑音成分とは、コヒーレンスも振幅コヒーレンスも小さいために、数1および数13では減算できなかった雑音成分である。
また、係数kd(f)は任意の実数である。係数kd(f)は、実測から最適値が設定されてもよいし、減算振幅スペクトル係数kb(f)が係数kd(f)に流用されてもよい。これらの値が分からない場合には、係数k(f)は0とされてもよい。係数kd(f)が減算振幅スペクトル係数kb(f)と等しい場合は、数19は数20と変形できる。
Figure 0006773026
数13、数19、数20において、減算振幅スペクトルSb,i(f)が負になるような周波数f=f1が存在した場合は、例えばSb,i(f1)に0または正の実数を代入するか、f1の近傍の周波数f2の場合のSb,i(f2)をSb,i(f1)に代入してもよい。
漏洩判定部12は、振幅スペクトル減算部18が算出した減算スペクトル2から、漏洩の有無を判定する。漏洩判定部12は、例えば、漏洩に特徴的なスペクトルピークやスペクトル変動等の有無に基づいて漏洩の有無を判定する。漏洩判定部12は、図示しない表示装置等に減算スペクトル2をスペクトログラム表示させてもよい。この場合には、漏洩に特徴的なスペクトルピークやスペクトル変動等の有無を作業員が判断してもよい。
また、漏洩判定部12は、減算スペクトル2の振幅やパワーに基づいて算出した周波数fごとの音圧レベルが、事前に設定した閾値θ(f)を超えるようなfが存在する場合に漏洩有と判定してもよい。
上記の音圧レベルとしては、例えば、減算振幅スペクトルSb,i(f)またはパワー|Sb,i(f)|2の時間iについての最小値が用いられることで、スペクトル減算部16または振幅スペクトル減算部18で減算しきれなかった突発的な雑音の影響を最小限にすることができる。上述した最小値の代わりに、移動平均値の最小値や、25パーセンタイル値、中央値、平均値等が用いられてもよい。時間iの範囲は、雑音の発生時間に対して十分長くなるように設定する。閾値θ(f)は、経験値から求められてもよいし、過去の非漏洩時に測定した信号または他箇所の漏洩の無い場所で測定した信号から暗騒音スペクトルを算出し、暗騒音スペクトルの音圧レベルとして決定されてもよい。あるいは、漏洩判定部12は、一定時間以上に渡って継続して発生しているスペクトルピークや、安定して発生しているスペクトルピークが検出された場合に、自動的に漏洩有と判定してもよい。あるいは、漏洩判定部12は、暗騒音スペクトルとの比較を行い、暗騒音スペクトルには現れなかったピークが現れた場合など、変化があった場合に、漏洩有と判定してもよい。
次に、第3の実施形態における漏洩検知装置30の動作について、図6のフローチャートを用いて説明する。図6は、漏洩検知装置30の動作を示すフローチャートである。
スペクトル算出部15は、管信号および地盤信号から管信号のスペクトルおよび地盤信号のスペクトルを算出する(ステップS301)。スペクトル減算部16は、管信号のスペクトルから、減算スペクトル係数と地盤信号のスペクトルとの積を減算する(ステップS302)。ここで、減算スペクトル係数(第1の係数)は、例えば、管信号のスペクトルと地盤信号のスペクトルの相関係数に基づいて算出される。
振幅スペクトル算出部17は、減算スペクトル係数と地盤信号のスペクトルとの積が減算された管信号のスペクトルおよび地盤信号のスペクトルから管信号の振幅スペクトルおよび地盤信号の振幅スペクトルを算出する(ステップS303)。
減算振幅スペクトル算出部18は、管信号の振幅スペクトルから、減算振幅スペクトル係数(第2の係数)と地盤信号の振幅スペクトルとの積を減算する(ステップS304)。
漏洩判定部12は、減算された管信号の振幅スペクトルから管の漏洩の有無を判定する(ステップS305)。
以上で、第3の実施形態における漏洩検知装置30の動作が終了する。
上記構成を有する漏洩検知装置30は、管信号と地盤信号に基づき、減算スペクトルと地盤信号のスペクトルを算出する。漏洩検知装置30は、減算スペクトルと地盤信号のスペクトルに基づき、減算振幅スペクトルを算出する。漏洩検知装置30は、減算振幅スペクトルを用いて、管の漏洩の有無を判定する。
したがって、第3の実施形態における漏洩検知装置30は、管信号と地盤信号との間で、移動音源による雑音振幅スペクトルの相関が大きいという特徴を利用して漏洩の検知を行う。
漏洩検知装置30は、スペクトル減算を2段階にて行う。漏洩検知装置30は、1段階目ではコヒーレンスの高い雑音を減算し、2段階目では振幅コヒーレンスの高い雑音を減算する。
すなわち、漏洩検知装置30は、非移動音源による雑音と、移動音源による雑音の両方が抑圧された減算振幅スペクトルを判定することで、移動音源による雑音が発生する環境においても、精度よく配管からの漏洩を検知することができる。
ここで、上述した特許文献1の方法では、移動音源による雑音の特に高周波数帯について雑音抑圧効果が低い。しかしながら、本実施形態における漏洩検知装置30では、高周波数帯でも雑音抑圧効果が高い。また、本実施形態における漏洩検知装置30は、特許文献1の方法で利用された適応デジタルフィルタによる雑音抑圧ではなく、スペクトル減算法を利用してする。したがって、漏洩検知装置30は、特許文献1に記載の方法と比較して演算時間が短いという効果も有する。
<第4の実施形態>
以下、第4の実施形態について、図面を参照して詳細に説明する。
図7は、第4の実施形態における漏洩検知装置40のブロック図である。図7を参照すると、本実施形態における漏洩検知装置40は、漏洩検知装置40は、減算部11と、減算振幅スペクトル算出部14と、漏洩判定部12とを備える。減算部11は、適応ノイズキャンセル部19とスペクトル算出部15とを備える。
適応ノイズキャンセル部19は、地盤信号を用いて算出される適応デジタルフィルタを用いて、雑音抑圧された管信号である雑音抑圧信号を算出する。雑音抑圧信号は、管信号に含まれる漏洩音以外の雑音のうち、非移動音源による雑音が適応デジタルフィルタを用いて抑圧された信号である。つまり、雑音抑圧信号は、非移動音源による雑音が減算された管信号である。ここで、適応デジタルフィルタ係数は、例えば最小二乗法アルゴリズムを用いて推定される係数である。
スペクトル算出部15は、雑音抑圧信号及び地盤信号から、雑音抑圧信号のスペクトル及び地盤信号のスペクトルを算出する。スペクトル算出部15は、例えば、フーリエ変換等により、それぞれのスペクトルを算出する。
減算振幅スペクトル算出部14は、雑音抑圧信号のスペクトルと地盤信号のスペクトルちに基づき、非移動音源および移動音源による雑音が減算された管信号の振幅スペクトルを算出する。
漏洩判定部12は、管信号から非移動音源および移動音源による雑音が減算された結果に基づき、漏洩の有無を判定する。すなわち、漏洩判定部12は、減算された管信号の振幅スペクトルに基づき、漏洩の有無を判定する。
次に、第4の実施形態における漏洩検知装置40の動作について、図8のフローチャートを用いて説明する。図8は、漏洩検知装置40の動作を示すフローチャートである。
適応ノイズキャンセル部19は、管信号および地盤信号を用いて算出される適応デジタルフィルタに基づき、雑音抑圧信号を算出する(ステップS401)。
スペクトル算出部15は、雑音抑圧信号及び地盤信号から雑音抑圧信号のスペクトル及び地盤信号のスペクトルを算出する(ステップS402)。
減算振幅スペクトル算出部14は、雑音抑圧信号のスペクトルと地盤信号のスペクトルに基づき、非移動音源および移動音源による雑音が減算された管信号の振幅スペクトルを算出する(ステップS403)。
漏洩判定部12は、管信号から非移動音源および移動音源による雑音が減算された結果に基づき、漏洩の有無を判定する(ステップS404)。
以上で、第4の実施形態における漏洩検知装置40の動作が終了する。
上記構成を有する漏洩検知装置40は、非移動音源による雑音を、適応ノイズキャンセルにより抑圧した後、移動音源による雑音をスペクトル減算法により抑圧する。これにより、第1の実施形態乃至第3の実施形態に記載の、非移動音源による雑音と移動音源による雑音の両方を抑圧することができるため、精度よく漏洩検知を行える。さらに、漏洩検知装置40は、漏洩音と周波数帯の重なった非移動音源による雑音も抑圧することができる。
<第5の実施形態>
以下、第5の実施形態について、図面を参照して詳細に説明する。
図9は、第5の実施形態における漏洩検知システム50のブロック図である。図9を参照すると、本実施形態における漏洩検知システム50は、漏洩検知装置10と、第1のセンサ21と、第2のセンサ22とを備える。ここで、本実施形態における漏洩検知装置10は、第1の実施形態における漏洩検知装置10と同様の構成及び機能を備える。本実施形態では、漏洩検知装置10の説明を省略する。また、漏洩検知装置10に代えて、本発明の第2から第4の実施形態における漏洩検知装置が用いられてもよい。
第1のセンサ21は、管や管に付随する設備等に設置される。第1のセンサ21は、管や管を流れる気体や液体等を伝搬する音又は振動を検知する。第1のセンサ21は、検知した音又は振動を示す管信号を漏洩検知装置10に出力する。
第2のセンサ22は、地中や地表等に設置される。第2のセンサ22は、地中や地表等を伝搬する音又は振動を検知する。第2のセンサ22は、検知した音又は振動を示す地盤信号を漏洩検知装置10に出力する。
図10を用いて、第1のセンサ21と第2のセンサ22を説明する。図10は、第1のセンサ21および第2のセンサ22の設置場所の一例を示す図である。図10が示すように、第1のセンサ21は、例えば、配管や配管に付随する設備など、漏洩音が伝搬する位置に設置されている。すなわち、第1のセンサ21は、管からの漏洩音を検知可能な位置に設置される。第2のセンサ22は、地面や地中などに設置される。図10に示す例では、第2のセンサ22は地面に直接設置される。すなわち、第2のセンサ22は、管の周囲雑音を検知可能な位置に設置される。
次に、第5の実施形態における漏洩検知システム50の動作について、図11のフローチャートを用いて説明する。図11は、漏洩検知システム50の動作を示すフローチャートである。
第1のセンサ21および第2のセンサ22は、配管や地中などを伝搬する音や信号をそれぞれ検知し、検知した音を管信号又は地盤信号として漏洩検知装置10に出力する(ステップS501)。
減算部11は、第1のセンサ21および第2のセンサ22から出力された管信号と地盤信号に基づき、管信号から非移動音源による雑音を減算し、さらに移動音源による雑音を減算する(ステップS502)。
漏洩判定部12は、管信号から非移動音源および移動音源による雑音が減算された結果に基づき、漏洩の有無を判定する(ステップS503)。
以上で、第5の実施形態における漏洩検知システム50の動作が終了する。
上記構成を有する漏洩検知システム50は、管信号および地盤信号に基づき、管信号から非移動音源による雑音を減算し、さらに移動音源による雑音を減算する。漏洩検知システム50は、管信号から非移動音源および移動音源による雑音が減算された結果に基づき、漏洩の有無を判定する。したがって、漏洩検知システム50は、非移動音源による雑音と、移動音源による雑音の両方を抑圧することで、移動音源による雑音が発生する環境においても精度よく配管からの漏洩を検知することができる。
図12は、本発明の各実施形態におけるコンピュータ100の構成例を示す概略ブロック図である。コンピュータ100は、CPU101と、主記憶装置102と、補助記憶装置103と、インターフェース104と、入力デバイス105と、ディスプレイ装置106とを備える。
各実施形態および各実施例の漏洩検知装置10等は、コンピュータ100に実装される。漏洩検知装置10等の動作は、プログラムの形式で補助記憶装置103に記憶されている。CPU101は、プログラムを補助記憶装置103から読み出して主記憶装置102に展開し、そのプログラムに従って上記の処理を実行する。
補助記憶装置103は、一時的でない有形の媒体の一例である。一時的でない有形の媒体の他の例として、インターフェース104を介して接続される磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等が挙げられる。また、このプログラムが通信回線によってコンピュータ100に配信される場合、配信を受けたコンピュータ100がそのプログラムを主記憶装置102に展開し、上記の処理を実行しても良い。
インターフェース104は、CPU101に接続され、ネットワークあるいは外部記憶媒体に接続される。外部データがインターフェース104を介してCPU101に取り込まれても良い。入力デバイス105は、例えばキーボードやマウス、タッチパネルである。ディスプレイ106は、例えばLCD(Liquid Crystal Display)やCRT(Cathode Ray Tube)ディスプレイのような、CPU101やGPU(Graphics Processing Unit)(図示せず)等により処理された描画データに対応する画面を表示する装置である。なお、図12が示すハードウェア構成は、一例にすぎず、図1が示す各部それぞれが独立した論理回路で構成されていても良い。
また、プログラムは、前述の処理の一部を実現するものであっても良い。さらに、プログラムは、補助記憶装置103に既に記憶されている他のプログラムとの組み合わせで前述の処理を実現する差分プログラムであっても良い。
以上、実施形態を用いて本発明を説明したが、本発明は必ずしも上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる(その技術的思想の範囲内において)様々な変更をし、実施することができる。
この出願は、2015年3月25日に出願された日本出願特願2015−61853を基礎とする優先権を主張し、その開示の全てをここに取り込む。
10 漏洩検知装置
11 減算部
12 漏洩判定部
13 減算スペクトル算出部
14 減算振幅スペクトル算出部
15 スペクトル算出部
16 スペクトル減算部
17 振幅スペクトル算出部
18 振幅スペクトル減算部
19 適応ノイズキャンセル部
20 漏洩検知装置
21 第1のセンサ
22 第2のセンサ
30 漏洩検知装置
40 漏洩検知装置
50 漏洩検知システム
100 コンピュータ
101 CPU
102 主記憶装置
103 補助記憶装置
104 インターフェース
105 入力デバイス
106 ディスプレイ装置

Claims (6)

  1. 管からの漏洩音を検知可能な位置に設置されたセンサから取得される第1の信号と、周囲雑音を検知可能な位置に設置されたセンサから取得される第2の信号とに基づき、前記第1の信号から非移動音源による雑音を減算し、さらに移動音源による雑音を減算する減算手段と、
    前記第1の信号から前記非移動音源および移動音源による雑音が減算された結果に基づき、漏洩の有無を判定する漏洩判定手段と、
    を備え
    前記減算手段は、
    前記第1の信号および前記第2の信号に基づき、非移動音源による雑音が減算された第1の信号のスペクトル、および第2の信号のスペクトルを算出する減算スペクトル算出手段と、
    前記減算された第1の信号のスペクトルと前記第2の信号のスペクトルに基づき、非移動音源および移動音源による雑音が減算された第1の信号の振幅スペクトルを算出する減算振幅スペクトル算出手段と、
    を備え、
    前記漏洩判定手段は、前記第1の信号の振幅スペクトルに基づいて前記管の漏洩の有無を判定し、
    前記減算スペクトル算出手段は、
    前記第1の信号および前記第2の信号から前記第1の信号のスペクトルおよび前記第2の信号のスペクトルを算出するスペクトル算出手段と、
    前記第1の信号のスペクトルから、第1の係数と前記第2の信号のスペクトルの積を減算するスペクトル減算手段と、
    を備え、
    前記減算振幅スペクトル算出手段は、
    前記減算された第1の信号のスペクトルおよび前記第2の信号のスペクトルから前記第1の信号の振幅スペクトル、および前記第2の信号の振幅スペクトルを算出する振幅スペクトル算出手段と、
    前記第1の信号の振幅スペクトルから、第2の係数と前記第2の信号の振幅スペクトルとの積を減算する振幅スペクトル減算手段と、
    を備える漏洩検知装置。
  2. 前記第1の係数は、前記第1の信号のスペクトルと前記第2の信号のスペクトルの相関係数に基づいて算出され、
    前記第2の係数は、前記第1の信号の振幅スペクトルと前記第2の信号の振幅スペクトルの相関係数に基づいて算出される
    請求項に記載の漏洩検知装置。
  3. 前記漏洩判定手段は、前記第1の信号の振幅スペクトルまたは前記第1の信号の振幅スペクトルの絶対値の時間方向の最小値が所定の閾値を超える場合に、漏洩有と判定することを特徴とする請求項1乃至のいずれか1項に記載の漏洩検知装置。
  4. 管からの漏洩音を検知可能な位置に設置された第1のセンサと、
    周囲雑音を検知可能な位置に設置された第2のセンサと、
    請求項1からのいずれか1項に記載の漏洩検知装置と、
    を有する漏洩検知システム。
  5. 管からの漏洩音を検知可能な位置に設置されたセンサから取得される第1の信号と、周囲雑音を検知可能な位置に設置されたセンサから取得される第2の信号とに基づき、前記第1の信号から非移動音源による雑音を減算し、さらに移動音源による雑音を減算し、
    前記第1の信号から前記非移動音源および移動音源による雑音が減算された結果に基づき、漏洩の有無を判定し、
    前記非移動音源による雑音を減算するときには、
    前記第1の信号および前記第2の信号から前記第1の信号のスペクトルおよび前記第2の信号のスペクトルを算出し、さらに、
    前記第1の信号のスペクトルから、第1の係数と前記第2の信号のスペクトルの積を減算し、
    前記非移動音源および移動音源による雑音を減算するときには、
    前記減算された第1の信号のスペクトルおよび前記第2の信号のスペクトルから前記第1の信号の振幅スペクトル、および前記第2の信号の振幅スペクトルを算出し、さらに、
    前記第1の信号の振幅スペクトルから、第2の係数と前記第2の信号の振幅スペクトルとの積を減算し、
    前記判定においては、
    減算した前記第1の信号の振幅スペクトルに基づいて前記管の漏洩の有無を判定する、
    漏洩検知方法。
  6. 管からの漏洩音を検知可能な位置に設置されたセンサから取得される第1の信号と周囲雑音を検知可能な位置に設置されたセンサから取得される第2の信号とに基づき、前記第1の信号から非移動音源による雑音を減算し、さらに移動音源による雑音を減算する減算処理と、
    前記第1の信号から前記非移動音源および移動音源による雑音が減算された結果に基づき、漏洩の有無を判定する判定処理と、
    をコンピュータに実行させ
    前記減算処理で前記非移動音源による雑音を減算するときには、
    前記第1の信号および前記第2の信号から前記第1の信号のスペクトルおよび前記第2の信号のスペクトルを算出する処理と、
    前記第1の信号のスペクトルから、第1の係数と前記第2の信号のスペクトルの積を減算する処理と、をコンピュータに実行させ、
    前記減算処理で前記非移動音源および移動音源による雑音を減算するときには、
    前記減算された第1の信号のスペクトルおよび前記第2の信号のスペクトルから前記第1の信号の振幅スペクトル、および前記第2の信号の振幅スペクトルを算出する処理と、
    前記第1の信号の振幅スペクトルから、第2の係数と前記第2の信号の振幅スペクトルとの積を減算する処理と、をコンピュータに実行させ、
    前記判定処理においては、
    減算された前記第1の信号の振幅スペクトルに基づいて前記管の漏洩の有無を判定する処理をコンピュータに実行させるプログラム。
JP2017507494A 2015-03-25 2016-03-18 漏洩検知装置、漏洩検知システム、漏洩検知方法及びコンピュータ読み取り可能記録媒体 Active JP6773026B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015061853 2015-03-25
JP2015061853 2015-03-25
PCT/JP2016/001590 WO2016152131A1 (ja) 2015-03-25 2016-03-18 漏洩検知装置、漏洩検知システム、漏洩検知方法及びコンピュータ読み取り可能記録媒体

Publications (2)

Publication Number Publication Date
JPWO2016152131A1 JPWO2016152131A1 (ja) 2018-01-18
JP6773026B2 true JP6773026B2 (ja) 2020-10-21

Family

ID=56978127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017507494A Active JP6773026B2 (ja) 2015-03-25 2016-03-18 漏洩検知装置、漏洩検知システム、漏洩検知方法及びコンピュータ読み取り可能記録媒体

Country Status (2)

Country Link
JP (1) JP6773026B2 (ja)
WO (1) WO2016152131A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI630379B (zh) * 2017-02-08 2018-07-21 逸奇科技股份有限公司 一種測漏系統
US11703189B2 (en) * 2018-09-04 2023-07-18 Nec Corporation Fluid leakage diagnosing device, fluid leakage diagnosing system, fluid leakage diagnosing method, and recording medium storing fluid leakage diagnosing program

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61223628A (ja) * 1985-03-29 1986-10-04 Toshiba Corp 漏水検知装置
JPH06323945A (ja) * 1993-05-11 1994-11-25 Tohoku Electric Power Co Inc 弁漏洩探知装置
JP4172241B2 (ja) * 2002-10-02 2008-10-29 Jfeスチール株式会社 配管の漏洩位置検知方法および装置
US9759629B2 (en) * 2012-09-28 2017-09-12 Nec Corporation Leak detection device, leak detection method and program
JP2014219342A (ja) * 2013-05-10 2014-11-20 積水化学工業株式会社 埋設管路の漏洩検出方法および装置

Also Published As

Publication number Publication date
WO2016152131A1 (ja) 2016-09-29
JPWO2016152131A1 (ja) 2018-01-18

Similar Documents

Publication Publication Date Title
JP6413741B2 (ja) 振動発生源推定装置、方法およびプログラム
US20150006091A1 (en) System and method for filtering noise from acoustic energy from a valve
JP6773026B2 (ja) 漏洩検知装置、漏洩検知システム、漏洩検知方法及びコンピュータ読み取り可能記録媒体
WO2015194137A1 (ja) 位置決定装置、漏洩検知システム、位置決定方法及びコンピュータ読み取り可能記録媒体
WO2011070343A2 (en) Monitoring fluid flow in a conduit
KR101381469B1 (ko) 매설배관 누설 탐지용 상호상관함수기법의 정확도 향상을 위한 기계 잡음 제거 방법
GB2506837A (en) A method of identifying leaks in a fluid carrying conduit
JP2019219377A (ja) 距離差−周波数分析を用いた配管の漏洩感知装置および方法
JPWO2015068343A1 (ja) 漏洩位置算出装置、漏洩位置算出方法、コンピュータ読み取り可能な記録媒体、振動算出装置、及び演算装置
US20200107144A1 (en) Acoustical performance evaluation method
US10948376B2 (en) Apparatus and method of detecting leak sound in plant equipment using time-frequency transformation
WO2016017168A1 (ja) 診断装置、診断システム、診断方法、及びコンピュータ読み取り可能記録媒体
US10156493B2 (en) Position determination device, position determination system, position determination method, and computer-readable recording medium
US11703189B2 (en) Fluid leakage diagnosing device, fluid leakage diagnosing system, fluid leakage diagnosing method, and recording medium storing fluid leakage diagnosing program
Zeng et al. Active Air-borne noise suppression for pipe break early warning in smart water networks
JP2014219342A (ja) 埋設管路の漏洩検出方法および装置
JP6408929B2 (ja) 分析データ作成方法、漏水位置検知装置および漏水位置特定方法
Jin Investigation on Parameters Affecting the Performance of Negative Pressure Wave Leak Detection Systems
JPWO2015145972A1 (ja) 欠陥分析装置、欠陥分析方法および欠陥分析プログラム
WO2023286147A1 (ja) 流砂量観測システム、流砂量観測装置、流砂量観測方法、及びコンピュータ可読媒体
WO2018159744A1 (ja) 計測時間特定装置、検知装置、計測時間特定方法及びコンピュータ読み取り可能記録媒体
WO2016185726A1 (ja) 状態判定装置、状態判定方法及びプログラム記録媒体
WO2015146109A1 (ja) 欠陥分析装置、欠陥分析方法および記憶媒体
JP2017083292A (ja) 管路の異常の判定方法
JP2020148462A (ja) 水道管漏水解析装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170915

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R150 Certificate of patent or registration of utility model

Ref document number: 6773026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150