WO2015194079A1 - Soiウェーハの製造方法 - Google Patents

Soiウェーハの製造方法 Download PDF

Info

Publication number
WO2015194079A1
WO2015194079A1 PCT/JP2015/002042 JP2015002042W WO2015194079A1 WO 2015194079 A1 WO2015194079 A1 WO 2015194079A1 JP 2015002042 W JP2015002042 W JP 2015002042W WO 2015194079 A1 WO2015194079 A1 WO 2015194079A1
Authority
WO
WIPO (PCT)
Prior art keywords
soi
soi layer
cleaning
wafer
batch
Prior art date
Application number
PCT/JP2015/002042
Other languages
English (en)
French (fr)
Inventor
阿賀 浩司
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to US15/313,473 priority Critical patent/US9953860B2/en
Priority to SG11201609805PA priority patent/SG11201609805PA/en
Priority to KR1020167035257A priority patent/KR102241303B1/ko
Priority to CN201580027234.8A priority patent/CN106415784B/zh
Priority to EP15809306.2A priority patent/EP3159911B1/en
Publication of WO2015194079A1 publication Critical patent/WO2015194079A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67057Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing with the semiconductor substrates being dipped in baths or vessels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body

Definitions

  • the present invention relates to an SOI wafer manufacturing method, and more particularly, to an SOI wafer manufacturing method called FDSOI (Fully Depleted Silicon-On-Insulator), which requires extremely high SOI layer film thickness uniformity. About.
  • FDSOI Fluly Depleted Silicon-On-Insulator
  • the film thickness of the SOI layer is measured with the oxide film attached after oxidation, and based on the measured SOI value, A method has been proposed in which the oxide film removal and the etching + cleaning process are performed in the same batch process of cleaning (Patent Document 2).
  • the variation in the thickness of the oxide film generated by the heat treatment such as batch heat treatment or the allowance due to etching (cleaning such as batch cleaning). Due to the variation (variation in the etching amount of the SOI layer), a variation in film thickness (variation in SOI film thickness) occurs in a plurality of SOI wafers processed in the same batch.
  • FIG. 5 shows a case in which batch type cleaning (etching) for reducing the SOI layer thickness by about 14.5 nm with SC1 cleaning solution (mixed aqueous solution of ammonia water and hydrogen peroxide solution) was performed on 25 batches of SOI wafers.
  • SC1 cleaning solution mixed aqueous solution of ammonia water and hydrogen peroxide solution
  • the relationship between the slot position in the cleaning cassette and the in-plane average value of the removal allowance of the SOI layer (Si) is shown, and the removal allowance variation in the batch is a PV (Peak to Valley) value (maximum value to minimum value).
  • the value obtained by subtracting the value is 0.61 nm.
  • FIG. 6 shows the relationship between the position in the furnace and the formed oxide film thickness (in-plane average value) when one batch of 100 SOI wafers is thermally oxidized in a batch heat treatment furnace.
  • the in-plane average film thickness variation generated by batch-type heat treatment as shown in FIG. 6 cannot be controlled or corrected when the SOI layer is etched only by batch-type cleaning, as shown in FIG.
  • FDSOI wafers are required to suppress high-precision film thickness uniformity, for example, variations in SOI film thickness within a target value of ⁇ 0.5 nm at all points (all measurement points of all wafers).
  • the batch cleaning alone could not satisfy this requirement.
  • there is a large amount of adjustment allowance from oxidation to the target value (reservation allowance by etching) that is, the allowance for adjusting the film thickness at the final stage, the deviation from the target value tends to increase.
  • the film thickness variation in the batch can be corrected in units of wafers.
  • the variation in the wafer surface in the wafer surface is larger than in batch-type cleaning machines.
  • the film thickness is adjusted only by single wafer cleaning (etching), the film on the wafer surface Due to deterioration of the thickness range (Range (PV value)), it was impossible to satisfy ⁇ 0.5 nm or less at all measurement points. Further, since the film thickness adjustment allowance at the final stage from the oxidation to the target value increases in the same manner as in the case of only the batch type cleaning machine, there is a tendency that the deviation from the target value also increases.
  • Fig. 7 shows SC1 cleaning of multiple SOI wafers using only a batch cleaning machine and a single wafer cleaning machine.
  • the in-plane average value of SC1 removal allowance and the in-plane removal allowance range (PV value) It is a figure which shows the result of having compared.
  • the in-plane stock allowance range is larger for the single wafer cleaner than the batch cleaner, and the single wafer cleaner also has a stock allowance range as the SC1 stock increases. It turns out that there is a tendency to increase.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a method for manufacturing an SOI wafer capable of manufacturing an SOI wafer having excellent film thickness uniformity of the SOI layer.
  • the SOI layer of an SOI wafer having an SOI layer formed on an insulating layer is reduced to a predetermined thickness, and the SOI wafer having a target thickness as the SOI layer thickness is reduced.
  • a manufacturing method at least, (A) performing a heat treatment in an oxidizing gas atmosphere to form a thermal oxide film on the surface of the SOI layer; (B) measuring the film thickness of the SOI layer after forming the thermal oxide film; (C) A step of performing batch cleaning including immersing the SOI layer in a cleaning solution having etching properties with respect to the SOI layer, wherein the etching amount of the SOI layer is measured in the step (b).
  • the thermal oxide film formed in the step (a) is removed after a) and before the step (b), or after the step (b) and before the step (c).
  • a method for manufacturing an SOI wafer is provided.
  • the film thickness in the step (b) is measured without removing the thermal oxide film formed in the step (a), and after the step (b) and before the step (c), After removing the thermal oxide film formed in the step (a) by batch cleaning using an HF-containing aqueous solution, the surface of the SOI layer after removing the thermal oxide film by the batch cleaning in the step (c) It is preferable to immerse the SOI layer in a cleaning solution having etching properties with respect to the SOI layer without drying.
  • the SOI layer thickness can be accurately controlled even if the SOI layer thinning process is shortened, so that the SOI layer thickness accuracy is lowered. Thus, the cost of the entire SOI layer thinning process can be reduced.
  • the SOI wafer is bonded to at least a bond wafer having a microbubble layer formed by ion implantation and a base wafer serving as a support substrate, and the bond wafer is peeled off with the microbubble layer as a boundary. It is preferable to use an SOI wafer manufactured by an ion implantation separation method including a step of forming a thin film on the wafer.
  • the SOI wafer manufacturing method of the present invention can be suitably used when an SOI wafer to be thinned is an SOI wafer manufactured by an ion implantation separation method.
  • the batch type cleaning and the single wafer type cleaning are cleanings including immersion in an SC1 solution.
  • the film thickness of the SOI layer can be controlled with higher accuracy.
  • the etching allowance by single wafer cleaning can be minimized, so that in-plane film thickness variation of the SOI film thickness can be minimized, and single wafer cleaning is performed. Since the film thickness can be adjusted with the, the variation in the film thickness within the batch caused by the batch cleaning can be corrected.
  • the etching allowance by single wafer cleaning can be reduced, so that in-plane film thickness variation of the SOI film thickness can be minimized, and single wafer cleaning can be used. Since the film thickness can be adjusted, variations in the film thickness within the batch caused by batch cleaning can be corrected. In addition, after performing batch cleaning, single wafer cleaning is performed and the film thickness of the SOI layer is adjusted stepwise, so that the final film thickness adjustment allowance can be reduced as compared with the conventional method. Thereby, the control of the film thickness to the target value can be performed with high accuracy. In particular, the present invention can stably manufacture FDSOI wafers that require highly accurate film thickness uniformity (target values within ⁇ 0.5 nm at all points).
  • the inventors of the present invention performed batch-type cleaning (for example, HF cleaning + SC1 cleaning) on the SOI wafer after the thermal oxide film was formed by heat treatment. After adjusting the film thickness so that it is slightly thicker than the thickness (target value) (for example, target value +0 to +0.5 nm or less), the final film thickness adjustment up to the target value is further performed by single wafer cleaning.
  • target value for example, target value +0 to +0.5 nm or less
  • FIG. 1 and 2 are flowcharts showing an example of a method for manufacturing an SOI wafer according to the present invention.
  • an SOI wafer having an SOI layer formed on an insulating layer is prepared.
  • the SOI wafer prepared here may be a wafer having an SOI structure in which an SOI layer is formed on at least an insulating layer.
  • a wafer having a structure in which an insulating layer is formed on a supporting layer such as single crystal silicon (buried insulating layer) and an SOI layer is formed on the buried insulating layer can be used.
  • the SOI layer in this specification means “a silicon layer on an insulating layer (Silicon on Insulator)”.
  • a method for manufacturing an SOI wafer is not particularly limited. For example, a step of bonding a prepared SOI wafer to a bond wafer having a microbubble layer formed by ion implantation and a base wafer serving as a support substrate through an insulating film. And an SOI wafer manufactured by an ion implantation separation method including a step of peeling the bond wafer with the microbubble layer as a boundary to form a thin film on the base wafer.
  • the present invention includes the above-described ion implantation separation method (so-called smart cut (registered trademark) method), rT-CCP method (also called room temperature mechanical separation method, SiGen method), or SIMOX method (Separation by Implanted Oxygen method). It can be applied regardless of the manufacturing method of SOI wafers.
  • step (a) heat treatment is performed in an oxidizing gas atmosphere to form a thermal oxide film on the surface of the SOI layer (step (a)).
  • a thermal oxide film a portion of silicon close to the surface of the SOI layer is transformed into an oxide film by oxidation.
  • the oxidizing gas atmosphere include a pyrogenic atmosphere.
  • the film thickness of the SOI layer after forming the thermal oxide film is measured (step (b)).
  • the method for measuring the thickness of the SOI layer is not particularly limited, but a measurement method using an ellipsometer is preferable because the thickness of the SOI layer can be accurately measured.
  • step (a) after step (a) and before step (b), or after step (b) as shown in FIG. Prior to (c), the thermal oxide film formed in step (a) is removed.
  • the thermal oxide film can be removed using an HF-containing aqueous solution.
  • the thermal oxide film removal cleaning can be performed before the step (b).
  • the thickness of the SOI layer can be measured after drying the SOI wafer after the removal of the thermal oxide film.
  • step (b) the film thickness can be measured without removing the thermal oxide film formed in step (a). This protects the surface of the SOI layer during measurement, reduces the risk of scratches and impurity contamination, and improves the quality and manufacturing yield of the final SOI wafer.
  • the thickness of the SOI layer measured at this time does not include the thickness of the thermal oxide film on the surface.
  • the thermal oxide film formed in the step (a) can be removed after the step (b) and before the step (c). In particular, as shown in FIG. By removing the thermal oxide film using an aqueous solution by batch cleaning, the removal of the thermal oxide film and the etching of the SOI layer in the step (c) described later can be performed in a continuous process.
  • step (c) batch-type cleaning including immersing the SOI layer in a cleaning solution having etching properties with respect to the SOI layer is performed (step (c)).
  • the thickness of the SOI layer after etching by batch cleaning is made thicker than the target value by adjusting the etching amount of the SOI layer according to the thickness of the SOI layer measured in step (b). adjust.
  • the adjustment method include a method of controlling the etching time and a method of changing the composition of the cleaning liquid and the temperature conditions.
  • the thickness of the SOI layer after etching may be adjusted to be thicker than the target value.
  • the average value in the batch of the thickness of the SOI layer after the batch cleaning in the step (c) is It is preferable to control between the target value and the target value +0.5 nm.
  • the etching allowance by the single wafer cleaning, which is a subsequent process can be minimized, so that the in-plane film thickness variation of the SOI film thickness can be minimized, and the single wafer cleaning can be performed for each wafer. Since the film thickness can be adjusted, variations in film thickness within the batch can be corrected.
  • the in-batch average value is an average value of film thicknesses of SOI layers of a plurality of SOI wafers that have been batch-type cleaned in the same batch.
  • cleaning solution having etching properties for the SOI layer examples include SC1 solution (mixed aqueous solution of ammonia water and hydrogen peroxide solution).
  • the batch-type cleaning in the step (c) is performed on the SOI layer without drying the surface of the SOI layer after removing the thermal oxide film.
  • the film thickness of the SOI layer after the batch cleaning process is measured (process (d)).
  • the method for measuring the thickness of the SOI layer can be a measuring method using an ellipsometer.
  • step (e) single wafer cleaning including immersing the SOI layer in a cleaning solution having etching properties for the SOI layer is performed (step (e)).
  • the etching amount of the SOI layer is adjusted according to the thickness of the SOI layer measured in step (d), so that the thickness of the SOI layer after etching by single wafer cleaning is set to the target value. adjust.
  • the adjustment method include a method of controlling the etching time and a method of changing the composition of the cleaning liquid and the temperature conditions. In particular, it is preferable to control the etching time and the like for each SOI wafer in order to suppress variations in SOI film thickness in the batch generated in the step (c).
  • the SC1 solution can be used as the cleaning liquid.
  • the film thickness of the SOI layer can be controlled with higher accuracy.
  • the film thickness adjustment allowance of the single wafer cleaning can be reduced by adjusting the film thickness of the SOI layer stepwise.
  • the control of the film thickness to the target value can be performed with high accuracy.
  • the film thickness variation of the in-plane average value of the SOI layer based on the variation of the oxide film thickness generated by batch-type heat treatment, etc. Control and correction can be performed by combining cleaning.
  • the etching amount of the SOI layer by the single wafer cleaning can be reduced.
  • in-plane machining allowance variation can be reduced, and the film thickness range (PV value) in the wafer surface can be improved.
  • the SOI film thickness variation in the batch by the batch type cleaning film thickness adjustment and the in-plane film thickness variation by the single wafer type film thickness adjustment can be suppressed. It is possible to stably manufacture an FDSOI wafer that requires high-precision film thickness uniformity (target values must be within ⁇ 0.5 nm at all points).
  • the SOI wafer was heat-treated at 950 ° C. for 2 hours in a pyrogenic atmosphere to form a thermal oxide film on the surface of the SOI layer (step (a)).
  • the thickness of the SOI layer after forming the thermal oxide film was measured using an ellipsometer (step (b)). At this time, the thickness of the surface oxide film was measured simultaneously with the measurement of the SOI film thickness.
  • batch cleaning using a 15% HF-containing aqueous solution is performed for 100 seconds, and after removing the thermal oxide film, batch cleaning is performed in which the SOI layer is immersed in the SC1 solution without drying the surface of the SOI layer.
  • the film thickness of the SOI layer was adjusted to be thicker than the target value (step (c)).
  • the SC1 conditions composition, liquid temperature
  • the liquid temperature was 76 ° C.
  • the cleaning time was 140 seconds in consideration of the film thickness of the SOI layer measured in the step (b).
  • the film thickness of the SOI layer after the batch cleaning process was measured (process (d)). At this time, the average value of the SOI film thickness in the batch was also calculated.
  • SC1 cleaning using a spin cleaner single wafer cleaning (SC1 cleaning using a spin cleaner) in which the SOI layer was immersed in the SC1 solution was performed, and the film thickness of the SOI layer was adjusted to the target value (step (e)).
  • the SC1 conditions composition, liquid temperature
  • the cleaning time was set to 20 to 60 seconds for each SOI wafer in consideration of the thickness of the SOI layer measured in the step (d).
  • Comparative Example 1 In Comparative Example 1, the oxide film removal after oxidation and the film thickness adjustment cleaning were performed only with a batch type cleaning machine.
  • the oxide film removal cleaning and the batch type film thickness adjustment cleaning in Comparative Example 1 were performed by batch processing in which 22 wafers that were simultaneously oxidized were combined into one batch (cassette-01). Specifically, first, it carried out similarly to the Example until the process (b). Next, batch-type cleaning using a 15% HF-containing aqueous solution is performed for 100 seconds, and after removing the thermal oxide film, batch-type cleaning is performed in which the SOI layer is immersed in the SC1 solution without drying the surface of the SOI layer. Went for a second.
  • the SC1 conditions composition, liquid temperature
  • Comparative Example 2 In Comparative Example 2, the oxide film removal after oxidation and the SOI film thickness adjustment cleaning were performed only by the single wafer cleaning machine. Specifically, first, it carried out similarly to the Example until the process (b). Next, SiO 2 (thermal oxide film) was removed. Next, single wafer cleaning (SC1 cleaning with a spin cleaner) in which the SOI layer is immersed in the SC1 solution was performed for 160 to 200 seconds for each SOI wafer. The SC1 conditions (composition, liquid temperature) were the same as in the examples.
  • Table 1 shows the conditions and measurement results for each step of the examples and comparative examples.
  • the in-batch range in Table 1 shows the variation (PV value) of the in-plane average film thickness of each wafer in the batch.
  • FIG. 3 is a diagram showing the relationship between the slot position in the cleaning cassette of the embodiment and the value of the film thickness of the SOI layer.
  • FIG. 4 is a diagram showing the relationship between the slot position in the cleaning cassette of Comparative Example 1 and the value of the film thickness of the SOI layer.
  • the average value of each wafer can be accurately adjusted to the target value (12 nm). Since the deterioration of the in-plane film thickness variation by the leaf type cleaning machine can be suppressed, the target value ⁇ 0.5 nm can be satisfied with the wafers (96%) close to the total number.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Weting (AREA)

Abstract

 本発明は、(a)酸化性ガス雰囲気下で熱処理を行って、SOIウェーハのSOI層の表面に熱酸化膜を形成する工程、(b)熱酸化膜を形成した後のSOI層の膜厚を測定する工程、(c)SOI層のエッチング量を工程(b)で測定されたSOI層の膜厚に応じて調整することによって、バッチ式洗浄によるエッチング後のSOI層の膜厚をターゲット値より厚く調整するバッチ式洗浄工程、(d)バッチ式洗浄工程後のSOI層の膜厚を測定する工程、(e)SOI層のエッチング量を工程(d)で測定されたSOI層の膜厚に応じて調整することによって、枚葉式洗浄によるエッチング後のSOI層の膜厚をターゲット値に調整する枚葉式洗浄工程を有し、工程(b)の前又は後に、工程(a)で形成した熱酸化膜を除去するSOIウェーハの製造方法である。これにより、SOI層の膜厚均一性に優れたSOIウェーハを製造することができるSOIウェーハの製造方法が提供される。

Description

SOIウェーハの製造方法
 本発明は、SOIウェーハの製造方法に関し、特に、FDSOI(Fully  Depleted  Silicon-On-Insulator:完全空乏型SOI)と呼ばれ、極めて高いSOI層膜厚の均一性が要求されるSOIウェーハの製造方法に関する。
 従来、SOI層を薄膜化する方法の1つとして、SOIウェーハをバッチ式熱処理炉で熱処理し、SOI表面のSiを酸化により酸化膜に変質させた後に、酸化膜を除去する方法が行われてきた。
 この方法により、SOI膜厚(SOI層の膜厚)を精度良く目的の値(ターゲット値)に薄膜化するには、酸化膜厚が狙い値になるよう正確に制御することが必要となる。しかしながら、酸化時間中の大気圧の変動により酸化レートが変化するため、実際に熱処理により成長する酸化膜の厚さを正確に制御することは非常に困難である。このため、酸化による薄膜化を行う場合には、薄膜化後のSOI膜厚が目的の値よりも若干厚くなるように酸化による薄膜化を行い、その後、別途、エッチングによる薄膜化によって目的の値になるようにエッチング時間を制御する方法がとられてきた。
 この2段階の薄膜化の方法としては、例えば、特許文献1に示されている様に、酸化後の酸化膜を除去した後にSOI層の膜厚を測定し、その値を元に次段のエッチング工程の取り代を設定する方法がとられてきた。
 また、酸化+エッチングによる前記2段の薄膜化工程において、上記工程を短縮する方法として、酸化後に酸化膜が付いたまま、SOI層の膜厚を測定し、測定したSOIの値を元に、酸化膜除去とエッチング+洗浄工程を洗浄の同一バッチ処理で行う方法が提案されている(特許文献2)。
特開2007-266059号公報 特開2010-92909号公報
 しかし、これらの方法によってSOI層の膜厚を高精度に制御しようとしても、バッチ式熱処理等の熱処理で発生した酸化膜の厚さのバラツキや、エッチング(バッチ式洗浄等の洗浄)による取り代バラツキ(SOI層のエッチング量のバラツキ)により、同一バッチ内で処理された複数のSOIウェーハにおいて、膜厚バラツキ(SOI膜厚のバラツキ)が生じる。
 図5は、1バッチ25枚のSOIウェーハに対し、SC1洗浄液(アンモニア水と過酸化水素水の混合水溶液)でSOI層を14.5nm程度減厚するバッチ式洗浄(エッチング)を行った際の洗浄カセット内のスロット位置と、SOI層(Si)の取り代の面内平均値との関係を示しており、バッチ内の取り代バラツキがP-V(Peak to Valley)値(最大値から最小値を引いた値)で0.61nmになっていることを表している。
 図6は、1バッチ100枚のSOIウェーハをバッチ式熱処理炉で熱酸化した際の炉内位置と形成された酸化膜厚(面内平均値)との関係を示している。
 図6に示すようなバッチ式熱処理で発生した面内平均値の膜厚バラツキは、図5に示すように、バッチ式洗浄のみでSOI層のエッチングを行う場合では、制御・修正できない。特に、FDSOIウェーハには、高精度の膜厚均一性、例えば、SOI膜厚のバラツキを、全点(全ウェーハの全測定点)で、ターゲット値±0.5nm以内に抑えることが要求されているが、バッチ式洗浄のみではこの要求を満たすことができなかった。また、酸化後からターゲット値までの調整取り代(エッチングによる取り代)、すなわち最終段の膜厚調整取り代が多いため、ターゲット値からのずれも大きくなる傾向があった。
 一方、枚葉式の洗浄機(例えば、特開2000-31071号公報の図2のようなスピン洗浄機)によるSOI膜厚調整では、バッチ内の膜厚バラツキをウェーハ単位では修正できるものの、薬液ノズル部で薬液の温度が高くなる等で、バッチ式洗浄機よりもウェーハ面内の取り代バラツキが大きく、枚葉式の洗浄(エッチング)のみで膜厚調整を行うと、ウェーハ面内の膜厚レンジ(Range(P-V値))の悪化により、全測定点で±0.5nm以下を満たすことが不可能であった。また、酸化後からターゲット値までの最終段の膜厚調整取り代はバッチ式洗浄機のみの場合と同様に多くなるため、ターゲット値からのずれも大きくなる傾向があった。
 図7は、複数枚のSOIウェーハをバッチ式洗浄機のみと枚葉式洗浄機のみによりSC1洗浄を行い、SC1取り代の面内平均値と、面内の取り代レンジ(P-V値)を比較した結果を示す図である。図7に示す通り、面内の取り代レンジはバッチ式洗浄機に比べて枚葉式洗浄機の方が大きく、しかも、枚葉式洗浄機は、SC1取り代が増加するに従って取り代レンジも増加する傾向があることがわかった。
 本発明は、上記問題点に鑑みてなされたものであって、SOI層の膜厚均一性に優れたSOIウェーハを製造することができるSOIウェーハの製造方法を提供することを目的とする。
 上記目的を達成するために、本発明では、絶縁層上にSOI層が形成されたSOIウェーハの前記SOI層を所定の厚さまで減少させ、前記SOI層の膜厚をターゲット値とするSOIウェーハの製造方法であって、少なくとも、
(a)酸化性ガス雰囲気下で熱処理を行って、前記SOI層の表面に熱酸化膜を形成する工程と、
(b)前記熱酸化膜を形成した後のSOI層の膜厚を測定する工程と、
(c)前記SOI層に対してエッチング性を有する洗浄液に前記SOI層を浸漬することを含むバッチ式洗浄を行う工程であって、前記SOI層のエッチング量を、前記工程(b)で測定されたSOI層の膜厚に応じて調整することによって、前記バッチ式洗浄によるエッチング後のSOI層の膜厚を、前記ターゲット値より厚く調整するバッチ式洗浄工程と、
(d)前記バッチ式洗浄工程後のSOI層の膜厚を測定する工程と、
(e)前記SOI層に対してエッチング性を有する洗浄液に前記SOI層を浸漬することを含む枚葉式洗浄を行う工程であって、前記SOI層のエッチング量を、前記工程(d)で測定されたSOI層の膜厚に応じて調整することによって、前記枚葉式洗浄によるエッチング後のSOI層の膜厚を、前記ターゲット値に調整する枚葉式洗浄工程と
を有し、前記工程(a)の後かつ前記工程(b)の前、又は前記工程(b)の後かつ前記工程(c)の前に、前記工程(a)で形成した熱酸化膜を除去することを特徴とするSOIウェーハの製造方法を提供する。
 このようなSOIウェーハの製造方法であれば、バッチ式洗浄と枚葉式洗浄を用いてSOI層の膜厚を調整することによって、バッチ式洗浄の膜厚調整によるバッチ内のSOI膜厚バラツキと、枚葉式洗浄の膜厚調整による面内の膜厚バラツキを抑制することができる。これにより、SOI層の膜厚均一性に優れたSOIウェーハを製造することができる。
 また、前記工程(b)の膜厚の測定を、前記工程(a)で形成した熱酸化膜を除去せずに行い、前記工程(b)の後かつ前記工程(c)の前に、前記工程(a)で形成した熱酸化膜を、HF含有水溶液を用い、バッチ式洗浄で除去した後、前記工程(c)のバッチ式洗浄を、前記熱酸化膜を除去した後のSOI層の表面を乾燥させることなく、前記SOI層に対してエッチング性を有する洗浄液に前記SOI層を浸漬することにより行うことが好ましい。
 このようなSOIウェーハの製造方法であれば、SOI層の薄膜化のプロセスを短縮しても精度良くSOI層の膜厚の制御を行うことができるので、SOI層の膜厚の精度を低下させることなくSOI層の薄膜化プロセス全体のコストを低減することができる。
 また、前記SOIウェーハを、少なくとも、イオン注入により形成された微小気泡層を有するボンドウェーハと支持基板となるベースウェーハとを接合する工程と、前記微小気泡層を境界としてボンドウェーハを剥離してベースウェーハ上に薄膜を形成する工程とを有するイオン注入剥離法によって作製されたSOIウェーハとすることが好ましい。
 このように、本発明のSOIウェーハの製造方法は、薄膜化を行うSOIウェーハをイオン注入剥離法によって作製されたSOIウェーハとした場合に好適に用いることができる。
 また、前記バッチ式洗浄及び前記枚葉式洗浄を、SC1溶液に浸漬することを含む洗浄とすることが好ましい。
 このように、SC1溶液に浸漬することにより、より精度良くSOI層の膜厚の制御を行うことができる。
 また、前記工程(c)のバッチ式洗浄後のSOI層の膜厚のバッチ内平均値を、前記ターゲット値と前記ターゲット値+0.5nmの間に制御することが好ましい。
 このようなSOIウェーハの製造方法であれば、枚葉式洗浄によるエッチングの取り代を最小化できるため、SOI膜厚の面内の膜厚バラツキを最小限に抑制でき、かつ、枚葉式洗浄で膜厚調整ができるため、バッチ式洗浄で生じたバッチ内の膜厚バラツキも修正できる。
 本発明のSOIウェーハの製造方法であれば、枚葉式洗浄によるエッチングの取り代を低減できるため、SOI膜厚の面内の膜厚バラツキを最小限に抑制でき、かつ、枚葉式洗浄で膜厚調整ができるため、バッチ式洗浄で生じたバッチ内の膜厚バラツキも修正できる。また、バッチ式洗浄を行った後、枚葉式洗浄を行い、SOI層の膜厚を段階的に調整することにより、従来法よりも最終段の膜厚調整取り代を少なくすることができる。これにより、ターゲット値への膜厚の制御も精度良くできる。特に、本発明は、高精度の膜厚均一性(全点でターゲット値±0.5nm以内であること)が要求されるFDSOIウェーハを安定的に製造することができる。
本発明のSOIウェーハの製造方法の一例を示すフロー図である。 本発明のSOIウェーハの製造方法の別の例を示すフロー図である。 実施例の洗浄カセット内のスロット位置と、SOI層の膜厚の値との関係を示す図である。 比較例1の洗浄カセット内のスロット位置と、SOI層の膜厚の値との関係を示す図である。 バッチ式洗浄を行った際の、洗浄カセット内のスロット位置と、SOI層(Si)の取り代の面内平均値との関係を示す図である。 1バッチ100枚のSOIウェーハをバッチ式熱処理炉で熱酸化した際の炉内位置と形成された酸化膜厚(面内平均値)との関係を示す図である。 複数枚のSOIウェーハをバッチ式洗浄機のみと枚葉式洗浄機のみによりSC1洗浄を行い、SC1取り代の面内平均値と、面内の取り代レンジ(P-V値)を比較した結果を示す図である。
 以下、本発明をより詳細に説明する。
 上記のように、SOI層の膜厚均一性に優れたSOIウェーハを製造することができるSOIウェーハの製造方法が求められている。
 本発明者らは、上記目的を達成するために鋭意検討を行った結果、熱処理により熱酸化膜が形成された後のSOIウェーハをバッチ式洗浄(例えば、HF洗浄+SC1洗浄)によりターゲットのSOI膜厚(ターゲット値)よりも若干厚くなる様に(例えば、ターゲット値+0~+0.5nm以下)に膜厚調整した後に、さらに、ターゲット値までの最終の膜厚調整を、枚葉式洗浄によるエッチングで行うSOIウェーハの製造方法が、上記課題を解決できることを見出し、本発明を完成させた。
 以下、本発明の実施の形態について図面を参照して具体的に説明するが、本発明はこれらに限定されるものではない。
 図1、2は、本発明のSOIウェーハの製造方法の一例を示すフロー図である。
 まず、図1(1)、図2(1)に示すように、絶縁層上にSOI層が形成されたSOIウェーハを準備する。
 ここで準備するSOIウェーハは、少なくとも絶縁層上にSOI層が形成されたSOI構造を有するウェーハであればよい。例えば、単結晶シリコン等の支持層上に絶縁層が形成され(埋め込み絶縁層)、この埋め込み絶縁層上にSOI層が形成された構造を有するウェーハ等が挙げられる。
 なお、本明細書中のSOI層とは、「絶縁層上のシリコン層(Silicon on Insulator)」を意味する。
 SOIウェーハの作製方法等は特に限定されないが、例えば、準備するSOIウェーハを、イオン注入により形成された微小気泡層を有するボンドウェーハと支持基板となるベースウェーハとを絶縁膜を介して接合する工程と、この微小気泡層を境界としてボンドウェーハを剥離してベースウェーハ上に薄膜を形成する工程とを有するイオン注入剥離法によって作製されたSOIウェーハとすることが好ましい。
 なお、本発明は、上記のイオン注入剥離法(いわゆるスマートカット(登録商標)法)やrT-CCP法(室温機械剥離法、SiGen法とも呼ばれる。)、或いはSIMOX法(Separation by Implanted Oxygen法)、といったSOIウェーハの製法にかかわらず適用できる。
 次に、図1(2)、図2(2)に示すように、酸化性ガス雰囲気下で熱処理を行って、SOI層の表面に熱酸化膜を形成する(工程(a))。この熱酸化膜は、SOI層の表面に近い部分のシリコンが酸化により酸化膜に変質されるものである。酸化性ガス雰囲気としては、例えば、パイロジェニック雰囲気を挙げることができる。
 次に、図1(3)、図2(4)に示すように、熱酸化膜を形成した後のSOI層の膜厚を測定する(工程(b))。SOI層の厚さの測定方法は特に限定されないが、エリプソメーターを用いた測定方法であれば、精度良くSOI層の厚さを測定することができるので好ましい。
 本発明では、図2(3)に示すように、工程(a)の後かつ工程(b)の前、又は、図1(4)に示すように、工程(b)の後かつ後述する工程(c)の前に、工程(a)で形成した熱酸化膜を除去する。熱酸化膜はHF含有水溶液を用いて除去することができる。
 例えば、図2(3)に示すように、工程(b)の前に熱酸化膜除去洗浄を行うことができる。この場合、熱酸化膜除去後のSOIウェーハを乾燥させた後、SOI層の膜厚を測定することができる。
 また、図1のように、工程(b)において、工程(a)で形成した熱酸化膜を除去せずに膜厚の測定を行うこともできる。これにより、測定時にSOI層の表面が保護され、キズや不純物汚染等の危険性が低下し、最終的なSOIウェーハの品質と製造歩留りを向上させることができる。
 また、このとき測定されるSOI層の厚さは、表面の熱酸化膜の厚さは含まないものである。この場合、工程(b)の後かつ工程(c)の前に、工程(a)で形成した熱酸化膜を除去することができるが、特に、図1(4)に示すように、HF含有水溶液を用い、バッチ式洗浄で除去することで、この熱酸化膜の除去と後述する工程(c)のSOI層のエッチングを連続したプロセスで行うことができる。
 次に、図1(5)、図2(5)に示すように、SOI層に対してエッチング性を有する洗浄液にSOI層を浸漬することを含むバッチ式洗浄を行う(工程(c))。この工程では、SOI層のエッチング量を、工程(b)で測定されたSOI層の膜厚に応じて調整することによって、バッチ式洗浄によるエッチング後のSOI層の膜厚を、ターゲット値より厚く調整する。この調整の方法としては、エッチング時間を制御する方法、洗浄液の組成や温度の条件を変更する方法を挙げることができる。
 工程(c)では、エッチング後のSOI層の膜厚を、ターゲット値より厚く調整すればよいが、例えば、工程(c)のバッチ式洗浄後のSOI層の膜厚のバッチ内平均値を、ターゲット値とターゲット値+0.5nmの間に制御することが好ましい。これにより、後工程である枚葉式洗浄によるエッチングの取り代を最小化できるため、SOI膜厚の面内の膜厚バラツキを最小限に抑制でき、かつ、枚葉式洗浄で1枚ごとに膜厚調整ができるため、バッチ内の膜厚バラツキも修正できる。また、従来法よりも最終段の膜厚調整取り代が少なくなるため、ターゲット値への膜厚の制御も精度良くできる。なお、バッチ内平均値とは、同一バッチ内でバッチ式洗浄された複数のSOIウェーハのSOI層の膜厚の平均値である。
 SOI層に対してエッチング性を有する洗浄液としては、例えば、SC1溶液(アンモニア水と過酸化水素水の混合水溶液)を挙げることができる。
 上述した図1(4)に示す方法で熱酸化膜を除去した場合、工程(c)のバッチ式洗浄を、熱酸化膜を除去した後のSOI層の表面を乾燥させることなく、SOI層に対してエッチング性を有する洗浄液にSOI層を浸漬することにより行うことが好ましい。すなわち、熱酸化膜の除去とSOI層のエッチングを連続したプロセスで行うことが好ましい。これによりSOI層の薄膜化プロセス全体が短縮され、プロセスコストを削減することができる。
 次に、図1(6)、図2(6)に示すように、バッチ式洗浄工程後のSOI層の膜厚を測定する(工程(d))。SOI層の厚さの測定方法は、エリプソメーターを用いた測定方法とすることができる。
 次に、図1(7)、図2(7)に示すように、SOI層に対してエッチング性を有する洗浄液にSOI層を浸漬することを含む枚葉式洗浄を行う(工程(e))。この工程では、SOI層のエッチング量を、工程(d)で測定されたSOI層の膜厚に応じて調整することによって、枚葉式洗浄によるエッチング後のSOI層の膜厚を、ターゲット値に調整する。この調整の方法としては、エッチング時間を制御する方法、洗浄液の組成や温度の条件を変更する方法を挙げることができる。特に、工程(c)で生じたバッチ内のSOI膜厚バラツキを抑えるために、各SOIウェーハごとにエッチング時間等を制御することが好ましい。
 上述のように、洗浄液としては、SC1溶液を用いることができる。工程(c)のバッチ式洗浄及び工程(e)の枚葉式洗浄を、SC1溶液に浸漬することを含む洗浄とすることで、より精度良くSOI層の膜厚の制御を行うことができる。なお、これらの洗浄を実施する際、少なくともSOI層のみ洗浄液に浸漬すれば十分であるが、SOIウェーハ全体を浸漬してもよい。
 このように、バッチ式洗浄を行った後、枚葉式洗浄を行い、SOI層の膜厚を段階的に調整することにより、枚葉式洗浄の膜厚調整取り代を少なくすることができる。これにより、ターゲット値への膜厚の制御も精度良くできる。
 以上のような工程を経るSOIウェーハの製造方法であれば、バッチ式熱処理等で発生した酸化膜厚のバラツキに基づくSOI層の面内平均値の膜厚バラツキを、バッチ式洗浄と枚葉式洗浄を組み合わせることにより、制御・修正することができる。特に、バッチ式洗浄を行った後に、枚葉式洗浄を行うことにより、枚葉式洗浄によるSOI層のエッチング量を減らすことができる。これにより、面内の取り代バラツキを小さくし、ウェーハ面内の膜厚レンジ(P-V値)を改善させることができる。このような本発明であれば、バッチ式洗浄の膜厚調整によるバッチ内のSOI膜厚バラツキと、枚葉式洗浄の膜厚調整による面内の膜厚バラツキを抑制することができ、特に、高精度の膜厚均一性(全点でターゲット値±0.5nm以内であること)が要求されるFDSOIウェーハを安定的に製造することができる。
 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこの実施例に限定されるものではない。
(実施例)
 イオン注入剥離法によって作製された直径300mmのSOIウェーハ(SOI膜厚150nm)を46枚用意し、これらを2つのバッチ式洗浄カセット(カセット-01、02)に分けて本発明を実施した例を表1に示す。
 具体的には、まず、上記のSOIウェーハに対して、950℃、2時間、パイロジェニック雰囲気で熱処理を行って、SOI層の表面に熱酸化膜を形成した(工程(a))。次に、エリプソメーターを使用し、熱酸化膜を形成した後のSOI層の膜厚を測定した(工程(b))。この際、SOI膜厚測定と同時に表面酸化膜の厚さも測定した。次に、15%HF含有水溶液を用いたバッチ式洗浄を100秒行い、この熱酸化膜を除去した後、SOI層の表面を乾燥させることなく、SOI層をSC1溶液に浸漬するバッチ式洗浄を行い、SOI層の膜厚を、ターゲット値より厚く調整した(工程(c))。この際、SC1条件(組成,液温)は、NHOH:H:HO=1:1:5,液温76℃とした。なお、洗浄時間は、工程(b)で測定されたSOI層の膜厚を考慮して、140秒とした。
 次に、エリプソメーターを使用し、バッチ式洗浄工程後のSOI層の膜厚を測定した(工程(d))。この際、バッチ内のSOI膜厚の平均値も算出した。次に、SOI層をSC1溶液に浸漬する枚葉式洗浄(スピン洗浄機によるSC1洗浄)を行い、SOI層の膜厚を、ターゲット値に調整した(工程(e))。SC1条件(組成,液温)は、上記と同様の条件とした。なお、洗浄時間は、工程(d)で測定されたSOI層の膜厚を考慮して、それぞれのSOIウェーハごとに、20~60秒とした。
(比較例1)
 比較例1では、酸化後の酸化膜除去と膜厚調整洗浄をバッチ式洗浄機のみで行った。比較例1における酸化膜除去洗浄とバッチ式膜厚調整洗浄は、同時に酸化処理したウェーハ22枚を1つのバッチとして同一カセット(カセット-01)に纏めるバッチ処理で行った。具体的には、まず、工程(b)までは実施例と同様にして行った。次に、15%HF含有水溶液を用いたバッチ式洗浄を100秒行い、熱酸化膜を除去した後、SOI層の表面を乾燥させることなく、SOI層をSC1溶液に浸漬するバッチ式洗浄を180秒行った。SC1条件(組成,液温)は、実施例と同様の条件とした。
(比較例2)
 また、比較例2では、酸化後の酸化膜除去とSOI膜厚調整洗浄を枚葉式洗浄機のみで行った。具体的には、まず、工程(b)までは実施例と同様にして行った。次に、SiO(熱酸化膜)を除去した。次に、SOI層をSC1溶液に浸漬する枚葉式洗浄(スピン洗浄機によるSC1洗浄)を、それぞれのSOIウェーハごとに、160~200秒行った。SC1条件(組成,液温)は、実施例と同様の条件とした。
 表1に、実施例、比較例の各工程の条件と測定結果を示す。なお、表1におけるバッチ内レンジは、バッチ内の各ウェーハの面内平均膜厚のバラツキ(P-V値)を示す。また、図3は、実施例の洗浄カセット内のスロット位置と、SOI層の膜厚の値との関係を示す図である。図4は比較例1の洗浄カセット内のスロット位置と、SOI層の膜厚の値との関係を示す図である。
Figure JPOXMLDOC01-appb-T000001
 表1、図4に示すように、バッチ式洗浄機のみで膜厚調整した場合(比較例1)では、バッチ内平均値も実施例より若干悪く、また、バッチ内の膜厚バラツキが修正できないためにターゲット値±0.5nmの膜厚から外れるウェーハの割合が、実施例に比べかなり大きかった。
 また、表1に示すように、枚葉式洗浄機のみで膜厚調整した場合(比較例2)では、バッチ内平均値も実施例より若干悪く、また、面内の膜厚バラツキの悪化により全てのウェーハがターゲット値±0.5nmの膜厚から外れた。
 一方、表1、図3に示すように、バッチ式洗浄機と枚葉式洗浄機を組み合わせた本実施例では、各ウェーハの平均値をターゲット値(12nm)に精度良く調整でき、また、枚葉式洗浄機による面内の膜厚バラツキの悪化も抑制できるため、全数に近いウェーハ(96%)でターゲット値±0.5nmを満たすことができた。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (5)

  1.  絶縁層上にSOI層が形成されたSOIウェーハの前記SOI層を所定の厚さまで減少させ、前記SOI層の膜厚をターゲット値とするSOIウェーハの製造方法であって、少なくとも、
    (a)酸化性ガス雰囲気下で熱処理を行って、前記SOI層の表面に熱酸化膜を形成する工程と、
    (b)前記熱酸化膜を形成した後のSOI層の膜厚を測定する工程と、
    (c)前記SOI層に対してエッチング性を有する洗浄液に前記SOI層を浸漬することを含むバッチ式洗浄を行う工程であって、前記SOI層のエッチング量を、前記工程(b)で測定されたSOI層の膜厚に応じて調整することによって、前記バッチ式洗浄によるエッチング後のSOI層の膜厚を、前記ターゲット値より厚く調整するバッチ式洗浄工程と、
    (d)前記バッチ式洗浄工程後のSOI層の膜厚を測定する工程と、
    (e)前記SOI層に対してエッチング性を有する洗浄液に前記SOI層を浸漬することを含む枚葉式洗浄を行う工程であって、前記SOI層のエッチング量を、前記工程(d)で測定されたSOI層の膜厚に応じて調整することによって、前記枚葉式洗浄によるエッチング後のSOI層の膜厚を、前記ターゲット値に調整する枚葉式洗浄工程と
    を有し、前記工程(a)の後かつ前記工程(b)の前、又は前記工程(b)の後かつ前記工程(c)の前に、前記工程(a)で形成した熱酸化膜を除去することを特徴とするSOIウェーハの製造方法。
  2.  前記工程(b)の膜厚の測定を、前記工程(a)で形成した熱酸化膜を除去せずに行い、前記工程(b)の後かつ前記工程(c)の前に、前記工程(a)で形成した熱酸化膜を、HF含有水溶液を用い、バッチ式洗浄で除去した後、前記工程(c)のバッチ式洗浄を、前記熱酸化膜を除去した後のSOI層の表面を乾燥させることなく、前記SOI層に対してエッチング性を有する洗浄液に前記SOI層を浸漬することにより行うことを特徴とする請求項1に記載のSOIウェーハの製造方法。
  3.  前記SOIウェーハを、少なくとも、イオン注入により形成された微小気泡層を有するボンドウェーハと支持基板となるベースウェーハとを接合する工程と、前記微小気泡層を境界としてボンドウェーハを剥離してベースウェーハ上に薄膜を形成する工程とを有するイオン注入剥離法によって作製されたSOIウェーハとすることを特徴とする請求項1又は請求項2に記載のSOIウェーハの製造方法。
  4.  前記バッチ式洗浄及び前記枚葉式洗浄を、SC1溶液に浸漬することを含む洗浄とすることを特徴とする請求項1から請求項3のいずれか1項に記載のSOIウェーハの製造方法。
  5.  前記工程(c)のバッチ式洗浄後のSOI層の膜厚のバッチ内平均値を、前記ターゲット値と前記ターゲット値+0.5nmの間に制御することを特徴とする請求項1から請求項4のいずれか1項に記載のSOIウェーハの製造方法。
PCT/JP2015/002042 2014-06-17 2015-04-13 Soiウェーハの製造方法 WO2015194079A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/313,473 US9953860B2 (en) 2014-06-17 2015-04-13 Method of manufacturing SOI wafer
SG11201609805PA SG11201609805PA (en) 2014-06-17 2015-04-13 Method for manufacturing soi wafer
KR1020167035257A KR102241303B1 (ko) 2014-06-17 2015-04-13 Soi웨이퍼의 제조방법
CN201580027234.8A CN106415784B (zh) 2014-06-17 2015-04-13 绝缘体上硅晶圆的制造方法
EP15809306.2A EP3159911B1 (en) 2014-06-17 2015-04-13 Method for manufacturing soi wafer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014124046A JP6152829B2 (ja) 2014-06-17 2014-06-17 Soiウェーハの製造方法
JP2014-124046 2014-06-17

Publications (1)

Publication Number Publication Date
WO2015194079A1 true WO2015194079A1 (ja) 2015-12-23

Family

ID=54935098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002042 WO2015194079A1 (ja) 2014-06-17 2015-04-13 Soiウェーハの製造方法

Country Status (8)

Country Link
US (1) US9953860B2 (ja)
EP (1) EP3159911B1 (ja)
JP (1) JP6152829B2 (ja)
KR (1) KR102241303B1 (ja)
CN (1) CN106415784B (ja)
SG (1) SG11201609805PA (ja)
TW (1) TWI611568B (ja)
WO (1) WO2015194079A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115516608A (zh) 2020-05-26 2022-12-23 信越半导体株式会社 Soi晶圆的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349493A (ja) * 2003-05-22 2004-12-09 Canon Inc 膜厚調整装置及びsoi基板の製造方法
JP2007266059A (ja) * 2006-03-27 2007-10-11 Sumco Corp Simoxウェーハの製造方法
JP2009054837A (ja) * 2007-08-28 2009-03-12 Sumco Corp Simoxウェーハ製造方法およびsimoxウェーハ
JP2010092909A (ja) * 2008-10-03 2010-04-22 Shin Etsu Handotai Co Ltd Soiウェーハの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3319397B2 (ja) 1998-07-07 2002-08-26 信越半導体株式会社 半導体製造装置およびこれを用いたエピタキシャルウェーハの製造方法
CN100454552C (zh) * 2001-07-17 2009-01-21 信越半导体株式会社 贴合晶片的制造方法及贴合晶片、以及贴合soi晶片
JP4509488B2 (ja) * 2003-04-02 2010-07-21 株式会社Sumco 貼り合わせ基板の製造方法
JP5415676B2 (ja) * 2007-05-30 2014-02-12 信越化学工業株式会社 Soiウェーハの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349493A (ja) * 2003-05-22 2004-12-09 Canon Inc 膜厚調整装置及びsoi基板の製造方法
JP2007266059A (ja) * 2006-03-27 2007-10-11 Sumco Corp Simoxウェーハの製造方法
JP2009054837A (ja) * 2007-08-28 2009-03-12 Sumco Corp Simoxウェーハ製造方法およびsimoxウェーハ
JP2010092909A (ja) * 2008-10-03 2010-04-22 Shin Etsu Handotai Co Ltd Soiウェーハの製造方法

Also Published As

Publication number Publication date
JP6152829B2 (ja) 2017-06-28
EP3159911B1 (en) 2021-06-09
EP3159911A1 (en) 2017-04-26
TW201601296A (zh) 2016-01-01
US9953860B2 (en) 2018-04-24
TWI611568B (zh) 2018-01-11
CN106415784A (zh) 2017-02-15
KR20170018336A (ko) 2017-02-17
JP2016004890A (ja) 2016-01-12
EP3159911A4 (en) 2018-02-28
KR102241303B1 (ko) 2021-04-16
US20170200634A1 (en) 2017-07-13
SG11201609805PA (en) 2016-12-29
CN106415784B (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
US9773694B2 (en) Method for manufacturing bonded wafer
KR101488667B1 (ko) Soi 웨이퍼의 실리콘 산화막 형성 방법
WO2013088636A1 (ja) Soiウェーハの製造方法
US9793154B2 (en) Method for manufacturing bonded SOI wafer
US8987109B2 (en) Method for manufacturing bonded wafer and bonded SOI wafer
JP7480738B2 (ja) シリコンウェーハの洗浄方法及び自然酸化膜付きシリコンウェーハの製造方法
KR102259162B1 (ko) Soi 웨이퍼의 제조방법
US10600677B2 (en) Method for manufacturing bonded SOI wafer
JP5320954B2 (ja) Soiウェーハの製造方法
JP6152829B2 (ja) Soiウェーハの製造方法
JP6760245B2 (ja) 薄膜soi層を有するsoiウェーハの製造方法
JP2007242972A (ja) Soiウェーハの製造方法
US9929040B2 (en) Process for fabricating a structure having a buried dielectric layer of uniform thickness
JP7364071B2 (ja) Soiウェーハの製造方法
JP7251419B2 (ja) 貼り合わせsoiウェーハの製造方法
JP6864145B1 (ja) ウェーハの表面形状調整方法
JP2021166267A (ja) 貼り合わせsoiウェーハの製造方法
JP2006013179A (ja) Soiウェーハの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15809306

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15313473

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015809306

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015809306

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167035257

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE