WO2015192391A1 - 一种钢筋及其制备方法 - Google Patents

一种钢筋及其制备方法 Download PDF

Info

Publication number
WO2015192391A1
WO2015192391A1 PCT/CN2014/080994 CN2014080994W WO2015192391A1 WO 2015192391 A1 WO2015192391 A1 WO 2015192391A1 CN 2014080994 W CN2014080994 W CN 2014080994W WO 2015192391 A1 WO2015192391 A1 WO 2015192391A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
smelting
rolling
temperature
furnace
Prior art date
Application number
PCT/CN2014/080994
Other languages
English (en)
French (fr)
Inventor
张建春
麻晗
黄文克
李阳
左龙飞
Original Assignee
江苏省沙钢钢铁研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏省沙钢钢铁研究院有限公司 filed Critical 江苏省沙钢钢铁研究院有限公司
Priority to US15/114,287 priority Critical patent/US20170029919A1/en
Priority to EP14895253.4A priority patent/EP3159424B1/en
Priority to KR1020167011662A priority patent/KR101828856B1/ko
Publication of WO2015192391A1 publication Critical patent/WO2015192391A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/08Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires for concrete reinforcement
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the invention relates to a steel bar and a preparation method thereof, and belongs to the field of alloy steel. Background technique
  • the epoxy-coated steel bars are the earliest developed and the most widely used, but the epoxy-coated steel bars still have essential deficiencies, mainly reflecting the brittleness of the coating, which is easy to damage and damage during transportation and processing. Coating defects can avoid corrosion concentration and lead to severe local corrosion; reduce the grip force with concrete compared with ordinary steel bars.
  • the European and American countries have developed stainless steel bars, because the critical concentration causing the corrosion is much higher than that of the ordinary steel bars, so the durability of the concrete structure can be greatly improved.
  • it is expensive, and the cost is about 6-10 times that of the carbon steel bar. It cannot be used on a large scale in the project.
  • Cide patent document CN102605255A discloses a 400MPa grade corrosion-resistant steel bar having an elemental content of C: 0.1% to 0.25%, Si: 0.5% to 0.90%, Mn: 0.7% to 1.5%, P: 0.04% to 0.09%, S ⁇ 0.015%, Cu: 0.3% ⁇ 0.6%, Ni: 0.1% ⁇ 0.4%, Cr ⁇ 0.1%, V: 0.03% ⁇ 0.08%, its corrosion resistance is 1 times higher than that of ordinary steel bars, but its improvement is limited. , still can not meet the 50-100 year life requirements of marine reinforced concrete buildings. Summary of the invention
  • the technical problem to be solved by the present invention is to overcome the technical defects of the prior art that the corrosion resistance of the steel bar in the marine environment is poor, and the design service life of the reinforced concrete structure is not achieved, thereby providing an excellent corrosion resistance.
  • a steel bar of the present invention calculated by weight percentage, includes the following components: C 0.005-0.030%, Si 0.3-0.6%, Mn 1.2-2.5%, P ⁇ 0.01%, S ⁇ 0.01%,
  • the steel bar having a yield strength of 400 MPa is calculated by weight percentage, and includes the following components: C 0.005-0.030%, Si 0.3-0.6%, Mn 1.2-1.8%, P ⁇ 0.01%, S ⁇ 0.01%,
  • a steel bar calculated by weight percent, comprising the following components: C 0.005-0.030%, Si 0.3-0.6%, Mn 1.2-2.5%, P ⁇ 0.01%, S ⁇ 0.01%, Cr 8.0-10.0%, Mo 1.0- 3.0%, Sn 0.2-0.4%, RE 0.01-0.05%, V 0.04- 0.18% and/or Ti 0.010-0.030%, the rest It is Fe and inevitable impurities.
  • the steel bar having a yield strength of 500 MPa is calculated by weight percentage and includes the following components:
  • the steel bar with a yield strength of 600 MPa is calculated by weight percent, including the following components:
  • the microstructure of the steel bar is ferrite and bainite, wherein the proportion of ferrite is 50% - 70%.
  • the reinforcing bar has a yield ratio > 1.25, a maximum total elongation of > 9%, an elongation after break > 18%, a circumferential immersion test corrosion rate ⁇ 0.45 g / (m 2 h), and a salt spray test corrosion rate ⁇ 0.45 g / (m 2 h).
  • the present invention also provides a method of preparing steel bars, comprising the following steps:
  • S1 a step of pre-desulfurization of molten iron, controlling the sulfur content to be not more than 0.01%;
  • S2 the step of converter smelting, adding molten iron treated by S1, and scrap steel and/or pig iron into the converter for smelting, smelting to a carbon content of less than 0.05%, phosphorus content of less than 0.01% tapping
  • S 3 tapping Step, adding S i, Mn alloy elements for deoxidation during the tapping process, and adding carbon powder and slag forming agent;
  • S4 the step of refining outside the furnace, adding Cr element in the RH vacuum refining furnace and performing oxygen blowing to remove C, and controlling the content of Cr and C to the required range; then deoxidizing with LF furnace, adding oxygen after deoxidation
  • the required alloying elements Mn, Mo, Sn, RE, and V and/or Ti are further added to the calcium-iron alloy and softly stirred by inert gas, the content of each element is controlled within a desired range, the molten steel is heated, and a covering agent is added;
  • step S6 a step of rolling, the continuous casting billet is heated in a heating furnace to a temperature higher than the austenitizing temperature, and after rough rolling, medium rolling, and finish rolling, the finished rolled steel is air-cooled on a cold bed to obtain a desired component. Reinforced steel.
  • the tapping temperature is not higher than 1690 °C.
  • the temperature of the oxygen decarburization of the RH vacuum refining is not less than 1605 ° C
  • the refining deoxidation temperature of the LF furnace is not less than 1575 ° C
  • the deoxidation of the LF furnace controls the oxygen content to 0. 002%-0.
  • the soft agitation time is not less than 5min, and the molten steel is heated to a temperature of 1570-1600 °C.
  • the heating is performed in a heating furnace to a temperature of 1100-1200 ° C, the temperature of the steel material when placed in a cold bed is 950-960 ° C, and the rolling temperature before the rough rolling is 1030. -11 00 °C, the temperature during the finish rolling is 950-1050 °C o
  • C is an important strengthening element, mainly in the form of carbides, which acts to strengthen and refine grains, but C and Cr have a great affinity, and C and Cr can form a series of complex carbides. The production of such carbides increases the hardness of the steel while reducing the corrosion resistance of the steel. In addition, too high a C content will reduce the ductility and toughness of the steel and deteriorate the weldability of the steel.
  • S i is an important reducing agent and deoxidizer.
  • the addition of silicon to steel can significantly increase the steel's elastic limit, yield point and tensile strength.
  • the combination of silicon and molybdenum, tungsten, chromium, etc. has a certain effect on improving corrosion resistance and oxidation resistance, but increasing the silicon content reduces the weldability of the steel.
  • Mn is a good deoxidizer and desulfurizer. It is mainly used for solid solution strengthening in steel. It is an important tough element and austenite forming element. If the manganese content is too high, it will significantly improve the hardenability of steel and reduce steel. Plasticity and weldability. In terms of corrosion resistance, the effect of manganese is not obvious.
  • S and P are harmful impurity elements in the steel making process, and it is easy to form harmful inclusions in steel, reducing The toughness and plasticity of steel.
  • Some weathering steels are designed with Cu-P composition, but their corrosion resistance is limited, and phosphorus is easy to segregate at the grain boundary, which increases the brittleness of steel. Therefore, in the present invention, the extremely low S and P contents are used.
  • the control is in the range of 0.01%.
  • Cr is an important element for improving the oxidation resistance and corrosion resistance of steel, and promotes the formation of a stable passivation film on the surface of the steel under an appropriate environment, thereby improving the corrosion resistance of the steel.
  • chromium does not act as a molybdenum or nickel in a non-oxidizing medium. The addition of chromium alone does not greatly improve the seawater corrosion resistance of the steel, and tends to increase the pitting tendency.
  • Mo can generally improve the corrosion resistance of steel. It can passivate the steel surface in both reducing acid and strong oxidizing salt solution, and can prevent pitting corrosion of steel in chloride solution. When the molybdenum content is high (> 3%), the oxidation resistance of the steel is deteriorated. In terms of texture, molybdenum promotes grain refinement and improves hardenability and heat strength of steel.
  • Sn is a corrosion-resistant metal that is not oxidized in the air at normal temperature and is strong in heat, and is stable on the surface of the tin oxide protective film. In addition, it is stable to water, can be slowly dissolved in dilute acid, and is quickly dissolved in concentrated acid. It is mainly used in the manufacture of alloys and tinplates. When it is added as an alloying element, it can be dissolved in the matrix, which can increase the electrode potential of the substrate, reduce the electrochemical corrosion driving force of the steel itself, reduce the corrosion rate, and increase the strength and hardness of the steel. The interaction of Sn with Cr and Mo elements can significantly improve the corrosion resistance of steel.
  • RE addition of proper amount of rare earth to steel can significantly improve the overall corrosion resistance of steel.
  • the role of rare earth in purifying molten steel, changing inclusions, improving microstructure and grain boundary conditions is an important material science reason for improving corrosion resistance of steel. .
  • the solid solution rare earth in steel increases the polarization resistance and self-corrosion potential of the steel matrix, which is beneficial to improve the corrosion resistance of the steel matrix.
  • the content of the impurity element S, P is not more than 0. 001%, and added 8-10% of the Cr element in the steel, 1. 0-3. 0% Mo element, 0. 01-0. 05% of RE
  • the element is added with 0. 2-0. 4% of the Sn element, the corrosion resistance of the steel is significantly improved by the reasonable elemental distribution ratio and the interaction of the Cr and Sn elements, and the added Mo and RE elements improve the steel. Resistance to pitting corrosion and intergranular corrosion resistance, greatly improving the seawater corrosion resistance of steel bars and improving The service life of steel in seawater.
  • V is a microalloying element capable of precipitating V (C, N) compounds during rolling, preventing austenite and ferrite grains Growing up, with strong precipitation strengthening, fine grain strengthening and certain solid solution strengthening, can significantly improve the strength of steel, thus making up for the lack of strength caused by low carbon content.
  • Ti is a strong carbonitride forming element and has a function of refining grain structure and precipitation strengthening.
  • carbon preferentially combines with titanium to produce a carbon-titanium compound, the chromium carbide is precipitated in the chromium-containing steel and the grain boundary is depleted in chromium, thereby effectively preventing intergranular corrosion.
  • the microalloying elements V and/or Ti enhance the strength of the steel by solid solution strengthening, fine grain strengthening, and precipitation strengthening when VCN and/or TiCN are formed, so that the steel bar has excellent mechanical properties.
  • a steel material meeting different strength requirements is produced by controlling the content of elements in the steel, particularly the content of the microalloying elements V and/or Ti.
  • the steel bar of the present invention has a ferrite ratio of 50-70%, the bainite structure has good toughness, and the ferrite plasticity is good, and the steel bar has excellent comprehensive mechanics by rationally controlling the two comparative examples. Performance, in which the elongation at break is obtained on the basis of obtaining the required yield strength and tensile strength. > 18%, Stronger Ratio > 1. 25, Maximum total elongation > 9%, giving steel good shock resistance.
  • the S content is controlled by a KR desulfurization method
  • the P content is controlled in a converter
  • the S i and Mn alloy elements are added during the tapping operation to deoxidize and the carbon powder and the slagging agent are added.
  • the refining furnace creates a reducing atmosphere, and oxygen decarburization is blown into the RH vacuum refining furnace to control the carbon and chromium content, deoxidation in the LF furnace and the remaining alloying elements required in the steel to control the content of oxygen and various alloying elements.
  • the heating of the slab before the system to 1100-1200 °C can ensure the complete austenitization of the steel and enable the elements to fully enter the solid solution state.
  • the rough rolling, medium rolling and finishing rolling can be strictly controlled during rolling.
  • the rolling parameters can be controlled to fully exert the precipitation strengthening effect of the microalloying elements VCN and/or TiCN.
  • the cold bed of the steel is air-cooled so that the final microstructure of the steel is bainite. Ferrite.
  • the method for producing steel bars of the present invention by controlling the tapping temperature not higher than 1690 °C:, reduces the oxygen content in the steel, improves the element yield, reduces the inclusions in the steel, improves the life of the converter, and improves The quality of steel and the cost of steel production.
  • the method for producing steel bars of the present invention can improve the decarburization effect of the RH furnace by controlling the RH vacuum refining oxygen decarburization temperature to be not less than 1605 °C, and is more advantageous for controlling the carbon and chromium contents in the steel.
  • the refining deoxidation temperature of the LF furnace By controlling the refining deoxidation temperature of the LF furnace to be not less than 1575 °C, the refining and deoxidizing effect of the LF furnace can be improved, and the oxygen content can be controlled within a limited range.
  • deoxidizing the LF furnace to control the oxygen content at 0.0002-0. 005% the inclusions in the steel can be effectively controlled and the quality of the steel can be improved.
  • the composition and temperature of the steel can be made more uniform, and the inclusions can be removed.
  • the continuous casting work was carried out smoothly.
  • the method for producing reinforcing steel of the present invention by controlling the casting billet to be heated to 1 100-1200 ° C in a heating furnace, the steel is heated to above the austenitizing temperature, and the alloying elements in the steel are solid solution status.
  • the rolling temperature By controlling the rolling temperature to be 1030-1100 °C, the temperature during finish rolling is 950-1050 °C, and the strengthening phase is induced by deformation to increase the strength of the steel.
  • the desired microstructure is obtained as bainite + ferrite.
  • the steel bar produced by the steel bar production method of the present invention has a microstructure of ferrite and bainite by a reasonable process step, wherein the proportion of ferrite is 50-70%, bainite structure It has good toughness and good ferrite plasticity.
  • the steel bars have excellent comprehensive mechanical properties, and the elongation after fracture is obtained on the basis of obtaining the required yield strength and tensile strength. Rate > 18%, strong flexion ratio > 1. 25, maximum total elongation > 9%, so that the steel has good seismic performance.
  • This embodiment provides a steel bar composed of the following elements: C, S i, Mn, P, S, Cr, Mo, Sn, RE, Fe, and unavoidable impurities, wherein the weight percentage of each component is as shown in Table 1.
  • the mechanical properties are shown in Table 2.
  • the corrosion resistance is shown in Table 3.
  • This embodiment also provides a method for producing steel bars, comprising the following steps:
  • S1 The step of pre-desulfurizing the molten iron by the KR method, the sulfur content is controlled to be not more than 0.01%, since the sulfur element acts as an impurity element to lower the mechanical properties and corrosion resistance of the steel, and is generally not removed in the converter.
  • the sulfur element in order to reduce the sulfur content in the steel, it is necessary to pre-desulfurize the steel in the molten iron.
  • the blast furnace slag needs to be removed, and the desulfurizing agent is mixed with a mass ratio of 9:1.
  • the sulphur content of the steel is controlled to be less than 0.01%;
  • the tapping temperature is 1680 °C
  • the S i and Mn alloy elements are added for deoxidation during the tapping process
  • the carbon powder and the slag forming agent are added, and during the tapping operation, the blowing is performed.
  • the protective gas is stirred at a pressure of 0.5 MPa.
  • the fluidity of the molten steel is used to deoxidize the added Si and Mn elements more thoroughly and promote the removal of the inclusions.
  • the carbon powder and the slagging agent are added to carbonize the steel. Produce reducing slag to prepare for the subsequent refining process;
  • S4 the step of refining outside the furnace, adding Cr element in the RH vacuum refining furnace and blowing oxygen at C1605 °C, removing the C element through the decarburization process, and controlling the content of Cr and C to the desired range.
  • the LF furnace is deoxidized at 1575 °C until the oxygen content in the molten steel is 40 ppm.
  • the alloying elements Mn, Mo, Sn, and RE are added to the steel.
  • the alloying element added may be a pure metal element. However, it is usually added in the form of iron alloy, and the inclusions are denatured by adding calcium-iron alloy, and soft stirring is carried out by inert gas. The soft stirring time is 5 min.
  • the steel composition and temperature are uniformed by the stirring process, and the inclusions are lifted and removed.
  • the content of each element is controlled within the range shown in the first embodiment of Table 1, and the molten steel is heated to 1580 ° C in the late stage of the LF furnace treatment, which is to ensure the smooth progress of the continuous casting, and the covering agent is added, the covering
  • the agent is usually a carbonized rice husk;
  • This embodiment provides a steel bar composed of the following elements: C, S i, Mn, P, S, Cr, Mo, Sn, RE, Fe, and unavoidable impurities, wherein the weight percentage of each component is as shown in Table 1.
  • the mechanical properties are shown in Table 2.
  • the corrosion resistance is shown in Table 3.
  • This embodiment also provides a method for producing steel bars, comprising the following steps:
  • S1 The step of pre-desulfurizing the molten iron by the KR method, the sulfur content is controlled to be not more than 0.01%, since the sulfur element acts as an impurity element to lower the mechanical properties and corrosion resistance of the steel, and is generally not removed in the converter.
  • the sulfur element in order to reduce the sulfur content in the steel, it is necessary to pre-desulfurize the steel in the molten iron.
  • the blast furnace slag needs to be removed, and the desulfurizing agent is mixed with a mass ratio of 9:1.
  • the sulphur content of the steel is controlled to be less than 0.01%;
  • the tapping temperature is 1690 °C
  • the S i and Mn alloy elements are added for deoxidation during the tapping process
  • the carbon powder and the slagging agent are added, and during the tapping operation, the blowing is performed.
  • the protective gas is stirred at a pressure of 0.5 MPa.
  • the fluidity of the molten steel is used to deoxidize the added Si and Mn elements more thoroughly and promote the removal of the inclusions.
  • the carbon powder and the slagging agent are added to carbonize the steel. Reducing slag to prepare for the subsequent refining process;
  • S4 The step of refining outside the furnace, adding Cr element in the RH vacuum refining furnace and blowing oxygen at C1625 °C, removing the C element through the decarburization process, and controlling the content of Cr and C to the desired range.
  • the LF furnace is deoxidized at 1600 °C until the oxygen content in the molten steel is 20 ppm.
  • the alloying elements Mn, Mo, Sn, and RE are added to the steel.
  • the alloying element material added may be a pure metal element. However, it is usually added by means of iron alloy, and then the ferro-iron alloy is added to denature the inclusions, and soft stirring is carried out by inert gas.
  • the soft stirring time is 6 min, and the steel composition and temperature are both obtained through the stirring process.
  • the mixture was uniformly lifted and removed, and the content of each element was controlled within the range shown in Example 1 in Table 1.
  • the molten steel was heated to 1600 ° C in the late stage of the LF furnace treatment, which was to ensure the smooth progress of the continuous casting.
  • a covering agent the covering agent is usually a carbonized rice husk;
  • the rolling step the continuous casting billet is heated to 1200 °C in a heating furnace, and the continuous bar and wire rolling mill is used for rough rolling, medium rolling and finishing rolling, the rolling temperature is 1100 °C:, the finishing rolling temperature is 1050 ° C: After the finish rolling, the water is not worn.
  • the finished steel is placed in a cold bed and cooled to room temperature to obtain the steel bar as shown in Table 1.
  • the upper cooling bed temperature is 960 °C: The microstructure of bainite + ferrite is obtained.
  • Embodiment 3 provides a steel bar composed of the following elements: C, S i, Mn, P, S, Cr, Mo, Sn, RE, Fe, and unavoidable impurities, wherein the weight percentage of each component is as follows As shown in Table 1, the mechanical properties are shown in Table 2, and the corrosion resistance is shown in Table 3. This embodiment also provides a method for producing steel bars, comprising the following steps:
  • S1 The step of pre-desulfurizing the molten iron by the KR method, the sulfur content is controlled to be not more than 0.01%, since the sulfur element acts as an impurity element to lower the mechanical properties and corrosion resistance of the steel, and is generally not removed in the converter.
  • the sulfur element in order to reduce the sulfur content in the steel, it is necessary to pre-desulfurize the steel in the molten iron.
  • the blast furnace slag needs to be removed, and the desulfurizing agent is mixed with a mass ratio of 9:1.
  • the sulphur content of the steel is controlled to be less than 0.01%;
  • S 3 the step of tapping, the tapping temperature is 1685 °C, the S i and Mn alloy elements are added for deoxidation during the tapping process, and the carbon powder and the slagging agent are added, and during the tapping operation, the blowing is performed.
  • Protective gas The steel liquid is stirred at a pressure of 0.5 MPa, and the fluidity of the molten steel is used to deoxidize the added Si and Mn elements more thoroughly and promote the removal of the inclusions.
  • the carbon powder and the slagging agent are added to carbonize the steel and produce a reduction. Slag, preparing for the next refining process outside the furnace;
  • S4 the step of refining outside the furnace, adding Cr element in the RH vacuum refining furnace and blowing oxygen at C1610 °C, removing the C element through the decarburization process, and controlling the content of Cr and C to the desired range.
  • the LF furnace is deoxidized at 1585 °C until the oxygen content in the molten steel is 30 ppm.
  • the alloying elements Mn, Mo, Sn, and RE are added to the steel.
  • the alloying element material may be a pure metal element. However, it is usually added in the form of iron alloy, and the inclusions are denatured by adding calcium-iron alloy, and soft stirring is carried out by inert gas. The soft stirring time is 6 min.
  • the composition and temperature of the steel are uniformed by the stirring process and the inclusions are removed.
  • the content of each element was controlled within the range shown in Example 3 in Table 1, and the molten steel was heated to 1570 ° C in the late stage of the LF furnace treatment, which was to ensure the smooth progress of the continuous casting, and the covering agent was added.
  • the agent is usually a carbonized rice husk;
  • S5 the step of continuous casting, the molten steel is cast into a continuous casting into a 15 Omm 15 Omm square by a continuous casting machine under the conditions of protective casting: t ⁇ ,;
  • S6 a rolling step, the continuous casting billet is heated in the heating furnace At 1120 °C, the continuous bar and wire mill is used for rough rolling, medium rolling and finishing rolling.
  • the rolling temperature is 1050 °C: the finishing temperature is 960 °C: after the finish rolling, no water is applied, after finishing rolling,
  • the steel was placed in a cold bed and cooled to room temperature to obtain a steel bar as shown in Table 1.
  • the temperature of the upper cooling bed was 910 °C: The microstructure of the bainite + ferrite was finally obtained by the controlled rolling and controlled cooling process.
  • Embodiment 4 provides a steel bar composed of the following elements: C, S i, Mn, P, S, Cr, Mo, Sn, RE, V, Fe, and unavoidable impurities, wherein the weight percentage of each component As shown in Table 1, the mechanical properties are shown in Table 2, and the corrosion resistance is shown in Table 3.
  • the sulphur content is controlled to be no more than 0.01%, the sulphur content is controlled to be less than 0.01%. Since sulfur as an impurity element will reduce the mechanical properties and corrosion resistance of steel, it is usually impossible to remove sulfur in the converter. Therefore, in order to reduce the sulfur content in the steel, it is necessary to pre-desulfurize the steel in molten iron.
  • the blast furnace slag In order to improve the desulfurization efficiency before desulfurization, the blast furnace slag needs to be removed.
  • the desulfurizer is selected from 9:1 mass ratio of mixed lime powder and fluorite. After desulfurization of molten iron, the desulfurization slag is removed to prevent the desulfurization slag from entering the converter and causing the converter to return sulfur. 01% ⁇ ;
  • the tapping temperature is 1690 °C
  • the S i and Mn alloy elements added during the tapping process are deoxidized
  • the carbon powder and the slagging agent are added, and during the tapping operation, the blowing is performed.
  • the molten gas is stirred at a pressure of 0.5 MPa, and the fluidity of the molten steel is used to deoxidize the S i and Mn elements more thoroughly and promote the removal of the inclusions.
  • the carbon powder and the slagging agent are added to carbonize the steel. Reducing slag to prepare for the subsequent refining process;
  • S4 the step of refining outside the furnace, adding Cr element in the RH vacuum refining furnace and blowing oxygen at C1620 °C, removing the C element through the decarburization process, and controlling the content of Cr and C to the desired range.
  • the LF furnace is deoxidized at 1590 °C until the oxygen content in the molten steel is 20 ppm. After deoxidation, the alloying elements Mn, Mo, Sn, RE, and V are added to the steel.
  • the alloying element material may be pure metal.
  • Element but usually it is added in the form of iron alloy, then add calcium-iron alloy to denature the inclusions, and pass the inert gas soft agitation, soft stirring time 6min, make the steel composition and temperature uniform and promote the inclusions through the stirring process
  • the upper part is removed, and the content of each element is controlled within the range shown in the embodiment 4 of Table 1.
  • the molten steel is heated to 1585 ° C in the late stage of the LF furnace treatment, and the temperature is ensured for the smooth progress of the continuous casting, and the covering agent is added.
  • the covering agent is usually a carbonized rice husk;
  • Embodiment 5 This embodiment provides a steel bar composed of the following elements: C, S i, Mn, P, S, Cr, Mo, Sn, RE, V, T i, Fe, and unavoidable impurities, wherein each component The weight percentage is shown in Table 1, the mechanical properties are shown in Table 2, and the corrosion resistance is shown in Table 3. This embodiment also provides a method for producing steel bars, comprising the following steps:
  • S1 The step of pre-desulfurizing the molten iron by the KR method, the sulfur content is controlled to be not more than 0.01%, since the sulfur element acts as an impurity element to lower the mechanical properties and corrosion resistance of the steel, and is generally not removed in the converter.
  • the sulfur element in order to reduce the sulfur content in the steel, it is necessary to pre-desulfurize the steel in the molten iron.
  • the blast furnace slag needs to be removed, and the desulfurizing agent is mixed with a mass ratio of 9:1.
  • the sulphur content of the steel is controlled to be less than 0.01%;
  • the tapping temperature is 1675 °C
  • the S i and Mn alloy elements added during the tapping process are deoxidized
  • the carbon powder and the slagging agent are added, and during the tapping operation, the blowing is performed.
  • the molten gas is stirred at a pressure of 0.5 MPa, and the fluidity of the molten steel is used to deoxidize the S i and Mn elements more thoroughly and promote the removal of the inclusions.
  • the carbon powder and the slagging agent are added to carbonize the steel. Reducing slag to prepare for the subsequent refining process;
  • S4 the step of refining outside the furnace, adding Cr element in the RH vacuum refining furnace and blowing oxygen at C1615 °C, removing the C element through the decarburization process, and controlling the content of Cr and C to the desired range. Then deoxidize with LF furnace at 1580 °C until the oxygen content in the molten steel is 25ppm, add it to the steel after deoxidation.
  • the alloying elements required are Mn, Mo, Sn, RE, V, Ti.
  • the alloying element material may be a pure metal element, but is usually added as a ferroalloy, and then the calcium-iron alloy is added to denature the inclusions, and The inert gas was softly stirred, and the soft stirring time was 7 min.
  • the steel composition and temperature were uniformed by the stirring process and the inclusions were lifted and removed.
  • the content of each element was controlled within the range shown in Example 5 in Table 1, in the LF furnace.
  • the molten steel is heated to 1580 °C, which is to ensure the smooth progress of continuous casting, and a covering agent is added, and the covering agent is usually carbonized rice husk;
  • the rolling step the continuous casting billet is heated to 1190 °C in a heating furnace, and the continuous bar and wire rolling mill is used for rough rolling, medium rolling and finishing rolling, the rolling temperature is 1095 ° C, and the finishing rolling temperature is 1030 ° C. After the finish rolling, the water is not worn.
  • the steel after the finish rolling is placed in a cold bed and cooled to room temperature to obtain the steel bar as shown in Table 1.
  • the temperature of the upper cooling bed is 950 °C: and finally obtained by the controlled rolling and controlled cooling process.
  • This example provides a steel bar composed of the following elements: C, S i, Mn, P, S, Cr, Mo, Sn, RE, V, T i, Fe, and unavoidable impurities, wherein each component
  • the weight percentage is shown in Table 1
  • the mechanical properties are shown in Table 2
  • the corrosion resistance is shown in Table 3.
  • This embodiment also provides a method for producing steel bars, comprising the following steps:
  • S1 The step of pre-desulfurizing the molten iron by the KR method, the sulfur content is controlled to be not more than 0.01%, since the sulfur element acts as an impurity element to lower the mechanical properties and corrosion resistance of the steel, and is generally not removed in the converter.
  • the sulfur element in order to reduce the sulfur content in the steel, it is necessary to pre-desulfurize the steel in the molten iron.
  • the blast furnace slag needs to be removed, and the desulfurizing agent is mixed with a mass ratio of 9:1.
  • the sulphur content of the steel is controlled to be less than 0.01%;
  • S2 The step of converter smelting, adding molten iron treated by S1, and scrap steel and/or pig iron The smelting in the furnace, the smelting to a carbon content of less than 0.05%, the phosphorus content is less than 0.01% tapping, the converter is a top-bottom combined blow converter;
  • the tapping temperature is 1670 °C
  • the S i and Mn alloy elements added during the tapping process are deoxidized
  • the carbon powder and the slagging agent are added, and during the tapping operation, the blowing is performed.
  • the molten gas is stirred at a pressure of 0.5 MPa, and the fluidity of the molten steel is used to deoxidize the S i and Mn elements more thoroughly and promote the removal of the inclusions.
  • the carbon powder and the slagging agent are added to carbonize the steel. Reducing slag to prepare for the subsequent refining process;
  • S4 the step of refining outside the furnace, adding Cr element in the RH vacuum refining furnace and blowing oxygen at C1610 °C, removing the C element through the decarburization process, and controlling the content of Cr and C to the desired range.
  • the LF furnace is deoxidized at 1580 °C until the oxygen content in the molten steel is 20 ppm. After deoxidation, the alloying elements Mn, Mo, Sn, RE, V, Ti are added to the steel.
  • the alloying element material added may be Pure metal element, but usually it is added in the form of iron alloy, then add calcium-iron alloy to denature the inclusions, and pass the inert gas soft agitation, soft stirring time 7min, through the mixing process to make the steel composition and temperature uniform and promote
  • the inclusions were removed by floating, and the content of each element was controlled within the range shown in Example 6 in Table 1.
  • the molten steel was heated to 1590 °C in the late stage of the LF furnace treatment, which was to ensure the smooth progress of continuous casting and to cover Agent, the covering agent is usually a carbonized rice husk;
  • the rolling step the continuous casting billet is heated to 1185 ° C in a heating furnace, and the continuous bar and wire rolling mill is used for rough rolling, medium rolling and finishing rolling, the rolling temperature is 1085 ° C, and the finishing rolling temperature is 1035 ° C. After the finish rolling, the water is not worn.
  • the finished steel is placed in a cold bed and cooled to room temperature to obtain the steel bar as shown in Table 1.
  • the temperature of the upper cooling bed is 955 °C, and the final control is obtained by controlled rolling and controlled cooling.
  • Embodiment 7 This embodiment provides a steel bar composed of the following elements: C, S i, Mn, P, S, Cr, Mo, Sn, RE, Ti, Fe and unavoidable impurities, wherein the weight percentage of each component is shown in Table 1, the mechanical properties are shown in Table 2, and the corrosion resistance is shown in Table 3.
  • This embodiment also provides a method for producing steel bars, comprising the following steps:
  • S1 The step of pre-desulfurizing the molten iron by the KR method, the sulfur content is controlled to be not more than 0.01%, since the sulfur element acts as an impurity element to lower the mechanical properties and corrosion resistance of the steel, and is generally not removed in the converter.
  • the sulfur element in order to reduce the sulfur content in the steel, it is necessary to pre-desulfurize the steel in the molten iron.
  • the blast furnace slag needs to be removed, and the desulfurizing agent is mixed with a mass ratio of 9:1.
  • the sulphur content of the steel is controlled to be less than 0.01%;
  • the tapping temperature is 1685 °C
  • the S i and Mn alloy elements added during the tapping process are deoxidized
  • the carbon powder and the slagging agent are added, and during the tapping operation, the blowing is performed.
  • the molten gas is stirred at a pressure of 0.5 MPa, and the fluidity of the molten steel is used to deoxidize the S i and Mn elements more thoroughly and promote the removal of the inclusions.
  • the carbon powder and the slagging agent are added to carbonize the steel. Reducing slag to prepare for the subsequent refining process;
  • S4 the step of refining outside the furnace, adding Cr element in the RH vacuum refining furnace and blowing oxygen at C1615 °C, removing the C element through the decarburization process, and controlling the content of Cr and C to the desired range.
  • the LF furnace is deoxidized at 1580 °C until the oxygen content in the molten steel is 20 ppm.
  • the alloying elements Mn, Mo, Sn, RE, Ti are added to the steel.
  • the alloying element material may be pure metal.
  • Element but usually it is added in the form of iron alloy, then add calcium-iron alloy to denature the inclusions, and pass the inert gas soft agitation, soft stirring time 7min, through the mixing process to make the steel composition and temperature hook and promote inclusion
  • the material was floated and removed, and the content of each element was controlled within the range shown in Example ⁇ in Table 1.
  • the molten steel was heated to 1585 °C in the late stage of the LF furnace treatment, which was to ensure the smooth progress of continuous casting and to add a covering agent.
  • the covering agent is usually a carbonized rice husk; S5: the step of continuous casting, the molten steel is cast into a continuous casting of 15 Omm 15 Omm by a continuous casting machine under the conditions of protective casting: t ⁇ ;
  • the rolling step the continuous casting billet is heated to 1180 ° C in a heating furnace, and the continuous bar and wire rolling mill is used for rough rolling, medium rolling and finishing rolling, the rolling temperature is 1080 ° C, and the finishing rolling temperature is 1020 ° C. After the finish rolling, the water is not worn.
  • the finished steel is placed in a cold bed and cooled to room temperature to obtain the steel bar as shown in Table 1.
  • the upper cooling bed temperature is 940 °C: and finally obtained by the controlled rolling and controlled cooling process.
  • This embodiment provides a steel bar composed of the following elements: C, S i, Mn, P, S, Cr, Mo, Sn, RE, V, Fe, and unavoidable impurities, wherein the weight percentage of each component is as shown in Table 1. As shown, the mechanical properties are shown in Table 2, and the corrosion resistance is shown in Table 3.
  • This embodiment also provides a method for producing steel bars, comprising the following steps:
  • S1 The step of pre-desulfurizing the molten iron by the KR method, the sulfur content is controlled to be not more than 0.01%, since the sulfur element acts as an impurity element to lower the mechanical properties and corrosion resistance of the steel, and is generally not removed in the converter.
  • the sulfur element in order to reduce the sulfur content in the steel, it is necessary to pre-desulfurize the steel in the molten iron.
  • the blast furnace slag needs to be removed, and the desulfurizing agent is mixed with a mass ratio of 9:1.
  • the sulphur content of the steel is controlled to be less than 0.01%;
  • the tapping temperature is 1680 °C
  • the S i and Mn alloy elements added during the tapping process are deoxidized
  • the carbon powder and the slagging agent are added, and during the tapping operation, the blowing is performed.
  • the molten gas is stirred at a pressure of 0.5 MPa, and the fluidity of the molten steel is used to deoxidize the S i and Mn elements more thoroughly and promote the removal of the inclusions.
  • the carbon powder and the slagging agent are added to carbonize the steel. Reducing slag to prepare for the subsequent refining process;
  • S4 The step of refining outside the furnace, adding Cr element in the RH vacuum refining furnace and blowing oxygen at C1610 °C, removing the C element through the decarburization process, and controlling the content of Cr and C to the desired range.
  • the LF furnace is deoxidized at 1585 °C until the oxygen content in the molten steel is 20 ppm. After deoxidation, the alloying elements Mn, Mo, Sn, RE, and V are added to the steel.
  • the alloying element material may be pure.
  • Metal element but usually it is added in the form of iron alloy, then add calcium-iron alloy to denature the inclusions, and pass the inert gas soft agitation, soft stirring time 7min, through the mixing process to make the steel composition and temperature uniform and promote inclusion
  • the material was floated and removed, and the content of each element was controlled within the range shown in Example 8 in Table 1.
  • the molten steel was heated to 1590 °C in the late stage of the LF furnace treatment, which was to ensure the smooth progress of continuous casting and to add a covering agent.
  • the covering agent is usually a carbonized rice husk;
  • the rolling step the continuous casting billet is heated to 1150 °C in a heating furnace, and the continuous bar and wire rolling mill is used for rough rolling, medium rolling and finishing rolling, the rolling temperature is 1065 ° C, and the finishing rolling temperature is 1025 ° C. After the finish rolling, the water is not worn.
  • the steel after finishing rolling is placed in a cold bed and cooled to room temperature to obtain the steel bar as shown in Table 1.
  • the temperature of the upper cooling bed is 965 °C, and the final control is obtained by controlled rolling and controlled cooling.
  • Embodiment 9 provides a steel bar composed of the following elements: C, S i, Mn, P, S, Cr, Mo, Sn, RE, V, T i, Fe, and unavoidable impurities, wherein each component
  • the weight percentage is shown in Table 1
  • the mechanical properties are shown in Table 2
  • the corrosion resistance is shown in Table 3.
  • This embodiment also provides a method for producing steel bars, comprising the following steps:
  • S1 The step of pre-desulfurizing the molten iron by the KR method, the sulfur content is controlled to be not more than 0.01%, since the sulfur element acts as an impurity element to lower the mechanical properties and corrosion resistance of the steel, and is usually not removed in the converter.
  • the sulfur element in order to reduce the sulfur content in the steel, it is necessary to pre-desulfurize the steel in the molten iron.
  • the blast furnace slag Before the desulfurization, in order to improve the desulfurization efficiency, the blast furnace slag needs to be removed, and the desulfurizing agent is mixed with a mass ratio of 9:1.
  • the sulphur content of the steel is controlled to be less than 0.01%;
  • Top and bottom double blowing converter S 3: the step of tapping, the tapping temperature is 1675 °C, the S i and Mn alloy elements added during the tapping process are deoxidized, and the carbon powder and the slagging agent are added, and during the tapping operation, the blowing is performed.
  • the molten gas is stirred at a pressure of 0.5 MPa, and the fluidity of the molten steel is used to deoxidize the S i and Mn elements more thoroughly and promote the removal of the inclusions.
  • the carbon powder and the slagging agent are added to carbonize the steel. Reducing slag to prepare for the subsequent refining process;
  • S4 the step of refining outside the furnace, adding Cr element in the RH vacuum refining furnace and blowing oxygen at C1605 °C, removing the C element through the decarburization process, and controlling the content of Cr and C to the desired range.
  • the LF furnace is deoxidized at 1575 °C until the oxygen content in the molten steel is 20 ppm. After deoxidation, the alloying elements Mn, Mo, Sn, RE, and V are added to the steel.
  • the alloying element material may be pure metal.
  • Element but usually it is added in the form of iron alloy, then add calcium-iron alloy to denature the inclusions, and pass the inert gas soft agitation, soft agitation time 7min, through the mixing process to make the steel composition and temperature uniform and promote inclusions Uplifting, the content of each element is controlled within the range shown in Example 9 in Table 1, and the molten steel is heated to 1580 °C in the late stage of the LF furnace treatment, which is to ensure the smooth progress of continuous casting and to add a covering agent.
  • the covering agent is usually a carbonized rice husk;
  • This embodiment provides a steel bar composed of the following elements: C, S i, Mn, P, S, Cr, Mo, Sn, RE, V, T i, Fe, and unavoidable impurities, wherein the weight percentage of each component As shown in Table 1, the mechanical properties are shown in Table 2, and the corrosion resistance is shown in Table 3.
  • This embodiment also provides a method for producing steel bars, comprising the following steps:
  • S1 The step of pre-desulfurizing the molten iron by the KR method, the sulfur content is controlled to be not more than 0.01%, since the sulfur element acts as an impurity element, the mechanical properties and corrosion resistance of the steel are lowered, and the converter is passed through the converter. It is often impossible to remove the sulfur element. Therefore, in order to reduce the sulfur content in the steel, it is necessary to pre-desulfurize the steel in the molten iron. Before the desulfurization, in order to improve the desulfurization efficiency, the blast furnace slag needs to be removed, and the desulfurizing agent is selected as 9:1. The sulphur content of the steel is controlled to be less than 0.01%;
  • the tapping temperature is 1685 °C
  • the S i and Mn alloy elements added during the tapping process are deoxidized
  • the carbon powder and the slagging agent are added, and during the tapping operation, the blowing is performed.
  • the molten gas is stirred at a pressure of 0.5 MPa, and the fluidity of the molten steel is used to deoxidize the S i and Mn elements more thoroughly and promote the removal of the inclusions.
  • the carbon powder and the slagging agent are added to carbonize the steel. Reducing slag to prepare for the subsequent refining process;
  • S4 the step of refining outside the furnace, adding Cr element in the RH vacuum refining furnace and blowing oxygen at C1620 °C, removing the C element through the decarburization process, and controlling the content of Cr and C to the desired range.
  • the LF furnace is deoxidized at 1585 °C until the oxygen content in the molten steel is 20 ppm. After deoxidation, the alloying elements Mn, Mo, Sn, RE, V, Ti are added to the steel.
  • the alloying element material added may be Pure metal element, but usually it is added in the form of iron alloy, then add calcium-iron alloy to denature the inclusions, and pass the inert gas soft agitation, soft stirring time 7min, through the mixing process to make the steel composition and temperature uniform and promote
  • the inclusions were removed by floating, and the content of each element was controlled within the range shown in Example 10 in Table 1.
  • the molten steel was heated to 1595 ° C in the late stage of the LF furnace treatment, and the temperature was ensured for continuous casting and covered.
  • Agent, the covering agent is usually a carbonized rice husk;
  • the sample is a cylinder of / 13mm X 50mm;
  • the test solution is a sodium chloride solution having an initial concentration of (0.34 ⁇ 0.009) mol* L- 1 (mass fraction 2.0% ⁇ 0.05%).
  • the specific test conditions are:
  • the sample is a sample of 3 mm 15 mm 40 mm;
  • test solution was a sodium chloride solution of (50 ⁇ 5) g* L- 1 (mass fraction 5.0% ⁇ 0.5%).
  • specific test conditions are:
  • Table 2 shows the mechanical properties of Examples 1-10 and Comparative Examples 1-3
  • Table 3 shows the corrosion resistance effects of Examples 1-10 and Comparative Examples 1-3.
  • the corrosion resistance of the steel bars was improved by the addition of Cr, Sn, Mo, and RE elements, and the corrosion resistance was improved by 600% or more as compared with Comparative Example 1. It can be seen from the corrosion resistance of Comparative Example 3 that, in the case where the other elements are the same, the corrosion resistance of the steel element containing no Sn element is not as high as that of the steel element containing Sn element. Comparing Examples 1, 1, 3 and Comparative Example 2, it can be obtained that the Sn content is in the range of 0. 02-0. 04%, the corrosion resistance of the steel bar increases with the increase of the Sn content, but the yield strength and the tensile strength decrease.
  • Examples 4-10 are steel bars with V and/or Ti elements added. It can be seen from Table 2 that the addition of V and/or Ti elements increases the yield strength and tensile strength of the steel bars, while the elongation at break is > 18%. , strong buckyby > 1. 25, the biggest force
  • the total elongation is > 9%, which gives the steel good seismic performance.
  • the steel bar of the invention precisely controls the element composition and temperature in the smelting process through reasonable component design, and combines the controlled rolling and controlled cooling process to obtain bainite + ferrite in the steel bar (the proportion of ferrite is 50% - The microstructure of 70%), as shown in Figure 1, gives the steel bars excellent overall mechanical properties and corrosion resistance, and the corrosion resistance is 6 times higher than that of ordinary steel bars, which can meet the service life of reinforced concrete structures in marine engineering. Claim.

Abstract

一种钢筋,包括以下成分:C 0.005-0.030%,Si 0.3—0.6%,Mn 1.2—2.5%,P≤S0.01%,S≤0.01%,Cr 8.0-10.0%,Mo 1.0—3.0%,Sn 0.2—0.4%,RE0.01-0.05%;其余为Fe和不可避免的杂质。还提供了该钢筋的制备方法。该钢筋具有优良的综合力学性能和耐腐蚀性能,可用于海洋环境中的钢筋混凝土结构。

Description

一种钢筋及其制备方法 技术领域
本发明涉及一种钢筋及其制备方法, 属于合金钢领域。 背景技术
随着各国海洋战略意识的增强和现代海洋科学技术的发展, 跨江海大型 桥梁、 海港码头以及近海建筑等基础设施建设进入高峰期。 与此同时, 作为 主要结构材料的钢筋的耐久性问题日益凸显。 海洋环境是大自然中较为严酷 的腐蚀环境, 其高温、 高湿、 高盐的特殊条件极易造成钢材腐蚀, 我国沿海 的钢筋混凝土结构在服役 10-15 年后就普遍出现严重腐蚀现象而导致结构破 坏, 无法满足 50年设计使用寿命。 提高混凝土中钢筋耐腐蚀性能的途径主要有两个: 一是在碳钢钢筋上涂 覆有机或无机涂层; 二是通过合金化或不同的加工制造工艺获得耐腐蚀性能 优异的钢筋材料。 在涂镀层耐蚀钢筋中, 环氧涂层钢筋研发最早, 使用范围 最为广泛, 但环氧涂层钢筋仍存在本质的不足之处, 主要体现为涂层脆性大, 运输及加工过程易损伤脱落; 涂层缺陷能免引起腐蚀集中, 导致严重的局部 腐蚀; 与普通钢筋相比, 降低与混凝土之间的握裹力等。 欧美国家为了使建 筑物使用寿命达到 1 00年的设计要求, 开发使用了不锈钢钢筋, 因为引起其 锈蚀的临界浓度比普通钢筋要提高很多, 所以能大幅度提高混凝土结构的耐 久性。 但其费用昂贵, 造价约为普碳钢筋的 6-10倍, 无法在工程中大规模应 用, 通常仅在建筑关键部位和条件较为恶劣的环境中使用, 而不锈钢钢筋与 普通钢筋搭接时易形成宏电池腐蚀, 也会影响建筑使用寿命。 国内外对非钢筋用低合金耐蚀钢的研究和开发较为成熟, 20世纪 50年代 美国研制了 Mar iner钢, 60年代法国开发了 APS20A钢, 我国也于 70年代推 出了 lOCrMoAl耐海水腐蚀钢。 这些钢的耐腐蚀性能较普通碳钢虽有了很大程 度提高, 但仍无法满足钢筋混凝土结构中所需的较长的使用寿命, 因而这些 钢种均无法应用在海洋钢筋混凝土结构中。 中国专利文献 CN102605255A公开了一种 400MPa级耐腐蚀钢筋, 其元素 含量为 C: 0.1% ~ 0.25%, Si: 0.5% ~ 0.90%, Mn: 0.7% ~ 1.5%, P: 0.04% ~ 0.09%, S< 0.015%, Cu: 0.3%~ 0.6%, Ni: 0.1% ~ 0.4%, Cr < 0.1%, V: 0.03% ~ 0.08%, 其耐腐蚀性能较普通钢筋提高 1 倍, 但其提升较为有限, 仍然无法满足海洋 钢筋混凝土建筑 50-100年使用寿命的要求。 发明内容
为此, 本发明所要解决的技术问题在于克服现有技术中钢筋在海洋环境 下的耐腐蚀性能较差, 达不到钢筋混凝土结构的设计使用寿命的技术缺陷, 从而提供一种具有优良耐腐蚀性能和综合力学性能的钢筋及其制备方法。
为解决上述技术问题, 本发明的一种钢筋, 按重量百分比计算, 包括以 下成分: C 0.005-0.030%, Si 0.3-0.6%, Mn 1.2-2.5%, P < 0.01%, S < 0.01%,
Cr 8.0-10.0%, Mo 1.0-3.0%, Sn 0.2-0.4%, RE 0.01-0.05%; 其余为 Fe和 不可避免的杂质。 进一步地, 屈服强度为 400MPa级的钢筋, 按重量百分比计算, 包括以下 成分: C 0.005-0.030%, Si 0.3-0.6%, Mn 1.2-1.8%, P < 0.01%, S < 0.01%,
Cr 8.0-10.0%, Mo 1.0-1.6%, Sn 0.2-0.4%, RE 0.01-0.05%; 其余为 Fe和 不可避免的杂质。 一种钢筋, 按重量百分比计算, 包括如下成分: C 0.005-0.030%, Si 0.3-0.6%, Mn 1.2-2.5%, P < 0.01%, S < 0.01%, Cr 8.0-10.0%, Mo 1.0-3.0%, Sn 0.2—0.4%, RE 0.01-0.05%, V 0.04— 0.18%和 /或 Ti 0.010-0.030%, 其余 为 Fe和不可避免的杂质。 进一步地, 屈服强度为 500MPa级的钢筋, 按重量百分比计算, 包括以下 成分:
C 0.005-0.030%, Si 0.3-0.6%, Mn 1.7-2.5%, P < 0.01%, S < 0.01%, Cr 8.0-10.0%, Mo 1.5-2.0%, Sn 0.2-0.4%, RE 0.01-0.05%, V 0.04-0.08%; 其余为 Fe和不可避免的杂质。 更进一步地, 屈服强度为 600MPa级的钢筋, 按重量百分比计算, 包括以 下成分:
C 0.005-0.030%, Si 0.3-0.6%, Mn 1.7-2.5%, P < 0.01%, S < 0.01%, Cr 8.0-10.0%, Mo 1.8-3.0%, Sn 0.2-0.4%, RE 0.01-0.05%, V 0.10—0.18%, Ti 0.01-0.030%; 其余为 Fe和不可避免的杂质。 所述钢筋的显微组织为铁素体和贝氏体, 其中铁素体所占比例为 50%- 70%。 所述钢筋的强屈比 > 1.25, 最大力总伸长率 >9%, 断后伸长率 > 18%, 周 浸试验腐蚀速率 <0.45g/ (m2h), 盐雾试验腐蚀速率 <0.45g/ (m2h)。 另外, 本发明还提供了一种制备钢筋的方法, 包括如下步骤:
S1:铁水预脱硫的步骤, 将硫含量控制在不大于 0.01%;
S2:转炉冶炼的步骤, 将经过 S1处理的铁水, 以及废钢和 /或生铁加入转 炉中进行冶炼, 冶炼至碳含量低于 0.05%, 磷含量低于 0.01%出钢; S 3:出钢的步骤, 出钢进行过程中加入 S i、 Mn合金元素进行脱氧, 并加 入碳粉和造渣剂;
S4:炉外精炼的步骤, 在 RH真空精炼炉中加入 Cr元素并进行吹氧脱 C, 将 Cr和 C元素含量控制到所需范围内; 再釆用 LF炉脱氧, 脱氧后加入钢中 需要的合金元素 Mn、 Mo、 Sn、 RE以及 V和 /或 Ti, 再加入钙铁合金并通入惰 性气体软搅拌, 将各元素含量控制在所需范围内, 将钢水升温, 加入覆盖剂;
S5:连铸的步骤, 钢水在保护浇注的条件下通过连铸机浇注成连铸坯;
S6:轧制的步骤, 连铸坯在加热炉中加热到高于奥氏体化温度, 经粗轧、 中轧、 精轧, 将精轧后的钢材置于冷床上空冷得到所需成分的钢筋成材。 在所述 S2步骤中, 所述出钢温度不高于 1690 °C。 在所述 S4步骤中, 所述 RH真空精炼的吹氧脱碳的温度不小于 1605 °C, 所述 LF 炉的精炼脱氧温度不小于 1575 °C, 所述 LF 炉脱氧将氧含量控制在 0. 002%-0. 005% , 所述软搅拌的时间不小于 5min, 所述钢水升温温度到 1570- 1600 °C。 在所述 S6步骤中, 所述在加热炉中加热到 11 00-1200 °C, 所述钢材置于 冷床时的温度为 950-960 °C, 所述粗轧前的开轧温度为 1030-11 00 °C, 所述精 轧时的温度为 950-1050 °C o 在钢中, C是重要的强化元素, 主要以碳化物形式存在, 起析出强化和细 化晶粒的作用,但 C和 Cr具有很大的亲和力, C和 Cr可以形成一系列复杂的 碳化物, 这种碳化物的产生在增加钢的强硬度的同时, 又降低了钢的耐蚀性。 另外, C含量过高会降低钢的塑性和韧性, 恶化钢的焊接性能。
S i是重要的还原剂和脱氧剂, 钢中加入硅能显著提高钢的弹性极限、 屈 服点和抗拉强度。 硅和钼、 钨、 铬等结合, 对提高抗腐蚀性和抗氧化性有一 定作用, 但增加含硅量会降低钢的焊接性能。
Mn是良好的脱氧剂和脱硫剂, 在钢中主要起固溶强化作用, 是重要的强 韧元素, 同时也是奥氏体形成元素, 锰含量过高会显著提高钢的淬透性, 降 低钢的塑性和可焊性。 在耐腐蚀性能方面, 锰的作用不明显。
S和 P 在炼钢过程中为有害杂质元素, 在钢中易形成有害夹杂物, 降低 钢的韧性和塑性。部分耐候钢釆用 Cu-P系成分设计,但其耐蚀性能提高有限, 且磷易在晶界处偏聚, 增加钢的脆性, 因此本发明中釆用极低的 S和 P含量, 均控制在 0. 01%范围内。
Cr是提高钢的抗氧化性和耐腐蚀性的重要元素, 在适当环境下促进钢表 面形成稳定的钝化膜, 从而提高钢的耐腐蚀性能。 但在非氧化性介质中铬的 作用不如钼、 镍, 单独添加铬元素不能极大的提高钢的耐海水腐蚀性能, 且 容易增加点蚀倾向。
Mo可以普遍提高钢的抗腐蚀性能, 在还原性酸和强氧化性的盐溶液中都 可以使钢表面发生钝化, 还能防止钢在氯化物溶液中发生点蚀。 钼含量较高 ( > 3% )时, 会使钢的抗氧化性发生恶化。 组织性能方面, 钼能促进晶粒细化, 提高钢的淬透性和热强性等。
Sn是一种耐腐蚀金属, 于常温下, 在空气中不受氧化, 强热之, 则在表 面生成二氧化锡保护膜而稳定。 另外, 其对水稳定, 能緩慢溶于稀酸, 较快 溶于浓酸中, 主要用于制造合金和镀锡板的生产。 作为合金元素添加时能固 溶在基体中, 可提高基体的电极电位, 降低钢自身的电化学腐蚀驱动力, 使 腐蚀速度下降, 还可使钢的强度和硬度呈上升趋势。 Sn与 Cr、 Mo元素相互作 用能够显著地提高钢材的耐腐蚀性能。
RE适量的稀土添加到钢中可以明显提高钢的整体耐腐蚀性能, 稀土在净 化钢液, 变质夹杂, 改善组织和晶界状况等方面的作用是钢的耐蚀性能得以 改善的重要材料学原因。 钢中固溶稀土提高钢基体的极化电阻和自腐蚀电位, 有利于提高钢基体的耐蚀性。
本发明的上述技术方案相比现有技术具有以下优点:
( 1 )本发明的钢筋中, 控制 C含量在 0. 005-0. 030%, 控制 S i、 Mn元素 含量 S i 0. 3-0. 6%、 Mn 1. 2-2. 5% ,控制杂质元素 S、 P的含量均不大于 0. 001% , 并在钢中添加 8-10%的 Cr元素、 1. 0-3. 0%Mo元素、 0. 01-0. 05%的 RE元素并 配合添加 0. 2-0. 4%的 Sn元素, 通过合理的元素成分配比以及 Cr、 Sn元素的 相互作用显著地提高了钢材的耐腐蚀性能, 添加的 Mo和 RE元素改善了钢材 的抗点腐蚀及抗晶间腐蚀性能, 大幅度提升了钢筋的耐海水腐蚀性能, 提高 了钢筋在海水中的使用寿命。
( 2 )本发明的钢筋中, C 0. 005-0. 030%, S i 0. 3—0. 6%, Mn 1. 2—1. 8%, P < 0. 01% , S < 0. 01%, Cr 8. 0—10. 0%, Mo 1. 0—1. 6%, Sn 0. 2-0. 4%, RE 0. 01-0. 05%; 其余为 Fe 和不可避免的杂质。 通过合理成分设计得到了一种 400MPa级的耐腐蚀钢筋, 从而得到了一种成本低廉的可满足基本力学性能要 求的、 耐海水腐蚀的钢筋。
( 3 )本发明的钢筋中, C 0. 005-0. 030%, S i 0. 3—0. 6%, Mn 1. 2-2. 5%, P < 0. 01% , S < 0. 01%, Cr 8. 0—10. 0%, Mo 1. 0-3. 0%, Sn 0. 2-0. 4%, RE 0. 01-0. 05%, V 0. 04-0. 18%和 /或 Ti 0. 010-0. 030%, 其余为 Fe和不可避免的 杂质。 在钢中进一步添加微合金元素 V和 /或 Ti的含量, V是一种微合金化元 素, 能够在轧制过程中析出 V (C, N)化合物, 阻止奥氏体和铁素体晶粒长大, 具有较强的析出强化、 细晶强化和一定的固溶强化作用, 可以显著提高钢的 强度, 从而弥补碳含量低造成强度不足的缺陷。 Ti是强碳氮化物形成元素, 有细化晶粒组织、 析出强化的作用。 同时, 由于碳优先与钛结合生产碳钛化 合物, 这样就避免了含铬钢中析出碳化铬而造成晶界贫铬, 从而有效防止晶 间腐蚀。 微合金元素 V和 /或 Ti通过固溶强化、 细晶强化以及生成 VCN和 /或 TiCN时的析出强化, 提高了钢材的强度, 使钢筋具备了优良的力学性能。
( 4 )本发明的钢筋中, 通过控制钢中的元素含量, 特别是微合金元素 V 和 /或 Ti的含量,生产出符合不同强度要求的钢材。例如,屈服强度为 500MPa 级的钢筋中, C 0. 005-0. 030%, S i 0. 3—0. 6%, Mn 1. 7—2. 5%, P < 0. 01%, S < 0. 01%, Cr 8. 0-10. 0%, Mo 1. 5-2. 0%, Sn 0. 2-0. 4%, RE 0. 01-0. 05%, V 0. 04-0. 08%; 其余为 Fe和不可避免的杂质; 再如, 屈服强度为 600MPa级的 钢筋中, C 0. 005-0. 030%, S i 0. 3-0. 6%, Mn 1. 7-2. 5%, P < 0. 01%, S < 0. 01%, Cr 8. 0-10. 0%, Mo 1. 8-3. 0%, Sn 0. 2-0. 4% , RE 0. 01-0. 05%, V 0. 10—0. 18%, Ti 0. 01-0. 030%; 其余为 Fe和不可避免的杂质。
( 5 )本发明的钢筋, 铁素体比例为 50-70%, 贝氏体组织具有良好的强韧 性, 而铁素体塑性较好, 通过合理控制两相比例, 使钢筋具备优异的综合力 学性能, 其中在获得所要求的屈服强度和抗拉强度的基础上, 其断后伸长率 > 18%, 强屈比 > 1. 25, 最大力总伸长率 > 9%, 使钢材具备良好的抗震性能。 ( 6 )本发明的生产钢筋的方法, 通过 KR脱硫法控制 S含量, 在转炉中 控制 P含量, 在出钢操作过程中加入 S i、 Mn合金元素进行脱氧并加入碳粉和 造渣剂为精炼炉营造还原气氛, 在 RH真空精炼炉中吹入氧气脱碳以控制碳和 铬元素含量, 在 LF炉中脱氧及加入钢中需要的剩余合金元素以控制氧和各种 合金元素的含量并加入钙铁合金对夹杂物进行变性处理, 通过软搅拌使成分 均匀、 去除夹杂物, 在连铸时保护浇注以控制钢中气体含量、 防止氧化和带 入二次夹杂物,在加热炉中将轧制前的铸坯加热到 1100-1200 °C可保证钢完全 奥氏体化并能使其中的元素充分进入固溶状态, 在轧制时釆取粗轧、 中轧、 精轧可严格控制钢在轧制时的变形量, 控制轧制参数可充分发挥微合金元素 VCN和 /或 TiCN的析出强化作用,轧制后将钢上冷床空冷以使钢材的最终微观 组织为贝氏体和铁素体。
( 7 )本发明的生产钢筋的方法, 通过控制出钢温度不高于 1690 °C:, 降低 了钢中的氧含量, 提高了元素收得率, 降低钢中夹杂物, 提高转炉寿命, 提 高了钢的质量, 并降低了钢的生产成本。
( 8 )本发明的生产钢筋的方法, 通过控制 RH真空精炼吹氧脱碳温度不 小于 1605 °C, 可以提高 RH炉的脱碳效果, 更利于控制钢中碳和铬元素含量。 通过控制 LF炉的精炼脱氧温度不小于 1575 °C, 可以提高 LF炉的精炼脱氧效 果, 利于使氧含量控制在限定范围内。 通过将 LF 炉脱氧将氧含量控制在 0. 002-0. 005% , 可有效控制钢中的夹杂物, 提高钢的质量。 通过控制软搅拌 时间不少于 5min, 能够使钢中成分、 温度更加均匀, 并有利于夹杂物的上浮 去除。 通过在连铸前将钢水升温到 1570-1600 °C保证了连铸工作顺利进行。
( 9 )本发明的生产钢筋的方法, 通过控制铸坯在加热炉中加热到 1 100-1200 °C , 使钢被加热到奥氏体化温度以上, 并保证钢中的合金元素处于 固溶状态。 通过控制开轧温度为 1030-1100 °C, 精轧时的温度为 950-1050 °C, 通过形变诱导析出强化相从而提高钢的强度。 通过控制钢材置于冷床时的温 度, 得到所需的微观组织呈贝氏体 +铁素体。
( 10 )本发明的生产钢筋的方法, 通过精确控制各道工序中的钢液的元 素含量以及温度, 极大地减小了钢中有害元素和夹杂物的数量, 提高了钢的 质量、 力学性能和耐腐蚀性能。
( 11 ) 利用本发明的钢筋生产方法生产出的钢筋, 通过合理的工艺步骤 使得钢材的显微组织为铁素体和贝氏体, 其中铁素体比例为 50-70%, 贝氏体 组织具有良好的强韧性, 而铁素体塑性较好, 通过合理控制两相比例, 使钢 筋具备优异的综合力学性能, 其中在获得所要求的屈服强度和抗拉强度的基 础上, 其断后伸长率 > 18%, 强屈比 > 1. 25, 最大力总伸长率 > 9%, 使钢材具 备良好的抗震性能。 附图说明 为了使本发明的内容更容易被清楚的理解, 下面根据本发明的具体实施 例并结合附图, 对本发明作进一步详细的说明, 其中 图 1是本发明钢筋的微观组织图。 具体实施方式
表 1 实施例 1-1 Q中钢筋成分以及对比例 1-3中钢筋成分(wt. % )
Figure imgf000010_0001
实施例 1
本实施例提供一种钢筋, 由如下元素组成: C 、 S i、 Mn、 P、 S、 Cr、 Mo 、 Sn 、 RE、 Fe以及不可避免的杂质, 其中各成分的重量百分比如表 1所示, 力 学性能如表 2所示, 耐腐蚀性能如表 3所示。 本实施例还提供一种钢筋的生产方法, 包括如下步骤:
S1 :釆用 KR法对铁水进行预脱硫的步骤, 将硫含量控制在不大于 0. 01% , 由于硫元素作为杂质元素会降低钢的力学性能和耐腐蚀性能, 而在转炉中通 常无法脱除硫元素, 因而为了降低钢中的硫含量, 就需要在铁水中对钢进行 预脱硫处理, 在进行脱硫前为提高脱硫效率, 需扒除高炉渣, 脱硫剂选用 9: 1 的质量比混合的石灰粉和萤石, 铁水脱硫静置后扒除脱硫渣, 防止脱硫渣进 入转炉造成转炉回硫, 保证钢中硫含量控制在 0. 01%以下;
S2:转炉冶炼的步骤, 将经过 S1处理的铁水, 以及废钢和 /或生铁加入转 炉中进行冶炼, 冶炼至碳含量低于 0. 05%, 磷含量低于 0. 01%出钢, 转炉为顶 底复吹转炉;
S 3:出钢的步骤, 出钢温度为 1680 °C, 出钢进行过程中加入 S i、 Mn合金 元素进行脱氧, 并加入碳粉和造渣剂, 在出钢操作的过程中, 吹入保护气体, 以 0. 5MPa的压力搅拌钢液, 利用钢液的流动性使加入的 S i、 Mn元素脱氧更 为彻底并促使夹杂物上浮去除, 加入碳粉和造渣剂给钢增碳并造出还原渣, 为接下来的炉外精炼工序做准备;
S4:炉外精炼的步骤,在 RH真空精炼炉中加入 Cr元素并在 1605 °C下进行 吹氧脱 C, 通过脱碳过程, 去除 C元素, 将 Cr和 C元素含量控制到所需范围 内; 再釆用 LF炉在 1575 °C下脱氧至钢液中含氧量为 40ppm, 脱氧后加入钢中 需要的合金元素 Mn、 Mo、 Sn、 RE , 加入的合金元素材料可以是纯金属元素, 但通常来说是以铁合金的方式加入, 再加入钙铁合金对夹杂物进行变性处理, 并通入惰性气体软搅拌, 软搅拌时间 5min, 通过搅拌过程使钢成分和温度均 匀并促使夹杂物上浮去除, 将各元素含量控制在表 1 中实施例 1 中所示的范 围内,在 LF炉处理后期将钢水升温至 1580 °C,该温度为保证连铸的顺利进行, 并加入覆盖剂, 该覆盖剂通常为炭化稻壳;
S5:连铸的步骤, 钢水在保护浇注的条件下通过连铸机浇注成连铸成 150 mm 150 mm的小方: t丕,;
S6:轧制的步骤, 连铸坯在加热炉中加热到 11 00 °C, 釆用连续式棒线材轧 机进行粗轧、 中轧、 精轧, 开轧温度 1030 °C:, 精轧温度 950 °C:, 精轧后不穿 水, 将精轧后的钢材置于冷床上空冷至室温得到如表 1 所示的钢筋成材, 上 冷床温度为 900 °C:, 通过控轧控冷工艺最终得到贝氏体 +铁素体的微观组织结 构。
实施例 2
本实施例提供一种钢筋, 由如下元素组成: C 、 S i、 Mn、 P、 S、 Cr、 Mo 、 Sn 、 RE、 Fe以及不可避免的杂质, 其中各成分的重量百分比如表 1所示, 力 学性能如表 2所示, 耐腐蚀性能如表 3所示。
本实施例还提供一种钢筋的生产方法, 包括如下步骤:
S1 :釆用 KR法对铁水进行预脱硫的步骤, 将硫含量控制在不大于 0. 01% , 由于硫元素作为杂质元素会降低钢的力学性能和耐腐蚀性能, 而在转炉中通 常无法脱除硫元素, 因而为了降低钢中的硫含量, 就需要在铁水中对钢进行 预脱硫处理, 在进行脱硫前为提高脱硫效率, 需扒除高炉渣, 脱硫剂选用 9: 1 的质量比混合的石灰粉和萤石, 铁水脱硫静置后扒除脱硫渣, 防止脱硫渣进 入转炉造成转炉回硫, 保证钢中硫含量控制在 0. 01%以下;
S2:转炉冶炼的步骤, 将经过 S1处理的铁水, 以及废钢和 /或生铁加入转 炉中进行冶炼, 冶炼至碳含量低于 0. 05%, 磷含量低于 0. 01%出钢, 转炉为顶 底复吹转炉;
S 3:出钢的步骤, 出钢温度为 1690 °C, 出钢进行过程中加入 S i、 Mn合金 元素进行脱氧, 并加入碳粉和造渣剂, 在出钢操作的过程中, 吹入保护气体 以 0. 5MPa的压力搅拌钢液, 利用钢液的流动性使加入的 S i、 Mn元素脱氧更 为彻底并促使夹杂物上浮去除, 加入碳粉和造渣剂给钢增碳并造出还原渣, 为接下来的炉外精炼工序做准备;
S4:炉外精炼的步骤,在 RH真空精炼炉中加入 Cr元素并在 1625 °C下进行 吹氧脱 C, 通过脱碳过程, 去除 C元素, 将 Cr和 C元素含量控制到所需范围 内; 再釆用 LF炉在 1600 °C下脱氧至钢液中含氧量为 20ppm, 脱氧后加入钢中 需要的合金元素 Mn、 Mo、 Sn、 RE , 加入的合金元素材料可以是纯金属元素, 但通常来说是以铁合金的方式加入, 再加入钙铁合金对夹杂物进行变性处理, 并通入惰性气体软搅拌, 软搅拌时间 6min, 通过搅拌过程使钢成分和温度均 匀并促使夹杂物上浮去除, 将各元素含量控制在表 1 中实施例 1 中所示的范 围内,在 LF炉处理后期将钢水升温至 1600 °C,该温度为保证连铸的顺利进行, 并加入覆盖剂, 该覆盖剂通常为炭化稻壳;
S5:连铸的步骤, 钢水在保护浇注的条件下通过连铸机浇注成连铸成 15 Omm 15 Omm的小方: t丕,;
S6:轧制的步骤, 连铸坯在加热炉中加热到 1200 °C, 釆用连续式棒线材轧 机进行粗轧、 中轧、 精轧, 开轧温度 1100 °C:, 精轧温度 1050 °C:, 精轧后不穿 水, 将精轧后的钢材置于冷床上空冷至室温得到如表 1 所示的钢筋成材, 上 冷床温度为 960 °C:, 通过控轧控冷工艺最终得到贝氏体 +铁素体的微观组织结 构。
实施例 3 本实施例提供一种钢筋, 由如下元素组成: C 、 S i、 Mn、 P、 S、 Cr、 Mo 、 Sn 、 RE、 Fe以及不可避免的杂质, 其中各成分的重量百分比如表 1所示, 力 学性能如表 2所示, 耐腐蚀性能如表 3所示。 本实施例还提供一种钢筋的生产方法, 包括如下步骤:
S1 :釆用 KR法对铁水进行预脱硫的步骤, 将硫含量控制在不大于 0. 01% , 由于硫元素作为杂质元素会降低钢的力学性能和耐腐蚀性能, 而在转炉中通 常无法脱除硫元素, 因而为了降低钢中的硫含量, 就需要在铁水中对钢进行 预脱硫处理, 在进行脱硫前为提高脱硫效率, 需扒除高炉渣, 脱硫剂选用 9: 1 的质量比混合的石灰粉和萤石, 铁水脱硫静置后扒除脱硫渣, 防止脱硫渣进 入转炉造成转炉回硫, 保证钢中硫含量控制在 0. 01%以下;
S2:转炉冶炼的步骤, 将经过 S1处理的铁水, 以及废钢和 /或生铁加入转 炉中进行冶炼, 冶炼至碳含量低于 0. 05%, 磷含量低于 0. 01%出钢, 转炉为顶 底复吹转炉;
S 3:出钢的步骤, 出钢温度为 1685 °C, 出钢进行过程中加入 S i、 Mn合金 元素进行脱氧, 并加入碳粉和造渣剂, 在出钢操作的过程中, 吹入保护气体 以 0. 5MPa的压力搅拌钢液, 利用钢液的流动性使加入的 S i、 Mn元素脱氧更 为彻底并促使夹杂物上浮去除, 加入碳粉和造渣剂给钢增碳并造出还原渣, 为接下来的炉外精炼工序做准备;
S4:炉外精炼的步骤,在 RH真空精炼炉中加入 Cr元素并在 1610 °C下进行 吹氧脱 C, 通过脱碳过程, 去除 C元素, 将 Cr和 C元素含量控制到所需范围 内; 再釆用 LF炉在 1585 °C下脱氧至钢液中含氧量为 30ppm, 脱氧后加入钢中 需要的合金元素 Mn、 Mo、 Sn、 RE , 加入的合金元素材料可以是纯金属元素, 但通常来说是以铁合金的方式加入, 再加入钙铁合金对夹杂物进行变性处理, 并通入惰性气体软搅拌, 软搅拌时间 6min, 通过搅拌过程使钢成分和温度均 匀并促使夹杂物上浮去除, 将各元素含量控制在表 1 中实施例 3中所示的范 围内,在 LF炉处理后期将钢水升温至 1570 °C,该温度为保证连铸的顺利进行, 并加入覆盖剂, 该覆盖剂通常为炭化稻壳;
S5:连铸的步骤, 钢水在保护浇注的条件下通过连铸机浇注成连铸成 15 Omm 15 Omm的小方: t丕,; S6:轧制的步骤, 连铸坯在加热炉中加热到 1120 °C, 釆用连续式棒线材轧 机进行粗轧、 中轧、 精轧, 开轧温度 1050 °C:, 精轧温度 960 °C:, 精轧后不穿 水, 将精轧后的钢材置于冷床上空冷至室温得到如表 1 所示的钢筋成材, 上 冷床温度为 910 °C:, 通过控轧控冷工艺最终得到贝氏体 +铁素体的微观组织结 构。 实施例 4 本实施例提供一种钢筋, 由如下元素组成: C 、 S i、 Mn、 P、 S、 Cr、 Mo 、 Sn 、 RE、 V、 Fe以及不可避免的杂质, 其中各成分的重量百分比如表 1所示, 力学性能如表 2所示, 耐腐蚀性能如表 3所示。 本实施例还提供一种钢筋的生产方法, 包括如下步骤: S1 :釆用 KR法对铁水进行预脱硫的步骤, 将硫含量控制在不大于 0. 01% , 由于硫元素作为杂质元素会降低钢的力学性能和耐腐蚀性能, 而在转炉中通 常无法脱除硫元素, 因而为了降低钢中的硫含量, 就需要在铁水中对钢进行 预脱硫处理, 在进行脱硫前为提高脱硫效率, 需扒除高炉渣, 脱硫剂选用 9: 1 的质量比混合的石灰粉和萤石, 铁水脱硫静置后扒除脱硫渣, 防止脱硫渣进 入转炉造成转炉回硫, 保证钢中硫含量控制在 0. 01%以下;
S2:转炉冶炼的步骤, 将经过 S1处理的铁水, 以及废钢和 /或生铁加入转 炉中进行冶炼, 冶炼至碳含量低于 0. 05%, 磷含量低于 0. 01%出钢, 转炉为顶 底复吹转炉;
S 3:出钢的步骤, 出钢温度为 1690 °C, 出钢进行过程中加入的 S i、 Mn合 金元素进行脱氧, 并加入碳粉和造渣剂, 在出钢操作的过程中, 吹入保护气 体以 0. 5MPa的压力搅拌钢液, 利用钢液的流动性使加入 S i、 Mn元素脱氧更 为彻底并促使夹杂物上浮去除, 加入碳粉和造渣剂给钢增碳并造出还原渣, 为接下来的炉外精炼工序做准备;
S4:炉外精炼的步骤,在 RH真空精炼炉中加入 Cr元素并在 1620 °C下进行 吹氧脱 C, 通过脱碳过程, 去除 C元素, 将 Cr和 C元素含量控制到所需范围 内; 再釆用 LF炉在 1590 °C下脱氧至钢液中含氧量为 20ppm, 脱氧后加入钢中 需要的合金元素 Mn、 Mo、 Sn、 RE、 V,加入的合金元素材料可以是纯金属元素, 但通常来说是以铁合金的方式加入, 再加入钙铁合金对夹杂物进行变性处理, 并通入惰性气体软搅拌, 软搅拌时间 6min, 通过搅拌过程使钢成分和温度均 匀并促使夹杂物上浮去除, 将各元素含量控制表 1 中实施例 4中所示的范围 内, 在 LF炉处理后期将钢水升温至 1585 °C, 该温度为保证连铸的顺利进行, 并加入覆盖剂, 该覆盖剂通常为炭化稻壳;
S5:连铸的步骤, 钢水在保护浇注的条件下通过连铸机浇注成连铸成 150 mm 150 mm的小方: t丕,;
S6:轧制的步骤, 连铸坯在加热炉中加热到 1180 °C, 釆用连续式棒线材轧 机进行粗轧、 中轧、 精轧, 开轧温度 1040 °C:, 精轧温度 990 °C:, 精轧后不穿 水, 将精轧后的钢材置于冷床上空冷至室温得到如表 1 所示的钢筋成材, 上 冷床温度为 950 °C:, 通过控轧控冷工艺最终得到贝氏体 +铁素体的微观组织结 构。 实施例 5 本实施例提供一种钢筋, 由如下元素组成: C 、 S i、 Mn、 P、 S、 Cr、 Mo 、 Sn 、 RE、 V、 T i、 Fe 以及不可避免的杂质, 其中各成分的重量百分比如表 1 所示, 力学性能如表 2所示, 耐腐蚀性能如表 3所示。 本实施例还提供一种钢筋的生产方法, 包括如下步骤:
S1 :釆用 KR法对铁水进行预脱硫的步骤, 将硫含量控制在不大于 0. 01% , 由于硫元素作为杂质元素会降低钢的力学性能和耐腐蚀性能, 而在转炉中通 常无法脱除硫元素, 因而为了降低钢中的硫含量, 就需要在铁水中对钢进行 预脱硫处理, 在进行脱硫前为提高脱硫效率, 需扒除高炉渣, 脱硫剂选用 9: 1 的质量比混合的石灰粉和萤石, 铁水脱硫静置后扒除脱硫渣, 防止脱硫渣进 入转炉造成转炉回硫, 保证钢中硫含量控制在 0. 01%以下;
S2:转炉冶炼的步骤, 将经过 S1处理的铁水, 以及废钢和 /或生铁加入转 炉中进行冶炼, 冶炼至碳含量低于 0. 05%, 磷含量低于 0. 01%出钢, 转炉为顶 底复吹转炉;
S 3:出钢的步骤, 出钢温度为 1675 °C, 出钢进行过程中加入的 S i、 Mn合 金元素进行脱氧, 并加入碳粉和造渣剂, 在出钢操作的过程中, 吹入保护气 体以 0. 5MPa的压力搅拌钢液, 利用钢液的流动性使加入 S i、 Mn元素脱氧更 为彻底并促使夹杂物上浮去除, 加入碳粉和造渣剂给钢增碳并造出还原渣, 为接下来的炉外精炼工序做准备;
S4:炉外精炼的步骤,在 RH真空精炼炉中加入 Cr元素并在 1615 °C下进行 吹氧脱 C, 通过脱碳过程, 去除 C元素, 将 Cr和 C元素含量控制到所需范围 内; 再釆用 LF炉在 1580 °C下脱氧至钢液中含氧量为 25ppm, 脱氧后加入钢中 需要的合金元素 Mn、 Mo、 Sn、 RE、 V、 Ti, 加入的合金元素材料可以是纯金属 元素, 但通常来说是以铁合金的方式加入, 再加入钙铁合金对夹杂物进行变 性处理, 并通入惰性气体软搅拌, 软搅拌时间 7min, 通过搅拌过程使钢成分 和温度均匀并促使夹杂物上浮去除, 将各元素含量控制在表 1 中实施例 5中 所示的范围内, 在 LF炉处理后期将钢水升温至 1580 °C, 该温度为保证连铸的 顺利进行, 并加入覆盖剂, 该覆盖剂通常为炭化稻壳;
S5:连铸的步骤, 钢水在保护浇注的条件下通过连铸机浇注成连铸成 15 Omm 15 Omm的小方: t丕,;
S6:轧制的步骤, 连铸坯在加热炉中加热到 1190 °C, 釆用连续式棒线材轧 机进行粗轧、 中轧、 精轧, 开轧温度 1095 °C, 精轧温度 1030 °C, 精轧后不穿 水, 将精轧后的钢材置于冷床上空冷至室温得到如表 1 所示的钢筋成材, 上 冷床温度为 950 °C:, 通过控轧控冷工艺最终得到贝氏体 +铁素体的微观组织结 构。 实施例 ό 本实施例提供一种钢筋, 由如下元素组成: C 、 S i、 Mn、 P、 S、 Cr、 Mo 、 Sn 、 RE、 V、 T i、 Fe 以及不可避免的杂质, 其中各成分的重量百分比如表 1 所示, 力学性能如表 2所示, 耐腐蚀性能如表 3所示。 本实施例还提供一种钢筋的生产方法, 包括如下步骤:
S1 :釆用 KR法对铁水进行预脱硫的步骤, 将硫含量控制在不大于 0. 01% , 由于硫元素作为杂质元素会降低钢的力学性能和耐腐蚀性能, 而在转炉中通 常无法脱除硫元素, 因而为了降低钢中的硫含量, 就需要在铁水中对钢进行 预脱硫处理, 在进行脱硫前为提高脱硫效率, 需扒除高炉渣, 脱硫剂选用 9: 1 的质量比混合的石灰粉和萤石, 铁水脱硫静置后扒除脱硫渣, 防止脱硫渣进 入转炉造成转炉回硫, 保证钢中硫含量控制在 0. 01%以下;
S2:转炉冶炼的步骤, 将经过 S1处理的铁水, 以及废钢和 /或生铁加入转 炉中进行冶炼, 冶炼至碳含量低于 0. 05%, 磷含量低于 0. 01%出钢, 转炉为顶 底复吹转炉;
S 3:出钢的步骤, 出钢温度为 1670 °C, 出钢进行过程中加入的 S i、 Mn合 金元素进行脱氧, 并加入碳粉和造渣剂, 在出钢操作的过程中, 吹入保护气 体以 0. 5MPa的压力搅拌钢液, 利用钢液的流动性使加入 S i、 Mn元素脱氧更 为彻底并促使夹杂物上浮去除, 加入碳粉和造渣剂给钢增碳并造出还原渣, 为接下来的炉外精炼工序做准备;
S4:炉外精炼的步骤,在 RH真空精炼炉中加入 Cr元素并在 1610 °C下进行 吹氧脱 C, 通过脱碳过程, 去除 C元素, 将 Cr和 C元素含量控制到所需范围 内; 再釆用 LF炉在 1580 °C下脱氧至钢液中含氧量为 20ppm, 脱氧后加入钢中 需要的合金元素 Mn、 Mo、 Sn、 RE、 V、 Ti, 加入的合金元素材料可以是纯金属 元素, 但通常来说是以铁合金的方式加入, 再加入钙铁合金对夹杂物进行变 性处理, 并通入惰性气体软搅拌, 软搅拌时间 7min, 通过搅拌过程使钢成分 和温度均匀并促使夹杂物上浮去除, 将各元素含量控制在表 1 中实施例 6中 所示的范围内, 在 LF炉处理后期将钢水升温至 1590 °C, 该温度为保证连铸的 顺利进行, 并加入覆盖剂, 该覆盖剂通常为炭化稻壳;
S5:连铸的步骤, 钢水在保护浇注的条件下通过连铸机浇注成连铸成 150 mm 150 mm的小方: t丕,;
S6:轧制的步骤, 连铸坯在加热炉中加热到 1185 °C, 釆用连续式棒线材轧 机进行粗轧、 中轧、 精轧, 开轧温度 1085 °C, 精轧温度 1035 °C, 精轧后不穿 水, 将精轧后的钢材置于冷床上空冷至室温得到如表 1 所示的钢筋成材, 上 冷床温度为 955 °C, 通过控轧控冷工艺最终得到贝氏体 +铁素体的微观组织结 构。 实施例 7 本实施例提供一种钢筋, 由如下元素组成: C 、 S i、 Mn、 P、 S、 Cr、 Mo 、 Sn 、 RE、 Ti、 Fe以及不可避免的杂质, 其中各成分的重量百分比如表 1所示, 力学性能如表 2所示, 耐腐蚀性能如表 3所示。 本实施例还提供一种钢筋的生产方法, 包括如下步骤:
S1 :釆用 KR法对铁水进行预脱硫的步骤, 将硫含量控制在不大于 0. 01% , 由于硫元素作为杂质元素会降低钢的力学性能和耐腐蚀性能, 而在转炉中通 常无法脱除硫元素, 因而为了降低钢中的硫含量, 就需要在铁水中对钢进行 预脱硫处理, 在进行脱硫前为提高脱硫效率, 需扒除高炉渣, 脱硫剂选用 9: 1 的质量比混合的石灰粉和萤石, 铁水脱硫静置后扒除脱硫渣, 防止脱硫渣进 入转炉造成转炉回硫, 保证钢中硫含量控制在 0. 01%以下;
S2:转炉冶炼的步骤, 将经过 S1处理的铁水, 以及废钢和 /或生铁加入转 炉中进行冶炼, 冶炼至碳含量低于 0. 05%, 磷含量低于 0. 01%出钢, 转炉为顶 底复吹转炉;
S 3:出钢的步骤, 出钢温度为 1685 °C, 出钢进行过程中加入的 S i、 Mn合 金元素进行脱氧, 并加入碳粉和造渣剂, 在出钢操作的过程中, 吹入保护气 体以 0. 5MPa的压力搅拌钢液, 利用钢液的流动性使加入 S i、 Mn元素脱氧更 为彻底并促使夹杂物上浮去除, 加入碳粉和造渣剂给钢增碳并造出还原渣, 为接下来的炉外精炼工序做准备;
S4:炉外精炼的步骤,在 RH真空精炼炉中加入 Cr元素并在 1615 °C下进行 吹氧脱 C, 通过脱碳过程, 去除 C元素, 将 Cr和 C元素含量控制到所需范围 内; 再釆用 LF炉在 1580 °C下脱氧至钢液中含氧量为 20ppm, 脱氧后加入钢中 需要的合金元素 Mn、 Mo、 Sn、 RE、 Ti, 加入的合金元素材料可以是纯金属元 素, 但通常来说是以铁合金的方式加入, 再加入钙铁合金对夹杂物进行变性 处理, 并通入惰性气体软搅拌, 软搅拌时间 7min, 通过搅拌过程使钢成分和 温度均勾并促使夹杂物上浮去除, 将各元素含量控制在表 1 中实施例 Ί 中所 示的范围内, 在 LF炉处理后期将钢水升温至 1585 °C, 该温度为保证连铸的顺 利进行, 并加入覆盖剂, 该覆盖剂通常为炭化稻壳; S5:连铸的步骤, 钢水在保护浇注的条件下通过连铸机浇注成连铸成 15 Omm 15 Omm的小方: t丕,;
S6:轧制的步骤, 连铸坯在加热炉中加热到 1180 °C, 釆用连续式棒线材轧 机进行粗轧、 中轧、 精轧, 开轧温度 1080 °C, 精轧温度 1020 °C, 精轧后不穿 水, 将精轧后的钢材置于冷床上空冷至室温得到如表 1 所示的钢筋成材, 上 冷床温度为 940 °C:, 通过控轧控冷工艺最终得到贝氏体 +铁素体的微观组织结 构。
实施例 8
本实施例提供一种钢筋, 由如下元素组成: C 、 S i、 Mn、 P、 S、 Cr、 Mo 、 Sn 、 RE、 V、 Fe以及不可避免的杂质, 其中各成分的重量百分比如表 1所示, 力学性能如表 2所示, 耐腐蚀性能如表 3所示。
本实施例还提供一种钢筋的生产方法, 包括如下步骤:
S1 :釆用 KR法对铁水进行预脱硫的步骤, 将硫含量控制在不大于 0. 01% , 由于硫元素作为杂质元素会降低钢的力学性能和耐腐蚀性能, 而在转炉中通 常无法脱除硫元素, 因而为了降低钢中的硫含量, 就需要在铁水中对钢进行 预脱硫处理, 在进行脱硫前为提高脱硫效率, 需扒除高炉渣, 脱硫剂选用 9: 1 的质量比混合的石灰粉和萤石, 铁水脱硫静置后扒除脱硫渣, 防止脱硫渣进 入转炉造成转炉回硫, 保证钢中硫含量控制在 0. 01%以下;
S2:转炉冶炼的步骤, 将经过 S1处理的铁水, 以及废钢和 /或生铁加入转 炉中进行冶炼, 冶炼至碳含量低于 0. 05%, 磷含量低于 0. 01%出钢, 转炉为顶 底复吹转炉;
S 3:出钢的步骤, 出钢温度为 1680 °C, 出钢进行过程中加入的 S i、 Mn合 金元素进行脱氧, 并加入碳粉和造渣剂, 在出钢操作的过程中, 吹入保护气 体以 0. 5MPa的压力搅拌钢液, 利用钢液的流动性使加入 S i、 Mn元素脱氧更 为彻底并促使夹杂物上浮去除, 加入碳粉和造渣剂给钢增碳并造出还原渣, 为接下来的炉外精炼工序做准备;
S4:炉外精炼的步骤,在 RH真空精炼炉中加入 Cr元素并在 1610 °C下进行 吹氧脱 C, 通过脱碳过程, 去除 C元素, 将 Cr和 C元素含量控制到所需范围 内; 再釆用 LF炉在 1585 °C下脱氧至钢液中含氧量为 20ppm, 脱氧后加入钢中 需要的合金元素 Mn、 Mo、 Sn、 RE、 V,加入的合金元素材料可以是纯金属元素, 但通常来说是以铁合金的方式加入, 再加入钙铁合金对夹杂物进行变性处理, 并通入惰性气体软搅拌, 软搅拌时间 7min, 通过搅拌过程使钢成分和温度均 匀并促使夹杂物上浮去除, 将各元素含量控制在表 1 中实施例 8 中所示的范 围内,在 LF炉处理后期将钢水升温至 1590 °C,该温度为保证连铸的顺利进行, 并加入覆盖剂, 该覆盖剂通常为炭化稻壳;
S5:连铸的步骤, 钢水在保护浇注的条件下通过连铸机浇注成连铸成 15 Omm 15 Omm的小方: t丕,;
S6:轧制的步骤, 连铸坯在加热炉中加热到 1150 °C, 釆用连续式棒线材轧 机进行粗轧、 中轧、 精轧, 开轧温度 1065 °C, 精轧温度 1025 °C, 精轧后不穿 水, 将精轧后的钢材置于冷床上空冷至室温得到如表 1 所示的钢筋成材, 上 冷床温度为 965 °C, 通过控轧控冷工艺最终得到贝氏体 +铁素体的微观组织结 构。
实施例 9 本实施例提供一种钢筋, 由如下元素组成: C 、 S i、 Mn、 P、 S、 Cr、 Mo 、 Sn 、 RE、 V、 T i、 Fe 以及不可避免的杂质, 其中各成分的重量百分比如表 1 所示, 力学性能如表 2所示, 耐腐蚀性能如表 3所示。
本实施例还提供一种钢筋的生产方法, 包括如下步骤:
S1 : 釆用 KR法对铁水进行预脱硫的步骤, 将硫含量控制在不大于 0. 01% , 由于硫元素作为杂质元素会降低钢的力学性能和耐腐蚀性能, 而在转炉中通 常无法脱除硫元素, 因而为了降低钢中的硫含量, 就需要在铁水中对钢进行 预脱硫处理, 在进行脱硫前为提高脱硫效率, 需扒除高炉渣, 脱硫剂选用 9: 1 的质量比混合的石灰粉和萤石, 铁水脱硫静置后扒除脱硫渣, 防止脱硫渣进 入转炉造成转炉回硫, 保证钢中硫含量控制在 0. 01%以下;
S2:转炉冶炼的步骤, 将经过 S1处理的铁水, 以及废钢和 /或生铁加入转 炉中进行冶炼, 冶炼至碳含量低于 0. 05%, 磷含量低于 0. 01%出钢, 转炉为顶 底复吹转炉; S 3:出钢的步骤, 出钢温度为 1675 °C, 出钢进行过程中加入的 S i、 Mn合 金元素进行脱氧, 并加入碳粉和造渣剂, 在出钢操作的过程中, 吹入保护气 体以 0. 5MPa的压力搅拌钢液, 利用钢液的流动性使加入 S i、 Mn元素脱氧更 为彻底并促使夹杂物上浮去除, 加入碳粉和造渣剂给钢增碳并造出还原渣, 为接下来的炉外精炼工序做准备;
S4:炉外精炼的步骤,在 RH真空精炼炉中加入 Cr元素并在 1605 °C下进行 吹氧脱 C, 通过脱碳过程, 去除 C元素, 将 Cr和 C元素含量控制到所需范围 内; 再釆用 LF炉在 1575 °C下脱氧至钢液中含氧量为 20ppm, 脱氧后加入钢中 需要的合金元素 Mn、 Mo、 Sn、 RE、 V,加入的合金元素材料可以是纯金属元素, 但通常来说是以铁合金的方式加入, 再加入钙铁合金对夹杂物进行变性处理, 并通入惰性气体软搅拌, 软搅拌时间 7min, 通过搅拌过程使钢成分和温度均 匀并促使夹杂物上浮去除, 将各元素含量控制在表 1 中实施例 9 中所示的范 围内,在 LF炉处理后期将钢水升温至 1580 °C,该温度为保证连铸的顺利进行, 并加入覆盖剂, 该覆盖剂通常为炭化稻壳;
S5:连铸的步骤, 钢水在保护浇注的条件下通过连铸机浇注成连铸成 15 Omm 150 mm的小方: t丕,;
S6:轧制的步骤, 连铸坯在加热炉中加热到 11 05 °C, 釆用连续式棒线材轧 机进行粗轧、 中轧、 精轧, 开轧温度 1045 °C, 精轧温度 1005 °C, 精轧后不穿 水, 将精轧后的钢材置于冷床上空冷至室温得到如表 1 所示的钢筋成材, 上 冷床温度为 945 °C, 通过控轧控冷工艺最终得到贝氏体 +铁素体的微观组织结 构。 实施例 10
本实施例提供一种钢筋, 由如下元素组成: C 、 S i、 Mn、 P、 S、 Cr、 Mo 、 Sn 、 RE、 V、 T i、 Fe 以及不可避免的杂质, 其中各成分的重量百分比如表 1 所示, 力学性能如表 2所示, 耐腐蚀性能如表 3所示。
本实施例还提供一种钢筋的生产方法, 包括如下步骤:
S1 : 釆用 KR法对铁水进行预脱硫的步骤, 将硫含量控制在不大于 0. 01% , 由于硫元素作为杂质元素会降低钢的力学性能和耐腐蚀性能, 而在转炉中通 常无法脱除硫元素, 因而为了降低钢中的硫含量, 就需要在铁水中对钢进行 预脱硫处理, 在进行脱硫前为提高脱硫效率, 需扒除高炉渣, 脱硫剂选用 9: 1 的质量比混合的石灰粉和萤石, 铁水脱硫静置后扒除脱硫渣, 防止脱硫渣进 入转炉造成转炉回硫, 保证钢中硫含量控制在 0. 01%以下;
S2:转炉冶炼的步骤, 将经过 S1处理的铁水, 以及废钢和 /或生铁加入转 炉中进行冶炼, 冶炼至碳含量低于 0. 05%, 磷含量低于 0. 01%出钢, 转炉为顶 底复吹转炉;
S 3:出钢的步骤, 出钢温度为 1685 °C, 出钢进行过程中加入的 S i、 Mn合 金元素进行脱氧, 并加入碳粉和造渣剂, 在出钢操作的过程中, 吹入保护气 体以 0. 5MPa的压力搅拌钢液, 利用钢液的流动性使加入 S i、 Mn元素脱氧更 为彻底并促使夹杂物上浮去除, 加入碳粉和造渣剂给钢增碳并造出还原渣, 为接下来的炉外精炼工序做准备;
S4:炉外精炼的步骤,在 RH真空精炼炉中加入 Cr元素并在 1620 °C下进行 吹氧脱 C, 通过脱碳过程, 去除 C元素, 将 Cr和 C元素含量控制到所需范围 内; 再釆用 LF炉在 1585 °C下脱氧至钢液中含氧量为 20ppm, 脱氧后加入钢中 需要的合金元素 Mn、 Mo、 Sn、 RE、 V、 Ti, 加入的合金元素材料可以是纯金属 元素, 但通常来说是以铁合金的方式加入, 再加入钙铁合金对夹杂物进行变 性处理, 并通入惰性气体软搅拌, 软搅拌时间 7min, 通过搅拌过程使钢成分 和温度均匀并促使夹杂物上浮去除, 将各元素含量控制在表 1中实施例 10中 所示的范围内, 在 LF炉处理后期将钢水升温至 1595°C ,该温度为保证连铸的 顺利进行, 并加入覆盖剂, 该覆盖剂通常为炭化稻壳;
S5:连铸的步骤, 钢水在保护浇注的条件下通过连铸机浇注成连铸成 150mm X 150mm的小方坯,;
S6:轧制的步骤, 连铸坯在加热炉中加热到 1195°C , 采用连续式棒线材轧 机进行粗轧、 中轧、 精轧, 开轧温度 1095°C , 精轧温度 1045°C , 精轧后不穿 水, 将精轧后的钢材置于冷床上空冷至室温得到如表 1 所示的钢筋成材, 上 冷床温度为 955°C , 通过控轧控冷工艺最终得到贝氏体 +铁素体的微观组织结 构。 实验例
为证明本发明的效果, 取实施例 1-10及对比例 1-3中制的钢筋进行以下 实验:
1.实验方法
1.1力学性能测试: 参照 《GB1499.2-2007钢筋混凝土用钢第二部分: 热 轧带肋钢筋》进行。 测定钢筋的屈服强度(R0.2)、 抗拉强度(Rm)及断后伸 长率(A)。
1.2耐蚀性能测试:
1.2.1周浸腐蚀试验: 参照 2012年 5月中国钢铁工业协会提出, 由钢铁 研究总院和冶金工业信息标准研究院等单位起草的 《钢筋在氯离子环境中腐 蚀试险方法 征求意见稿》进行。
试样为 / 13mm X 50mm的圓柱;
试验溶液为初始浓度为(0.34 士 0.009) mol* L— 1 (质量分数为 2.0%士 0.05%) 的氯化钠溶液。 具体试验条件为:
温度: 45°C ±2°C
湿度: 70%± 10%RH
溶液 PH值: 6.5~7.2 试马全时间: 360 h
每一循环周期: 60 min±5min, 其中浸润时间: 12 min±2min 烘烤后试样表面最高温度: 70°C ±10°C
1.2.2盐雾腐蚀试验: 参照 《GBT10125-1997人造气氛腐蚀试验 盐雾试 验》进行。
试样为 3mm 15mm 40mm的样片;
试验溶液为 (50 ±5) g* L— 1 (质量分数为 5.0%±0. 5%) 的氯化钠溶液。 具体试验条件为:
温度: 35°C ±2°C
溶液 PH值: 6.5-7.2 试马全时间: 360 h
2.实验结果
表 2为实施例 1-10及对比例 1-3的力学性能效果, 表 3为实施例 1-10 及对比例 1-3的耐腐蚀性能效果。
表 2 力学性能效果
Figure imgf000025_0001
表 3 耐腐蚀性能效果
Figure imgf000025_0002
卜比例 1 3. 278 1 一 3. 150 1 一 卜比例 2 0. I l l 798 0. 120 736 卜比例 3 0. 456 0. 151 561 0. 463 0. 160 526
(表 3中相对腐蚀速率均以对比例 1为参照, 并设定对比例 1的相对腐 蚀速率为 1 )
通过表 3可知, 实施例 1-10中由于添加了 Cr、 Sn、 Mo、 RE元素提高了 钢筋的耐腐蚀性能, 与对比例 1相比, 耐腐蚀性能提高了 600%以上。 由对比 例 3的耐腐蚀性能可以看出, 其它元素含量相同的情况下, 不含 Sn元素的钢 筋的耐腐蚀性能的提高不如含 Sn元素的钢筋大。 对比实施例 1、 1、 3和对比 例 2, 可以得到, Sn含量在 0. 02-0. 04%时, 随 Sn含量的增加, 钢筋的耐腐蚀 性能提高但是屈服强度和抗拉强度却下降, 当 Sn含量超过 0. 04%时, 钢筋的 耐腐蚀性能不再有明显提高, 但对力学性能有不良的影响, 尤其是钢筋的断 后伸长率和最大力总伸长率降低明显, 且强屈比大幅下降。 实施例 4-10为添 加了 V和 /或 Ti元素的钢筋, 通过表 2可知, V和 /或 Ti元素的加入提高了钢 筋的屈服强度和抗拉强度, 同时其断后伸长率 > 18%, 强屈卜 比 > 1. 25, 最大力 卜
总伸长率〉 9%, 使钢材具备良好地抗震性能。
本发明的钢筋, 通过合理的成分设计, 精确控制冶炼过程中的元素成分 和温度, 并结合控轧控冷工艺使钢筋得到贝氏体 +铁素体(铁素体所占比例为 50%-70% ) 的微观组织结构, 如图 1所示, 使钢筋具有优良的综合力学性能和 耐腐蚀性能, 是耐腐蚀性能较普通钢筋提高 6倍以上, 可满足海洋工程中钢 筋混凝土结构的使用寿命要求。
显然, 上述实施例仅仅是为清楚地说明所作的举例, 并非对实施方式的 限定。 对于所属领域的普通技术人员来说, 在上述说明的基础上还可以做出 其它不同形式的变化或变动。 这里无需也无法对所有的实施方式予以穷举。 而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之 中。

Claims

权 利 要 求 书
1.一种钢筋, 其特征在于, 按重量百分比计算, 包括以下成分:
C 0.005-0.030%, Si 0.3—0.6%, Mn 1.2-2.5%, P < 0.01%, S < 0.01%, Cr 8.0-10.0%, Mo 1.0-3.0%, Sn 0.2-0.4%, RE 0.01-0.05%; 其余为 Fe 和不可避免的杂质。
2.根据权利要求 1 所述的钢筋, 其特征在于, 按重量百分比计算, 包括 以下成分:
C 0.005-0.030%, Si 0.3—0.6%, Mn 1.2-1.8%, P < 0.01%, S < 0.01%, Cr 8.0-10.0%, Mo 1.0-1.6%, Sn 0.2-0.4%, RE 0.01-0.05%; 其余为 Fe和 不可避免的杂质。
3.—种钢筋, 其特征在于, 按重量百分比计算, 包括如下成分:
C 0.005-0.030%, Si 0.3—0.6%, Mn 1.2—2.5%, P < 0.01%, S < 0.01%, Cr 8.0-10.0%, Mo 1.0-3.0%, Sn 0.2-0.4%, RE 0.01-0.05%, V 0.04-0.18% 和 /或 Ti 0.010-0.030%, 其余为 Fe和不可避免的杂质。 4.根据权利要求 3所述的钢筋, 其特征在于, 按重量百分比计算, 包括 以下成分:
C 0.005-0.030%, Si 0.3—0.6%, Mn 1.7—2.5%, P < 0.01%, S < 0.01%, Cr 8.0-10.0%, Mo 1.5-2.0%, Sn 0.2-0.
4%, RE 0.01-0.05%, V 0.04-0.08%; 其余为 Fe和不可避免的杂质。 5.根据权利要求 3所述的钢筋, 其特征在于, 按重量百分比计算, 包括 以下成分:
C 0.005-0.030%, Si 0.3—0.6%, Mn 1.7—2.
5%, P < 0.01%, S < 0.01%, Cr 8.0-10.0%, Mo 1.8-3.0%, Sn 0.2-0.4%, RE 0.01-0.05%, V 0.10—0.18%, Ti 0.01-0.030%; 其余为 Fe和不可避免的杂质。
6.根据权利要求 1-5任一所述的钢筋, 其特征在于, 所述钢筋的显微组 织为铁素体和贝氏体, 其中铁素体所占比例为 50%-70%。
7. 根据权利要求 1-6任一所述的钢筋, 其特征在于, 所述钢筋的强屈比 > 1.25,最大力总伸长率 > 9%,断后伸长率 > 18%,周浸试验腐蚀速率 < 0.45g/ (m2h), 盐雾试验腐蚀速率 < 0.45g/ (m2h)。
8. 一种钢筋的制备方法, 包括如下步骤:
S1:铁水预脱硫的步骤, 将硫含量控制在不大于 0.01%;
S2:转炉冶炼的步骤, 将经过 S1处理的铁水, 以及废钢和 /或生铁加入转 炉中进行冶炼, 冶炼至碳含量低于 0.05%, 磷含量低于 0.01%出钢; S3:出钢的步骤, 出钢进行过程中加入 Si、 Mn合金元素进行脱氧, 并加 入碳粉和造渣剂;
S4:炉外精炼的步骤, 在 RH真空精炼炉中加入 Cr元素并进行吹氧脱 C, 将 Cr和 C元素含量控制到如权利要求 1或 2所述的范围内; 再釆用 LF炉脱 氧, 脱氧后加入钢中需要的合金元素 Mn、 Mo、 Sn、 RE, 再加入钙铁合金并通 入惰性气体软搅拌, 将各元素含量控制在如权利要求 1或 2所述的范围内, 将钢水升温, 加入覆盖剂;
S5:连铸的步骤, 钢水在保护浇注的条件下通过连铸机浇注成连铸坯;
S6:轧制的步骤, 连铸坯在加热炉中加热到高于奥氏体化温度, 经粗轧、 中轧、 精轧, 将精轧后的钢材置于冷床上空冷得到如权利要求 1或 2所述成 分的钢筋成材。
9. 一种钢筋的制备方法, 包括如下步骤:
S1:铁水预脱硫的步骤, 将硫含量控制在不大于 0.01%; S2:转炉冶炼的步骤, 将经过 SI处理的铁水, 以及废钢和 /或生铁加入转 炉中进行冶炼, 冶炼至碳含量低于 0. 05%, 磷含量低于 0. 01%出钢;
S 3:出钢的步骤, 出钢进行过程中加入 S i、 Mn合金元素进行脱氧, 并加 入碳粉和造渣剂; S4:炉外精炼的步骤, 在真空精炼炉中加入 Cr 元素并进行吹氧脱 C, 将
Cr和 C元素含量控制到如权利要求 3或 4或 5或 6所述的范围内; 再釆用 LF 炉脱氧, 脱氧后加入钢中需要的合金元素 Mn、 Mo、 Sn、 RE以及 V和 /或 Ti, 再加入钙铁合金并通入惰性气体软搅拌, 将各元素含量控制在如权利要求 3 或 4或 5或 6所述的范围内, 将钢水升温, 加入覆盖剂; S5:连铸, 钢水在保护浇注的条件下通过连铸机浇注成连铸坯;
S6:轧制, 连铸坯在加热炉中加热到高于奥氏体化温度, 经粗轧、 中轧、 精轧, 将精轧后的钢材置于冷床上空冷得到如权利要求 3或 4或 5或 6所述 成分的钢筋成材。
10. 根据权利要求 8或 9所述的制备方法, 其特征在于, 在 S2步骤中, 所述出钢温度不大于 1690 °C。
11. 根据权利要求 8或 9或 1 0所述的制备方法, 其特征在于, 在 S 3步 骤中, 所述出钢过程中还通入保护气体搅拌钢液。
12.根据权利要求 8-1 1任一所述的制备方法,其特征在于,在 S4步骤中, 所述 RH真空精炼的吹氧脱碳的温度不小于 1605 °C,所述 LF炉的精炼脱氧温 度不小于 1575 °C,所述 LF炉脱氧将氧含量控制在不高于 50ppm,所述软搅拌 的时间不小于 5min, 所述钢水升温温度到 1570-1600 °C。
1 3.根据权利要求 8-12任一所述的制备方法, 其特征在于, 在所述 S6步 骤中, 所述在加热炉中加热到 1100-1200 °C, 所述粗轧前的开轧温度为 1030-1100°C, 所述精轧时的温度为 950-1050°C, 所述钢材置于冷床时的温 度为 900-960°Co
PCT/CN2014/080994 2014-06-18 2014-06-27 一种钢筋及其制备方法 WO2015192391A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/114,287 US20170029919A1 (en) 2014-06-18 2014-06-27 A steel rebar and a production method thereof
EP14895253.4A EP3159424B1 (en) 2014-06-18 2014-06-27 Rebar and preparation method thereof
KR1020167011662A KR101828856B1 (ko) 2014-06-18 2014-06-27 철근 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410273604.3 2014-06-18
CN201410273604.3A CN104018091B (zh) 2014-06-18 2014-06-18 一种钢筋及其制备方法

Publications (1)

Publication Number Publication Date
WO2015192391A1 true WO2015192391A1 (zh) 2015-12-23

Family

ID=51435080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080994 WO2015192391A1 (zh) 2014-06-18 2014-06-27 一种钢筋及其制备方法

Country Status (5)

Country Link
US (1) US20170029919A1 (zh)
EP (1) EP3159424B1 (zh)
KR (1) KR101828856B1 (zh)
CN (1) CN104018091B (zh)
WO (1) WO2015192391A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108018397A (zh) * 2017-12-05 2018-05-11 山西太钢不锈钢股份有限公司 一种铁铬铝电热合金钢中稀土的加入方法
CN112522473A (zh) * 2020-10-21 2021-03-19 福建三宝钢铁有限公司 一种低成本45#钢的制备方法
CN112725561A (zh) * 2020-12-22 2021-04-30 河钢股份有限公司承德分公司 一种利用lf精炼炉回吃废钢的方法
CN113512683A (zh) * 2021-07-16 2021-10-19 新疆八一钢铁股份有限公司 一种高强度抗震钢筋的低碳消耗制备方法
CN113943883A (zh) * 2021-09-18 2022-01-18 广西柳州钢铁集团有限公司 提高Nb微合金化HRB400E热轧盘条钢筋Agt的方法和热轧盘条钢筋
CN114000051A (zh) * 2021-09-29 2022-02-01 武钢集团昆明钢铁股份有限公司 一种超细晶hrb400e盘条抗震钢筋及其制备方法
CN114000050A (zh) * 2021-09-29 2022-02-01 武钢集团昆明钢铁股份有限公司 一种富氮钒铬微合金化超细晶耐腐蚀hrb400e盘条抗震钢筋及其制备方法
CN114705582A (zh) * 2022-03-29 2022-07-05 欧冶链金物宝(安徽)再生资源有限公司 一种破碎废钢金属料收得率的测定方法
CN114875195A (zh) * 2022-04-12 2022-08-09 包头钢铁(集团)有限责任公司 一种提高精准控制降低合金消耗的方法
CN114990286A (zh) * 2022-05-11 2022-09-02 包头钢铁(集团)有限责任公司 一种降低焊接飞溅的方法
CN115011875A (zh) * 2022-05-27 2022-09-06 广西柳州钢铁集团有限公司 双高棒生产热轧带肋钢筋的方法
CN115058556A (zh) * 2022-07-22 2022-09-16 重庆钢铁股份有限公司 一种螺纹钢碳、锰成分精确控制的方法

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104372246A (zh) * 2014-11-11 2015-02-25 江苏省沙钢钢铁研究院有限公司 一种400MPa级含钨耐蚀螺纹钢筋及其制备方法
CN105256243A (zh) * 2015-10-23 2016-01-20 北大方正集团有限公司 一种油井用耐腐蚀钢及其生产方法
CN107779775B (zh) * 2016-08-30 2020-07-28 浙江大隆合金钢有限公司 H13高速精锻模具钢及钢锭生产方法
CN107034421B (zh) * 2017-04-01 2019-04-12 江苏省沙钢钢铁研究院有限公司 高耐腐蚀性高强钢筋及其转炉制造方法
CN107641757B (zh) * 2017-09-08 2019-03-26 首钢集团有限公司 一种基于混凝土结构耐久性的耐蚀钢筋及其制备方法
CN107891443A (zh) * 2017-10-13 2018-04-10 江苏捷帝机器人股份有限公司 一种耐腐高韧性高硬机器人机械小臂铸件
CN108441781B (zh) * 2018-02-28 2020-05-08 河钢股份有限公司承德分公司 一种高强耐腐蚀钢筋及其热处理方法
WO2019182056A1 (ja) * 2018-03-23 2019-09-26 Jfeスチール株式会社 高清浄度鋼の製造方法
CN108588581B (zh) * 2018-04-28 2019-09-20 东南大学 一种海洋混凝土结构用高强耐蚀铁素体/贝氏体双相钢筋及其制备方法
CN108715913B (zh) * 2018-06-07 2020-09-11 舞阳钢铁有限责任公司 一种电炉冶炼9Ni钢的方法
CN108715912B (zh) * 2018-06-07 2020-09-22 舞阳钢铁有限责任公司 一种电炉冶炼低氮钢的方法
CN108977612B (zh) * 2018-09-28 2020-05-26 邢台钢铁有限责任公司 高强度耐大气腐蚀螺栓用钢的冶炼方法
KR102173920B1 (ko) * 2018-11-16 2020-11-04 고려대학교 산학협력단 항복비와 균일연신율이 우수한 항복강도 700 MPa급 철근 및 그 제조 방법
CN110343940A (zh) * 2018-11-28 2019-10-18 张家港宏昌钢板有限公司 高耐蚀耐候钢的制造方法
CN111331093B (zh) * 2020-02-12 2021-06-04 钢铁研究总院 一种稀土微合金化钢筋结晶器用保护渣及制备和应用方法
CN113802067A (zh) * 2020-06-13 2021-12-17 阳春新钢铁有限责任公司 一种钼钒系耐火高强度钢筋的生产方法
CN111945079A (zh) * 2020-07-31 2020-11-17 阳春新钢铁有限责任公司 一种超高拉速含铌hrb500e螺纹钢及其生产工艺
CN112609135B (zh) * 2020-12-10 2022-10-28 四川德胜集团钒钛有限公司 一种耐腐蚀钢筋及其制备方法
CN112375995B (zh) * 2021-01-15 2021-05-07 江苏省沙钢钢铁研究院有限公司 400MPa级耐蚀钢筋及其生产方法
CN113073173A (zh) * 2021-03-29 2021-07-06 福建三宝钢铁有限公司 一种低成本板坯q235b炼钢工艺
CN113278765A (zh) * 2021-05-13 2021-08-20 河北鑫达钢铁集团有限公司 一种转炉用脱硫剂以及脱硫方法
CN114645193B (zh) * 2021-05-28 2022-09-23 广西柳州钢铁集团有限公司 高速棒材生产的hrb600e螺纹钢筋
CN113441545B (zh) * 2021-06-10 2023-03-03 广西柳钢华创科技研发有限公司 强屈比大于1.28的hrb500e普速热轧带肋钢筋及其生产方法
CN113373384A (zh) * 2021-06-17 2021-09-10 承德建龙特殊钢有限公司 一种用于石油套管接箍料的钢材及其制备方法
CN113802044B (zh) * 2021-08-02 2022-05-24 河钢股份有限公司承德分公司 一种高强抗震钢筋的合金化方法
CN113846264B (zh) * 2021-08-27 2022-08-19 马鞍山钢铁股份有限公司 一种含锡500MPa级海洋岛礁混凝土工程用高耐蚀钢筋及其生产方法
CN113737081B (zh) * 2021-08-31 2022-04-01 中国科学院上海应用物理研究所 不锈钢冶炼方法、改性方法及一种不锈钢
CN113481440B (zh) * 2021-09-08 2021-11-30 北京科技大学 耐腐蚀抗震钢材、钢筋及其制备方法
CN113584398B (zh) * 2021-09-28 2022-01-18 江苏省沙钢钢铁研究院有限公司 耐蚀钢板以及耐蚀钢板的生产方法
CN113897472B (zh) * 2021-09-29 2022-08-05 福建三宝钢铁有限公司 一种Cu-Cr系耐腐蚀钢筋的制备工艺
CN114182159A (zh) * 2021-10-26 2022-03-15 南京钢铁股份有限公司 一种管道运输专用高耐磨钢带ngnm01的制备方法
CN114505341A (zh) * 2021-12-27 2022-05-17 石横特钢集团有限公司 一种密螺距螺纹肋锚杆钢筋的热轧工艺方法
CN114959174B (zh) * 2022-06-07 2024-01-12 西峡县丰业冶金材料有限公司 利用稀土元素生产的高强度热轧带肋钢筋及其生产方法
CN115125436B (zh) * 2022-06-08 2023-08-01 中天钢铁集团有限公司 一种精密机床传动系统用合金结构钢及其生产方法
CN114790532B (zh) * 2022-06-22 2022-09-02 江苏省沙钢钢铁研究院有限公司 一种合金耐蚀钢筋及其制备方法
CN115305314A (zh) * 2022-08-18 2022-11-08 日照钢铁控股集团有限公司 一种薄板坯连铸连轧产线lf-rh双联超低碳钢生产方法
CN115491602A (zh) * 2022-09-19 2022-12-20 江苏省产品质量监督检验研究院 一种防腐蚀细晶粒化热轧钢筋及其生产方法
CN117568723A (zh) * 2023-11-20 2024-02-20 北京科技大学 一种海水海砂混凝土用高耐蚀钢筋及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342548A (ja) * 2000-06-02 2001-12-14 Kawasaki Steel Corp 疲労特性および塗膜密着性に優れた土木・建築構造用ステンレス鋼
JP2002285298A (ja) * 2001-01-16 2002-10-03 Kawasaki Steel Corp 建築・土木構造用のCr含有耐腐食鋼
JP2004143496A (ja) * 2002-10-23 2004-05-20 Jfe Steel Kk 磁気特性および耐食性に優れた軟磁性鉄芯材用のCr含有鋼板
CN101838772A (zh) * 2009-03-19 2010-09-22 新日铁住金不锈钢株式会社 耐腐蚀性优异的马氏体系不锈钢
CN103556058A (zh) * 2013-10-21 2014-02-05 武汉钢铁(集团)公司 低成本高性能耐腐蚀钢筋及其制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5454883A (en) * 1993-02-02 1995-10-03 Nippon Steel Corporation High toughness low yield ratio, high fatigue strength steel plate and process of producing same
JP2001026825A (ja) * 1999-07-13 2001-01-30 Nippon Steel Corp 熱間圧延で表面疵の発生しないCr系ステンレス鋼の製造方法
JP5780716B2 (ja) * 2010-07-01 2015-09-16 日新製鋼株式会社 耐酸化性および二次加工性に優れたフェライト系ステンレス鋼
KR101564152B1 (ko) * 2011-02-17 2015-10-28 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 내산화성과 고온 강도가 우수한 고순도 페라이트계 스테인리스 강판 및 그 제조 방법
JP5845951B2 (ja) * 2012-02-15 2016-01-20 新日鐵住金株式会社 耐食性に優れた鋼材
CN103789677B (zh) * 2014-02-11 2016-04-20 江苏省沙钢钢铁研究院有限公司 一种具有高耐腐蚀性的高强钢筋及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342548A (ja) * 2000-06-02 2001-12-14 Kawasaki Steel Corp 疲労特性および塗膜密着性に優れた土木・建築構造用ステンレス鋼
JP2002285298A (ja) * 2001-01-16 2002-10-03 Kawasaki Steel Corp 建築・土木構造用のCr含有耐腐食鋼
JP2004143496A (ja) * 2002-10-23 2004-05-20 Jfe Steel Kk 磁気特性および耐食性に優れた軟磁性鉄芯材用のCr含有鋼板
CN101838772A (zh) * 2009-03-19 2010-09-22 新日铁住金不锈钢株式会社 耐腐蚀性优异的马氏体系不锈钢
CN103556058A (zh) * 2013-10-21 2014-02-05 武汉钢铁(集团)公司 低成本高性能耐腐蚀钢筋及其制造方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108018397A (zh) * 2017-12-05 2018-05-11 山西太钢不锈钢股份有限公司 一种铁铬铝电热合金钢中稀土的加入方法
CN108018397B (zh) * 2017-12-05 2019-12-31 山西太钢不锈钢股份有限公司 一种铁铬铝电热合金钢中稀土的加入方法
CN112522473A (zh) * 2020-10-21 2021-03-19 福建三宝钢铁有限公司 一种低成本45#钢的制备方法
CN112725561A (zh) * 2020-12-22 2021-04-30 河钢股份有限公司承德分公司 一种利用lf精炼炉回吃废钢的方法
CN113512683A (zh) * 2021-07-16 2021-10-19 新疆八一钢铁股份有限公司 一种高强度抗震钢筋的低碳消耗制备方法
CN113943883A (zh) * 2021-09-18 2022-01-18 广西柳州钢铁集团有限公司 提高Nb微合金化HRB400E热轧盘条钢筋Agt的方法和热轧盘条钢筋
CN113943883B (zh) * 2021-09-18 2022-07-22 广西柳州钢铁集团有限公司 提高Nb微合金化HRB400E热轧盘条钢筋Agt的方法和热轧盘条钢筋
CN114000051B (zh) * 2021-09-29 2022-05-10 武钢集团昆明钢铁股份有限公司 一种超细晶hrb400e盘条抗震钢筋及其制备方法
CN114000050A (zh) * 2021-09-29 2022-02-01 武钢集团昆明钢铁股份有限公司 一种富氮钒铬微合金化超细晶耐腐蚀hrb400e盘条抗震钢筋及其制备方法
CN114000050B (zh) * 2021-09-29 2022-05-10 武钢集团昆明钢铁股份有限公司 一种富氮钒铬微合金化超细晶耐腐蚀hrb400e盘条抗震钢筋及其制备方法
CN114000051A (zh) * 2021-09-29 2022-02-01 武钢集团昆明钢铁股份有限公司 一种超细晶hrb400e盘条抗震钢筋及其制备方法
CN114705582A (zh) * 2022-03-29 2022-07-05 欧冶链金物宝(安徽)再生资源有限公司 一种破碎废钢金属料收得率的测定方法
CN114705582B (zh) * 2022-03-29 2024-04-30 欧冶链金物宝(安徽)再生资源有限公司 一种破碎废钢金属料收得率的测定方法
CN114875195A (zh) * 2022-04-12 2022-08-09 包头钢铁(集团)有限责任公司 一种提高精准控制降低合金消耗的方法
CN114990286A (zh) * 2022-05-11 2022-09-02 包头钢铁(集团)有限责任公司 一种降低焊接飞溅的方法
CN115011875A (zh) * 2022-05-27 2022-09-06 广西柳州钢铁集团有限公司 双高棒生产热轧带肋钢筋的方法
CN115011875B (zh) * 2022-05-27 2023-08-15 广西柳州钢铁集团有限公司 双高棒生产热轧带肋钢筋的方法
CN115058556A (zh) * 2022-07-22 2022-09-16 重庆钢铁股份有限公司 一种螺纹钢碳、锰成分精确控制的方法
CN115058556B (zh) * 2022-07-22 2024-01-23 重庆钢铁股份有限公司 一种螺纹钢碳、锰成分精确控制的方法

Also Published As

Publication number Publication date
KR20160065192A (ko) 2016-06-08
CN104018091B (zh) 2016-11-23
EP3159424A4 (en) 2017-11-15
CN104018091A (zh) 2014-09-03
KR101828856B1 (ko) 2018-02-13
EP3159424A1 (en) 2017-04-26
US20170029919A1 (en) 2017-02-02
EP3159424B1 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
WO2015192391A1 (zh) 一种钢筋及其制备方法
CN109023112B (zh) 高强度耐大气腐蚀冷镦钢及其制备方法
CN113186472B (zh) 耐蚀钢筋及其生产方法
CN106555123B (zh) 一种耐腐蚀高强屈比抗震钢筋及其生产方法
CN105886902A (zh) 一种400MPa级含钒抗震耐腐蚀钢筋及其生产方法
CN109852893B (zh) 一种低温高韧性耐火钢及其制备方法
CN104313457B (zh) 碳化钒增强型复合铸铁材料及其制备方法、制砂机反击块
CN109023041A (zh) 400MPa级抗震耐氯离子腐蚀钢筋及其制造方法
CN109762967A (zh) 一种具有优良低温韧性的耐腐蚀船用球扁钢及制造方法
CN109023042A (zh) 500MPa级抗震耐氯离子腐蚀钢筋及其制造方法
CN104946996B (zh) 一种耐碱性腐蚀的高强度钢及其生产方法
CN114107825A (zh) 一种低碳当量含钛q420md钢板及其制备方法
CN111235350B (zh) 一种建筑钢筋冶炼过程中添加钒钛球的强化方法
CN108977612B (zh) 高强度耐大气腐蚀螺栓用钢的冶炼方法
JP5708349B2 (ja) 溶接熱影響部靭性に優れた鋼材
JP3633515B2 (ja) 耐水素誘起割れ性に優れた熱延鋼板およびその製造方法
CN109881121A (zh) 一种耐氯离子腐蚀的高强度抗震钢筋及其生产方法和用途
CN101519752A (zh) 低碳高铌铬系高强度高韧性管线钢卷及其制造方法
JP2579841B2 (ja) 圧延ままで耐火性及び靱性の優れた粒内フェライト系形鋼の製造方法
JP2024502849A (ja) 高湿度および高温大気に対する耐食性を有する海洋工学用鋼ならびにその製造方法
CN115094307A (zh) 一种电渣重熔用热作模具钢连铸圆坯及其生产工艺
CN104928597B (zh) 一种低镍铬不锈钢及其制造方法与应用
JP2007224404A (ja) 強度および低温靭性の優れた高張力鋼板および高張力鋼板の製造方法
CN113846264A (zh) 一种含锡500MPa级海洋岛礁混凝土工程用高耐蚀钢筋及其生产方法
JP2601961B2 (ja) 靭性の優れた圧延形鋼の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14895253

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167011662

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15114287

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014895253

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014895253

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE