WO2015190708A1 - 8각 콘크리트 충전 강관 기둥 - Google Patents

8각 콘크리트 충전 강관 기둥 Download PDF

Info

Publication number
WO2015190708A1
WO2015190708A1 PCT/KR2015/004721 KR2015004721W WO2015190708A1 WO 2015190708 A1 WO2015190708 A1 WO 2015190708A1 KR 2015004721 W KR2015004721 W KR 2015004721W WO 2015190708 A1 WO2015190708 A1 WO 2015190708A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
steel pipe
concrete
filled
octagonal
Prior art date
Application number
PCT/KR2015/004721
Other languages
English (en)
French (fr)
Inventor
이창남
Original Assignee
(주)센벡스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)센벡스 filed Critical (주)센벡스
Publication of WO2015190708A1 publication Critical patent/WO2015190708A1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/30Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts being composed of two or more materials; Composite steel and concrete constructions

Definitions

  • the present invention relates to a concrete-filled steel pipe column in which concrete is filled in the steel pipe tube, and more specifically, four unit steel sheets are bonded to each other at the edge of the column to make the steel pipe tube form an octagon as a whole.
  • a concrete-filled steel pipe column in which concrete is filled in the steel pipe tube, and more specifically, four unit steel sheets are bonded to each other at the edge of the column to make the steel pipe tube form an octagon as a whole.
  • Concrete Filled Steel Tube (CFT, Concrete Filled Steel Tube) is a structure that is integrated by filling concrete in a round or square steel pipe, and is a method that is attracting attention in high-rise buildings due to its excellent rigidity and strength.
  • the conventional rectangular CFT pillars need to be larger than necessary to increase the diameter of the drilling hole (3) when used as a pile in the reverse drilling method.
  • the square steel pipe having a width of 400mm or more among the square steel pipes for building structures is produced by press bending, so the unit price is very high, and economic efficiency is low. You should increase it more than necessary.
  • the conventional steel pipe tube 2 is a field welding is required when the upper and lower column joints, there is a limit that can not control the thickness of the steel sheet in the same section.
  • the ACT column Advanced Construction Technology Tube
  • the existing CFT column is a closed steel pipe manufactured by cold forming a hot rolled steel sheet and is used as a structural member for building columns.
  • Such an ACT column can be manufactured by roll forming the steel sheet into small units, thereby reducing the production cost.
  • the steel plate rigidity of the column surface is small, so that the deformation is large when placing concrete, and like the CFT column, a diaphragm is required, and when the upper and lower columns are jointed, the CFT using a square steel pipe is required. It includes the shortcomings of the columns.
  • the unit steel plate adjacent to the ACT column is joined by the downward automatic welding, because the joint is formed for each column surface, it was cumbersome because the welding must proceed by rotating the member three times one surface at a time.
  • the present invention is to provide an octagonal concrete-filled steel pipe column that can reduce the diameter of the hole when used in reverse drilling method.
  • the present invention is to provide an octagonal concrete-filled steel pipe column having no joints in the column surface, free bonding to the beam, simple structure of the diaphragm, and smooth stress transfer in the panel zone.
  • the present invention is to provide an octagonal concrete-filled steel pipe column that can be economical construction by improving the column strength and the production of the segment of the steel sheet.
  • the present invention is to provide a octagonal concrete filled steel pipe column that can be bolted to the upper and lower columns to minimize the field welding process.
  • the present invention according to a preferred embodiment to solve the above problems relates to a concrete-filled steel pipe column is filled with concrete inside the steel pipe tube, the steel pipe tube is formed by combining four unit steel plates, the unit steel sheet Comprising a flat portion and a coupling portion bent inclined at both ends of the flat portion to provide an octagonal concrete-filled steel pipe pillar characterized in that the coupling portion is combined with the adjacent unit steel plate to form an octagonal steel tube as a whole.
  • At least one or more of the coupling parts of the unit steel plate provides an octagonal concrete-filled steel pipe column, characterized in that the first joint is bent into the column is formed.
  • a coupling member is installed in a longitudinal direction of a pillar at a portion where the coupling portion of the adjacent unit steel meets, and the coupling portion of the adjacent unit steel sheet is spaced at a predetermined interval so as to be spaced apart from each other. It provides an octagonal concrete filled steel pipe column characterized in that the weld is filled and coupled within the gap.
  • the coupling member provides an octagonal concrete filled steel pipe column, characterized in that the flat iron or rebar.
  • a second joint portion bent to the outside of the pillar is formed at the end of the coupling portion of the unit steel plate, and adjacent unit steel sheets are octagonal concrete, characterized in that the second joint portion is bolted to each other.
  • the present invention according to another preferred embodiment provides an octagonal concrete filled steel pipe column, characterized in that the joint plate is coupled in the vertical direction to the top or bottom side of the flat portion of the unit steel sheet.
  • the present invention according to another preferred embodiment provides an octagonal concrete filled steel pipe column, characterized in that the unit steel plate of the column shaft is thicker than the unit steel plate of the column weak axis.
  • the pillar forms an octagonal shape as a whole, the diameter of the punched hole can be reduced when used in reverse drilling.
  • the steel sheet can be divided into small units and manufactured by press or roll forming, thereby reducing the production cost, and the length of the column surface can be adjusted below the limit value of the plate width thickness ratio, thereby reducing the amount of steel.
  • the outer diaphragm can be formed along the edge of the column, so that the shape of the diaphragm is simple and the width thereof can be minimized.
  • the thickness of the unit steel plate on each side of the column can be different. Therefore, it is possible to economically construct the unit steel plate of the steel shaft and the weak shaft can be different.
  • the flat portion is provided on the pillar surface to freely join the beams and freely form a joint between the unit steel plates inside or outside the pillar.
  • FIG. 1 is a plan view showing a drilling hole in which a conventional steel tube is inserted.
  • Figure 2 is a plan view showing a joint of a conventional steel tube and the beam.
  • FIG. 3 is a plan view showing a conventional ACT pillar.
  • FIG. 4 is a view showing an embodiment of the present invention octagonal concrete filled steel pipe column.
  • Figure 5 is a plan view showing a coupling portion of the present invention octagonal concrete filled steel pipe column and beam.
  • 6 and 7 show other embodiments of the present invention octagonal concrete filled steel pipe column.
  • FIG. 8 is a cross-sectional view of the steam pillar using the present invention octagonal concrete-filled steel pipe pillar.
  • Figure 9 is a perspective view showing another embodiment of the present invention octagonal concrete filled steel pipe column.
  • FIG. 10 is a plan view of the present invention octagonal concrete-filled steel pipe pillar is shown the welding direction.
  • 11 is a plan view showing another embodiment of the present invention octagonal concrete filled steel pipe column.
  • Figure 13 is a view comparing the deformation of the present invention and the ACT column when concrete is poured.
  • FIG. 14 is a cross-sectional view showing another embodiment of the present invention octagonal concrete-filled steel pipe column constructed in the upper and lower column joints.
  • 15 is a cross-sectional view showing other embodiments of the present invention octagonal concrete filled steel pipe column.
  • the octagonal concrete-filled steel pipe column of the present invention relates to a concrete-filled steel pipe column in which concrete is filled in a steel pipe tube, wherein the steel pipe tube is formed by combining four unit steel plates.
  • the steel sheet is composed of a flat portion and a coupling portion bent obliquely at both ends of the flat portion, the coupling portion is coupled to the adjacent unit steel plate is characterized in that the steel tube tube forms an octagon as a whole.
  • FIG. 4 is a view showing an embodiment of the present invention octagonal concrete filled steel pipe column
  • Figure 5 is a plan view showing the coupling portion of the present invention octagonal concrete filled steel pipe column and beam.
  • the octagonal concrete filled steel pipe column of the present invention relates to a concrete filled steel pipe column is filled with concrete 30 inside the steel pipe tube 20, the steel tube tube 20 is a unit steel sheet (21) formed by combining four, the unit steel plate 21 is composed of a flat portion 211 and the coupling portion 212 bent inclined at both ends of the flat portion 211 is the coupling portion 212 ) Is coupled to the adjacent unit steel plate 21 is characterized in that the steel tube tube 20 is formed in an octagon as a whole.
  • the present invention relates to a composite column that is behaved by their synthesis action by being integrated with the concrete 30 inside the steel pipe tube 20.
  • the octagonal steel pipe tube 20 is formed by combining four unit steel sheets 21, and the steel sheet is divided into four small unit steel sheets 21, which can be produced by press or roll forming, thereby reducing the production cost. You can.
  • the unit steel plate 21 is composed of a flat portion 211 and a coupling portion 212 bent inclined at both ends of the flat portion 211, the adjacent unit steel plate 21 is coupled to each other adjacent coupling portions 212 To form an octagonal steel tube 20 as a whole.
  • the steel tube 20 is close to a circular shape, the rigidity of the steel sheet is large, so that the stress and deformation acting on the steel sheet due to the concrete side pressure during concrete placement are small. In addition, it is possible to reduce the diameter of the drilling hole, the chamfer of the column edge is naturally formed.
  • one unit steel plate 21 forms one column surface
  • the thickness of the unit steel plate 21 positioned on each side of the column can be varied. Therefore, as shown in Figure 11, by varying the thickness of the unit steel plate 21 located in the axis and the weak axis can increase the cross-sectional efficiency.
  • the length of the column surface can be adjusted to below the plate width thickness ratio limit value can save the amount of steel.
  • the diaphragm can be omitted, and even when the diaphragm 5 is necessary because the stress of the beam 4 is large, the diaphragm 5 can be formed along the edge of the column, so that the shape of the diaphragm 5 is simple and wide. Can be minimized. It is also advantageous for the column cross-sectional size when forming the steam column 6.
  • At least one or more of the coupling parts 212 of the unit steel plate 21 may be formed with a first bonding part 213 bent into the pillar.
  • first coupling parts 213 are formed at both coupling parts 212 of the unit steel plate 21, and in FIG. 4B, one coupling part 212 of the unit steel plate 21 is formed.
  • the first junction 213 is formed in the.
  • the angle section is positioned at the corner of the column due to the first joint 213, the amount of steel is concentrated, and thus the cross-sectional performance is improved by increasing the cross-sectional coefficient, such as compression and bending strength.
  • FIG. 6 is a view showing another embodiment of the present invention octagonal concrete filled steel pipe column.
  • the coupling member 40 is installed in the longitudinal direction of the column inside the column where the coupling portion 212 of the adjacent unit steel plate 21 meets Coupling portions 212 of adjacent unit steel plates 21 are arranged to be spaced apart from each other to be welded (W) in the spaced intervals can be combined.
  • the coupling member 40 is installed inside the pillar along the longitudinal direction of the pillar, and welds one side of the coupling member 40 to the inside of the unit steel plate 21 along the longitudinal direction of the pillar. Then, the unit steel plate 21 adjacent to the other side of the coupling member 40 is positioned and the welding unit W is filled between the unit steel plates 21 adjacent to each other to couple the adjacent unit steel plates 21.
  • the coupling member 40 may be made of flat iron as in FIG. 6 (a) or rebar as in FIG. 6 (b).
  • Coupling member 40 such as flat iron or reinforcing bar can be utilized when the upper and lower pillars.
  • the coupling member 40 may be overlapped by arranging the reinforcing bars S at the rear of the coupling member 40 at the upper and lower pillar joints.
  • FIG. 7 is a view showing another embodiment of the present invention octagonal concrete filled steel pipe column
  • Figure 8 is a cross-sectional view of the steam pillar using the present invention octagonal concrete filled steel pipe column
  • Figure 9 is the present invention octagonal concrete filled steel pipe It is a perspective view which shows another Example of a pillar.
  • the second joining portion 214 bent to the outside of the pillar is formed at the end of the coupling portion 212 of the unit steel sheet 21, so that the adjacent unit steel sheet 21 is formed as described above.
  • the second junctions 214 may be coupled to each other by bolting each other.
  • Conventional ACT pillar can be manufactured only by welding, it takes a lot of welding time and cost during welding and there is a risk of welding deformation, but in the present invention, the second joint 214 exposed to the outside of the pillar is bolted to the unit steel sheet ( 21) may be combined.
  • the manufacturing cost can be reduced by eliminating the welding process, and it is economical, and since the joint unit steel plate 21 is fastened using a bolt hole with no welding deformation and a constant position, the column precision is very high.
  • the angle cross section is concentrated at the edge of the column due to the second joint portion 214, the cross-sectional performance is improved, such as compression and flexural strength improvement.
  • the CFT column had to add a shear connector to the outside of the column separately for integration with the concrete to be fired, but as shown in FIG. 8, the present invention provides the second joint 214 and the bolt outside the pillar when forming the steam column 6.
  • the nut acts as a shear connector, so there is no need to attach a separate shear connector.
  • the upper and lower pillars (20a, 20b) can be joined by bolting the second bonding portion 214 to the bonding plate 50.
  • the CFT column or the ACT column was joined by welding during the vertical column joint. Therefore, there was an air delay, quality deviation, and workplace safety risks due to spot welding, but in the present invention, the upper and lower pillars 20a and 20b can be joined with bolts B, thereby minimizing welding work.
  • top or bottom side of the flat portion 211 of the unit steel plate 21 may be coupled to the joint cover 60 in the vertical direction.
  • the joint plate 60 is coupled to the flat portion 211 when the strength of the joint is insufficient only by the joint of the joint, thereby coupling the upper and lower pillars 20a and 20b by bolting on the eight sides of the pillar together with the joint.
  • FIG. 10 is a plan view of the present invention octagonal concrete-filled steel pipe column is shown the welding direction.
  • 11 is a plan view showing another embodiment of the present invention octagonal concrete filled steel pipe column.
  • the unit steel plate (21a) of the column axis (x) is characterized in that the thickness is thicker than the unit steel plate (21b) of the column weak axis (y).
  • the unit steel plates positioned on each side of the column may have different thicknesses.
  • 12 and 13 are diagrams comparing the stress and deformation of the present invention and the ACT pillar during concrete pouring, respectively.
  • Figure 12 is a comparison of the stress acting on the ACT column and the present invention with respect to the lateral pressure generated during the concrete casting
  • Figure 13 is a comparison of the deformation acting on the ACT column and the present invention with respect to the side pressure generated during the concrete pouring
  • 500 mm x 500 mm cross sections were used, respectively.
  • Figure 12 (a) is the octagonal concrete filled steel pipe column of the present invention has a maximum stress of about 102MPa
  • Figure 12 (b) is an ACT column has a maximum stress of about 210MPa. Therefore, in the case of the present invention, it can be confirmed that the stress acting on the pillar can be reduced by about 51%.
  • Figure 13 (a) is the octagonal concrete filled steel pipe column of the present invention the maximum deformation of about 1.5mm
  • Figure 13 (b) is the ACT column of the maximum deformation of about 3.2mm. Therefore, in the case of the present invention, it can be seen that the deformation occurring in the pillar can be lowered by about 53%.
  • the octagonal concrete filled steel pipe column of the present invention is more stable against the concrete side pressure, because the octagonal concrete filled steel pipe column is closer to the circular shape, so the rigidity of the steel sheet.
  • FIG. 14 is a cross-sectional view showing another embodiment of the present invention octagonal concrete-filled steel pipe column constructed in the upper and lower column joints.
  • the upper and lower pillars may be coupled by placing a joint iron plate SP on the inner side of the flat part 211. That is, the upper and lower pillars may be joined by placing a joint iron plate SP in the flat part 211 of the unit steel plate 21. At this time, the joint iron plate SP may be joined to the lower pillar by welding or bolting, and the upper pillar may be joined. Can be bolted together.
  • 15 is a cross-sectional view showing other embodiments of the present invention octagonal concrete filled steel pipe column.
  • the present invention octagonal concrete-filled steel pipe column is formed to form a octagonal steel pipe tube as a whole by combining the four unit steel sheet to each other, and relates to a concrete-filled steel pipe column filled with concrete inside the steel pipe tube, the unit steel sheet is a small unit steel sheet It can be manufactured by press or roll forming by segmenting, which can reduce the production cost.
  • the present invention has industrial applicability in that economical construction is possible while reducing the diameter of the column by segment production of the steel sheet when used in reverse drilling.

Abstract

본 발명은 강관튜브 내부에 콘크리트가 충전되는 콘크리트 충전 강관 기둥에 대한 것으로, 더욱 상세하게는 4개의 유니트강판을 기둥 모서리에서 상호 결합하여 강관튜브가 전체적으로 8각형을 이루도록 함으로써 경제적인 시공 및 보와의 접합부 설계가 용이한 8각 콘크리트 충전 강관 기둥에 대한 것이다. 본 발명의 8각 콘크리트 충전 강관 기둥은 강관튜브 내부에 콘크리트가 충전되는 콘크리트 충전 강관 기둥에 관한 것으로, 상기 강관튜브는 유니트강판 4개를 결합하여 형성되되, 상기 유니트강판은 평탄부 및 상기 평탄부의 양 단부에서 경사지게 절곡된 결합부로 구성되어 상기 결합부가 인접하는 유니트강판과 결합되어 강관튜브가 전체적으로 8각형을 이루는 것을 특징으로 한다.

Description

8각 콘크리트 충전 강관 기둥
본 발명은 강관튜브 내부에 콘크리트가 충전되는 콘크리트 충전 강관 기둥에 대한 것으로, 더욱 상세하게는 4개의 유니트강판을 기둥 모서리에서 상호 결합하여 강관튜브가 전체적으로 8각형을 이루도록 함으로써 경제적인 시공 및 보와의 접합부 설계가 용이한 8각 콘크리트 충전 강관 기둥에 대한 것이다.
콘크리트 충전 강관 기둥(CFT, Concrete Filled steel Tube)은 원형 또는 각형 강관 내에 콘크리트를 충전하여 일체화시킨 구조로, 강성 및 내력 등이 뛰어나 고층 건물 등에서 주목받고 있는 공법이다.
그러나 도 1에서 볼 수 있는 바와 같이, 종래 사각 CFT 기둥은 역타 공법 등에서 말뚝으로 사용할 경우 천공홀(3)의 직경을 필요 이상으로 크게 해야 할 필요가 있다.
또한, 건축구조용 각형 강관 중 400㎜ 이상의 폭을 가진 각형 강관은 프레스 절곡에 의해 생산되므로 단가가 매우 높아 경제성이 떨어지고, 기둥 한 면의 길이가 긴 경우에는 판폭두께비 제한을 만족시키기 위해 강관의 두께를 필요 이상으로 증가시켜야 한다.
뿐만 아니라, 도 2의 (a)에서 볼 수 있는 바와 같이, 종래 강관튜브(2)와 보(4)의 접합부에서는 보(4)의 휨모멘트에 의해 강관튜브(2)에 배부름 현상이 발생할 수 있다. 따라서 도 2의 (b)에서와 같이 다이아프램(5)을 설치해야 하는데, 이 경우 강관튜브(2) 모서리가 돌출되므로 다이아프램(5)의 형상이 복잡해질 뿐 아니라 다이아프램(5)의 폭을 크게 증가시켜야 하므로 증타기둥 시공시 기둥 단면의 크기가 커져야 하는 문제점이 있다.
아울러 종래 강관튜브(2)는 상하 기둥 이음시 현장 용접이 필수적이고, 동일 단면에서 강판의 두께를 조절할 수 없다는 한계가 있다.
한편, 기존의 CFT 기둥을 보완한 ACT 기둥(Advanced Construction Technology Tube)은 열연강판을 절곡 냉간 성형하여 제작된 폐쇄형 강관으로 건축 기둥용 구조부재로 이용되고 있다.
이러한 ACT 기둥은 강판을 작은 유니트로 분절하여 롤포밍으로 제작 가능하므로 생산 단가를 감소시킬 수 있는 장점이 있다. 그러나 도 3의 (a)에서와 같이 기둥면의 강판 강성이 작아 콘크리트 타설시 변형이 크고, CFT 기둥과 마찬가지로 다이아프램이 필요하며, 상하 기둥 이음시 반드시 현장 용접에 의하여야 하는 등 각형 강관을 이용한 CFT 기둥의 단점을 그대로 포함하고 있다.
또한, 도 3의 (b)에서와 같이 인접 유니트강판의 접합부가 기둥면 중앙에 형성되므로, 기둥 외측으로 인접 유니트강판의 접합부를 형성할 경우 보 접합이 불가능하고 기둥의 강축과 약축의 강판 두께를 서로 다르게 할 수 없다.
아울러 ACT 기둥에서 인접하는 유니트강판은 하향 자동 용접에 의하여 결합되는데, 각 기둥면마다 접합부가 형성되므로 한 번에 한 면씩 부재를 3번 회전시켜 용접을 진행하여야 하므로 번거로웠다.
상기와 같은 과제를 해결하기 위하여 본 발명은 역타 공법 등에 이용시 천공홀의 직경을 감소시킬 수 있는 8각 콘크리트 충전 강관 기둥을 제공하고자 한다.
본 발명은 기둥면에 접합부가 없어 보와의 접합이 자유롭고, 다이아프램의 구조가 간단하며, 패널존에서 응력 전달이 원활한 8각 콘크리트 충전 강관 기둥을 제공하고자 한다.
본 발명은 기둥 내력 향상 및 강판의 분절 생산으로 경제적인 시공이 가능한 8각 콘크리트 충전 강관 기둥을 제공하고자 한다.
본 발명은 상하 기둥의 볼트 이음이 가능하여 현장 용접 공정을 최소화할 수 있는 8각 콘크리트 충전 강관 기둥을 제공하고자 한다.
상기와 같은 과제를 해결하기 위하여 바람직한 실시예에 따른 본 발명은 강관튜브 내부에 콘크리트가 충전되는 콘크리트 충전 강관 기둥에 관한 것으로, 상기 강관튜브는 유니트강판 4개를 결합하여 형성되되, 상기 유니트강판은 평탄부 및 상기 평탄부의 양 단부에서 경사지게 절곡된 결합부로 구성되어 상기 결합부가 인접하는 유니트강판과 결합되어 강관튜브가 전체적으로 8각형을 이루는 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 유니트강판의 결합부 중 적어도 어느 하나 이상에는 기둥 내측으로 절곡된 제1접합부가 형성되는 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 인접하는 유니트강판의 결합부가 만나는 부분의 기둥 내측에는 기둥의 길이 방향으로 결합부재가 설치되며, 인접하는 유니트강판의 결합부는 일정 간격 이격되도록 구비되어 상기 이격된 간격 내에 용접살이 채워져 결합되는 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 결합부재는 평철 또는 철근인 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 유니트강판의 결합부 단부에는 기둥 외측으로 절곡된 제2접합부가 형성되어, 인접하는 유니트강판은 상기 제2접합부를 상호 볼트 결합하는 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 유니트강판의 평탄부의 상단 또는 하단 측면에는 수직 방향으로 이음덧판이 결합되는 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 기둥 강축의 유니트강판은 기둥 약축의 유니트강판보다 두께가 두꺼운 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥을 제공한다.
본 발명에 따르면 다음과 같은 효과가 있다.
첫째, 기둥이 전체적으로 8각 형상을 이루므로 역타 공법 등에 이용시 천공홀의 직경을 감소시킬 수 있다.
둘째, 강판을 작은 유니트로 분절하여 프레스 또는 롤포밍으로 제작 가능하므로 생산 단가를 줄일 수 있고, 기둥면의 길이를 판폭두께비의 제한 값 이하로 조절할 수 있어 강재량을 절약할 수 있다.
셋째, 기둥 모서리를 따라 외다이아프램을 형성할 수 있어, 다이아프램의 형상이 간단하고 그 폭을 최소화할 수 있다.
넷째, 외측으로 돌출되는 제2접합부를 이용하여 상하 기둥을 볼트로 이음할 수 있으므로, 현장 용접 공정을 최소화할 수 있다.
다섯째, 하나의 유니트강판이 하나의 기둥면을 형성하므로, 기둥 각 면의 유니트강판의 두께를 다르게 할 수 있다. 따라서 강축과 약축의 유니트강판 두께를 달리 할 수 있어 경제적인 시공이 가능하다.
여섯째, 기둥 모서리에서 유니트강판이 접합되므로, 기둥면에 평탄부가 구비되어 보와의 접합이 자유롭고 유니트강판 간의 접합부를 기둥 내측 또는 외측에 자유롭게 형성할 수 있다.
일곱째, 패널존에서 보의 응력이 기둥 모서리의 경사진 결합부를 통하여 전달되므로, 응력전달이 원활하다.
도 1은 종래 강관튜브가 삽입된 천공홀을 도시하는 평면도.
도 2는 종래 강관튜브와 보의 접합부를 도시하는 평면도.
도 3은 종래 ACT 기둥을 도시하는 평면도.
도 4는 본 발명 8각 콘크리트 충전 강관 기둥의 실시예를 도시하는 도면.
도 5는 본 발명 8각 콘크리트 충전 강관 기둥과 보의 결합부를 도시하는 평면도.
도 6 및 도 7은 본 발명 8각 콘크리트 충전 강관 기둥의 다른 실시예들을 도시하는 도면.
도 8은 본 발명 8각 콘크리트 충전 강관 기둥을 이용한 증타기둥의 단면도.
도 9는 본 발명 8각 콘크리트 충전 강관 기둥의 다른 실시예를 도시하는 사시도.
도 10은 용접 방향이 도시된 본 발명 8각 콘크리트 충전 강관 기둥의 평면도.
도 11은 본 발명 8각 콘크리트 충전 강관 기둥의 다른 실시예를 도시하는 평면도.
도 12는 콘크리트 타설시 본 발명과 ACT 기둥의 응력을 비교한 그림.
도 13은 콘크리트 타설시 본 발명과 ACT 기둥의 변형을 비교한 그림.
도 14는 상하 기둥 이음부에 시공되는 본 발명 8각 콘크리트 충전 강관 기둥의 다른 실시예를 도시하는 단면도.
도 15는 본 발명 8각 콘크리트 충전 강관 기둥의 다른 실시예들을 도시하는 단면도.
상기와 같은 목적을 달성하기 위하여 본 발명의 8각 콘크리트 충전 강관 기둥은 강관튜브 내부에 콘크리트가 충전되는 콘크리트 충전 강관 기둥에 관한 것으로, 상기 강관튜브는 유니트강판 4개를 결합하여 형성되되, 상기 유니트강판은 평탄부 및 상기 평탄부의 양 단부에서 경사지게 절곡된 결합부로 구성되어 상기 결합부가 인접하는 유니트강판과 결합되어 강관튜브가 전체적으로 8각형을 이루는 것을 특징으로 한다.
이하, 첨부한 도면 및 바람직한 실시예에 따라 본 발명을 상세히 설명한다.
도 4는 본 발명 8각 콘크리트 충전 강관 기둥의 실시예를 도시하는 도면이고, 도 5는 본 발명 8각 콘크리트 충전 강관 기둥과 보의 결합부를 도시하는 평면도이다.
도 4에서 볼 수 있는 바와 같이, 본 발명의 8각 콘크리트 충전 강관 기둥은 강관튜브(20) 내부에 콘크리트(30)가 충전되는 콘크리트 충전 강관 기둥에 관한 것으로, 상기 강관튜브(20)는 유니트강판(21) 4개를 결합하여 형성되되, 상기 유니트강판(21)은 평탄부(211) 및 상기 평탄부(211)의 양 단부에서 경사지게 절곡된 결합부(212)로 구성되어 상기 결합부(212)가 인접하는 유니트강판(21)과 결합되어 강관튜브(20)가 전체적으로 8각형을 이루는 것을 특징으로 한다.
본 발명은 강관튜브(20) 내부에 콘크리트(30)가 충전되어 일체화됨으로써 이들의 합성작용에 의하여 거동하는 합성 기둥에 대한 것이다.
상기 8각 형상의 강관튜브(20)는 유니트강판(21) 4개를 결합하여 형성되는 것으로, 강판을 4개의 작은 유니트강판(21)으로 분절하여 프레스 또는 롤포밍으로 제작 가능하므로 생산 단가를 감소시킬 수 있다.
상기 유니트강판(21)은 평탄부(211) 및 평탄부(211)의 양 단부에서 경사지게 절곡된 결합부(212)로 구성되며, 인접 유니트강판(21)은 인접 결합부(212)끼리 상호 결합하여 전체적으로 8각형 형상의 강관튜브(20)를 형성한다.
따라서 강관튜브(20)가 원형에 가까우므로, 강판의 강성이 커서 콘크리트 타설시 콘크리트 측압에 의하여 강판에 작용하는 응력과 변형이 적다. 또한, 천공홀의 천공 직경을 감소시킬 수 있으며, 기둥 모서리의 모따기가 자연스럽게 형성된다.
도 4의 (a) 내지 (b)에서 볼 수 있는 바와 같이, 상기 결합부(212)는 기둥 모서리에서 접합이 이루어지므로, 기둥면에 평탄부(211)가 위치된다. 따라서 평탄부(211)를 통하여 기둥과 보의 접합이 자유롭게 이루어지므로, 후술할 유니트강판(21)의 접합부(213, 214)를 기둥 내측 또는 외측에 자유롭게 형성할 수 있다.
또한, 인접 유니트강판(21)이 접합되는 접합부(213, 214)가 기둥 모서리에 위치하므로, 도 10에서와 같이 한 번에 두 개소의 접합부를 하향 용접할 수 있다. 따라서 부재를 한번만 회전시키면 되므로, 제작 효율이 증대된다.
아울러 하나의 유니트강판(21)이 하나의 기둥면을 형성하므로, 기둥 각 면에 위치하는 유니트강판(21)의 두께를 달리 할 수 있다. 따라서 도 11에서와 같이, 강축과 약축에 위치하는 유니트강판(21)의 두께를 달리하여 단면 효율을 증가시킬 수 있다.
뿐만 아니라, 기둥면의 길이를 판폭두께비 제한 값 이하로 조절할 수 있어 강재량을 절약할 수 있다.
그리고 도 5에서 볼 수 있는 바와 같이, 기둥에 보(4)가 접합되는 패널존에서는 보(4)의 응력이 기둥 모서리의 경사진 결합부(212)를 통하여 전달되므로, 응력전달이 원활하다.
따라서 다이아프램을 생략할 수 있으며, 보(4)의 응력이 커서 다이아프램(5)이 필요한 경우에도 기둥 모서리를 따라 다이아프램(5)을 형성하면 되므로 다이아프램(5)의 형상이 간단하고 폭을 최소화할 수 있다. 또한, 증타기둥(6) 형성시 기둥 단면 크기에도 유리하다.
본 발명에서 상기 유니트강판(21)의 결합부(212) 중 적어도 어느 하나 이상에는 기둥 내측으로 절곡된 제1접합부(213)가 형성될 수 있다.
도 4의 (a)에서는 유니트강판(21)의 양측 결합부(212)에 모두 제1접합부(213)가 형성되었고, 도 4의 (b)에서는 유니트강판(21)의 일측 결합부(212)에 제1접합부(213)가 형성되었다.
상기 제1접합부(213)로 인하여 기둥 모서리에 앵글 단면이 위치되어 강재량이 집중되므로, 단면계수 증가로 압축 및 휨내력 향상 등 단면 성능이 향상된다.
도 6은 본 발명 8각 콘크리트 충전 강관 기둥의 다른 실시예를 도시하는 도면이다.
도 6의 (a) 내지 (b)에서 볼 수 있는 바와 같이, 상기 인접하는 유니트강판(21)의 결합부(212)가 만나는 부분의 기둥 내측에는 기둥의 길이 방향으로 결합부재(40)가 설치되며, 인접하는 유니트강판(21)의 결합부(212)는 일정 간격 이격되도록 배치되어 상기 이격된 간격 내에 용접살(W)이 채워져 결합될 수 있다.
상기 결합부재(40)는 기둥의 길이 방향을 따라 기둥 내측에 설치되는 것으로, 결합부재(40)의 일측을 기둥의 길이 방향을 따라 유니트강판(21)의 내측에 용접 결합한다. 그리고 결합부재(40)의 타측에 인접하는 유니트강판(21)을 위치시키고 외측에서 인접 유니트강판(21) 사이에 용접살(W)을 채워넣어 인접하는 유니트강판(21)을 결합한다.
상기 결합부재(40)는 도 6의 (a)에서와 같은 평철 또는 도 6의 (b)에서와 같은 철근으로 구성할 수 있다.
상기 평철이나 철근 등의 결합부재(40)는 상하 기둥 이음시 활용할 수 있다.
도 6의 (a) 내지 (b)와 같이, 상하 기둥 이음부에서 결합부재(40) 후면에 이음철근(S)을 배근하여 결합부재(40)를 겹침 이음할 수 있다.
도 7은 본 발명 8각 콘크리트 충전 강관 기둥의 다른 실시예를 도시하는 도면이고, 도 8은 본 발명 8각 콘크리트 충전 강관 기둥을 이용한 증타기둥의 단면도이며, 도 9는 본 발명 8각 콘크리트 충전 강관 기둥의 다른 실시예를 도시하는 사시도이다.
도 7 내지 도 9에서 볼 수 있는 바와 같이, 상기 유니트강판(21)의 결합부(212) 단부에는 기둥 외측으로 절곡된 제2접합부(214)가 형성되어, 인접하는 유니트강판(21)은 상기 제2접합부(214)를 상호 볼트 결합하여 서로 결합될 수 있다.
종래 ACT 기둥은 용접에 의해서만 제작이 가능하여, 용접 결합시 용접 시간 및 비용이 많이 소요되고 용접 변형의 우려가 있었으나, 본 발명에서는 기둥 외측으로 노출되는 제2접합부(214)를 볼팅하여 유니트강판(21)을 결합할 수 있다.
따라서 용접 공정 생략으로 제작 단가를 줄일 수 있어 경제적이며, 용접 변형이 없고 위치가 일정한 볼트 구멍을 이용하여 인접 유니트강판(21)을 체결하므로 기둥 정밀도가 매우 높다.
상기 제2접합부(214)로 인하여 기둥 모서리에 앵글 단면이 집중되므로, 압축 및 휨내력 향상 등 단면 성능이 향상된다.
한편, 역타 공법에서 지하 기둥의 경우 1차로 슬래브 시공하중을 지지하기 위한 기둥을 형성하고, 기둥 외부에 콘크리트를 타설하여 증타기둥(6)인 본기둥을 형성한다.
종래 CFT 기둥은 증타되는 콘크리트와의 일체화를 위해 별도로 기둥 외부에 전단연결재를 추가해야 하였으나, 도 8에서와 같이 본 발명은 증타기둥(6) 형성시 기둥 외부의 제2접합부(214) 및 볼트와 너트가 전단연결재 역할을 하므로 별도로 전단연결재를 부착할 필요가 없다.
도 9에서 볼 수 있는 바와 같이, 본 발명에서 상하 기둥(20a, 20b)은 제2접합부(214)를 접합플레이트(50)로 볼트 접합하여 결합할 수 있다.
종래 CFT 기둥이나 ACT 기둥은 상하 기둥 이음시 용접에 의해 접합하였다. 따라서 현장 용접으로 인하여 공기 지연, 품질 편차 및 작업장 안전 위험이 있었으나, 본 발명에서는 상하 기둥(20a, 20b)을 볼트(B)로 이음할 수 있어 용접 작업을 최소화할 수 있다.
아울러 상기 유니트강판(21)의 평탄부(211)의 상단 또는 하단 측면에는 수직 방향으로 이음덧판(60)이 결합될 수 있다.
상기 이음덧판(60)은 접합부의 이음만으로 내력이 부족한 경우 평탄부(211)에 결합되는 것으로, 이로써 접합부와 함께 기둥의 8면에서 볼팅에 의하여 상하 기둥(20a, 20b)을 결합할 수 있다.
도 10은 용접 방향이 도시된 본 발명 8각 콘크리트 충전 강관 기둥의 평면도이다.
본 발명에서는 인접 유니트강판(21) 간의 접합부가 기둥의 모서리에 위치하므로, 도 10에서와 같이 한 번에 두 모서리를 하향 용접할 수 있다.
따라서 유니트강판(21)을 용접하기 위하여 기둥 부재를 한 번만 회전시키면 되므로, 제작 효율이 증대된다.
도 11은 본 발명 8각 콘크리트 충전 강관 기둥의 다른 실시예를 도시하는 평면도이다.
도 11에서 볼 수 있는 바와 같이, 본 발명에서 기둥 강축(x)의 유니트강판(21a)은 기둥 약축(y)의 유니트강판(21b)보다 두께가 두꺼운 것을 특징으로 한다.
본 발명에서는 하나의 유니트강판이 하나의 기둥면을 형성하므로, 기둥의 각 면에 위치한 유니트강판의 두께를 서로 다르게 구성할 수 있다.
따라서 기둥의 강축(x)과 약축(y)의 유니트강판 두께를 달리하여, 단면 효율을 증대시키면서 강재량을 절약할 수 있다.
도 12 및 도 13은 각각 콘크리트 타설시 본 발명과 ACT 기둥의 응력 및 변형을 비교한 그림이다.
도 12는 콘크리트 타설시 발생하는 측압에 대하여 본 발명과 ACT 기둥에 작용하는 응력을 비교한 것이고, 도 13은 콘크리트 타설시 발생하는 측압에 대하여 본 발명과 ACT 기둥에 작용하는 변형을 비교한 것으로, 각각 500㎜×500㎜ 단면을 이용하였다.
도 12의 (a)는 본 발명의 8각 콘크리트 충전 강관 기둥으로 최대 응력이 약 102MPa이고, 도 12의 (b)는 ACT 기둥으로 최대 응력이 약 210MPa이다. 따라서 본 발명의 경우, 기둥에 작용하는 응력을 51% 가량 낮출 수 있음을 확인할 수 있다.
또한, 도 13의 (a)는 본 발명의 8각 콘크리트 충전 강관 기둥으로 최대 변형이 약 1.5㎜이고, 도 13의 (b)는 ACT 기둥으로 최대 변형이 약 3.2㎜이다. 따라서 본 발명의 경우, 기둥에 발생하는 변형을 53% 가량 낮출 수 있음을 확인할 수 있다.
이와 같이, 본 발명의 8각 콘크리트 충전 강관 기둥이 콘크리트 측압에 대하여 보다 안정성이 우수하며, 이는 8각 콘크리트 충전 강관 기둥이 보다 원형에 가까워 강판의 강성이 크기 때문이다.
도 14는 상하 기둥 이음부에 시공되는 본 발명 8각 콘크리트 충전 강관 기둥의 다른 실시예를 도시하는 단면도이다.
도 14에서와 같이, 상하 기둥은 평탄부(211) 내측면에 이음철판(SP)을 위치시켜 결합할 수 있다. 즉, 유니트 강판(21)의 평탄부(211) 내부에 이음철판(SP)을 위치시켜 상하 기둥을 이음할 수 있는데, 이때 이음철판(SP)은 하부 기둥과 용접 또는 볼트로 결합하고 상부 기둥은 볼트로 결합할 수 있다.
특히, 상부 기둥 결합시 너트(N)를 이음철판(SP) 내측에 미리 용접하여 두면, 기둥 외부에서 볼트(B)를 조여넣기만 하면 되므로, 결합이 간단하다.
도 15는 본 발명 8각 콘크리트 충전 강관 기둥의 다른 실시예들을 도시하는 단면도이다.
도 15의 (a)에서와 같이 유니트강판(21)의 결합부(212) 일단에만 기둥 내측으로 절곡된 제1접합부(213)가 형성되거나, 도 15의 (b)에서와 같이 유니트강판(21)의 결합부(212) 일단에만 기둥 외측으로 절곡된 제2접합부(214)가 형성된 경우, 인접하는 유니트강판(21)의 접합부가 없는 단부를 일체로 형성하면 2개의 유니트강판(21)으로 구성되는 강관튜브(20)를 제작할 수 있다.
본 발명 8각 콘크리트 충전 강관 기둥은 4개의 유니트강판을 상호 결합하여 강관튜브가 전체적으로 8각형을 이루도록 형성되되 강관튜브 내부에 콘크리트가 충전되는 콘크리트 충전 강관 기둥에 관한 것으로, 상기 유니트강판은 작은 유니트강판을 분절하여 프레스 또는 롤포밍으로 제작 가능하여 생산 단가를 줄일 수 있다.
또한, 기둥 각 면에 위치하는 유니트강판의 두께를 달리할 수 있어 단면 효율을 증가 시킬 수 있을 뿐만 아니라 기둥면의 길이를 판폭두께비의 제한 값 이하로 조절할 수 있어 강재량을 절약할 수 있다.
이에 따라, 역타 공법 등에 이용시 강판의 분절 생산으로 기둥의 직경을 감소시키면서 경제적인 시공이 가능하다는 점에서 본 발명은 산업상 이용 가능성이 있다.

Claims (7)

  1. 강관튜브(20) 내부에 콘크리트(30)가 충전되는 콘크리트 충전 강관 기둥에 관한 것으로,
    상기 강관튜브(20)는 유니트강판(21) 4개를 결합하여 형성되되,
    상기 유니트강판(21)은 평탄부(211) 및 상기 평탄부(211)의 양 단부에서 경사지게 절곡된 결합부(212)로 구성되어 상기 결합부(212)가 인접하는 유니트강판(21)과 결합되어 강관튜브(20)가 전체적으로 8각형을 이루는 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥.
  2. 제1항에서,
    상기 유니트강판(21)의 결합부(212) 중 적어도 어느 하나 이상에는 기둥 내측으로 절곡된 제1접합부(213)가 형성되는 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥.
  3. 제1항에서,
    상기 인접하는 유니트강판(21)의 결합부(212)가 만나는 부분의 기둥 내측에는 기둥의 길이 방향으로 결합부재(40)가 설치되며, 인접하는 유니트강판(21)의 결합부(212)는 일정 간격 이격되도록 구비되어 상기 이격된 간격 내에 용접살(W)이 채워져 결합되는 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥.
  4. 제3항에서,
    상기 결합부재(40)는 평철 또는 철근인 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥.
  5. 제1항에서,
    상기 유니트강판(21)의 결합부(212) 단부에는 기둥 외측으로 절곡된 제2접합부(214)가 형성되어, 인접하는 유니트강판(21)은 상기 제2접합부(214)를 상호 볼트 결합하는 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥.
  6. 제5항에서,
    상기 유니트강판(21)의 평탄부(211)의 상단 또는 하단 측면에는 수직 방향으로 이음덧판(60)이 결합되는 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥.
  7. 제1항에서,
    기둥 강축(x)의 유니트강판(21a)은 기둥 약축(y)의 유니트강판(21b)보다 두께가 두꺼운 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥.
PCT/KR2015/004721 2014-06-11 2015-05-12 8각 콘크리트 충전 강관 기둥 WO2015190708A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0070817 2014-06-11
KR1020140070817A KR101437859B1 (ko) 2014-06-11 2014-06-11 8각 콘크리트 충전 강관 기둥

Publications (1)

Publication Number Publication Date
WO2015190708A1 true WO2015190708A1 (ko) 2015-12-17

Family

ID=51759394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/004721 WO2015190708A1 (ko) 2014-06-11 2015-05-12 8각 콘크리트 충전 강관 기둥

Country Status (2)

Country Link
KR (1) KR101437859B1 (ko)
WO (1) WO2015190708A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109267755A (zh) * 2018-10-17 2019-01-25 北京市机械施工有限公司 倾斜钢管混凝土巨柱无附着安装施工方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016060349A1 (ko) * 2014-10-13 2016-04-21 (주)센벡스 8각 콘크리트 충전 강관 기둥
KR20160085107A (ko) * 2015-01-07 2016-07-15 (주)센벡스 기둥 브래킷
KR101835354B1 (ko) * 2015-10-30 2018-03-08 한국건설기술연구원 콘크리트 충전형 기둥과 십자형 연결재를 이용한 유닛구조체 및 그 시공방법
KR101688413B1 (ko) * 2016-04-04 2016-12-21 주식회사 태정이엔지 이중 구조형 암대를 가진 지주
KR101940857B1 (ko) * 2016-07-14 2019-04-11 주식회사 포스코 강관 및 이를 이용한 합성기둥
CN108772651B (zh) * 2018-06-28 2023-12-26 中船澄西船舶修造有限公司 一种用于制作大型八角底座的辅助工装

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241456A (ja) * 1997-12-26 1999-09-07 Nkk Corp 多角形断面構造用部材及び多角形断面構造
JP2009287212A (ja) * 2008-05-27 2009-12-10 Takenaka Komuten Co Ltd 鉄骨柱の固定方法及び鉄骨柱の固定構造
KR101348054B1 (ko) * 2012-12-10 2014-01-07 한국건설기술연구원 유닛모듈라 주택의 철골 구조물

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241456A (ja) * 1997-12-26 1999-09-07 Nkk Corp 多角形断面構造用部材及び多角形断面構造
JP2009287212A (ja) * 2008-05-27 2009-12-10 Takenaka Komuten Co Ltd 鉄骨柱の固定方法及び鉄骨柱の固定構造
KR101348054B1 (ko) * 2012-12-10 2014-01-07 한국건설기술연구원 유닛모듈라 주택의 철골 구조물

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109267755A (zh) * 2018-10-17 2019-01-25 北京市机械施工有限公司 倾斜钢管混凝土巨柱无附着安装施工方法

Also Published As

Publication number Publication date
KR101437859B1 (ko) 2014-09-05

Similar Documents

Publication Publication Date Title
WO2015190708A1 (ko) 8각 콘크리트 충전 강관 기둥
WO2016129826A1 (ko) 안전성이 강화된 피씨 트러스 벽체 구조물 및 이를 이용한 지하구조물 시공방법
WO2009142416A2 (ko) 철근콘크리트 빔 단부연결용 보강재 및 이를 이용한 구조물 시공방법
WO2014014158A1 (ko) ㄱ형강을 이용한 선조립 철골철근콘크리트 구조
WO2019059480A1 (ko) 기둥과 보를 접합하기 위한 접합부 코어 및 이를 이용한 기둥과 보의 접합 방법
WO2016021811A1 (ko) 선조립 벽체 유니트 및 프레임
WO2016111458A1 (ko) 철골보 접합구조
WO2019240566A1 (ko) Phc 파일 연결구
WO2015135440A1 (zh) 一种预制混凝土墙体
WO2019093540A1 (ko) V형 띠철근을 이용한 기둥 보강 구조
WO2016171374A1 (ko) 보 관통형 기둥접합부 및 이를 이용한 건축물 상하부 병행 구축 공법
WO2019074283A1 (ko) 강합성콘크리트용 선조립 철골 조립체와 경량 영구거푸집의 결합 구조
WO2020145542A1 (ko) 선조립 기둥용 탈형 거푸집 고정 밴드
WO2012036335A1 (ko) 강판콘크리트 구조와 이질 구조간의 접합 방법
WO2019139292A1 (ko) 내진 보강용 철골프레임
KR20160005257A (ko) 프리캐스트 코핑 및 기둥과 코핑의 결합 구조체
WO2020145541A1 (ko) 선조립 기둥용 탈형 거푸집 고정 밴드
WO2020231003A1 (ko) 강합성 콘크리트 부재용 선조립 철골 조립체와 경량 영구거푸집의 결합 구조
CN110409811A (zh) 含钢筋笼免拆成型柱模板、模板结构及建筑工艺
WO2019107696A1 (ko) 기둥-보 접합부
WO2013129745A1 (ko) 3조각 하이브리드 빔 및 그 제조방법
WO2016111459A1 (ko) 기둥 브래킷
WO2016060349A1 (ko) 8각 콘크리트 충전 강관 기둥
WO2016143979A1 (ko) 메가컬럼 및 이의 시공방법
WO2017034354A1 (ko) 데크거푸집 고정 구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15806881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15806881

Country of ref document: EP

Kind code of ref document: A1