WO2016060349A1 - 8각 콘크리트 충전 강관 기둥 - Google Patents

8각 콘크리트 충전 강관 기둥 Download PDF

Info

Publication number
WO2016060349A1
WO2016060349A1 PCT/KR2015/004724 KR2015004724W WO2016060349A1 WO 2016060349 A1 WO2016060349 A1 WO 2016060349A1 KR 2015004724 W KR2015004724 W KR 2015004724W WO 2016060349 A1 WO2016060349 A1 WO 2016060349A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel pipe
column
octagonal
unit
coupled
Prior art date
Application number
PCT/KR2015/004724
Other languages
English (en)
French (fr)
Inventor
이창남
Original Assignee
(주)센벡스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)센벡스 filed Critical (주)센벡스
Publication of WO2016060349A1 publication Critical patent/WO2016060349A1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/30Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts being composed of two or more materials; Composite steel and concrete constructions
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/58Connections for building structures in general of bar-shaped building elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/30Columns; Pillars; Struts
    • E04C3/36Columns; Pillars; Struts of materials not covered by groups E04C3/32 or E04C3/34; of a combination of two or more materials

Definitions

  • the present invention relates to a concrete-filled steel pipe column in which concrete is filled inside the steel pipe tube, and more specifically, by uniting the unit steel plates at the corners of the columns, the steel pipe tube forms an octagon as a whole. For easy octagonal concrete filled steel pipe pillars.
  • Concrete Filled Steel Tube (CFT, Concrete Filled Steel Tube) is a structure that is integrated by filling concrete in a round or square steel pipe, and is a method that is attracting attention in high-rise buildings due to its excellent rigidity and strength.
  • the conventional rectangular CFT pillars need to be larger than necessary to increase the diameter of the hole (H) when used as a pile in the reverse drilling method.
  • the square steel pipe having a width of 400mm or more among the square steel pipes for building structures is produced by press bending, so the unit price is very high and the economic efficiency is low.
  • the thickness of the steel pipe is increased in order to satisfy the plate width thickness limit. You should increase it more than necessary.
  • the conventional steel tube (2) has a limit that can not control the thickness of the steel sheet in the same cross section.
  • the ACT column Advanced Construction Technology Tube
  • the existing CFT column is a closed steel pipe manufactured by cold forming a hot rolled steel sheet and is used as a structural member for building columns.
  • the ACT pillar can be manufactured by roll forming the steel sheet into small units, the production cost can be reduced.
  • the steel sheet rigidity of the column surface is small, so that deformation is great when placing concrete, and like the CFT column, a diaphragm is required, and thus the disadvantages of the CFT column using the square steel pipe are included.
  • the unit steel plate adjacent to the ACT column is joined by the downward automatic welding, because the joint is formed for each column surface, it was cumbersome because the welding must proceed by rotating the member three times one surface at a time.
  • the present invention is to provide an octagonal concrete-filled steel pipe column that can reduce the diameter of the hole when used in reverse drilling method.
  • the present invention is to provide an octagonal concrete-filled steel pipe column having no joints in the column surface, free bonding to the beam, simple structure of the diaphragm, and smooth stress transfer in the panel zone.
  • the present invention is to provide an octagonal concrete-filled steel pipe column that can be economical construction by improving the column strength and the production of the segment of the steel sheet.
  • the present invention according to a preferred embodiment to solve the above problems relates to an octagonal concrete filled steel pipe column is filled with concrete inside the octagonal steel pipe tube as a whole, the steel tube tube is a flat portion that can be coupled to the beam and A pair of first unit steel plates configured to be inclined to be bent inclined toward the pillars at both ends of the flat part, and to face each other at a predetermined interval from each other; And a second unit steel plate having both ends coupled to the end of the inclined portion of the first unit steel plate to interconnect the first unit steel plate to face each other. It provides an octagonal concrete-filled steel pipe column, characterized in that consisting of.
  • the second unit steel sheet provides an octagonal concrete-filled steel pipe column, which is made of only a flat portion that is a flat plate.
  • the second unit steel plate includes a flat part to which a beam can be coupled, and an inclined part bent to be inclined toward the pillar at both ends of the flat part, and the inclined part is formed with the inclined part of the first unit steel sheet. It provides an octagonal concrete filled steel pipe column characterized in that it is coupled.
  • the present invention according to another preferred embodiment provides an octagonal concrete-filled steel pipe column, characterized in that the bent portion is bent into the pillar is formed at the end of the inclined portion.
  • the present invention according to a preferred embodiment relates to an octagonal concrete-filled steel pipe column is composed of four flat parts that can be coupled to the beam and the inclined portion connecting the flat portion is filled with concrete inside the octagonal steel pipe tube as a whole
  • the steel pipe tube provides an octagonal concrete filled steel pipe column, characterized in that formed by combining the first unit steel plate and the second unit steel plate equally divided in the inclined portion of the steel tube tube in a diagonal direction.
  • the present invention according to another preferred embodiment provides an octagonal concrete-filled steel pipe column, characterized in that the bent portion is bent to the inner end of the divided inclined portion is formed bent.
  • a beam is coupled to at least one of the flat portions, and a vertical stiffener in the form of a plate interconnects an inclined portion adjacent to a side of the beam, but the vertical stiffener is erected in a vertical direction.
  • a vertical stiffener in the form of a plate interconnects an inclined portion adjacent to a side of the beam, but the vertical stiffener is erected in a vertical direction.
  • an octagonal concrete filled steel pipe column characterized in that the end is coupled to the end of the inclined portion.
  • the beams are respectively coupled to the flat portions of two adjacent surfaces of the pillar, and a flat stiffener in the form of a flat plate interconnects the side surfaces of the adjacent beams, and the flat surface of the vertical stiffener is coupled to the beams. It provides an octagonal concrete filled steel pipe column characterized in that it is coupled to contact the inclined surface located between the parts.
  • the present invention according to another preferred embodiment of the steel pipe tube is joined to the both ends of the joint beam protruding to the outside of the pair of the first unit steel plate respectively so that the beam from the outside of the column can be joined to the protruding both ends of the joint beam It provides an octagonal concrete filled steel pipe pillar characterized in that.
  • the splicing beam is H-shaped steel, and the center portion of the upper and lower flanges provides an octagonal concrete-filled steel pipe column, characterized in that the dogbone shape is narrower than the end.
  • the pillar forms an octagonal shape as a whole, the diameter of the punched hole can be reduced when used in reverse drilling.
  • the steel sheet can be divided into small units and manufactured by press or roll forming, thereby reducing the production cost, and the length of the column surface can be adjusted below the limit value of the plate width thickness ratio, thereby reducing the amount of steel.
  • the external diaphragm may be formed by a vertical stiffener connecting the side of the beam and the inclined portion adjacent thereto or a vertical stiffener connecting the side of the adjacent beam so as to be joined to the inclined surface. Therefore, the construction and shape of the diaphragm can be simple and the width thereof can be minimized, and the diaphragm can be easily installed in the steel plate where the web such as the TSC beam is located on the outer side of the beam.
  • the unit steel sheets constituting each column surface may have different thicknesses. Therefore, it is possible to economically construct the unit steel plate of the steel shaft and the weak shaft can be different.
  • the flat portion is provided on the pillar surface, and the bonding with the beam is free.
  • FIG. 1 is a plan view showing a drilling hole in which a conventional steel tube is inserted.
  • Figure 2 is a plan view showing a joint of a conventional steel tube and the beam.
  • FIG. 3 is a plan view showing a conventional ACT pillar.
  • Figure 4 is a perspective view of the present invention octagonal concrete-filled steel pipe column is provided with a second unit steel plate consisting of a flat portion.
  • FIG. 5 is a cross-sectional view of FIG. 4.
  • Figure 6 is a cross-sectional view of the present invention octagonal concrete filled steel pipe column provided with a second unit steel plate composed of a flat portion and a slope.
  • Figure 7 is a perspective view of the present invention octagonal concrete filled steel pipe column is provided with a steel pipe tube divided into first and second unit steel plate.
  • FIG. 8 is a cross-sectional view of FIG.
  • Figure 9 is a perspective view showing an embodiment of the present invention octagonal concrete filled steel pipe pillars provided with a vertical stiffener.
  • FIG. 10 is a cross-sectional view of FIG. 9;
  • Figure 11 is a perspective view showing another embodiment of the present invention octagonal concrete filled steel pipe column with a vertical stiffener.
  • FIG. 12 is a cross-sectional view of FIG.
  • Figure 13 is a perspective view of the present invention octagonal concrete-filled steel pipe pillars are coupled through the bonding beams therein.
  • Figure 14 (a) and (b) is a perspective view and a cross-sectional view of the octagonal concrete filled steel pipe pillar of the present invention, respectively, through which a bonded beam is coupled through.
  • Figure 15 is a perspective view showing the joint of the present invention octagonal concrete filled steel pipe column and beam of Figure 14;
  • the present invention relates to an octagonal concrete-filled steel pipe pillar in which concrete is filled in an octagonal steel pipe tube as a whole, and the steel pipe tube has a flat portion to which a beam can be coupled and both ends of the flat portion.
  • a pair of first unit steel plates which are configured to be inclined to be inclined toward the pillar at each other so as to face each other at a predetermined interval from each other;
  • a second unit steel plate having both ends coupled to the end of the inclined portion of the first unit steel plate to interconnect the first unit steel plate to face each other. It provides an octagonal concrete-filled steel pipe column, characterized in that consisting of.
  • 4 and 5 are a perspective view and a cross-sectional view of the octagonal concrete filled steel pipe pillar of the present invention having a second unit steel plate composed of flat portions, respectively.
  • the present invention relates to an octagonal concrete filled steel pipe column (1) is filled with concrete (3) inside the octagonal steel pipe tube (2) as a whole, the steel tube tube ( 2) is composed of a flat portion 211 to which the beam 4 can be coupled and an inclined portion 212 bent inclined toward the column at both ends of the flat portion 211 so as to face each other at a predetermined interval.
  • a second unit steel plate 22 having both ends coupled to the end of the inclined portion 212 of the first unit steel plate 21 to interconnect the first unit steel plate 21 facing each other. Characterized in that consists of.
  • the present invention relates to a composite column that is behaved by the synthesis action of the concrete by filling the concrete (3) inside the steel pipe tube (2).
  • the octagonal steel tube 2 is formed by coupling a pair of first unit steel plates 21 and a pair of second unit steel plates 22 to face each other, and the steel sheet is divided into four small unit steel plates 21. , 22) can be manufactured by press or roll forming, thereby reducing the production cost.
  • the first unit steel plate 21 is composed of a flat portion 211 and the inclined portion 212 bent inclined at both ends of the flat portion 211, a pair is provided to face each other at regular intervals.
  • the beam 4 is coupled to the flat portion 211.
  • the second unit steel plate 22 is coupled to the end of the inclined portion 212 of the first unit steel plate 21 to connect the first unit steel plate 21 facing each other.
  • the first and second unit steel plates 21 and 22 are combined to form an octagonal steel pipe tube 2 as in the embodiment of FIGS. 4 and 5, so that the steel pipe tube 2 is in a circular shape. Come close.
  • the rigidity of the steel sheet is large, so that the stress and deformation acting on the steel sheet by the concrete side pressure during concrete placement are small.
  • first unit steel sheet 21 or the second unit steel plate 22 is located on each side of the column.
  • the thickness of the unit steel plate 22 can be varied. Therefore, the cross-section efficiency can be increased by varying the thickness of the first unit steel plate 21 or the second unit steel plate 22 positioned in the weak axis and the weak axis.
  • the length of the column surface can be adjusted to below the plate width thickness ratio limit value can save the amount of steel.
  • the stresses of the beams 4 are transmitted through the inclined slopes 212 at the edges of the pillars.
  • the diaphragm can be omitted, and even when the diaphragm 5 is necessary because the stress of the beam 4 is large, the diaphragm 5 can be formed along the edge of the column, so that the shape of the diaphragm 5 is simple and wide. Can be minimized. It is also advantageous for the column cross-sectional size when forming steam pillars.
  • the second unit steel plate 22 may be composed of only the flat portion 221 that is a flat plate.
  • the end of the inclined portion 212 may be formed by bending the junction portion 213 bent into the column.
  • the angle section is located at the corner of the column due to the joint portion 213, the amount of steel is concentrated, so that the cross-sectional performance is improved by increasing the cross-sectional coefficient such as compression and bending strength.
  • FIG. 6 is a cross-sectional view of the present invention octagonal concrete-filled steel pipe column provided with a second unit steel plate composed of a flat portion and a slope portion.
  • the second unit steel plate 22 has a flat portion 221 to which the beam 4 can be coupled and both ends of the flat portion 221. Consists of the inclined portion 222 bent obliquely to the pillar side, the inclined portion 222 may be combined with the inclined portion 212 of the first unit steel plate 21.
  • first unit steel plates 21 and two second unit steel plates 22 formed of flat parts 211 and 221 and inclined parts 212 and 222 are combined with a total of four steel sheets to form a steel tube tube ( 2) can be configured.
  • the junction portions 213 and 223 bent into the pillar may be bent.
  • both the first unit steel plate 21 and the second unit steel plate 22 have joined portions 213 and 223 formed at both ends of the inclined portions 212 and 222.
  • both the first unit steel plate 21 and the second unit steel plate 22 have joined portions 213 and 223 formed at one end of the inclined portions 212 and 222.
  • 7 and 8 are a perspective view and a cross-sectional view of the octagonal concrete filled steel pipe column of the present invention having a steel pipe tube divided into first and second unit steel plates, respectively.
  • the octagonal concrete filled steel pipe column 1 of the present invention has four flat parts 211 and 221 and flat parts 211 and 221 to which the beams 4 can be coupled.
  • the steel pipe tube (2) is a steel pipe tube (2) in a diagonal direction
  • the steel pipe tube 2 is configured by combining a total of two steel plates.
  • first unit steel plate 21 and the second unit steel plate 22 including two flat portions 211 and 221 adjacent to each other by the inclined portions 212 and 222 are coupled to each other at the edge of the column.
  • the first and second unit steel plates 21 and 22 may be provided with inclined portions 212 and 222 at both ends thereof, and the beams 4 may be coupled to the flat portions 211 and 221, respectively.
  • junction portions 213 and 223 that are bent into the pillar may be formed at the ends of the divided inclined portions 212 and 222.
  • the joints 213 and 223 also concentrate the amount of steel at the edge of the column, thereby improving the cross-sectional performance, such as improving compression and flexural strength.
  • 9 and 10 are a perspective view and a cross-sectional view showing an embodiment of the octagonal concrete filled steel pipe column of the present invention, each provided with a vertical stiffener.
  • the beam 4 is coupled to at least one of the flat parts 211 and 221, and a vertical stiffener ST in the form of a plate is formed on the side surface of the beam 4.
  • the inclined portions 212 and 222 adjacent to each other are connected to each other, and the vertical stiffener ST is provided to stand in a vertical direction so that the ends thereof are coupled to the ends of the inclined portions 212 and 222.
  • the vertical stiffener (ST) is installed by simply coupling both ends to the end of the inclined portion (212, 222) close to the side of the beam 4 and the side of the beam 4, as shown in FIG. It extends from the inclined portions 212 and 222 and is coupled to the side of the beam 4 to be in line with the inclined portions 212 and 222.
  • the vertical stiffener (ST) to minimize the portion protruding to the side of the pillar.
  • the diaphragm can be easily formed by joining the vertical stiffener (ST) to the side surface of the steel sheet beam, such as the TSC beam web is located on the outer surface of the beam.
  • 11 and 12 are a perspective view and a cross-sectional view showing another embodiment of the octagonal concrete filled steel pipe column of the present invention, each provided with a vertical stiffener.
  • the beams 4 are respectively coupled to the flat portions 211 and 221 of two adjacent surfaces of the column, and the vertical stiffener ST in the form of a flat plate Side surfaces of the beams 4 are connected to each other, and one surface of the vertical stiffener ST is in contact with the inclined portions 212 and 222 located between the flat portions 211 and 221 to which the beams 4 are coupled. Can be combined.
  • the vertical stiffeners ST are coupled so that both ends thereof are coupled to the side surfaces of the adjacent beams 4.
  • the ST is in contact with the inclined portions 212 and 222 provided between the adjacent flat portions 211 and 221.
  • the vertical stiffener ST is coupled to the side of the beam 4 to be in contact with the outside of the inclined portions 212 and 222 and parallel to the inclined portions 212 and 222.
  • the vertical stiffener ST minimizes the portion protruding to the side of the pillar.
  • a diaphragm can be easily formed by bonding a vertical stiffener ST to a side surface of a steel beam in which a web such as a TSC beam is located on an outer surface of the beam.
  • the vertical stiffener ST may be welded to the inclined portions 212 and 222.
  • Figure 13 is a perspective view of the present invention octagonal concrete-filled steel pipe pillars are bonded through the joint beams
  • Figure 14 (a) and (b) of the present invention octagonal concrete-filled steel pipe pillars are respectively bonded through the bonded beams.
  • FIG. 15 is a perspective view which shows the junction part of this invention octagonal concrete filled steel pipe column and beam of FIG.
  • the inside of the steel pipe tube (2) is bonded through the joint beams 6 protruding to the outside of the pair of first unit steel plate 21, respectively, through the outside of the pillar In the beam 4 may be configured to be bonded to both protruding ends of the bonding beam (6).
  • the protruding portion of the joint beam 6 should not be obstructed when the pillar is inserted into the drill hole. Therefore, the joint beam 6 is projected to the outside of the column at least short enough to be bolted.
  • a through hole should be formed in advance along the cross-sectional shape of the bonded beam 6 so that the bonded beam 6 can pass therethrough.
  • the splicing beam 6 is H-shaped steel, the central portion of the upper and lower flange 61 may be configured in a dogbone shape narrower than the end.
  • variety of the center part of the bonding beam 6 located in a column inside can be formed narrow, and the space for concrete placing inside a column can be fully secured.
  • the octagonal concrete-filled steel pipe column of the present invention can be produced by pressing or roll forming the steel sheet into small units, thereby reducing the production cost, and the length of the column surface can be adjusted below the plate width thickness ratio limit to save the amount of steel.
  • the unit steel plate constituting each column side can be different, so that economical construction is possible to vary the thickness of the unit steel plate of the steel shaft and the weak shaft. There is this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Rod-Shaped Construction Members (AREA)

Abstract

본 발명은 강관튜브 내부에 콘크리트가 충전되는 콘크리트 충전 강관 기둥에 대한 것으로, 더욱 상세하게는 유니트강판을 기둥 모서리에서 상호 결합하여 강관튜브가 전체적으로 8각형을 이루도록 함으로써 경제적인 시공 및 보와의 접합부 설계가 용이한 8각 콘크리트 충전 강관 기둥에 대한 것이다. 본 발명의 8각 콘크리트 충전 강관 기둥은 전체적으로 8각형인 강관튜브 내부에 콘크리트가 충전되는 8각 콘크리트 충전 강관 기둥에 관한 것으로, 상기 강관튜브는 보가 결합될 수 있는 평탄부 및 상기 평탄부의 양 단부에서 기둥 측으로 경사지게 절곡된 경사부로 각각 구성되는 것으로 서로 일정 간격 이격되게 마주보도록 구비되는 한 쌍의 제1유니트강판; 및 양단이 상기 제1유니트강판의 경사부 단부에 결합되어 마주보는 제1유니트강판을 상호 연결하는 제2유니트강판; 으로 구성되는 것을 특징으로 한다.

Description

8각 콘크리트 충전 강관 기둥
본 발명은 강관튜브 내부에 콘크리트가 충전되는 콘크리트 충전 강관 기둥에 대한 것으로, 더욱 상세하게는 유니트강판을 기둥 모서리에서 상호 결합하여 강관튜브가 전체적으로 8각형을 이루도록 함으로써 경제적인 시공 및 보와의 접합부 설계가 용이한 8각 콘크리트 충전 강관 기둥에 대한 것이다.
콘크리트 충전 강관 기둥(CFT, Concrete Filled steel Tube)은 원형 또는 각형 강관 내에 콘크리트를 충전하여 일체화시킨 구조로, 강성 및 내력 등이 뛰어나 고층 건물 등에서 주목받고 있는 공법이다.
그러나 도 1에서 볼 수 있는 바와 같이, 종래 사각 CFT 기둥은 역타 공법 등에서 말뚝으로 사용할 경우 천공홀(H)의 직경을 필요 이상으로 크게 해야 할 필요가 있다.
또한, 건축구조용 각형 강관 중 400㎜ 이상의 폭을 가진 각형 강관은 프레스 절곡에 의해 생산되므로 단가가 매우 높아 경제성이 떨어지고, 기둥 한 면의 길이가 긴 경우에는 판폭두께비 제한을 만족시키기 위해 강관의 두께를 필요 이상으로 증가시켜야 한다.
뿐만 아니라, 도 2의 (a)에서 볼 수 있는 바와 같이, 종래 강관튜브(2)와 보(4)의 접합부에서는 보(4)의 휨모멘트에 의해 강관튜브(2)에 배부름 현상이 발생할 수 있다. 따라서 도 2의 (b)에서와 같이 다이아프램(5)을 설치해야 하는데, 이 경우 강관튜브(2) 모서리가 돌출되므로 다이아프램(5)의 형상이 복잡해질 뿐 아니라 다이아프램(5)의 폭을 크게 증가시켜야 하므로 증타기둥 시공시 기둥 단면의 크기가 커지는 문제점이 있다.
아울러 종래 강관튜브(2)는 동일 단면에서 강판의 두께를 조절할 수 없는 한계가 있다.
한편, 기존의 CFT 기둥을 보완한 ACT 기둥(Advanced Construction Technology Tube)은 열연강판을 절곡 냉간 성형하여 제작된 폐쇄형 강관으로 건축 기둥용 구조부재로 이용되고 있다.
이러한 ACT 기둥은 강판을 작은 유니트로 분절하여 롤포밍으로 제작 가능하므로 생산 단가를 감소시킬 수 있다. 그러나 도 3의 (a)에서와 같이 기둥면의 강판 강성이 작아 콘크리트 타설시 변형이 크고, CFT 기둥과 마찬가지로 다이아프램이 필요하는 등 각형 강관을 이용한 CFT 기둥의 단점을 그대로 포함하고 있다.
또한, 도 3의 (b)에서와 같이 인접 유니트강판의 접합부가 기둥면 중앙에 형성되므로, 보 접합을 위해 기둥 외측으로 인접 유니트강판의 접합부를 형성할 수 없고 기둥의 강축과 약축의 강판 두께를 서로 다르게 할 수 없다.
아울러 ACT 기둥에서 인접하는 유니트강판은 하향 자동 용접에 의하여 결합되는데, 각 기둥면마다 접합부가 형성되므로 한 번에 한 면씩 부재를 3번 회전시켜 용접을 진행하여야 하므로 번거로웠다.
상기와 같은 과제를 해결하기 위하여 본 발명은 역타 공법 등에 이용시 천공홀의 직경을 감소시킬 수 있는 8각 콘크리트 충전 강관 기둥을 제공하고자 한다.
본 발명은 기둥면에 접합부가 없어 보와의 접합이 자유롭고, 다이아프램의 구조가 간단하며, 패널존에서 응력 전달이 원활한 8각 콘크리트 충전 강관 기둥을 제공하고자 한다.
본 발명은 기둥 내력 향상 및 강판의 분절 생산으로 경제적인 시공이 가능한 8각 콘크리트 충전 강관 기둥을 제공하고자 한다.
상기와 같은 과제를 해결하기 위하여 바람직한 실시예에 따른 본 발명은 전체적으로 8각형인 강관튜브 내부에 콘크리트가 충전되는 8각 콘크리트 충전 강관 기둥에 관한 것으로, 상기 강관튜브는 보가 결합될 수 있는 평탄부 및 상기 평탄부의 양 단부에서 기둥 측으로 경사지게 절곡된 경사부로 각각 구성되는 것으로 서로 일정 간격 이격되게 마주보도록 구비되는 한 쌍의 제1유니트강판; 및 양단이 상기 제1유니트강판의 경사부 단부에 결합되어 마주보는 제1유니트강판을 상호 연결하는 제2유니트강판; 으로 구성되는 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 제2유니트강판은 평판인 평탄부로만 이루어지는 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 제2유니트강판은 보가 결합될 수 있는 평탄부 및 상기 평탄부의 양 단부에서 기둥 측으로 경사지게 절곡된 경사부로 구성되어, 상기 경사부가 제1유니트강판의 경사부와 결합되는 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 경사부의 단부에는 기둥 내측으로 절곡된 접합부가 절곡 형성되는 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥을 제공한다.
아울러 바람직한 실시예에 따른 본 발명은 보가 결합될 수 있는 4개의 평탄부와 평탄부 사이를 연결하는 경사부로 구성되어 전체적으로 8각형인 강관튜브 내부에 콘크리트가 충전되는 8각 콘크리트 충전 강관 기둥에 관한 것으로, 상기 강관튜브는 대각선 방향으로 강관튜브의 경사부에서 등분된 제1유니트강판과 제2유니트강판을 결합하여 형성되는 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 분할된 경사부의 단부에는 기둥 내측으로 절곡된 접합부가 절곡 형성되는 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 평탄부 중 적어도 어느 하나 이상에는 보가 결합되고, 평판 형태의 수직스티프너가 상기 보의 측면과 인접하는 경사부를 상호 연결하되, 상기 수직스티프너는 수직 방향으로 세워지게 구비되어 단부가 경사부의 단부에 맞닿아 결합되는 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 기둥의 인접한 두 면의 평탄부에는 각각 보가 결합되고, 평판 형태의 수직스티프너가 상기 인접하는 보의 측면을 상호 연결하되, 상기 수직스티프너의 일면이 보가 결합되는 평탄부의 사이에 위치하는 경사부 면에 접하도록 결합되는 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 강관튜브의 내부에는 양단이 한 쌍의 제1유니트강판 외측으로 각각 돌출되는 접합보가 관통 결합되어 기둥 외측에서 보가 상기 접합보의 돌출된 양단에 접합될 수 있도록 하는 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 접합보는 H형강으로, 상하부 플랜지의 중앙부가 단부보다 폭이 좁은 도그본 형상인 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥을 제공한다.
본 발명에 따르면 다음과 같은 효과가 있다.
첫째, 기둥이 전체적으로 8각 형상을 이루므로 역타 공법 등에 이용시 천공홀의 직경을 감소시킬 수 있다.
둘째, 강판을 작은 유니트로 분절하여 프레스 또는 롤포밍으로 제작 가능하므로 생산 단가를 줄일 수 있고, 기둥면의 길이를 판폭두께비의 제한 값 이하로 조절할 수 있어 강재량을 절약할 수 있다.
셋째, 보의 측면과 인접하는 경사부를 연결하는 수직스티프너 또는 경사부 면에 접합되도록 인접 보의 측면을 연결하는 수직스티프너로 외다이아프램을 형성할 수 있다. 따라서 다이아프램의 시공 및 형상이 간단하고 그 폭을 최소화할 수 있으며, TSC 보 등 웨브가 보의 외측면에 위치하는 강판보에서 다이아프램을 용이하게 설치할 수 있다.
넷째, 하나의 유니트강판이 하나의 기둥면을 형성하는 경우, 기둥 각 면을 구성하는 유니트강판의 두께를 다르게 할 수 있다. 따라서 강축과 약축의 유니트강판 두께를 달리 할 수 있어 경제적인 시공이 가능하다.
다섯째, 기둥 모서리에서 유니트강판이 접합되므로, 기둥면에 평탄부가 구비되어 보와의 접합이 자유롭다.
여섯째, 패널존에서 보의 응력이 기둥 모서리의 경사진 결합부를 통하여 전달되므로, 응력전달이 원활하다.
도 1은 종래 강관튜브가 삽입된 천공홀을 도시하는 평면도.
도 2는 종래 강관튜브와 보의 접합부를 도시하는 평면도.
도 3은 종래 ACT 기둥을 도시하는 평면도.
도 4는 평탄부로 구성되는 제2유니트강판이 구비된 본 발명 8각 콘크리트 충전 강관 기둥의 사시도.
도 5는 도 4의 단면도.
도 6은 평탄부와 경사부로 구성되는 제2유니트강판이 구비된 본 발명 8각 콘크리트 충전 강관 기둥의 단면도.
도 7은 제1, 2유니트강판으로 등분된 강관튜브가 구비된 본 발명 8각 콘크리트 충전 강관 기둥의 사시도.
도 8은 도 7의 단면도.
도 9는 수직스티프너가 구비된 본 발명 8각 콘크리트 충전 강관 기둥의 실시예를 도시하는 사시도.
도 10은 도 9의 단면도.
도 11은 수직스티프너가 구비된 본 발명 8각 콘크리트 충전 강관 기둥의 다른 실시예를 도시하는 사시도.
도 12는 도 11의 단면도.
도 13은 내부에 접합보가 관통 결합되는 본 발명 8각 콘크리트 충전 강관 기둥의 사시도.
도 14의 (a)와 (b)는 각각 내부에 접합보가 관통 결합된 본 발명 8각 콘크리트 충전 강관 기둥의 사시도 및 단면도.
도 15는 도 14의 본 발명 8각 콘크리트 충전 강관 기둥과 보의 접합부를 도시하는 사시도.
상기와 같은 목적을 달성하기 위하여 본 발명은 전체적으로 8각형인 강관튜브 내부에 콘크리트가 충전되는 8각 콘크리트 충전 강관 기둥에 관한 것으로, 상기 강관튜브는 보가 결합될 수 있는 평탄부 및 상기 평탄부의 양 단부에서 기둥 측으로 경사지게 절곡된 경사부로 각각 구성되는 것으로 서로 일정 간격 이격되게 마주보도록 구비되는 한 쌍의 제1유니트강판; 및 양단이 상기 제1유니트강판의 경사부 단부에 결합되어 마주보는 제1유니트강판을 상호 연결하는 제2유니트강판; 으로 구성되는 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥을 제공한다.
이하, 첨부한 도면 및 바람직한 실시예에 따라 본 발명을 상세히 설명한다.
도 4 및 도 5는 각각 평탄부로 구성되는 제2유니트강판이 구비된 본 발명 8각 콘크리트 충전 강관 기둥의 사시도 및 단면도이다.
도 4 및 도 5에서 볼 수 있는 바와 같이, 본 발명은 전체적으로 8각형인 강관튜브(2) 내부에 콘크리트(3)가 충전되는 8각 콘크리트 충전 강관 기둥(1)에 관한 것으로, 상기 강관튜브(2)는 보(4)가 결합될 수 있는 평탄부(211) 및 상기 평탄부(211)의 양 단부에서 기둥 측으로 경사지게 절곡된 경사부(212)로 각각 구성되는 것으로 서로 일정 간격 이격되게 마주보도록 구비되는 한 쌍의 제1유니트강판(21); 및 양단이 상기 제1유니트강판(21)의 경사부(212) 단부에 결합되어 마주보는 제1유니트강판(21)을 상호 연결하는 제2유니트강판(22); 으로 구성되는 것을 특징으로 한다.
본 발명은 강관튜브(2) 내부에 콘크리트(3)가 충전되어 일체화됨으로써 이들의 합성작용에 의하여 거동하는 합성 기둥에 대한 것이다.
상기 8각형의 강관튜브(2)는 한 쌍의 제1유니트강판(21)과 한 쌍의 제2유니트강판(22)을 상호 대면하도록 결합하여 형성되는 것으로, 강판을 4개의 작은 유니트강판(21, 22)으로 분절하여 프레스 또는 롤포밍으로 제작 가능하므로 생산 단가를 감소시킬 수 있다.
상기 제1유니트강판(21)은 평탄부(211) 및 평탄부(211)의 양 단부에서 경사지게 절곡된 경사부(212)로 구성되는 것으로, 상호 일정 간격 이격되게 마주보도록 한 쌍이 구비된다. 상기 평탄부(211)에는 보(4)가 결합된다.
그리고 상기 제2유니트강판(22)은 제1유니트강판(21)의 경사부(212) 단부에 결합되어 마주보는 제1유니트강판(21)을 상호 연결한다.
이로써, 도 4 및 도 5의 실시예에서와 같이 제1, 2유니트강판(21, 22)이 결합하여 전체적으로 8각형 형상의 강관튜브(2)를 구성하므로, 강관튜브(2)가 원형 형상에 가깝게 된다.
따라서 강판의 강성이 커서 콘크리트 타설시 콘크리트 측압에 의하여 강판에 작용하는 응력과 변형이 적다. 또한, 천공홀의 천공 직경을 감소시킬 수 있으며, 기둥 모서리의 모따기가 자연스럽게 형성된다.
도 5의 (a) 및 (b)에서 볼 수 있는 바와 같이, 상기 경사부(212)는 기둥 모서리에서 접합이 이루어지므로, 기둥면에 평탄부(211)가 위치된다. 따라서 평탄부(211)를 통하여 기둥과 보의 접합이 자유롭게 이루어진다.
또한, 인접하는 제1유니트강판(21)과 제2유니트강판(22)의 접합되는 부분이 기둥 모서리에 위치하므로, 한 번에 두 개소의 접합부(213)를 용접할 수 있다. 따라서 부재를 한번만 회전시키면 되므로 제작 효율이 증대된다.
아울러 하나의 제1유니트강판(21) 또는 제2유니트강판(22)의 평탄부(211, 221)가 하나의 기둥면을 형성하므로, 기둥 각 면에 위치하는 제1유니트강판(21) 또는 제2유니트강판(22)의 두께를 달리 할 수 있다. 따라서 강축과 약축에 위치하는 제1유니트강판(21) 또는 제2유니트강판(22)의 두께를 달리하여 단면 효율을 증가시킬 수 있다.
뿐만 아니라, 기둥면의 길이를 판폭두께비 제한 값 이하로 조절할 수 있어 강재량을 절약할 수 있다.
그리고 기둥에 보(4)가 접합되는 패널존에서는 보(4)의 응력이 기둥 모서리의 경사진 경사부(212)를 통하여 전달되므로, 응력전달이 원활하다.
따라서 다이아프램을 생략할 수 있으며, 보(4)의 응력이 커서 다이아프램(5)이 필요한 경우에도 기둥 모서리를 따라 다이아프램(5)을 형성하면 되므로 다이아프램(5)의 형상이 간단하고 폭을 최소화할 수 있다. 또한, 증타기둥 형성시 기둥 단면 크기에도 유리하다.
도 4 및 도 5의 실시예에서 볼 수 있는 바와 같이, 상기 제2유니트강판(22)은 평판인 평탄부(221)로만 구성될 수 있다.
제2유니트강판(22)으로 평판을 이용하는 경우에는 직사각형과 유사한 형상의 기둥 형성에 유리하며, 도 5의 (a) 및 (b)에서와 같이 평판의 길이만 조절하면 기둥 폭을 자유롭게 조절할 수 있다.
아울러 상기 경사부(212)의 단부에는 기둥 내측으로 절곡된 접합부(213)가 절곡 형성될 수 있다.
상기 접합부(213)로 인하여 기둥 모서리에 앵글 단면이 위치되어 강재량이 집중되므로, 단면계수 증가로 압축 및 휨내력 향상 등 단면 성능이 향상된다.
도 6은 평탄부와 경사부로 구성되는 제2유니트강판이 구비된 본 발명 8각 콘크리트 충전 강관 기둥의 단면도이다.
도 6의 (a) 및 (b)에서 볼 수 있는 바와 같이, 상기 제2유니트강판(22)은 보(4)가 결합될 수 있는 평탄부(221) 및 상기 평탄부(221)의 양 단부에서 기둥 측으로 경사지게 절곡된 경사부(222)로 구성되어, 상기 경사부(222)가 제1유니트강판(21)의 경사부(212)와 결합될 수 있다.
즉, 평탄부(211, 221)와 경사부(212, 222)로 구성되는 2개의 제1유니트강판(21)과 2개의 제2유니트강판(22), 총 4개의 강판을 결합하여 강관튜브(2)를 구성할 수 있다.
그리고 상기 경사부(212, 222)의 단부에는 기둥 내측으로 절곡된 접합부(213, 223)가 절곡 형성될 수 있다.
상기 접합부(213, 223)로 인하여 기둥 모서리에 앵글 단면이 위치되어 강재량이 집중되므로, 단면계수 증가로 압축 및 휨내력 향상 등 단면 성능이 향상된다.
도 6의 (a)에서는 제1유니트강판(21)과 제2유니트강판(22) 모두 경사부(212, 222)의 양단부에 접합부(213, 223)가 형성되었으며, 도 6의 (b)에서는 제1유니트강판(21)과 제2유니트강판(22) 모두 경사부(212, 222)의 일단부에 접합부(213, 223)가 형성되었다.
도 7 및 도 8은 각각 제1, 2유니트강판으로 등분된 강관튜브가 구비된 본 발명 8각 콘크리트 충전 강관 기둥의 사시도 및 단면도이다.
도 7 및 도 8에서 볼 수 있는 바와 같이, 본 발명의 8각 콘크리트 충전 강관 기둥(1)은 보(4)가 결합될 수 있는 4개의 평탄부(211, 221)와 평탄부(211, 221) 사이를 연결하는 경사부(212, 222)로 구성되어 전체적으로 8각형인 강관튜브(2) 내부에 콘크리트(3)가 충전되는 것으로, 상기 강관튜브(2)는 대각선 방향으로 강관튜브(2)의 경사부(212, 222)에서 등분된 제1유니트강판(21)과 제2유니트강판(22)을 결합하여 형성되는 것을 특징으로 한다.
즉, 앞서 도 4 내지 도 6에서 2개의 제1유니트강판(21)과 2개의 제2유니트강판(22), 총 4개의 강판을 결합하여 강관튜브(2)를 구성하는 실시예와 달리, 도 7 및 도 8의 실시예에서는 총 2개의 강판을 결합하여 강관튜브(2)가 구성된다.
다시 말하면 경사부(212, 222)에 의하여 인접하는 2개의 평탄부(211, 221)를 포함하여 구성되는 제1유니트강판(21)과 제2유니트강판(22)을 기둥 모서리에서 상호 결합한다. 상기 제1, 2유니트강판(21, 22)은 각각 양단에 경사부(212, 222)가 구비되며, 각 평탄부(211, 221)에는 보(4)가 결합될 수 있다.
따라서 제1유니트강판(21)과 제2유니트강판(22)의 양단에 위치한 경사부(212, 222)를 상호 결합하면 되므로, 강관튜브(2) 제작에 소요되는 용접개소가 적어 생산이 용이하다. 아울러 소규모 기둥 제작시 보다 유리하다.
이때, 상기 분할된 경사부(212, 222)의 단부에는 기둥 내측으로 절곡된 접합부(213, 223)가 절곡 형성될 수 있다.
상기 접합부(213, 223) 역시 기둥 모서리에 강재량을 집중시켜, 압축 및 휨내력 향상 등 단면 성능을 향상시킨다.
도 9 및 도 10은 각각 수직스티프너가 구비된 본 발명 8각 콘크리트 충전 강관 기둥의 실시예를 도시하는 사시도 및 단면도이다.
도 9 및 도 10에서 볼 수 있는 바와 같이, 상기 평탄부(211, 221) 중 적어도 어느 하나 이상에는 보(4)가 결합되고, 평판 형태의 수직스티프너(ST)가 상기 보(4)의 측면과 인접하는 경사부(212, 222)를 상호 연결하되, 상기 수직스티프너(ST)는 수직 방향으로 세워지게 구비되어 단부가 경사부(212, 222)의 단부에 맞닿아 결합되도록 구성될 수 있다.
즉, 상기 수직스티프너(ST)는 양단을 보(4)의 측면과 보(4)의 측면에서 가까운 경사부(212, 222) 단부에 간단하게 결합하는 것만으로 설치하는 것으로, 도 10에서와 같이 경사부(212, 222)에서 연장되어 경사부(212, 222)와 일직선을 이루도록 보(4)의 측면에 결합된다.
따라서 상기 수직스티프너(ST)는 기둥 측면으로 돌출된 부분을 최소화한다.
이로써, 종래 도 2의 (b)에서와 같이 사각 형상의 강관튜브(2) 모서리 외측에 외다이아프램을 설치할 때, 형상이 복잡하고 다이아프램의 폭을 크게 증가시켜야 하는 등의 문제점을 해결할 수 있다.
또한, 도 9에서 볼 수 있는 바와 같이, TSC 보 등 웨브가 보의 외측면에 위치하는 강판보의 측면에 수직스티프너(ST)를 접합하여 다이아프램을 용이하게 형성할 수 있다.
도 11 및 도 12는 각각 수직스티프너가 구비된 본 발명 8각 콘크리트 충전 강관 기둥의 다른 실시예를 도시하는 사시도 및 단면도이다.
도 11 및 도 12에서 볼 수 있는 바와 같이, 본 발명에서 기둥의 인접한 두 면의 평탄부(211, 221)에는 각각 보(4)가 결합되고, 평판 형태의 수직스티프너(ST)가 상기 인접하는 보(4)의 측면을 상호 연결하되, 상기 수직스티프너(ST)의 일면이 보(4)가 결합되는 평탄부(211, 221)의 사이에 위치하는 경사부(212, 222) 면에 접하도록 결합할 수 있다.
즉, 기둥의 인접하는 2개의 평탄부(211, 221)에 보(4)가 결합되는 경우, 양단이 인접하는 보(4)의 측면에 결합되도록 수직스티프너(ST)를 결합하되, 상기 수직스티프너(ST)는 인접 평탄부(211, 221) 사이에 구비된 경사부(212, 222) 면에 접하게 위치된다.
따라서 도 12에서와 같이, 수직스티프너(ST)는 경사부(212, 222) 외측에 접하여 경사부(212, 222)와 평행하도록 보(4)의 측면에 결합된다.
이와 같이, 수직스티프너(ST)는 기둥 측면으로 돌출된 부분을 최소화한다.
그리고 도 11에서와 같이 TSC 보 등 웨브가 보의 외측면에 위치하는 강판보의 측면에 수직스티프너(ST)를 접합하여 다이아프램을 용이하게 형성할 수 있다.
상기 수직스티프너(ST)는 경사부(212, 222)에 용접 접합할 수 있다.
도 13은 내부에 접합보가 관통 결합되는 본 발명 8각 콘크리트 충전 강관 기둥의 사시도이고, 도 14의 (a)와 (b)는 각각 내부에 접합보가 관통 결합된 본 발명 8각 콘크리트 충전 강관 기둥의 사시도 및 단면도이며, 도 15는 도 14의 본 발명 8각 콘크리트 충전 강관 기둥과 보의 접합부를 도시하는 사시도이다.
도 13 내지 도 15에서 볼 수 있는 바와 같이, 상기 강관튜브(2)의 내부에는 양단이 한 쌍의 제1유니트강판(21) 외측으로 각각 돌출되는 접합보(6)가 관통 결합되어, 기둥 외측에서 보(4)가 상기 접합보(6)의 돌출된 양단에 접합되도록 구성될 수 있다.
이는 본 발명 8각 콘크리트 충전 강관 기둥 외측에 보(4)를 결합하기 위한 다른 실시예로, 보(4)를 결합하기 위하여 접합보(6)를 기둥 내부에 설치한다.
탑다운 공법 등에서 기둥의 선 설치 후 보가 나중에 결합되는 경우에는 천공홀 내에 기둥 삽입시 접합보(6)의 돌출된 부분이 방해가 되지 않아야 한다. 따라서 접합보(6)를 볼트 접합할 수 있을 정도로만 기둥 외측으로 최소한 짧게 돌출시킨다.
상기 한 쌍의 제1유니트강판(21)에는 접합보(6)가 통과 가능하도록 접합보(6)의 단면 형상을 따라 관통홀을 미리 형성하여야 할 것이다.
아울러 도 13 내지 도 14에서와 같이, 상기 접합보(6)는 H형강으로, 상하부 플랜지(61)의 중앙부가 단부보다 폭이 좁은 도그본 형상으로 구성할 수 있다.
이에 따라 기둥 내측에 위치하는 접합보(6)의 중앙부 폭을 좁게 형성하여, 기둥 내부 콘크리트 타설 공간을 충분히 확보할 수 있다.
본 발명의 8각 콘크리트 충전 강관 기둥은 강판을 작은 유니트로 분절하여 프레스 또는 롤 포밍으로 제작 가능하므로 생산단가를 줄일 수 있고, 기둥면의 길이를 판폭두께비 제한 값 이하로 조절할 수 있어 강재량을 절약할 수 있으며, 하나의 유니트 강판이 하나의 기둥면을 형성하는 경우 기둥 각 면을 구성하는 유니트 강판의 두께를 다르게 할 수 있으므로 강축과 약축의 유니트 강판 두께를 달리하는 경제적인 시공이 가능하므로 산업상 이용가능성이 있다.

Claims (10)

  1. 전체적으로 8각형인 강관튜브(2) 내부에 콘크리트(3)가 충전되는 8각 콘크리트 충전 강관 기둥(1)에 관한 것으로,
    상기 강관튜브(2)는 보(4)가 결합될 수 있는 평탄부(211) 및 상기 평탄부(211)의 양 단부에서 기둥 측으로 경사지게 절곡된 경사부(212)로 각각 구성되는 것으로 서로 일정 간격 이격되게 마주보도록 구비되는 한 쌍의 제1유니트강판(21); 및
    양단이 상기 제1유니트강판(21)의 경사부(212) 단부에 결합되어 마주보는 제1유니트강판(21)을 상호 연결하는 제2유니트강판(22); 으로 구성되는 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥.
  2. 제1항에서,
    상기 제2유니트강판(22)은 평판인 평탄부(221)로만 이루어지는 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥.
  3. 제1항에서,
    상기 제2유니트강판(22)은 보(4)가 결합될 수 있는 평탄부(221) 및 상기 평탄부(221)의 양 단부에서 기둥 측으로 경사지게 절곡된 경사부(222)로 구성되어, 상기 경사부(222)가 제1유니트강판(21)의 경사부(212)와 결합되는 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥.
  4. 제1항 또는 제3항에서,
    상기 경사부(212, 222)의 단부에는 기둥 내측으로 절곡된 접합부(213, 223)가 절곡 형성되는 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥.
  5. 보(4)가 결합될 수 있는 4개의 평탄부(211, 221)와 평탄부(211, 221) 사이를 연결하는 경사부(212, 222)로 구성되어 전체적으로 8각형인 강관튜브(2) 내부에 콘크리트(3)가 충전되는 8각 콘크리트 충전 강관 기둥(1)에 관한 것으로,
    상기 강관튜브(2)는 대각선 방향으로 강관튜브(2)의 경사부(212, 222)에서 등분된 제1유니트강판(21)과 제2유니트강판(22)을 결합하여 형성되는 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥.
  6. 제5항에서,
    상기 분할된 경사부(212, 222)의 단부에는 기둥 내측으로 절곡된 접합부(213, 223)가 절곡 형성되는 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥.
  7. 제1항 내지 제3항, 제5항 또는 제6항 중 어느 한 항에서,
    상기 평탄부(211, 221) 중 적어도 어느 하나 이상에는 보(4)가 결합되고, 평판 형태의 수직스티프너(ST)가 상기 보(4)의 측면과 인접하는 경사부(212, 222)를 상호 연결하되,
    상기 수직스티프너(ST)는 수직 방향으로 세워지게 구비되어 단부가 경사부(212, 222)의 단부에 맞닿아 결합되는 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥.
  8. 제1항 내지 제3항, 제5항 또는 제6항 중 어느 한 항에서,
    기둥의 인접한 두 면의 평탄부(211, 221)에는 각각 보(4)가 결합되고, 평판 형태의 수직스티프너(ST)가 상기 인접하는 보(4)의 측면을 상호 연결하되,
    상기 수직스티프너(ST)의 일면이 보(4)가 결합되는 평탄부(211, 221)의 사이에 위치하는 경사부(212, 222) 면에 접하도록 결합되는 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥.
  9. 제1항에서,
    상기 강관튜브(2)의 내부에는 양단이 한 쌍의 제1유니트강판(21) 외측으로 각각 돌출되는 접합보(6)가 관통 결합되어 기둥 외측에서 보(4)가 상기 접합보(6)의 돌출된 양단에 접합될 수 있도록 하는 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥.
  10. 제9항에서,
    상기 접합보(6)는 H형강으로, 상하부 플랜지(61)의 중앙부가 단부보다 폭이 좁은 도그본 형상인 것을 특징으로 하는 8각 콘크리트 충전 강관 기둥.
PCT/KR2015/004724 2014-10-13 2015-05-12 8각 콘크리트 충전 강관 기둥 WO2016060349A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0137591 2014-10-13
KR20140137591 2014-10-13

Publications (1)

Publication Number Publication Date
WO2016060349A1 true WO2016060349A1 (ko) 2016-04-21

Family

ID=55746862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/004724 WO2016060349A1 (ko) 2014-10-13 2015-05-12 8각 콘크리트 충전 강관 기둥

Country Status (1)

Country Link
WO (1) WO2016060349A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106436926A (zh) * 2016-11-07 2017-02-22 燕山大学 一种方钢管柱‑h形钢梁的端板连接节点
CN107663926A (zh) * 2017-09-29 2018-02-06 浙江省建工集团有限责任公司 一种l形钢管混凝土组合柱
CN112112275A (zh) * 2020-08-12 2020-12-22 中南大学 一种装配式钢管混凝土框架结构体系

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001059269A (ja) * 1999-08-24 2001-03-06 Daiwa House Ind Co Ltd 梁と柱の接合構造
KR100634838B1 (ko) * 2005-06-07 2006-10-16 울산대학교 산학협력단 단부평판을 이용한 프리캐스트 철근콘크리트 기둥과철골보의 접합 방법
KR20130012898A (ko) * 2011-07-26 2013-02-05 주식회사 하모니구조엔지니어링 콘크리트충전강관기둥의 상하 분리식 접합부구조
KR101437859B1 (ko) * 2014-06-11 2014-09-05 (주)센벡스 8각 콘크리트 충전 강관 기둥

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001059269A (ja) * 1999-08-24 2001-03-06 Daiwa House Ind Co Ltd 梁と柱の接合構造
KR100634838B1 (ko) * 2005-06-07 2006-10-16 울산대학교 산학협력단 단부평판을 이용한 프리캐스트 철근콘크리트 기둥과철골보의 접합 방법
KR20130012898A (ko) * 2011-07-26 2013-02-05 주식회사 하모니구조엔지니어링 콘크리트충전강관기둥의 상하 분리식 접합부구조
KR101437859B1 (ko) * 2014-06-11 2014-09-05 (주)센벡스 8각 콘크리트 충전 강관 기둥

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106436926A (zh) * 2016-11-07 2017-02-22 燕山大学 一种方钢管柱‑h形钢梁的端板连接节点
CN107663926A (zh) * 2017-09-29 2018-02-06 浙江省建工集团有限责任公司 一种l形钢管混凝土组合柱
CN107663926B (zh) * 2017-09-29 2023-09-15 浙江省建工集团有限责任公司 一种l形钢管混凝土组合柱
CN112112275A (zh) * 2020-08-12 2020-12-22 中南大学 一种装配式钢管混凝土框架结构体系

Similar Documents

Publication Publication Date Title
WO2015190708A1 (ko) 8각 콘크리트 충전 강관 기둥
WO2019059480A1 (ko) 기둥과 보를 접합하기 위한 접합부 코어 및 이를 이용한 기둥과 보의 접합 방법
WO2016060349A1 (ko) 8각 콘크리트 충전 강관 기둥
WO2016032215A1 (ko) 조립식 대형 합성보
WO2016021811A1 (ko) 선조립 벽체 유니트 및 프레임
WO2009142416A2 (ko) 철근콘크리트 빔 단부연결용 보강재 및 이를 이용한 구조물 시공방법
WO2014175575A1 (ko) 철골보 접합부
WO2016111458A1 (ko) 철골보 접합구조
WO2015122558A1 (ko) 외단열 시스템과 이를 이용한 외벽 설치방법
CN110284732B (zh) 一种模块化集装箱建筑连接节点
WO2020231003A1 (ko) 강합성 콘크리트 부재용 선조립 철골 조립체와 경량 영구거푸집의 결합 구조
WO2020145542A1 (ko) 선조립 기둥용 탈형 거푸집 고정 밴드
WO2018143622A1 (ko) 내진형 중간모멘트 접합부를 갖는 철골구조
KR20210000811A (ko) 모듈러유닛 및 이를 이용한 시공방법
WO2016111459A1 (ko) 기둥 브래킷
WO2013141424A1 (ko) 종벽 록킹구법에 의한 에이엘씨 패널 설치방법
KR20190072336A (ko) 중앙에 기둥이 있는 프리캐스트 콘크리트 패널 및 이를 이용한 건축물 코어 시스템
KR101174548B1 (ko) 콘크리트충전 강관기둥 시스템
WO2017034354A1 (ko) 데크거푸집 고정 구조
WO2019107696A1 (ko) 기둥-보 접합부
WO2020145541A1 (ko) 선조립 기둥용 탈형 거푸집 고정 밴드
CN210396247U (zh) 一种模块化集装箱建筑连接节点
CN106703218A (zh) 一种装配式节能房屋型材
WO2022025432A1 (ko) 중공 합성벽체용 선조립 모듈 및 이를 이용한 중공 합성벽체
WO2022225121A1 (ko) 철근 이음 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15850853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15850853

Country of ref document: EP

Kind code of ref document: A1