WO2016143979A1 - 메가컬럼 및 이의 시공방법 - Google Patents

메가컬럼 및 이의 시공방법 Download PDF

Info

Publication number
WO2016143979A1
WO2016143979A1 PCT/KR2015/012622 KR2015012622W WO2016143979A1 WO 2016143979 A1 WO2016143979 A1 WO 2016143979A1 KR 2015012622 W KR2015012622 W KR 2015012622W WO 2016143979 A1 WO2016143979 A1 WO 2016143979A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
mega
lattice material
assembled
neighboring
Prior art date
Application number
PCT/KR2015/012622
Other languages
English (en)
French (fr)
Inventor
이창남
Original Assignee
(주)센벡스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)센벡스 filed Critical (주)센벡스
Priority to SG11201707119YA priority Critical patent/SG11201707119YA/en
Priority to MYPI2017703156A priority patent/MY188320A/en
Publication of WO2016143979A1 publication Critical patent/WO2016143979A1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/30Columns; Pillars; Struts
    • E04C3/34Columns; Pillars; Struts of concrete other stone-like material, with or without permanent form elements, with or without internal or external reinforcement, e.g. metal coverings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/84Walls made by casting, pouring, or tamping in situ
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/06Reinforcing elements of metal, e.g. with non-structural coatings of high bending resistance, i.e. of essentially three-dimensional extent, e.g. lattice girders

Definitions

  • the present invention relates to a megacolumn having a large member cross section and a high height, and a construction method thereof. More specifically, four line-assembled column units are formed at four corners of a column so that a space is formed between neighboring line-assembled column units. It is about a mega column and its construction method which are arranged to be spaced apart from each other and cast concrete inside.
  • the rebar should be placed very tightly along the cross section of the column and the auxiliary reinforcing bars, such as band reinforcement, should be extremely long, making it difficult to reinforce the reinforcement and after the worker completes the reinforcement work in the column. It is difficult to come out.
  • the mega column is very high, such as more than 20m high scaffold installation is essential for the formwork installation and demoulding work, and the rebar reinforcement or formwork work in high altitude, there is a high risk of safety accidents.
  • the mega column Due to the various difficulties in the field work as described above it can be considered to configure the mega column with a PC member. However, when the mega column is made of a PC member, the weight and size of the member are excessive, so that carrying or lifting is practically impossible.
  • the mega column is difficult to reinforce the auxiliary reinforcing bars such as strip reinforcing bars, and it is still difficult for workers to move between the reinforcing bars and the formwork must be installed or demoulded in the field.
  • the problem can be said as it is.
  • the technique is difficult to apply to the super-large pillar due to the limitation of the size of the steel pipe that can be manufactured, difficult to install the main root inside the CFT pillar, difficult to handle pillar-based joints, column-to-column joints or column-beam joints.
  • the present invention provides a mega column and a construction method thereof that can shorten the air by eliminating the formwork and dismantling work as well as minimizing on-site reinforcement work using a factory-fabricated column unit. I would like to.
  • the present invention intends to provide a mega column and a construction method thereof in which a worker can enter a column to perform various necessary tasks such as reinforcement.
  • the present invention does not need a separate hypothesis support to the outside, and to provide a mega column and a construction method thereof that can reduce the burden of safety accidents according to the aerial work.
  • the present invention is to provide a mega column and a construction method thereof that can minimize the transport and lifting burden.
  • the present invention is to provide a mega column and a construction method thereof capable of producing a column of various sizes while using a standardized column unit.
  • the present invention according to a preferred embodiment relates to a mega column configured by assembling four pre-assembled column units and placing concrete therein, wherein the pre-assembled column units constitute a plurality of cast steels, the outer surface of the mega column.
  • Each of the pre-assembled column units are arranged to be spaced apart from each other at four corners of the mega column to form a space between neighboring pre-assembled column units, the outer neighboring cast steel of the adjacent line assembly column unit is a third Interconnected with a lattice material, the inner neighboring cast steel of the neighboring pre-assembled column unit is interconnected with a fourth lattice material, the third Outer tooth member is to provide the mega column characterized in that the second mold are combined.
  • the pre-assembled pillar unit provides a mega column, wherein the first form tie is coupled between a cast steel positioned at one side and an inner edge of the first lattice material.
  • the present invention according to another preferred embodiment provides a mega column, characterized in that the outer edge of the pre-assembled pillar unit is coupled to the second form tie interconnecting one side of the neighboring first lattice material.
  • the present invention according to another preferred embodiment provides a mega column, characterized in that a plurality of vertical reinforcement is arranged on the surface of the line assembly pillar unit constituting the outer surface of the mega column.
  • the present invention according to another preferred embodiment provides a mega column, characterized in that the vertical reinforcing bar is connected to the U-shaped reinforcing bar toward the inside of the pre-assembled pillar unit.
  • the present invention according to another preferred embodiment provides a mega column, characterized in that the first lattice material and the third lattice material is Z bar.
  • the present invention according to another preferred embodiment provides a mega column, characterized in that the first form and the third form is arranged to be vertical in the longitudinal direction to the bone deck form the alternately formed bone and floor.
  • the present invention according to a preferred embodiment relates to the construction method of the mega column, comprising: (a) installing at four corners of the mega column so that spaces are formed between the four pre-assembled pillar units spaced from each other; (b) connecting neighboring pre-assembled column units on three sides of the mega column with a third lattice material and attaching a second die; (c) interconnecting the inner edges of neighboring prefabricated column units with a fourth lattice material; (d) connecting neighboring pre-assembled column units on the other side of the mega column with a third lattice material and attaching a second die; And (e) placing concrete in the pre-assembled pillar unit and the space part; It provides a construction method of the mega column, characterized in that consisting of.
  • the second column and the third lattice material are combined in advance in the steps (b) and (d), and then the construction of the mega column, which is attached to the cast steel of the pre-assembled pillar unit.
  • the pre-assembled column unit combines the formwork with the steel frame arranged on the outside of the column, it is possible to minimize the reinforcement of the site reinforcement, and there is no need for a separate construction support on the outside.
  • the formwork installation work can be omitted, and the formwork coupled to the pre-assembled column unit can be used as a permanent formwork.
  • the pre-assembled column unit is manufactured and brought in at the factory, it is possible to shorten the air by minimizing the field work and reduce the risk of safety accidents caused by the aerial work.
  • the factory is produced by dividing into four pre-assembled column units, while the concrete is poured on-site, thereby minimizing the burden of transportation and lifting.
  • 1 is a perspective view of the present invention mega column.
  • FIG 3 is a perspective view of a part of the pre-assembly column unit.
  • FIG. 4 is a perspective view of a pre-assembled pillar unit.
  • Figure 5 is a cross-sectional view of the present invention mega column.
  • Figure 6 is a cross-sectional view showing the change in size of the mega column according to the width adjustment of the space portion.
  • Figure 7 is a perspective view showing a step-by-step process for the construction method of the present invention mega column.
  • the mega column of the present invention is constructed by assembling four pre-assembled column units and placing concrete therein.
  • the pre-assembled column units are formed of a plurality of cast steels and mega columns.
  • each pre-assembled column unit is arranged so as to be spaced apart from each other at four corners of the mega column to form a space between the neighboring line-assembly column unit, the adjacent neighboring cast steel unit Interconnected with the third lattice material, the inner neighboring cast steel of the neighboring pre-assembled column unit is interconnected with the fourth lattice material,
  • Exchanger of claim 3 characterized in that the lattice material outward, the second die bonding
  • FIG. 1 is a perspective view of a mega column of the present invention
  • Figure 2 is a cross-sectional view of the pre-assembled column unit
  • Figure 3 is a perspective view of a portion of the pre-assembled column unit.
  • Figure 4 is a perspective view of the pre-assembled column unit
  • Figure 5 is a cross-sectional view of the mega column of the present invention
  • Figure 6 is a cross-sectional view showing the size change of the mega column according to the width adjustment of the space portion.
  • the mega column of the present invention is configured by assembling four pre-assembled column unit (1) and placing concrete therein, the pre-assembled column unit (1) ) Is a plurality of cast steels 11, the first lattice material 12 interconnecting the adjacent cast steels 11 constituting the outer surface of the mega column, the neighbors constituting the surface located inside the mega column
  • Spaced portions 2 are formed between the four corner columns of the mega column to be spaced apart from each other, and the neighboring cast steel units 11 of the neighboring line assembly column units 1 are formed.
  • Mega column of the present invention is used to synthesize the steel and concrete as a pillar member, it is particularly applicable to the extra-large pillars having a member cross-sectional size of about 3m or more or high height.
  • the pre-assembled column unit 1 is formed of a cast steel 11, a first lattice material 12, a second lattice material 13, and a first formwork 14. It is composed.
  • the pre-assembled column unit (1) is factory-manufactured by pre-assembly and brought into the field, it can shorten the air.
  • a plurality of cast steel 11 is used, it is possible to reduce the amount of rebar, minimize the reinforcement work, and to reduce the burden on the worker due to the height of the work.
  • the cast steel 11 is disposed at each corner of the pre-assembled column unit 1, it may be disposed so that the corner of the a-beams toward the outside or inside the member using the a-beams as shown in FIG.
  • a plurality of vertical reinforcing bars 17 may be added to the surface of the pre-assembled column unit 1 constituting the outer side of the mega column in addition to the cast steel 11 to reinforce the vertical load.
  • the vertical reinforcing bar 17 may be coupled to the U-shaped reinforcing bar 18 whose end faces toward the inner side of the pre-assembled column unit 1.
  • the U-shaped rebar 18 When the U-shaped rebar 18 is installed on the outside of the column as an auxiliary reinforcing bar and configured to have a length of the leg of the U-shaped rebar 18 to be longer than the fixing length, the leg of the U-shaped rebar 18 is settled in concrete to provide sufficient tensile force. Can act as a band reinforcing bar.
  • the first lattice material 12 connects the neighboring mold steels 11 constituting the outer surface of the mega column, and the second lattice material 13 forms the neighboring molds constituting the surface located inside the mega column.
  • the steels 11 are interconnected.
  • the first and second lattice materials 12 and 13 may be coupled to the cast steel 11 with fastening members such as bolts so that both ends thereof are positioned inside or outside the cast steel 11.
  • the fastening member may serve as a shear connecting material used for the purpose of transmitting the shear force of the concrete to the steel and prevent the isolation of the concrete and the steel.
  • first and second lattice materials 12 and 13 increase the rigidity of the pre-assembled column unit 1, it helps to minimize deformation of the pre-assembled column unit 1 during transportation and installation.
  • the first and second lattice members 12 and 13 are combined in the form of horizontal members having the same height at both ends, but the diagonal lines are formed by varying the height of both ends of the first and second lattice members 12 and 13. It may be coupled to the cast steel 11 in the form. Steel having various cross-sectional shapes, such as flat bars, a-beams, and c-beams, may be used as the first and second lattice materials 12 and 13.
  • the first die 14 is coupled to the outer surface of the first lattice material 12 attached to the surface of the pre-assembled pillar unit 1 constituting the outer surface of the mega column.
  • the site formwork can be omitted and can be utilized as permanent formwork.
  • the pre-assembled pillar unit 1 may have a first form tie 15 coupled between a cast steel 11 located at one side and an inner edge of the first lattice material 12. .
  • a second form tie 16 may be coupled to an outer edge of the pre-assembled pillar unit 1 to interconnect one side of the neighboring first lattice material 12.
  • the first form tie 15 and the second form tie 16 respectively support the first formwork 14 against the side pressure when placing concrete.
  • the first form tie 15 may be coupled to one end to the first lattice material 12, and the other end may be bolted to a triangular gusset plate coupled to the inside of the cast steel 11 of the a-shaped steel.
  • Both ends of the second form tie 16 may be bolted to the first lattice material 12, respectively.
  • the first lattice material 12 is made of c-shaped steel or Z bar so that the end of the first form tie 15 or the second form tie 16 may be bolted to the first lattice material 12. This is preferred.
  • a unit line assembly pillar unit having a vertical length up and down, and then connect them up and down as shown in FIG. 4 may constitute a high line assembly column unit (1).
  • the vertical reinforcement (17) of the lower column and the upper column may be connected to the connecting plate (19). That is, the vertical reinforcing bar 17 of the upper and lower columns on the connecting plate 19 by coupling the connecting plate 19 to the vertical reinforcing bar 17 at the end of the column without overlapping the vertical reinforcement 17 of the lower column and the upper column. Can be joined by welding.
  • the vertical reinforcing bar 17 is cut at the column height without extending to the top of the column.
  • each of the pre-assembled column unit (1) is arranged so as to be spaced apart from each other at the four corners of the mega column so that the space (2) between the adjacent line assembly column unit (1) Is formed.
  • the pre-assembled column unit 1 is coupled to the base or lower pre-assembled column unit 1, or the inner neighboring cast steel 11 of the pre-assembled column unit 1 is connected to the fourth lattice material 22. Work can be performed smoothly in the column.
  • the cross-sectional size of the mega column may be adjusted by adjusting the width of the space 2. Therefore, it is possible to adjust the size of the mega column while using the standardized line assembly column unit (1).
  • the outer neighboring cast steel 11 of the neighboring pre-assembled column unit 1 is interconnected by a third lattice material 21, and the inner neighboring cast steel 11 of the neighboring pre-assembled column unit 1.
  • the second formwork 23 is coupled to the outside of the third lattice material (21).
  • the second formwork 23 may be configured as a site-mounted permanent formwork.
  • the third lattice material 21 is attached at the inside or the outside of the mega column, and the fourth lattice material 22 is attached at the space 2 formed inside the mega column.
  • the third and fourth lattice materials 21 and 22 may be coupled to the cast steel 11 with fastening members such as bolts so that both ends thereof are positioned inside or outside the corresponding cast steel 11, respectively.
  • the third and fourth lattice materials 21 and 22 may use steel having various cross-sectional shapes such as flat bars, a-beams, and c-beams.
  • the first lattice material 12 and the third lattice material 21 located on the outer surface of the mega column may be formed of Z bars.
  • first and third lattice materials 12 and 21 are composed of Z bars having high rigidity to support the concrete side pressure.
  • first and third lattice materials 12 and 21 are composed of Z bars, it is advantageous to maintain the coating thickness of the member.
  • the first formwork 14 and the third formwork is a gold deck formwork alternately formed bone and floor, it can be arranged so that the longitudinal direction is vertical.
  • the gold deck formwork can be used to be bent so that the iron plate and the valley alternately formed, it is arranged so that the longitudinal direction of the valley or floor coincides with the longitudinal direction of the column.
  • the gold deck formwork has strong out-of-plane stiffness and can withstand the concrete weight and construction load of the liquid before hardening of the concrete.
  • the gold deck formwork can be coupled to the first, third lattice material (12, 21) by any one of a direct screw, spot welding, pop rivets or screws.
  • FIG. 7 is a perspective view showing a step-by-step process for the construction method of the present invention mega column.
  • FIGS. 7A to 7D The construction method for the mega column of the present invention described above with reference to FIGS. 1 to 6 is illustrated in FIGS. 7A to 7D.
  • Mega column of the present invention as shown in Figure 4 can be produced by planting each of the four pre-assembled column unit (1) long in the vertical direction in the factory and then combined to produce them. However, in Figure 7 (a) to (d) it will be described for the construction method of the mega column on the basis of a part of the line assembly column unit (1) having a constant vertical length.
  • the pre-assembled column unit 1 can be manufactured using only mechanical bolt joints in advance in a factory without using welding joints.
  • the pre-assembled pillar unit 1 is brought into the field while being coupled to the first formwork 14, the first formwork 14 may be utilized as a permanent formwork.
  • the remaining one surface except the three surfaces of the mega column to which the third lattice material 21 and the second formwork 23 are attached enters the space part 2 where the worker is inside the column, and attaches the fourth lattice material 22 to the work. It is used as an access road to perform various necessary work.
  • the fourth lattice material 22 interconnects the cast steel 11 of each of the line assembly column units 1 so as to interconnect the inner edges of the neighboring line assembly column units 1.
  • Step (d) may be performed inside or outside the mega column.
  • the worker who enters the space part 2 for the construction of the step (c) exits the column after performing the step (d) or the worker who enters the space part 2 in the step (c).
  • the third lattice material 21 and the second mold 23 may be attached to the other side of the mega column inside the space part 2 to perform the step (d) inside the mega column.
  • the operator can move up to the top of the column after carrying out the step (d), or proceed to the construction of the upper column in succession.
  • the second mold 23 and the third lattice material 21 may be combined in advance, and then attached to the cast steel 11 of the pre-assembled column unit 1.
  • the third lattice material 21 and the second formwork 23 may be pre-attached at the factory and carried in the site, and the construction may be simplified by reducing the on-site work load.
  • Mega column of the present invention by using a factory-manufactured prefabricated column unit can minimize the reinforcement of the site reinforcement work, as well as to shorten the air by eliminating the formwork installation and dismantling work, without the need for a separate construction support externally There is potential for industrial use in that the burden of safety accidents can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Forms Removed On Construction Sites Or Auxiliary Members Thereof (AREA)

Abstract

본 발명은 이웃하는 선조립 기둥유니트 사이에 공간부가 형성되도록 4개의 선조립 기둥유니트를 기둥의 네 모서리에 상호 이격되도록 배치하고 내부에 콘크리트를 타설하여 구성되는 메가컬럼 및 이의 시공방법에 대한 것이다. 본 발명의 메가컬럼은 4개의 선조립 기둥유니트를 조립하고 내부에 콘크리트를 타설하여 구성되는 것으로, 상기 선조립 기둥유니트는 복수의 주형강재, 메가컬럼의 외측면을 구성하는 이웃하는 주형강재를 상호 연결하는 제1래티스재, 메가컬럼의 내부에 위치하는 면을 구성하는 이웃하는 주형강재를 상호 연결하는 제2래티스재 및 상기 제1래티스재 외측면에 결합되는 제1거푸집으로 구성되고, 상기 각 선조립 기둥유니트는 메가컬럼의 네 모서리에 상호 이격되도록 배치되어 이웃하는 선조립 기둥유니트 사이에 공간부가 형성되되, 이웃하는 선조립 기둥유니트의 외측 이웃하는 주형강재는 제3래티스재로 상호 연결되고, 이웃하는 선조립 기둥유니트의 내측 이웃하는 주형강재는 제4래티스재로 상호 연결되며, 상기 제3래티스재의 외측에는 제2거푸집이 결합되는 것을 특징으로 한다.

Description

메가컬럼 및 이의 시공방법
본 발명은 부재 단면의 크기가 크고 높이가 높은 메가컬럼 및 이의 시공방법에 대한 것으로, 더욱 상세하게는 이웃하는 선조립 기둥유니트 사이에 공간부가 형성되도록 4개의 선조립 기둥유니트를 기둥의 네 모서리에 상호 이격되도록 배치하고 내부에 콘크리트를 타설하여 구성되는 메가컬럼 및 이의 시공방법에 대한 것이다.
부재 단면 크기가 3m 내외 또는 그 이상인 초대형 기둥의 경우, RC로 제작할 경우 철근 물량이 과다하고 기둥 내부에 작업자가 들어가서 작업하는 것이 곤란하다.
특히, 기둥 단면에 따라 철근을 매우 촘촘하게 배치하고 띠철근 등 보조철근을 굉장히 길게 하여야 하므로 철근 배근 작업이 어려울 뿐 아니라 작업자가 기둥 내에서 배근 작업을 완료한 후 주근과 띠철근 간의 간섭에 의하여 기둥 밖으로 나오는 것이 곤란하다.
아울러 메가컬럼은 20m가 넘는 등 높이가 매우 높으므로 거푸집 설치 및 탈형 작업시 비계 설치가 필수적이고, 철근 배근 또는 거푸집 작업이 고공에서 이루어지므로 안전사고의 위험이 크다.
더욱이 거푸집 면적이 넓어 거푸집 설치 등에 많은 시간이 소요되어 공기를 증가시키는 원인으로 작용한다. 뿐만 아니라 콘크리트 측압에 대응하여 외부에 서포트를 설치하여 거푸집을 지지하여야 하는데, 부재 자체의 크기가 커서 가설 서포트 설치가 매우 어렵다.
상기와 같은 여러 가지 현장 작업의 어려움으로 인하여 PC 부재로 메가컬럼을 구성하는 방안을 고려해 볼 수 있다. 그러나 메가컬럼을 PC 부재로 제작할 경우, 부재의 중량 및 크기가 과다하여 운반이나 양중이 현실적으로 불가능하다.
또한 일반적인 SRC조로 설계하여 시공하는 경우에도 메가컬럼은 띠철근 등 보조철근의 배근 작업이 어렵고, 여전히 배근된 철근 사이로 작업자가 이동하기 곤란하며, 현장에서 거푸집을 설치 또는 탈형하여야 하므로, 앞서 지적한 RC의 문제점을 그대로 내포한다고 할 수 있다.
이에 종래 공개특허 제10-2012-0012916호에서는 CFT 기둥으로 대형 기둥을 형성할 수 있는 강성이 증대된 강관에 대한 기술이 출원되었다.
그러나 상기 기술은 제작 가능한 강관 사이즈의 한계로 초대형 기둥에 적용하기 어렵고, CFT 기둥 내부에 주근을 설치하기 곤란하며, 기둥-기초 접합부, 기둥 간 접합부 또는 기둥-보 접합부 처리가 곤란한 문제점이 있다.
상기와 같은 문제점을 해결하기 위하여 본 발명은 공장 제작 선조립 기둥유니트를 사용하여 현장 철근 배근 작업의 최소화는 물론 거푸집 설치 및 해체 작업을 생략함으로써 공기를 단축할 수 있는 메가컬럼 및 이의 시공방법을 제공하고자 한다.
본 발명은 작업자가 기둥 내부에 들어가서 철근 배근 등 각종 필요한 작업을 수행할 수 있는 메가컬럼 및 이의 시공방법을 제공하고자 한다.
본 발명은 외부에 별도의 가설 서포트가 필요 없고, 고소 작업에 따른 안전사고의 부담을 줄일 수 있는 메가컬럼 및 이의 시공방법을 제공하고자 한다.
본 발명은 운반 및 양중 부담을 최소화할 수 있는 메가컬럼 및 이의 시공방법을 제공하고자 한다.
본 발명은 규격화된 기둥유니트를 사용하면서 다양한 크기의 기둥 제작이 가능한 메가컬럼 및 이의 시공방법을 제공하고자 한다.
바람직한 실시예에 따른 본 발명은 4개의 선조립 기둥유니트를 조립하고 내부에 콘크리트를 타설하여 구성되는 메가컬럼에 관한 것으로, 상기 선조립 기둥유니트는 복수의 주형강재, 메가컬럼의 외측면을 구성하는 이웃하는 주형강재를 상호 연결하는 제1래티스재, 메가컬럼의 내부에 위치하는 면을 구성하는 이웃하는 주형강재를 상호 연결하는 제2래티스재 및 상기 제1래티스재 외측면에 결합되는 제1거푸집으로 구성되고, 상기 각 선조립 기둥유니트는 메가컬럼의 네 모서리에 상호 이격되도록 배치되어 이웃하는 선조립 기둥유니트 사이에 공간부가 형성되되, 이웃하는 선조립 기둥유니트의 외측 이웃하는 주형강재는 제3래티스재로 상호 연결되고, 이웃하는 선조립 기둥유니트의 내측 이웃하는 주형강재는 제4래티스재로 상호 연결되며, 상기 제3래티스재의 외측에는 제2거푸집이 결합되는 것을 특징으로 하는 메가컬럼을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 선조립 기둥유니트는 제1래티스재의 일측과 내측 모서리에 위치한 주형강재 사이에 제1폼타이가 결합되는 것을 특징으로 하는 메가컬럼을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 선조립 기둥유니트의 외측 모서리에는 이웃하는 제1래티스재의 일측을 상호 연결하는 제2폼타이가 결합되는 것을 특징으로 하는 메가컬럼을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 메가컬럼의 외측면을 구성하는 상기 선조립 기둥유니트의 면에는 복수의 수직철근이 배근되는 것을 특징으로 하는 메가컬럼을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 수직철근에는 단부가 선조립 기둥유니트의 내측을 향하는 U형 철근이 결합되는 것을 특징으로 하는 메가컬럼을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 제1래티스재 및 제3래티스재는 Z바인 것을 특징으로 하는 메가컬럼을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 제1거푸집 및 제3거푸집은 골과 마루가 교대로 형성된 골데크거푸집으로 길이 방향이 수직이 되도록 배치되는 것을 특징으로 하는 메가컬럼을 제공한다.
아울러 바람직한 실시예에 따른 본 발명은 상기 메가컬럼의 시공방법에 관한 것으로, (a) 4개의 선조립 기둥유니트를 상호 이격시켜 사이에 공간부가 형성되도록 메가컬럼의 네 모서리에 설치하는 단계; (b) 상기 메가컬럼의 3면에서 이웃하는 선조립 기둥유니트를 제3래티스재로 연결하고, 제2거푸집을 부착하는 단계; (c) 이웃하는 선조립 기둥유니트의 내측 모서리를 제4래티스재로 상호 연결하는 단계; (d) 상기 메가컬럼의 나머지 한 면에서 이웃하는 선조립 기둥유니트를 제3래티스재로 연결하고, 제2거푸집을 부착하는 단계; 및 (e) 상기 선조립 기둥유니트 및 공간부 내부에 콘크리트를 타설하는 단계; 로 구성되는 것을 특징으로 하는 메가컬럼의 시공방법을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 (b) 단계 및 (d) 단계에서 제2거푸집과 제3래티스재를 미리 결합한 후 선조립 기둥유니트의 주형강재에 부착하는 것을 특징으로 하는 메가컬럼의 시공방법을 제공한다.
본 발명에 따르면 다음과 같은 효과가 있다.
첫째, 기둥 외곽에 배치된 철골조에 거푸집을 결합한 선조립 기둥유니트를 사용하므로, 현장 철근 배근 작업의 최소화가 가능하고 외부에 별도의 가설 서포트가 불필요하다. 아울러 거푸집 설치 작업을 생략할 수 있고 선조립 기둥유니트에 결합된 거푸집을 영구 거푸집으로 활용할 수 있다.
둘째, 선조립 기둥유니트를 공장에서 제작하여 반입하므로 현장 작업을 최소화하여 공기 단축이 가능하고, 고소 작업에 따른 안전사고의 위험을 줄일 수 있다.
셋째, 4개의 선조립 기둥유니트로 분할하여 공장 제작하는 한편, 현장에서 콘크리트를 타설하므로 운반 및 양중 부담을 최소화할 수 있다.
넷째, 이웃하는 선조립 기둥유니트 사이에 공간부가 형성되므로, 작업자가 기둥 내부에 들어가서 각종 필요한 작업을 수행할 수 있는 진출입로가 확보된다.
다섯째, 공간부의 크기를 조절하여 규격화된 기둥유니트를 사용하면서 다양한 규격의 기둥을 제작할 수 있다.
도 1은 본 발명 메가컬럼의 사시도.
도 2는 선조립 기둥유니트의 횡단면도.
도 3은 선조립 기둥유니트 일부의 사시도.
도 4는 선조립 기둥유니트의 사시도.
도 5는 본 발명 메가컬럼의 횡단면도.
도 6은 공간부의 폭 조절에 따른 메가컬럼의 크기 변화를 나타내는 횡단면도.
도 7은 본 발명 메가컬럼의 시공방법에 대한 단계별 공정을 나타내는 사시도.
상기와 같은 목적을 달성하기 위하여 본 발명의 메가컬럼은 4개의 선조립 기둥유니트를 조립하고 내부에 콘크리트를 타설하여 구성되는 것으로, 상기 선조립 기둥유니트는 복수의 주형강재, 메가컬럼의 외측면을 구성하는 이웃하는 주형강재를 상호 연결하는 제1래티스재, 메가컬럼의 내부에 위치하는 면을 구성하는 이웃하는 주형강재를 상호 연결하는 제2래티스재 및 상기 제1래티스재 외측면에 결합되는 제1거푸집으로 구성되고, 상기 각 선조립 기둥유니트는 메가컬럼의 네 모서리에 상호 이격되도록 배치되어 이웃하는 선조립 기둥유니트 사이에 공간부가 형성되되, 이웃하는 선조립 기둥유니트의 외측 이웃하는 주형강재는 제3래티스재로 상호 연결되고, 이웃하는 선조립 기둥유니트의 내측 이웃하는 주형강재는 제4래티스재로 상호 연결되며, 상기 제3래티스재의 외측에는 제2거푸집이 결합되는 것을 특징으로 한다.
이하, 첨부한 도면 및 바람직한 실시예에 따라 본 발명을 상세히 설명한다.
도 1은 본 발명 메가컬럼의 사시도이고, 도 2는 선조립 기둥유니트의 횡단면도이며, 도 3은 선조립 기둥유니트 일부의 사시도이다.
그리고 도 4는 선조립 기둥유니트의 사시도이고, 도 5는 본 발명 메가컬럼의 횡단면도이며, 도 6은 공간부의 폭 조절에 따른 메가컬럼의 크기 변화를 나타내는 횡단면도이다.
도 1, 도 2, 도 5 등에서 볼 수 있는 바와 같이, 본 발명의 메가컬럼은 4개의 선조립 기둥유니트(1)를 조립하고 내부에 콘크리트를 타설하여 구성되는 것으로, 상기 선조립 기둥유니트(1)는 복수의 주형강재(11), 메가컬럼의 외측면을 구성하는 이웃하는 주형강재(11)를 상호 연결하는 제1래티스재(12), 메가컬럼의 내부에 위치하는 면을 구성하는 이웃하는 주형강재(11)를 상호 연결하는 제2래티스재(13) 및 상기 제1래티스재(12) 외측면에 결합되는 제1거푸집(14)으로 구성되고, 상기 각 선조립 기둥유니트(1)는 메가컬럼의 네 모서리에 상호 이격되도록 배치되어 이웃하는 선조립 기둥유니트(1) 사이에 공간부(2)가 형성되되, 이웃하는 선조립 기둥유니트(1)의 외측 이웃하는 주형강재(11)는 제3래티스재(21)로 상호 연결되고, 이웃하는 선조립 기둥유니트(1)의 내측 이웃하는 주형강재(11)는 제4래티스재(22)로 상호 연결되며, 상기 제3래티스재(21)의 외측에는 제2거푸집(23)이 결합되는 것을 특징으로 한다.
본 발명의 메가컬럼은 강재와 콘크리트를 합성하여 기둥 부재로 이용하기 위한 것으로, 부재 단면 크기가 3m 내외 또는 그 이상이거나 높이가 높은 초대형 기둥에 특히 적용할 수 있다.
도 2 및 도 3에서 볼 수 있는 바와 같이, 상기 선조립 기둥유니트(1)는 주형강재(11), 제1래티스재(12), 제2래티스재(13) 및 제1거푸집(14)으로 구성된다.
상기 선조립 기둥유니트(1)는 선조립으로 공장 제작하여 현장에 반입하므로, 공기를 단축할 수 있다. 또한, 복수의 주형강재(11)를 사용하므로 철근량 감소, 배근 작업 최소화 등이 가능하며, 고소 작업에 따른 작업자의 부담을 줄일 수 있다.
상기 주형강재(11)는 선조립 기둥유니트(1)의 각 모서리에 배치하며, 도 2 등에서와 같이 ㄱ형강을 이용하여 ㄱ형강의 모서리가 부재 외측 또는 내측을 향하도록 배치할 수 있다.
이때, 메가컬럼의 외측면을 구성하는 상기 선조립 기둥유니트(1)의 면에는 수직하중을 보강하기 위하여 상기 주형강재(11) 이외에 복수의 수직철근(17)을 추가로 배근할 수 있다.
한편, 콘크리트 기둥에서 기둥이 압축력을 받는 경우, 콘크리트가 횡방향으로 팽창하려는 것에 대응하여 띠철근 등의 보조철근이 필요하다. 그러나 메가컬럼은 기둥 단면의 크기가 커서 부재 단면을 가로질러 띠철근을 설치하는 것이 불가능하다. 따라서 상기 수직철근(17)에는 단부가 선조립 기둥유니트(1)의 내측을 향하는 U형 철근(18)을 결합할 수 있다.
상기 U형 철근(18)은 보조철근으로서 기둥 외부에 설치하고 U형 철근(18)의 다리부 길이를 정착 길이 이상이 되도록 구성하면, U형 철근(18)의 다리부가 콘크리트 내에 정착되어 충분한 인장력을 받아 띠철근 역할을 할 수 있다.
상기 제1래티스재(12)는 메가컬럼의 외측면을 구성하는 이웃하는 주형강재(11)를 연결하고, 제2래티스재(13)는 메가컬럼의 내부에 위치하는 면을 구성하는 이웃하는 주형강재(11)를 상호 연결한다.
상기 제1, 2래티스재(12, 13)는 각각 양단이 주형강재(11)의 내측 또는 외측에 위치되도록 볼트 등의 체결부재로 주형강재(11)에 결합할 수 있다.
상기 체결부재는 콘크리트의 전단력을 강재에 전달하고 콘크리트와 강재의 격리를 방지할 목적으로 사용되는 전단연결재의 역할을 겸할 수 있다.
상기 제1, 2래티스재(12, 13)는 선조립 기둥유니트(1)의 강성을 증가시키므로, 운반 및 설치시 선조립 기둥유니트(1)의 변형을 최소화하도록 도와준다.
도 3 등의 실시예에서 상기 제1, 2래티스재(12, 13)는 양단의 높이가 같은 수평재 형태로 결합하였으나, 제1, 2래티스재(12, 13)의 양단 높이를 달리하여 사선재 형태로 주형강재(11)에 결합할 수도 있다. 플랫바, ㄱ형강, ㄷ형강 등의 다양한 단면 형상을 가진 강재를 제1, 2래티스재(12, 13)로 이용할 수 있다.
상기 제1거푸집(14)은 메가컬럼의 외측면을 구성하는 선조립 기둥유니트(1)의 면에 부착된 제1래티스재(12)의 외측면에 결합된다.
상기 제1거푸집(14)은 미리 공장에서 부착되기 때문에 현장 거푸집 작업을 생략할 수 있으며, 영구 거푸집으로 활용할 수 있다.
후에 이웃하는 선조립 기둥유니트(1)의 외측에 결합하는 제2거푸집(23)이 부착될 공간을 충분히 확보할 수 있도록, 도 2에서와 같이 상기 제1거푸집(14)은 선조립 기둥유니트(1)의 모서리에 배치된 주형강재(11)에서 소정 간격 이격된 위치까지만 설치하도록 한다.
도 2, 도 3 등에서와 같이 상기 선조립 기둥유니트(1)는 제1래티스재(12)의 일측과 내측 모서리에 위치한 주형강재(11) 사이에 제1폼타이(15)가 결합될 수 있다.
그리고 상기 선조립 기둥유니트(1)의 외측 모서리에는 이웃하는 제1래티스재(12)의 일측을 상호 연결하는 제2폼타이(16)가 결합될 수 있다.
상기 제1폼타이(15)와 제2폼타이(16)는 각각 콘크리트 타설시 측압에 대하여 제1거푸집(14)을 지지한다.
상기 제1폼타이(15)는 일단을 제1래티스재(12)에 결합하고, 타단을 ㄱ형강인 주형강재(11) 내측에 결합된 삼각형의 거셋플레이트에 볼트 결합할 수 있다.
그리고 상기 제2폼타이(16)는 양단을 각각 제1래티스재(12)에 볼트 결합할 수 있다.
이 경우 상기 제1폼타이(15) 또는 제2폼타이(16)의 단부를 제1래티스재(12)에 볼트 결합할 수 있도록, 제1래티스재(12)는 ㄷ형강 또는 Z바로 구성함이 바람직하다.
본 발명에서는 도 3에서와 같이 상하 일정한 길이의 단위 선조립 기둥유니트를 제작한 다음, 도 4에서와 같이 이들을 상하로 연결하여 높이가 높은 선조립 기둥유니트(1)를 구성할 수 있다.
이 경우 하부기둥과 상부기둥의 수직철근(17)은 연결플레이트(19)로 이음할 수 있다. 즉, 하부기둥과 상부기둥의 수직철근(17)을 겹침 이음하지 않고, 기둥 단부의 수직철근(17)에 연결플레이트(19)를 결합하여 연결플레이트(19)에 상하부기둥의 수직철근(17)을 용접하여 이음할 수 있다.
따라서 수직철근(17)에 별도의 이음 길이를 두지 않아도 되며, 수직철근(17)은 기둥 상부로 연장하지 않고 기둥 높이에서 절단한다.
도 1, 도 5 등에서 볼 수 있는 바와 같이, 상기 각 선조립 기둥유니트(1)는 메가컬럼의 네 모서리에 상호 이격되도록 배치되어 이웃하는 선조립 기둥유니트(1) 사이에 공간부(2)가 형성된다.
이러한 공간부(2)에 의하여 작업자의 통행로가 확보되므로, 작업자가 기둥 내에서 각종 필요한 작업을 수행할 수 있다.
즉, 선조립 기둥유니트(1)를 기초 또는 하부 선조립 기둥유니트(1)에 결합하거나 선조립 기둥유니트(1)의 내측 이웃하는 주형강재(11)를 제4래티스재(22)로 연결하는 작업 등을 기둥 내에서 원활하게 수행할 수 있다.
또한, 도 6의 (a) 내지 (b)에서 볼 수 있는 바와 같이, 공간부(2)의 폭을 조절하여 메가컬럼의 단면 사이즈를 조절할 수 있다. 따라서 규격화된 선조립 기둥유니트(1)를 사용하면서 메가컬럼의 크기 조절이 가능하다.
이웃하는 선조립 기둥유니트(1) 사이에는 보조 선조립 기둥유니트를 추가로 설치하는 것도 가능하다.
아울러 이웃하는 선조립 기둥유니트(1)의 외측 이웃하는 주형강재(11)는 제3래티스재(21)로 상호 연결되고, 이웃하는 선조립 기둥유니트(1)의 내측 이웃하는 주형강재(11)는 제4래티스재(22)로 상호 연결되며, 상기 제3래티스재(21)의 외측에는 제2거푸집(23)이 결합된다.
이웃하는 선조립 기둥유니트(1)의 결합은 현장에서 이루어지며, 제2거푸집(23)은 현장 부착 영구 거푸집으로 구성할 수 있다.
상기 제3래티스재(21)는 메가컬럼의 내측 또는 외측에서 부착하며, 제4래티스재(22)는 메가컬럼 내측에 형성된 공간부(2)에서 부착한다.
상기 제3, 4래티스재(21, 22)는 양단이 각각 해당 주형강재(11)의 내측 또는 외측에 위치되도록 볼트 등의 체결부재로 주형강재(11)에 결합할 수 있다.
상기 제3, 4래티스재(21, 22)는 플랫바, ㄱ형강, ㄷ형강 등의 다양한 단면 형상의 강재를 이용할 수 있다.
본 발명에서 메가컬럼의 외측면에 위치되는 상기 제1래티스재(12) 및 제3래티스재(21)는 Z바로 구성할 수 있다.
메가컬럼은 콘크리트 측압을 제1, 3래티스재(12, 21)와 제1, 2거푸집(14, 23)이 모두 지지하여야 한다. 따라서 제1, 3래티스재(12, 21)를 강성이 큰 Z바로 구성하여 콘크리트 측압을 지지하도록 한다.
또한, 제1, 3래티스재(12, 21)를 Z바로 구성하는 경우 부재의 피복 두께 유지에 유리하다.
도 1에서 볼 수 있는 바와 같이, 상기 제1거푸집(14) 및 제3거푸집은 골과 마루가 교대로 형성된 골데크거푸집으로, 길이 방향이 수직이 되도록 배치할 수 있다.
상기 골데크거푸집은 철판을 골과 마루가 교대로 형성되도록 절곡한 것을 이용할 수 있으며, 골 또는 마루의 길이 방향이 기둥의 길이 방향과 일치하도록 배치한다.
메가컬럼은 거푸집 면적이 넓어, 일반 거푸집을 사용할 경우 거푸집 자중을 무시할 수 없다. 따라서 경량의 영구 거푸집으로 활용 가능한 골데크거푸집을 이용하여 거푸집 자중을 줄이도록 한다.
골데크거푸집은 면외 강성이 강하여 콘크리트 경화 전 액상의 콘크리트 무게 및 시공 하중을 충분히 견딜 수 있어 콘크리트 측압을 충분히 지탱할 수 있다.
상기 골데크거푸집은 제1, 3래티스재(12, 21)에 직결나사, 점용접, 팝리벳 또는 나사못 중 어느 하나에 의해 결합할 수 있다.
도 7은 본 발명 메가컬럼의 시공방법에 대한 단계별 공정을 나타내는 사시도이다.
앞서 도 1 내지 도 6을 참고로 하여 설명한 본 발명 메가컬럼에 대한 시공방법이 도 7의 (a) 내지 (d)에 도시된다.
본 발명의 메가컬럼은 도 4에서와 같이 상하 길이 방향으로 긴 선조립 기둥유니트(1) 4개를 각각 공장 제작하여 현장 반입한 다음 이들을 상호 결합하여 제작할 수 있다. 그러나 도 7의 (a) 내지 (d)에서는 편의상 상하 길이가 일정한 선조립 기둥유니트(1) 일부를 기준으로 메가컬럼의 시공방법을 설명하기로 한다.
본 발명 메가컬럼의 시공방법에서는 우선 (a) 4개의 선조립 기둥유니트(1)를 상호 이격시켜 사이에 공간부(2)가 형성되도록 메가컬럼의 네 모서리에 설치한다(도 7의 (a)).
상기 선조립 기둥유니트(1)는 용접 접합을 사용하지 않고 공장에서 미리 기계식 볼트 접합만을 이용하여 제작할 수 있다.
상기 선조립 기둥유니트(1)는 제1거푸집(14)까지 결합된 채로 현장에 반입하며, 제1거푸집(14)은 영구 거푸집으로 활용할 수 있다.
그리고 (b) 상기 메가컬럼의 3면에서 이웃하는 선조립 기둥유니트(1)를 제3래티스재(21)로 연결하고, 제2거푸집(23)을 부착한다(도 7의 (b)).
제3래티스재(21)와 제2거푸집(23)이 부착된 메가컬럼의 3면을 제외한 나머지 1면은 작업자가 기둥 내부인 공간부(2)로 진입하여 제4래티스재(22) 부착 작업 등 각종 필요한 작업을 수행하기 위한 진입로로 활용한다.
다음으로, (c) 이웃하는 선조립 기둥유니트(1)의 내측 모서리를 제4래티스재(22)로 상호 연결한다(도 7의 (c)).
상기 제4래티스재(22)는 이웃하는 선조립 기둥유니트(1)의 내측 모서리를 상호 연결하도록 각 선조립 기둥유니트(1)의 주형강재(11)를 상호 연결한다.
이후, (d) 상기 메가컬럼의 나머지 한 면에서 이웃하는 선조립 기둥유니트(1)를 제3래티스재(21)로 연결하고, 제2거푸집(23)을 부착한다(도 7의 (d)).
상기 (d) 단계는 메가컬럼의 내측 또는 외측에서 실시할 수 있다.
따라서 상기 (c) 단계의 시공을 위하여 공간부(2)로 진입한 작업자가 외부로 나온 후 메가컬럼 외측에서 (d) 단계를 수행하거나, (c) 단계에서 공간부(2)로 진입한 작업자가 공간부(2) 내측에서 메가컬럼의 나머지 한 면에 제3래티스재(21)와 제2거푸집(23)을 부착하여 메가컬럼 내측에서 (d) 단계를 수행할 수 있다.
후자의 경우에는 작업자가 (d) 단계 실시 후 사다리를 타고 상부로 이동하여 기둥 외부로 나오거나 상부기둥 시공을 연달아 진행할 수 있다.
상기 (a) 내지 (d) 단계를 통하여 메가컬럼의 뼈대를 완성한 다음에는 도 1에서와 같이, 메가컬럼의 외측에 금속바 등을 이용하여 거푸집 밴드(3)를 부착함으로써 콘크리트 측압을 지지하도록 할 수 있다.
마지막으로 (e) 상기 선조립 기둥유니트(1) 및 공간부(2) 내부에 콘크리트를 타설하고 양생하는 과정을 거쳐 시공을 완료한다.
상기 (b) 단계 및 (d) 단계에서는 제2거푸집(23)과 제3래티스재(21)를 미리 결합한 후 선조립 기둥유니트(1)의 주형강재(11)에 부착할 수 있다.
이 경우, 상기 제3래티스재(21)와 제2거푸집(23)은 공장에서 사전 부착하여 현장 반입할 수 있으며, 현장 작업 부담 감소로 시공을 간단히 할 수 있다.
본 발명의 메가컬럼은 공장 제작 선조립 기둥유니트를 사용하여 현장 철근 배근 작업의 최소화는 물론 거푸집 설치 및 해체 작업을 생략함으로써 공기 단축을 할 수 있고, 외부에 별도의 가설 서포트가 필요 없으면서 고소 작업에 따른 안전사고의 부담을 줄일 수 있다는 점에서 산업상 이용 가능성이 있다.

Claims (9)

  1. 4개의 선조립 기둥유니트(1)를 조립하고 내부에 콘크리트를 타설하여 구성되는 메가컬럼에 관한 것으로,
    상기 선조립 기둥유니트(1)는 복수의 주형강재(11), 메가컬럼의 외측면을 구성하는 이웃하는 주형강재(11)를 상호 연결하는 제1래티스재(12), 메가컬럼의 내부에 위치하는 면을 구성하는 이웃하는 주형강재(11)를 상호 연결하는 제2래티스재(13) 및 상기 제1래티스재(12) 외측면에 결합되는 제1거푸집(14)으로 구성되고,
    상기 각 선조립 기둥유니트(1)는 메가컬럼의 네 모서리에 상호 이격되도록 배치되어 이웃하는 선조립 기둥유니트(1) 사이에 공간부(2)가 형성되되,
    이웃하는 선조립 기둥유니트(1)의 외측 이웃하는 주형강재(11)는 제3래티스재(21)로 상호 연결되고, 이웃하는 선조립 기둥유니트(1)의 내측 이웃하는 주형강재(11)는 제4래티스재(22)로 상호 연결되며, 상기 제3래티스재(21)의 외측에는 제2거푸집(23)이 결합되는 것을 특징으로 하는 메가컬럼.
  2. 제1항에서,
    상기 선조립 기둥유니트(1)는 제1래티스재(12)의 일측과 내측 모서리에 위치한 주형강재(11) 사이에 제1폼타이(15)가 결합되는 것을 특징으로 하는 메가컬럼.
  3. 제1항에서,
    상기 선조립 기둥유니트(1)의 외측 모서리에는 이웃하는 제1래티스재(12)의 일측을 상호 연결하는 제2폼타이(16)가 결합되는 것을 특징으로 하는 메가컬럼.
  4. 제1항에서,
    메가컬럼의 외측면을 구성하는 상기 선조립 기둥유니트(1)의 면에는 복수의 수직철근(17)이 배근되는 것을 특징으로 하는 메가컬럼.
  5. 제4항에서,
    상기 수직철근(17)에는 단부가 선조립 기둥유니트(1)의 내측을 향하는 U형 철근(18)이 결합되는 것을 특징으로 하는 메가컬럼.
  6. 제1항에서,
    상기 제1래티스재(12) 및 제3래티스재(21)는 Z바인 것을 특징으로 하는 메가컬럼.
  7. 제6항에서,
    상기 제1거푸집(14) 및 제3거푸집은 골과 마루가 교대로 형성된 골데크거푸집으로 길이 방향이 수직이 되도록 배치되는 것을 특징으로 하는 메가컬럼.
  8. 제1항 내지 제7항 중 어느 한 항에 의한 메가컬럼을 시공하는 메가컬럼의 시공방법에 관한 것으로,
    (a) 4개의 선조립 기둥유니트(1)를 상호 이격시켜 사이에 공간부(2)가 형성되도록 메가컬럼의 네 모서리에 설치하는 단계;
    (b) 상기 메가컬럼의 3면에서 이웃하는 선조립 기둥유니트(1)를 제3래티스재(21)로 연결하고, 제2거푸집(23)을 부착하는 단계;
    (c) 이웃하는 선조립 기둥유니트(1)의 내측 모서리를 제4래티스재(22)로 상호 연결하는 단계;
    (d) 상기 메가컬럼의 나머지 한 면에서 이웃하는 선조립 기둥유니트(1)를 제3래티스재(21)로 연결하고, 제2거푸집(23)을 부착하는 단계; 및
    (e) 상기 선조립 기둥유니트(1) 및 공간부(2) 내부에 콘크리트를 타설하는 단계; 로 구성되는 것을 특징으로 하는 메가컬럼의 시공방법.
  9. 제8항에서,
    상기 (b) 단계 및 (d) 단계에서 제2거푸집(23)과 제3래티스재(21)를 미리 결합한 후 선조립 기둥유니트(1)의 주형강재(11)에 부착하는 것을 특징으로 하는 메가컬럼의 시공방법.
PCT/KR2015/012622 2015-03-10 2015-11-24 메가컬럼 및 이의 시공방법 WO2016143979A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG11201707119YA SG11201707119YA (en) 2015-03-10 2015-11-24 Mega column and construction method therefor
MYPI2017703156A MY188320A (en) 2015-03-10 2015-11-24 Mega column and construction method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150032926A KR101587583B1 (ko) 2015-03-10 2015-03-10 메가컬럼 및 이의 시공방법
KR10-2015-0032926 2015-03-10

Publications (1)

Publication Number Publication Date
WO2016143979A1 true WO2016143979A1 (ko) 2016-09-15

Family

ID=55354621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/012622 WO2016143979A1 (ko) 2015-03-10 2015-11-24 메가컬럼 및 이의 시공방법

Country Status (4)

Country Link
KR (1) KR101587583B1 (ko)
MY (1) MY188320A (ko)
SG (1) SG11201707119YA (ko)
WO (1) WO2016143979A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106351257A (zh) * 2016-10-14 2017-01-25 北京工业大学 一种用于地下结构内置分隔板预制分体柱
IT201600117195A1 (it) * 2016-11-22 2018-05-22 Studio Mangoni Srl Un sistema semiprefabbricato per la realizzazione di pilastri composti in acciaio-calcestruzzo, da realizzare per fasi, e di tipo autoportante in fase di realizzazione.

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106760879B (zh) * 2016-12-30 2022-09-20 西安建筑科技大学 一种巨型格构柱方形钢结构造粒塔塔桅体系
KR101990601B1 (ko) 2017-06-13 2019-09-30 주식회사 액트파트너 이중 구조적 개념의 메가 멀티튜브 컬럼
KR102011835B1 (ko) * 2018-12-11 2019-08-19 주식회사 엔알씨구조연구소 거푸집 탈착형 철근 선조립 기둥 구조물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08302819A (ja) * 1995-04-28 1996-11-19 Taisei Corp メガストラクチャー構造用柱
JP2000319995A (ja) * 1999-05-06 2000-11-21 Fujita Corp 柱と梁の接合部構造
KR20120032332A (ko) * 2010-09-28 2012-04-05 주식회사 아앤시티 다주형 모듈러 교각
KR101298476B1 (ko) * 2012-04-24 2013-08-21 (주)센구조연구소 강콘크리트 기둥
KR20150005411A (ko) * 2013-07-04 2015-01-14 (주)센벡스 골데크거푸집 일체형 선조립 기둥

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08302819A (ja) * 1995-04-28 1996-11-19 Taisei Corp メガストラクチャー構造用柱
JP2000319995A (ja) * 1999-05-06 2000-11-21 Fujita Corp 柱と梁の接合部構造
KR20120032332A (ko) * 2010-09-28 2012-04-05 주식회사 아앤시티 다주형 모듈러 교각
KR101298476B1 (ko) * 2012-04-24 2013-08-21 (주)센구조연구소 강콘크리트 기둥
KR20150005411A (ko) * 2013-07-04 2015-01-14 (주)센벡스 골데크거푸집 일체형 선조립 기둥

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106351257A (zh) * 2016-10-14 2017-01-25 北京工业大学 一种用于地下结构内置分隔板预制分体柱
IT201600117195A1 (it) * 2016-11-22 2018-05-22 Studio Mangoni Srl Un sistema semiprefabbricato per la realizzazione di pilastri composti in acciaio-calcestruzzo, da realizzare per fasi, e di tipo autoportante in fase di realizzazione.

Also Published As

Publication number Publication date
SG11201707119YA (en) 2017-10-30
MY188320A (en) 2021-11-29
KR101587583B1 (ko) 2016-02-02

Similar Documents

Publication Publication Date Title
WO2016143979A1 (ko) 메가컬럼 및 이의 시공방법
WO2021066294A1 (ko) 선조립 벽체 모듈을 이용한 선조립 벽체의 시공 방법
WO2016129826A1 (ko) 안전성이 강화된 피씨 트러스 벽체 구조물 및 이를 이용한 지하구조물 시공방법
WO2019059480A1 (ko) 기둥과 보를 접합하기 위한 접합부 코어 및 이를 이용한 기둥과 보의 접합 방법
WO2021167415A1 (ko) 무 해체 구조용 보 거푸집
WO2012002642A2 (ko) 내하성능 및 사용성능의 개선을 위한 프리스트레싱 브라켓이 구비된 강구조물
WO2009142416A9 (ko) 철근콘크리트 빔 단부연결용 보강재 및 이를 이용한 구조물 시공방법
WO2010079872A1 (ko) 티형 강재를 이용한 합성보 제작방법 및 이를 이용한 구조물 시공방법
WO2019074283A1 (ko) 강합성콘크리트용 선조립 철골 조립체와 경량 영구거푸집의 결합 구조
WO2012093836A2 (ko) 프리캐스트 또는 현장 타설로 만들어진 콘크리트 부재를 구비하는 복합빔 및, 그 시공방법
WO2012044097A2 (ko) 교량용 바닥판 구조체
WO2020231003A1 (ko) 강합성 콘크리트 부재용 선조립 철골 조립체와 경량 영구거푸집의 결합 구조
WO2016021811A1 (ko) 선조립 벽체 유니트 및 프레임
WO2015147414A1 (ko) 강-콘크리트 합성부재용 선조립 골조
WO2016171374A1 (ko) 보 관통형 기둥접합부 및 이를 이용한 건축물 상하부 병행 구축 공법
WO2012036335A1 (ko) 강판콘크리트 구조와 이질 구조간의 접합 방법
WO2020145542A1 (ko) 선조립 기둥용 탈형 거푸집 고정 밴드
WO2017034354A1 (ko) 데크거푸집 고정 구조
WO2019107696A1 (ko) 기둥-보 접합부
WO2020145541A1 (ko) 선조립 기둥용 탈형 거푸집 고정 밴드
WO2018038298A1 (ko) 탈부착 경량거푸집 구조
WO2020101237A1 (ko) 선조립 벽체 모듈
WO2019164077A1 (ko) 역t형 단면 혼합형 psc거더 및 이를 이용한 슬래브 시공방법
WO2021025309A1 (ko) 경량 영구거푸집이 구비된 강합성 콘크리트 기둥용 선조립 철골 조립체
WO2022025432A1 (ko) 중공 합성벽체용 선조립 모듈 및 이를 이용한 중공 합성벽체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884778

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201707119Y

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15884778

Country of ref document: EP

Kind code of ref document: A1