WO2015190074A1 - アニオン交換形電解質膜の製造方法及びその方法により得られたアニオン交換形電解質膜、それを備えた燃料電池用の膜-電極接合体及び燃料電池 - Google Patents

アニオン交換形電解質膜の製造方法及びその方法により得られたアニオン交換形電解質膜、それを備えた燃料電池用の膜-電極接合体及び燃料電池 Download PDF

Info

Publication number
WO2015190074A1
WO2015190074A1 PCT/JP2015/002819 JP2015002819W WO2015190074A1 WO 2015190074 A1 WO2015190074 A1 WO 2015190074A1 JP 2015002819 W JP2015002819 W JP 2015002819W WO 2015190074 A1 WO2015190074 A1 WO 2015190074A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte membrane
polymer substrate
anion exchange
anion
graft
Prior art date
Application number
PCT/JP2015/002819
Other languages
English (en)
French (fr)
Inventor
鈴木 孝
山本 瑞木
西井 弘行
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2015190074A1 publication Critical patent/WO2015190074A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F261/00Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00
    • C08F261/02Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00 on to polymers of unsaturated alcohols
    • C08F261/04Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00 on to polymers of unsaturated alcohols on to polymers of vinyl alcohol
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/12Macromolecular compounds
    • B01J41/14Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a method for producing an anion exchange type electrolyte membrane, an anion exchange type electrolyte membrane obtained by the method, a membrane-electrode assembly for a fuel cell comprising the same, and a fuel cell.
  • Polymer electrolyte fuel cells have the advantage that they can be driven in a temperature range close to room temperature, and are expected to be used in a wide range of fields.
  • an anion exchange fuel cell does not necessarily need to use platinum as a catalyst, so that the cost can be reduced, and further, since liquid fuel can be used, the size can be reduced.
  • An anion exchange fuel cell has a diaphragm between an anode and a cathode, and an anion exchange electrolyte membrane is used as the diaphragm.
  • an anion exchange type electrolyte membrane an electrolyte membrane having a graft chain is known (for example, Patent Document 1).
  • liquid fuels such as alcohol and hydrazine hydrate, which are easier to handle than hydrogen and enable system miniaturization, have been studied as fuels for anion exchange fuel cells.
  • hydrazine hydrate as a liquid fuel, which has high reactivity and does not generate carbon dioxide on the principle of power generation.
  • the ionic conductive species is a hydroxide ion, and therefore the electrolyte membrane is used in an alkaline atmosphere.
  • an anion exchange electrolyte membrane is provided with a quaternary ammonium group as an anion exchange group.
  • Quaternary ammonium groups are often formed by reaction of halogenomethylphenyl groups with trialkylamines from the viewpoint of reactivity and the like.
  • the quaternary ammonium group has a benzyltrialkylammonium structure.
  • the benzyltrialkylammonium structure may be decomposed by a reaction such as a nucleophilic substitution reaction with a hydroxide ion (OH ⁇ ) in an alkaline atmosphere.
  • an object of the present invention is to provide an anion-exchange electrolyte membrane with improved alkali resistance, in which quaternary ammonium groups are hardly decomposed in an alkaline atmosphere. Another object of the present invention is to provide a method suitable for producing such an anion exchange type electrolyte membrane. Another object of the present invention is to provide a membrane-electrode assembly (MEA) for an anion exchange type fuel cell utilizing the characteristics of the electrolyte membrane. Still another object of the present invention is to provide an anion exchange type fuel cell utilizing such characteristics of MEA.
  • MEA membrane-electrode assembly
  • the present inventors examined an anion exchange type electrolyte membrane having a quaternary ammonium group structure and improved alkali resistance. As a result of intensive studies, the present inventors have found that the object of the present invention can be achieved by the following method for producing an anion-exchange electrolyte membrane.
  • the present invention A step of introducing a graft chain formed by polymerization of a polymerizable monomer into a polymer substrate,
  • the water content of the polymer substrate exceeds 0.1%
  • the said polymerizable monomer provides the manufacturing method of an anion exchange type electrolyte membrane containing the monomer shown by following formula (1) or following formula (2).
  • R 1 to R 6 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • Structure A 1 which is bonded to a nitrogen atom to form a ring structure with the nitrogen atom, is a structure in which a saturated carbon chain having 3 to 7 carbon atoms or a part of the carbon contained in the saturated carbon chain is substituted with a heteroatom.
  • X 1 and X 2 are independently of each other a halide ion, a hydroxide ion or an anion of an organic acid or an inorganic acid.
  • the moisture content is the ratio of the weight difference between the weight of the polymer substrate at the time of moisture and the weight of the polymer substrate at the time of drying to the weight of the polymer substrate at the time of drying,
  • the weight of the polymer substrate at the time of drying is a value obtained by weighing the weight of the polymer substrate at the time when the polymer substrate was left to stand for 2 hours or more in an atmosphere of 60 ° C. and dried,
  • the weight of the polymer substrate at the time of water content is a value measured after maintaining the state in which the polymer substrate at the time of drying is immersed in water kept at 30 ° C. for 2 hours or more.
  • the present invention provides: An anion exchange type electrolyte membrane obtained by the method for producing an anion exchange type electrolyte membrane of the present invention is provided.
  • the present invention provides: An MEA for an anion exchange fuel cell comprising the anion exchange electrolyte membrane of the present invention is provided.
  • the present invention provides: An anion exchange fuel cell comprising the MEA for an anion exchange fuel cell of the present invention is provided.
  • an anion exchange type electrolyte membrane having good alkali resistance can be obtained.
  • An MEA utilizing the excellent characteristics of the anion exchange electrolyte membrane can be obtained.
  • an anion exchange fuel cell utilizing the excellent characteristics of the MEA can be obtained.
  • graft monomer (M) the monomer represented by the formula (1) or the formula (2) may be referred to as “graft monomer (M)”.
  • the method for producing an anion-exchange electrolyte membrane of this embodiment includes a step of introducing a graft chain formed by polymerizing a polymerizable monomer into a polymer substrate.
  • An example of a method for producing the anion exchange electrolyte membrane of this embodiment is as follows: (I) preparing a polymer substrate; (Ii) irradiating the polymer substrate with radiation; (Iii) introducing a graft chain formed by polymerizing the polymerizable monomer into the polymer substrate in this order.
  • electrolyte membranes used for fuel cells and the like often use a fluorine-containing base material such as polytetrafluoroethylene or a polyolefin base material such as polyethylene.
  • pores of a microporous polymer substrate such as a polyolefin resin are filled with an electrolyte polymer formed from the polymerizable monomer.
  • an organic solvent having permeability to a substrate and hydrophilicity is used as an introduction agent for a polymerizable monomer.
  • the electrolyte membrane obtained by using this method the electrolyte polymer is only filled in the pores of the base material and is not bonded to the base material. Therefore, the electrolyte polymer may elute from the pores during long-term operation.
  • the moisture content of the polymer substrate exceeds 0.1%.
  • the water content of the polymer substrate is preferably in the range of more than 0.1% and 100% or less, more preferably in the range of 1% to 80%, and more preferably in the range of 2% to 60%. More preferably, it is more preferably in the range of 4% to 40%, and particularly preferably in the range of 5% to 20%.
  • the water content of the polymer substrate is 0.1% or less, the graft polymerizability is not exhibited. If the water content of the polymer substrate is too high, the mechanical properties of the resulting film may be reduced.
  • the moisture content is the ratio of the weight difference between the weight of the polymer substrate at the time of moisture content and the weight of the polymer substrate at the time of drying to the weight of the polymer substrate at the time of drying.
  • the weight of the polymer base material at the time of drying is a value obtained by weighing the weight of the polymer base material when the polymer base material is allowed to stand for 2 hours or more in an atmosphere of 60 ° C. and dried.
  • the weight of the polymer substrate is a value obtained by weighing the polymer substrate after maintaining the state in which the polymer substrate at the time of drying is immersed in water kept at 30 ° C. for 2 hours or more. When the polymer substrate is left to stand in an atmosphere of 60 ° C.
  • the state in which the weight change of the polymer substrate does not occur is, for example, a weight W t obtained by allowing the polymer substrate to stand in a 60 ° C. atmosphere for a predetermined time (t time) of 2 hours or more and drying, Furthermore, it means that the weight difference from the weight W t +0.5 left to stand for 30 minutes (t + 0.5 hours) and dried is in the range of ⁇ 0.5% of W t . Maintaining the state in which the polymer substrate is immersed in water kept at 30 ° C. for 2 hours or more means that the polymer substrate does not change in weight based on the same criteria as described above.
  • the polymer substrate preferably has at least one selected from the group consisting of hydroxyl group, carboxyl group, ester group, ether group, amide group and amino group. These functional groups may be introduced into the polymer base material by a hydrophilic treatment.
  • hydrophilization treatment commonly used techniques such as corona treatment, plasma treatment, UV treatment, etc. may be used.
  • hydrophilization treatment a method of introducing a functional group or a polymer having a functional group by a reaction with a radical formed by irradiation with radiation such as an electron beam may be used.
  • the resin contained in the polymer substrate a known resin may be used as long as the resin has the above-described water content, is insoluble in water and is stable in an alkaline atmosphere, and does not impair the effects of the invention. it can.
  • the resin contained in the polymer substrate include polycarbonate resin; polyester resin such as polyethylene terephthalate; cellulosic resin such as cellophane; polyvinyl acetal resin such as polyvinyl formal and polyvinyl butyral; polyamide resin such as nylon; (meth) acrylic Resin; Urea resin; Phenol resin; Melamine resin; Epoxy resin; Acetal resin (polyacetal); Polyvinyl acetate resin; Polyvinyl alcohol resin; Ethylene-vinyl alcohol copolymer; Hydrophobized polyolefin resin; The polystyrene resin made is mentioned.
  • the resin contained in the polymer substrate it is preferable to use a polyvinyl alcohol resin, an ethylene-vinyl alcohol copo
  • the ethylene content in the copolymer is preferably 1 to 99 mol%, more preferably 20 to 50 mol%. If the ethylene content is too low, the resulting anion exchange electrolyte membrane may be easily dissolved in water, and if it is too high, the graft polymerizability may be reduced.
  • the degree of saponification is preferably 70 mol% or more, and more preferably 98 mol% or more. If the degree of saponification is too small, the resulting anion exchange electrolyte membrane may be easily dissolved in water.
  • the resin contained in the polymer substrate may be cross-linked from the viewpoint of suppressing swelling of the anion exchange electrolyte membrane.
  • the crosslinking method is not particularly limited as long as it does not inhibit the introduction of graft chains, which will be performed later, and can suppress swelling of the polymer base material, and a known method can be used.
  • Examples of the cross-linking method include chemical cross-linking using a cross-linking agent and radiation cross-linking using radicals formed by irradiation with radiation. Either method may be used or a plurality of methods may be used in combination. .
  • the thickness of the polymer substrate is not particularly limited, but is, for example, in the range of 5 to 250 ⁇ m. From the viewpoint of film strength, the thickness of the polymer substrate is preferably in the range of 15 to 150 ⁇ m.
  • an anion-exchange electrolyte membrane that has good membrane resistance, hardly breaks the membrane, has high strength, and is unlikely to cause membrane defects such as pinholes. Can be obtained.
  • an inorganic base for example, potassium hydroxide
  • ionizing radiation such as ⁇ -rays, ⁇ -rays, ⁇ -rays, electron beams and ultraviolet rays may be used, and it is particularly preferable to use ⁇ -rays or electron beams.
  • the irradiation dose is preferably in the range of 1 to 300 kGy, more preferably in the range of 10 to 100 kGy. If the irradiation dose is too small, the amount of radicals generated on the polymer substrate by irradiation with radiation may be reduced, and graft polymerization may be difficult. When the irradiation dose becomes too large, the polymer base material may be decomposed by the irradiation of radiation, and many radicals may be generated by the irradiation of the radiation to cause an excessive polymerization reaction.
  • the polymerizable monomer includes a monomer (graft monomer (M)) represented by the following formula (1) or the following formula (2).
  • R 1 to R 6 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • R 1 , R 2 , R 5 and R 6 are preferably each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 3 and R 4 are preferably each independently an alkyl group having 1 to 4 carbon atoms.
  • R 1 to R 6 have a small number of carbon atoms.
  • the structure A 1 that is bonded to a nitrogen atom to form a ring structure with the nitrogen atom is a structure in which a saturated carbon chain having 3 to 7 carbon atoms or a part of carbon contained in the saturated carbon chain is substituted with a heteroatom.
  • the structure A 1 is preferably a structure in which a saturated carbon chain having 4 to 5 carbon atoms or a part of carbon contained in the saturated carbon chain is substituted with a hetero atom.
  • the hetero atom include a nitrogen atom and an oxygen atom.
  • the counter anion is generally used by ion exchange. Therefore, X 1 and X 2 are not particularly limited unless ion exchange is difficult, and known counter anions can be used.
  • X 1 and X 2 are independently of each other halide ion, hydroxide ion or anion of organic acid or inorganic acid. Since the counter anion is used in the form of hydroxide ions, X 1 and X 2 are preferably hydroxide ions. From the viewpoint of the storage stability of the anion exchange group, X 1 and X 2 are preferably halide ions, organic acid or inorganic acid anions. Examples of halide ions include fluoride ions, chloride ions, bromide ions, and iodide ions.
  • the halide ions are preferably fluoride ions, chloride ions or bromide ions.
  • anion of the organic acid a bistrifluoromethanesulfonimide anion, a thiocyanate anion, and a tetrakis [3,5-bis (trifluoromethyl) phenyl] borate anion are preferable.
  • anion of the inorganic acid carbonate ion, hydrogen carbonate ion, tetrafluoroborate anion or hexafluorophosphate anion is preferable.
  • graft monomer examples include diallyldimethylammonium chloride (DADMAC), diallyldimethylammonium bistrifluoromethanesulfonimide (DADMA-TFSI), and tetraallylammonium chloride (TAAC).
  • DADMAC diallyldimethylammonium chloride
  • DADMA-TFSI diallyldimethylammonium bistrifluoromethanesulfonimide
  • TAAC tetraallylammonium chloride
  • the step of adding an anion exchange group can be omitted in this embodiment.
  • the polymerizable monomer may contain a graft comonomer represented by any one of the formulas (3) to (7) together with the graft monomer (M).
  • Y is any structure represented by the following formula (8).
  • R 7 to R 12 and R 15 to R 23 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • R 7 to R 12 , R 15 and R 16 are preferably each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 13 and R 14 each independently represent an alkyl group having 1 to 3 carbon atoms, and the total value of the carbon number of R 13 and the carbon number of R 14 is in the range of 2 to 6.
  • R 17 to R 23 are preferably each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • X 3 to X 6 are each independently a halide ion, a hydroxide ion, or an anion of an organic acid or an inorganic acid.
  • the polymerizable monomer further contains a graft comonomer represented by the formula (3) or the formula (4), it becomes easy to introduce a crosslinked structure into the graft chain. As a result, it can contribute to improvement of alkali resistance and heat resistance of the obtained anion exchange type electrolyte membrane.
  • the preferred content of the graft comonomer represented by the formulas (3) and (4) varies depending on the structure of the graft comonomer, the composition of the graft polymerization solution, the reaction temperature at which the graft polymerization is performed, and the use environment of the anion exchange type electrolyte membrane. For example, it is 0.1 to 1000 parts by weight, particularly 0.5 to 800 parts by weight with respect to 100 parts by weight of the graft monomer (M).
  • the content of the graft comonomer represented by the formulas (5) to (7) depends on the structure of the graft monomer or the graft comonomer, the composition of the graft polymerization solution, the reaction temperature for carrying out the graft polymerization, and the use environment of the anion exchange type electrolyte membrane. Since it is different, it cannot be generally described, but for example, it is 1 to 5000 parts by weight, particularly 50 to 2000 parts by weight, with respect to 100 parts by weight of the graft monomer (M).
  • the graft polymerization reaction can be performed, for example, by bringing the polymer base material into contact with a polymerizable monomer.
  • the polymerizable monomer may be subjected to polymerization alone, or may be prepared as a solution (polymerizable monomer solution) in which the polymerizable monomer is dissolved in a solvent.
  • Examples of the solvent for dissolving the polymerizable monomer include water; alcohols such as methanol, ethanol or isopropanol; N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), Examples include aprotic polar solvents such as N-methylpyrrolidone (NMP).
  • a solvent may be used independently and may use 2 or more types together.
  • the concentration of the polymerizable monomer contained in the polymerizable monomer solution may be determined according to the polymerizability of the polymerizable monomer and the target graft ratio, and is, for example, 20% by weight or more. If the concentration of the polymerizable monomer is too low, the graft polymerization reaction may not proceed sufficiently.
  • oxygen in the polymerizable monomer or polymerizable monomer solution is removed using a known method such as freeze degassing or bubbling using nitrogen gas or the like. It is preferable.
  • the reaction time for carrying out the graft polymerization is, for example, 10 minutes to 12 hours.
  • the reaction temperature for carrying out the graft polymerization is, for example, 0 to 90 ° C., particularly 40 to 80 ° C.
  • the graft ratio can be controlled by these reaction temperature and reaction time.
  • the graft rate of the anion exchange electrolyte membrane is preferably in the range of 5 to 200%, for example. By improving the graft ratio, the ionic conductivity of the resulting anion exchange electrolyte membrane can be improved.
  • a reaction in a solid-liquid two-phase system will be described as an example of a graft polymerization reaction having a step of irradiating radiation.
  • the polymerizable monomer solution is placed in a glass or stainless steel container.
  • vacuum degassing of the polymerizable monomer solution and bubbling using an inert gas such as nitrogen are performed.
  • a polymer base material irradiated with radiation in advance is put into a polymerizable monomer solution to perform graft polymerization.
  • the polymer substrate (graft polymer) into which the polymerizable monomer is polymerized and the graft chain is introduced is taken out of the solution.
  • the obtained graft polymer is washed with the solvent 2 to 6 times and then dried.
  • a solvent in which the polymerizable monomer and the polymer of the polymerizable monomer are easily dissolved and the polymer base material and the graft polymer are not dissolved may be used.
  • acetone, methanol, ethanol, water, or the like can be used.
  • anion exchange type electrolyte membrane In the anion exchange type electrolyte membrane of this embodiment, a graft chain is introduced into a polymer substrate.
  • the anion exchange type electrolyte membrane of this embodiment is obtained by the method for producing an anion exchange type electrolyte membrane of the present invention.
  • the graft chain of the anion exchange electrolyte membrane of the present embodiment includes a structure represented by the following formula (9) or the following formula (10).
  • the structure represented by the formula (9) is a structure derived from the monomer represented by the formula (1)
  • the structure represented by the formula (10) is a structure derived from the monomer represented by the formula (2).
  • X 7 and X 8 are not particularly limited unless ion exchange is difficult, and known counter anions can be used.
  • X 7 and X 8 are, independently of one another, halide ions, hydroxide ions, or anions of organic or inorganic acids. Since the counter anion is used in the form of hydroxide ions, X 7 and X 8 are preferably hydroxide ions. From the viewpoint of the storage stability of the anion exchange group, X 7 and X 8 are preferably halide ions or organic acid anions. Examples of halide ions include fluoride ions, chloride ions, bromide ions, and iodide ions.
  • the halide ions are preferably fluoride ions, chloride ions or bromide ions.
  • anion of the organic acid a bistrifluoromethanesulfonimide anion, a thiocyanate anion, and a tetrakis [3,5-bis (trifluoromethyl) phenyl] borate anion are preferable.
  • anion of the inorganic acid carbonate ion, hydrogen carbonate ion, tetrafluoroborate anion or hexafluorophosphate anion is preferable.
  • the MEA of this embodiment includes the anion exchange electrolyte membrane of the present invention and a catalyst layer disposed on the surface of the anion exchange electrolyte membrane.
  • FIG. 1 shows an example of an MEA using the anion exchange electrolyte membrane of the present invention.
  • the MEA 1 shown in FIG. 1 includes an anion exchange electrolyte membrane 2, an anode electrode 3, and a cathode electrode 4.
  • the anode electrode 3 is on one main surface of the anion exchange electrolyte membrane 2
  • the cathode electrode 4 is an anion exchange electrolyte.
  • the other main surface of the film 2 is disposed on each other.
  • a catalyst layer provided in a known MEA used in an anion exchange fuel cell can be used.
  • the catalyst does not necessarily need to be a noble metal such as platinum, and for example, a base metal such as nickel, cobalt, iron, silver or the like can be used.
  • the structure of the catalyst layer, such as the specific catalyst contained, may be different or the same on the anode side (anode catalyst layer) and cathode side (cathode catalyst layer) of the MEA.
  • the anion exchange fuel cell of this embodiment includes an MEA having the anion exchange electrolyte membrane of the present invention.
  • FIG. 2 an example of the principal part of the anion exchange type fuel cell of this embodiment is shown.
  • An anion exchange type fuel cell 11 shown in FIG. 2 is arranged so as to sandwich a pair of electrodes (anode electrode 3 and cathode electrode 4) disposed so as to sandwich the anion exchange type electrolyte membrane.
  • a pair of separators anode separator 5 and cathode separator 6
  • each member is joined in a state where pressure is applied in a direction perpendicular to the main surface of the member.
  • the anion exchange type electrolyte membrane 2 and the electrodes 3 and 4 constitute an MEA.
  • fuel is supplied to the anode side and oxidant is supplied to the cathode side.
  • the fuel is, for example, an alkaline fuel containing alcohols, hydrazine (hydrate), etc., and has high reactivity and does not generate carbon dioxide on the principle of power generation. Therefore, a fuel containing hydrazine (hydrate) is preferable.
  • the oxidizing agent is, for example, oxygen in the air.
  • an inorganic base such as potassium hydroxide may be added to the fuel in order to improve the cell reaction activity or suppress poisoning due to carbon dioxide or the like.
  • the anion exchange fuel cell of this embodiment has good alkali resistance, and even when the fuel cell is operated at a high temperature, the performance of the fuel cell is deteriorated due to the deterioration of the anion exchange electrolyte membrane. Hard to do.
  • the anion exchange fuel cell of the present embodiment can include a known member as a member constituting the anion exchange fuel cell, in addition to the MEA of the present invention.
  • the member includes, for example, a gas diffusion layer and a separator when the fuel cell is a single cell, a fuel supply device, an oxidant supply device, a humidifier, a current collector plate, and a temperature at which the power generation status is detected when the fuel cell is viewed as a system. Sensors, oxygen sensors, flow meters, humidity sensors, etc.
  • room temperature is 23 ° C.
  • DADMAC diallyldimethylammonium chloride CMS: 4-chloromethylstyrene EVOH: ethylene-vinyl alcohol copolymer EVOH (44): ethylene-vinyl alcohol copolymer (containing 44 mol% of ethylene units) EVOH (32): ethylene-vinyl alcohol copolymer (containing 32 mol% of ethylene units)
  • PVA polyvinyl alcohol (saponification degree 98 mol%)
  • UHMWPE Ultra high molecular weight polyethylene
  • the polymer substrate was allowed to stand for 2 hours or more in a dryer at 60 ° C., dried until no change in weight occurred, and then cooled in a desiccator.
  • the weight of the polymer base material at the time of drying was determined by weighing the polymer base material after cooling out from the desiccator. After maintaining the state in which the above-mentioned polymer base material weighed at the time of drying was immersed in water kept at 30 ° C. for 2 hours or more until no change in the weight of the polymer base material occurred, the polymer base material was taken out from the water. .
  • the moisture content is the ratio of the weight difference between the weight of the polymer substrate at the time of moisture content and the weight of the polymer substrate at the time of drying to the weight of the polymer substrate at the time of drying.
  • the anion exchange electrolyte membrane was immersed in 3 mol / L (23 ° C.) saline for 10 hours or more to convert the counter anion of the anion exchange electrolyte membrane into chloride ions. Thereafter, this anion exchange type electrolyte membrane was immersed in a 1 mol / L sodium nitrate (NaNO 3 ) aqueous solution for 12 hours or more. The liberated chloride ions were titrated with a 0.05 mol / L silver nitrate (AgNO 3 ) aqueous solution, and the ion exchange capacity was measured.
  • W 0 is the weight (g) of the polymer base material before graft polymerization in the dry state
  • W 1 is the weight (g) of the graft polymer after graft polymerization in the dry state.
  • the “weight in the dry state” is a value in a state where the weight change is eliminated after standing for 2 hours or more in an atmosphere of 60 ° C.
  • Example 1 EVOH (44) was used as the polymer substrate, and the polymer substrate was irradiated with an electron beam of 90 kGy at room temperature under vacuum. This polymer substrate was stored in an atmosphere of ⁇ 60 ° C. and cut into a square shape with a side length of 5 cm before the graft polymerization. An aqueous solution containing 60% by weight of DADMAC as the graft monomer (M) was prepared. Oxygen in the aqueous solution was removed using nitrogen gas. EVOH (44) irradiated with an electron beam was immersed in this aqueous solution, and the temperature of the aqueous solution (graft polymerization temperature) was maintained at 70 ° C. for 5 hours to perform graft polymerization.
  • graft polymerization temperature graft polymerization temperature
  • the membrane after graft polymerization was taken out.
  • the process of impregnating with water for 1 hour or more and washing was repeated several times.
  • the washed membrane was placed in a drying oven and dried in an atmosphere at 60 ° C. for 2 hours or longer to obtain a graft membrane of EVOH (44) in which DADMAC was graft polymerized.
  • the graft ratio of the obtained graft membrane was 20%.
  • Example 2 A graft membrane was obtained in the same manner as in Example 1 except that EVOH (32) was used as the polymer substrate.
  • the graft ratio of the obtained graft membrane (EVOH (32) -g-DADMAC) was 36%.
  • Example 3 A graft membrane was obtained in the same manner as in Example 2 except that the polymerization time for graft polymerization was changed to 6 hours.
  • the graft ratio of the obtained graft membrane (EVOH (32) -g-DADMAC) was 43%.
  • Example 4 The polymer substrate EVOH (44) irradiated with an electron beam of 90 kGy was cut into a rectangle having a short side of 9.5 cm and a long side of 20 cm. A graft membrane was obtained in the same manner as in Example 1 except that this polymer substrate was used and the polymerization temperature was changed to 60 ° C. The graft ratio of the obtained graft membrane (EVOH (44) -g-DADMAC) was 21%.
  • Example 5 A graft membrane was obtained in the same manner as in Example 4 except that EVOH (32) was used as the polymer substrate.
  • the graft ratio of the obtained graft membrane (EVOH (32) -g-DADMAC) was 34%.
  • Example 6 The polymer substrate EVOH (44) irradiated with an electron beam of 90 kGy was cut into a rectangle having a short side of 8 cm and a long side of 10 cm. A graft membrane was obtained in the same manner as in Example 1 except that this polymer substrate was used and the polymerization temperature was 50 ° C. The graft ratio of the obtained graft membrane (EVOH (44) -g-DADMAC) was 18%.
  • Example 7 A graft membrane was obtained in the same manner as in Example 6 except that EVOH (32) was used as the polymer substrate.
  • the graft ratio of the obtained graft membrane (EVOH (32) -g-DADMAC) was 28%.
  • Example 8 A graft membrane was obtained in the same manner as in Example 1 except that PVA was used as the polymer substrate and the polymerization time was 3 hours.
  • the graft ratio of the obtained graft membrane (PVA-g-DADMAC) was 25%.
  • aqueous solution containing 60% by weight of DADMAC (monomer) was prepared, and oxygen in this aqueous solution was removed using nitrogen gas.
  • UHMWPE irradiated with an electron beam was immersed in this aqueous solution, and the temperature of the aqueous solution (graft polymerization temperature) was maintained at 70 ° C. for 5 hours to perform graft polymerization. Thereafter, the membrane after graft polymerization was taken out. The process of impregnating with water for 1 hour or more and washing was repeated several times. The washed membrane was placed in a drying oven and dried at 60 ° C. for 2 hours or more. The graft ratio of the obtained film was 0%.
  • Comparative Example 2 The same procedure as in Comparative Example 1 was conducted except that CMS (purity 100%) was used as a monomer and the polymerization time was 0.5 hours. The graft ratio of the obtained graft membrane was 96%.
  • Table 1 shows the graft polymerization conditions and graft ratio
  • Table 2 summarizes the results of the durability test of the obtained electrolyte membrane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Graft Or Block Polymers (AREA)
  • Conductive Materials (AREA)

Abstract

 重合性モノマーが重合してなるグラフト鎖を高分子基材に導入する工程、を具備し、高分子基材の含水率は0.1%を超え、重合性モノマーは特定の構造により示されるモノマーを含む、アニオン交換形電解質膜の製造方法である。

Description

アニオン交換形電解質膜の製造方法及びその方法により得られたアニオン交換形電解質膜、それを備えた燃料電池用の膜-電極接合体及び燃料電池
 本発明は、アニオン交換形電解質膜の製造方法及びその方法により得られたアニオン交換形電解質膜、それを備えた燃料電池用の膜-電極接合体及び燃料電池に関する。
 固体高分子形燃料電池は、常温に近い温度領域で駆動できるという利点を有し、幅広い分野での使用が期待されている。中でもアニオン交換形燃料電池は、触媒に必ずしも白金を用いる必要がないため低コスト化が可能であり、さらに液体燃料を使用できるために小型化が可能である。アニオン交換形燃料電池は、アノードとカソードとの間に隔膜を有し、隔膜としてはアニオン交換形電解質膜が用いられる。アニオン交換形電解質膜としては、グラフト鎖を有する電解質膜が知られている(例えば特許文献1)。
 また、アニオン交換形燃料電池の燃料として、水素よりも取り扱いが容易でシステムの小型化を可能とするアルコール、ヒドラジン水和物等の液体燃料が検討されている。特に、液体燃料として、反応性が高く発電原理上二酸化炭素が生じないヒドラジン水和物の研究が進められている。このような液体燃料を用いたアニオン交換形燃料電池においては、イオン伝導種が水酸化物イオンであるため、電解質膜はアルカリ性雰囲気下で使用される。
特表2010-516853号公報
 一般的に、アニオン交換形電解質膜には、アニオン交換基として4級アンモニウム基が備えられる。4級アンモニウム基は、反応性等の観点から、ハロゲノメチルフェニル基とトリアルキルアミンとの反応により形成されることが多い。この場合、4級アンモニウム基はベンジルトリアルキルアンモニウム構造を有する。しかし、ベンジルトリアルキルアンモニウム構造は、アルカリ性雰囲気下では水酸化物イオン(OH-)による求核置換反応等の反応によって、分解することがある。
 従って、本発明では、アルカリ性雰囲気下において4級アンモニウム基の分解が生じにくい、耐アルカリ性の向上したアニオン交換形電解質膜を提供することを目的とする。本発明の目的は、さらに、このようなアニオン交換形電解質膜の製造に適した方法を提供することにある。本発明の別の目的は、このような電解質膜の特性を活かしたアニオン交換形燃料電池用の膜-電極接合体(MEA)を提供することにある。本発明のさらに別の目的は、このようなMEAの特性を活かしたアニオン交換形燃料電池を提供することにある。
 本発明者等は、4級アンモニウム基の構造を有し、耐アルカリ性の向上したアニオン交換形電解質膜について検討した。本発明者等は、鋭意検討の結果、以下のアニオン交換形電解質膜の製造方法により本発明の目的を達成できることを見出した。
 すなわち、本発明は、
 重合性モノマーが重合してなるグラフト鎖を高分子基材に導入する工程、を具備し、
 前記高分子基材の含水率は0.1%を超え、
 前記重合性モノマーは、下記式(1)又は下記式(2)により示されるモノマーを含む、アニオン交換形電解質膜の製造方法、を提供する。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 ここで、R1~R6は、互いに独立して、水素原子又は炭素数1~8のアルキル基を示し、
 窒素原子に結合して窒素原子とともに環構造を形成する構造A1は、炭素数3~7の飽和炭素鎖又は前記飽和炭素鎖に含まれる炭素の一部がヘテロ原子で置換された構造であり、
 X1及びX2は、互いに独立して、ハロゲン化物イオン、水酸化物イオン又は有機酸若しくは無機酸のアニオンである。
 含水率は、乾燥時の高分子基材の重量に対する、含水時の高分子基材の重量と乾燥時の高分子基材の重量との重量差の比率であり、
 乾燥時の高分子基材の重量は、60℃の雰囲気下に高分子基材を2時間以上静置して乾燥させた時点の高分子基材の重量を秤量した値であり、
 含水時の高分子基材の重量は、前記乾燥時の高分子基材を30℃に保温した水中に浸漬させた状態を2時間以上維持した後、秤量した値である。
 別の側面において、本発明は、
 本発明のアニオン交換形電解質膜の製造方法により得られたアニオン交換形電解質膜、を提供する。
 さらに別の側面において、本発明は、
 本発明のアニオン交換形電解質膜を備えたアニオン交換形燃料電池用のMEA、を提供する。
 さらに別の側面において、本発明は、
 本発明のアニオン交換形燃料電池用のMEAを備えたアニオン交換形燃料電池、を提供する。
 本発明によれば、耐アルカリ性の良好なアニオン交換形電解質膜を得ることができる。このアニオン交換形電解質膜の優れた特性を活かしたMEAを得ることができる。さらに、このMEAの優れた特性を活かしたアニオン交換形燃料電池を得ることができる。
本発明のMEAの一例を模式的に示す断面図である。 本発明の燃料電池の一例を模式的に示す断面図である。
 以下は本発明の実施形態を例示する説明であって、本発明を以下の実施形態に制限する趣旨ではない。
 以下において、式(1)又は式(2)により示されるモノマーを、「グラフトモノマー(M)」と称することがある。
(アニオン交換形電解質膜の製造方法)
 本実施形態のアニオン交換形電解質膜の製造方法は、重合性モノマーが重合してなるグラフト鎖を高分子基材に導入する工程、を具備する。本実施形態のアニオン交換形電解質膜の製造方法の一例は、
(i)高分子基材を準備する工程と、
(ii)高分子基材に放射線を照射する工程と、
(iii)重合性モノマーが重合してなるグラフト鎖を高分子基材に導入する工程と、をこの順に具備する。
 工程(i)について説明する。
 一般的に、燃料電池等に使用される電解質膜では、ポリテトラフルオロエチレン等の含フッ素系の基材又はポリエチレン等のポリオレフィン系の基材が用いられることが多い。
 これらの基材にグラフトモノマー(M)を有する重合性モノマーを導入する方法として、例えば、ポリオレフィン系樹脂等の微多孔高分子基材の細孔に重合性モノマーから形成された電解質ポリマーを充填する方法(細孔フィリング重合法)がある。この方法では、基材に対する浸透性と親水性とを有する有機溶媒が、重合性モノマーの導入剤として用いられる。しかし、この方法を用いて得られた電解質膜では、電解質ポリマーは基材の細孔に充填されているだけであり、基材とは結合していない。従って、長期間の運転中に細孔から電解質ポリマーが溶出する可能性がある。
 これに対して、高分子基材の表面にグラフトモノマー(M)が重合してなるグラフト鎖を導入することが可能であれば、高分子基材とグラフト鎖との解離が生じにくいアニオン交換形電解質膜が得られる。本発明者等は、後述するように、高分子基材として超高分子量ポリエチレン膜を用い、グラフトモノマー(M)の導入を試みた。しかし、グラフト鎖は形成できなかった。
 本発明者等がさらに検討を重ねたところ、親水性の高分子基材を用いることによって、高分子基材にグラフトモノマー(M)が重合してなるグラフト鎖を導入することが可能となることが見出された。具体的には、特定の含水率を有する高分子基材を用いることによって、より多くのグラフトモノマー(M)の導入が可能になることが分かった。
 本実施形態において、高分子基材の含水率は、0.1%を超える。高分子基材の含水率は、0.1%を超え100%以下の範囲にあることが好ましく、1%以上80%以下の範囲にあることがより好ましく、2%以上60%以下の範囲にあることがさらに好ましく、4%以上40%以下の範囲にあることが特に好ましく、5%以上20%以下の範囲にあることが極めて好ましい。高分子基材の含水率が0.1%以下の場合、グラフト重合性が発現しない。高分子基材の含水率が高くなりすぎると、得られる膜の機械的物性が低下することがある。
 ここで、含水率は、乾燥時の高分子基材の重量に対する、含水時の高分子基材の重量と乾燥時の高分子基材の重量との重量差の比率である。乾燥時の高分子基材の重量は、高分子基材を60℃の雰囲気下に2時間以上静置して乾燥させた時点の高分子基材の重量を秤量した値であり、含水時の高分子基材の重量は、上記の乾燥時の高分子基材を30℃に保温した水中に浸漬させた状態を2時間以上維持した後、この高分子基材を秤量した値である。高分子基材を60℃の雰囲気下に2時間以上静置して乾燥させるとは、高分子基材の重量変化が生じない状態となることを意味する。静置する時間は2時間以上であればよく、例えば2時間であってよく、3時間であってもよい。高分子基材の重量変化が生じない状態とは、例えば、高分子基材を60℃の雰囲気下に2時間以上の所定の時間(t時間)静置して乾燥させた重量Wtと、さらに30分間(t+0.5時間)静置して乾燥させた重量Wt+0.5との重量差がWtの±0.5%の範囲内にあることをいう。高分子基材を30℃に保温した水中に浸漬させた状態を2時間以上維持するとは、上記と同様の判断基準で高分子基材の重量変化が生じない状態となることを意味する。
 高分子基材は、ヒドロキシル基、カルボキシル基、エステル基、エーテル基、アミド基及びアミノ基からなる群より選ばれる少なくとも1つを有することが好ましい。これらの官能基は、親水化処理により高分子基材に導入されたものでもよい。
 親水化処理としては、コロナ処理、プラズマ処理、UV処理等の一般的に用いられる手法を用いてもよい。親水化処理として、電子線等の放射線の照射によって形成されたラジカルとの反応によって、官能基又は官能基を有するポリマーを導入する方法を用いてもよい。
 高分子基材に含まれる樹脂としては、上述の含水率を有し、水に不溶かつアルカリ性雰囲気下で安定な樹脂であれば、発明の効果を阻害しない範囲内で公知の樹脂を用いることができる。高分子基材に含まれる樹脂として、例えば、ポリカーボネート樹脂;ポリエチレンテレフタレート等のポリエステル樹脂;セロハン等のセルロース系樹脂;ポリビニルホルマール、ポリビニルブチラール等のポリビニルアセタール樹脂;ナイロン等のポリアミド樹脂;(メタ)アクリル樹脂;ユリア樹脂;フェノール樹脂;メラミン樹脂;エポキシ樹脂;アセタール樹脂(ポリアセタール);ポリ酢酸ビニル樹脂;ポリビニルアルコール樹脂;エチレン-ビニルアルコール共重合体;親水化処理がなされたポリオレフィン樹脂、親水化処理がなされたポリスチレン樹脂が挙げられる。高分子基材に含まれる樹脂としては、ポリビニルアルコール樹脂、エチレン-ビニルアルコール共重合体、親水化処理がなされたポリオレフィン樹脂を用いることが好ましい。
 高分子基材に含まれる樹脂がエチレン-ビニルアルコール共重合体を含む場合、共重合体中のエチレン含量は1~99mol%であることが好ましく、20~50mol%であることがより好ましい。エチレン含量が少なすぎると、得られるアニオン交換形電解質膜が水に溶解しやすい場合があり、多くなりすぎるとグラフト重合性が低下する場合がある。
 高分子基材に含まれる樹脂がポリビニルアルコール樹脂を含む場合、そのケン化度は70mol%以上であることが好ましく、98mol%以上であることがより好ましい。ケン化度が小さすぎると、得られるアニオン交換形電解質膜が水に溶解しやすい場合がある。
 高分子基材に含まれる樹脂は、アニオン交換形電解質膜の膨潤を抑制する観点から、架橋されていてもよい。架橋方法は、後程実施されるグラフト鎖の導入を阻害せず、高分子基材の膨潤を抑制できる限りにおいて、特に限定されず公知の方法を用いることができる。架橋方法としては、例えば、架橋剤を用いた化学架橋、放射線の照射によって形成されるラジカルを利用した放射線架橋が挙げられ、いずれの方法を用いてもよいし複数の方法を併用してもよい。
 高分子基材の厚みは、特に限定されないが、例えば5~250μmの範囲にある。膜強度の観点から、高分子基材の厚みは15~150μmの範囲にあることが好ましい。このような高分子基材を用いることによって、良好な膜抵抗を有しつつ、膜の破損が生じにくく、強度が良好であり、ピンホール等の膜の欠陥が発生しにくいアニオン交換形電解質膜を得ることができる。また、このような高分子基材を用いることによって、燃料及び燃料に添加されている無機塩基(例えば水酸化カリウム)の透過を抑制することができる。
 工程(ii)について説明する。
 高分子基材に照射する放射線としては、例えばα線、β線、γ線、電子線、紫外線等の電離放射線を用いてもよく、特にγ線又は電子線を用いることが好ましい。照射線量は、好ましくは1~300kGyの範囲にあり、より好ましくは10~100kGyの範囲にある。照射線量が少なすぎると、放射線の照射により高分子基材に生じるラジカルの生成量が少なくなることがあり、グラフト重合が困難になることがある。照射線量が多くなりすぎると、放射線の照射により高分子基材の分解が生じることがあり、放射線の照射により多くのラジカルが生じ過剰な重合反応が生じることがある。
 工程(iii)について説明する。
 重合性モノマーは、下記式(1)又は下記式(2)により示されるモノマー(グラフトモノマー(M))を含む。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 ここで、R1~R6は、互いに独立して、水素原子又は炭素数1~8のアルキル基を示す。R1、R2、R5及びR6は、互いに独立して、水素原子又は炭素数1~4のアルキル基であることが好ましい。R3及びR4は、互いに独立して、炭素数1~4のアルキル基であることが好ましい。R1~R6の炭素数が増加すると、グラフトモノマー(M)の極性が低下する。その結果、高分子基材とグラフトモノマー(M)との親和性が増加し、グラフト鎖の形成が容易になりやすい。一方で、グラフトモノマー(M)の重合性の観点、及び単位重量当たりのアニオン交換形電解質膜に含まれるアニオン交換基の数の観点からは、R1~R6の炭素数が少ないことが好ましい。
 窒素原子に結合して窒素原子とともに環構造を形成する構造A1は、炭素数3~7の飽和炭素鎖又は飽和炭素鎖に含まれる炭素の一部がヘテロ原子で置換された構造である。構造A1は、炭素数4~5の飽和炭素鎖又は飽和炭素鎖に含まれる炭素の一部がヘテロ原子で置換された構造であることが好ましい。ヘテロ原子としては、例えば、窒素原子、酸素原子を挙げることができる。
 対アニオンは、イオン交換して使用されるのが一般的である。従って、X1及びX2は、イオン交換が困難でない限り特に限定されず、公知の対アニオンを用いることができる。例えば、X1及びX2は、互いに独立して、ハロゲン化物イオン、水酸化物イオン又は有機酸若しくは無機酸のアニオンである。対アニオンは水酸化物イオンの状態で使用されるため、X1及びX2は水酸化物イオンであることが好ましい。アニオン交換基の保存安定性の観点からは、X1及びX2は、ハロゲン化物イオン、有機酸又は無機酸のアニオンであることが好ましい。ハロゲン化物イオンとしては、フッ化物イオン、塩化物イオン、臭化物イオン又はヨウ化物イオンを挙げることができる。良好なイオン交換性の観点から、ハロゲン化物イオンは、フッ化物イオン、塩化物イオン又は臭化物イオンが好ましい。有機酸のアニオンとしては、ビストリフルオロメタンスルホンイミドアニオン、チオシアン酸アニオン、テトラキス[3,5-ビス(トリフルオロメチル)フェニル]ホウ酸アニオンが好ましい。無機酸のアニオンとしては、炭酸イオン、炭酸水素イオン、テトラフルオロホウ酸アニオン又はヘキサフルオロリン酸アニオンが好ましい。
 グラフトモノマー(M)の具体例としては、ジアリルジメチルアンモニウムクロリド(DADMAC)、ジアリルジメチルアンモニウムビストリフルオロメタンスルホンイミド(DADMA-TFSI)、テトラアリルアンモニウムクロリド(TAAC)が挙げられる。
 グラフトモノマー(M)は、その分子構造中にアニオン交換基を含んでいるため、本実施形態ではアニオン交換基を付加する工程を省略できる。
 重合性モノマーは、グラフトモノマー(M)と共に、式(3)~式(7)のいずれか1つにより示されるグラフトコモノマーを含んでいてもよい。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 Yは、下記式(8)により示されるいずれかの構造である。
Figure JPOXMLDOC01-appb-C000010
 ここで、R7~R12、R15~R23は、互いに独立して、水素原子又は炭素数1~8のアルキル基を示す。R7~R12、R15及びR16は、互いに独立して、水素原子又は炭素数1~4のアルキル基であることが好ましい。R13及びR14は、互いに独立して、炭素数1~3のアルキル基を示し、R13の炭素数とR14の炭素数との合計値は、2~6の範囲にある。R17~R23は、互いに独立して、水素原子又は炭素数1~4のアルキル基であることが好ましい。
 X3~X6は、互いに独立して、ハロゲン化物イオン、水酸化物イオン又は有機酸若しくは無機酸のアニオンである。
 重合性モノマーが式(3)又は式(4)により示されるグラフトコモノマーをさらに含むことによって、グラフト鎖に架橋構造を導入することが容易になる。その結果、得られるアニオン交換形電解質膜の耐アルカリ性及び耐熱性の向上に寄与し得る。
 式(3)及び式(4)により示されるグラフトコモノマーの好ましい含有量は、グラフトコモノマーの構造、グラフト重合溶液の組成、グラフト重合を実施する反応温度、アニオン交換形電解質膜の使用環境により異なるため一概に言えないが、例示するとすればグラフトモノマー(M)100質量部に対し、0.1~1000質量部であり、特に0.5~800質量部である。
 重合性モノマーが式(5)~式(7)のいずれか1つにより示されるグラフトコモノマーをさらに含むことによって、形成されるグラフト鎖及びアニオン交換形電解質膜の親水性又は疎水性を制御することが容易となる。また、これらのグラフトコモノマーを含むことによって、形成されるアニオン交換形電解質膜の有する透過性を制御できることがある。
 式(5)~式(7)により示されるグラフトコモノマーの含有量は、グラフトモノマー又はグラフトコモノマーの構造、グラフト重合溶液の組成、グラフト重合を実施する反応温度、アニオン交換形電解質膜の使用環境によって異なるため一概には言えないが、例示するとすればグラフトモノマー(M)100質量部に対し、1~5000質量部であり、特に50~2000質量部である。
 グラフト重合反応は、例えば、高分子基材と重合性モノマーと接触させることによって行うことができる。重合性モノマーは、重合性モノマー単独で重合に供してもよく、重合性モノマーを溶媒に溶解させた溶液(重合性モノマー溶液)として準備してもよい。
 重合性モノマーを溶解させる溶媒としては、例えば、水;メタノール、エタノール又はイソプロパノール等のアルコール類;N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)、N-メチルピロリドン(NMP)等の非プロトン性極性溶媒を挙げることができる。溶媒は、単独で用いてもよく、2種以上を併用してもよい。
 重合性モノマー溶液に含まれる重合性モノマーの濃度は、重合性モノマーの重合性や目標とするグラフト率に応じて定めればよいが、例えば20重量%以上である。重合性モノマーの濃度が低くなりすぎると、グラフト重合反応が十分に進行しないことがある。
 酸素の存在によってグラフト重合反応が阻害されることを防ぐため、重合性モノマー又は重合性モノマー溶液中の酸素は、凍結脱気や窒素ガス等を用いたバブリング等の公知の方法を用いて除去することが好ましい。
 グラフト重合を実施する反応時間は、例えば10分~12時間である。グラフト重合を実施する反応温度は、例えば0~90℃であり、特に40~80℃である。グラフト率は、これらの反応温度、反応時間によって制御することが可能である。
 アニオン交換形電解質膜のグラフト率は、例えば5~200%の範囲とするとよい。グラフト率を向上させることによって、得られるアニオン交換形電解質膜のイオン伝導率が向上しえる。
 放射線を照射する工程を有するグラフト重合反応の一例として、固液二相系における反応例を述べる。重合性モノマー溶液を、ガラス製又はステンレス製の容器に入れる。グラフト反応を阻害する酸素を除去するために、重合性モノマー溶液の減圧脱気及び窒素等の不活性ガスを用いたバブリングを実施する。次に、予め放射線を照射した高分子基材を重合性モノマー溶液に投入してグラフト重合を行う。次に、溶液から重合性モノマーが重合してグラフト鎖が導入された高分子基材(グラフト重合体)を取り出す。溶媒、未反応の重合性モノマー、及び重合性モノマーの重合体を除去するために、得られたグラフト重合体を溶剤で2~6回洗浄した後、乾燥させる。洗浄に用いる溶剤としては、重合性モノマー及び重合性モノマーの重合体が容易に溶解し、高分子基材及びグラフト重合体が溶解しない溶剤を用いればよい。例えば、アセトン、メタノール、エタノール、水等を用いることが可能である。
(アニオン交換形電解質膜)
 本実施形態のアニオン交換形電解質膜は、高分子基材にグラフト鎖が導入されている。本実施形態のアニオン交換形電解質膜は、本発明のアニオン交換形電解質膜の製造方法によって得られる。
 本実施形態のアニオン交換形電解質膜が有するグラフト鎖は、下記式(9)又は下記式(10)により示される構造を含む。式(9)により示される構造は、式(1)により示されるモノマーに由来する構造であり、式(10)により示される構造は、式(2)により示されるモノマーに由来する構造である。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 ここで、R1~R6及びA1については、上述したため、重複する記載は省略する。
 対アニオンは、必要に応じてイオン交換して使用されるのが一般的である。従って、X7及びX8は、イオン交換が困難でない限り特に限定されず、公知の対アニオンを用いることができる。例えば、X7及びX8は、互いに独立して、ハロゲン化物イオン、水酸化物イオン又は有機酸若しくは無機酸のアニオンである。対アニオンは水酸化物イオンの状態で使用されるため、X7及びX8は、水酸化物イオンであることが好ましい。アニオン交換基の保存安定性の観点からは、X7及びX8は、ハロゲン化物イオン又は有機酸のアニオンであることが好ましい。ハロゲン化物イオンとしては、例えば、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオンを挙げることができる。良好なイオン交換性の観点から、ハロゲン化物イオンは、フッ化物イオン、塩化物イオン又は臭化物イオンが好ましい。有機酸のアニオンとしては、ビストリフルオロメタンスルホンイミドアニオン、チオシアン酸アニオン、テトラキス[3,5-ビス(トリフルオロメチル)フェニル]ホウ酸アニオンが好ましい。無機酸のアニオンとしては、炭酸イオン、炭酸水素イオン、テトラフルオロホウ酸アニオン又はヘキサフルオロリン酸アニオンが好ましい。
 式(9)又は式(10)により示される構造は、ベンジルトリアルキルアンモニウムとは異なり、ベンジル位を有しておらず、アルカリ性雰囲気下でOH-による求核置換反応が生じにくい。さらに、式(9)又は式(10)により示される構造は、窒素原子が環構造に含まれているため、窒素原子から見てβ位に存在する水素原子を起点とした脱離反応(E2型反応)が起こりにくい。従って、式(9)又は式(10)により示される構造を有するアニオン交換基の耐アルカリ性は良好であり、ベンジルトリアルキルアンモニウム構造と比較して高温雰囲気下でも4級アンモニウム基の劣化が生じにくい。
 高分子基材、グラフトコモノマーについては、上述したため、重複する記載は省略する。
(アニオン交換形燃料電池用MEA)
 本実施形態のMEAは、本発明のアニオン交換形電解質膜と、アニオン交換形電解質膜の表面に配置された触媒層とを備えている。
 本発明のアニオン交換形電解質膜を用いたMEAでは、アニオン交換形電解質膜の表面に触媒層が配置されている。典型的には熱プレスなどの手法により、アニオン交換形電解質膜と触媒層とが一体化されている。通常、アノード触媒層及びカソード触媒層の一対の触媒層が、アニオン交換形電解質膜を挟持するように、アニオン交換形電解質膜の主面に配置されている。図1に、本発明のアニオン交換形電解質膜を用いたMEAの一例を示す。図1に示すMEA1は、アニオン交換形電解質膜2とアノード電極3とカソード電極4とを備え、アノード電極3がアニオン交換形電解質膜2の一方の主面に、カソード電極4がアニオン交換形電解質膜2の他方の主面に、それぞれ配置されている。
 触媒層としては、アニオン交換形燃料電池に使用する公知のMEAが備える触媒層を用いることができる。触媒は、カチオン交換形燃料電池とは異なり、必ずしも白金のような貴金属である必要はなく、例えば、ニッケル、コバルト、鉄、銀等の卑金属を使用可能である。含まれる具体的な触媒等、触媒層の構成は、MEAのアノード側(アノード触媒層)とカソード側(カソード触媒層)とで異なっていても同一であってもよい。
(アニオン交換形燃料電池)
 本実施形態のアニオン交換形燃料電池は、本発明のアニオン交換形電解質膜を有するMEAを備える。図2に、本実施形態のアニオン交換形燃料電池の要部の一例を示す。図2に示すアニオン交換形燃料電池11は、アニオン交換形電解質膜を挟持するように配置された一対の電極(アノード電極3及びカソード電極4)と、上記一対の電極を挟持するように配置された一対のセパレータ(アノードセパレータ5及びカソードセパレータ6)とを備え、各部材は、当該部材の主面に垂直な方向に圧力が印加された状態で接合されている。アニオン交換形電解質膜2と電極3、4は、MEAを構成している。
 本実施形態のアニオン交換形燃料電池では、アノード側に燃料が、カソード側に酸化剤が供給される。燃料は、例えば、アルコール類、ヒドラジン(水和物)等を含むアルカリ燃料であり、反応性が高く、発電原理上二酸化炭素を発生しないことから、ヒドラジン(水和物)を含む燃料が好ましい。酸化剤は、例えば空気中の酸素である。
 本実施形態のアニオン交換形燃料電池において、電池反応の活性を向上するため、又は二酸化炭素等による被毒を抑制するために、水酸化カリウム等の無機塩基を燃料に添加してもよい。
 本実施形態のアニオン交換形燃料電池は、耐アルカリ性が良好であり、燃料電池が高温で運転された場合であっても、アニオン交換形電解質膜の劣化に起因する燃料電池の性能の低下が発生しにくい。
 本実施形態のアニオン交換形燃料電池は、本発明のMEA以外にも、アニオン交換形燃料電池を構成する部材として公知の部材を備えることができる。当該部材は、例えば、燃料電池をセル単体としてみるとガス拡散層、セパレーター等、燃料電池をシステムとしてみると燃料供給装置、酸化剤供給装置、加湿装置、集電板、発電状況を検知する温度センサー、酸素センサー、フローメーター、湿度センサー等である。
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明は、これら実施例に限定されるものではない。以下において、室温とは23℃である。
 実施例及び比較例で用いる略号を以下に記す。
DADMAC:ジアリルジメチルアンモニウムクロリド
CMS:4-クロロメチルスチレン
EVOH:エチレン-ビニルアルコール共重合体
EVOH(44):エチレン-ビニルアルコール共重合体(エチレンユニット44mol%含有)
EVOH(32):エチレン-ビニルアルコール共重合体(エチレンユニット32mol%含有)
PVA:ポリビニルアルコール(ケン化度98mol%)
UHMWPE:超高分子量ポリエチレン
 実施例及び比較例における物性は、以下の方法を用いて測定した。
(高分子基材の含水率)
 高分子基材を、60℃の乾燥機中にて2時間以上静置し、重量変化が生じなくなるまで乾燥させた後、デシケーター内で冷却した。冷却後の高分子基材をデシケーターから出してすぐに秤量した値を、乾燥時の高分子基材の重量とした。乾燥時の重量を秤量した上記の高分子基材を、30℃に保温した水中に浸漬させた状態を、高分子基材の重量変化が生じなくなるまで2時間以上維持した後、水中から取り出した。水中から取り出した高分子基材の表面に付着した余剰な水を濾紙等で拭き取ってから、高分子基材の重量を秤量した(含水時の高分子基材の重量)。含水率は、乾燥時の高分子基材の重量に対する、含水時の高分子基材の重量と乾燥時の高分子基材の重量との重量差の比率である。
(イオン交換容量)
 アニオン交換形電解質膜を、3mol/L(23℃)の食塩水に10時間以上浸漬し、アニオン交換形電解質膜の対アニオンを塩化物イオンへ変換した。その後、このアニオン交換形電解質膜を、1mol/Lの硝酸ナトリウム(NaNO3)水溶液に12時間以上浸漬した。遊離してきた塩化物イオンを、0.05mol/Lの硝酸銀(AgNO3)水溶液を用いて滴定し、イオン交換容量を測定した。
(耐久性試験)
 予め用意した一辺の長さ5cmの正方形状のアニオン交換形電解質膜を、ポリテトラフルオロエチレン製容器に入れた1mol/Lの水酸化カリウム水溶液100mLに浸漬させ、80℃雰囲気下に静置した。所定の時間の経過後、膜を取り出し、純水を用いて複数回洗浄した後、イオン交換容量を測定した。このイオン交換容量を耐久性試験後のイオン交換容量とした。耐久性試験前のアニオン交換形電解質膜のイオン交換容量(イオン交換容量の初期値)に対する、耐久性試験後のイオン交換容量の比率を、耐久性試験の指標として用いた。
(グラフト率)
 グラフト率は下式を用いて算出した。
グラフト率(%)=100×(W1-W0)/W0
 ここで、W0は、乾燥状態におけるグラフト重合前の高分子基材の重量(g)、W1は、乾燥状態におけるグラフト重合後のグラフト重合体の重量(g)である。「乾燥状態における重量」とは、60℃雰囲気下2時間以上静置し、重量変化がなくなった状態の値を示す。
(実施例1)
 高分子基材としてEVOH(44)を用い、高分子基材に、室温、真空下で90kGyの電子線を照射した。この高分子基材を-60℃雰囲気下で保管し、グラフト重合の実施前に一辺の長さが5cmの正方形状に裁断した。
 グラフトモノマー(M)であるDADMACを60重量%含む水溶液を用意した。この水溶液中の酸素を、窒素ガスを用いて除去した。この水溶液に、電子線を照射したEVOH(44)を浸漬させ、水溶液の温度(グラフト重合温度)を70℃に5時間維持し、グラフト重合を行った。その後グラフト重合後の膜を取り出した。水に1時間以上含浸させて洗浄する工程を数回繰り返した。洗浄後の膜を乾燥オーブンに入れて60℃雰囲気下で2時間以上乾燥させ、DADMACがグラフト重合されたEVOH(44)のグラフト膜を得た。得られたグラフト膜のグラフト率は20%であった。
(実施例2)
 高分子基材としてEVOH(32)を用いた以外は、実施例1と同様に行い、グラフト膜を得た。得られたグラフト膜(EVOH(32)-g-DADMAC)のグラフト率は36%であった。
(実施例3)
 グラフト重合の重合時間を6時間とした以外は、実施例2と同様に行い、グラフト膜を得た。得られたグラフト膜(EVOH(32)-g-DADMAC)のグラフト率は43%であった。
(実施例4)
 90kGyの電子線を照射した高分子基材EVOH(44)を、短辺9.5cm長辺20cmの矩形に裁断した。この高分子基材を用い、重合温度を60℃とした以外は、実施例1と同様に行い、グラフト膜を得た。得られたグラフト膜(EVOH(44)-g-DADMAC)のグラフト率は21%であった。
(実施例5)
 高分子基材としてEVOH(32)を用いた以外は、実施例4と同様に行い、グラフト膜を得た。得られたグラフト膜(EVOH(32)-g-DADMAC)のグラフト率は34%であった。
(実施例6)
 90kGyの電子線を照射した高分子基材EVOH(44)を、短辺8cm長辺10cmの矩形に裁断した。この高分子基材を用い、重合温度を50℃とした以外は、実施例1と同様に行い、グラフト膜を得た。得られたグラフト膜(EVOH(44)-g-DADMAC)のグラフト率は18%であった。
(実施例7)
 高分子基材としてEVOH(32)を用いた以外は、実施例6と同様に行い、グラフト膜を得た。得られたグラフト膜(EVOH(32)-g-DADMAC)のグラフト率は28%であった。
(実施例8)
 高分子基材としてPVAを用い、重合時間を3時間とした以外は、実施例1と同様に行い、グラフト膜を得た。得られたグラフト膜(PVA-g-DADMAC)のグラフト率は25%であった。
(比較例1)
 基材としてUHMWPEを用い、室温、真空下で90kGyの電子線を照射した。電子線照射後のUHMWPEを-60℃雰囲気下で保管し、グラフト重合の実施前に一辺の長さが5cmの正方形状に裁断した。
 DADMAC(モノマー)を60重量%含む水溶液を用意し、この水溶液中の酸素を、窒素ガスを用いて除去した。この水溶液に、電子線を照射したUHMWPEを浸漬させ、水溶液の温度(グラフト重合温度)を70℃に5時間維持し、グラフト重合を行った。その後グラフト重合後の膜を取り出した。水に1時間以上含浸させて洗浄する工程を数回繰り返した。洗浄後の膜を、乾燥オーブンに入れて60℃雰囲気下で2時間以上乾燥させた。得られた膜のグラフト率は0%であった。
(比較例2)
 モノマーとしてCMS(純度100%)を用い、重合時間を0.5時間とした以外は、比較例1と同様に行った。得られたグラフト膜のグラフト率は96%であった。
 グラフト重合の条件及びグラフト率を表1に、得られた電解質膜の耐久性試験の結果を表2に、まとめて示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 比較例1では、基材の含水率が低いため、親水性の高いモノマーであるDADMACは基材に十分に含浸できず、グラフト重合が進行しなかったと考えられる。

Claims (7)

  1.  重合性モノマーが重合してなるグラフト鎖を高分子基材に導入する工程、を具備し、
     前記高分子基材の含水率は0.1%を超え、
     前記重合性モノマーは、下記式(1)又は下記式(2)により示されるモノマーを含む、アニオン交換形電解質膜の製造方法。
     ここで、R1~R6は、互いに独立して、水素原子又は炭素数1~8のアルキル基を示し、
     窒素原子に結合して窒素原子とともに環構造を形成する構造A1は、炭素数3~7の飽和炭素鎖又は前記飽和炭素鎖に含まれる炭素の一部がヘテロ原子で置換された構造であり、
     X1及びX2は、互いに独立して、ハロゲン化物イオン、水酸化物イオン又は有機酸若しくは無機酸のアニオンであり、
     含水率は、乾燥時の高分子基材の重量に対する、含水時の高分子基材の重量と乾燥時の高分子基材の重量との重量差の比率であり、
     乾燥時の高分子基材の重量は、60℃の雰囲気下に高分子基材を2時間以上静置して乾燥させた時点の高分子基材の重量を秤量した値であり、
     含水時の高分子基材の重量は、前記乾燥時の高分子基材を30℃に保温した水中に浸漬させた状態を2時間以上維持した後、秤量した値である。
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
  2.  前記重合性モノマーは、下記式(3)~下記式(7)のいずれか1つにより示されるモノマーをさらに含む、
     請求項1に記載のアニオン交換形電解質膜の製造方法。
     ここで、R7~R12、R15~R21は、互いに独立して、水素原子又は炭素数1~8のアルキル基を示し、
     R13及びR14は、互いに独立して、炭素数1~3のアルキル基を示し、
     R13の炭素数とR14の炭素数との合計値は、2~6の範囲にあり、
     X3~X6は、互いに独立して、ハロゲン化物イオン、水酸化物イオン又は有機酸若しくは無機酸のアニオンである。
     ここで、Yは、下記式(8)により示されるいずれかの構造であり、
     R22及びR23は、互いに独立して、水素原子又は炭素数1~8のアルキル基を示す。
    Figure JPOXMLDOC01-appb-C000015
    Figure JPOXMLDOC01-appb-C000016
    Figure JPOXMLDOC01-appb-C000017
    Figure JPOXMLDOC01-appb-C000018
    Figure JPOXMLDOC01-appb-C000019
    Figure JPOXMLDOC01-appb-C000020
  3.  前記高分子基材が、ヒドロキシル基、カルボキシル基、エステル基、エーテル基、アミド基及びアミノ基からなる群より選ばれる少なくとも1つを有する、
     請求項1に記載のアニオン交換形電解質膜の製造方法。
  4.  前記高分子基材に放射線を照射する工程、をさらに含む、
     請求項1に記載のアニオン交換形電解質膜の製造方法。
  5.  請求項1に記載のアニオン交換形電解質膜の製造方法により得られたアニオン交換形電解質膜。
  6.  請求項5に記載のアニオン交換形電解質膜を備えたアニオン交換形燃料電池用の膜-電極接合体。
  7.  請求項6に記載のアニオン交換形燃料電池用の膜-電極接合体を備えたアニオン交換形燃料電池。
PCT/JP2015/002819 2014-06-13 2015-06-03 アニオン交換形電解質膜の製造方法及びその方法により得られたアニオン交換形電解質膜、それを備えた燃料電池用の膜-電極接合体及び燃料電池 WO2015190074A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014122475 2014-06-13
JP2014-122475 2014-06-13

Publications (1)

Publication Number Publication Date
WO2015190074A1 true WO2015190074A1 (ja) 2015-12-17

Family

ID=54833189

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/002819 WO2015190074A1 (ja) 2014-06-13 2015-06-03 アニオン交換形電解質膜の製造方法及びその方法により得られたアニオン交換形電解質膜、それを備えた燃料電池用の膜-電極接合体及び燃料電池
PCT/JP2015/002820 WO2015190075A1 (ja) 2014-06-13 2015-06-03 アニオン交換形電解質膜、それを備えた燃料電池用の膜-電極接合体及び燃料電池

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002820 WO2015190075A1 (ja) 2014-06-13 2015-06-03 アニオン交換形電解質膜、それを備えた燃料電池用の膜-電極接合体及び燃料電池

Country Status (6)

Country Link
US (1) US9692072B2 (ja)
EP (1) EP3157085B1 (ja)
JP (1) JP6064087B2 (ja)
KR (1) KR20170020848A (ja)
CN (1) CN106463740B (ja)
WO (2) WO2015190074A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107428886A (zh) * 2015-03-13 2017-12-01 日东电工株式会社 具有阴离子交换基团的树脂、使用该树脂的含树脂液体、层叠体、构件、电化学元件和电化学装置
DE102017206213A1 (de) * 2016-04-27 2017-11-02 Leibniz-Institut Für Polymerforschung Dresden E.V. Wasserunlösliche Anionenaustauschermaterialien
EP3640299B8 (en) * 2017-06-15 2023-08-16 Global Polyacetal Co., Ltd. Polyacetal resin composition, molded article, and method for producing polyacetal resin composition
JP7340576B2 (ja) 2021-09-27 2023-09-07 本田技研工業株式会社 鞍乗り型車両

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335119A (ja) * 2006-06-12 2007-12-27 Nippon Shokubai Co Ltd 固体電解質用材料
JP2008204647A (ja) * 2007-02-16 2008-09-04 Nippon Synthetic Chem Ind Co Ltd:The アニオン交換膜型燃料電池用の電解質膜および接着剤
WO2010055889A1 (ja) * 2008-11-14 2010-05-20 株式会社トクヤマ 陰イオン交換膜及びその製造方法
JP2013189595A (ja) * 2012-03-15 2013-09-26 Nitto Denko Corp グラフト鎖を有する高分子電解質膜およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070020501A1 (en) * 2005-07-21 2007-01-25 Ling-Feng Li Polyelectrolyte membranes as separator for battery and fuel cell applications
GB0701449D0 (en) 2007-01-26 2007-03-07 Secr Defence Anion Exchange Membranes
WO2009086347A1 (en) * 2007-12-27 2009-07-09 3M Innovative Properties Company Method for making a functionalized membrane
CN102544547A (zh) * 2012-01-06 2012-07-04 东华大学 具有耐碱稳定性的碱性阴离子交换复合膜及其制备和应用
CN103358612B (zh) * 2012-03-26 2016-10-19 中国科学院上海高等研究院 直接甲醇燃料电池用的阻醇膜及其制法
CN103521276B (zh) * 2013-10-12 2016-01-20 东华大学 一种碳纳米管掺杂型碱性阴离子交换复合膜及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335119A (ja) * 2006-06-12 2007-12-27 Nippon Shokubai Co Ltd 固体電解質用材料
JP2008204647A (ja) * 2007-02-16 2008-09-04 Nippon Synthetic Chem Ind Co Ltd:The アニオン交換膜型燃料電池用の電解質膜および接着剤
WO2010055889A1 (ja) * 2008-11-14 2010-05-20 株式会社トクヤマ 陰イオン交換膜及びその製造方法
JP2013189595A (ja) * 2012-03-15 2013-09-26 Nitto Denko Corp グラフト鎖を有する高分子電解質膜およびその製造方法

Also Published As

Publication number Publication date
WO2015190075A1 (ja) 2015-12-17
JP6064087B2 (ja) 2017-01-18
CN106463740A (zh) 2017-02-22
EP3157085A1 (en) 2017-04-19
KR20170020848A (ko) 2017-02-24
US9692072B2 (en) 2017-06-27
EP3157085B1 (en) 2019-09-04
CN106463740B (zh) 2019-07-30
JPWO2015190075A1 (ja) 2017-04-20
US20170047604A1 (en) 2017-02-16
EP3157085A4 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
US9731247B2 (en) Ion exchange membranes
US8372558B2 (en) Highly proton-conductive polymer electrolyte membranes that excel in mechanical strength and a process for producing the same
US10637087B2 (en) Electrolyte membrane, method for producing the same, and membrane-electrode assembly for fuel cells that includes electrolyte membrane
JP6064087B2 (ja) アニオン交換形電解質膜、それを備えた燃料電池用の膜−電極接合体及び燃料電池
KR20130132107A (ko) 이온 교환막 충전용 조성물, 이온 교환막의 제조방법, 이온 교환막 및 레독스 플로우 전지
JP6687600B2 (ja) アニオン交換基を有する樹脂、それを用いた樹脂含有液、積層体、部材、電気化学素子及び電気化学デバイス
JP2014084349A (ja) アニオン伝導性高分子電解質膜およびその製造方法ならびにそれを用いた膜電極接合体および燃料電池
WO2016002227A1 (ja) 液体燃料電池用隔膜及びそれを備えた膜-電極接合体
JP2007194019A (ja) 架橋電解質膜及びその製造方法
JP6375052B2 (ja) アニオン交換膜、それを備えた電気化学素子及び電気化学デバイス
JP2016015285A (ja) アルカリ形液体燃料電池用隔膜及びそれを備えた膜−電極接合体
Arı et al. The effect of cross-linking technique on membrane performance for direct methanol alkaline fuel cell application
JP2016015286A (ja) 液体燃料電池用隔膜及びそれを備えた膜−電極接合体
JP2016015284A (ja) アルカリ形液体燃料電池用隔膜及びそれを備えた膜−電極接合体
Suliwarno Preparation of Sulfonated Poly (ethylene-co-tetrafluoroethylene-graft-styrene) Based Polymer Electrolyte Membranes for Fuel Cell by using Gamma Irradiation Technique
JP2016015287A (ja) 液体燃料電池用隔膜及びそれを備えた膜−電極接合体
JP2006120510A (ja) 電解質膜及びそれを用いた固体高分子型燃料電池
KR20070095313A (ko) 전극에 대한 접착성이 우수한 전해질 막

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15807100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15807100

Country of ref document: EP

Kind code of ref document: A1