WO2015189869A1 - スクリュ、射出成形機、及び、射出成形方法 - Google Patents
スクリュ、射出成形機、及び、射出成形方法 Download PDFInfo
- Publication number
- WO2015189869A1 WO2015189869A1 PCT/JP2014/003066 JP2014003066W WO2015189869A1 WO 2015189869 A1 WO2015189869 A1 WO 2015189869A1 JP 2014003066 W JP2014003066 W JP 2014003066W WO 2015189869 A1 WO2015189869 A1 WO 2015189869A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flight
- screw
- stage
- resin
- fiber
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/88—Adding charges, i.e. additives
- B29B7/90—Fillers or reinforcements, e.g. fibres
- B29B7/905—Fillers or reinforcements, e.g. fibres with means for pretreatment of the charges or fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/46—Means for plasticising or homogenising the moulding material or forcing it into the mould
- B29C45/47—Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/58—Component parts, details or accessories; Auxiliary operations
- B29B7/60—Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
- B29B7/603—Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material in measured doses, e.g. proportioning of several materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/58—Component parts, details or accessories; Auxiliary operations
- B29B7/72—Measuring, controlling or regulating
- B29B7/726—Measuring properties of mixture, e.g. temperature or density
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/82—Heating or cooling
- B29B7/826—Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/0005—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fibre reinforcements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/46—Means for plasticising or homogenising the moulding material or forcing it into the mould
- B29C45/47—Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
- B29C45/50—Axially movable screw
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/46—Means for plasticising or homogenising the moulding material or forcing it into the mould
- B29C45/58—Details
- B29C45/60—Screws
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/34—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
- B29B7/38—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
- B29B7/46—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
- B29B7/48—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/0058—Liquid or visquous
- B29K2105/0067—Melt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/06—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
- B29K2105/12—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
Definitions
- the present invention relates to injection molding of a resin containing reinforcing fibers.
- thermoplastic resin is melted by rotation of a screw in a cylinder constituting a plasticizing apparatus, and fibers are mixed or kneaded and then injected into a mold of an injection molding machine.
- the reinforcing fiber is uniformly dispersed in the resin.
- the excessively strong shearing force causes the reinforcing fibers to be cut. If it does so, the fiber length after shaping
- An object of this invention is to provide the screw of the injection molding machine which can eliminate uneven distribution of a reinforced fiber, without giving excessive shear force to a reinforced fiber. Moreover, an object of this invention is to provide an injection molding machine provided with such an injection screw. Furthermore, an object of the present invention is to provide a method for injection molding a resin containing reinforcing fibers using such an injection screw.
- the present inventors have studied the cause of the uneven distribution of reinforcing fibers and have obtained one conclusion. That is, during the plasticization process of injection molding, as shown in FIG. 8, a large number of reinforcing fibers F are gathered in the screw grooves 301 between the flights 306 of the screw 300 for injection molding arranged inside the cylinder 310. A certain fiber lump is present on the flight pull side 303 and the molten resin M is present on the flight push side 305. Since the viscosity of the molten resin M is relatively high and the molten resin M cannot enter the inside of the fiber lump, the shearing force due to the rotation of the screw 300 using the molten resin M as a medium is not transmitted to the inside of the fiber lump and the fiber lump Opening does not progress.
- the reinforcing fibers F are injection-molded while remaining in the fiber mass, and the reinforcing fibers F are unevenly distributed in the molded product.
- 8A indicates the direction in which the screw 300 rotates
- the white arrow in FIG. 8C indicates the relative direction in the axial direction or circumferential direction of the screw 300 and the cylinder 310 as the screw 300 rotates. The direction of movement is shown. The same applies to later-described embodiments. Therefore, the present inventor has conceived that a part of the molten resin M on the push side 305 of the flight of the screw groove 301 crosses the top T of the flight 306 and flows back to the pull side 303 of the adjacent screw groove 301. . In other words, the reverse flow of the molten resin M is caused to act on the fiber mass so as to promote the opening of the fiber mass.
- the screw of the present invention based on the above knowledge is provided inside the cylinder of an injection molding machine in which the resin raw material is supplied on the upstream side and the reinforcing fiber is supplied on the downstream side.
- the screw according to the present invention is characterized in that the flight provided in the second stage includes a resin passage in which a reverse flow of the molten resin raw material occurs from the screw groove on the downstream side of the screw toward the screw groove on the upstream side. .
- the screw of the present invention is directed so that a reverse flow is generated in the molten resin M by providing the resin passage. Note that the terms upstream or downstream used in the present application are used with reference to the direction in which the resin is conveyed by the screw.
- the form of the resin passage in the screw of the present invention can be selected from a form A provided continuously in a predetermined range in the flight winding direction and a form B provided in a part of the flight winding direction.
- the first stage can be selected from either a first form consisting of one flight or a second form consisting of two flights.
- the second stage in the first form, constitutes a single flight by connecting a large-diameter flight and a small-diameter flight having a relatively small outer diameter.
- the backflow passage in this embodiment is composed of a gap between the top of the small-diameter flight and the cylinder.
- the second stage comprises a two-flight flight including a main flight and a subflight provided in a screw groove formed by the main flight, the main flight is a large-diameter flight, and the subflight is Make a small flight.
- the backflow passage is composed of a gap between the top of the small-diameter flight and the cylinder.
- the subflight can be provided at a part or a plurality of locations in the axial direction of the screw. Further, in the second embodiment, the subflight can be provided corresponding to a portion to which the reinforcing fiber is supplied. Of course, it can also provide in the position away from the site
- Form B consists of intermittent flights in which notches are provided in part of the flight so as to lack continuity in the winding direction of the flight, and the resin passage is realized by the third form consisting of these notches. it can.
- the present invention includes a cylinder in which a discharge nozzle is formed, a screw provided inside the cylinder so as to be rotatable and movable in the direction of the rotation axis, a resin supply unit that supplies resin raw material into the cylinder, and a resin supply unit.
- the fiber reinforced resin injection molding machine to which the above-mentioned screw is applied is also provided in an injection molding machine provided with a fiber supply section that is provided on the downstream side and supplies reinforcing fibers into a cylinder.
- the present invention also provides a resin raw material to a cylinder provided with a screw that can be rotated and moved in the direction of the rotation axis, and a reinforcing fiber is supplied downstream of the resin raw material.
- a fiber reinforced resin injection molding method to which the above-described screw is applied is provided.
- FIG. 4 is a diagram showing a molten resin M acting on the ridges of the reinforcing fibers F, and FIG.
- formula) which concerns on this embodiment is shown, (a) is a side view which shows the principal part of a 2nd stage, (b), (c) is provided with a subflight (small diameter flight).
- FIG. 6 shows still another screw according to the present embodiment (second type 2-2), where (a) is a side view showing the main part of the second stage, and (b) is a portion where a sub flight (small-diameter flight) is provided.
- (C) is a cross-sectional view of a portion where no subflight is provided, and (d) and (e) are cross-sectional views showing the behavior of the molten resin M and the reinforcing fiber F in (b) and (c), respectively.
- FIG. 6 shows still another screw (third embodiment) according to the present embodiment
- (a) is a side view showing the main part of the second stage
- (b) is a cross section of a portion where a sub flight (small-diameter flight) is provided.
- (C) is sectional drawing of the part in which the subflight is not provided
- (d) is sectional drawing which shows the behavior of the molten resin M and the reinforced fiber F in (b), (c), respectively. .
- a conventional screw is shown, (a) is a side view showing a portion of the second stage, (b) is a sectional view showing a screw groove formed by flight and its vicinity, and (c) is a reinforcing fiber inside the screw groove. It is sectional drawing which shows typically a mode that the lump of molten material and the lump of molten resin exist isolate
- the injection molding machine 1 As shown in FIG. 1, the injection molding machine 1 according to the present embodiment includes a mold clamping unit 100, a plasticizing unit 200, and a control unit 50 that controls the operation of these units.
- a mold clamping unit 100 As shown in FIG. 1, the injection molding machine 1 according to the present embodiment includes a mold clamping unit 100, a plasticizing unit 200, and a control unit 50 that controls the operation of these units.
- the configuration and operation of the mold clamping unit 100 and the outline of the configuration and operation of the plasticizing unit 200 will be described, and then the procedure of injection molding by the injection molding machine 1 will be described.
- the mold clamping unit 100 is fixed on the base frame 101 and on a sliding member 107 such as a rail or a sliding plate by operating a stationary die plate 105 to which a stationary mold 103 is attached and a hydraulic cylinder 113. And a plurality of tie bars 115 for connecting the fixed die plate 105 and the movable die plate 111 to each other.
- the fixed die plate 105 is provided with a hydraulic cylinder 117 for clamping a die coaxially with each tie bar 115, and one end of each tie bar 115 is connected to a ram 119 of the hydraulic cylinder 117.
- Each of these elements performs a necessary operation in accordance with an instruction from the control unit 50.
- the general operation of the mold clamping unit 100 is as follows. First, the movable die plate 111 is moved to the position of the two-dot chain line in the figure by the operation of the hydraulic cylinder 113 for opening and closing the mold, and the movable mold 109 is brought into contact with the fixed mold 103. Next, the male screw portion 121 of each tie bar 115 and the half nut 123 provided on the movable die plate 111 are engaged to fix the movable die plate 111 to the tie bar 115. Then, the pressure of the hydraulic oil in the oil chamber on the movable die plate 111 side in the hydraulic cylinder 117 is increased, and the fixed mold 103 and the movable mold 109 are tightened. After performing the mold clamping in this way, the molten resin M is injected from the plasticizing unit 200 into the cavity of the mold to form a molded product.
- the screw 10 of this embodiment is a system which supplies the thermoplastic resin pellet P and the reinforcement fiber F separately to the longitudinal direction of a screw so that it may mention later, the full length of the screw 10 or the total length of the plasticizing unit 200 becomes long.
- the present embodiment is configured as described above, which can be installed even in a narrow space where a mold clamping device of a toggle link system or a mold clamping cylinder on the back of a movable die plate cannot be installed.
- the combination of the mold clamping unit 100 having the above is effective for keeping the overall length of the injection molding machine 1 short.
- the configuration of the mold clamping unit 100 shown here is merely an example, and does not prevent other configurations from being applied or replaced.
- the hydraulic cylinder 113 is shown as an actuator for opening and closing the mold in the present embodiment, it may be replaced with a combination of a mechanism that converts rotational motion into linear motion and an electric motor such as a servo motor or an induction motor.
- an electric motor such as a servo motor or an induction motor.
- a ball screw or a rack and pinion can be used.
- it may be replaced with a toggle link type clamping unit by electric drive or hydraulic drive.
- the plasticizing unit 200 includes a cylindrical heating cylinder 201, a discharge nozzle 203 provided at the downstream end of the heating cylinder 201, a screw 10 provided inside the heating cylinder 201, and a fiber supply to which reinforcing fibers F are supplied.
- the apparatus 213 and the resin supply hopper 207 to which the resin pellet P is supplied are provided.
- the fiber supply device 213 is connected to a vent hole 206 provided on the downstream side of the resin supply hopper 207.
- the plasticizing unit 200 includes a first electric motor 209 that moves the screw 10 forward or backward, a second electric motor 211 that rotates the screw 10 forward or backward, and a pellet supply device that supplies the resin pellet P to the resin supply hopper 207. 215.
- Each of these elements performs a necessary operation in accordance with an instruction from the control unit 50.
- the screw 10 has a two-stage design similar to a so-called gas vent type screw. Specifically, the screw 10 includes a first stage 21 provided on the upstream side and a second stage 22 connected to the first stage 21 and provided on the downstream side, and the first stage 21 is sequentially supplied from the upstream side.
- the second stage 22 includes a supply unit 25, a compression unit 26, and a measurement unit 71 in order from the upstream side.
- the right side is the upstream side
- the left side is the downstream side. The same applies to later-described embodiments.
- a first flight 27 is provided on the first stage 21, and a second flight 28 is provided on the second stage 22.
- the screw grooves between the flights in the supply units 23 and 25 are relatively deep, and the screw grooves between the flights of the compression units 24 and 26 are gradually reduced from the upstream side toward the downstream side.
- the screw grooves in the weighing units 70 and 71 are set to be the shallowest.
- the screw groove of the supply unit 25 of the second stage 22 is deeper than the measuring unit 70 of the first stage 21, the molten resin M discharged from the first stage 21 to the supply unit 25 is screwed into the supply unit 25. Can't fill the groove. Thereby, the molten resin M is pressed against the push side 305 by the rotation of the screw 10 and is unevenly distributed.
- the first flight 27 of the first stage 21 has a flight lead (L1) equal to or less than the flight lead (L2) of the second flight 28 of the second stage 22. That is, it is preferable that L1 ⁇ L2.
- the flight lead (hereinafter simply referred to as “lead”) refers to the interval between the previous and next flights.
- the lead L1 of the first flight 27 is preferably 0.4 to 1.0 times, more preferably 0.5 to 0.9 times the lead L2.
- the second flight 28 includes a large-diameter flight 28A having a large outer diameter and a small-diameter flight 28B having a small outer diameter.
- the size of the outside diameter here is a relative problem, and the outside diameter (radius) of the small diameter flight 28B is set to be smaller than that of the large diameter flight 28A by ⁇ .
- the outer diameter of the flight of the screw is set so that the top of the flight can slide on the inner diameter surface of the heating cylinder. As shown in FIGS.
- the large-diameter flight 28 ⁇ / b> A of the present embodiment corresponds to a flight that can slide on this inner surface
- the small-diameter flight 28 ⁇ / b> B has a top portion T of the heating cylinder 201. It is formed away from the inner diameter surface.
- the gap generated there constitutes a resin passage in which the reverse flow of the molten resin M in the present invention occurs.
- a large-diameter flight 28A, a small-diameter flight 28B, and a large-diameter flight 28A are arranged in this order from the upstream side where the reinforcing fiber F is introduced. The effect of providing the small-diameter flight 28B on the second stage 22 will be described after explaining the injection molding procedure.
- the lead L2 of the second flight 28 of the second stage 22 is larger than the lead L1 of the first flight 27.
- the second stage 22 is supplied with the reinforcing fibers F on the rear end side during the plasticizing process.
- the lead L2 is large, the groove width between the second flights 28 is large, and the gap that can be filled by dropping the reinforcing fibers F becomes large.
- the number of times the vent hole 206 is blocked by the second flight 28 when the screw 10 is retracted during the plasticizing process and when the screw 10 is advanced during the injection process is reduced.
- the lead L2 is preferably 1.0 ⁇ D or more, and further 1.2 ⁇ D or more. It is more preferable. By doing so, the reinforcing fiber F can be stably dropped into the groove of the screw 10 during the injection process.
- D is the inner diameter of the heating cylinder 201.
- the lead L2 is preferably 2.0 ⁇ D or less, and more preferably 1.7 ⁇ D or less. That is, the lead L2 of the second flight 28 is preferably 1.0 ⁇ D to 2.0 ⁇ D, and more preferably 1.2 ⁇ D to 1.7 ⁇ D.
- the width of the flight of the second flight 28 is preferably 0.01 to 0.3 times the lead L2 (0.01 ⁇ L2 to 0.3 ⁇ L2).
- a part or all of the second flights 28 of the second stage 22, particularly the supply unit 25, may be a plurality of flights instead of a single flight. In this case, since the molten resin M discharged from the first stage 21 is divided and distributed into screw grooves partitioned by a plurality of flights, the fiber mass and the molten resin M are respectively in each screw groove.
- the fiber supply device 213 of this embodiment is provided with a biaxial screw feeder 214 in the heating cylinder 201 to forcibly supply the reinforcing fiber F into the groove of the screw 10.
- a biaxial screw feeder 214 in the heating cylinder 201 to forcibly supply the reinforcing fiber F into the groove of the screw 10.
- continuous fibers that is, so-called roving fibers (hereinafter referred to as roving fibers) may be directly fed into the biaxial screw feeder 214, or a predetermined length may be used in advance. Fibers in a chopped strand state (hereinafter referred to as chopped fibers) that have been cut into lengths may be introduced.
- roving fibers and chopped fibers may be mixed and introduced at a predetermined ratio.
- the chopped fiber When the chopped fiber is introduced, it may be conveyed to the vicinity of the fiber insertion port of the measuring feeder with the roving fiber, and may be input to the measuring feeder immediately after cutting the roving fiber in the vicinity of the fiber input port.
- a roving cutter 218 is provided in the vicinity of the fiber insertion port of the biaxial screw feeder 214. The roving cutter 218 cuts the roving fiber into a chopped fiber, and then supplies the chopped fiber to the biaxial screw feeder 214.
- the general operation of the plasticizing unit 200 is as follows. Please refer to FIG.
- the reinforcing fiber F supplied from the fiber supply device 213 through the vent hole 206 and the thermoplastic resin supplied from the resin supply hopper 207 are formed.
- the pellet (resin pellet P) is sent out toward the discharge nozzle 203 at the downstream end of the heating cylinder 201.
- the timing for starting the supply of the reinforcing fiber F is preferably after the resin pellet P (molten resin M) supplied from the resin supply hopper 207 reaches the vent hole 206 to which the reinforcing fiber F is supplied. .
- the reinforcing fiber F having poor fluidity and transportability by the screw 10 closes the screw groove, and the molten resin M is transported. This is because the molten resin M may overflow from the vent hole 206 and abnormal wear or damage of the screw 10 may occur.
- a predetermined amount is injected into a cavity formed between the fixed mold 103 and the movable mold 109 of the mold clamping unit 100.
- the basic operation of the screw 10 is that the injection is performed by moving forward after the screw 10 is moved backward while receiving the back pressure as the resin pellet P melts.
- other configurations such as providing a heater for melting the resin pellets P on the outside of the heating cylinder 201 are not prevented from being applied or replaced.
- the injection molding machine 1 including the above elements performs injection molding according to the following procedure.
- the injection molding is performed by closing the movable mold 109 and the fixed mold 103 and clamping at a high pressure, and plasticizing the resin pellet P by heating and melting in the heating cylinder 201.
- a plasticizing step an injection step of injecting and filling the plasticized molten resin M into a cavity formed by the movable mold 109 and the fixed mold 103, and until the molten resin M filled in the cavity is solidified.
- a holding process to cool, a mold opening process to open the mold, and a take-out process to take out the molded product that has been cooled and solidified in the cavity are carried out, and the above-mentioned processes are performed sequentially or partially in parallel. Thus, one cycle of injection molding is completed.
- the resin pellet P is supplied from the supply hole 208 corresponding to the resin supply hopper 207 on the upstream side of the heating cylinder 201.
- the screw 10 is located downstream of the heating cylinder 201, and the screw 10 is moved backward from the initial position while rotating (FIG. 2 (a) "Start plasticization”).
- the resin pellet P supplied between the screw 10 and the heating cylinder 201 is gradually melted while being heated by receiving a shearing force, and is conveyed downstream.
- the rotation (direction) of the screw 10 in the plasticizing step is assumed to be normal rotation.
- the reinforcing fiber F is supplied from the fiber supply device 213.
- the reinforcing fibers F are kneaded and dispersed in the molten resin M, and are conveyed downstream together with the molten resin M.
- the resin pellet P and the reinforcing fiber F are conveyed to the downstream side of the heating cylinder 201, and the molten resin M collects together with the reinforcing fiber F on the downstream side of the screw 10.
- the screw 10 is moved backward by a balance between the resin pressure of the molten resin M accumulated downstream of the screw 10 and the back pressure that suppresses the screw 10 from moving backward. Thereafter, when the amount of molten resin M necessary for one shot is accumulated, the rotation and retreat of the screw 10 are stopped (FIG. 2B “plasticization complete”).
- FIG. 2 shows the states of resin (resin pellet P, molten resin M) and reinforcing fiber F in four stages of “unmelted resin”, “resin melt”, “fiber dispersion”, and “fiber dispersion complete”. ing.
- fiber dispersion completion downstream of the screw 10 indicates a state in which the reinforcing fibers F are dispersed in the molten resin M and used for injection, and “fiber dispersion” It shows that the supplied reinforcing fiber F is dispersed in the molten resin M with the rotation of the screw 10.
- reinforcing fiber F may be unevenly distributed in the “fiber dispersion complete” region.
- the second stage 22 receives supply of the reinforcing fiber F at the supply unit 25 during the plasticizing process.
- the reinforcing fiber F is a fiber lump and exists on the pull side of the flight.
- the small-diameter flight 28B is provided in order to open the fiber lump and use it for uniform dispersion of the reinforcing fibers F.
- the screw 10 is referred to as a screw 10A.
- the screw 10A has a large-diameter flight 28A and a small-diameter flight 28B on the second stage 22, and when arranged inside the heating cylinder 201, as shown in FIGS. Even if the top T of the flight 28A contacts the inner diameter surface 201I of the heating cylinder 201, a gap ( ⁇ ) is generated between the top T of the small diameter flight 28B and the inner diameter surface 201I of the heating cylinder 201. Therefore, as shown in FIG. 3D, a part of the molten resin M staying on the push side 35 of the flight gets over the top T and a back flow 400 is generated in the screw groove 31 on the upstream side.
- the backflowed molten resin M becomes a fiber lump from the outside in the radial direction of the heating cylinder 201 (hereinafter referred to as the upper side). Cover the reinforcing fiber F.
- the fiber mass comes into contact with the molten resin M from above in addition to the molten resin M on the push side 35 located on the side.
- FIG.3 (d) the flow of the molten resin M is shown with the broken-line arrow.
- the reverse flow 400 of the molten resin M means that the molten resin M in the plasticizing process is conveyed from the upstream to the downstream (from the right side to the left side in the figure), but in the reverse direction (from the left side in the figure). Means flowing to the right).
- the molten resin M contacting not only from the side surface SS but also from the upper surface US is a fiber lump G (simplified and shown in a rectangular parallelepiped). It enters into the interior of) and is impregnated.
- the shearing force is transmitted to the wider area inside the fiber mass G using the molten resin M as a medium, and as a result, the opening of the fiber mass G is promoted. Is done. Further, as shown in FIG. 3 (f), in addition to the side surface SS of the fiber lump G when the screw 10A is rotated, the upper surface US is made of a highly adhesive molten resin as a medium without slipping with the inner diameter surface 201I of the cylinder. Since the shear force S can be applied to the mass G, the opening is further promoted.
- the position where the small-diameter flight 28B is provided in the second stage 22 is arbitrary as long as the molten resin M can flow back. Therefore, the small-diameter flight 28 ⁇ / b> B can be provided in any of the supply unit 25 and the compression unit 26, but is preferably provided in the supply unit 25. Then, after promoting the opening of the reinforcing fiber F in the supply unit 25, the molten resin M is conveyed to the compression unit 26 that can act a stronger shearing force than the supply unit 25, thereby reinforcing the reinforcing fiber in the molten resin M. This can contribute to uniform dispersion of F.
- the fiber part G is made small by promoting the opening of the reinforcing fiber F in the supply unit 25 and can be conveyed to the compression unit 26 where the groove depth gradually decreases, the large fiber mass G is contained in the groove of the compression unit 26. Can be blocked.
- a plurality of small-diameter flights 28B may be provided at a plurality of locations at intervals. In this case, the opening of the reinforcing fiber F can be further promoted.
- the second stage 22 includes a large-diameter flight 28A. This is to ensure stable rotation of the screw 10A.
- all the second flights 28 of the second stage 22 can be replaced with the small-diameter flights 28B, but in that case, there is a gap in the entire axial direction between the inner diameter surface 201I of the heating cylinder 201 and the top T of the second flight 28. Arise.
- the second stage 22 swings, and there is a risk that abnormal wear or abnormal vibration of the screw 10A occurs.
- the large-diameter flight 28A is provided before and after (upstream and downstream) of the small-diameter flight 28B, and the large-diameter flight 28A functions as a bearing to prevent the second stage 22 from swinging.
- the large-diameter flight 28A on the upstream side of the small-diameter flight 28B may be provided only on the downstream side of the small-diameter flight 28B by substituting the first flight 27 of the first stage 21.
- the lower limit value of the size of the gap ⁇ is 0.1 mm
- the upper limit value is 8 mm or 60% of the groove depth, whichever is smaller. If it is smaller than 0.1 mm, the reinforcing fiber F may block the gap ⁇ , and it may be difficult to generate the back flow 400. If 8 mm or 60% of the groove depth, whichever is smaller, the amount of the molten resin M covering the fiber mass G increases and the impregnation of the molten resin M into the fiber mass G is promoted. This is because there is a fear that the resin production capacity to the side is insufficient and the molding production efficiency may be lowered.
- the reinforcing fiber F tends to close the gap ⁇ if the upstream ⁇ is small. Therefore, it is preferable that the gap ⁇ is gradually reduced or gradually reduced from the upstream side toward the downstream side.
- a single flight screw having a single flight has been described.
- a double flight including two flights including a main flight and a sub flight can be applied to the second stage 22.
- a screw to which double flight is applied will be described as a second embodiment.
- the double flight is applied to the part to which the reinforcing fiber F is supplied, and the double flight is applied to the downstream area away from the part to which the reinforcing fiber F is supplied. Including forms.
- the second flight 28 in the first embodiment constitutes a main flight.
- the second flight 28 will be read as the main flight 28, and the sub flight will be referred to as the sub flight 29.
- Other elements that are the same as those in the first embodiment are referred to by the same reference numerals as those in the first embodiment, and hereinafter, differences from the first embodiment will be mainly described.
- the screw 10B according to the 2-1 configuration includes a main flight 28 and a sub flight 29 as shown in FIGS.
- FIG. 4B shows a cross section at an arbitrary position on the downstream side
- FIG. 4C shows a cross section at an arbitrary position on the upstream side.
- the main flight 28 is provided in almost the entire area of the second stage 22 in the axial direction, and the outer diameter specified by the top portion T is set to be equal over the entire length.
- the main flight 28 is provided alone in the compression unit 26 without the sub flight 29.
- the outer diameter of the main flight 28 is set similarly to the large-diameter flight 28A in the first embodiment.
- the top portion of the main flight 28 is denoted as T 28, and the top portion of the sub flight 29 is denoted as T 29 .
- the sub-flight 29 is provided between the main flights 28 adjacent to each other in the front-rear direction, and has the same lead as the lead of the main flight 28 or a larger lead than the main flight 28.
- FIGS. The screw groove 31 provided between the adjacent main flights 28 is divided into a pull-side groove 31A on the downstream side and a push-side groove 31B on the upstream side.
- the sub flight 29 has an outer diameter set smaller than that of the main flight 28, and corresponds to the small diameter flight 28B of the first embodiment.
- the subflight 29 is provided in a region X (FIG. 4A) on the upstream side of the second stage 22, and this region X has a vent hole 206 through which the reinforcing fiber F is supplied into the heating cylinder 201. Includes projection area.
- the supplied reinforcing fiber F is dropped or forcibly introduced into the region X in which the sub flight 29 is formed.
- the position of the screw 10B is set so that the vent hole 206 straddles both sides of the screw groove 31 with the subflight 29 as a boundary, as shown in FIG.
- the molten resin M derived from the resin pellets P supplied from the resin supply hopper 207 is sent from the first stage 21 to the second stage 22. Then, the molten resin M enters the pulling side groove 31 ⁇ / b> A between the sub flight 29 of the screw 10 ⁇ / b> B and the main flight 28 located downstream of the sub flight 29. As shown in FIG. 4 (e), a portion of the molten resin M which has entered the pull groove 31A, with the rotation of the screw 10B, and over the top T 29 of the sub-flight 29, to flow back to the press side groove 31B become.
- the molten resin M that gets over the sub flight 29 is covered with the reinforcing fiber F introduced into the push-side groove 31B and impregnated inside the reinforcing fiber F.
- a gap of the radially inner surface 201I of the top portion T 29 and the heating cylinder 201 of the secondary flight 29 in the present embodiment, constituting the resin passage backflow occurs in molten resin material in the present invention.
- the reinforcing fiber F is supplied over both the push side groove 31B and the pull side groove 31A. Accordingly, the reinforcing fiber F is wound into the molten resin M that has flowed back in the push side groove 31B, and the reinforcing fiber F is pushed into the molten resin M from above in the pulling side groove 31A.
- the molten resin M fed from the first stage 21 to the second stage 22 gets over the subflight 29, but most of the molten resin M stays in the pulling groove 31A and the width of the pulling groove 31A. Is narrower than the screw groove of the first stage 21. Therefore, the vacant space in which the supplied reinforcing fiber F can exist as the fiber mass G is greatly reduced, and the degree of filling of the molten resin M inside the pulling side groove 31A is high. Therefore, the pushing force by the fiber supply device 213 effectively acts as the pushing force of the reinforcing fiber F into the molten resin M. As a result, the impregnation of the molten resin M into the fiber mass G is promoted.
- the lead at the start end 29S of the subflight 29 connected to the main flight 28 may be the same size as the lead in the central portion in the axial direction of the subflight 29, but as shown in FIG. it can. That is, in the present invention, the lead at the starting end 29S of the subflight 29 may be made larger than the lead at the axial center portion of the subflight 29, and the groove width of the pull-side groove 31A may be narrowed early.
- the degree of filling of the molten resin M inside the pulling groove 31A can be further increased.
- the pushing force by the fiber supply device 213 effectively acts as a force for pushing the reinforcing fiber F into the molten resin M, and in addition, the pressure of the molten resin M in the drawing side groove 31A is increased, and the drawing side groove
- the backflow from 31A to the push side groove 31B can be promoted.
- the molten resin M that flows backward from the pull-side groove 31A to the push-side groove 31B is impregnated into the reinforcing fiber F.
- the molten resin M impregnates the fiber mass G in the pulling side groove 31A and the action of strong shearing force continues when the molten resin M flows backward, while the molten resin M reaches the end of the subflight 29. To reach.
- the width of the pulling side groove 31A is narrowed, and the molten fiber M that has flowed back from the pulling side groove 31A to the pushing side groove 31B is opened into the reinforcing fiber F that has been opened. Will be dispersed.
- both the start end 29S and the end end 29E of the sub flight 29 are closed with respect to the main flight 28, but this is not an essential element in the present embodiment.
- the start 29S and end 29E is away from the primary flight 28, with respect to leakage molten resin M from the gap, overcome blockage melted resin M if the omission of the top T 29 of the sub-flight 29 To give a shearing force.
- the screw 10C according to the 2-2 configuration is provided with a sub flight 29 downstream of the input portion of the reinforcing fiber F. Except for this, the configuration of the screw 10C is the same as that of the screw 10B of the 2nd-1 type, and therefore the following description will focus on differences from the screw 10B.
- the sub flight 29 is generally provided from the central portion of the supply unit 25 to the downstream end, while the main flight 28 is provided alone on the upstream side of the region where the sub flight 29 is provided. Therefore, from the time when the reinforcing fiber F is supplied until the sub flight 29 is reached, the molten resin M and the reinforcing fiber F are pressed as shown in FIG. 5 (e) as in the first embodiment. It is divided into a side groove 31B and a pulling side groove 31A.
- the screw 10 ⁇ / b> C rotates, the molten resin M and the reinforcing fiber F are conveyed downstream and reach the double flight zone where the sub flight 29 is provided. Then, the molten resin M is guided to the pulling side groove 31A together with the reinforcing fibers F.
- the molten resin M is accompanied by the reinforcing fiber F and the top portion T 29 of the subflight 29 as shown in FIG. 5 (d). Overflows and flows back into the push groove 31B.
- the molten resin M that has passed over the top portion T 29 of the subflight 29 is covered with the fiber mass G that is unevenly distributed on the pulling side surface of the subflight 29, so that the impregnation of the molten resin M inside the fiber mass G is promoted.
- the reinforcing fibers F of the molten resin M in the push-side groove 31B are further promoted to be spread and uniformly dispersed.
- the screw 10C has a longer range in which the subflight 29 is provided, the width of each of the push side groove 31B and the pull side groove 31A is slow, but as shown in FIG. 6A, the range in which the subflight 29 is provided. It is also possible to shorten the width to make the widening steep. In this case, it is possible to increase the shearing force per unit time that acts when getting over the subflight 29. As shown in FIG. 6 (b), the short sub-flight 29 can further promote the opening of the reinforcing fiber F by providing the short sub-flight 29 at a plurality of places (here, two places) at intervals. Moreover, when providing the subflight 29 in several places, the combination of the flight combined is arbitrary.
- the subflights 29 having the same region X length may be combined, or the subflights 29 having the different region X lengths may be combined.
- sub-flights 29 having a long region X as shown in FIG. 4A or FIG. 5A may be combined.
- the subflight 29 having a long region X as shown in FIG. 4 (a) or FIG. 5 (a) may be combined with the short subflight 29 as shown in FIG. 6 (a). Good.
- the gap ⁇ which is the difference in height between the main flight 28 and the sub flight 29 in the 2-1 mode and the 2-2 mode, is preferably the same as that in the first embodiment.
- the lower limit value of the gap ⁇ is 0.1 mm
- the upper limit value is preferably 8 mm or 60% of the groove depth, whichever is smaller, and gradually decreases from the upstream side to the downstream side, or It is preferable to gradually decrease over the entire length of the region X or partially.
- the gap ⁇ in each subflight 29 may be gradually decreased from the downstream side toward the upstream side, and the gap ⁇ in each subflight 29 is constant.
- the gap ⁇ of the subflight 29 provided on the downstream side may be made relatively smaller than the gap ⁇ of the subflight 29 provided on the upstream side.
- moderate shearing can be applied to the fiber mass G that has been stirred, which is effective for fiber opening.
- to keep increasing the upstream side of the gap [delta] when a large mass of fibers G to not proceeded with opening enters the gap [delta] of the top T 29 parts of the sub-flight 29, excessive undergo rapid deformation shear Breakage of the reinforcing fiber F due to generation of force can be prevented.
- the length of the region X of the subflight 29 is preferably 1.5 ⁇ D to 12 ⁇ D (D is the inner diameter of the heating cylinder 201).
- D is the inner diameter of the heating cylinder 201).
- the region X is shorter than 1.5 ⁇ D, the groove cross-sectional area of the pulling-side groove 31A is rapidly reduced, and the fiber mass G is subjected to rapid deformation. Breakage tends to occur.
- the large fiber mass G must flow into the small gap ⁇ within a short distance, and the gap ⁇ may be blocked by the fiber mass G. In this case, a reverse flow of the molten resin M from the downstream side to the upstream side occurs. No longer.
- the region X is longer than 12 ⁇ D, the region where the molten resin M covers the fiber mass G increases, so that the impregnation of the molten resin M into the fiber mass G is promoted. Most of the passengers get over the subflight 29 before reaching 29E. Then, only the fiber mass G having poor fluidity and transportability by the screw 10 remains in the vicinity of the end 29E, and the fiber mass G may not get over the subflight 29 and may stay in the pulling side groove 31A.
- the groove depth of the pull-side groove 31A may be constant (the supply unit 25 or the measuring unit 71) over the entire length of the region X.
- the present invention is not limited to this, and in order to prevent the molten resin M or the fiber lump G from staying at the end 29E of the subflight 29, the groove depth of the pull-side groove 31A is the compression portion 26 in the vicinity of the end 29E of the subflight 29. It is preferable to gradually decrease from the upstream side toward the downstream side.
- the switching position from the supply unit 25 to the compression unit 26 may be switched from the supply unit 25 to the compression unit 26 on the upstream side of the region X, or may be switched from the supply unit 25 to the compression unit 26 inside the region X. Good.
- the groove depth gradually decreases from the groove bottom of the pull side groove 31A to the top T 29 of the sub flight 29 so that the pull side groove 31A disappears.
- the gradient at which the groove depth of the pulling-side groove 31A gradually decreases at the terminal end 29E may be the same as the gradient of the compressing unit 26, or the gradient may be switched near the terminal end 29E so as to be larger or smaller than the gradient of the compressing unit 26. Good.
- the screw 10 ⁇ / b> F is provided with a notch 75 in a part of the second flight 28, and an upstream flight 28 ⁇ / b> C divided by the notch 75.
- the downstream flight 28D constitutes an intermittent second flight 28.
- a part of the second flight 28 continuous in the winding direction is cut out to be the end of the upstream flight 28C, and the upstream screw groove and the downstream side are separated from the cutout 75 as a boundary.
- a screw groove is connected at the groove bottom.
- a gap ( ⁇ ) is provided between the end of the upstream flight 28C and the start end of the downstream flight 28D, and this gap ( ⁇ ) corresponds to the resin passage in which a reverse flow occurs in the molten resin M in the present invention. .
- the screw 10F is provided with an intermittent flight provided with a gap ( ⁇ ) by providing a notch 75 in a part of the second flight 28 of the second stage, and an upstream screw groove and a downstream screw groove. Are connected at the bottom of the groove. Accordingly, as shown in FIG. 7A, a part of the molten resin M staying on the push side 35 of the flight has a gap ( ⁇ ) between the end 28E of the upstream flight 28C and the start end 28S of the downstream flight 28D. Through the notch 75 that forms the back flow into the upstream screw groove 31.
- the fiber mass G comes into contact with the molten resin M also from the pulling side 33 in addition to the molten resin M on the push side 35 located on the side.
- Fig.7 (a) the flow of the molten resin M is shown with the broken-line arrow.
- the position, size, and number of the flight cutouts 75 in the second stage 22 are arbitrary as long as the molten resin M can flow back.
- the number of the second flights 28 having the notches 75 is not limited to one, but a plurality of the second flights 28 and 28 having different circumferential phases as shown in FIG. It may be provided. In the case of a plurality of second flights 28, 28, only a part of each of the second flights 28, 28 may be overlapped, or all of them may be overlapped. In this case, the notch 75 is provided in each of the second flights 28, 28, so that there are a plurality of gaps ⁇ .
- the number of flights is less than the number of flights on the upstream side.
- FIG. 8C shows an example in which the number of strips is two on the upstream side and three on the downstream side.
- the reinforcing fiber F tends to close the gap ⁇ if the upstream side ⁇ is small. Therefore, it is preferable that the gap ⁇ is gradually reduced or gradually reduced from the upstream side toward the downstream side. Moreover, since the fiber part G is made small by promoting the opening of the reinforcing fiber F in the supply unit 25 and can be conveyed to the compression unit 26 where the groove depth gradually decreases, the large fiber mass G is contained in the groove of the compression unit 26. Can be blocked. Further, as shown in FIG.
- the intermittent second flight 28 may be provided such that the downstream flight 28D is shifted in phase with respect to the extension line in the winding direction of the upstream flight 28C.
- the contact area with the molten resin M in which the fiber mass G flows backward at the end portion of the flight increases, the impregnation of the molten resin M into the fiber mass G is promoted.
- the present invention has been described based on the embodiments.
- the configuration described in the above embodiments may be selected or changed to other configurations as appropriate without departing from the gist of the present invention. is there.
- the first-form small-diameter flight 28B and the second-form sub-flight 29 may be combined and provided at an interval, or the sub-flight 29 may be provided in the screw groove 31 of the small-diameter flight 28B.
- the flights of the first to third embodiments may be provided in any combination.
- the screw 10 is not limited to the two-stage design shown in the present embodiment, but a three-stage type including a third stage further provided with a supply unit, a compression unit, and a metering unit on the downstream side of the second stage.
- the design can be In this case, a function of adding a functional member to the molten resin or degassing volatile substances may be added to the third stage.
- the fiber supply device 213 and the resin supply hopper 207 are fixed to the heating cylinder 201, but it can be a movable hopper that moves in the axial direction of the screw 10.
- a multi-axis type measuring feeder is used for the fiber supply device 213, a plurality of feeders are connected in parallel in the longitudinal direction of the screw 10, and the feeder for supplying the reinforcing fiber F is switched and used in the plasticizing process. May be.
- the reinforcing fiber F is supplied from a feeder arranged on the tip side of the screw 10 and the screw 10 and the fiber are discharged as the screw 10 moves backward in the plasticizing process.
- the feeder for supplying the reinforcing fibers F may be sequentially switched to the rear side so that the relative position with the feeder screw does not change. Thereby, the supply position of the reinforcing fiber F to the screw 10 can be made constant regardless of the change in the relative position of the heating cylinder 201 and the screw 10 due to the backward movement of the screw 10 and the advancement of the screw 10 at the time of injection.
- the position of the fiber supply feeder screw when plasticization is completed that is, the position of the last screw groove filled with the reinforcing fiber F, is moved to the next plasticization at the screw position advanced by injection. Since it can be made to coincide with the position of the fiber supply feeder screw at the start, the reinforcing fiber F can be continuously supplied to the screw groove downstream from the fiber supply device 213, and in the groove of the screw 10 downstream from the fiber supply device 213. This is effective for preventing or suppressing the generation of the region not filled with the reinforcing fiber F.
- the switching method of the feeder screw may be simple ON / OFF control, or the rotation speed of adjacent screw feeders may be changed in cooperation. Specifically, as the screw moves backward, the rotational speed of the downstream screw feeder may be gradually decreased and the rotational speed of the rear screw feeder may be gradually increased.
- the supply of the reinforcing fiber F to the heating cylinder 201 may be performed not only in the injection process and the plasticizing process but also in, for example, a pressure holding process and an injection standby process (from the completion of the plasticizing process to the start of the injection process).
- a pressure holding process and an injection standby process from the completion of the plasticizing process to the start of the injection process.
- the screw 10 does not rotate and move forward or backward, so that the vent hole is not intermittently blocked by the movement of the flight. For this reason, the reinforcing fiber can be stably supplied into the groove of the screw 10.
- the reinforcing fiber F but also the reinforcing fiber F mixed with the raw material resin in the form of powder or pellet may be supplied to the fiber supply device 213.
- the mixed raw material resin melts in the mass of the reinforcing fibers F and enters the fiber bundle, thereby facilitating the opening of the fiber bundle.
- the resin and reinforcing fiber applied to the present invention are not particularly limited, and are known resins such as general-purpose resins such as polypropylene and polyethylene, engineering plastics such as polyamide and polycarbonate, and glass fibers and carbon fibers. Widely includes known materials such as known reinforcing fibers such as bamboo fiber and hemp fiber.
- a fiber reinforced resin having a high content of reinforcing fibers of 10% or more. However, if the content of the reinforcing fiber exceeds 70%, the conveyance resistance of the reinforcing fiber in the screw groove increases.
- the reinforcing fiber can be conveyed. It becomes difficult and the reinforcing fiber may block the inside of the screw groove and cause vent-up at the vent hole. Therefore, the content of the reinforcing fiber applied to the present invention is preferably 10 to 70%, more preferably 15 to 50%.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
Description
また、本発明は、そのような射出スクリュを備える射出成形機を提供することを目的とする。
さらに、本発明は、そのような射出スクリュを用いて強化繊維を含む樹脂を射出成形する方法を提供することを目的とする。
そこで、本発明者は、スクリュ溝301のフライトの押し側305にある溶融樹脂Mの一部を、フライト306の頂部Tを乗り越えて隣接するスクリュ溝301の引き側303に逆流させることを着想した。つまり、この逆流した溶融樹脂Mを繊維塊に作用させることで、繊維塊の開繊を促進しようというものである。
本発明のスクリュは、第2ステージに設けられるフライトが、スクリュの下流側のスクリュ溝から上流側のスクリュ溝に向けて、溶融された樹脂原料の逆流が生じる樹脂通路を備えることを特徴とする。本発明のスクリュは、樹脂通路を設けることにより、溶融樹脂Mに逆流が生ずるように仕向ける。
なお、本願で用いる上流又は下流の語は、スクリュにより樹脂が搬送される向きを基準にして用いられるものとする。
形態Aは、第2ステージが、一条のフライトからなる第1形態と、二条のフライトからなる第2形態の、いずれをも選択できる。
また、第2形態は、第2ステージが、主フライトと、主フライトによって形成されるスクリュ溝に設けられる副フライトと、を備える二条フライトからなり、主フライトが大径フライトをなし、副フライトが小径フライトをなす。この形態においても、逆流通路は、小径フライトの頂部とシリンダとの間隙からなる。
第2形態において、副フライトは、スクリュの軸方向の一部の箇所又は複数の個所に設けることができる。
また、第2形態において、副フライトは、強化繊維が供給される部位に対応して設けることができる。もちろん、強化繊維が供給される部位から離れた位置に設けることもできる。
また、第2形態において、副フライトは、始端及び終端のいずれか一方又は双方が、主フライトに対して閉塞していることが好ましい。
また、本発明は、内部に回転可能および回転軸方向に移動可能なスクリュが設けられたシリンダに、樹脂原料を供給するとともに、樹脂原料よりも下流側において強化繊維を供給して、強化繊維を射出成形する方法において、上述したスクリュを適用した繊維強化樹脂の射出成形方法を提供する。
[第1実施形態]
本実施形態に係る射出成形機1は、図1に示すように、型締ユニット100と、可塑化ユニット200と、これらのユニットの動作を制御する制御部50と、を備えている。
以下、型締ユニット100の構成と動作、可塑化ユニット200の構成と動作の概略について説明し、次いで、射出成形機1による射出成形の手順について説明する。
型締ユニット100は、ベースフレーム101上に固設されるとともに固定金型103が取り付けられた固定ダイプレート105と、油圧シリンダ113を作動させることによってレールや摺動板などの摺動部材107上を図中左右方向に移動するとともに可動金型109が取り付けられた可動ダイプレート111と、固定ダイプレート105と可動ダイプレート111とを連結する複数のタイバー115とを備えている。固定ダイプレート105には、各タイバー115と同軸に型締め用の油圧シリンダ117が設けられており、各タイバー115の一端は油圧シリンダ117のラム119に接続されている。
これらの各要素は制御部50の指示にしたがって必要な動作を行なう。
型締ユニット100の概略の動作は以下の通りである。
まず、型開閉用の油圧シリンダ113の作動により可動ダイプレート111を図中の二点鎖線の位置まで移動させて可動金型109を固定金型103に当接させる。次いで、各タイバー115の雄ねじ部121と可動ダイプレート111に設けられた半割りナット123を係合させて、可動ダイプレート111をタイバー115に固定する。そして、油圧シリンダ117内の可動ダイプレート111側の油室の作動油の圧力を高めて、固定金型103と可動金型109とを締め付ける。このようにして型締めを行った後に、可塑化ユニット200から金型のキャビティ内に溶融樹脂Mを射出して成形品を成形する。
可塑化ユニット200は、筒型の加熱シリンダ201と、加熱シリンダ201の下流端に設けた吐出ノズル203と、加熱シリンダ201の内部に設けられたスクリュ10と、強化繊維Fが供給される繊維供給装置213と、樹脂ペレットPが供給される樹脂供給ホッパ207とを備えている。繊維供給装置213は、樹脂供給ホッパ207よりも下流側に設けられているベント孔206に連結されている。
可塑化ユニット200は、スクリュ10を前進又は後退させる第1電動機209と、スクリュ10を正転又は逆転をさせる第2電動機211と、樹脂供給ホッパ207に対して樹脂ペレットPを供給するペレット供給装置215と、を備えている。これらの各要素は制御部50の指示にしたがって必要な動作を行なう。
スクリュ10は、第1ステージ21に第1フライト27が設けられ、第2ステージ22に第2フライト28が設けられている。
第1ステージ21及び第2ステージ22ともに、相対的に、供給部23,25におけるフライト間のスクリュ溝が深く、圧縮部24,26のフライト間のスクリュ溝が上流側から下流側に向けて漸減していうように設定され、計量部70、71におけるスクリュ溝が最も浅く設定されている。ここで、第1ステージ21の計量部70よりも第2ステージ22の供給部25のスクリュ溝が深いために、第1ステージ21から供給部25に吐出される溶融樹脂Mが供給部25のスクリュ溝を埋め尽くすことができない。これにより、溶融樹脂Mがスクリュ10の回転により押し側305に押しつけられて偏在することになる。これにより第2ステージ22の供給部25の引き側303に空隙が発生する。このためベント孔206を介して繊維供給装置213から供給された強化繊維Fは、この空隙となった引き側303に強化繊維Fが配分されることで、図8に示したように、溶融樹脂Mと強化繊維Fが区分されるものと解される。
この機能を得るために、図1に示すように、第1ステージ21の第1フライト27は、そのフライトリード(L1)が第2ステージ22の第2フライト28のフライトリード(L2)以下とすること、つまりL1≦L2が成り立つことが好ましい。なお、フライトリード(以下、単にリード)とは、前後のフライトの間隔をいう。一つの指標として、第1フライト27のリードL1は、リードL2の0.4~1.0倍とするのが好ましく、0.5~0.9倍とすることがより好ましい。
通常、スクリュのフライトは、その頂部が加熱シリンダの内径面に摺動し得るように、外径が設定される。図3(b),(c)に示されるように、本実施形態の大径フライト28Aはこの内径面に摺動し得るフライトに相当し、小径フライト28Bは、その頂部Tが加熱シリンダ201の内径面から離れるように形成される。そこに生じる間隙が、本発明における溶融樹脂Mの逆流が生じる樹脂通路を構成する。
スクリュ10は、強化繊維Fが投入される上流側から、大径フライト28A,小径フライト28B及び大径フライト28Aがこの順に配置されている。
第2ステージ22に小径フライト28Bを設けることによる効果については、射出成形の手順を説明した後に言及する。
ただし、リードL2が大きくなりすぎると、溶融樹脂Mを搬送する力が弱くなり、通常の可塑化に要する背圧(5~10MPa)程度でも、溶融樹脂Mの搬送が不安定となり、背圧による溶融樹脂Mがベント孔206に逆流してベントアップが発生しやすくなる。したがって、リードL2は、2.0×D以下にすることが好ましく、さらに1.7×D以下にすることがより好ましい。つまり、第2フライト28のリードL2は、1.0×D~2.0×Dとすることが好ましく、さらに1.2×D~1.7×Dとすることがより好ましい。
また、第2フライト28のフライトの幅は、リードL2の0.01~0.3倍(0.01×L2~0.3×L2)とするのが好ましい。フライトの幅がリードL2の0.01倍より小さいと第2フライト28の強度が不十分となり、フライトの幅がリードL2の0.3倍を超えると、スクリュ溝幅が小さくなり繊維がフライト頂部に引っかかって溝内に落ちにくくなるからである。
また、上述したL1≦L2が成り立つ好ましい形態の他、第2ステージ22の特に供給部25の一部または全部の第2フライト28は、1条フライトではなく、複数条数のフライトでもよい。この場合、第1ステージ21から吐出された溶融樹脂Mが、複数条数のフライトにより区画されたスクリュ溝にそれぞれ分割して分配されるため、各スクリュ溝内で繊維塊と溶融樹脂Mがそれぞれ接触、混合されるので、繊維塊への溶融樹脂Mの含浸に有効である。また更に繊維供給装置213から強化繊維Fの供給を受ける領域のフライト条数を複数にすることにより、複数条数のフライトによってスクリュ10の1回転当たりのベント孔206下のフライトの通過回数が増加するため、強化繊維Fをベント孔206から掻き取る能力が向上し、強化繊維Fのスクリュ10溝内への取り込み効率が向上する。
2軸型スクリュフィーダー214への強化繊維Fの供給方法は、2軸型スクリュフィーダー214に連続繊維、いわゆるロービング状態の繊維(以下、ロービング繊維という)を直接投入してもよいし、予め所定長さに切断されたチョップドストランド状態の繊維(以下、チョップド繊維という)を投入してもよい。あるいは、ロービング繊維とチョップド繊維を所定の割合で混合して投入してもよい。
チョップド繊維を投入する場合は、計量フィーダーの繊維投入口付近までロービング繊維で搬送し、繊維投入口付近でロービング繊維を切断した直後に上記の計量フィーダーに投入してもよい。これにより、飛散しやすいチョップド繊維を成形機投入まで暴露することがないので作業性を向上できる。
本実施形態では、2軸型スクリュフィーダー214の繊維投入口付近に、ロービングカッター218を設ける。ロービングカッター218により、ロービング繊維を切断し、チョップド繊維にしてから2軸型スクリュフィーダー214に供給する。
可塑化ユニット200の概略の動作は以下の通りである。なお、図1を参照願いたい。
加熱シリンダ201の内部に設けられたスクリュ10が回転されると、繊維供給装置213からベント孔206を介して供給された強化繊維F、および、樹脂供給ホッパ207から供給された熱可塑性樹脂からなるペレット(樹脂ペレットP)は、加熱シリンダ201の下流端の吐出ノズル203に向けて送り出される。なお、強化繊維Fの供給を開始するタイミングは、樹脂供給ホッパ207から供給された樹脂ペレットP(溶融樹脂M)が、強化繊維Fが供給されるベント孔206に到達した後とすることが好ましい。溶融樹脂Mがベント孔206に到達する前に強化繊維Fの投入を開始すると、流動性およびスクリュ10による搬送性の乏しい強化繊維Fがスクリュ溝内を閉塞してしまい、溶融樹脂Mの搬送を妨げてベント孔206から溶融樹脂Mがあふれ出したり、スクリュ10の異常摩耗や破損を発生したりするおそれがあるからである。溶融樹脂Mは強化繊維Fと混合された後に、型締ユニット100の固定金型103と可動金型109の間に形成されるキャビティへ所定量だけ射出される。なお、樹脂ペレットPの溶融に伴いスクリュ10が背圧を受けながら後退した後に、前進することで射出を行なうというスクリュ10の基本動作を伴うことは言うまでもない。また、加熱シリンダ201の外側には、樹脂ペレットPの溶融のためにヒータを設けるなど、他の構成を適用し、あるいは置換することを妨げない。
以上の要素を備える射出成形機1は、以下の手順で射出成形を行なう。
射出成形は、よく知られているように、可動金型109と固定金型103を閉じて高圧で型締めする型締工程と、樹脂ペレットPを加熱シリンダ201内で加熱、溶融して可塑化させる可塑化工程と、可塑化された溶融樹脂Mを、可動金型109と固定金型103により形成されるキャビティに射出、充填する射出工程と、キャビティに充填された溶融樹脂Mが固化するまで冷却する保持工程と、金型を開放する型開き工程と、キャビティ内で冷却固化された成形品を取り出す取り出し工程と、を備え、上述した各工程をシーケンシャルに、あるいは一部を並行させて実施して1サイクルの射出成形が完了する。
[可塑化工程]
可塑化工程では、樹脂ペレットPを加熱シリンダ201の上流側の樹脂供給ホッパ207に対応する供給孔208から供給する。可塑化開始当初ではスクリュ10は、加熱シリンダ201の下流に位置しており、その初期位置からスクリュ10を回転させながら後退させる(図2(a)「可塑化開始」)。スクリュ10を回転させることで、スクリュ10と加熱シリンダ201の間に供給された樹脂ペレットPは、せん断力を受けて加熱されながら徐々に溶融して、下流に向けて搬送される。なお、本発明では可塑化工程におけるスクリュ10の回転(向き)を正転とする。溶融樹脂Mが繊維供給装置213まで搬送されたならば、強化繊維Fを繊維供給装置213から供給する。スクリュ10の回転に伴い、強化繊維Fは溶融樹脂Mに混錬、分散して溶融樹脂Mとともに下流に搬送される。樹脂ペレットP、強化繊維Fの供給を継続するとともに、スクリュ10を回転し続けると、加熱シリンダ201の下流側に搬送され、溶融樹脂Mが強化繊維Fとともにスクリュ10よりも下流側に溜まる。スクリュ10の下流に溜まった溶融樹脂Mの樹脂圧力とスクリュ10の後退を抑制する背圧とのバランスによってスクリュ10を後退させる。この後、1ショットに必要な量の溶融樹脂Mが溜まったところで、スクリュ10の回転及び後退を停止する(図2(b)「可塑化完了」)。
射出工程に入ると、図2(c)に示すように、スクリュ10を前進させる。そうすると、スクリュ10の先端部に備えられている図示しない逆流防止弁が閉鎖することで、スクリュ10の下流に溜まった溶融樹脂Mの圧力(樹脂圧力)が上昇し、溶融樹脂Mは吐出ノズル203からキャビティに向けて吐出される。
以後は、保持工程と、型開き工程と、取り出し工程を経て、1サイクルの射出成形が完了し、次のサイクルの型締め工程、可塑化工程が行われる。
次に、本実施形態において、小径フライト28Bを設けることによる効果を説明する。
第2ステージ22は、可塑化工程中にその供給部25で強化繊維Fの供給を受ける。図8を参照して先に述べたように、フライトの径が一定の従来のスクリュでは、強化繊維Fが繊維塊となってフライトの引き側に存在するものと解される。小径フライト28Bは、この繊維塊を開繊して強化繊維Fの均一分散に供するために設けられる。以下、図3を参照して説明する。なお、以下では第2実施形態および第3実施形態と区別するために、スクリュ10をスクリュ10Aと称する。
したがって、図3(d)に示すように、フライトの押し側35に滞留する溶融樹脂Mの一部が頂部Tを乗り越えて上流側のスクリュ溝31に逆流400が生じる。頂部Tを乗り越えた領域は、繊維塊が存在するスクリュ溝31の引き側33であるから、逆流した溶融樹脂Mは加熱シリンダ201の径方向外側(以下、上方と称す)から繊維塊となった強化繊維Fに覆い被さる。こうして、小径フライト28Bを設けることによって、繊維塊は、側方に位置する押し側35の溶融樹脂Mに加えて、上方からも溶融樹脂Mと接することになる。なお、図3(d)において、溶融樹脂Mの流れを破線矢印で示している。
なお、溶融樹脂Mの逆流400とは、可塑化工程における溶融樹脂Mが上流から下流(図中の右側から左側)に向けて搬送されるのに対して、その逆向き(図中の左側から右側)に流動することを意味する。
上述したように、小径フライト28Bを設けることにより、図3(e)に矢印eで示すように、側面SSからだけでなく上面USから接する溶融樹脂Mが繊維塊G(簡略化して直方体で示している)の内部に進入し含浸される。したがって、側面SSだけから溶融樹脂Mが含浸するのに比べて、繊維塊Gの内部のより広範な範囲に溶融樹脂Mを媒体としてせん断力が伝達される結果、繊維塊Gの開繊が促進される。また、図3(f)に示すように、スクリュ10Aの回転時に繊維塊Gの側面SSに加えて、上面USにも粘着性の高い溶融樹脂を媒体としてシリンダの内径面201Iと滑ることなく繊維塊Gにせん断力Sを作用させることができるので、開繊がより促進される。
これは、スクリュ10Aの安定した回転を担保するためである。つまり、第2ステージ22の第2フライト28をすべて小径フライト28Bに置き換えることもできるが、そうすると、加熱シリンダ201の内径面201Iと第2フライト28の頂部Tの間に軸方向の全域で隙間が生じる。これで、スクリュ10Aを回転させると、第2ステージ22が振れ回り、スクリュ10Aの異常摩耗や異常振動が発生するおそれがある。そこで、本実施形態では、小径フライト28Bの前後(上流側および下流側)に大径フライト28Aを設け、この大径フライト28Aに軸受として機能させることにより、第2ステージ22の振れ回りを防止して、スクリュ10Aの安定した回転を担保する。なお、小径フライト28Bの上流側の大径フライト28Aは、第1ステージ21の第1フライト27を代用することで、小径フライト28Bの下流側だけに大径フライト28Aを設けてもよい。
第1実施形態ではフライトが一条のいわゆるシングルフライトスクリュについて説明したが、第2ステージ22に、主フライトと副フライトからなる二条のフライトを備えるダブルフライトを適用することができる。以下、ダブルフライトが適用されるスクリュを第2実施形態として説明する。第2実施形態は、強化繊維Fが供給される部位にダブルフライトを適用する第2-1形態と、強化繊維Fが供給される部位から離れた下流域にダブルフライトを適用する第2-2形態とを含む。
なお、第1実施形態における第2フライト28が主フライトを構成するものとみなして、以下では、第2フライト28を主フライト28と読み替えるものとし、副フライトは副フライト29と表記する。その他については、第1実施形態と同じ要素には第1実施形態と同じ符号を引用しつつ、以下では、第1実施形態との相違部分を中心に説明する。
第2-1形態にかかるスクリュ10Bは、図4(a),(b),(c)に示すように、主フライト28と副フライト29を備える。なお、図4(b)は下流側の任意の位置の断面を示し、図4(c)は上流側の任意の位置の断面を示している。
主フライト28は、第2ステージ22の軸方向のほぼ全域に設けられるものであるが、その頂部Tで特定される外径は全長に亘って等しく設定されている。主フライト28は、圧縮部26においては副フライト29を伴わずに、単独で設けられている。主フライト28の外径は第1実施形態における大径フライト28Aと同様に設定される。なお、主フライト28の頂部をT28と表記し、副フライト29の頂部をT29と表記する。
副フライト29は、第2ステージ22の上流側の領域X(図4(a))に設けられており、この領域Xは、強化繊維Fが加熱シリンダ201の内部に供給されるベント孔206の投影領域を含んでいる。つまり、供給される強化繊維Fは、副フライト29が形成された領域Xの範囲に落下あるいは強制導入される。特に、可塑化工程の開始時に、図4(a)に示すように、副フライト29を境にしてベント孔206がスクリュ溝31の両側に跨るように、スクリュ10Bの位置が設定される。
樹脂供給ホッパ207から供給された樹脂ペレットPに由来する溶融樹脂Mは、第1ステージ21から第2ステージ22に送り込まれる。そうすると、溶融樹脂Mは、スクリュ10Bの副フライト29と副フライト29よりも下流側に位置する主フライト28との間の引き側溝31Aに進入する。図4(e)に示すように、引き側溝31Aに進入した溶融樹脂Mの一部は、スクリュ10Bの回転に伴い、副フライト29の頂部T29を乗り越えて、押し側溝31Bに逆流することになる。副フライト29を乗り越える溶融樹脂Mは、押し側溝31B内に導入された強化繊維Fに覆い被さり強化繊維Fの内部に含浸される。なお、本実施形態における副フライト29の頂部T29と加熱シリンダ201の内径面201Iの隙間が、本発明における溶融された樹脂原料の逆流が生じる樹脂通路を構成する。
また、主フライト28と連結される副フライト29の始端29Sにおけるリードは、副フライト29の軸方向中央部のリードと同じ大きさにしてもよいが、図4(a)のようにすることができる。つまり、本発明において、副フライト29の始端29Sにおけるリードを、副フライト29の軸方向中央部のリードよりも大きくして、引き側溝31Aの溝幅を早期に狭めてもよい。引き側溝31Aの溝幅を早期に狭めることにより、引き側溝31Aの内部における溶融樹脂Mの充填の度合いをさらに高めることができる。そうすると、繊維供給装置213による押し込み力が、溶融樹脂Mの内部へ強化繊維Fを押し込む力として有効に作用することに加えて、引き側溝31A内の溶融樹脂Mの圧力を増大させて、引き側溝31Aから押し側溝31Bへの逆流を促進させることができる。
引き側溝31Aから押し側溝31Bに逆流する溶融樹脂Mは、強化繊維Fに含浸するが、副フライト29の頂部T29と加熱シリンダ201の内径面の隙間を通過して逆流する際に、相応のせん断力が作用するので、溶融樹脂Mとともに引き側溝31Aから押し側溝31Bに逆流する繊維塊Gの開繊をさらに促進させることができる。
第2-2形態に係るスクリュ10Cは、図5(a),(b),(c)に示すように、強化繊維Fの投入部よりも下流に副フライト29を設ける。このことを除くと、スクリュ10Cは第2-1形態のスクリュ10Bと構成が同じであるから、以下ではスクリュ10Bとの相違点を中心に説明する。
この短い副フライト29は、図6(b)に示すように、間隔をあけて複数箇所(ここでは2カ所)に設けることにより、強化繊維Fの開繊をより促進することができる。
また、複数箇所に副フライト29を設ける場合は、組み合せるフライトの組み合わせは任意である。例えば、図6(b)のように領域Xの長さが同じ副フライト29を組み合わせてもよいし、領域Xの長さが異なる副フライト29を組み合せてもよい。前者の場合には、図4(a)あるいは図5(a)のような領域Xの長さが長い副フライト29同士を組み合わせてもよい。また、後者の場合には、図4(a)あるいは図5(a)のような領域Xの長さが長い副フライト29と、図6(a)のような短い副フライト29を組み合わせてもよい。
領域Xが1.5×Dより短いと、引き側溝31Aの溝断面積が急激に縮小することにより繊維塊Gが急激な変形を受けて発生する過大な圧縮力およびせん断力により強化繊維Fの折損が発生しやすくなる。また、短距離の間に大きな繊維塊Gが小さな隙間δに流れ込まなければならなくなり、隙間δが繊維塊Gにより閉塞するおそれがあり、そうすると溶融樹脂Mの下流側から上流側への逆流が発生しなくなる。
領域Xが、12×Dよりも長いと溶融樹脂Mが繊維塊Gに被さる領域が大きくなるので繊維塊Gへの溶融樹脂Mの含浸が促進されるが、溶融樹脂Mが副フライト29の終端29Eに到達するまでの間に大半が副フライト29を乗り越えてしまう。そうすると、終端29E付近では流動性およびスクリュ10による搬送性の乏しい繊維塊Gのみが残り、繊維塊Gが副フライト29を乗り越えることができずに引き側溝31A内に滞留してしまうおそれがある。
第1実施形態及び第2実施形態では、溶融された樹脂原料の逆流が生じる樹脂通路が、フライトの巻回方向の所定範囲で連続的に設けられる例について説明したが、本発明は、樹脂通路をフライトの巻回方向の一部に設けることができる。以下、樹脂通路がフライトの巻回方向の一部に適用されるスクリュを第3実施形態として説明する。
なお、第1実施形態と同じ要素には第1実施形態と同じ符号を引用しつつ、以下では、第1実施形態との相違部分を中心に説明する。
スクリュ10Fは、第2ステージの第2フライト28の一部に切り欠き75を設けることで、隙間(δ)が設けられた断続的なフライトを備え、上流側のスクリュ溝と下流側のスクリュ溝が溝底で連結している。
したがって、図7(a)に示すように、フライトの押し側35に滞留する溶融樹脂Mの一部が、上流側フライト28Cの終端28Eと下流側フライト28Dの始端28Sの間に隙間(δ)を形成する切り欠き75を通って、上流側のスクリュ溝31に逆流する。隙間(δ)を通過した領域は、繊維塊Gが存在するスクリュ溝31の引き側33であるから、逆流した溶融樹脂Mは引き側33から繊維塊Gとなった強化繊維Fに主に側方から覆い被さる。こうして、切り欠き75を設けることによって、繊維塊Gは、側方に位置する押し側35の溶融樹脂Mに加えて、引き側33からも溶融樹脂Mと接することになる。なお、図7(a)において、溶融樹脂Mの流れを破線矢印で示している。
また、切り欠き75を有する第2フライト28の条数は、1条に限るものではなく、図7(b)のように、それぞれ周方向の位相の異なる複数条の第2フライト28,28を設けてもよい。複数条数の第2フライト28,28の場合、それぞれの第2フライト28,28の一部だけをオーバーラップしてもよいし、全部をオーバーラップしてもよい。この場合、それぞれの第2フライト28,28に切り欠き75を設けるので、隙間δが複数になる。
また、強化繊維Fの開繊を促進して繊維塊Gを順次細分化し小さくしてより小さな繊維塊Gの表面に樹脂を被せて含浸させ、溝深さが漸減する圧縮部26に搬送できるように、図8(c)のように、フライト条数は上流側のフライト条数を下流側のフライト条数よりも少なくすることが好ましい。図8(c)は、条数が、上流側が2条、下流側が3条の例を示している。
また、隙間δを複数備える場合には、隙間δは全て同一の幅でもよいが、異なる幅にすることができる。繊維塊Gの大きさは攪拌が進んだ下流側より繊維投入して間もない上流側の方が大きいことから、上流側のδが小さいと強化繊維Fが隙間δを閉塞しやすくなる。そこで、隙間δは上流側から下流側に向けて漸減あるいは段階的に縮小することが好ましい。また、供給部25において強化繊維Fの開繊を促進して繊維塊Gを小さくしてから、溝深さが漸減する圧縮部26に搬送できるので、大きな繊維塊Gが圧縮部26の溝内を閉塞するのを防止できる。
また、断続的な第2フライト28は、図7(d)にように、上流側のフライト28Cの巻回方向の延長線上に対し、下流側のフライト28Dを位相をずらして設けてもよい。この場合、フライトの終端部で繊維塊Gが逆流してくる溶融樹脂Mとの接触面積が増大することから、繊維塊Gへの溶融樹脂Mの含浸が促進される。
また、第1形態の小径フライト28Bと第2形態の副フライト29を組み合わせて、間隔をあけて設けてもよいし、小径フライト28Bのスクリュ溝31内に副フライト29を設けてもよい。また、第1実施形態乃至第3実施形態のフライトを任意に組み合わせて設けてもよい。
また、スクリュ10は本実施形態に示した2ステージ型のデザインに限るものではなく、第2ステージの下流側に、さらに供給部、圧縮部、計量部を備えた第3ステージを備える3ステージ型のデザインとすることができる。この場合、第3ステージに、溶融樹脂へ機能部材を添加しあるいは揮発物質を脱気するといった機能などを追加してもよい。
10,10B~10G スクリュ
21 第1ステージ
22 第2ステージ
23 供給部
24 圧縮部
25 供給部
26 圧縮部
27 第1フライト
28 第2フライト,主フライト
28A 大径フライト
28B 小径フライト
28C フライト
28D フライト
28E 終端
28S 始端
29 副フライト
29E 終端
29S 始端
31 スクリュ溝
31A 引き側溝
31B 押し側溝
33 引き側
35 押し側
50 制御部
70 計量部
71 計量部
75 切り欠き
100 型締ユニット
101 ベースフレーム
103 固定金型
105 固定ダイプレート
107 摺動部材
109 可動金型
111 可動ダイプレート
113 油圧シリンダ
115 タイバー
117 油圧シリンダ
119 ラム
121 雄ねじ部
123 半割りナット
200 可塑化ユニット
201 加熱シリンダ
201I 内径面
203 吐出ノズル
206 ベント孔
207 樹脂供給ホッパ
208 供給孔
209 第1電動機
211 第2電動機
213 繊維供給装置
214 2軸型スクリュフィーダー
215 ペレット供給装置
218 ロービングカッター
300 スクリュ
301 スクリュ溝
303 引き側
305 押し側
306 フライト
310 シリンダ
400 逆流
F 強化繊維
G 繊維塊
M 溶融樹脂
P 樹脂ペレット
T,T28,T29 頂部
δ 隙間
Claims (11)
- 上流側で樹脂原料が供給され、下流側で強化繊維が供給される射出成形機のシリンダの内部に設けられるスクリュであって、
前記スクリュは、
供給される前記樹脂原料を溶融する第1ステージと、
前記第1ステージに連なり、溶融された前記樹脂原料と供給された前記強化繊維を混合する第2ステージと、を備え、
前記第2ステージに設けられるフライトは、
前記スクリュの下流側のスクリュ溝から上流側のスクリュ溝に向けて、溶融された前記樹脂原料の逆流が生じる樹脂通路を備えることを特徴とするスクリュ。 - 前記第2ステージに設けられるフライトは、
相対的に外径の大きい大径フライトと、相対的に外径の小さい小径フライトと、を備え、
前記逆流通路は、
前記小径フライトの頂部と前記シリンダとの隙間からなる、
ことを特徴とするスクリュ。
- 前記第2ステージは、
前記大径フライトと前記小径フライトが連なって、一条の前記フライトを構成する、
請求項2に記載のスクリュ。
- 前記第2ステージは、
前記フライトが、主フライトと、前記主フライトによって形成されるスクリュ溝に設けられる副フライトと、を備える二条フライトからなり、
前記主フライトが前記大径フライトをなし、前記副フライトが前記小径フライトをなしている、
請求項2に記載のスクリュ。
- 前記副フライトは、
前記スクリュの軸方向の一部の箇所又は複数の個所に設けられる、
請求項4に記載のスクリュ。
- 前記副フライトは、
前記強化繊維が供給される部位に対応して設けられる、
請求項4に記載のスクリュ。
- 前記副フライトは、
始端及び終端のいずれか一方又は双方が、前記主フライトに対して閉塞している、
請求項4~請求項6のいずれか一項に記載のスクリュ。
- 前記第2ステージに設けられる前記フライトは、
前記フライトの巻回方向に連続性を欠くように、前記フライトの一部に切り欠きが設けられた断続的なフライトであり、
前記樹脂通路は、
前記切り欠きからなる、
請求項1に記載のスクリュ。
- 吐出ノズルが形成されたシリンダと、
前記シリンダの内部に回転可能および回転軸方向に移動可能に設けられたスクリュと、
樹脂原料を前記シリンダ内に供給する樹脂供給部と、
前記樹脂供給部よりも下流側に設けられ、強化繊維を前記シリンダ内に供給する繊維供給部と、
を備え、
前記スクリュは、
請求項1~請求項8のいずれか一項に記載のスクリュが適用される、
ことを特徴とする繊維強化樹脂の射出成形機。
- 内部に回転可能および回転軸方向に移動可能なスクリュが設けられたシリンダに、樹脂原料を供給するとともに、前記樹脂原料よりも下流側において強化繊維を供給して、強化繊維を射出成形する方法であって、
前記スクリュは、
請求項1~請求項8のいずれか一項に記載のスクリュが適用される、
ことを特徴とする繊維強化樹脂の射出成形方法。
- 内部に回転可能および回転軸方向に移動可能なスクリュが設けられたシリンダに、樹脂原料を供給するとともに、前記樹脂原料よりも下流側において強化繊維を供給して、強化繊維を射出成形する方法であって、
前記スクリュは、
供給される前記樹脂原料を溶融する第1ステージと、
前記第1ステージに連なり、溶融された前記樹脂原料と供給される前記強化繊維を混合する第2ステージと、を備え、
前記第2ステージにおいて、
前記樹脂原料は、前記スクリュに設けられるフライトの頂部を乗り越えて、上流側のスクリュ溝内に流入される、
射出成形方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/115,253 US10486351B2 (en) | 2014-06-09 | 2014-06-09 | Screw, injection molding machine, and injection molding method |
PCT/JP2014/003066 WO2015189869A1 (ja) | 2014-06-09 | 2014-06-09 | スクリュ、射出成形機、及び、射出成形方法 |
JP2015536698A JP5901858B1 (ja) | 2014-06-09 | 2014-06-09 | 射出成形機、及び、射出成形方法 |
EP14894300.4A EP3098052B1 (en) | 2014-06-09 | 2014-06-09 | Injection molding machines and injection molding method |
CN201480073788.7A CN105934320B (zh) | 2014-06-09 | 2014-06-09 | 螺杆、注塑成形机以及注塑成形方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/003066 WO2015189869A1 (ja) | 2014-06-09 | 2014-06-09 | スクリュ、射出成形機、及び、射出成形方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015189869A1 true WO2015189869A1 (ja) | 2015-12-17 |
Family
ID=54833004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/003066 WO2015189869A1 (ja) | 2014-06-09 | 2014-06-09 | スクリュ、射出成形機、及び、射出成形方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10486351B2 (ja) |
EP (1) | EP3098052B1 (ja) |
JP (1) | JP5901858B1 (ja) |
CN (1) | CN105934320B (ja) |
WO (1) | WO2015189869A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019176650A1 (ja) * | 2018-03-15 | 2019-09-19 | 株式会社ジェイテクト | 射出成形機およびそれを用いた樹脂成形体の製造方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10464246B2 (en) * | 2014-11-14 | 2019-11-05 | U-Mhi Platech Co., Ltd. | Injection molding method |
JP6594021B2 (ja) * | 2015-04-22 | 2019-10-23 | 東洋機械金属株式会社 | 可塑化ユニット |
DE102017108470B3 (de) * | 2017-04-20 | 2018-05-24 | Kraussmaffei Technologies Gmbh | Einschnecken-Plastifiziereinheit und Spritzgießmaschine mit einer Einschnecken-Plastifiziereinheit |
DE102017123721A1 (de) * | 2017-10-12 | 2019-04-18 | Kraussmaffei Technologies Gmbh | Verfahren zur Herstellung von faserverstärkten Kunststoff-Formteilen |
DE102020111510A1 (de) | 2020-04-28 | 2021-10-28 | Kraussmaffei Technologies Gmbh | Plastifiziereinheit |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07205233A (ja) * | 1994-01-14 | 1995-08-08 | Ube Ind Ltd | 射出成形機用スクリュ |
JP2005014272A (ja) * | 2003-06-24 | 2005-01-20 | Yokohama Rubber Co Ltd:The | 射出ブロー装置用可塑化スクリューの構造 |
JP2009096072A (ja) * | 2007-10-17 | 2009-05-07 | Sekisui Chem Co Ltd | 樹脂成形用スクリュー |
JP2011031514A (ja) * | 2009-08-03 | 2011-02-17 | Fanuc Ltd | 射出成形機用可塑化スクリュ |
JP2014004744A (ja) * | 2012-06-25 | 2014-01-16 | Meiki Co Ltd | 縦型射出装置 |
JP2014046631A (ja) * | 2012-09-03 | 2014-03-17 | Aisin Seiki Co Ltd | 射出成形装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0353867Y2 (ja) * | 1986-03-11 | 1991-11-26 | ||
JPS6360618U (ja) * | 1986-10-09 | 1988-04-22 | ||
JPH0739619Y2 (ja) * | 1990-04-12 | 1995-09-13 | 三菱重工業株式会社 | 可塑化スクリュ |
DE4236662C2 (de) | 1991-11-02 | 1996-10-31 | Frank Truckenmueller | Vorrichtung zur Herstellung von Formteilen aus plastifizierbarem Material und faserförmigen Einlagen |
JP2003103587A (ja) * | 2001-10-02 | 2003-04-09 | Mitsubishi Heavy Ind Ltd | 可塑化装置及び可塑化装置内へのガス注入方法 |
DE102008061270B4 (de) | 2008-12-10 | 2010-09-23 | Karl Hehl | Vorrichtung und Verfahren zur Herstellung von Formteilen aus plastifizierbarem Material und aus faserförmigen Einlagen |
JP2012056173A (ja) | 2010-09-08 | 2012-03-22 | Toyota Motor Corp | 繊維強化樹脂材の製造方法 |
JP5645952B2 (ja) * | 2010-10-25 | 2014-12-24 | 三菱重工プラスチックテクノロジー株式会社 | 射出成形用可塑化スクリュ及びこれを用いた射出成形方法 |
JP5889493B1 (ja) * | 2015-01-15 | 2016-03-22 | 三菱重工プラスチックテクノロジー株式会社 | 射出成形機及び射出成形方法 |
JP5932159B1 (ja) * | 2015-01-16 | 2016-06-08 | 三菱重工プラスチックテクノロジー株式会社 | 射出成形方法、射出成形機のスクリュ及び射出成形機 |
-
2014
- 2014-06-09 WO PCT/JP2014/003066 patent/WO2015189869A1/ja active Application Filing
- 2014-06-09 JP JP2015536698A patent/JP5901858B1/ja active Active
- 2014-06-09 CN CN201480073788.7A patent/CN105934320B/zh active Active
- 2014-06-09 US US15/115,253 patent/US10486351B2/en active Active
- 2014-06-09 EP EP14894300.4A patent/EP3098052B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07205233A (ja) * | 1994-01-14 | 1995-08-08 | Ube Ind Ltd | 射出成形機用スクリュ |
JP2005014272A (ja) * | 2003-06-24 | 2005-01-20 | Yokohama Rubber Co Ltd:The | 射出ブロー装置用可塑化スクリューの構造 |
JP2009096072A (ja) * | 2007-10-17 | 2009-05-07 | Sekisui Chem Co Ltd | 樹脂成形用スクリュー |
JP2011031514A (ja) * | 2009-08-03 | 2011-02-17 | Fanuc Ltd | 射出成形機用可塑化スクリュ |
JP2014004744A (ja) * | 2012-06-25 | 2014-01-16 | Meiki Co Ltd | 縦型射出装置 |
JP2014046631A (ja) * | 2012-09-03 | 2014-03-17 | Aisin Seiki Co Ltd | 射出成形装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3098052A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019176650A1 (ja) * | 2018-03-15 | 2019-09-19 | 株式会社ジェイテクト | 射出成形機およびそれを用いた樹脂成形体の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015189869A1 (ja) | 2017-04-20 |
JP5901858B1 (ja) | 2016-04-13 |
US10486351B2 (en) | 2019-11-26 |
US20170001353A1 (en) | 2017-01-05 |
EP3098052B1 (en) | 2018-04-04 |
CN105934320A (zh) | 2016-09-07 |
EP3098052A4 (en) | 2017-04-26 |
EP3098052A1 (en) | 2016-11-30 |
CN105934320B (zh) | 2017-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5901858B1 (ja) | 射出成形機、及び、射出成形方法 | |
EP2987603B1 (en) | Injection molding apparatus and injection molding method | |
JP6126719B2 (ja) | 射出成形方法、及び、強化繊維の開繊方法 | |
JP5889493B1 (ja) | 射出成形機及び射出成形方法 | |
WO2016075846A1 (ja) | 射出成形方法、及び、射出成形機 | |
JP5894349B1 (ja) | 射出成形方法、スクリュ、及び、射出成形機 | |
JP5932159B1 (ja) | 射出成形方法、射出成形機のスクリュ及び射出成形機 | |
JP2014117811A (ja) | スクリュ、可塑化装置、射出成形装置及び可塑化方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015536698 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14894300 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15115253 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2014894300 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014894300 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |