WO2015189323A1 - Polyester-polyurethan - Google Patents

Polyester-polyurethan Download PDF

Info

Publication number
WO2015189323A1
WO2015189323A1 PCT/EP2015/063031 EP2015063031W WO2015189323A1 WO 2015189323 A1 WO2015189323 A1 WO 2015189323A1 EP 2015063031 W EP2015063031 W EP 2015063031W WO 2015189323 A1 WO2015189323 A1 WO 2015189323A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane
pressure
adhesive
acid
polyurethane prepolymer
Prior art date
Application number
PCT/EP2015/063031
Other languages
English (en)
French (fr)
Inventor
Tobias Blömker
Uwe Schümann
Manfred Spies
Maike STREBL
Original Assignee
Tesa Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tesa Se filed Critical Tesa Se
Priority to CN201580043005.5A priority Critical patent/CN106574036B/zh
Priority to US15/317,599 priority patent/US20170121579A1/en
Priority to PL15728512T priority patent/PL3155034T3/pl
Priority to ES15728512T priority patent/ES2715681T3/es
Priority to EP15728512.3A priority patent/EP3155034B1/de
Publication of WO2015189323A1 publication Critical patent/WO2015189323A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4236Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
    • C08G18/4238Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4244Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups
    • C08G18/4247Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups derived from polyols containing at least one ether group and polycarboxylic acids
    • C08G18/425Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups derived from polyols containing at least one ether group and polycarboxylic acids the polyols containing one or two ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/664Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2170/00Compositions for adhesives
    • C08G2170/40Compositions for pressure-sensitive adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2475/00Presence of polyurethane

Definitions

  • the invention is in the field of polyurethanes, as used in particular for the production of adhesives. Specifically, the invention relates to polyester-polyurethanes and prepolymers used for their preparation and to pressure-sensitive adhesives obtainable therefrom.
  • Pressure-sensitive adhesiveness is the property of a substance to enter into a permanent bond to a primer under relatively weak pressure. Fabrics that possess this property are referred to as pressure-sensitive adhesives. Pressure-sensitive adhesives have been known for a long time. Often, after use, they can be removed from the primer without leaving much of a residue. Pressure sensitive adhesives are usually permanently tacky at room temperature, so have a certain viscosity and tack, so that they wet the surface of the respective primer even at low pressure. The ability of a pressure-sensitive adhesive to adhere to materials and transfer forces is due to the adhesiveness and cohesiveness of the pressure-sensitive adhesive.
  • Pressure sensitive adhesives can be considered as extremely high viscosity liquids with an elastic content. As a result, they have characteristic viscoelastic properties which lead to permanent self-tackiness and adhesiveness.
  • the proportional elastic restoring forces are necessary to achieve cohesion. They are caused for example by very long-chained and strongly entangled as well as by physically or chemically crosslinked macromolecules and allow the transmission of forces acting on an adhesive bond forces. They result in an adhesive bond being able to withstand a sustained load acting on it, for example in the form of a permanent shearing load, to a sufficient extent over a relatively long period of time.
  • G ' storage modulus
  • G " loss modulus
  • G " is a measure of the viscous portion of a substance. Both quantities depend on the deformation frequency and the temperature.
  • the sizes can be determined with the help of a rheometer.
  • the material to be examined is exposed to a sinusoidally oscillating shear stress, for example in the form of a plane-parallel layer in a plate-and-plate arrangement.
  • shear stress controlled devices the deformation as a function of time and the time lag of this deformation are compared with the introduction of the shear stress measured. This time offset is referred to as the phase angle ⁇ .
  • a substance and the layer produced therefrom are generally considered to be tacky and are defined as tacky, if at room temperature, here by definition at 23 ° C, in the deformation frequency range of 10 ° to 10 1 rad / sec G 'and G "respectively at least in part in the range of 10 3 to 10 7 Pa lie.
  • Adhesion films are characterized by having little or no tactile tack, but still adhere relatively well to smooth surface articles Adhesion is believed to be due to electrostatic attractive forces since electrostatic attractive forces are also associated with conventional adhesives. or adhesives, and because the chemical compositions of the adhesive film surfaces are not fundamentally different from those of conventional adhesives or pressure-sensitive adhesives, the differences between a conventional pressure sensitive adhesive and an adhesive film surface must be considered gradual l are considered.
  • the adhesion-promoting substances of the adhesive films can generally be classified in the range of low G "and medium to high G '.
  • Adhesive constituents of this type are referred to in this document as adhesives 'and G "are outside the boundaries characterizing the pressure-sensitive adhesives.
  • Adhesive films (English: cling films or static cling films) are known in many ways. In GB 2 128 199 A, for example, polyolefin compositions with possible alpha-olefin contents and in WO 98/39157 A1 with proportions of styrene block copolymers are proposed for obtaining the adhesion properties.
  • WO 99/14261 A1 Polyolefin compositions as well as compositions containing ethylene-vinyl acetate copolymers are also described in WO 99/14261 A1.
  • WO 98/39157 A1 also mentions various thermoplastic elastomers, for example copolyesters, polyurethanes and polyamides.
  • EP 1 849 81 1 B1 proposes crosslinked polyurethanes for the production of adhesive films.
  • Adhesion films of softened PVC or other plasticized polymers are known from a number of publications. Examples can be found in US Pat. No. 5,698,621 A, GB 2 368 300 A, DE 202 08 094 U, DE 100 12 261 A1, WO 01/68364 A1 or WO 97/00772 A1. US Pat. No. 5,292,560 A describes adhesion films based on polyethyl acrylate.
  • Adhesive films are used, for example, as a screen protector or for attaching information to car windows, for example for price labeling.
  • DE 197 22 627 A1 proposes the use of an adhesive film for fixing magnetic stripe or chip cards on a base, in particular on a paper sheet.
  • EP 1 656 669 B1 proposes the use of an adhesive film for securing and simultaneously covering and protecting optical storage media.
  • a chemically crosslinked pressure-sensitive adhesive or adhesive is present when the pressure-sensitive adhesive or adhesive has reached a state by chemical reaction with a crosslinker, which makes it no longer meltable and no longer soluble in organic solvents. A liquefaction is then possible only by decomposition, which is irreversible.
  • Crosslinkers are all at least difunctional substances which can enter into chemical crosslinking reactions with the functional groups of the pressure-sensitive adhesive or adhesive. Their selection depends on the functional groups of the pressure-sensitive adhesive or adhesive.
  • Pressure sensitive adhesives or adhesives bearing carboxyl groups are typically treated with di- or polyepoxides, possibly with additional catalysis, for example by tertiary amines, or with Metal acetylacetonates, metal alkoxides and alkoxy-Metallacetylacetonaten crosslinked.
  • diisocyanates or polyisocyanates are suitable for crosslinking pressure-sensitive adhesives or adhesives bearing hydroxyl groups.
  • Polymers or prepolymers which have the property of being meltable and thus thermoplastically processable are referred to in this document as customary in the language of the skilled person as hotmelts.
  • a polyurethane prepolymer is understood to mean an at least oligomeric, but preferably already polymeric, reaction product which is obtained by chemical reaction of one or more polyols with one or more polyisocyanates and which can be converted into a target polymer with a significant increase in molecular weight
  • Polyurethanes contain units linked by urethane groups -NH-CO-O-.
  • a polyurethane hotmelt prepolymer in the context of this document is so strong and dimensionally stable at room temperature that in known mixing units at room temperature a continuous, homogeneous mixing with other substances and in particular a molding or similar processing steps are not possible without causing it to heat of the polyurethane hotmelt prepolymer, or without the need to add solvents, diluents or other viscosity reducing additives.
  • known mixing units are, for example, kneaders, internal mixers, extruders, planetary roller extruders, planetary mixers, butterfly mixers or dissolvers.
  • Typical processing temperatures for polyurethane hotmelt prepolymers in the context of this document are in the range of 70 ° to 160 ° C, at least 40 ° C. Room temperature is understood in this document 23 ° C. Melting in this sense does not necessarily mean that at the moment of the transition from the solid, dimensionally stable state to the liquefied, miscible state, a crystalline melting temperature or a glassy solidification temperature must be exceeded.
  • a polyurethane hotmelt prepolymer in the sense of this document has a complex viscosity of at least 1000 measured with a rheometer in the oscillation test with a sinusoidally oscillating shear stress in a plate-plate arrangement, a temperature of 23 ° C. and an oscillation frequency of 10 rad / s Pa * s, preferably at least 3000 Pa * s.
  • ⁇ * G * / ⁇
  • Adhesive tapes which are equipped with pressure-sensitive adhesives, so-called pressure-sensitive adhesive tapes, are today used in a variety of industrial and private sectors.
  • pressure-sensitive adhesive tapes consist of a carrier film which is equipped on one or both sides with a pressure-sensitive adhesive.
  • pressure-sensitive adhesive tapes which consist exclusively of a pressure-sensitive adhesive layer and no carrier film, the so-called transfer tapes.
  • the composition of the pressure-sensitive adhesive tapes can be very different and depends on the respective requirements of the different applications.
  • the carriers are usually made of plastic films such as polypropylene, polyethylene, polyester or paper, woven or nonwoven fabric.
  • the pressure-sensitive adhesives usually consist of acrylate copolymers, silicones, natural rubber, synthetic rubber, styrene block copolymers or polyurethanes.
  • Biodegradable polymers is a name for natural and synthetic polymers that have plastic-like properties (impact strength, thermoplastizability), but are degraded in contrast to conventional plastics by a variety of microorganisms in biologically active environment (compost, digested sludge, soil, sewage); This does not necessarily happen under normal household conditions (composting in the garden)
  • a definition of biodegradability can be found in the European standards DIN EN 13432 (biodegradation of packaging) and DIN EN 14995 (compostability of plastics).
  • Disintegration refers to the physical decomposition into very small fragments.
  • the determination of the disintegratability (of the degree of decomposition) of polymers is described inter alia in DIN EN ISO 20200.
  • the sample to be examined is stored in a defined artificial solid waste at 58 ⁇ 2 ° C for at least 45 and no more than 90 days. Subsequently, the entire sample is sieved through a 2 mm sieve and the degree of decomposition D is determined as follows.
  • Biodegradability is generally understood to mean the decomposition of a chemical compound or an organic material by microorganisms in the presence of oxygen into carbon dioxide, water and salts of other elements present (mineralization) to form new biomass or in the absence of Oxygen in carbon dioxide, methane, mineral salts and new biomass.
  • the biological degradation takes place extra- and / or intracellularly by bacteria, fungi and microorganisms, as well as their enzymes.
  • the biodegradability of packaging materials is normatively regulated in DIN EN 13432 "Requirements for the recycling of packaging by composting and biodegradation” in which the material to be tested is subjected to an aerobic degradation test in accordance with ISO 14855: 1999 "Determination of complete aerobic biodegradability of plastics.
  • Materials under the conditions of controlled composting "and within a maximum of six months, a degree of degradation of at least 90% must be achieved compared to a suitable reference substance.
  • the degree of degradation is determined by the measured carbon dioxide evolution.
  • the crushed sample is stored with vermiculite or well-aerated compost inoculum in a vessel equipped with air at 58 ⁇ 2 ° C and the CC> 2 evolution recorded continuously. Due to the complex nature of the complexity, there are a number of testing institutes that specialize in testing and subsequently issue a corresponding certificate, such as the Vingotte OK compost. After completion of the test, the degradation rate D t results as:
  • (C0 2 ) B the mean cumulative amount of carbon dioxide formed in the caustic containers, in grams per container;
  • ThC0 2 the theoretical amount of carbon dioxide that can be produced by the test substance, in grams per tube.
  • DIN EN 13432 also includes a test for determining the quality of the compost produced by the degradation. This must not have negative effects on plant growth.
  • biodegradable components also have a high disintegration rate, whereas the disintegration of a material does not necessarily speak for a biodegradability.
  • pressure-sensitive adhesive tapes have also been proposed in the past which use biodegradable films as support material.
  • the films used are often based on polylactic acid compounds.
  • Polylactic acid, as well as other biodegradable and application-eligible thermoplastic polymers, is relatively hard and brittle.
  • these eligible biodegradable polymers must be compounded with softer polymers that are often less biodegradable or less biodegradable.
  • Pressure sensitive adhesives are low glass transition point amorphous materials.
  • the classical framework polymers such as natural rubber, styrene block copolymers or polyacrylates are not biodegradable according to the standards that are the norm in Europe, such as DIN EN 13432.
  • the same applies to the usual tackifier resins such as rosin derivatives, hydrocarbon resins or terpene phenolic resins.
  • Silicone pressure sensitive adhesives are completely eliminated due to their excellent aging stability.
  • the criterion for biodegradability is usually the presence of heteroatoms in the carbon backbone. A chemical bond between a carbon atom and a heteroatom, such as oxygen or nitrogen, is more unstable and thus more accessible to biodegradation than a bond between two carbon atoms.
  • polyester pressure-sensitive adhesives are suitable for corresponding applications.
  • polyester pressure-sensitive adhesives often have the disadvantage that the tack strength of these adhesive systems is at a relatively low level.
  • Tackifiern such as adhesive resins
  • JP 2007 070 422 A1 describes a biodegradable pressure-sensitive adhesive based on a polyester polyurethane, but has the disadvantage of being meltable. With meltable pressure-sensitive adhesives, in principle no good bond strengths can be achieved at higher temperatures.
  • JP 63 189 486 A discloses a moisture-curing pressure-sensitive adhesive based on a polyester polyurethane. Moisture-cured pressure-sensitive adhesives are problematic for use in adhesive tapes, since effective protection against moisture ingress prior to application is necessary.
  • JP 08 157 798 A proposes reacting a liquid polycaprolactone diol and a dicarboxylic acid with di- or polyisocyanates to form a pressure-sensitive adhesive.
  • the described reactive system is initially liquid. Only after the pressure-sensitive adhesive is formed by the described chemical reaction, a solidification occurs.
  • liquid reactive systems With regard to a continuous coating, which as a rule represents the central process step of a customary adhesive tape production, liquid reactive systems have the disadvantage that they can not be wound on a support material in this state, or at least not with a constant layer thickness, in particular not when it is about high layer thicknesses.
  • the object of the invention is to remedy this situation and to provide pressure-sensitive adhesives which are accessible for industrial applications, show the property profile of conventional pressure-sensitive adhesives and are biodegradable.
  • the pressure-sensitive adhesives should be broadly adjustable, in particular with regard to their adhesive properties, wherein they should be able to be designed so that both a high cohesion and a high adhesiveness are achieved. But it should also be possible to formulate them in such a way that they can be easily and residue-free removed from the substrate and that they have no or only a very small tactile stickiness (tack).
  • the pressure-sensitive adhesives should also be formulated so that they still have a good shear strength even at higher temperatures, for example at 70 ° C.
  • the invention provides a linear polyurethane prepolymer based on polyester, which can be crosslinked to form an adhesive polyurethane.
  • a first and general object of the invention is thus a polyurethane prepolymer obtained by chemical reaction of
  • the ratio of the total number of isocyanate groups to the total number of hydroxyl groups of the substances involved in the chemical reaction is greater than or equal to 0.4 and less than 1.
  • Such a polyurethane prepolymer is characterized in particular by strict linearity. This is advantageous because linear polymer strands can be significantly better biodegraded than branched ones. In addition, the linearity of the prepolymer allows longer pot lives in the intended later crosslinking to a pressure-sensitive adhesive, which often takes place immediately after addition of the crosslinker, the application to a substrate.
  • the number average molecular weight of the polyester polyols A is preferably greater than 1500 g / mol and more preferably greater than 2000 g / mol.
  • M n is the number average molecular weight of the respective polyol in the unit [g / mol]
  • OHZ is the hydroxyl number of the polyol in the unit [mmol OH / kg].
  • the hydroxyl number is a measure of the content of hydroxyl groups in a polyol.
  • the determination of the hydroxyl number is carried out according to DIN 53240.
  • the hydroxyl value (OH number) is given in the unit [mg KOH / g]. It corresponds to the amount of KOH in [mg], which is equivalent to the amount of acetic acid bound in the acetylation of 1 g of polyol.
  • the hydroxyl value in this document is converted into the unit [mmol OH / kg].
  • OHN [mmol OH / kg] OHN [mg KOH / g] x 1000 / 56.1.
  • the hydroxy functionality according to the invention of the polyester polyols A of 1, 8 to 2 represents a high degree of difunctionality, so that the construction of linear prepolymers is made possible in this way.
  • Suitable polyester polyols A are all commercially available aliphatic polyester polyols having the described molecular weight, provided they have the hydroxy functionality according to the invention.
  • Polyester polyols which can be used according to the invention are generally obtained by polycondensation from diols and dicarboxylic acids or, in the case of polycaprolactone polyols, by ring-opening polymerization from ⁇ -caprolactone and a difunctional starter molecule.
  • At least one of the polyester polyols A is the product of a chemical reaction of one or more organic dicarboxylic acids selected from the group consisting of adipic acid, maleic acid, succinic acid, caprolactones Fumaric acid, pimelic acid, suberic acid and glutaric acid; particularly preferably selected from the group consisting of adipic acid, succinic acid, caprolactones, fumaric acid, pimelic acid, suberic acid and glutaric acid; with one or more diol (s) selected from the group consisting of ethylene glycol, diethylene glycol, triethylene glycol, 1, 2-propylene glycol, 1, 3-propanediol, 1, 4-butanediol, 1, 6-hexanediol, 3-methyl-1, 5-pentanediol, 2,2,4-trimethyl-pentane-1,3-diol, 2-butyl
  • polyester polyols adipic acid and / or ⁇ -caprolactone.
  • Preferred polyester polyols are thus polyadipate polyols and / or polycaprolactone polyols.
  • the alcohol component of the polyester polyols is preferably ethylene glycol, diethylene glycol, 1,4-butanediol and / or 1,6-hexanediol. More preferably, at least one of the polyester polyols is a polyadipate polyol containing ethylene glycol and / or diethylene glycol as the monomer component.
  • polyester polyols carrying methyl groups ie polyester polyols containing, for example, 2-methyl-1,3-propanediol, 3-methyl-1,5-pentanediol or neopentyl glycol as the alcohol component, are obtainable desired PSA may be advantageous for rapid biodegradability of the polyurethanes produced but are rather disadvantageous.
  • PSA polyurethanes, which have been built up from prepolymers containing such building blocks, sufficiently rapidly in combination with the other components described herein.
  • the polyester polyols A are produced from renewable raw material sources, for example by fermentation of starch or sugar.
  • the compounds B are preferably selected from the group consisting of polyester diols having a number average molecular weight of up to 600 g / mol, more preferably up to 450 g / mol; 2-methyl-1,3-propanediol, 3-methyl-1,5-pentanediol, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4 Butanediol, neopentyl glycol, 1, 6-hexanediol, 2-ethyl-1, 3-hexanediol and 2-butyl-2-ethyl-1, 3-propanediol.
  • the compounds B are particularly preferably selected from the group consisting of polyester diols having a number-average molecular weight of up to 450 g / mol, 2-methyl-1,3-propanediol (CAS No .: 2163-42-0), 3-methyl -1, 5-pentanediol (CAS No .: 4457-71 - 0), ethylene glycol (CAS No .: 107-21 -1), diethylene glycol (CAS No .: 1 1 1 -46-6), triethylene glycol (CAS No .: 1 12-27-6) and tetraethylene glycol (CAS No .: 1 12-60-7).
  • the compound B is diethylene glycol and / or a polyester diol having a number average molecular weight of up to 450 g / mol.
  • suitable diisocyanates C are: butane-1,4-diisocyanate, tetramethoxybutane-1,4-diisocyanate, hexane-1,6-diisocyanate, ethylene diisocyanate, 2,2,4-trimethyl-hexamethylene diisocyanate, ethylethylene diisocyanate, dicyclohexylmethane diisocyanate, 1,4.
  • the diisocyanates C are particularly preferably selected from the group consisting of isophorone diisocyanate, 4,4'-diisocyanatodicyclohexylmethane and hexane-1,6-diisocyanate.
  • the chemical reaction by which the polyurethane prepolymer according to the invention is obtainable proceeds in the presence of at least one bismuth carboxylate or bismuth carboxylate derivative-containing catalyst or catalyst mixture, the use of which is basically known for accelerating polyurethane reactions.
  • a catalyst controls the pressure-sensitive adhesive properties of the polyurethane to be prepared from the prepolymer considerably in such a way that a surface-specific selectivity of the pressure-sensitive adhesive properties is achieved.
  • Such catalysts are bismuth trisdodecanoate, bismuth trisdecanoate, bismuth trisneodecanoate, bismuth trisoctanoate, bismuth trisisooctanoate, bismuth trishexanoate, bismuth trispentanoate, bismuth trisbutanoate, bismuth trispropanoate and bismuth trisacetate.
  • the ratio of the total number of isocyanate groups to the total number of hydroxyl groups of the substances involved in the chemical reaction is preferably greater than or equal to 0.7 and less than or equal to 0.9.
  • the term "at the chemical reaction involved substances "according to the invention denotes all reactants which are brought into contact with each other for the purpose of the intended chemical reaction, irrespective of whether the molecules of the respective substances actually all or only partially react.
  • the molar ratio of the sum or the totality of the compounds B to the sum or the entirety of the polyester polyols A is 0.30 to 2.33; more preferably 0.45 to 1, 5 and in particular 0.5 to 1.
  • Another object of the invention is a polyurethane which is obtainable by chemical crosslinking of a polyurethane prepolymer according to the invention.
  • Such a polyurethane is very readily biodegradable. Due to the high linear structural components, it would have been expected that the polyurethane according to the invention would have no or at least only weakly pronounced pressure-sensitive adhesive properties. Surprisingly, however, it has been shown that the polyurethane has very good pressure-sensitive adhesive properties over a wide range.
  • the chemical crosslinking to obtain the polyurethane according to the invention preferably takes place with at least one polyisocyanate D having three or more isocyanate groups.
  • the ratio of the sum of the isocyanate groups of all polyisocyanates C and D to the sum of the hydroxyl groups of components A and B is preferably 0.9 to 1.05.
  • the chemical crosslinking to obtain the polyurethane according to the invention can be carried out solvent-free - ie in the melt -, in an organic solvent or in aqueous dispersion.
  • both the polyurethane prepolymer and the crosslinker, preferably the polyisocyanate (s) D are dissolved in an organic solvent or dispersed in water.
  • dimethylolpropionic acid or a similarly constructed substance preferably prefers at least a portion of the compound (s) B, wherein - as also known in the art - the reaction to build up of the prepolymer can be readily performed so that only the OH groups react, but the carboxy function remains uninvolved.
  • Another object of the invention is a composition containing one or more inventive polyurethane (s) to at least 60 wt .-%, preferably at least 70 wt .-%, more preferably at least 80 wt .-%, in particular at least 90 wt .-%, most preferably at least 95 wt .-%, for example, at least 97 wt .-%, contains.
  • a composition is in particular a pressure-sensitive adhesive or an adhesive.
  • An advantage of the composition according to the invention is that it is biodegradable - at least in large part - in an aqueous medium and disintegratable in a standardized compost.
  • the polyurethane according to the invention is tack-adhesive per se.
  • the pressure-sensitive adhesive properties of the polyurethane can be adjusted to a wide range.
  • the polyurethane can be mixed with one or more additives such as tackifiers, plasticizers and / or anti-aging agents.
  • the polyurethane according to the invention is preferably free of tackifiers (tackifier resins) and plasticizers, more preferably free of tackifiers (tackifier resins), plasticizers and anti-aging agents, and in particular free of any additives. Production or other conditional residues of any substances, which essentially result from incomplete removal, as well as substance contents in the range of an omnipresence concentration are irrelevant here.
  • tackifier resin the skilled person understands a resin-based substance which increases the tackiness.
  • Tackifiers are, for example, hydrocarbon resins (for example polymers based on unsaturated Cs or Cg monomers), terpene phenolic resins, polyterpene resins based on ⁇ -pinene and / or ⁇ -pinene and / or ⁇ -limonene, aromatic resins such as cumarone-indene resins or Resins based on styrene or ⁇ -methylstyrene and rosin and its derivatives, for example disproportionated, dimerized or esterified resins, for example reaction products with glycol, glycerol or pentaerythritol.
  • natural resins such as rosins and its derivatives are used.
  • tackifiers in minor amounts up to 1% by weight is possible without the biodegradability of the composition according to the invention get lost. For larger amounts added to the composition, however, it is possible that their biodegradability is no longer present. It is therefore preferred to dispense with tackifiers.
  • Suitable miscible plasticizers are, for example, aliphatic and aromatic mineral oils, polyethylene and polypropylene glycol, di- or poly-esters of phthalic acid, citric acid, trimellitic acid or adipic acid, liquid rubbers (for example low molecular weight nitrile or polyisoprene rubbers), liquid polymers of butene and / or isobutene , Acrylic acid esters, polyvinyl ethers, liquid and soft resins based on the raw materials of adhesive resins, wool wax and other waxes or liquid silicones.
  • plasticizers from renewable resources such as the bio-based polyoxytrimethylene glycol Cerenol® DuPont, vegetable oils, preferably refined vegetable oils such as rapeseed oil and soybean oil, fatty acids or fatty acid esters or epoxidized vegetable oils, for example, epoxidized soybean oil.
  • biodegradable plasticizers are used, preferably diesters of polyesters of citric acid or adipic acid.
  • the plasticizer, especially the biodegradable in amounts of up to 10 wt .-% (based on the total composition), particularly preferably in amounts of up to 5 wt .-% (based on the total composition), is particularly preferred used in amounts of up to 2.5 wt .-% (based on the total composition).
  • any plasticizer in minor amounts up to 1% by weight is possible without losing the biodegradability of the composition of the invention. Again, with larger amounts added to the composition, it is possible that their biodegradability is no longer present.
  • plasticizer or there are used biodegradable plasticizer.
  • additives in the composition according to the invention are fillers, for example fibers, carbon black, zinc oxide, titanium dioxide, chalk, solid or hollow glass spheres, microballoons, microspheres of other materials, silicic acid, silicates, nanoparticles, wood flour, starch and starch compounds and other bio-based fillers; Compounding and / or anti-aging agents, the latter for example in the form of primary and secondary antioxidants, for example sterically hindered phenols such as Irganox 1010 and more preferably tocopherol (vitamin E). Also light stabilizers can be added.
  • fillers for example fibers, carbon black, zinc oxide, titanium dioxide, chalk, solid or hollow glass spheres, microballoons, microspheres of other materials, silicic acid, silicates, nanoparticles, wood flour, starch and starch compounds and other bio-based fillers; Compounding and / or anti-aging agents, the latter for example in the form of primary and secondary antioxidants, for example sterically hindere
  • tackifiers and plasticizers in minor amounts of up to 1% by weight, it is also possible to add non-biodegradable fillers without substantially impairing the biodegradability of the composition.
  • non-biodegradable fillers for larger amounts added to the polyurethane of the invention, it is possible that the composition is no longer sufficiently biodegradable. Preference is therefore given to fillers, in particular non-biodegradable dispensed. Biodegradable fillers, on the other hand, can also be used in larger quantities.
  • Another object is an adhesive tape which comprises at least one support material and at least one PSA whose main constituent is the polyurethane according to the invention.
  • carrier materials for the adhesive tape the usual and familiar to those skilled in carrier materials such as paper, fabric, non-woven or films may be used, the latter for example of polyesters such as polyethylene terephthalate (PET), polyethylene, polypropylene, stretched polypropylene or polyvinyl chloride.
  • PET polyethylene terephthalate
  • the support material is particularly preferably based on renewable raw materials such as paper, tissue of, for example, cotton, hemp, yurt, nettle fibers or bio-based and / or biodegradable polymers, for example polylactic acid. This list is not meant to be exhaustive, but in the context of the invention, the use of other films is possible.
  • the support material can be equipped on one or both sides with a pressure-sensitive adhesive.
  • the main constituent of both PSAs is preferably the polyurethane according to the invention.
  • "main constituent" means that the relevant component has the largest proportion by weight of all constituents of the PSA, with the PSA or the PSAs being particularly preferred Composition.
  • the adhesive tape according to the invention is preferably formed by partially or completely applying the PSA to the backing.
  • the coating can also take the form of one or more strips in the longitudinal direction (machine direction), optionally in the transverse direction, but in particular it is full-surface.
  • the pressure-sensitive adhesive can be applied in the form of a grid dot by means of screen printing, whereby the dots of adhesive can also be distributed differently and / or differently, by gravure printing in webs connected in the longitudinal and transverse direction, by screen printing or by flexographic printing.
  • the pressure-sensitive adhesive may be in the form of a dome (produced by screen printing) or in another pattern such as lattices, stripes, zigzag lines. Furthermore, it can also be sprayed on, for example, which results in an irregular application pattern.
  • the application rate (coating thickness) of the PSA is preferably between 10 and 200 g / m 2 , more preferably between 15 and 75 g / m 2 and particularly preferably between 20 and 50 g / m 2 . It is advantageous to use an adhesion promoter, a so-called primer layer, between the carrier material and the PSA or a physical pretreatment of the carrier surface to improve the adhesion of the adhesive to the carrier material.
  • the above-described application of the PSA to the carrier also includes application to a primer-coated carrier.
  • Suitable primers are the known dispersion and solvent systems, for example those based on isoprene- or butadiene-containing rubber, acrylate rubber, polyvinyl, polyvinylidene and / or cyclic rubber.
  • Isocyanates or epoxy resins as additives improve the adhesion and in some cases also advantageously increase the shear strength of the pressure-sensitive adhesive.
  • the adhesion promoter can likewise be applied to the carrier film by means of a coextrusion layer. For example, flame treatments, corona and plasma are suitable as physical surface treatments.
  • the backing material can be opposite or opposite the adhesive side, an anti-adhesive physical treatment or coating be subjected, in particular with a release agent or release (optionally mixed with other polymers) be equipped.
  • Examples of separating or, synonymously designated, release layers are those of stearyl compounds (for example polyvinyl stearyl carbamate, stearyl compounds of transition metals such as Cr or Zr, ureas of polyethyleneimine and stearyl isocyanate) or polysiloxanes.
  • stearyl compounds for example polyvinyl stearyl carbamate, stearyl compounds of transition metals such as Cr or Zr, ureas of polyethyleneimine and stearyl isocyanate
  • polysiloxanes for example polyvinyl stearyl carbamate, stearyl compounds of transition metals such as Cr or Zr, ureas of polyethyleneimine and stearyl isocyanate
  • stearyl is synonymous with all straight or branched alkyls or alkenyls having a C number of at least 10 such as octadecyl
  • Suitable release agents further include surfactant release systems based on long chain alkyl groups such as stearylsulfosuccinates or stearylsulfosuccinamates, but also polymers selected are selected from the group consisting of polyvinyl stearyl carbamates, for example Escoat 20 from Mayzo, polyethyleneimine stearyl carbamides, chromium complexes of C14 to C28 fatty acids and stearyl copolymers, as described, for example, in DE 28 45 541 A.
  • the support material can be pretreated or aftertreated, conventional pretreatments are water repellency, common after-treatments are calendering, tempering, laminating, Punching and covering.
  • the adhesive tape may be laminated with a commercially available release film or release paper, which is usually constructed of a base material of polyethylene, polypropylene, polyester or paper coated on one or both sides with polysiloxane. Such a structure is often referred to as a release liner.
  • the adhesive tape according to the invention can be produced by customary coating methods known to the person skilled in the art.
  • the polyurethane according to the invention optionally including the additives, dissolved in a suitable solvent by means of, for example anilox roller coating, comma coating, multi-roll coating or coated in a printing process on a carrier film or release film and then the solvent in a drying duct or oven be removed.
  • the coating of the carrier film or release film can also be done in a solvent-free process.
  • the polyurethane is produced in an extruder. In the extruder, further process steps such as mixing with the described additives, filtration or degassing can take place. The melt is then coated by means of a slot die on the carrier film or release film.
  • the adhesive tape according to the invention preferably has a bond strength on a steel substrate of at least 1.0 N / cm and a shear deformation of at most 500 ⁇ m at a material coverage of 25 g / m 2 . These values are preferably also achieved after storage for 3 months at 23 ° C, 40 ° C or 70 ° C.
  • the general term "adhesive tape” encompasses all flat structures such as films or film sections expanded in two dimensions, tapes of extended length and limited width, tape sections, diecuts, labels, etc.
  • the adhesive tape may be in fixed lengths such as by the meter
  • the adhesive tape can consist of only one layer of adhesive, ie it can be single-layered, but the adhesive tape can also have a carrier on one or both sides of which a layer or optionally several layers Adhesive is applied.
  • the total content of renewable raw materials in the adhesive tape according to the invention, including release liners, is preferably at least 50% by weight.
  • Another object of the invention is the use of a polyurethane according to the invention for the preparation of a pressure-sensitive adhesive or of an adhesive.
  • the polyurethane prepolymer was prepared in each case by first weighing the / the polyester polyol (s) A and in a conventional heated and evacuated laboratory mixer (for example, the company PC Laboratory System) under vacuum at a temperature of 70 ° C approximately. mixed for two hours. Then, the diol (s) B was added and mixed without vacuum for 20 minutes. Subsequently, if necessary, the remaining substances added according to the proportions given in the individual examples and mixed for 20 minutes. Last was the addition of the at least one diisocyanate C, which was homogeneously mixed for 20 minutes. The chemically-reacting mixture was stored at 40 ° C in the oven for 7 days to complete the reaction.
  • a conventional heated and evacuated laboratory mixer for example, the company PC Laboratory System
  • the prepared polyurethane prepolymer was first dissolved in acetone. 25 g of acetone were always added per 100 g of prepolymer. It was crosslinked with Desmodur® N3300 (polyisocyanate D).
  • Table 1 lists the materials used to make the prepolymers and compositions. The raw materials mentioned are all freely available on the market.
  • Test methods Measurements are taken, unless otherwise stated, at a test climate of 23 ⁇ 1 ° C and 50 ⁇ 5% rel. Humidity carried out.
  • the eluent used is THF (tetrahydrofuran) with 0.1% by volume of trifluoroacetic acid.
  • the measurements are carried out at 25 ° C.
  • the precolumn used is PSS-SDV, 5 ⁇ , 10 3 A, ID 8.0 mm ⁇ 50 mm.
  • the columns PSS-SDV, 5 ⁇ , 10 3 and 10 5 and 10 6 each with ID 8.0 mm x 300 mm are used.
  • the sample concentration is 4 g / l
  • the flow rate is 1, 0 ml per minute. It is measured against PMMA standards.
  • hydroxyl numbers are carried out according to DIN 53240. According to this method, the hydroxyl number (OHN) in the unit [mg KOH / g] is given.
  • OHZ [mmol OH / kg] OHZ [mg KOH / g] x1000 / 56.1 56, 1 is the molecular weight of KOH.
  • hydroxy functionality (f) is calculated from the number average molecular weight M n and the OH number (OH) according to the following equation:
  • the bond strength was tested on the basis of PSTC-1.
  • a 2 cm wide strip of pressure-sensitive adhesive tape consisting of the 23 ⁇ thick, etched with trichloroacetic acid PET film and the applied 25 ⁇ thick adhesive film, was on the test plate by five times double rollover means glued to a 5 kg roll.
  • the test plate was clamped and the self-adhesive strip was peeled over its free end by means of a tensile tester under a peel angle of 180 ° at a speed of 300 mm / min. The necessary force was determined.
  • the measurement results were averaged over three measurements and normalized to the width of the strip in N / cm.
  • test plates were steel and ABS plates.
  • Adhesive strength measurements were carried out with freshly bonded samples and with samples that were stored in a climate chamber after the adhesive had been applied. The storage conditions were 3 weeks at 60 ° C.
  • This test serves to quickly test the shear strength of adhesive tapes under temperature load.
  • the sample sample to be measured was loaded at the lower end with a weight of 500 g.
  • the test temperature was 40 ° C, the test duration 30 minutes (15 minutes load and 15 minutes unloading).
  • Disintegration indicates the physical decomposition of a material into very small fragments. At least 90% of the plastic must be degraded to particles smaller than 2 mm within 12 weeks. Only if both tests are fulfilled, a substance according to the DIN standard is considered to be biodegradable.
  • the polyurethane prepolymer 1 is composed as follows:
  • the polyurethane prepolymer 2 is composed as follows:
  • the polyurethane prepolymer 3 is composed as follows:
  • the polyurethane prepolymer 4 is composed as follows:
  • the polyurethane prepolymer 5 is composed as follows:
  • the polyurethane prepolymer 6 is composed as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Es soll eine biologisch abbaubare Haftklebemasse bereitgestellt werden, die sich darüber hinaus insbesondere durch gute Scherfestigkeit bei höheren Temperaturen auszeichnet. Dies gelingt durch chemische Vernetzung eines Polyurethan-Prepolymers, das durch chemische Reaktion von a) einem oder mehreren aliphatischen Polyester-Polyolen A mit einer Hydroxy-Funktionalität von 1,8 bis einschließlich 2 und einem zahlengemittelten Molekulargewicht von gleich/größer 1000 g/mol; b) einer oder mehreren Verbindungen B mit einer Hydroxy-Funktionalität von 1,8 bis einschließlich 2 und einem Molekulargewicht von kleiner 1000 g/mol; und c) einem oder mehreren aliphatischen Diisocyanaten C erhältlich ist, wobei das Verhältnis der Gesamtanzahl der Isocyanat-Gruppen zur Gesamtanzahl der Hydroxygruppen der an der chemischen Reaktion beteiligten Stoffe größer/gleich 0,4 und kleiner 1 ist; und durch Formulierung einer Haftklebemasse, deren Hauptbestandteil ein oder mehrere derartige(s) Polyurethan(e) ist/sind.

Description

Beschreibung
Polyester-Polyurethan
Die Erfindung liegt auf dem Gebiet der Polyurethane, wie sie insbesondere zur Herstellung von Klebmassen verwendet werden. Speziell betrifft die Erfindung Polyester-Polyurethane und zu deren Herstellung eingesetzte Prepolymere sowie daraus erhältliche Haftklebemassen.
Haftklebrigkeit ist die Eigenschaft eines Stoffes, bereits unter relativ schwachem Andruck eine dauerhafte Verbindung zu einem Haftgrund einzugehen. Stoffe, die diese Eigenschaft besitzen, werden als Haftklebstoffe bezeichnet. Haftklebstoffe sind seit langem bekannt. Häufig können sie nach Gebrauch im Wesentlichen rückstandsfrei vom Haftgrund wieder abgelöst werden. Haftklebstoffe sind in der Regel bei Raumtemperatur permanent eigenklebrig, weisen also eine gewisse Viskosität und Anfassklebrigkeit auf, so dass sie die Oberfläche des jeweiligen Haftgrunds bereits bei geringem Andruck benetzen. Die Fähigkeit eines Haftklebstoffs, auf Werkstoffen zu haften und Kräfte zu übertragen, beruht auf dem Adhäsionsvermögen und der Kohäsion des Haftklebstoffs.
Haftklebstoffe können als extrem hochviskose Flüssigkeiten mit einem elastischen Anteil betrachtet werden. Sie haben demzufolge charakteristische viskoelastische Eigenschaften, die zu der dauerhaften Eigenklebrigkeit und Klebfähigkeit führen.
Kennzeichnend für sie ist, dass es, wenn sie mechanisch deformiert werden, sowohl zu viskosen Fließprozessen als auch zum Aufbau elastischer Rückstellkräfte kommt. Beide Prozesse stehen hinsichtlich ihres jeweiligen Anteils in einem bestimmten Verhältnis zueinander, abhängig sowohl von der genauen Zusammensetzung, der Struktur und dem Vernetzungsgrad des jeweiligen Haftklebstoffs als auch von der Geschwindigkeit und Dauer der Deformation sowie von der Temperatur. Der anteilige viskose Fluss ist zur Erzielung von Adhäsion notwendig. Nur die viskosen Anteile, hervorgerufen durch Makromoleküle mit relativ großer Beweglichkeit, ermöglichen eine gute Benetzung und ein Auffließen auf das zu verklebende Substrat. Ein hoher Anteil an viskosem Fluss führt zu einer hohen Haftklebrigkeit (auch als Tack oder Oberflächenklebrigkeit bezeichnet) und damit oft auch zu einer hohen Klebkraft. Stark vernetzte Systeme, kristalline oder glasartig erstarrte Polymere sind mangels fließfähiger Anteile in der Regel nicht oder zumindest nur wenig haftklebrig.
Die anteiligen elastischen Rückstellkräfte sind zur Erzielung von Kohäsion notwendig. Sie werden zum Beispiel durch sehr langkettige und stark verknäuelte sowie durch physikalisch oder chemisch vernetzte Makromoleküle hervorgerufen und ermöglichen die Übertragung der auf eine Klebverbindung angreifenden Kräfte. Sie führen dazu, dass eine Klebverbindung einer auf sie einwirkenden Dauerbelastung, zum Beispiel in Form einer dauerhaften Scherbelastung, in ausreichendem Maße über einen längeren Zeitraum standhalten kann.
Zur genaueren Beschreibung und Quantifizierung des Maßes an elastischem und viskosem Anteil sowie des Verhältnisses der Anteile zueinander können die mittels Dynamisch Mechanischer Analyse (DMA) ermittelbaren Größen Speichermodul (G') und Verlustmodul (G") herangezogen werden. G' ist ein Maß für den elastischen Anteil, G" ein Maß für den viskosen Anteil eines Stoffes. Beide Größen sind abhängig von der Deformationsfrequenz und der Temperatur.
Die Größen können mit Hilfe eines Rheometers ermittelt werden. Das zu untersuchende Material wird dabei zum Beispiel in Form einer planparallelen Schicht in einer Platte-Platte- Anordnung einer sinusförmig oszillierenden Scherbeanspruchung ausgesetzt. Bei schubspannungsgesteuerten Geräten werden die Deformation als Funktion der Zeit und der zeitliche Versatz dieser Deformation gegenüber dem Einbringen der Schubspannung gemessen. Dieser zeitliche Versatz wird als Phasenwinkel δ bezeichnet.
Der Speichermodul G' ist wie folgt definiert: G' = (τ/γ) * cos(8) (x = Schubspannung, γ = Deformation, δ = Phasenwinkel = Phasenverschiebung zwischen Schubspannungs- und Deformationsvektor). Die Definition des Verlustmoduls G" lautet: G" = (τ/γ) * sin(8) (x = Schubspannung, γ = Deformation, δ = Phasenwinkel = Phasenverschiebung zwischen Schubspannungs- und Deformationsvektor). Ein Stoff und die daraus hergestellte Schicht gelten im Allgemeinen als haftklebrig und werden im Sinne dieser Schrift als haftklebrig definiert, wenn bei Raumtemperatur, hier definitionsgemäß bei 23 °C, im Deformationsfrequenzbereich von 10° bis 101 rad/sec G' und G" jeweils zumindest zum Teil im Bereich von 103 bis 107 Pa liegen.
Innerhalb dieses Bereiches, den man in einer Matrix-Auftragung aus G' und G" (G' aufgetragen in Abhängigkeit von G") auch als viskoelastisches Fenster für Haftklebeanwendungen oder als Haftklebstofffenster nach viskoelastischen Kriterien bezeichnen kann, gibt es wiederum unterschiedliche Sektoren und Quadranten, die die zu erwartenden Haftklebeeigenschaften der jeweils zugehörigen Stoffe näher charakterisieren. Stoffe mit hohem G" und niedrigem G' innerhalb dieses Fensters zeichnen sich beispielsweise im Allgemeinen durch eine hohe Klebkraft und eine geringe Scherfestigkeit aus, während sich Stoffe mit hohem G" und hohem G' sowohl durch eine hohe Klebkraft als auch durch eine hohe Scherfestigkeit auszeichnen.
Generell sind die Erkenntnisse über die Zusammenhänge zwischen Rheologie und Haftklebrigkeit Stand der Technik und beispielsweise in „Satas, Handbook of Pressure Sensitive Adhesive Technology, Third Edition, (1999), Seiten 153 bis 203" beschrieben. Eine besondere Form von Haftung aufbauenden Stoffen liegt den Adhäsionsfolien zugrunde. Adhäsionsfolien sind dadurch charakterisiert, dass sie keine oder nur eine sehr geringe fühlbare Klebrigkeit haben, aber dennoch an Gegenständen mit glatter Oberfläche relativ gut haften. Der Hafteffekt (die Adhäsion) wird elektrostatischen Anziehungskräften zugeschrieben. Da elektrostatische Anziehungskräfte auch bei gewöhnlichen Kleb- oder Haftklebstoffen eine Rolle spielen und da die chemischen Zusammensetzungen der Adhäsionsfolienoberflächen sich nicht grundlegend von denen üblicher Kleb- oder Haftklebstoffe unterscheiden, müssen die Unterschiede zwischen einer üblichen Haftklebstoff- und einer Adhäsionsfolienoberfläche als graduell betrachtet werden. In Bezug auf das viskoelastische Fenster können die Haftung aufbauenden Stoffe der Adhäsionsfolien in der Regel in den Bereich mit niedrigem G" und mittleren bis hohen G' eingeordnet werden. Haftung aufbauende Stoffe dieser Art werden in dieser Schrift als Haftstoffe bezeichnet. Bei diesen Stoffen können G' und G" auch außerhalb der die Haftklebstoffe charakterisierenden Grenzen liegen. Adhäsionsfolien (englisch: cling films oder static cling films) sind in vielfältiger Weise bekannt. In GB 2 128 199 A werden beispielsweise Polyolefin-Zusammensetzungen mit möglichen Alpha-Olefin-Anteilen sowie in WO 98/39157 A1 mit Anteilen an Styrol- Blockcopolymeren zur Erzielung der Adhäsionseigenschaften vorgeschlagen. Polyolefin- Zusammensetzungen sowie Zusammensetzungen, die Ethylenvinylacetat-Copolymere enthalten, sind auch in WO 99/14261 A1 beschrieben. In WO 98/39157 A1 werden weiterhin verschiedene thermoplastische Elastomere erwähnt, zum Beispiel Copolyester, Polyurethane und Polyamide. In EP 1 849 81 1 B1 werden vernetzte Polyurethane zur Herstellung von Adhäsionsfolien vorgeschlagen.
Aus einer Reihe von Schriften sind Adhäsionsfolien aus weich gemachtem PVC oder anderen weichgemachten Polymeren bekannt. Beispiele sind in US 5,698,621 A, GB 2 368 300 A, DE 202 08 094 U, DE 100 12 261 A1 , WO 01/68364 A1 oder WO 97/00772 A1 zu finden. In US 5,292,560 A werden Adhäsionsfolien auf Basis von Polyethylacrylat beschrieben.
Verwendung finden Adhäsionsfolien zum Beispiel als Displayschutz oder zum Anbringen von Informationen an Autoscheiben, zum Beispiel für Preisauszeichnungen. So schlägt die DE 197 22 627 A1 die Verwendung einer Adhäsionsfolie zum Befestigen von Magnetstreifen- oder Chip-Karten auf einer Unterlage vor, insbesondere auf einem Papierbogen. In EP 1 656 669 B1 wird die Verwendung einer Adhäsionsfolie zum Befestigen und gleichzeitigen Abdecken und Schützen von optischen Speichermedien vorgeschlagen.
Ein chemisch vernetzter Haftklebstoff oder Haftstoff liegt vor, wenn der Haftklebstoff oder Haftstoff durch eine chemische Umsetzung mit einem Vernetzer einen Zustand erreicht hat, der ihn nicht mehr schmelzbar und nicht mehr in organischen Lösemitteln lösbar macht. Eine Verflüssigung ist dann nur noch durch Zersetzung möglich, die irreversibel ist. Als Vernetzer kommen alle mindestens difunktionellen Stoffe in Betracht, die mit den funktionellen Gruppen des Haftklebstoffes oder Haftstoffes chemische Vernetzungsreaktionen eingehen können. Ihre Auswahl richtet sich nach den funktionellen Gruppen des Haftklebstoffes oder Haftstoffes. Carboxygruppen tragende Haftklebstoffe oder Haftstoffe werden typischerweise mit Di- oder Polyepoxiden, eventuell unter zusätzlicher Katalyse, beispielsweise durch tertiäre Amine, oder mit Metallacetylacetonaten, Metallalkoxiden sowie Alkoxy-Metallacetylacetonaten vernetzt. Für die Vernetzung von Hydroxygruppen tragenden Haftklebstoffen oder Haftstoffen bieten sich beispielsweise Di- oder Polyisocyanate an. Polymere oder Prepolymere, die die Eigenschaft besitzen, schmelzfähig und somit thermoplastisch verarbeitbar zu sein, werden in dieser Schrift, wie im Sprachgebrauch des Fachmanns üblich, als Hotmelts bezeichnet.
Unter einem Polyurethan-Prepolymer wird in dieser Schrift ein zumindest oligomeres, bevorzugt jedoch bereits selbst polymeres, durch chemische Umsetzung eines oder mehrerer Polyole mit einem oder mehreren Polyisocyanaten erhaltenes, insbesondere schmelzfähiges Reaktionsprodukt verstanden, das unter signifikantem Anstieg der Molmasse in ein Zielpolymer überführt werden kann. Polyurethane enthalten Einheiten, die durch Urethan-Gruppierungen -NH-CO-O- miteinander verknüpft sind.
Ein Polyurethan-Hotmelt-Prepolymer im Sinne dieser Schrift ist bei Raumtemperatur derart fest und formstabil, dass in bekannten Mischaggregaten bei Raumtemperatur ein kontinuierliches, homogenes Mischen mit weiteren Stoffen sowie insbesondere auch eine Ausformung oder ähnliche Verarbeitungsschritte nicht möglich sind, ohne dass es dabei zur Erwärmung des Polyurethan-Hotmelt-Prepolymers kommt oder ohne dass ein Hinzufügen von Lösemitteln, Verdünnungsmitteln oder anderer die Viskosität herabsetzender Zusatzstoffe notwendig ist. Bekannte Mischaggregate sind beispielsweise Kneter, Innenmischer, Extruder, Planetwalzenextruder, Planetenmischer, Butterfly- Mischer oder Dissolver. Die Verarbeitbarkeit eines Polyurethan-Hotmelt-Prepolymers im Sinne dieser Schrift ist erst dann möglich, wenn das Polyurethan-Hotmelt-Prepolymer in einem Lösemittel aufgelöst oder wenn es erwärmt wird, wobei die Wärme von außen durch Beheizung zugeführt oder durch Scherung erzeugt werden kann. Typische Verarbeitungstemperaturen für Polyurethan-Hotmelt-Prepolymere im Sinne dieser Schrift liegen im Bereich von 70° bis 160 °C, mindestens betragen sie 40 °C. Als Raumtemperatur wird in dieser Schrift 23 °C verstanden. Schmelzen bedeutet in diesem Sinne nicht notwendigerweise, dass im Moment des Überganges vom festen, formstabilen Zustand zum verflüssigten, mischbaren Zustand eine kristalline Schmelztemperatur oder eine glasartige Erstarrungstemperatur überschritten werden muss. Gemeint ist an dieser Stelle eine ausreichende Erniedrigung der Viskosität. Ein Polyurethan-Hotmelt-Prepolymer im Sinne dieser Schrift hat eine mit einem Rheometer im Oszillationsversuch bei einer sinusförmig oszillierenden Scherbeanspruchung in einer Platte-Platte-Anordnung, einer Temperatur von 23 °C und einer Oszillationsfrequenz von 10 rad/s gemessene komplexe Viskosität von mindestens 1000 Pa*s, vorzugsweise mindestens 3000 Pa*s.
Die komplexe Viskosität η* ist folgendermaßen definiert: η* = G* / ω
(G* = komplexer Schubmodul, ω = Winkelfrequenz).
Die weiteren Definitionen lauten: G* = yj(G' )2 + (G" )2
(G" = Viskositätsmodul (Verlustmodul), G' = Elastizitätsmodul (Speichermodul)).
G" = τ/γ «sin(8) (τ = Schubspannung, γ = Deformation, δ = Phasenwinkel = Phasenverschiebung zwischen Schubspannungs- und Deformationsvektor).
G' = τ/γ «cos(8) (τ = Schubspannung, γ = Deformation, δ = Phasenwinkel = Phasenverschiebung zwischen Schubspannungs- und Deformationsvektor).
ω = 2π · f (f = Frequenz).
Klebebänder, die mit Haftklebstoffen ausgerüstet sind, so genannte Haftklebebänder, werden heute im industriellen und privaten Bereich in vielfältiger Weise verwendet. Üblicherweise bestehen Haftklebebänder aus einer Trägerfolie, die ein- oder beidseitig mit einem Haftklebstoff ausgerüstet ist. Es gibt auch Haftklebebänder, die ausschließlich aus einer Haftklebstoffschicht und keiner Trägerfolie bestehen, die so genannten Transfer- Tapes. Die Zusammensetzung der Haftklebebänder kann sehr unterschiedlich sein und richtet sich nach den jeweiligen Anforderungen der unterschiedlichen Anwendungen. Die Träger bestehen üblicherweise aus Kunststofffolien wie zum Beispiel Polypropylen, Polyethylen, Polyester oder auch aus Papier, Gewebe oder Vliesstoff.
Die Haftklebstoffe bestehen üblicherweise aus Acrylat-Copolymeren, Silikonen, Naturkautschuk, Synthesekautschuk, Styrolblockcopolymeren oder Polyurethanen.
Aufgrund von ökologischen Gesichtspunkten, Nachhaltigkeit und vor dem Hintergrund der immer knapper werdenden Ressourcen an Erdöl und auf der anderen Seite eines weltweit stark wachsenden Verbrauches an Kunststoffen gibt es seit einigen Jahren die Bestrebung, Kunststoffe auf Basis von nachwachsenden Rohstoffen herzustellen. Dies gilt insbesondere für biologisch abbaubare Polymere, die in Verpackungsanwendungen oder Folienanwendungen Verwendung finden sollen. Auch für medizinische Anwendungen spielen biologisch abbaubare Produkte eine zunehmend wichtige Rolle. Einige biobasierte beziehungsweise bioabbaubare Kunststoffe sind heute kommerziell verfügbar. Biobasiert heißt„hergestellt aus nachwachsenden Rohstoffen".
„Bioabbaubare Polymere" ist eine Bezeichnung für natürliche und synthetische Polymere, die kunststoffähnliche Eigenschaften (Kerbschlagzähigkeit, Thermoplastifizierbarkeit) aufweisen, aber im Gegensatz zu konventionellen Kunststoffen von einer Vielzahl von Mikroorganismen in biologisch aktiver Umgebung (Kompost, Faulschlamm, Erde, Abwasser) abgebaut werden; dies passiert nicht notwendigerweise unter üblichen Haushaltsbedingungen (Kompostierung im Garten). Eine Definition der Bioabbaubarkeit findet sich in den Europäischen Normen DIN EN 13432 (biologischer Abbau von Verpackungen) und DIN EN 14995 (Kompostierbarkeit von Kunststoffen).
Der Fachmann unterscheidet zwischen der Desintegration (Zersetzung) und der biologischen Abbaubarkeit.
Die Desintegration (Zersetzung) bezeichnet die physikalische Zerlegung in sehr kleine Fragmente.
Die Bestimmung der Desintegrierbarkeit (des Zersetzungsgrades) von Polymeren wird unter anderem in der DIN EN ISO 20200 beschrieben. Hierbei wird die zu untersuchende Probe in einem definierten künstlichen Feststoffabfall bei 58 ± 2 °C für mindestens 45 und höchstens 90 Tage gelagert. Anschließend wird die gesamte Probe durch ein 2 mm Sieb gesiebt und der Zersetzungsgrad D wie folgt bestimmt.
mx-
Dabei ist m,: die anfängliche Trockenmasse des Probenmaterials
und
rmr: die Trockenmasse des restlichen, durch Sieben erhaltenen Probenmaterials. Unter der biologischen Abbaubarkeit versteht man im Allgemeinen die Zerlegbarkeit einer chemischen Verbindung oder eines organischen Materials durch Mikroorganismen in Gegenwart von Sauerstoff in Kohlendioxid, Wasser und Salze anderer vorhandener Elemente (Mineralisation) unter Bildung neuer Biomasse oder in Abwesenheit von Sauerstoff in Kohlendioxid, Methan, Mineralsalze und neue Biomasse. Der biologische Abbau erfolgt extra- und/oder intrazellulär durch Bakterien, Pilze und Mikroorganismen, sowie deren Enzyme. Die biologische Abbaubarkeit von Verpackungsmaterialien wird in der DIN EN 13432 „Anforderungen an die Verwertung von Verpackungen durch Kompostierung und biologischen Abbau" normativ geregelt. Hierbei wird das zu prüfende Material einem aeroben Abbautest gemäß ISO 14855:1999 „Bestimmung der vollständigen aeroben Bioabbaubarkeit von Kunststoff-Materialien unter den Bedingungen kontrollierter Kompostierung" unterzogen und innerhalb von maximal sechs Monaten muss im Vergleich zu einer geeigneten Referenzsubstanz ein Abbaugrad von mindestens 90% erreicht werden. Der Abbaugrad wird dabei durch die gemessene Kohlenstoffdioxidentwicklung bestimmt. Die zerkleinerte Probe wird mit Vermiculit oder gut arbeitendem belüftetem Kompost als Inokulum in einem mit Luftzufuhr ausgestattetem Gefäß bei 58 ± 2 °C gelagert und die CC>2-Entwicklung fortlaufend aufgezeichnet. Aufgrund der apperativen Komplexität gibt es eine Reihe von Prüfinstituten, die sich auf die Prüfung spezialisiert haben und anschließend ein entsprechendes Zertifikat, wie etwa das OK compost von Vingotte, ausstellen. Nach Beendigung der Prüfung ergibt sich die Abbaurate Dt als:
D _ (CQ2 )T - (CQ2 )B X 10Q
* ThC02
Dabei ist
(C02)T: die kumulative Menge des in jedem die Prüfsubstanz enthaltendem Kompostiergefäß gebildeten Kohlendioxides in Gramm je Gefäß;
(C02)B: die mittlere kumulative Menge an Kohlendioxid, das in den Blindwertgefäßen gebildet wird, in Gramm je Gefäß;
ThC02: die theoretische Menge an Kohlendioxid, das durch die Prüfsubstanz gebildet werden kann, in Gramm je Gefäß. Neben der biologischen Abbaubarkeit beinhaltet die DIN EN 13432 auch einen Test zur Bestimmung der Qualität des durch den Abbau entstehenden Komposts. Dieser darf keine negativen Auswirkungen auf das Pflanzenwachstum haben.
In der Regel weisen biologisch abbaubare Komponenten auch eine hohe Desintegrationsrate auf, wohingegen die Desintegration eines Werkstoffs nicht zwingend für eine biologische Abbaubarkeit spricht.
Aufgrund der Tatsache, dass ökologische Aspekte, die die biologische Abbaubarkeit betreffen, auch für Haftklebebänder eine immer wichtigere Rolle spielen, wurden in der Vergangenheit auch Haftklebebänder vorgestellt, die als Trägermaterial biologisch abbaubare Folien verwenden. Die verwendeten Folien basieren häufig auf Polymilchsäurecompounds. Polymilchsäure ist ebenso wie weitere biologisch abbaubare und für die Anwendung in Frage kommende thermoplastische Polymere relativ hart und spröde. Um für Folienanwendungen geeignet zu sein, müssen diese in Betracht kommenden biologisch abbaubaren Polymere mit weicheren Polymeren compoundiert werden, die häufig nicht oder schlechter biologisch abbaubar sind.
Hinsichtlich der Haftklebstoffe sind die Möglichkeiten weiter eingeschränkt. Haftklebstoffe sind amorphe Materialien mit niedrigem Glasübergangspunkt.
Die klassischen Gerüstpolymere wie Naturkautschuk, Styrolblockcopolymere oder Polyacrylate sind gemäß den in Europa zugrunde liegenden Normen wie zum Beispiel der DIN EN 13432 nicht biologisch abbaubar. Gleiches gilt für die übliche Tackifierharze wie Kolophoniumderivate, Kohlenwasserstoffharze oder Terpenphenolharze. Siliconhaftklebstoffe scheiden aufgrund ihrer hervorragenden Alterungsstabilität gänzlich aus. Kriterium für eine biologische Abbaubarkeit ist üblicherweise das Vorhandensein von Heteroatomen in der Kohlenstoffhauptkette. Eine chemische Bindung zwischen einem Kohlenstoffatom und einem Heteroatom wie zum Beispiel Sauerstoff oder Stickstoff ist instabiler und damit einem biologischen Abbau leichter zugänglich als eine Bindung zwischen zwei Kohlenstoffatomen.
Aufgrund dieser Gegebenheiten bieten sich Polyesterhaftklebstoffe für entsprechende Anwendungen an. Polyesterhaftklebstoffe haben aber häufig den Nachteil, dass die Anfassklebkraft dieser Klebsysteme sich auf einem relativ niedrigen Niveau befindet. Der Zusatz von üblichen verträglichen Tackifiern wie zum Beispiel Klebharzen würde hier zwar einerseits für Abhilfe sorgen, andererseits aber auf Kosten der biologischen Abbaubarkeit gehen.
In JP 2007 070 422 A1 wird ein biologisch abbaubarer Haftklebstoff auf Basis eines Polyesterpolyurethans beschrieben, der aber den Nachteil hat, schmelzfähig zu sein. Mit schmelzfähigen Haftklebstoffen sind prinzipiell keine guten Verklebungsfestigkeiten bei höheren Temperaturen erzielbar.
Aus JP 63 189 486 A ist ein feuchtigkeitshärtender Haftklebstoff auf Basis eines Polyesterpolyurethans bekannt. Feuchtigkeitshärtende Haftklebstoffe sind für die Verwendung in Klebebändern problematisch, da ein effektiver Schutz vor Feuchtigkeitszutritt vor der Applikation notwendig ist.
In JP 08 157 798 A wird vorgeschlagen, ein flüssiges Polycaprolacton-Diol und eine Dicarbonsäure mit Di- oder Polyisocyanaten zu einem Haftklebstoff umzusetzen. Das beschriebene Reaktivsystem ist zunächst flüssig. Erst nachdem der Haftklebstoff durch die beschriebene chemische Reaktion entstanden ist, tritt eine Verfestigung ein. Flüssige Reaktivsysteme haben im Hinblick auf eine kontinuierliche Beschichtung, die in der Regel den zentralen Prozessschritt einer üblichen Klebebandfertigung darstellt, den Nachteil, dass sie in diesem Zustand nicht oder zumindest nicht mit konstanter Schichtdicke auf einem Trägermaterial aufgewickelt werden können, insbesondere dann nicht, wenn es sich um hohe Schichtdicken handelt.
Aufgabe der Erfindung ist es, hier Abhilfe zu schaffen und Haftklebstoffe bereitzustellen, die für technische Anwendungen zugänglich sind, das Eigenschaftsprofil von üblichen Haftklebstoffen zeigen und biologisch abbaubar sind. Die Haftklebstoffe sollen insbesondere hinsichtlich ihrer klebtechnischen Eigenschaften breit einstellbar sein, wobei sie so ausgeführt werden können sollen, dass sowohl eine hohe Kohäsion als auch ein hohes Adhäsionsvermögen erreicht werden. Es soll aber auch möglich sein, sie so zu formulieren, dass sie leicht und rückstandsfrei vom Untergrundgrund abgelöst werden können und dass sie keine oder nur eine sehr geringe fühlbare Klebrigkeit (Tack) haben. Weiterhin sollen die Haftklebstoffe auch so formuliert werden können, dass sie auch bei höheren Temperaturen, zum Beispiel bei 70 °C, noch eine gute Scherfestigkeit besitzen. Zur Lösung der Aufgabe sieht die Erfindung ein lineares Polyurethan-Prepolymer auf Polyester-Basis vor, das sich zu einem haftklebrigen Polyurethan vernetzen lässt. Ein erster und allgemeiner Gegenstand der Erfindung ist somit ein Polyurethan-Prepolymer, das durch chemische Reaktion von
a) einem oder mehreren aliphatischen Polyester-Polyolen A mit einer Hydroxy-
Funktionalität von 1 ,8 bis einschließlich 2 und einem zahlengemitteltem
Molekulargewicht von gleich/größer 1000 g/mol;
b) einer oder mehreren Verbindungen B mit einer Hydroxy-Funktionalität von 1 ,8 bis einschließlich 2 und einem zahlengemittelten Molekulargewicht von kleiner 1000 g/mol; und
c) einem oder mehreren aliphatischen Diisocyanaten C
erhältlich ist, wobei das Verhältnis der Gesamtanzahl der Isocyanat-Gruppen zur Gesamtanzahl der Hydroxygruppen der an der chemischen Reaktion beteiligten Stoffe größer/gleich 0,4 und kleiner 1 ist.
Ein derartiges Polyurethan-Prepolymer zeichnet sich insbesondere durch strenge Linearität aus. Dies ist vorteilhaft, weil sich lineare Polymerstränge deutlich besser biologisch abbauen lassen als verzweigte. Zudem ermöglicht die Linearität des Prepolymers längere Topfzeiten bei der vorgesehenen späteren Vernetzung zu einer Haftklebemasse, wobei häufig unmittelbar nach Zugabe des Vernetzers der Auftrag auf ein Substrat erfolgt.
Das zahlengemittelte Molekulargewicht der Polyester-Polyole A beträgt bevorzugt größer 1500 g/mol und besonders bevorzugt größer 2000 g/mol. Unter der Hydroxy-Funktionalität wird die Zahl der Hydroxygruppen pro Molekül eines Polyols verstanden. Sie wird in dieser Schrift auf das zahlengemittelte mittlere Molekulargewicht des jeweiligen Polyols bezogen und nach der folgenden Formel berechnet: f = Mn[g/mol] x OHZ [mmol OH/kg]/106 f ist die Hydroxy-Funktionalität. Mn ist das zahlengemittelte mittlere Molekulargewicht des jeweiligen Polyols in der Einheit [g/mol] und OHZ ist die Hydroxylzahl des Polyols in der Einheit [mmol OH / kg]. Die Hydroxylzahl ist ein Maß für den Gehalt an Hydroxygruppen in einem Polyol. Die Bestimmung der Hydroxylzahl erfolgt nach DIN 53240. Nach dieser Methode wird die Hydroxylzahl (OHZ) in der Einheit [mg KOH/g] angegeben. Sie entspricht der Menge KOH in [mg], welche der bei der Acetylierung von 1 g Polyol gebundenen Menge Essigsäure gleichwertig ist. Zum Zwecke der Vereinfachung der Rezepturberechnungen wird die Hydroxylzahl in dieser Schrift in die Einheit [mmol OH/kg] umgerechnet.
Dies erfolgt nach folgender Formel:
OHZ [mmol OH/kg] = OHZ [mg KOH/g] x 1000/56,1 .
56, 1 ist dabei die Molmasse von KOH.
Die erfindungsgemäße Hydroxy-Funktionalität der Polyester-Polyole A von 1 ,8 bis 2 steht für einen hohen Grad an Difunktionalität, so dass auf diese Weise der Aufbau linearer Prepolymere ermöglicht wird.
Als Polyesterpolyole A kommen alle handelsüblichen aliphatischen Polyesterpolyole mit dem beschriebenen Molekulargewicht in Frage, sofern sie die erfindungsgemäße Hydroxy- Funktionalität aufweisen. Erfindungsgemäß einsetzbare Polyester-Polyole werden im Allgemeinen durch Polykondensation aus Diolen und Dicarbonsäuren gewonnen oder im Falle von Polycaprolacton-Polyolen durch Ringöffnungspolymerisation aus ε-Caprolacton und einem difunktionellem Startermolekül.
Vorzugsweise ist/sind zumindest eines der Polyester-Polyole A, stärker bevorzugt das Polyesterpolyol A bzw. die Polyesterpolyole A, das Produkt einer chemischen Reaktion von einer oder mehreren organischen Dicarbonsäure(n) ausgewählt aus der Gruppe bestehend aus Adipinsäure, Maleinsäure, Bernsteinsäure, Caprolactonen, Fumarsäure, Pimelinsäure, Suberinsäure und Glutarsäure; besonders bevorzugt ausgewählt aus der Gruppe bestehend aus Adipinsäure, Bernsteinsäure, Caprolactonen, Fumarsäure, Pimelinsäure, Suberinsäure und Glutarsäure; mit einem oder mehreren Diol(en) ausgewählt aus der Gruppe bestehend aus Ethylenglykol, Diethylenglykol, Triethylenglykol, 1 ,2-Propylenglykol, 1 ,3-Propandiol, 1 ,4-Butandiol, 1 ,6-Hexandiol, 3- Methyl-1 ,5-pentandiol, 2,2,4-Trimethyl-pentan-1 ,3-diol, 2-Butyl-2-ethyl-1 ,3-propandiol, 2,2- Dimethyl-1 ,3-propandiol, 2-Methyl-1 ,3-propandiol, 2-Ethyl-1 ,3-Hexandiol. Besonders bevorzugt ist der Dicarbonsäure-Baustein der Polyester-Polyole Adipinsäure und/oder ε-Caprolacton. Bevorzugte Polyester-Polyole sind somit Polyadipat-Polyole und/oder Polycaprolacton-Polyole.
Der Alkohol-Baustein der Polyester-Polyole ist bevorzugt Ethylenglykol, Diethylenglykol, 1 ,4-Butandiol und/oder 1 ,6-Hexandiol. Besonders bevorzugt ist mindestens eines der Polyester-Polyole ein Polyadipat-Polyol, welches Ethylenglykol und/oder Diethylenglykol als Monomerbaustein enthält.
Es hat sich ferner herausgestellt, dass Methylgruppen tragende Polyester-Polyole, also Polyester-Polyole, die zum Beispiel 2-Methyl-1 ,3-Propandiol, 3-Methyl-1 ,5-Pentandiol oder Neopentylglykol als Alkohol-Baustein enthalten, zur Erzielung gewünschter Haftklebeleistungen vorteilhaft sein können, für eine schnelle biologische Abbaubarkeit der damit hergestellten Polyurethane aber eher nachteilig sind. Überraschenderweise lassen sich jedoch auch Polyurethane, die aus solche Bausteine enthaltenden Prepolymeren aufgebaut wurden, in Kombination mit den übrigen hierin beschriebenen Komponenten hinreichend schnell biologisch abbauen.
Vorzugsweise sind die Polyester-Polyole A aus erneuerbaren Rohstoffquellen, zum Beispiel durch Fermentation von Stärke oder Zucker, hergestellt.
Die Verbindungen B sind bevorzugt ausgewählt aus der Gruppe bestehend aus Polyesterdiolen mit einem zahlengemittelten Molekulargewicht von bis zu 600 g/mol, stärker bevorzugt von bis zu 450 g/mol; 2-Methyl-1 ,3-Propandiol, 3-Methyl-1 ,5-Pentandiol, Ethylenglykol, Diethylenglykol, Triethylenglykol, Tetraethylenglykol, Propylenglykol, Dipropylenglykol, Tripropylenglykol, 1 ,3-Propandiol, 1 ,3-Butandiol, 1 ,4-Butandiol, Neopentylglykol, 1 ,6-Hexandiol, 2-Ethyl-1 ,3-hexandiol und 2-Butyl-2-Ethyl-1 ,3-Propandiol. Besonders bevorzugt sind die Verbindungen B ausgewählt aus der Gruppe bestehend aus Polyesterdiolen mit einem zahlengemittelten Molekulargewicht von bis zu 450 g/mol, 2- Methyl-1 ,3-Propandiol (CAS-Nr.: 2163-42-0), 3-Methyl-1 ,5-Pentandiol (CAS-Nr.: 4457-71 - 0), Ethylenglykol (CAS-Nr.: 107-21 -1 ), Diethylenglykol (CAS-Nr.: 1 1 1 -46-6), Triethylenglykol (CAS-Nr.: 1 12-27-6) und Tetraethylenglykol (CAS-Nr.: 1 12-60-7). Insbesondere ist die Verbindung B Diethylenglykol und/oder ein Polyesterdiol mit einem zahlengemittelten Molekulargewicht von bis zu 450 g/mol. Geeignete Diisocyanate C sind beispielsweise: Butan-1 ,4-diisocyanat, Tetramethoxybutan-1 ,4-diisocyanat, Hexan-1 ,6-diisocyanat, Ethylendiisocyanat, 2,2,4- Trimethyl-hexamethylendiisocyanat, Ethylethylendiisocyanat, Dicyclohexylmethandiisocyanat, 1 ,4-Diisocyanatocyclohexan, 1 ,3- Diisocyanatocyclohexan, 1 ,2-Diisocyanatocyclohexan, 1 ,3-Diisocyanatocyclopentan, 1 ,2- Diisocyanatocyclopentan, 1 ,2-Diisocyanatocyclobutan, 1 -lsocyanatomethyl-3-isocyanato- 1 ,5,5-trimethylcyclohexan (Isophorondiisocyanat), 1 -Methyl-2,4-diisocyanato-cyclohexan, 1 ,6-Diisocyanato-2,2,4-trimethylhexan, 1 ,6-Diisocyanato-2,4,4-trimethylhexan, 5- lsocyanato-1 -(2-isocyanatoeth-1 -yl)-1 ,3,3-trimethyl-cyclohexan, 5-lsocyanato-1 -(3- isocyanatoprop-1 -yl)-1 ,3,3-trimethyl-cyclohexan, 5-lsocyanato-1 -(4-isocyanatobut-1 -yl)- 1 ,3,3-trimethyl-cyclohexan, 1 -lsocyanato-2-(3-isocyanatoprop-1 -yl)-cyclohexan, 1 - lsocyanato-2-(2-isocyanatoeth-1 -yl)-cyclohexan, 2-Heptyl-3,4-bis(9-isocyanatononyl)-1 - pentyl-cyclohexan, Norbonandiisocyanatomethyl, hydrierte Diphenylmethandiisocyanate wie 4,4'-Diisocyanatodicyclohexylmethan, sowie chlorierte, bromierte, schwefel- oder phosphorhaltige aliphatische Diisocyanate.
Besonders bevorzugt sind die Diisocyanate C ausgewählt aus der Gruppe bestehend aus Isophorondiisocyanat, 4,4'-Diisocyanatodicyclohexylmethan und Hexan-1 ,6-diisocyanat. Bevorzugt verläuft die chemische Reaktion, durch die das erfindungsgemäße Polyurethan- Prepolymer erhältlich ist, in Gegenwart mindestens eines Bismutcarboxylat- oder Bismutcarboxylatderivat-haltigen Katalysators oder Katalysatorgemisches, dessen Verwendung zur Beschleunigung von Polyurethan-Reaktionen grundsätzlich bekannt ist. Ein derartiger Katalysator steuert die Haftklebeigenschaften des aus dem Prepolymer herzustellenden Polyurethans erheblich in der Weise, dass eine oberflächenspezifische Selektivität der Haftklebeigenschaften erreicht wird. Beispiele für entsprechende Katalysatoren sind Bismuttrisdodecanoat, Bismuttrisdecanoat, Bismuttrisneodecanoat, Bismuttrisoctanoat, Bismuttrisisooctanoat, Bismuttrishexanoat, Bismuttrispentanoat, Bismuttrisbutanoat, Bismuttrispropanoat und Bismuttrisacetat.
Es können aber auch andere bekannte Katalysatoren eingesetzt werden wie zum Beispiel tertiäre Amine oder zinnorganische Verbindungen.
Das Verhältnis der Gesamtanzahl der Isocyanat-Gruppen zur Gesamtanzahl der Hydroxygruppen der an der chemischen Reaktion beteiligten Stoffe ist bevorzugt größer/gleich 0,7 und kleiner/gleich 0,9. Der Ausdruck „an der chemischen Reaktion beteiligte Stoffe" bezeichnet erfindungsgemäß sämtliche Reaktanden, die zum Zwecke der beabsichtigten chemischen Reaktion miteinander in Kontakt gebracht werden, unabhängig davon, ob die Moleküle der jeweiligen Substanzen tatsächlich sämtlich oder nur zum Teil abreagieren.
Bevorzugt beträgt das Stoffmengenverhältnis der Summe bzw. der Gesamtheit der Verbindungen B zu der Summe bzw. der Gesamtheit der Polyester-Polyole A 0,30 bis 2,33; besonders bevorzugt 0,45 bis 1 ,5 und insbesondere 0,5 bis 1. Ein weiterer Gegenstand der Erfindung ist ein Polyurethan, das durch chemische Vernetzung eines erfindungsgemäßen Polyurethan-Prepolymers erhältlich ist. Ein derartiges Polyurethan ist sehr gut biologisch abbaubar. Aufgrund der hohen linearen Strukturanteile wäre zu erwarten gewesen, dass das erfindungsgemäße Polyurethan überhaupt keine oder zumindest nur schwach ausgeprägte Haftklebeeigenschaften aufweisen würde. Überraschend hat sich jedoch gezeigt, dass das Polyurethan über einen breiten Bereich sehr gute Haftklebeeigenschaften aufweist.
Bevorzugt erfolgt die chemische Vernetzung zum Erhalt des erfindungsgemäßen Polyurethans mit mindestens einem Polyisocyanat D mit drei oder mehr Isocyanatgruppen. Das Verhältnis der Summe der Isocyanatgruppen aller Polyisocyanate C und D zur Summe der Hydroxygruppen der Komponenten A und B beträgt bevorzugt 0,9 bis 1 ,05.
Die chemische Vernetzung zum Erhalt des erfindungsgemäßen Polyurethans kann lösemittelfrei - also in der Schmelze -, in einem organischen Lösemittel oder in wässriger Dispersion erfolgen. In den beiden letzteren Fällen liegen sowohl das Polyurethan- Prepolymer als auch der Vernetzer, bevorzugt also das/die Polyisocyanat(e) D, in einem organischen Lösemittel gelöst bzw. in Wasser dispergiert vor. Um das Prepolymer besser in Wasser dispergieren zu können, stellt - wie im Stand der Technik bekannt - bevorzugt Dimethylolpropionsäure oder eine ähnlich aufgebaute Substanz zumindest einen Teil der Verbindung(en) B, wobei - wie ebenfalls im Stand der Technik bekannt - die Reaktion zum Aufbau des Prepolymers ohne Weiteres so geführt werden kann, dass nur die OH-Gruppen reagieren, die Carboxy-Funktion aber unbeteiligt bleibt.
Ein weiterer Gegenstand der Erfindung ist eine Zusammensetzung, die ein oder mehrere erfindungsgemäße(s) Polyurethan(e) zu mindestens 60 Gew.-%, bevorzugt zu mindestens 70 Gew.-%, besonders bevorzugt zu mindestens 80 Gew.-%, insbesondere zu mindestens 90 Gew.-%, ganz besonders bevorzugt zu mindestens 95 Gew.-%, beispielsweise zu mindestens 97 Gew.-%, enthält. Eine derartige Zusammensetzung ist insbesondere eine Haftklebemasse oder ein Haftstoff. Ein Vorteil der erfindungsgemäßen Zusammensetzung ist, dass sie - zumindest zu großen Teilen - im wässrigen Medium biologisch abbaubar und in einem standardisierten Kompost desintegrierbar ist.
Wie bereits dargelegt, ist das erfindungsgemäße Polyurethan für sich genommen haftklebrig. Durch gezieltes Führen der Reaktionen zum Aufbau und zur Vernetzung des Polyurethan-Prepolymers lassen dich die Haftklebeeigenschaften des Polyurethans ein einem breiten Bereich einstellen. Zur Anpassung der Eigenschaften der erfindungsgemäßen Zusammensetzung kann das Polyurethan mit einem oder mehreren Additiven wie Klebrigmachern (Klebharzen), Weichmachern und/oder Alterungsschutzmitteln gemischt werden.
Vorzugsweise ist das erfindungsgemäße Polyurethan jedoch frei von Klebrigmachern (Klebharzen) und Weichmachern, besonders bevorzugt frei von Klebrigmachern (Klebharzen), Weichmachern und Alterungsschutzmitteln und insbesondere frei von jeglichen Additiven. Produktions- oder anderweitig bedingte Rückstände beliebiger Substanzen, die im Wesentlichen aus einer nicht vollständigen Entfernung resultieren, sowie Substanzgehalte im Bereich einer Allgegenwartskonzentration sind hierbei unbeachtlich.
Unter der Bezeichnung„Klebharz", englisch „Tackifier Resins", versteht der Fachmann einen Stoff auf Harzbasis, der die Klebrigkeit erhöht.
Klebrigmacher sind beispielsweise Kohlenwasserstoffharze (zum Beispiel Polymere auf Basis ungesättigter Cs- oder Cg-Monomere), Terpenphenolharze, Polyterpenharze auf Basis von α-Pinen und/oder ß-Pinen und/oder δ-Limonen, aromatische Harze wie Cumaron-Inden-Harze oder Harze auf Basis von Styrol oder α-Methylstyrol sowie Kolophonium und seine Folgeprodukte, zum Beispiel disproportionierte, dimerisierte oder veresterte Harze, zum Beispiel Umsetzungsprodukte mit Glycol, Glycerin oder Pentaerythrit. Bevorzugt werden Naturharze wie Kolophoniumharze und dessen Derivate verwendet.
Der Zusatz von Klebrigmachern in geringfügigen Mengen bis zu 1 Gew.-% ist möglich, ohne dass die biologische Abbaubarkeit der erfindungsgemäßen Zusammensetzung verloren geht. Bei größeren Mengen, die der Zusammensetzung zugesetzt werden, ist es allerdings möglich, dass deren biologische Abbaubarkeit nicht mehr gegeben ist. Bevorzugt wird daher auf Klebrigmacher verzichtet. Geeignete mischbare Weichmacher sind beispielsweise aliphatische und aromatische Mineralöle, Polyethylen- und Polypropylenglykol, Di- oder Poly-Ester der Phthalsäure, Citronensäure, Trimellitsäure oder Adipinsäure, flüssige Kautschuke (zum Beispiel niedermolekulare Nitril- oder Polyisoprenkautschuke), flüssige Polymerisate aus Buten und/oder Isobuten, Acrylsäureester, Polyvinylether, Flüssig- und Weichharze auf Basis der Rohstoffe von Klebharzen, Wollwachs und andere Wachse oder flüssige Silikone. Besonders bevorzugt werden Weichmacher aus nachwachsenden Rohstoffen verwendet wie zum Beispiel das biobasierte Polyoxytrimethylenglycol Cerenol® von DuPont, Pflanzenöle, vorzugsweise raffinierte Pflanzenöle wie zum Beispiel Rapsöl und Sojabohnenöl, Fettsäuren oder Fettsäureester oder epoxidierte Pflanzenöle, zum Beispiel epoxidiertes Sojabohnenöl.
Insbesondere werden biologisch abbaubare Weichmacher eingesetzt, vorzugsweise Dioder Poly-Ester der Citronensäure oder der Adipinsäure.
Weiter vorzugsweise wird der Weichmacher, insbesondere der biologisch abbaubare, in Mengen von bis zu 10 Gew.-% (bezogen auf die Gesamtzusammensetzung), besonders bevorzugt in Mengen von bis zu 5 Gew.-% (bezogen auf die Gesamtzusammensetzung), ganz besonders bevorzugt in Mengen von bis zu 2,5 Gew.-% (bezogen auf die Gesamtzusammensetzung) eingesetzt.
Wie bei den Klebrigmachern ist der Zusatz von jeglichen Weichmachern in geringfügigen Mengen bis zu 1 Gew.-% möglich, ohne dass die biologische Abbaubarkeit der erfindungsgemäßen Zusammensetzung verloren geht. Auch hier gilt, dass es bei größeren Mengen, die der Zusammensetzung zugesetzt werden, möglich ist, dass deren biologische Abbaubarkeit nicht mehr gegeben ist.
Bevorzugt wird daher auf Weichmacher verzichtet, oder es werden biologisch abbaubare Weichmacher eingesetzt.
Weitere mögliche Additive in der erfindungsgemäßen Zusammensetzung sind Füllstoffe, zum Beispiel Fasern, Ruß, Zinkoxid, Titandioxid, Kreide, Voll- oder Hohlglaskugeln, Mikroballons, Mikrokugeln aus anderen Materialien, Kieselsäure, Silikate, Nanopartikel, Holzmehl, Stärke und Stärke-Compounds und andere biobasierte Füllstoffe; Compoundierungsmittel und/oder Alterungsschutzmittel, letztere zum Beispiel in Form von primären und sekundären Antioxidantien, beispielsweise sterisch gehinderte Phenole wie Irganox 1010 und besonders bevorzugt Tocopherol (Vitamin E). Auch Lichtschutzmittel können zugesetzt werden.
Bei den Additiven gilt das schon bei den Klebrigmachern und Weichmachern Gesagte: In geringfügigen Mengen bis zu 1 Gew.-% ist der Zusatz auch von biologisch nicht abbaubaren Füllstoffen möglich, ohne das die biologische Abbaubarkeit der Zusammensetzung wesentlich beeinträchtigt wird. Bei größeren Mengen, die dem erfindungsgemäßen Polyurethan zugesetzt werden, ist es möglich, dass die Zusammensetzung nicht mehr hinreichend biologisch abbaubar ist. Bevorzugt wird daher auf Füllstoffe, insbesondere auf nicht biologisch abbaubare, verzichtet. Biologisch abbaubare Füllstoffe hingegen können auch in größeren Mengen Verwendung finden. Ein weiterer Gegenstand ist ein Klebeband, das mindestens ein Trägermaterial und mindestens eine Haftklebemasse umfasst, deren Hauptbestandteil das erfindungsgemäße Polyurethan ist.
Als Trägermaterialien für das Klebeband können die dem Fachmann geläufigen und üblichen Trägermaterialien wie Papier, Gewebe, Vlies oder Folien verwendet werden, letztere zum Beispiel aus Polyestern wie Polyethylenterephthalat (PET), Polyethylen, Polypropylen, verstrecktem Polypropylen oder Polyvinylchlorid. Besonders bevorzugt basiert das Trägermaterial auf nachwachsenden Rohstoffen wie Papier, Gewebe aus zum Beispiel Baumwolle, Hanf, Jurte, Brennesselfasern oder biobasierten und/oder biologisch abbaubaren Polymeren, beispielsweise Polymilchsäure. Diese Aufzählung ist nicht abschließend zu verstehen, vielmehr ist im Rahmen der Erfindung auch die Verwendung anderer Folien möglich.
Das Trägermaterial kann ein- oder beidseitig mit einer Haftklebemasse ausgerüstet sein. Im Falle einer beidseitigen Ausrüstung mit Haftklebemasse ist bevorzugt der Hauptbestandteil beider Haftklebemassen das erfindungsgemäße Polyurethan. „Hauptbestandteil" bedeutet erfindungsgemäß, dass die betreffende Komponente den größten Gewichtsanteil aller Bestandteile der Haftklebemasse aufweist. Besonders bevorzugt ist die Haftklebemasse bzw. sind die Haftklebemassen eine erfindungsgemäße Zusammensetzung. Insbesondere besteht die Haftklebemasse bzw. bestehen die Haftklebemassen aus dem erfindungsgemäßen Polyurethan.
Das erfindungsgemäße Klebeband wird bevorzugt dadurch gebildet, dass auf den Träger partiell oder vollflächig die Haftklebemasse aufgetragen wird. Die Beschichtung kann auch in Form eines oder mehrerer Streifen in Längsrichtung (Maschinenrichtung) erfolgen, gegebenenfalls in Querrichtung, sie ist insbesondere aber vollflächig. Weiterhin kann die Haftklebemasse rasterpunktförmig mittels Siebdruck, wobei die Klebstoffpünktchen auch unterschiedlich groß und/oder unterschiedlich verteilt sein können, durch Tiefdruck in in Längs- und Querrichtung zusammenhängenden Stegen, durch Rasterdruck oder durch Flexodruck aufgebracht werden. Die Haftklebemasse kann in Kalottenform (hergestellt durch Siebdruck) vorliegen oder auch in einem anderen Muster wie Gitter, Streifen, Zickzacklinien. Ferner kann sie beispielsweise auch aufgesprüht sein, was ein unregelmäßiges Auftragsbild ergibt.
Der Stoffauftrag (Beschichtungsstärke) der Haftklebemasse liegt vorzugsweise zwischen 10 und 200 g/m2, stärker bevorzugt zwischen 15 und 75 g/m2 und besonders bevorzugt zwischen 20 und 50 g/m2. Vorteilhaft ist die Verwendung eines Haftvermittlers, einer so genannten Primerschicht, zwischen Trägermaterial und Haftklebemasse oder eine physikalische Vorbehandlung der Trägeroberfläche zur Verbesserung der Haftung der Klebemasse auf dem Trägermaterial. Der vorstehend beschriebene Auftrag der Haftklebemasse auf den Träger umfasst auch den Auftrag auf einen mit einer Primerschicht versehenenTräger.
Als Primer sind die bekannten Dispersions- und Lösungsmittelsysteme verwendbar, zum Beispiel solche auf Basis von Isopren- oder Butadien-haltigem Kautschuk, Acrylatkautschuk, Polyvinyl-, Polyvinyliden- und/oder Cyclokautschuk. Isocyanate oder Epoxyharze als Additive verbessern die Haftung und erhöhen zum Teil auch vorteilhaft die Scherfestigkeit des Haftklebstoffes. Der Haftvermittler kann ebenfalls mittels einer Coextrusionsschicht auf die Trägerfolie aufgebracht werden. Als physikalische Oberflächenbehandlungen eigenen sich zum Beispiel Beflammung, Corona und Plasma.
Des Weiteren kann das Trägermaterial rück- oder oberseitig, also der Klebstoffseite gegenüberliegend, einer antiadhäsiven physikalischen Behandlung oder Beschichtung unterzogen sein, insbesondere mit einem Trennmittel oder Release (gegebenenfalls mit anderen Polymeren abgemischt) ausgerüstet sein.
Beispiele für Trenn- oder - synonym bezeichnet - Releaseschichten sind solche aus Stearyl-Verbindungen (zum Beispiel Polyvinylstearylcarbamat, Stearylverbindungen von Übergangsmetallen wie Cr oder Zr, Harnstoffe aus Polyethylenimin und Stearylisocyanat) oder Polysiloxanen. Der Begriff „Stearyl" steht als Synonym für alle geraden oder verzweigten Alkyle oder Alkenyle mit einer C-Zahl von mindestens 10 wie zum Beispiel Octadecyl. Geeignete Trennmittel umfassen weiterhin tensidische Releasesysteme auf Basis langkettiger Alkylgruppen wie Stearylsulfosuccinate oder Stearylsulfosuccinamate, aber auch Polymere, die ausgewählt sind aus der Gruppe bestehend aus Polyvinylstearylcarbamaten, zum Beispiel Escoat 20 von der Firma Mayzo, Polyethyleniminstearylcarbamiden, Chrom-Komplexen von C14- bis C28-Fettsäuren und Stearyl-Copolymeren, wie sie zum Beispiel in DE 28 45 541 A beschrieben sind. Ebenfalls geeignet sind Trennmittel auf Basis von Acrylpolymeren mit perfluorierten Alkylgruppen, Silikone, zum Beispiel auf Basis von Poly(dimethyl-Siloxanen), und Fluorsilikonverbindungen. Weiter kann das Trägermaterial vor- beziehungsweise nachbehandelt werden. Gängige Vorbehandlungen sind Hydrophobieren, geläufige Nachbehandlungen sind Kalandern, Tempern, Kaschieren, Stanzen und Eindecken.
Das Klebeband kann mit einer handelsüblichen Trennfolie bzw. einem Trennpapier laminiert sein, die bzw. das üblicherweise aus einem Basismaterial aus Polyethylen, Polypropylen, Polyester oder Papier aufgebaut ist, das ein- oder doppelseitig mit Polysiloxan beschichtet ist. Ein solches Gebilde wird vielfach auch als Releaseliner bezeichnet. Die Herstellung des erfindungsgemäßen Klebebands kann durch übliche, dem Fachmann bekannte Beschichtungsverfahren erfolgen. Hierbei kann das erfindungsgemäße Polyurethan, ggf. inklusive der Additive, gelöst in einem geeigneten Lösemittel mittels beispielsweise Rasterwalzenauftrag, Kommarakelbeschichtung, Mehrwalzenbeschichtung oder in einem Druckverfahren auf eine Trägerfolie oder Trennfolie beschichtet und anschließend das Lösemittel in einem Trockenkanal oder -ofen entfernt werden. Alternativ kann die Beschichtung der Trägerfolie oder Trennfolie auch in einem lösemittelfreien Verfahren erfolgen. Hierzu wird das Polyurethan in einem Extruder hergestellt. In dem Extruder können weitere Prozessschritte wie das Mischen mit den beschriebenen Additiven, Filtration oder eine Entgasung erfolgen. Die Schmelze wird dann mittels einer Breitschlitzdüse auf die Trägerfolie oder Trennfolie beschichtet.
Das erfindungsgemäße Klebeband hat vorzugsweise eine Klebkraft auf einem Stahluntergrund von mindestens 1 ,0 N/cm und eine Scherdeformation von maximal 500 μηη bei einem Stoffauftrag von 25 g/m2. Diese Werte werden bevorzugt auch nach einer Lagerung von 3 Monaten bei 23 °C, 40 °C oder 70 °C erreicht.
Der allgemeine Ausdruck„Klebeband" umfasst im Sinne dieser Erfindung alle flächigen Gebilde wie in zwei Dimensionen ausgedehnte Folien oder Folienabschnitte, Bänder mit ausgedehnter Länge und begrenzter Breite, Bandabschnitte, Stanzlinge, Etiketten und dergleichen. Das Klebeband kann in festen Längen wie zum Beispiel als Meterware oder aber als Endlosware auf Rollen (archimedische Spirale) zur Verfügung gestellt werden. Das Klebeband kann nur aus einer Schicht Klebstoff bestehen, also einlagig sein, das Klebeband kann aber auch einen Träger aufweisen, auf den ein- oder beidseitig eine Schicht oder gegebenenfalls mehrere Schichten Klebstoff aufgebracht ist.
Der Gesamtgehalt an nachwachsenden Rohstoffen im erfindungsgemäßen Klebeband inklusive Releaseliner beträgt vorzugsweise mindestens 50 Gew.-%.
Ein weiterer Gegenstand der Erfindung ist die Verwendung eines erfindungsgemäßen Polyurethans zur Herstellung einer Haftklebemasse oder eines Haftstoffes.
Beispiele:
Das Polyurethan-Prepolymer wurde jeweils hergestellt, indem zunächst das/die Polyester- Polyol(e) A eingewogen und in einem üblichen beheiz- und evakuierbaren Labormischer (zum Beispiel von der Firma PC Laborsystem) unter Vakuum bei einer Temperatur von 70 °C ca. zwei Stunden lang gemischt wurden. Sodann wurde(n) das/die Diol(e) B zugegeben und 20 Minuten lang ohne Vakuum eingemischt. Anschließend wurden ggf. die restlichen Stoffe entsprechend den in den einzelnen Beispielen angegebenen Mengenverhältnissen zugefügt und 20 Minuten eingemischt. Zuletzt erfolgte die Zugabe des mindestens einen Diisocyanats C, das 20 Minuten lang homogen eingemischt wurde. Die chemisch reagierende Mischung wurde zur Vervollständigung der Umsetzung 7 Tage lang bei 40 °C im Wärmeschrank gelagert.
Zur Vernetzung wurde das hergestellte Polyurethan-Prepolymer zunächst in Aceton gelöst. Pro 100 g Prepolymer wurden stets 25 g Aceton zugefügt. Es wurde mit Desmodur® N3300 (Polyisocyanat D) vernetzt.
Nach der Zugabe des Desmodur® N3300 zum in Aceton gelösten Polyurethan-Prepolymer wurde die Mischung 5 Minuten gerührt. Anschließend wurde die chemisch reagierende Mischung während der Reaktionsphase auf einem handelsüblichen Laborstreichtisch (zum Beispiel von der Firma SMO (Sondermaschinen Oschersleben GmbH)) mit Hilfe eines Streichmessers auf eine 23 μηη dicke, mit Trichloressigsäure geätzte PET-Folie beschichtet. Das Aceton wurde bei 60 °C im Umlufttrockenschrank 10 Minuten abgedampft. Die Spaltbreite beim Beschichten wurde so eingestellt, dass nach dem Abdampfen des Lösemittels ein 25 μηη dicker haftklebriger Film erhalten wurde. Anschließend wurden die vom Lösemittel befreiten Filme mit silikonisierter PET-Folie abgedeckt und zur Vervollständigung der Umsetzung 7 Tage lang bei 40 °C im Wärmeschrank gelagert.
In Tabelle 1 sind die zur Herstellung der Prepolymere und Zusammensetzungen verwendeten Stoffe aufgeführt. Die genannten Rohstoffe sind alle frei im Handel erhältlich.
Figure imgf000024_0001
Tabelle 1 : Zur Herstellung der beispielhaften Muster verwendete Materialien
Prüfmethoden Die Messungen werden, wenn nicht anders angegeben, bei einem Prüfklima von 23 ± 1 °C und 50 ± 5 % rel. Luftfeuchte durchgeführt.
Die folgenden Prüfmethoden wurden eingesetzt, um die Ausgangsstoffe sowie die nach den beschriebenen Verfahren hergestellten Muster zu charakterisieren. Molekulargewicht Mn
Die Bestimmung der zahlengemittelten mittleren Molekulargewichte Mn erfolgt erfindungsgemäß mittels Gelpermeationschromatographie (GPC). Als Eluent wird THF (Tetrahydrofuran) mit 0,1 Vol.-% Trifluoressigsäure eingesetzt. Die Messungen erfolgen bei 25 °C. Als Vorsäule wird PSS-SDV, 5 μ, 103 A, ID 8,0 mm x 50 mm verwendet. Zur Auftrennung werden die Säulen PSS-SDV, 5 μ, 103 sowie 105 und 106 mit jeweils ID 8,0 mm x 300 mm eingesetzt. Die Probenkonzentration beträgt 4 g/l, die Durchflussmenge 1 ,0 ml pro Minute. Es wird gegen PMMA-Standards gemessen.
Hydroxylzahl
Die Bestimmung der Hydroxylzahlen erfolgt nach DIN 53240. Nach dieser Methode wird die Hydroxylzahl (OHZ) in der Einheit [mg KOH/g] angegeben. Zum Zwecke der
Vereinfachung der Rezepturberechnungen in den aufgeführten Beispielen wurden die
Hydroxylzahlen in die Einheit [mmol OH/kg] umgerechnet.
Dies erfolgte nach folgender Formel:
OHZ [mmol OH/kg] = OHZ[mg KOH/g] x1000/56,1 56, 1 ist dabei die Molmasse von KOH.
Hydroxy-Funktionalität (f) Die Hydroxy-Funktionalität (f) wird aus dem zahlengemittelten, mittleren Molekulargewicht Mn und der OH-Zahl (OHZ) nach folgender Gleichung errechnet:
f= Mn[g/mol] x OHZ [mmol OH/kg]/106.
Klebkraft
Die Prüfung der Klebkraft (Schälfestigkeit) erfolgte in Anlehnung an PSTC-1 . Ein 2 cm breiter Streifen des Haftklebbandes, bestehend aus der 23 μηη dicken, mit Trichloressigsäure geätzten PET-Folie und dem darauf aufgetragenen 25 μηη dicken haftklebrigen Film, wurde auf der Prüfplatte durch fünfmaliges doppeltes Überrollen mittels einer 5 kg Rolle verklebt. Die Prüfplatte wurde eingespannt und der Selbstklebstreifen über sein freies Ende mittels einer Zugprüfmaschine unter einem Schälwinkel von 180° mit einer Geschwindigkeit von 300 mm/min abgezogen. Die dafür notwendige Kraft wurde ermittelt. Die Messergebnisse wurden über drei Messungen gemittelt und normiert auf die Breite des Streifens in N/cm angegeben.
Bei den Prüfplatten handelte es sich um Stahl- und ABS-Platten.
Die Klebkraftmessungen erfolgten mit frisch verklebten Proben und mit Proben, die nach Durchführung der Verklebungen in einer Klimakammer gelagert wurden. Die Lagerbedingungen waren 3 Wochen bei 60 °C.
Mikroschertest
Dieser Test dient der Schnellprüfung der Scherfestigkeit von Klebebändern unter Temperaturbelastung.
Messprobenpräparation für Mikroschertest:
Ein aus dem jeweiligen Probenmuster geschnittenes Klebeband (Länge ca. 50 mm, Breite 10 mm) wurde auf eine mit Aceton gereinigte Stahl-Prüfplatte verklebt, so dass die Stahlplatte das Klebeband rechts und links überragte und dass das Klebeband die Prüfplatte am oberen Rand um 2 mm überragte. Die Verklebungsfläche der Probe betrug Höhe x Breite = 13 mm x 10 mm. Die Verklebungsstelle wurde anschließend mit einer 2 kg-Stahlrolle und einer Geschwindigkeit von 10 m/min sechsmal überrollt. Das Klebeband wurde bündig mit einem stabilen Klebestreifen verstärkt, der als Auflage für den Wegmessfühler diente. Die Probe wurde mittels der Prüfplatte senkrecht aufgehängt. Mikroschertest:
Das zu messende Probenmuster wurde am unteren Ende mit einem Gewicht von 500 g belastet. Die Prüftemperatur betrug 40 °C, die Prüfdauer 30 Minuten (15 Minuten Belastung und 15 Minuten Entlastung). Die Scherstrecke nach der vorgegebenen Testdauer bei konstanter Temperatur wurde als Ergebnis in μηη angegeben, und zwar als Maximalwert ["max"; maximale Scherstrecke durch 15 minütige Belastung] und als Minimalwert ["min"; Scherstrecke ("Restauslenkung") 15 min nach Entlastung; bei Entlastung erfolgt eine Rückbewegung durch Relaxation]. Angegeben wurde ebenfalls der elastische Anteil in Prozent ["elast"; elastischer Anteil = (max - min)- 100 / max]. Bestimmung der biologischen Abbaubarkeit Die biologische Abbaubarkeit durch Kompostierung wurde nach DIN EN 13432 bestimmt Dabei handelt es sich um eine chemische Prüfung, bei der innerhalb der sechsmonatigen Prüfdauer ein Abbaugrad von 90 % relativ zu einer Referenzsubstanz in Gegenwart von Mikroorganismen oder Pilzen erreicht werden muss. Dabei sind die Bedingungen (Temperatur, Sauerstoff- und Feuchtigkeitsgehalt) genau definiert. Der Abbau muss zu Wasser, Kohlenstoffdioxid und Biomasse erfolgen. Es folgt eine chemische Untersuchung und Bewertung der Qualität des Komposts.
Ebenfalls erfolgt im Rahmen dieser Untersuchung eine Prüfung auf das Desintegrationsverhalten. Die Desintegration weist auf die physikalische Zerlegung eines Materials in sehr kleine Fragmente hin. Dabei müssen mindestens 90 % des Kunststoffs innerhalb von 12 Wochen zu Partikeln kleiner als 2 mm abgebaut sein. Nur wenn beide Tests erfüllt sind, gilt ein Stoff nach der DIN-Norm als biologisch abbaubar.
Wegen des hohen Aufwandes und der daraus resultierenden hohen Kosten erfolgte diese Prüfung nur an einigen ausgewählten Beispielen.
Bestimmung des Desintegrationsverhaltens
Bei allen Prüfmustern erfolgte separat die Prüfung des Desintegrationsverhaltens in Anlehnung an DIN EN ISO 20200.
Diese Norm beschreibt die Bestimmung der Desintegrierbarkeit (des Zersetzungsgrades) von Polymeren unter nachgebildeten Kompostierungsbedingungen im Labormaßstab. Für die Untersuchungen wurde handelsübliche Komposterde verwendet, hier die Komposterde mit der Markenbezeichnung tangocomp® der VKN-Vertriebsgesellschaft Kompostprodukte Nord mbH. Die Vertriebsgesellschaft ist in Tangstedt, Schleswig- Holstein ansässig und bezieht ihre Kompostrohstoffe aus der Umgebung von Hamburg. Der Feuchtegehalt der Komposterde wurde auf 55 bis 60 % eingestellt. Zur Bestimmung des Feuchtegehaltes wurden drei Proben Komposterde ä 10 g für 2 Stunden bei 120 °C getrocknet und anschließend der Feuchtigkeitsverlust und somit der Wassergehalt der Erde bestimmt. Fehlende Feuchtigkeit wurde in Form von nicht gechlortem Leitungswasser aufgefüllt. In einen 250 ml_ PE-Becher wurden zunächst 50 g der auf einen Feuchtegehalt von 60 % eingestellten Komposterde eingewogen. Auf diese erste Erdschicht wurde anschließend ein ca. 9 cm2 großes Stück der zu untersuchenden Probe gegeben. Auf die Probe wurde sodann eine zweite Schicht Komposterde von ebenfalls 50 g Gewicht gegeben. Der PE- Becher wurde mit einem Deckel verschlossen. Zur Belüftung des Komposts wurde der Deckel zuvor mit 3 Löchern mit einem Durchmesser von jeweils 2,0 mm versehen. Die so vorbereitete Probe wurde bei 58 ± 2 °C für maximal 90 Tage gelagert und der Wasserverlust alle 2 bis 3 Tage durch Wasserzugabe ausgeglichen. Einmal wöchentlich wurde der Fortschritt der Zersetzung der Proben durch optische Prüfung festgestellt und die Zeit bis zur kompletten Zersetzung (Desintegrationszeit) dokumentiert.
Beispiel 1
Das Polyurethan-Prepolymer 1 setzt sich wie folgt zusammen:
Figure imgf000029_0001
NCO : OH = 0,8
Vernetzungsschritt
Beispiel 1a:
Figure imgf000029_0002
NCO : OH = 1,03. Beispiel 2
Das Polyurethan-Prepolymer 2 setzt sich wie folgt zusammen:
Figure imgf000030_0001
NCO : OH = 0,8
Vernetzungsschritt
Beispiel 2a:
Figure imgf000030_0002
NCO : OH = 1,11. Beispiel 3
Das Polyurethan-Prepolymer 3 setzt sich wie folgt zusammen:
Figure imgf000031_0001
NCO : OH = 0,9.
Vernetzungsschritt:
Beispiel 3a:
Figure imgf000031_0002
NCO : OH = 1 ,95. Beispiel 4
Das Polyurethan-Prepolymer 4 setzt sich wie folgt zusammen:
Figure imgf000032_0001
NCO : OH = 0,8.
Vernetzungsschritt:
Beispiel 4a:
Figure imgf000032_0002
NCO : OH = 1 ,06. Beispiel 5
Das Polyurethan-Prepolymer 5 setzt sich wie folgt zusammen:
Figure imgf000033_0001
NCO : OH = 0,8.
Vernetzungsschritt:
Beispiel 5a:
Figure imgf000033_0002
NCO : OH = 0,67.
Beispiel 5b:
Figure imgf000034_0001
NCO : OH = 0,84.
Beispiel 6
Das Polyurethan-Prepolymer 6 setzt sich wie folgt zusammen:
Prepolymer 6:
Figure imgf000034_0002
NCO : OH = 0,8. Vernetzungsschritt: Beispiel 6a:
Figure imgf000035_0001
NCO : OH = 0,99.
Vergleichsbeispiele
Prepolymer 7:
Figure imgf000036_0001
NCO : OH = 0,3.
Vernetzungsschritt: Beispiel 7a:
Figure imgf000036_0002
NCO : OH = 0,95.
Prepolymer 8:
Figure imgf000036_0003
NCO : OH = 0,9. Vernetzungsschritt:
Beispiel 8a:
Figure imgf000037_0001
NCO : OH = 0,61 .
Ergebnisse
Figure imgf000037_0002
Bei allen Klebkraftmessungen mit den erfindungsgemäßen Beispielen waren die Bruchbilder stets adhäsiv. Es wurden keine Beläge und keine Verfärbungen auf den Prüfplatten beobachtet.

Claims

Patentansprüche
1 . Polyurethan-Prepolymer, erhältlich durch chemische Reaktion von
a) einem oder mehreren aliphatischen Polyester-Polyolen A mit einer Hydroxy- Funktionalität von 1 ,8 bis einschließlich 2 und einem zahlengemittelten Molekulargewicht von gleich/größer 1000 g/mol;
b) einer oder mehreren Verbindungen B mit einer Hydroxy-Funktionalität von 1 ,8 bis einschließlich 2 und einem zahlengemittelten Molekulargewicht von kleiner 1000 g/mol;
c) einem oder mehreren aliphatischen Diisocyanaten C;
wobei das Verhältnis der Gesamtanzahl der Isocyanat-Gruppen zur Gesamtanzahl der Hydroxygruppen der an der chemischen Reaktion beteiligten Stoffe größer/gleich 0,4 und kleiner 1 ist.
2. Polyurethan-Prepolymer gemäß Anspruch 1 , dadurch gekennzeichnet, dass das Molekulargewicht der Polyester-Polyole A größer 1500 g/mol ist.
3. Polyurethan-Prepolymer gemäß einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass das Verhältnis der Gesamtanzahl der Isocyanat-Gruppen zur Gesamtanzahl der Hydroxygruppen der an der chemischen Reaktion beteiligten Stoffe größer/gleich 0,7 und kleiner/gleich 0,9 ist.
4. Polyurethan-Prepolymer gemäß mindestens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass zumindest eines der Polyester-Polyole A das Produkt einer chemischen Reaktion von
einer oder mehreren organischen Dicarbonsäuren ausgewählt aus der Gruppe bestehend aus Adipinsäure, Bernsteinsäure, Caprolactonen, Fumarsäure, Pimelinsäure, Suberinsäure und Glutarsäure mit
einem oder mehreren Diolen, ausgewählt aus der Gruppe bestehend aus Ethylenglykol, Diethylenglykol, Triethylenglykol, 1 ,2-Propylenglykol, 1 ,3- Propandiol, 1 ,4-Butandiol, 1 ,6-Hexandiol, 3-Methyl-1 ,5-pentandiol, 2,2,4-Trimethyl- pentan-1 ,3-diol, 2-Butyl-2-ethyl-1 ,3-propandiol, 2,2-Dimethyl-1 ,3-propandiol, 2- Methyl-1 ,3-propandiol und 2-Ethyl-1 ,3-Hexandiol ist.
5. Polyurethan-Prepolymer gemäß mindestens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Stoffmengenverhältnis der Gesamtheit der Verbindungen B zu der Gesamtheit der Polyester-Polyole A 0,30 bis 2,33 beträgt.
6. Polyurethan, erhältlich durch chemische Vernetzung eines Polyurethan-Prepolymers gemäß mindestens einem der vorstehenden Ansprüche.
7. Polyurethan gemäß Anspruch 6, dadurch gekennzeichnet, dass die chemische Vernetzung durch Umsetzung des Polyurethan-Prepolymers mit mindestens einem Polyisocyanat D mit drei oder mehr Isocyanatgruppen erfolgt.
8. Polyurethan gemäß Anspruch 7, dadurch gekennzeichnet, dass das Verhältnis der Summe der Isocyanatgruppen aller Polyisocyanate C und D zur Summe der Hydroxygruppen der Komponenten A und B 0,9 bis 1 ,05 beträgt.
9. Zusammensetzung, enthaltend ein oder mehrere Polyurethane gemäß mindestens einem der Ansprüche 6 bis 8 zu insgesamt mindestens 60 Gew.-%.
10. Klebeband, umfassend mindestens ein Trägermaterial und mindestens eine Zusammensetzung gemäß Anspruch 9 als Haftklebemasse.
1 1 . Verwendung eines Polyurethans gemäß mindestens einem der Ansprüche 6 bis 8 zur Herstellung einer Haftklebemasse oder eines Haftstoffes.
PCT/EP2015/063031 2014-06-11 2015-06-11 Polyester-polyurethan WO2015189323A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580043005.5A CN106574036B (zh) 2014-06-11 2015-06-11 聚酯聚氨酯
US15/317,599 US20170121579A1 (en) 2014-06-11 2015-06-11 Polyester polyurethane
PL15728512T PL3155034T3 (pl) 2014-06-11 2015-06-11 Taśma klejąca na bazie poliestru-poliuretanu
ES15728512T ES2715681T3 (es) 2014-06-11 2015-06-11 Banda adhesiva a base de poliester-poliuretano
EP15728512.3A EP3155034B1 (de) 2014-06-11 2015-06-11 Klebeband basierend auf polyester-polyurethan

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014211186.2A DE102014211186A1 (de) 2014-06-11 2014-06-11 Polyester-Polyurethan
DE102014211186.2 2014-06-11

Publications (1)

Publication Number Publication Date
WO2015189323A1 true WO2015189323A1 (de) 2015-12-17

Family

ID=53385643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/063031 WO2015189323A1 (de) 2014-06-11 2015-06-11 Polyester-polyurethan

Country Status (7)

Country Link
US (1) US20170121579A1 (de)
EP (1) EP3155034B1 (de)
CN (1) CN106574036B (de)
DE (1) DE102014211186A1 (de)
ES (1) ES2715681T3 (de)
PL (1) PL3155034T3 (de)
WO (1) WO2015189323A1 (de)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016210898A1 (de) 2016-06-17 2017-12-21 Tesa Se Biologisch abbaubare Haftklebmasse
EP3247759B1 (de) 2015-01-21 2021-05-05 3M Innovative Properties Company Chemikalienbeständiger polyurethanklebstoff
DE102020213567A1 (de) 2020-10-28 2022-04-28 Tesa Se Geruchsarmes polyurethanbasiertes Haftklebeband
DE102021201684A1 (de) 2021-02-23 2022-08-25 Tesa Se Mehrschichtiges Klebeband mit geschäumten Nachstrichmassen zur Verbesserung der Kälteschlagbeständigkeit
WO2022179912A1 (en) 2021-02-24 2022-09-01 Basf Se Adhesive labels comprising biodegradable aqueous polyurethane pressure-sensitive adhesive
DE202022105559U1 (de) 2022-09-30 2022-10-20 Tesa Se Schneidvorrichtung für Klebebandapplikatoren
WO2022234133A1 (de) 2021-05-06 2022-11-10 Tesa Se Verfahren zum ausformen einer syntaktisch geschäumten polymerschicht
DE102021205464A1 (de) 2021-05-28 2022-12-01 Tesa Se Klebeband mit unvernetzter Silikon-Haftklebmasse
WO2022268837A1 (de) 2021-06-21 2022-12-29 Tesa Se Biologisch abbaubare haftklebemasse
DE102021206697A1 (de) 2021-06-28 2022-12-29 Tesa Se Schockresistente Haftklebmasse
EP4199010A1 (de) 2021-12-16 2023-06-21 tesa SE Verfahren zur ummantelung von strangförmigen elementen
DE102021133983A1 (de) 2021-12-21 2023-06-22 Tesa Se Haftklebemasse für die Verklebung von Druckplatten
DE102022102979A1 (de) 2022-02-09 2023-08-10 Tesa Se Verfahren zur Anordnung strangförmiger Elemente in durchgehenden Ausnehmungen und Klebeelement für das Verfahren
DE102022103280A1 (de) 2022-02-11 2023-08-17 Tesa Se Haftklebemasse mit verbesserter chemischer Beständigkeit
EP4242277A1 (de) 2022-03-11 2023-09-13 tesa SE Aushärtbare klebemasse mit verbesserter stanzbarkeit und verbesserten schockeigenschaften
DE102022105738A1 (de) 2022-03-11 2023-09-14 Tesa Se Aushärtbare Klebemasse mit verbesserter Stanzbarkeit
DE102022107953A1 (de) 2022-04-04 2023-10-05 Tesa Se Doppelseitiges Klebeband mit planarer Gasdurchlässigkeit
DE102022109186A1 (de) 2022-04-14 2023-10-19 Tesa Se Verfahren zur Präparation von Walzen für den Einsatz in Beschichtungsanlagen und Klebeband zur Präparation von Walzen
EP4273202A1 (de) 2022-05-06 2023-11-08 tesa SE Verfahren zur herstellung dünner haftklebebänder
DE102022113677A1 (de) 2022-05-31 2023-11-30 Tesa Se Strahlungsvorrichtung zur Aushärtung von aushärtbaren Klebemassen bei der Ummantelung von strangförmigen Elementen
DE102022117183A1 (de) 2022-07-11 2024-01-11 Tesa Se Unvernetztes Polyepoxid und Klebemasse umfassend dieses Polyepoxid
DE102022117176A1 (de) 2022-07-11 2024-01-11 Tesa Se Verfahren zum dauerhaften Verschließen von Löchern mit Überdrucksicherung und Klebeelement für das Verfahren
WO2024017946A1 (de) 2022-07-21 2024-01-25 Tesa Se Schockbeständige haftklebmasse
DE102022120584A1 (de) 2022-08-16 2024-02-22 Tesa Se Druckkopf zum Drucken von hochviskosen Drucksubstanzen, insbesondere Haftklebemassen
WO2024041782A1 (de) 2022-08-25 2024-02-29 Tesa Se Verfahren zum drucken von dreidimensionalen strukturen mit verringertem aufarbeitungsaufwand
DE102022124903A1 (de) 2022-09-28 2024-03-28 Tesa Se Kationisch härtbare Klebemasse mit definierter Färbung im ausgehärteten Zustand
DE102022124904A1 (de) 2022-09-28 2024-03-28 Tesa Se Aushärtbare Haftklebemasse mit verbesserten Klebeeigenschaften
DE102022124902A1 (de) 2022-09-28 2024-03-28 Tesa Se Kationisch härtbare Klebemasse mit Indikation der Haltefestigkeit
DE102023105238B3 (de) 2023-03-03 2024-03-28 Tesa Se Applikationsvorrichtung für die Applikation von bahnförmigen Klebeelementen
WO2024069005A1 (de) 2022-09-30 2024-04-04 Tesa Se Applikationsvorrichtung mit nachfüllkassette
DE102022127274A1 (de) 2022-10-18 2024-04-18 Tesa Se Applikationselement und Verfahren zur zerstörungsfreien Setzkontrolle beim Applizieren von Klebeelementen
WO2024100268A1 (de) 2022-11-10 2024-05-16 Tesa Se Greifvorrichtung mit integrierter strahlungsaktivierung
DE102022131276A1 (de) 2022-11-25 2024-05-29 Tesa Se Mechanisches Recycling von Klebebändern und deren Verwendung

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014211187A1 (de) * 2014-06-11 2015-12-17 Tesa Se Klebeband zum Schutz von Oberflächen
CN107163893B (zh) * 2017-04-24 2023-08-04 深圳光华伟业股份有限公司 一种热熔压敏胶
WO2019049852A1 (ja) * 2017-09-06 2019-03-14 Dic株式会社 ガスバリア性接着剤用樹脂組成物、接着剤、及び積層体
CN111378086A (zh) * 2018-12-27 2020-07-07 美国圣戈班性能塑料公司 聚氨酯泡沫体及其形成方法
WO2020139572A1 (en) * 2018-12-27 2020-07-02 Saint-Gobain Performance Plastics Corporation Polyurethane foam and methods of forming the same
CN110564354A (zh) * 2019-07-25 2019-12-13 启东东岳化工有限公司 一种辊涂用高初粘力的聚氨酯粘合剂及其制备方法
CN112794969A (zh) * 2021-02-03 2021-05-14 常州都铂高分子有限公司 一种可降解压敏胶用树脂
CN113604159B (zh) * 2021-09-14 2022-05-17 芜湖徽氏新材料科技有限公司 一种可降解锂离子电池用溶胀胶带及其制备方法
WO2023107822A1 (en) * 2021-12-08 2023-06-15 Henkel Ag & Co. Kgaa Compostable or biodegradable pressure sensitive adhesive based on polyurethane

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2626132A1 (de) * 1976-06-11 1977-12-22 Plate Bonn Gmbh Verfahren zur herstellung von linearen, unvernetzten polyurethan-heisschmelzklebern
EP0192946A1 (de) * 1985-01-25 1986-09-03 Bayer Ag Endständige Hydroxylgruppen aufweisende Polyesterpolyurethane und ihre Verwendung als Klebstoffe oder zur Herstellung von Klebstoffen
JP2002053828A (ja) * 2000-05-29 2002-02-19 Toyo Ink Mfg Co Ltd 生分解性粘着テープ
EP1323769A2 (de) * 2001-12-18 2003-07-02 Basf Aktiengesellschaft Verfahren zur Aufbringung von Funktionsmaterialien auf thermoplastisches Polyurethan
DE10162349A1 (de) * 2001-12-18 2003-07-10 Basf Ag Thermoplastische Polyurethane auf der Basis aliphatischer Isocyanate
WO2011120895A1 (de) * 2010-03-29 2011-10-06 Basf Se Schmelzkleben mit thermoplastischem polyurethan
WO2013167250A1 (de) * 2012-05-08 2013-11-14 Carl Freudenberg Kg Thermisch fixierbares flächengebilde
EP2666839A1 (de) * 2011-01-21 2013-11-27 Toyo Ink SC Holdings Co., Ltd. Klebemittelzusammensetzung und laminierter körper

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT350269B (de) * 1977-06-01 1979-05-25 Plate Bonn Gmbh Verfahren zur kontinuierlichen herstellung von thermoplastischen polyurethanen
DE2845541C3 (de) 1978-10-19 1981-04-02 Beiersdorf Ag, 2000 Hamburg Verfahren zur Herstellung von klebstoffabweisenden Beschichtungen auf flächigem, blatt- oder bahnförmigen Material
AU560972B2 (en) 1982-09-29 1987-04-30 Dow Chemical Company, The Ethylene copolymer films
FR2595983B1 (fr) * 1986-03-24 1989-01-13 Saint Gobain Vitrage Procede de fabrication de vitrages feuilletes
JPS63189486A (ja) 1987-01-30 1988-08-05 Sanyo Chem Ind Ltd 接着剤
ES2051307T5 (es) 1987-11-19 1999-04-16 Exxon Chemical Patents Inc Peliculas termoplasticas adecuadas para su uso en aplicaciones de estiramiento/adherencia.
US5698621A (en) 1992-03-06 1997-12-16 Achilles Usa, Inc. Printable self-clinging polyvinyl chloride film and methods relating thereto
DE4214192A1 (de) * 1992-04-30 1993-11-11 Bayer Ag Verbundformkörper
FI97726C (fi) * 1994-07-07 1997-02-10 Alko Yhtioet Oy Sulatyöstettävä polyesteriuretaani ja menetelmä sen valmistamiseksi
DE4439031C2 (de) * 1994-11-02 1996-08-22 Siegfried Lanitz Polymerbeschichtetes Mehrschichtmaterial und Verfahren zu seiner Herstellung
JPH08157798A (ja) 1994-12-06 1996-06-18 Nitto Denko Corp 粘着剤組成物
DE19522011A1 (de) 1995-06-21 1997-01-02 Teltenkoetter Kalheber Stefani Folienartiger Schichtwerkstoff
US5888615A (en) 1997-03-04 1999-03-30 Avery Dennison Corporation Cling films and articles
DE19722627C1 (de) 1997-05-30 1998-10-15 Beiersdorf Ag Verwendung eines Abschnitts einer Adhäsionsfolie zum Befestigen von Magnetstreifen- oder Chip-Karten auf einer Unterlage
US6197887B1 (en) 1997-09-12 2001-03-06 Eastman Chemical Company Compositions having particular utility as stretch wrap cling film
DE10012261A1 (de) 2000-03-14 2001-09-27 Holger Hoefer Adhäsionsfolie
GB2368300A (en) 2000-10-24 2002-05-01 David Stanley Tait Adhesive film with release coating
DE10063661A1 (de) * 2000-12-20 2002-09-19 Tesa Ag Oberflächenschutzfolie für Lackoberflächen mit einer Selbstklebemasse auf Basis eines Polyurethan-Schaums
DE20208094U1 (de) 2002-05-23 2002-09-26 Visi One Gmbh Folienartiger Schichtwerkstoff
JP4203304B2 (ja) * 2002-11-20 2008-12-24 日東電工株式会社 医療用感圧性接着シート類およびその製造方法
DE10338134A1 (de) 2003-08-15 2005-03-17 Tesa Ag Verwendung von Adhäsionsfolien zum Befestigen und gleichzeitigem Abdecken und Schützen von op tischen Speichermedien
JP2007070422A (ja) 2005-09-06 2007-03-22 Showa Highpolymer Co Ltd 生分解性ポリエステルポリウレタン
DE102006020482A1 (de) 2006-04-28 2007-10-31 Tesa Ag Wieder ablösbarer Haftklebstoff aus Polyurethan
DE102008023252A1 (de) * 2008-05-13 2009-11-19 Tesa Se Hotmelt-Verfahren zur Herstellung eines chemisch vernetzten Polyurethanfilms
DE102009008949A1 (de) * 2009-02-13 2010-08-19 Bayer Materialscience Ag Wässrige Beschichtungssysteme auf Basis physikalisch trocknender Urethanacrylate
DE102013226031A1 (de) * 2013-12-16 2015-06-18 Tesa Se Biologisch abbaubarer Haftklebstoff auf Basis von Polyester-Polyurethan
DE102014211187A1 (de) * 2014-06-11 2015-12-17 Tesa Se Klebeband zum Schutz von Oberflächen

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2626132A1 (de) * 1976-06-11 1977-12-22 Plate Bonn Gmbh Verfahren zur herstellung von linearen, unvernetzten polyurethan-heisschmelzklebern
EP0192946A1 (de) * 1985-01-25 1986-09-03 Bayer Ag Endständige Hydroxylgruppen aufweisende Polyesterpolyurethane und ihre Verwendung als Klebstoffe oder zur Herstellung von Klebstoffen
JP2002053828A (ja) * 2000-05-29 2002-02-19 Toyo Ink Mfg Co Ltd 生分解性粘着テープ
EP1323769A2 (de) * 2001-12-18 2003-07-02 Basf Aktiengesellschaft Verfahren zur Aufbringung von Funktionsmaterialien auf thermoplastisches Polyurethan
DE10162349A1 (de) * 2001-12-18 2003-07-10 Basf Ag Thermoplastische Polyurethane auf der Basis aliphatischer Isocyanate
WO2011120895A1 (de) * 2010-03-29 2011-10-06 Basf Se Schmelzkleben mit thermoplastischem polyurethan
EP2666839A1 (de) * 2011-01-21 2013-11-27 Toyo Ink SC Holdings Co., Ltd. Klebemittelzusammensetzung und laminierter körper
WO2013167250A1 (de) * 2012-05-08 2013-11-14 Carl Freudenberg Kg Thermisch fixierbares flächengebilde

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3247759B1 (de) 2015-01-21 2021-05-05 3M Innovative Properties Company Chemikalienbeständiger polyurethanklebstoff
DE102016210898A1 (de) 2016-06-17 2017-12-21 Tesa Se Biologisch abbaubare Haftklebmasse
DE102020213567A1 (de) 2020-10-28 2022-04-28 Tesa Se Geruchsarmes polyurethanbasiertes Haftklebeband
DE102021201684A1 (de) 2021-02-23 2022-08-25 Tesa Se Mehrschichtiges Klebeband mit geschäumten Nachstrichmassen zur Verbesserung der Kälteschlagbeständigkeit
WO2022180134A1 (de) 2021-02-23 2022-09-01 Tesa Se Mehrschichtiges klebeband mit geschäumten nachstrichmassen zur verbesserung der kälteschlagbeständigkeit
WO2022179912A1 (en) 2021-02-24 2022-09-01 Basf Se Adhesive labels comprising biodegradable aqueous polyurethane pressure-sensitive adhesive
WO2022234133A1 (de) 2021-05-06 2022-11-10 Tesa Se Verfahren zum ausformen einer syntaktisch geschäumten polymerschicht
DE102021204631A1 (de) 2021-05-06 2022-11-10 Tesa Se Verfahren zum Ausformen einer syntaktisch geschäumten Polymerschicht
DE102021205464A1 (de) 2021-05-28 2022-12-01 Tesa Se Klebeband mit unvernetzter Silikon-Haftklebmasse
DE102021205464B4 (de) 2021-05-28 2023-05-11 Tesa Se Klebeband mit unvernetzter Silikon-Haftklebmasse und Verwendung
WO2022268837A1 (de) 2021-06-21 2022-12-29 Tesa Se Biologisch abbaubare haftklebemasse
DE102021206697A1 (de) 2021-06-28 2022-12-29 Tesa Se Schockresistente Haftklebmasse
WO2023274961A1 (de) 2021-06-28 2023-01-05 Tesa Se Schockresistente haftklebmasse
DE102021133426A1 (de) 2021-12-16 2023-06-22 Tesa Se Verfahren zur Ummantelung von strangförmigen Elementen
EP4199010A1 (de) 2021-12-16 2023-06-21 tesa SE Verfahren zur ummantelung von strangförmigen elementen
DE102021133983A1 (de) 2021-12-21 2023-06-22 Tesa Se Haftklebemasse für die Verklebung von Druckplatten
EP4202004A1 (de) 2021-12-21 2023-06-28 tesa SE Haftklebemasse für die verklebung von druckplatten
DE102022102979A1 (de) 2022-02-09 2023-08-10 Tesa Se Verfahren zur Anordnung strangförmiger Elemente in durchgehenden Ausnehmungen und Klebeelement für das Verfahren
WO2023152209A1 (de) 2022-02-09 2023-08-17 Tesa Se Verfahren zur anordnung strangförmiger elemente in durchgehenden ausnehmungen und klebeelement für das verfahren
WO2023152282A1 (de) 2022-02-11 2023-08-17 Tesa Se Haftklebemasse mit verbesserter chemischer beständigkeit
DE102022103280A1 (de) 2022-02-11 2023-08-17 Tesa Se Haftklebemasse mit verbesserter chemischer Beständigkeit
DE102022103280B4 (de) 2022-02-11 2023-09-28 Tesa Se Haftklebemasse mit verbesserter chemischer Beständigkeit und ihre Verwendung
EP4242277A1 (de) 2022-03-11 2023-09-13 tesa SE Aushärtbare klebemasse mit verbesserter stanzbarkeit und verbesserten schockeigenschaften
DE102022105738A1 (de) 2022-03-11 2023-09-14 Tesa Se Aushärtbare Klebemasse mit verbesserter Stanzbarkeit
WO2023169893A1 (de) 2022-03-11 2023-09-14 Tesa Se Aushärtbare klebemasse mit verbesserter stanzbarkeit
DE102022105737A1 (de) 2022-03-11 2023-09-14 Tesa Se Aushärtbare Klebemasse mit verbesserter Stanzbarkeit und verbesserten Schockeigenschaften
DE102022107953A1 (de) 2022-04-04 2023-10-05 Tesa Se Doppelseitiges Klebeband mit planarer Gasdurchlässigkeit
DE102022109186A1 (de) 2022-04-14 2023-10-19 Tesa Se Verfahren zur Präparation von Walzen für den Einsatz in Beschichtungsanlagen und Klebeband zur Präparation von Walzen
EP4273202A1 (de) 2022-05-06 2023-11-08 tesa SE Verfahren zur herstellung dünner haftklebebänder
DE102022111384A1 (de) 2022-05-06 2023-11-09 Tesa Se Verfahren zur Herstellung dünner Haftklebebänder
DE102022113677A1 (de) 2022-05-31 2023-11-30 Tesa Se Strahlungsvorrichtung zur Aushärtung von aushärtbaren Klebemassen bei der Ummantelung von strangförmigen Elementen
EP4287218A1 (de) 2022-05-31 2023-12-06 tesa SE Strahlungsvorrichtung zur aushärtung von aushärtbaren klebemassen bei der ummantelung von strangförmigen elementen
DE102022117183A1 (de) 2022-07-11 2024-01-11 Tesa Se Unvernetztes Polyepoxid und Klebemasse umfassend dieses Polyepoxid
DE102022117176A1 (de) 2022-07-11 2024-01-11 Tesa Se Verfahren zum dauerhaften Verschließen von Löchern mit Überdrucksicherung und Klebeelement für das Verfahren
EP4306604A1 (de) 2022-07-11 2024-01-17 tesa SE Verfahren zum dauerhaften verschliessen von löchern mit überdrucksicherung und klebeelement für das verfahren
WO2024012932A1 (de) 2022-07-11 2024-01-18 Tesa Se Unvernetztes polyepoxid und klebemasse umfassend dieses polyepoxid
WO2024017946A1 (de) 2022-07-21 2024-01-25 Tesa Se Schockbeständige haftklebmasse
DE102022118334A1 (de) 2022-07-21 2024-02-01 Tesa Se Schockbeständige Haftklebmasse
DE102022120584A1 (de) 2022-08-16 2024-02-22 Tesa Se Druckkopf zum Drucken von hochviskosen Drucksubstanzen, insbesondere Haftklebemassen
WO2024037765A1 (de) 2022-08-16 2024-02-22 Tesa Se Druckkopf zum drucken von hochviskosen drucksubstanzen, insbesondere haftklebemassen
WO2024041782A1 (de) 2022-08-25 2024-02-29 Tesa Se Verfahren zum drucken von dreidimensionalen strukturen mit verringertem aufarbeitungsaufwand
DE102022121548A1 (de) 2022-08-25 2024-03-07 Tesa Se Verfahren zum Drucken von dreidimensionalen Strukturen mit verringertem Aufarbeitungsaufwand
DE102022124904A1 (de) 2022-09-28 2024-03-28 Tesa Se Aushärtbare Haftklebemasse mit verbesserten Klebeeigenschaften
EP4345131A1 (de) 2022-09-28 2024-04-03 tesa SE Kationisch härtbare klebemasse mit definierter färbung im ausgehärteten zustand
DE102022124902A1 (de) 2022-09-28 2024-03-28 Tesa Se Kationisch härtbare Klebemasse mit Indikation der Haltefestigkeit
DE102022124903A1 (de) 2022-09-28 2024-03-28 Tesa Se Kationisch härtbare Klebemasse mit definierter Färbung im ausgehärteten Zustand
WO2024068274A1 (de) 2022-09-28 2024-04-04 Tesa Se Kationisch härtbare klebemasse mit indikation der haltefestigkeit
EP4345144A1 (de) 2022-09-28 2024-04-03 tesa SE Aushärtbare haftklebemasse mit verbesserten klebeeigenschaften
WO2024069004A1 (de) 2022-09-30 2024-04-04 Tesa Se Schneidvorrichtung für klebebandapplikatoren
WO2024069005A1 (de) 2022-09-30 2024-04-04 Tesa Se Applikationsvorrichtung mit nachfüllkassette
DE202022105559U1 (de) 2022-09-30 2022-10-20 Tesa Se Schneidvorrichtung für Klebebandapplikatoren
DE102022125422A1 (de) 2022-09-30 2024-04-04 Tesa Se Applikationsvorrichtung mit Nachfüllkassette
DE102022127274A1 (de) 2022-10-18 2024-04-18 Tesa Se Applikationselement und Verfahren zur zerstörungsfreien Setzkontrolle beim Applizieren von Klebeelementen
WO2024083845A1 (de) 2022-10-18 2024-04-25 Tesa Se Applikationselement und verfahren zur zerstörungsfreien setzkontrolle beim applizieren von klebeelementen
DE102022127274B4 (de) 2022-10-18 2024-05-16 Tesa Se Applikationselement und Verfahren zur zerstörungsfreien Setzkontrolle beim Applizieren von Klebeelementen
WO2024100268A1 (de) 2022-11-10 2024-05-16 Tesa Se Greifvorrichtung mit integrierter strahlungsaktivierung
DE102022129681A1 (de) 2022-11-10 2024-05-16 Tesa Se Greifvorrichtung mit integrierter Strahlungsaktivierung
DE102022131276A1 (de) 2022-11-25 2024-05-29 Tesa Se Mechanisches Recycling von Klebebändern und deren Verwendung
DE102023105238B3 (de) 2023-03-03 2024-03-28 Tesa Se Applikationsvorrichtung für die Applikation von bahnförmigen Klebeelementen

Also Published As

Publication number Publication date
CN106574036B (zh) 2020-03-17
PL3155034T3 (pl) 2019-07-31
US20170121579A1 (en) 2017-05-04
EP3155034A1 (de) 2017-04-19
EP3155034B1 (de) 2019-01-30
CN106574036A (zh) 2017-04-19
ES2715681T3 (es) 2019-06-05
DE102014211186A1 (de) 2015-12-17

Similar Documents

Publication Publication Date Title
EP3155034B1 (de) Klebeband basierend auf polyester-polyurethan
EP3155061B1 (de) Klebeband zum schutz von oberflächen
EP3083732B1 (de) Biologisch abbaubarer haftklebstoff auf basis von polyester-polyurethan
EP3257882B1 (de) Biologisch abbaubare haftklebemasse
EP1849811B1 (de) Wieder ablösbarer Haftklebstoff aus Polyurethan
EP1469053A1 (de) Wiederverwendbare, rückstands- und beschädigungsfrei wiederablösbare, elastische Klebfolie
EP1081203B1 (de) Verwendung von Isocyanaten bei der Herstellung von hochviskosen selbstklebenden Massen
DE102009046657A1 (de) Haftklebstoff auf Basis von Polyurethan
DE10317791A1 (de) Haftklebstoff aus Polyurethan für empfindliche Oberflächen
DE102006033796A1 (de) Haftklebestoffe aus einem harzmodifizierten Polyurethan
EP2647682B1 (de) Biologisch abbaubarer Haftklebstoff
DE10317790A1 (de) Doppelseitiges Klebeband, insbesondere auch für das wiederablösbare Verkleben von flexiblen CDs auf gekrümmten Oberflächen
EP2976372B1 (de) Klebstoffzusammensetzung auf basis eines polyesterurethans und polyesterurethan
WO2009077229A1 (de) Biologisch abbaubarer kaschier-klebstoff
EP2781532B1 (de) Klebstoffzusammensetzung auf basis von modifiziertem polylactid, verfahren zu deren herstellung sowie verwendung der klebstoffzusammensetzung
EP4359463A1 (de) Biologisch abbaubare haftklebemasse
DE102005033762A1 (de) Verfahren zur Herstellung einer ein- oder beidseitig haftklebrigen, elastischen Klebfolie
DE102011005956A1 (de) Haftklebemasse mit mindestens einem aliphatischen amorphen Copolyester

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15728512

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015728512

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015728512

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15317599

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE