WO2015186990A1 - O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 o-아세틸-호모세린을 생산하는 방법 - Google Patents

O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 o-아세틸-호모세린을 생산하는 방법 Download PDF

Info

Publication number
WO2015186990A1
WO2015186990A1 PCT/KR2015/005659 KR2015005659W WO2015186990A1 WO 2015186990 A1 WO2015186990 A1 WO 2015186990A1 KR 2015005659 W KR2015005659 W KR 2015005659W WO 2015186990 A1 WO2015186990 A1 WO 2015186990A1
Authority
WO
WIPO (PCT)
Prior art keywords
microorganism
homoserine
acetyl
activity
acetyl homoserine
Prior art date
Application number
PCT/KR2015/005659
Other languages
English (en)
French (fr)
Inventor
배지연
김현아
신용욱
김소영
김상겸
나광호
서주희
손성광
유혜련
최진근
Original Assignee
씨제이제일제당 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 주식회사 filed Critical 씨제이제일제당 주식회사
Priority to JP2016571122A priority Critical patent/JP6375391B2/ja
Priority to AU2015269041A priority patent/AU2015269041B2/en
Priority to EP15802588.2A priority patent/EP3153574B1/en
Priority to SG11201610171VA priority patent/SG11201610171VA/en
Priority to CN201580041968.1A priority patent/CN106574237B/zh
Priority to US15/316,475 priority patent/US10501763B2/en
Priority to BR112016028527-1A priority patent/BR112016028527B1/pt
Priority to MYPI2016704481A priority patent/MY183321A/en
Priority to RU2016149077A priority patent/RU2676137C2/ru
Publication of WO2015186990A1 publication Critical patent/WO2015186990A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1096Transferases (2.) transferring nitrogenous groups (2.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1217Phosphotransferases with a carboxyl group as acceptor (2.7.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/02Amides, e.g. chloramphenicol or polyamides; Imides or polyimides; Urethanes, i.e. compounds comprising N-C=O structural element or polyurethanes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/12Methionine; Cysteine; Cystine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01011Aspartate-semialdehyde dehydrogenase (1.2.1.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01031Homoserine O-acetyltransferase (2.3.1.31)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)
    • C12Y206/01001Aspartate transaminase (2.6.1.1), i.e. aspartate-aminotransferase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01039Homoserine kinase (2.7.1.39)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/02Phosphotransferases with a carboxy group as acceptor (2.7.2)
    • C12Y207/02004Aspartate kinase (2.7.2.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01031Phosphoenolpyruvate carboxylase (4.1.1.31)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/01022Cystathionine beta-synthase (4.2.1.22)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/01031Maleate hydratase (4.2.1.31)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • C12R2001/12Bacillus polymyxa ; Paenibacillus polymyxa

Definitions

  • the present invention relates to a microorganism producing 0-acetyl homoserine with high efficiency and a method for producing O-acetyl homoserine using the microorganism.
  • O-acetyl homoserine acts as a precursor of methionine, a type of essential amino acid in vivo.
  • Methionine is used as a synthetic raw material for fluids and pharmaceuticals, as well as feed and food additives.
  • Methionine is produced through chemical and biological synthesis. Recently, a two-stage process (International Publication No. WO / 2008/013432) is also known in which L-methionine is produced by enzymatic conversion reaction from L-methionine precursor produced through fermentation.
  • O-succinyl homoserine and O-acetyl homoserine are used as methionine precursors, and O-acetyl homoserine for economic mass production of methionine. It is very important to produce in high yield.
  • the present inventors completed the present invention by discovering a protein having an activity of releasing O-acetyl-homoserine.
  • One object of the present invention is to provide a microorganism with improved O-acetyl homoserine production capacity.
  • Another object of the present invention is to provide a method for efficiently producing O-acetin homoserine by using the microorganism having improved O-acetyl homoserine production capacity.
  • the microorganisms having enhanced activity of the inner membrane protein YjeH of the present invention have enhanced O-acetyl homoserine releasing ability, thereby improving the production efficiency of O-acetyl homoserine, and the microorganism of the present invention can be widely used to produce O-acetyl homoserine. Can be.
  • FIG. 1 is a diagram showing a cleavage diagram of a yjeH vector (pBAC-yjeH vector) according to the present invention.
  • One embodiment of the present invention includes a microorganism having O-acetyl homoserine producing ability, wherein the activity of the inner membrane protein YjeH is enhanced compared to an unmutated microorganism.
  • O-acetyl homoserine refers to an acetyl derivative of L-homoserine as a specific intermediate material on the methionine biosynthetic pathway of a microorganism. It is known that the reaction of homoserine and acetyl-CoA is produced by the reaction of homoserine acetyl transferase, and has a chemical formula of C 6 H 11 NO 4 .
  • microorganism having O-acetyl homoserine producing ability refers to a microorganism having the ability to produce O-acetyl homoserine in the organism and secrete it in the medium when the microorganism is cultured in the medium. do. O-acetyl homoserine production capacity can be imparted or enhanced by species improvement.
  • the microorganism having O-acetyl homoserine producing ability may be an Escherichia genus microorganism having O-acetyl homoserine producing ability, and more specifically, E. coli. For example, it may be E.
  • YjeH is one of the APC families for amino acid transporters and is known as a protein present in the inner membrane, and is expected to act as an amino acid transporter, but its exact function is unknown. Thus, the present inventors confirmed for the first time that YjeH specifically releases O-acetyl homoserine.
  • the YjeH may be derived from Escherichia spp., More specifically, may be E. coli-derived YjeH. In particular, it may be a protein having an amino acid sequence of SEQ ID NO: 1 or more than 70%, specifically 80% or more, more specifically 90% or more homology thereof. In addition, as long as the sequence having homology, the amino acid sequence having the activity of releasing O-acetyl homoserine substantially the same as or corresponding to the amino acid sequence of SEQ ID NO: 1, some of the sequence having an amino acid sequence deleted, modified, substituted or added It is obvious that cases are included in the scope of the present invention.
  • nucleotide sequences encoding the same amino acid sequences and variants thereof due to genetic code degeneracy are also included in the present invention.
  • it may be a nucleotide sequence of SEQ ID NO: 2, but is not limited thereto.
  • the term “homology” refers to an amino acid or a nucleotide sequence of a gene encoding a protein, wherein the same sequence of bases or amino acid residues between the sequences is aligned after aligning the two sequences as closely as possible in a specific comparison region. It means degree. If the homology is sufficiently high, the expression products of the gene of interest may have the same or similar activity.
  • the percent sequence identity can be determined using known sequence comparison programs, and examples include BLAST (NCBI), CLC Main Workbench (CLC bio), MegAlign TM (DNASTAR Inc), and the like.
  • non-mutant microorganism refers to a microorganism that does not introduce a variation in the activity of the protein, and refers to a strain based on introducing a variation in the activity of the protein. It may be natural or variant.
  • Enhancement of the activity of the protein means improving the active state of the protein possessed by the microorganism. Enhancement of the activity of the protein is not limited as long as it can enhance the activity of each protein over the non-mutated microorganism, such as enhancing the activity of the target protein. For example, i) an increase in the number of copies of a polynucleotide encoding each protein, ii) a modification of an expression control sequence to increase expression of the polynucleotide, iii) a modification of the polynucleotide sequence on a chromosome to enhance the activity of each protein. And iv) a combination thereof.
  • a method of inserting a polynucleotide containing a nucleotide sequence encoding each protein into a chromosome a method of introducing the polynucleotide into a vector system into a microorganism, an improved activity upstream of a nucleotide sequence encoding each protein
  • a method of introducing a promoter or a mutated protein to the promoter a method of modifying the nucleotide sequence of the 5'-UTR region, and a method of introducing a variant of the nucleotide sequence encoding each protein It may be performed by a method, but is not limited thereto.
  • the activity of the YjeH may be enhanced than the non-mutated microorganism by increasing the copy number or enhancing the activity of the promoter.
  • a promoter exhibiting improved activity to the inner membrane protein YjeH may be to enhance its activity.
  • the promoter exhibiting the improved activity includes, without limitation, a promoter whose activity is increased compared to the yjeH autologous promoter, including a promoter of a gene whose activity is higher than the gene expression inducing activity of the yjeH autologous promoter, or the yjeH autologous promoter.
  • the promoter showing the improved activity of the present invention may be selected from the group consisting of icd promoter, pro promoter and cysk promoter, specifically the icd promoter is composed of the nucleotide sequence of SEQ ID NO: 51, the pro promoter Comprised of the nucleotide sequence of SEQ ID NO: 52, the cysk promoter may be composed of the nucleotide sequence of SEQ ID NO: 53, but each base sequence and 70% or more, specifically 80% or more, more specifically 90% or more phase It may be a base sequence having the same identity.
  • the Escherichia spp. Microorganism having O-acetyl homoserine-producing ability may additionally have attenuated or inactivated cystathionine synthase activity.
  • the activity of the cystathionine synthase may be reduced or inactivated than the activity of the non-mutant microorganism, and in particular, the gene encoding cystathionine synthase (metB) may be deleted, but is not limited thereto.
  • the amino acid sequence of metB may be obtained from a known database, and an amino acid sequence having cystathionine synthase activity may be included without limitation, and for example, may be a protein having an amino acid sequence of SEQ ID NO.
  • the protein having the amino acid sequence of SEQ ID NO: 3 may be a protein encoded by the nucleotide sequence of SEQ ID NO: 4, but is not limited thereto.
  • the Escherichia spp. Microorganism may additionally have attenuated or inactivated homoserine kinase activity. Specifically, the activity of the homoserine kinase may be reduced or inactivated than the intrinsic activity of the non-mutant microorganism, and in particular, the gene (thrB) encoding the homoserine kinase may be deleted, but is not limited thereto.
  • the amino acid sequence of thrB can be obtained from a known database, and the amino acid sequence having homoserine kinase activity may be included without limitation, and for example, may be a protein having an amino acid sequence of SEQ ID NO: 5.
  • the protein having the amino acid sequence of SEQ ID NO: 5 may be a protein encoded by the nucleotide sequence of SEQ ID NO: 6, but is not limited thereto.
  • the activity "weakening" of the protein is i) deletion of part or all of the gene encoding each protein, ii) modification of the expression control sequence such that expression of the gene is reduced, iii) the activity of the protein is weakened Modification of the gene sequence on the chromosome and iv) may be performed by a method selected from the group consisting of, but is not limited thereto.
  • the "weakened activity" of the protein of the present invention means that the activity is reduced when compared with the activity of the enzyme that the original microorganism has in the state of a natural or based strain.
  • the weakening is due to mutation of the gene encoding the enzyme and the activity of the enzyme itself is reduced compared to the activity of the enzyme originally possessed by the microorganism, and the inhibition of expression or translation of the gene encoding the same in the cell. If the overall degree of enzymatic activity is lower than that of the natural strain, the concept also includes a combination thereof, but is not limited thereto.
  • activation means a case in which the expression of the gene encoding the enzyme is not expressed at all compared to the natural strain, and the case in which there is no activity even when expressed.
  • Attenuation or inactivation of such enzymatic activity can be achieved by the application of various methods well known in the art.
  • the method include a method of replacing a gene encoding the enzyme on a chromosome with a mutated gene such that the activity of the enzyme is reduced, including when the activity of the enzyme is removed; Introducing a mutation into an expression control sequence of a gene on a chromosome encoding said enzyme; Replacing the expression control sequence of the gene encoding the enzyme with a sequence having weak or no activity; Deleting all or part of a gene on a chromosome that encodes the enzyme; Introducing an antisense oligonucleotide (eg, antisense RNA) that complementarily binds to a transcript of a gene on the chromosome to inhibit translation from the mRNA to an enzyme; The method of artificially adding a sequence complementary to the SD sequence in front of the SD sequence of the gene encoding the enzyme to form a secondary structure to make the attachment of
  • the method of deleting part or all of a gene encoding an enzyme replaces a polynucleotide encoding an endogenous target protein in a chromosome with a polynucleotide or a marker gene in which some nucleic acid sequences are deleted through a bacterial chromosome insertion vector.
  • a method for deleting part or all of the gene a method of deleting a gene by homologous recombination may be used, but is not limited thereto.
  • part may vary depending on the type of polynucleotide, but may be specifically 1 to 300, preferably 1 to 100, more preferably 1 to 50, but is not particularly limited thereto.
  • homologous recombination refers to genetic recombination occurring through linkage exchange at the locus of gene chains having homology with each other.
  • the method for modifying the expression control sequence is carried out by inducing a mutation on the expression control sequence by deletion, insertion, non-conservative or conservative substitution, or a combination thereof, to further weaken the activity of the expression control sequence, or weaker. By replacement with a nucleic acid sequence having activity.
  • the expression control sequence includes, but is not limited to, a promoter, an operator sequence, a sequence encoding a ribosomal binding site, and a sequence that controls the termination of transcription and translation.
  • a method of modifying a gene sequence on a chromosome may be performed by inducing a mutation on the sequence by deletion, insertion, non-conservative or conservative substitution, or a combination thereof, to further weaken the activity of the enzyme, or to perform weaker activity. It may be carried out by replacing with a gene sequence that is improved to have or a gene sequence that has been modified to have no activity, but is not limited thereto.
  • the activity of each protein is determined through deletion of the gene encoding cystathionine synthase (metB) and / or the gene encoding homoserine kinase (thrB) using homologous recombination. Weakened.
  • Escherichia microorganism may further be enhanced the activity of homoserine acetyl transferase (homoserine acetyltransferase) compared to non-mutated microorganisms.
  • the activity of the homoserine acetyl transferase may be increased than that of the non-mutant microorganism, and in particular, the variant metA gene encoding the enhanced activity homoserine acetyl transferase may be introduced.
  • the mutant metA gene may be a gene encoding a substitution of glutamic acid for amino acid 111 of homoserine acetyl transferase and a histidine 112 for amino acid, and may be particularly composed of a nucleotide sequence of SEQ ID NO: 8, but It is not limited.
  • the variant metA may include, without limitation, an amino acid sequence whose activity of the homoserine acetyl transferase is stronger than that of the wild type, but may be, for example, a protein having the amino acid sequence of SEQ ID NO.
  • An example of the production of such a mutant metA gene and its utilization, the homoserine acetyl transferase-enhanced strain, etc. are disclosed in Korean Patent Registration No. 10-1335841, the entire specification of the patent is a reference of the present invention It may be included as.
  • Escherichia microorganism may further be enhanced aspartate kinase (Aspartate kinase, EC 2.7.2.4) compared to the non-mutated microorganism.
  • Aspartate kinase Aspartate kinase, EC 2.7.2.4
  • the activity of the aspartate kinase may be increased than the intrinsic activity of the non-mutant microorganism, but is not limited thereto.
  • Genes, protein sequences and promoter sequences used in the present invention can be obtained from a known database, for example, but can be obtained from GenBank of NCBI, but is not limited thereto.
  • each protein of the present invention is not only the amino acid sequence described by each sequence number, but also an amino acid sequence having the activity of a protein substantially the same as or corresponding to each amino acid sequence as a sequence having homology, It is apparent that some of the sequences have amino acid sequences deleted, modified, substituted or added, and are included in the scope of the present invention.
  • the present invention comprises the step of culturing an Escherichia genus microorganism having O-acetyl homoserine production capacity according to the present invention, to obtain a culture, O-acetyl homoserine It provides a production method of
  • the medium and other culture conditions used for the cultivation of the microorganism of the present invention may be any medium without particular limitation as long as it is a medium used for the cultivation of ordinary Escherichia microorganism, but specifically, the microorganism of the present invention may be a suitable carbon source, nitrogen source. It can be cultured under aerobic conditions by adjusting the temperature, pH, etc. in a conventional medium containing the number of people, inorganic compounds, amino acids and / or vitamins.
  • the carbon source includes carbohydrates such as glucose, fructose, sucrose, maltose, mannitol, sorbitol and the like; Alcohols such as sugar alcohols, glycerol, pyruvic acid, lactic acid, citric acid and the like; Amino acids such as organic acids, glutamic acid, methionine, lysine, and the like, and the like, but are not limited thereto.
  • natural organic nutrients such as starch hydrolyzate, molasses, blackstrap molasses, rice winters, cassava, sugarcane residue and corn steep liquor can be used, specifically glucose and sterilized pretreated molasses (ie, reducing sugars).
  • Carbohydrates, such as molasses), and other appropriate amounts of carbon sources can be used in various ways without limitation. These carbon sources may be used alone or in combination of two or more thereof.
  • nitrogen source examples include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate; Organic nitrogen sources such as amino acids such as glutamic acid, methionine, glutamine, etc., peptones, NZ-amines, meat extracts, yeast extracts, malt extracts, corn steep liquor, casein hydrolysates, fish or their degradation products, skim soy cakes or their degradation products Can be used. These nitrogen sources may be used alone or in combination of two or more kinds, but are not limited thereto.
  • inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate
  • Organic nitrogen sources such as amino acids such as glutamic acid, methionine, glutamine, etc., peptones, NZ-amines
  • the personnel may include a first potassium phosphate, a second potassium phosphate, or a sodium-containing salt corresponding thereto.
  • a first potassium phosphate sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate, calcium carbonate and the like may be used, and other amino acids, vitamins and / or suitable precursors may be included. These media or precursors may be added batchwise or continuously to the culture, but are not limited thereto.
  • compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid, sulfuric acid and the like can be added to the culture in an appropriate manner to adjust the pH of the culture.
  • antifoaming agents such as fatty acid polyglycol esters can be used to suppress bubble generation.
  • oxygen or oxygen-containing gas may be injected into the culture, or nitrogen, hydrogen, or carbon dioxide gas may be injected without injecting gas to maintain anaerobic and unaerobic conditions.
  • the temperature of the culture may be 27 ° C to 37 ° C, more specifically 30 ° C to 35 ° C, but is not limited thereto.
  • the incubation period may continue until the desired amount of useful substance is obtained, specifically, may be 10 hours to 100 hours, but is not limited thereto.
  • the method for producing O-acetyl homoserine of the present invention may further include recovering O-acetyl homoserine from the cultured microorganism or its culture.
  • the step of recovering the O-acetyl homoserine is the desired O- from the culture medium using a suitable method known in the art according to the culture method of the microorganism of the present invention, for example, batch, continuous or fed-batch culture method. Acetyl homoserine can be recovered.
  • the recovery step may comprise a purification process.
  • O-acetyl homoserine recovered in this way can produce methionine by a two-stage process developed by the present inventors (Korean Patent No. 10-0905381), that is, a second stage process.
  • the enzyme having O-acetylhomoserine sulfhydrylase activity or the enzyme using O-acetyl homoserine and methyl mercaptan produced by the L-methionine precursor-producing strain as substrates is used. It includes a process for producing L-methionine and organic acid through the enzyme reaction using the strain containing.
  • the present invention provides a method for producing L-methionine by using an enzyme reaction such as O-acetyl homoserine sulfidylase using O-acetyl homoserine accumulated in the above method as a substrate.
  • O-acetylhomoserine is used as the L-methionine precursor in the two-step process, specifically, Leptospira sp., Chromobacterium sp., And Hyphomonas sp. Microorganism strains, more specifically Leptospira meyeri, Pseudomonas aurogenosa, Hyphomonas Neptunium, and Chromobacterium Violaceum. O-acetyl homoserine sulfidylase derived from strain can be used.
  • the reaction is as follows.
  • E. coli a representative microorganism among Escherichia microorganisms, was used to prepare O-acetyl homoserine producing strains.
  • E. coli K12 W3110 ATCC27325
  • ATCC American Type Resource Collection
  • SEQ ID NO: 4 the metB gene encoding cystathionine synthase was deleted to block the production pathway of O-succinyl-L-homoserine to cystathion.
  • the FRT one step PCR deletion method was used for the deletion of the metB gene (Wanner BL., Proc. Natl. Acad. Sci. USA 97: 6640-6645, 2000).
  • a primer TKd of SEQ ID NOs: 13 and 14 a primer was used to prepare a deletion cassette. It was.
  • the PCR reaction was repeatedly performed for 30 seconds of denaturation at 94 ° C., annealing at 55 ° C. for 30 seconds, and extension for 1 minute at 72 ° C.
  • the resulting PCR product was electrophoresed on a 1.0% agarose gel, followed by purification of DNA from a 1.2 kbp sized band.
  • PCR was carried out under the same conditions using the same primers (SEQ ID NOs. 13 and 14) using the selected strain as a template, and then confirmed that the gene size was observed to be 1.2 Kb on the 1.0% agarose gel. The deficiency of the metB gene was confirmed.
  • the strain was confirmed to be transformed with pCP20 vector (Wanner BL., Proc. Natl. Acad. Sci. USA 97: 6640-6645, 2000) and cultured in LB medium, again 1.0% by PCR under the same conditions After electrophoresis on agarose gel, the final metB gene deletion strain was reduced to 150 bp in size, and it was confirmed that the chromamphenicol marker was removed from the strain.
  • the thrB gene (SEQ ID NO: 6) encoding homoserine kinase was deleted from the strain. .
  • the same FRT one step PCR deletion method as in the metB gene deletion described in Example 1-1 was used.
  • a deletion cassette was produced by performing a PCR reaction using a pKD4 vector (Wanner BL., Proc. Natl. Acad. Sci. USA 97: 6640-6645, 2000) as a template to produce theB deletion cassette. It was. Specifically, the denaturation step using the primers of SEQ ID NOs: 15 and 16 is carried out for 30 seconds at 94 °C, the annealing step for 30 seconds at 55 °C, the extension step is carried out for 1 minute at 72 °C Then, a PCR reaction was repeated 30 times.
  • a PCR reaction was repeated 30 times.
  • the resulting PCR product was electrophoresed on a 1.0% agarose gel, and then DNA was purified from a 1.6 kbp sized band.
  • the recovered DNA fragments were introduced by electroporation into the W3-B strain previously transformed with the pKD46 vector.
  • the recovered strains were plated in LB plate medium containing 50 ⁇ g / L kanamycin and incubated overnight at 37 ° C., and strains showing resistance were selected.
  • the strain selected through the above process as a direct template was PCR using the primers of SEQ ID NOs: 15 and 16 under the same conditions as above, and then, strains having a gene size of 1.6 Kb were identified on 1.0% agarose gel. The deletion of the thrB gene was confirmed.
  • the identified strains were transformed with pCP20 vector and cultured in LB medium, and again, the final thrB gene deletion strain was reduced to 150 bp on 1.0% agarose gel by PCR under the same conditions, and the kanamycin marker was prepared. It was confirmed that was removed.
  • W3-BT strain The strain selected through the above process as a direct template was PCR using the primers of SEQ ID NOs: 15 and 16 under the same conditions as above, and then, strains having a gene size of 1.6 Kb were identified on 1.0% agarose gel. The deletion of the thrB gene was confirmed.
  • the identified strains were transformed with pCP20 vector and cultured in LB medium, and again, the final
  • the metA gene was amplified and obtained by PCR using primers of SEQ ID NOs: 17 and 18, using the chromosome of the wild type strain W3110 as a template.
  • the primers of SEQ ID NO: 17 and SEQ ID NO: 18 used in the PCR are based on the NC_000913 Escherichia coli chromosomal sequence registered in the National Institutes of Health Gene Bank (NIH Gene Bank), respectively, the restriction enzyme EcoR V site and Hind III site Made to have.
  • the pCL1920 plasmid containing the PCR product and pcj1 thus obtained was cloned by treatment with the restriction enzymes EcoR V and Hind III.
  • E. coli DH5 ⁇ was transformed with the cloned plasmid, and then cultured in LB plate medium containing 50 ⁇ g / mL of spectinomycin, and the transformed E. coli DH5 ⁇ was selected to obtain a plasmid.
  • the plasmid thus obtained was named pCL_Pcj1_metA.
  • pCL_Pcj1_metA a mutant metA gene was prepared using a site-directed mutagenesis kit (Stratagene, USA). Specifically, pCL_Pcj1_metA plasmid was used as a template, and glycine (Gly), which is amino acid 111 of homoserine acetyl transferase, was replaced with glutamic acid (Glu) using primers of SEQ ID NOs: 19 and 20 (G111E). The plasmid containing the G111E metA gene thus prepared was named pCL_Pcj1_metA (EL).
  • Gly glycine
  • Glu glutamic acid
  • a denaturation step using a primer of pKD3 vector as a template and SEQ ID NOs: 27, 28 was performed at 94 ° C.
  • the annealing step was performed at 55 ° C. for 30 seconds, and the extension step was performed at 72 ° C. for 2 minutes, and the PCR reaction was performed 30 times.
  • the metA (EH) portion of the replacement cassette used pCL-Pcj1-metA (EH) as a template, using SEQ ID NOs: 23 and 24 primers, and the metA wild type portion using SEQ ID NOs: 25 and 26 primers to obtain respective PCR products.
  • W3-BT strain prepared in Example 1-2, wherein the three PCR products were prepared using metA (EH) replacement cassettes containing chloramphenicol marker portions using SEQ ID NOs: 23 and 26 primers, and previously transformed with pKD46 vector. Introduced using electroporation. Strains that were confirmed to be introduced were transformed with pCP20 vector and cultured in LB medium, and strains in which chloramphenicol markers were removed and metA genes were replaced with metA (EH) were named W3-BTA.
  • EH metA
  • the ppc gene was amplified by 2 copies using the primers SEQ ID NOs: 29, 30, 31 and 32
  • the aspC gene was amplified by 2 copies using the primers SEQ ID NOs: 33 and 34
  • the asd gene was SEQ ID NO: 35
  • Each gene was amplified in 2 copies using primers 36, 37 and 38.
  • O-acetyl homoserine is not produced at all in wild-type W3110, but O-acetyl homoserine was produced in the W3-BTA strain 0.9 g / L, 1.2 g in the WCJM strain enhanced biosynthetic pathway / L was created.
  • the present inventors have applied yjeH (SEQ ID NO: 1), which has not been disclosed to be associated with O-acetyl homoserine releasing ability and O-acetyl homoserine producing ability.
  • the yjeH gene was cloned into the bac vector and proceeded using the Hind III restriction enzyme site in the bac vector.
  • the bac vectors used were epicentre copycontrol BAC Cloning kit (Cat. No. CCBAC1H- Hind III).
  • the denaturation step is 30 seconds at 94 ° C
  • the annealing step is 30 seconds at 55 ° C
  • the extension step is 68 ° C using primers of SEQ ID NOs: 9 and 10 to obtain the yjeH gene.
  • the reaction was carried out for 1 minute, and the PCR reaction was performed 30 times.
  • the resulting PCR product was electrophoresed on a 1.0% agarose gel, followed by purification of DNA from a 1.2 kbp band.
  • the purified DNA was treated with restriction enzyme Hind III overnight at 37 ° C., and then purified once more, and then yjeH and BAC vectors were cloned using T4 ligase.
  • coli DH5 ⁇ was transformed using the cloned plasmid, and then transformed E. coli DH5 ⁇ was selected from LB plate medium containing 50 ⁇ g / ml of chloramphenichol to obtain plasmid.
  • the prepared plasmid was introduced into strains W-BTA and WCJM, which are producers of O-acetyl homoserine, to evaluate the flask for the production capacity of O-acetyl homoserine.
  • the resulting PCR product was electrophoresed on a 1.0% agarose gel, followed by purification of DNA from a 1.2 kbp band.
  • the purified DNA was treated with restriction enzyme Hind III overnight at 37 ° C., and then purified once more, and then cloned yjeH and BAC vector using T4 ligase.
  • E. coli DH5 ⁇ was transformed using the cloned plasmid, and then transformed E. coli DH5 ⁇ was selected from LB plate medium containing 50 ⁇ g / ml of chloramphenichol to obtain a plasmid.
  • the prepared plasmid was introduced into strains W-BTA and WCJM, which are producers of O-acetyl homoserine, to evaluate the flask for the production capacity of O-acetyl homoserine.
  • each strain was plated in LB solid medium and incubated overnight in a 33 ° C. incubator.
  • Single colonies of strains cultured overnight in LB plate medium were inoculated in 3 ml LB medium, then incubated at 33 ° C. for 5 hours and again diluted 200-fold in 250 ml Erlenmeyer flasks containing 25 ml O-acetyl homoserine production medium.
  • Table 3 The results are summarized in Table 3 below.
  • Example 3 Preparation of yjeH promoter enhanced plasmid and evaluation of O-acetyl homoserine production capacity
  • Example 2 Based on the plasmid prepared in Example 2, an experiment was carried out to replace three promoters with stronger expression inducing activity than the intrinsic yjeH promoter.
  • a promoter-enhanced strain was produced in the PCL vector using a pro, cysk or icd promoter.
  • the icd promoter (SEQ ID NO: 51) was SEQ ID NO: 39 and 40 primers
  • the pro promoter (SEQ ID NO: 52) was SEQ ID NO: 41 and 42 primers
  • the cysk promoter (SEQ ID NO: 53) of the PCL vector.
  • the prepared plasmid was introduced into WCJM to evaluate the production capacity of O-acetyl homoserine in the flask.
  • each strain was plated in LB plate medium and incubated overnight in a 33 ° C. incubator, the strain cultured overnight in LB solid medium was inoculated in the 25 ml titer medium shown above, and then it was 33 ° C., 200 rpm 40 hours of incubation in the incubator, the results are shown in Table 4.
  • the resulting PCR product was electrophoresed on a 1.0% agarose gel, followed by purification of DNA from a 1.2 kbp band.
  • the purified DNA and the plasmid were treated with restriction enzyme kpnI at 37 ° C. overnight, and then purified once more, and then cloned yjeH and pCL vectors using T4 ligase.
  • E. coli DH5 ⁇ was transformed using the cloned plasmid, and then transformed E. coli DH5 ⁇ was selected from LB plate medium containing 50 ⁇ g / mL of spectinomycin to obtain a plasmid.
  • the prepared plasmid was introduced into WCJM, an O-acetyl homoserine producer, and the flask evaluation was performed for the ability to produce O-acetyl homoserine. All three plasmids produced were used as three promoters prepared in Example 3-1. Three plasmids were put into the WCJM strain, and flask evaluation was performed in the same manner as in Example 3-1. The results are shown in Table 5 below.
  • Example 4 Preparation of intrinsic yjeH promoter-enhanced strain and evaluation of O-acetyl homoserine production capacity
  • the experiment was carried out to replace the promoter to produce a strain that enhances the intrinsic yjeH gene activity of WCJM, O-acetyl homoserine producing strain.
  • One copy of yjeH exists in the WCJM strain of the present invention, and instead of increasing the number of copies of yjeH, the strain was prepared by enhancing the promoter.
  • the promoter for replacement was selected from the icd, cysK and pro promoters (Picd, Pcysk and Ppro) confirmed the activity in Example 3, using the FRT one step PCR deletion method described above (Wanner BL., Proc. Natl. Acad. Sci. USA 97: 6640-6645, 2000).
  • the pKD4 vector as a template using the icd promoter SEQ ID NO: 45 and 46 primers
  • the cysk promoter SEQ ID NO: 47 and 48 primers the pro promoter SEQ ID NO: 49 and 50 primers to prepare an insertion cassette.
  • the PCR was performed for 30 minutes at 94 ° C., denaturation step at 30 ° C., annealing step at 55 ° C. for 30 seconds, and extension step at 72 ° C. for 1 minute.
  • the PCR product obtained above was subjected to electrophoresis on 1.0% agarose gel, and then DNA was purified from the band of 2.5 kbp size.
  • the recovered DNA fragments were electroporated into a WCJM strain previously transformed with a pKD46 vector (Wanner BL., Proc. Natl. Acad. Sci. USA 97: 6640-6645, 2000).
  • the recovered strains were plated in LB plate medium containing 25 ⁇ g / L chloramphenichol and incubated overnight at 37 ° C. to select strains that showed resistance.
  • the icd promoter was subjected to PCR under the same conditions using the primers of SEQ ID NOs: 45 and 46, the cysk promoter, the primers of SEQ ID NOs: 47 and 48, and the pro promoters using the primers of SEQ ID NOs: 49 and 50. Then, confirming that the gene size was observed at 2.5Kb on the 1.0% agarose gel, it was confirmed that the yjeH endogenous promoter was replaced with each foreign promoter.
  • strains confirmed to have been replaced were transformed with pCP20 vector (PNAS (2000) vol97: P6640-6645) and cultured in LB medium, and the size of the gene was increased to 1 Kb on 1.0% agarose gel by PCR under the same conditions.
  • a smaller final promoter replacement strain was constructed and confirmed that the kanamycin marker was removed.
  • the strain thus produced was named WCJM-PIY for the icd promoter replacement strain, WCJM-PCY for the cysk promoter replacement strain, and WCJM-PPY for the pro promoter replacement strain according to each promoter. Flask culture evaluation was carried out to measure the O-acetyl homoserine production capacity of the yjeH promoter replacement strain, the results are shown in Table 6.
  • the Accession No. KCCM11146P strain has high yield of O-acetyl homoserine, which consumes 40 g / L of glucose and produces about 15 to 16 g / L of O-acetyl homoserine in the flask culture.
  • the present inventors confirmed whether the O-acetyl homoserine production ability can be further enhanced by enhancing the yjeH gene of the present invention based on the above strains having high O-acetyl homoserine production capacity.
  • the promoter of the yjeH gene was replaced with a promoter having high expression inducing activity, which was performed using the same method as in Example 4-1.
  • the yjeH promoter replacement strain of the KCCM11146P strain thus produced was named icd promoter replacement strain KCCM11146P-PIY, cysk promoter replacement strain KCCM11146P-PCY, and pro promoter replacement strain KCCM11146P-PPY according to each promoter.
  • Flask culture evaluation was performed to measure the O-acetyl homoserine production capacity of the yjeH promoter replacement strain. Specifically, after inoculating KCCM11146P, KCCM11146P-PIY, KCCM11146P-PCY, or KCCM11146P-PPY strains in LB medium and incubated overnight at 33 ° C, single colonies were inoculated in 3 ml LB medium and incubated at 33 ° C for 5 hours. Then, after diluting 200 times in a 250 ml Erlenmeyer flask to which 25 ml O-acetyl homoserine production medium was added and incubating for 30 hours at 33 ° C. 200 rpm, O-acetyl homoserine production was confirmed through HPLC analysis. The results of the experiment are summarized in Table 7 below.
  • the present inventors confirmed that O-acetylhomoserine production was increased in the yjeH-enhanced strain based on the KCCM11146P strain, and the strain was named 'CA05-4008' and the Korea Microbial Conservation Center (Nov. 22, 2013) under the Budapest Treaty ( KCCM) was given accession number KCCM11484P.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

본 발명은 0-아세틸 호모세린을 고효율로 생산하는 미생물 및 상기 미생물을 이용하여 O-아세틸 호모세린 및 L-메치오닌을 생산하는 방법에 관한 것이다. 본 발명에서는 O-아세틸 호모세린 배출하는 것으로 추정되는 단백질의 활성을 강화시킨 O-아세틸 호모세린의 생산 미생물 및 이를 이용한 O-아세틸 호모세린 및 L-메치오닌을 생산하는 방법을 제시한다.

Description

O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 O-아세틸-호모세린을 생산하는 방법
본 발명은 0-아세틸 호모세린을 고효율로 생산하는 미생물 및 상기 미생물을 이용하여 O-아세틸 호모세린을 생산하는 방법에 관한 것이다.
O-아세틸 호모세린은 생체 내 필수 아미노산의 한 종류인 메치오닌의 전구체로 작용한다. 메치오닌은 사료 및 식품 첨가제뿐만 아니라 수액제, 의약품의 합성 원료로 사용된다.
메치오닌은 화학 합성과 생물학적 합성을 통해 생산된다. 최근에는, 발효를 통해 생산한 L-메치오닌 전구체로부터 효소전환 반응에 의하여 L-메치오닌을 생산하는 이단계 공법(국제 공개출원 WO/2008/013432)도 공지되었다.
상기의 이단계 공법에서는 메치오닌 전구체로 O-숙시닐 호모세린 (O-succinyl homoserine)과 O-아세틸 호모세린 (O-acetyl homoserine)이 사용되며, 메치오닌의 경제적인 대량 생산을 위하여 O-아세틸 호모세린을 고수율로 생산하는 것이 매우 중요하다.
본 발명자들은 O-아세틸-호모세린의 생산을 증가시키기 위해 예의 노력한 결과, O-아세틸-호모세린을 배출하는 활성을 가지는 단백질을 발굴함으로써 본 발명을 완성하였다.
본 발명의 하나의 목적은 O-아세틸 호모세린 생산능이 향상된 미생물을 제공하는 것이다.
본 발명의 다른 목적은 상기 O-아세틸 호모세린 생산능이 향상된 미생물을 이용하여 O-아세틴 호모세린을 효율적으로 생산하는 방법을 제공하는 것이다.
본 발명의 내막 단백질 YjeH의 활성이 강화된 미생물은 O-아세틸 호모세린 배출능이 증진되어 O-아세틸 호모세린의 생산 효율이 향상되는바, 본 발명의 미생물은 O-아세틸 호모세린을 생산하는데 널리 사용될 수 있다.
도 1은 본 발명에 따른 yjeH 벡터(pBAC-yjeH vector)의 개열도를 나타낸 도이다.
본 발명의 하나의 양태는 내막 단백질 YjeH의 활성이 비변이 미생물에 비하여 강화된, O-아세틸 호모세린 생산능을 가지는 미생물을 포함한다.
본 발명에서 사용되는 용어, "O-아세틸 호모세린"은 미생물의 메치오닌 생합성 경로상의 특이적 중간체 물질로, L-호모세린의 아세틸 유도체를 의미한다. 이는 호모세린과 아세틸-CoA가 호모세린 아세틸 트랜스퍼라제에 의하여 반응이 촉매되어 생성되는 것으로 알려져 있으며, C6H11NO4의 화학식을 갖는다.
본 발명에서 사용되는 용어, "O-아세틸 호모세린 생산능을 가지는 미생물"이란 미생물이 배지에서 배양되는 경우, 생물체내에서 O-아세틸 호모세린을 생산하고 배지내에 이를 분비하는 능력을 갖는 미생물을 의미한다. O-아세틸 호모세린 생산 능력은 종 개량에 의해 부여되거나 증진될 수 있다. 구체적으로는, O-아세틸 호모세린 생산능을 가지는 미생물은 O-아세틸 호모세린 생산능을 가지는 에스케리키아 속 미생물일 수 있으며, 더욱 구체적으로는 대장균일 수 있다. 일 예로 라이신, 트레오닌, 이소류신 또는 메치오닌을 생산하는 대장균일 수 있으나 이에 한정되지 않는다. 본 발명에서 사용되는 용어, "YjeH"는 아미노산 전달체(amino acid transporter)에 대한 APC 패밀리의 하나로 내막에 존재하는 단백질로 알려져는 있고, 아미노산 전달체로 작용할 것으로 예측되고 있을 뿐 정확한 기능은 알려져 있지 않았다. 이에 본 발명자들은 최초로 YjeH가 O-아세틸 호모세린을 특이적으로 배출하는 것을 확인하였다.
구체적으로 상기 YjeH는 에스케리키아 속 미생물로부터 유래한 것일 수 있으며, 더욱 구체적인 예로 대장균 유래 YjeH일 수 있다. 특히, 서열번호 1의 아미노산 서열 또는 이와 70 % 이상, 구체적으로는 80 % 이상, 보다 구체적으로는 90% 이상의 상동성을 가지는 아미노산 서열을 갖는 단백질일 수 있다. 또한 상동성을 갖는 서열로서 실질적으로 서열번호 1의 아미노산 서열과 동일하거나 상응하게 O-아세틸 호모세린을 배출하는 활성을 갖는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 갖는 경우도 본 발명의 범주에 포함됨은 자명하다. 또한, 유전 암호의 축퇴성(genetic code degeneracy)에 기인하여 동일 아미노산 서열을 코딩하는 염기서열 및 이의 변이체 또한 본 발명에 포함된다. 그 예로, 서열번호 2의 염기서열일 수 있으나, 이에 제한되지 않는다.
본 발명에서 사용되는 용어, "상동성"이란, 단백질을 코딩하는 유전자의 아미노산 또는 염기서열에 있어서, 특정 비교 영역에서 양 서열을 최대한 일치되도록 정렬 (align)시킨 후 서열 간의 염기 또는 아미노산 잔기의 동일한 정도를 의미한다. 상동성이 충분히 높은 경우 해당 유전자의 발현 산물은 동일하거나 유사한 활성을 가질 수 있다. 상기 서열 동일성의 퍼센트는 공지의 서열 비교 프로그램을 사용하여 결정될 수 있으며, 일례로 BLAST(NCBI), CLC Main Workbench (CLC bio), MegAlignTM(DNASTAR Inc) 등을 들 수 있다.
본 발명에서 용어, "비변이 미생물"은 해당 단백질의 활성의 변이를 도입하지 않은 미생물을 의미하며, 해당 단백질의 활성의 변이를 도입하는 기반 균주를 의미한다. 이는 천연형일 수도 있으며 변이형일 수 있다.
본 발명에서 사용되는 용어 단백질 활성의 "강화"는, 미생물이 보유하고 있는 단백질의 활성 상태를 향상시키는 것을 의미한다. 단백질의 활성의 강화는 목적 단백질의 활성의 강화와 같이 각 단백질의 활성을 비변이 미생물보다 강화시킬 수 있는 한, 제한되지 않는다. 그 예로, i) 각 단백질을 코딩하는 폴리뉴클레오티드의 카피수 증가, ii) 상기 폴리뉴클레오티드의 발현이 증가하도록 발현 조절 서열의 변형, iii) 각 단백질의 활성이 강화되도록 염색체 상의 상기 폴리뉴클레오티드 서열의 변형 및 iv) 이의 조합으로 이루어진 군으로부터 선택되는 방법에 의하여 수행될 수 있다. 구체적으로는 각 단백질을 코딩하는 염기서열을 포함하는 폴리뉴클레오티드를 염색체에 삽입하는 방법, 상기 폴리뉴클레오티드를 벡터 시스템에 도입하여 미생물에 도입하는 방법, 각 단백질을 코딩하는 염기서열의 상류에 개량된 활성을 나타내는 프로모터를 도입하거나 프로모터에 변이를 준 각 단백질을 도입하는 방법, 5'-UTR 지역의 염기서열을 변형시키는 방법 및 각 단백질을 코딩하는 염기서열의 변이체를 도입하는 방법으로 이루어진 군으로부터 선택되는 방법에 의하여 수행되는 것일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 구체적인 일 실시예에서는, 카피수를 증가시키거나 프로모터의 활성을 강화시키는 것을 통해 상기 YjeH의 활성을 비변이 미생물보다 강화시킨 것일 수 있다. 구체적으로는 내막 단백질인 YjeH에 개량된 활성을 나타내는 프로모터를 도입하여 이의 활성을 강화 시킨 것일 수 있다. 본 발명의 구체적 예로 상기 개량된 활성을 나타내는 프로모터는 yjeH 자가 프로모터에 비해서 활성이 증가된 프로모터는 제한없이 포함하며, 이에는 yjeH 자가 프로모터의 유전자 발현 유도 활성보다 활성이 높은 유전자의 프로모터, 또는 yjeH 자가 프로모터 등의 유전자 변이를 통하여 활성이 증가된 변이형 프로모터 등을 제한없이 포함한다. 구체적으로, 본 발명의 개량된 활성을 나타내는 프로모터는 icd 프로모터, pro 프로모터 및 cysk 프로모터로 이루어진 군으로부터 선택된 것일 수 있으며, 구체적으로 상기 icd 프로모터는 서열번호 51의 염기서열로 구성되고, 상기 pro 프로모터는 서열번호 52의 염기서열로 구성되며, 상기 cysk 프로모터는 서열번호 53의 염기서열로 구성되는 것일 수 있으나, 각 염기서열과 70 % 이상, 구체적으로는 80 % 이상, 보다 구체적으로는 90% 이상의 상동성을 가지는 염기 서열일 수 있다.
본 발명의 구체적 양태로서 O-아세틸 호모세린 생산능을 가지는 에스케리키아 속 미생물은 추가적으로 시스타치오닌 신타아제(cystathionine synthase)의 활성이 약화 또는 비활성화된 것일 수 있다. 구체적으로는, 상기 시스타치오닌 신타아제의 활성이 비변이 미생물의 활성보다 감소 또는 비활성화되는 것일 수 있으며, 특히 시스타치오닌 신타아제를 코딩하는 유전자(metB)가 결손된 것일 수 있으나, 이에 제한되지 않는다. 상기 metB의 아미노산 서열은 공지의 데이터 베이스에서 얻을 수 있으며, 시스타치오닌 신타아제 활성을 갖는 아미노산 서열은 제한 없이 포함될 수 있으나, 그 예로 서열번호 3의 아미노산 서열을 갖는 단백질일 수 있다. 상기 서열번호 3의 아미노산 서열을 갖는 단백질은 서열번호 4의 염기서열이 코딩하는 단백질일 수 있으나, 이에 제한되지 않는다. 또한, 본 발명 다른 양태로서 에스케리키아 속 미생물은 추가적으로 호모세린 키나아제(homoserine kinase)의 활성이 약화 또는 비활성화된 것일 수 있다. 구체적으로는, 상기 호모세린 키나아제의 활성이 비변이 미생물의 내재적 활성보다 감소 또는 비활성화되는 것일 수 있으며, 특히 호모세린 키나아제를 코딩하는 유전자(thrB)가 결손된 것일 수 있으나, 이에 제한되지 않는다. 상기 thrB의 아미노산 서열은 공지의 데이터 베이스에서 얻을 수 있으며, 호모세린 키나아제 활성을 갖는 아미노산 서열은 제한 없이 포함될 수 있으나, 그 예로 서열번호 5의 아미노산 서열을 갖는 단백질일 수 있다. 상기 서열번호 5의 아미노산 서열을 갖는 단백질은 서열번호 6의 염기서열이 코딩하는 단백질일수 있으나, 이에 제한되지 않는다.
본 발명에서 상기 단백질의 활성 "약화"는 i) 각 단백질을 코딩하는 유전자의 일부 또는 전체의 결실, ii) 상기 유전자의 발현이 감소되도록 발현조절 서열의 변형, iii) 상기 단백질의 활성이 약화되도록 염색체 상의 상기 유전자 서열의 변형 및 iv) 이의 조합으로 이루어진 군으로부터 선택되는 방법에 의하여 수행되는 것일 수 있으나, 이에 제한되지 않는다.
구체적으로 본 발명의 단백질의 "활성이 약화된 것"은 본래 미생물이 천연 또는 기반 균주의 상태에서 가지고 있는 효소의 활성과 비교하였을 때, 그 활성이 감소된 것을 의미한다. 상기 약화는 상기 효소를 코딩하는 유전자의 변이 등으로 효소 자체의 활성이 본래 미생물이 가지고 있는 효소의 활성에 비해 감소한 경우와, 이를 코딩하는 유전자의 발현 저해 또는 번역(translation) 저해 등으로 세포 내에서 전체적인 효소 활성 정도가 천연형 균주에 비하여 낮은 경우, 이들의 조합 역시 포함하는 개념으로, 이에 한정되지는 않는다.
상기 "불활성화"는 효소를 코딩하는 유전자의 발현이 천연형 균주에 비하여 전혀 발현이 되지 않는 경우 및 발현이 되더라도 그 활성이 없는 경우를 의미한다.
이러한 효소 활성의 약화 또는 불활성화는, 당해 분야에 잘 알려진 다양한 방법의 적용으로 달성될 수 있다. 상기 방법의 예로, 상기 효소의 활성이 제거된 경우를 포함하여 상기 효소의 활성이 감소되도록 돌연변이된 유전자로, 염색체상의 상기 효소를 코딩하는 유전자를 대체하는 방법; 상기 효소를 코딩하는 염색체상의 유전자의 발현 조절 서열에 변이를 도입하는 방법; 상기 효소를 코딩하는 유전자의 발현 조절 서열을 활성이 약하거나 없는 서열로 교체하는 방법; 상기 효소를 코딩하는 염색체상의 유전자의 전체 또는 일부를 결실시키는 방법; 상기 염색체상의 유전자의 전사체에 상보적으로 결합하여 상기 mRNA로부터 효소로의 번역을 저해하는 안티센스 올리고뉴클레오티드(예컨대, 안티센스 RNA)를 도입하는 방법; 상기 효소를 코딩하는 유전자의 SD 서열 앞단에 SD 서열과 상보적인 서열을 인위적으로 부가하여 2차 구조물을 형성시켜 리보솜(ribosome)의 부착이 불가능하게 만드는 법 및 해당 서열의 ORF(open reading frame)의 3' 말단에 역전사되도록 프로모터를 부가하는 RTE(Reverse transcription engineering) 방법 등이 있으며, 이들의 조합으로도 달성할 수 있으나, 상기 예에 의해 특별히 제한되는 것은 아니다.
구체적으로, 효소를 코딩하는 유전자의 일부 또는 전체를 결실하는 방법은, 세균 내 염색체 삽입용 벡터를 통해 염색체 내 내재적 목적 단백질을 코딩하는 폴리뉴클레오티드를 일부 핵산 서열이 결실된 폴리뉴클레오티드 또는 마커 유전자로 교체함으로써 수행될 수 있다. 이러한 유전자의 일부 또는 전체를 결실하는 방법의 일례로 상동 재조합에 의하여 유전자를 결실시키는 방법을 사용할 수 있으나, 이에 한정되지는 않는다.
상기에서 "일부"란, 폴리뉴클레오티드의 종류에 따라서 상이하지만, 구체적으로는 1 내지 300개, 바람직하게는 1 내지 100개, 더욱 바람직하게는 1 내지 50개일 수 있으나, 특별히 이에 제한되는 것은 아니다.
상기에서 "상동 재조합(homologous recombination)"이란, 서로 상동성을 지닌 유전자 사슬의 좌위에서 연결 교환을 통해 일어나는 유전자 재조합을 의미한다.
상기 발현 조절 서열을 변형하는 방법은 상기 발현 조절 서열의 활성을 더욱 약화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 발현 조절 서열상의 변이를 유도하여 수행하거나, 더욱 약한 활성을 갖는 핵산 서열로 교체함으로써 수행할 수 있다. 상기 발현 조절서열에는 프로모터, 오퍼레이터 서열, 리보좀 결합부위를 코딩하는 서열, 및 전사와 해독의 종결을 조절하는 서열을 포함하나, 이에 한정되는 것은 아니다.
아울러, 염색체상의 유전자 서열을 변형하는 방법은 상기 효소의 활성을 더욱 약화하도록 유전자 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도하여 수행하거나, 더욱 약한 활성을 갖도록 개량된 유전자 서열 또는 활성이 없도록 개량된 유전자 서열로 교체함으로써 수행할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 구체적인 일 실시예에서는, 상기 시스타치오닌 신타아제를 코딩하는 유전자(metB) 및/또는 호모세린 키나아제를 코딩하는 유전자(thrB)를 상동 재조합을 이용하여 결손시키는 것을 통하여 각 단백질의 활성을 약화시켰다.
아울러, 본 발명의 구체적 양태로서 에스케리키아 속 미생물은 추가적으로 호모세린 아세틸 트랜스퍼라제(homoserine acetyltransferase)의 활성이 비변이 미생물에 비하여 강화된 것일 수 있다. 구체적으로는, 상기 호모세린 아세틸 트랜스퍼라제의 활성이 비변이 미생물의 활성보다 증가되는 것일 수 있으며, 특히 활성이 강화된 호모세린 아세틸 트랜스퍼라제를 코딩하는 변이형 metA 유전자가 도입된 것일 수 있다. 상기 변이형 metA 유전자는 호모세린 아세틸 트랜스퍼라제의 111번 아미노산을 글루탐산으로 치환하고, 112번 아미노산을 히스티딘으로 치환한 것을 코딩하는 유전자일 수 있으며 특히 서열번호 8의 염기서열로 구성된 것일 수 있으나, 이에 제한되지 않는다. 상기 변이형 metA는 호모세린 아세틸 트랜스퍼라제의 활성이 야생형보다 활성이 강화된 아미노산 서열은 제한 없이 포함될 수 있으나, 그 예로 서열번호 7의 아미노산 서열을 갖는 단백질일 수 있다. 이와 같은 변이형 metA 유전자의 제조 및 이의 활용, 상기 호모세린 아세틸 트랜스퍼라제 강화 균주 등에 대한 내용의 일 예는 한국등록특허 제10-1335841에 개시되어 있으며, 상기 특허의 명세서 전체는 본 발명의 참고자료로 포함될 수 있다.
또한, 본 발명의 구체적 양태로 에스케리키아 속 미생물은 추가적으로 아스파테이트 키나아제(Aspartate kinase, EC 2.7.2.4)의 활성이 비변이 미생물에 비하여 강화된 것일 수 있다. 구체적으로는, 상기 아스파테이트 키나아제의 활성이 비변이 미생물의 내재적 활성보다 증가되는 것일 수 있으나, 이에 제한되지 않는다.
본 발명의 구체적인 일 실시예에서는 O-아세틸 호모세린 생산능을 극대화하기 위하여 추가적으로 호모세린의 생합성 경로를 강화시켜보았다. 구체적으로는 아스파테이트 키나아제(aspartate kinase)와 호모세린 O-아세틸 트랜스퍼라제 (homoserine O-acetyltransferase)를 플라스미드를 이용하여 도입시켰으며, 상기와 같이 호모세린 생합성 경로를 강화한 균주에 YjeH를 추가로 강화시켜 O-아세틸 호모세린의 생산능 변화를 측정하였다. 그 결과, 생합성 경로와 yjeH를 동시에 강화시켜준 결과, O-아세틸 호모세린의 생산능은 더욱 향상되었으며, 특히 cysk 프로모터를 이용하여 YjeH 활성을 강화한 결과, 약 93 % (2.8 g/L -> 5.4 g/L) 가량 생산능이 증가하는 것을 확인하였다(표 5).
또한, 본 발명의 구체적인 일 실시예에서는 기존의 O-아세틸 호모세린 고수율 균주에 YjeH의 활성을 강화시키는 것을 통해, 추가적으로 생산능을 증가시킬 수 있는지 확인해 보았다. 더욱 구체적으로는 기존에 야생형 W3110 유래의 NTG mutation을 통하여 쓰레오닌을 생산하는 능력을 가지는 균주를 이용하여 O-아세틸 호모세린을 생산하는 균주인 KCCM11146P(국제 공개출원 WO2012/087039)를 바탕으로 이에 내재적인 yjeH 유전자의 프로모터를 발현 유도 활성이 높은 프로모터로 교체하여 O-아세틸 호모세린 생산량을 확인하였다. 그 결과 이미 고수율의 O-아세틸 호모세린 생산능을 가진 균주에서 YjeH의 활성을 강화시키는 것을 통하여 생산능을 더욱 증가시킬 수 있음을 확인하였으며, 특히 cysk 프로모터를 이용하여 YjeH 활성을 강화한 결과, 약 14 % (14.2 g/L -> 18.2 g/L) 가량 생산능이 증가하는 것을 확인하였다(표 7).
본 발명에서 사용되는 유전자, 이들이 코딩하는 단백질 서열 및 프로모터 서열 등은 공지의 데이터 베이스에서 얻을 수 있으며, 그 예로 NCBI의 GenBank 등에서 얻을 수 있으나, 이에 제한되지 않는다.
본 발명의 상기 각 단백질 및 프로모터를 코딩하는 유전자는 상기 각 서열번호로 기재한 염기서열뿐만 아니라, 상기 서열과 80% 이상, 구체적으로는 90% 이상, 더욱 구체적으로는 95% 이상, 보다 더욱 구체적으로는 98% 이상, 가장 구체적으로는 99% 이상의 상동성을 나타내는 염기 서열로서 실질적으로 상기 각 효소와 동일하거나 상응하는 효능을 나타내는 효소를 코딩하는 유전자 서열이라면 제한없이 포함한다. 또한 이러한 상동성을 갖는 염기서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 염기서열도 본 발명의 범위 내에 포함됨은 자명하다.
또한, 본 발명의 상기 각 단백질을 구성하는 아미노산은 상기 각 서열번호로 기재한 아미노산 서열뿐만 아니라, 상동성을 갖는 서열로서 실질적으로 각 아미노산 서열과 동일하거나 상응하는 단백질의 활성을 갖는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 갖는 경우도 본 발명의 범주에 포함됨은 자명하다.
상기와 같이 다양한 유전적 배경과 다양한 O-아세틸 호모세린 생산능을 가지는 미생물을 바탕으로 YjeH의 활성을 증가시키는 것을 통해 일관적으로 O-아세틸 호모세린 생산능이 증가하는 효과를 확인하였다. 이는 YjeH가 생산 과정상에서 특정 중간체의 생성을 촉진하는 것을 통해 일어날 수 있지만, 내막 단백질이며 아미노산 전달체 패밀리의 일종인 YjeH의 특성을 고려하였을 때, 최종물이며 아미노산의 일종인 O-아세틸 호모세린의 배출능을 증가시켜 세포 내 반응을 촉진하는 것을 통하여 이루어지는 것으로 예측된다.
본 발명의 또 다른 하나의 양태로서, 본 발명은 본 발명에 따른, O-아세틸 호모세린 생산능을 가지는 에스케리아 속 미생물을 배양하여 배양물을 수득하는 단계를 포함하는, O-아세틸 호모세린의 생산방법을 제공한다.
본 발명의 미생물의 배양에 사용되는 배지 및 기타 배양 조건은 통상의 에스케리키아속 미생물의 배양에 사용되는 배지라면 특별한 제한 없이 어느 것이나 사용할 수 있으나, 구체적으로는 본 발명의 미생물을 적당한 탄소원, 질소원, 인원, 무기화합물, 아미노산 및/또는 비타민 등을 함유한 통상의 배지 내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 배양할 수 있다.
본 발명에서 상기 탄소원으로는 글루코오스, 프룩토오스, 수크로오스, 말토오스, 만니톨, 소르비톨 등과 같은 탄수화물; 당 알코올, 글리세롤, 피루브산, 락트산, 시트르산 등과 같은 알코올; 유기산, 글루탐산, 메티오닌, 리신 등과 같은 아미노산 등이 포함될 수 있으나, 이에 제한되지 않는다. 또한, 전분 가수분해물, 당밀, 블랙스트랩 당밀, 쌀겨울, 카사버, 사탕수수 찌꺼기 및 옥수수 침지액 같은 천연의 유기 영양원을 사용할 수 있으며, 구체적으로는 글루코오스 및 살균된 전처리 당밀(즉, 환원당으로 전환된 당밀) 등과 같은 탄수화물이 사용될 수 있으며, 그 외의 적정량의 탄소원을 제한 없이 다양하게 이용할 수 있다. 이들 탄소원은 단독으로 사용되거나 2 종 이상이 조합되어 사용될 수 있다.
상기 질소원으로는 암모니아, 황산암모늄, 염화암모늄, 초산암모늄, 인산암모늄, 탄산안모늄, 질산암모늄 등과 같은 무기질소원; 글루탐산, 메티오닌, 글루타민 등과 같은 아미노산, 펩톤, NZ-아민, 육류 추출물, 효모 추출물, 맥아 추출물, 옥수수 침지액, 카세인 가수분해물, 어류 또는 그의 분해생성물, 탈지 대두 케이크 또는 그의 분해 생성물 등과 같은 유기 질소원이 사용될 수 있다. 이들 질소원은 단독으로 사용되거나 2 종 이상이 조합되어 사용될 수 있으나, 이에 제한되지 않는다.
상기 인원으로는 인산 제1칼륨, 인산 제2칼륨, 또는 이에 대응되는 소디움-함유 염 등이 포함될 수 있다. 무기화합물로는 염화나트륨, 염화칼슘, 염화철, 황산마그네슘, 황산철, 황산망간, 탄산칼슘 등이 사용될 수 있으며, 그 외에 아미노산, 비타민 및/또는 적절한 전구체 등이 포함될 수 있다. 이들 배지 또는 전구체는 배양물에 회분식 또는 연속식으로 첨가될 수 있으며, 이에 제한되지 않는다.
본 발명에서, 미생물의 배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산, 황산 등과 같은 화합물을 배양물에 적절한 방식으로 첨가하여, 배양물의 pH를 조정할 수 있다. 또한, 배양 중에는 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 또한, 배양물의 호기 상태를 유지하기 위하여, 배양물 내로 산소 또는 산소 함유 기체를 주입하거나 혐기 및 미호기 상태를 유지하기 위해 기체의 주입 없이 혹은 질소, 수소 또는 이산화탄소 가스를 주입할 수 있다.
배양물의 온도는 27℃ 내지 37℃일 수 있으며, 보다 구체적으로는 30℃ 내지 35℃일 수 있으나 이에 제한되지 않는다. 배양 기간은 원하는 유용 물질의 생성량이 수득될 때까지 계속될 수 있으며, 구체적으로는 10 시간 내지 100 시간일 수 있으나 이에 제한되지 않는다.
본 발명의 상기 O-아세틸 호모세린의 생산방법은, 상기 배양된 미생물 또는 그의 배양물로부터 O-아세틸 호모세린을 회수하는 단계를 추가로 포함할 수 있다.
상기 O-아세틸 호모세린을 회수하는 단계는 본 발명의 미생물의 배양 방법, 예를 들어 회분식, 연속식 또는 유가식 배양 방법 등에 따라 당해 기술 분야에 공지된 적합한 방법을 이용하여 배양액으로부터 목적하는 O-아세틸 호모세린을 회수할 수 있다.
상기 회수 단계는 정제 공정을 포함할 수 있다.
이와 같이 회수된 O-아세틸 호모세린은 본 발명자들에 의해 개발된 이단계 공법(대한민국 등록특허 제10-0905381호), 즉 제2 단계 공정에 의해 메치오닌을 생산할 수 있다.
제 2단계 공정은 상기 L-메치오닌 전구체 생산 균주에 의하여 생산된 O-아세틸 호모세린과 메칠 머캅탄을 기질로 이용하여 O-아세틸 호모세린 설피드릴라아제 (Oacetylhomoserine sulfhydrylase) 활성을 가지는 효소 또는 상기 효소를 포함한 균주를 이용한 효소반응을 통하여 L-메치오닌 및 유기산을 생산하는 공정을 포함한다.
보다 구체적으로, 본 발명은 상기의 방법으로 축적된 O-아세틸 호모세린을 기질로 이용하여 O-아세틸 호모세린 설피드릴라아제등의 효소 반응을 이용하여 L-메치오닌을 생산하는 방법을 제공한다.
상기 2단계 공정에서 O-아세틸호모세린을 L-메티오닌 전구체로 사용하는 경우, 구체적으로는 렙토스피라속(Leptospira sp.), 크로모박테리움속(Chromobacterium sp.), 하이포모나스속(Hyphomonas sp.)에 속하는 미생물 균주, 보다 구체적으로는 렙토스피라 메에리(Leptospira meyeri), 슈도모나스 애루기노사 (Pseudomonas aurogenosa), 하이포모나스 넵튜니움(Hyphomonas Neptunium), 크로모박테리움 비오라슘 (Chromobacterium Violaceum)에 속하는 미생물 균주로부터 유래된 O-아세틸 호모세린 설피드릴라아제가 사용될 수 있다.
상기의 반응은 하기와 같다.
CH3SH + O-아세틸-L-호모세린 <=> 아세테이트 + 메치오닌
이와 같은 추가 메치오닌 생산 공정에 대해서는 대한민국 등록 특허 제10-0905381호에 개시되어 있으며, 상기 특허의 명세서 전체는 본 발명의 참고자료로서 포함될 수 있다.
이하 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1: O-아세틸 호모세린 생산능을 가지는 균주의 제작
1-1. 야생형 대장균에서의 metB 유전자 결손
O-아세틸 호모세린 생산 균주를 제작하기 위하여 에스케리키아 속 미생물 중에서 대표적인 미생물인 대장균을 사용하였다. 이를 위해, 야생형 대장균인 E. coli K12 W3110(ATCC27325)을 미국생물자원센터(American Type Culture Collection, ATCC)로부터 입수하여 사용하였다. 먼저, O-숙시닐-L-호모세린의 시스타치온으로의 생산 경로를 차단하기 위해서 시스타치오닌 신타아제(cystathionine synthase)를 코딩하는 metB 유전자(서열번호 4)를 결손시켰다.
구체적으로는, metB 유전자의 결손을 위해 FRT 1단계 PCR 결손(FRT one step PCR deletion) 방법을 사용하였다 (Wanner BL., Proc. Natl. Acad. Sci. USA 97: 6640-6645, 2000). 서열번호 13 및 14의 프라이머 TKd을 이용해 pKD3 벡터(Wanner BL, Proc. Natl. Acad. Sci. USA 97: 6640-6645, 2000)를 주형으로 한 PCR 반응을 수행하여 결손 카세트(deletion cassette)를 제작하였다. 이때 PCR 반응은 94 ℃에서 30초의 변성(denaturation), 55 ℃에서 30초의 어닐링(annealing), 및 72 ℃에서 1분의 연장(extension) 과정을 30회 반복 수행하였다.
그 결과 얻어진 PCR 산물을 1.0% 아가로즈 겔에서 전기영동한 후, 1.2 kbp 크기의 밴드로부터 DNA를 정제하였다. 회수된 DNA 절편은 pKD46 벡터(Wanner BL., Proc. Natl. Acad. Sci. USA 97: 6640-6645, 2000)로 미리 형질 전환시킨 E.coli (K12) W3110 균주에 전기천공(electroporation)을 이용해 도입하였다. 전기천공을 위하여 pKD46으로 형질전환된 W3110 균주는 100ug/L 암피실린(ampicilin)과 5mM 아라비노스(L-arabinose)가 포함된 LB 배지를 이용하여 30℃에서 OD600=0.6에 도달할 때까지 배양시킨 후, 멸균 증류수로 2 회, 10%글리세롤 (glycerol) 로 1회 세척하여 사용하였다. 이때 전기천공은 2500V로 수행하였다. 회수된 균주를 25μg/L 클로람페니콜(chloramphenichol)을 포함한 LB 평판 배지에 도말하여 37℃ 에서 하루밤 배양한 후, 내성을 보이는 균주를 선별하였다.
이로부터 선별된 균주를 주형으로 하여 동일한 프라이머(서열번호 13 및 14)를 이용하여 상기와 동일한 조건으로 PCR을 수행한 후, 1.0% 아가로스 겔 상에서 유전자의 크기가 1.2 Kb로 관찰되는 것을 확인함으로서 metB 유전자의 결손을 확인하였다. 결손이 확인된 균주는 다시 pCP20 벡터(Wanner BL., Proc. Natl. Acad. Sci. USA 97: 6640-6645, 2000)로 형질전환시켜 LB 배지에서 배양하였으며, 다시 동일한 조건의 PCR을 통하여 1.0% 아가로스 겔에 전기영동한 후 유전자의 크기가 150 bp로 작아진 최종 metB 유전자 결손 균주를 선별하였고, 상기 균주에서 크로람페니콜 마커가 제거되었음을 확인하였다.
이렇게 제작 및 선발된, 시스타치오닌 신타아제를 코딩하는 metB 유전자가 결손된 균주를 W3-B로 명명하였다.
1-2. thrB 유전자의 결손
상기 실시예 1-1로부터 수득된 W3-B 균주로부터 O-숙시닐 호모세린 합성량을 증가시키기 위하여, 상기 균주에 호모세린 키나아제(homoserine kinase)를 코딩하는 thrB 유전자(서열번호 6)를 결손시켰다. thrB 유전자를 결손시키기 위하여, 상기 실시예 1-1에 개시된 metB 유전자 결손시와 동일한 FRT 1단계 PCR 결손(FRT one step PCR deletion) 방법을 사용하였다.
먼저, theB 결손 카세트를 제작하기 위하여 pKD4 벡터(Wanner BL., Proc. Natl. Acad. Sci. USA 97: 6640-6645, 2000)를 주형으로 한 PCR 반응을 수행하여 결손 카세트(deletion cassette)를 제작하였다. 구체적으로, 서열번호 15 및 16의 프라이머를 이용하여 변성(denaturation) 단계는 94℃에서 30초, 어닐링(annealing) 단계는 55℃에서 30초, 연장(extension) 단계는 72℃에서 1분 동안 실시하고, 이를 30 회 반복 수행하는 PCR 반응을 진행하였다.
그 결과 얻어진 PCR 산물을 1.0% 아가로즈 겔에서 전기영동한 후, 1.6 kbp 크기의 밴드로부터 DNA를 정제하였다. 회수된 DNA 절편을 pKD46 벡터로 미리 형질 전환시킨 W3-B 균주에 전기천공을 이용하여 도입하였다. 회수된 균주를 50 μg/L 카나마이신 (kanamycin)을 포함한 LB 평판 배지에 도말하여 37℃ 에서 하룻밤 배양한 후, 내성을 보이는 균주를 선별하였다.
상기의 과정을 통하여 선별된 균주를 직접 주형으로 하여 서열번호 15 및 16 의 프라이머를 이용하여 상기와 동일한 조건으로 PCR 한 후, 1.0% 아가로스 겔 상에서 유전자의 크기가 1.6Kb로 확인되는 균주를 선별함으로써 thrB 유전자의 결손을 확인하였다. 확인된 균주는 다시 pCP20 벡터로 형질전환시켜 LB 배지에서 배양하였으며, 다시 동일한 조건의 PCR을 통하여 1.0% 아가로스 겔 상에서 유전자의 크기가 150 bp로 작아진 최종 thrB 유전자 결손 균주를 제작하고, 카나마이신 마커가 제거되었음을 확인하였다. 이렇게 제작 및 선별된, 호모세린 키나아제를 코딩하는 thrB 유전자가 결손된 균주는 W3-BT 균주로 명명하였다.
이와 같은 metB 및 thrB 유전자 결실 균주 등에 대한 내용의 일 예는 대한민국 등록특허 제10-0905381호 또는 국제공개 WO2008/013432호에 개시되어 있으며, 상기 특허의 명세서 전체는 본 발명의 참고자료로서 포함될 수 있다.
1-3. 호모세린 아세틸 트랜스퍼라제 활성을 가지는 변이형 metA 유전자 도입 균주 제작
상기 실시예 1-2에서 수득한 균주에 호모세린 아세틸 트랜스퍼라제(homoserine acetyltransferase) 활성을 강화하기 위하여, 균주에 강화된 활성을 가지는 호모세린 아세틸 트랜스퍼라제를 코딩하는 변이형 metA 유전자(서열번호 8)를 도입하고자 하였다.
이를 위하여 먼저 활성이 강화된 변이형 metA 유전자를 제조하기 위하여, 야생형 균주인 W3110 균주의 염색체를 주형으로 metA 유전자를 서열번호 17 및 18의 프라이머를 이용한 PCR을 통해 증폭 및 수득하였다. 상기 PCR에 사용한 상기 서열번호 17 및 서열번호 18의 프라이머는 미국 국립보건원 진뱅크(NIH Gene Bank)에 등록되어 있는 NC_000913의 대장균 염색체 염기서열을 바탕으로, 각각 제한효소 EcoRⅤ 부위 및 HindⅢ 부위를 가지고 있도록 제작하였다.
이렇게 획득한 PCR 산물과 pcj1이 들어 있는 pCL1920 플라스미드를 제한효소 EcoRⅤ 및 HindⅢ로 처리하여 클로닝하였다. 클로닝된 플라스미드로 대장균 DH5α을 형질전환한 후, 스펙티노마이신(spectinomycin) 50 ㎍/mL를 포함하는 LB 평판 배지에 배양하여, 형질전환된 대장균 DH5α를 선별하여 플라스미드를 획득하였다. 이렇게 획득한 플라스미드를 pCL_Pcj1_metA로 명명하였다.
상기 획득한 pCL_Pcj1_metA를 기반으로 site-directed mutagenesis kit(Stratagene, 미국)을 이용하여 변이형 metA 유전자를 제조하였다. 구체적으로는 pCL_Pcj1_metA 플라스미드를 주형으로 하여, 서열번호 19 및 20의 프라이머를 이용하여, 호모세린 아세틸 트랜스퍼라제의 111번 아미노산인 글리신(Gly)을 글루탐산(Glu)으로 치환하였다(G111E). 이렇게 제조된 G111E metA 유전자를 포함하는 플라스미드를 pCL_Pcj1_metA(EL)로 명명하였다.
또한, 상기 호모세린 아세틸 트랜스퍼라제의 111번 아미노산을 글리신에서 글루탐산으로 치환하고, 추가로 112번 아미노산을 류이신에서 히스티딘으로 치환하기 위해서, 서열번호 21 및 22의 프라이머를 이용하였다. 이에 따라, 111번 아미노산이 글리신에서 글루탐산으로, 112번 아미노산이 류이신에서 히스티딘으로 치환된 metA 유전자를 포함하는 플라스미드를 pCL_Pcj1_metA(EH)로 명명하였다.
다음으로, 상기 제작한 변이형 metA 유전자를 균주 내로 도입하여 치환하기 위한 교체 카세트를 제작하기 위하여 pKD3 벡터를 주형으로, 서열번호 27, 28 의 프라이머를 이용하여 변성(denaturation) 단계는 94℃에서 30초, 어닐링(annealing) 단계는 55℃에서 30초, 연장(extension) 단계는 72℃에서 2분 동안 실시하고, 이를 30 회 수행하는 PCR 반응을 진행하였다. 교체 카세트의 metA(EH) 부분은 pCL-Pcj1-metA(EH)를 주형으로 서열번호 23, 24 프라이머를 이용하였고, metA 야생형 부분은 서열번호 25, 26 프라이머를 이용하여 각각의 PCR 산물을 얻었다. 3개의 PCR 산물을 서열번호 23, 26 프라이머를 이용하여 클로람페니콜 마커 부분을 포함하는 metA(EH) 교체 카세트를 제작하여, pKD46 벡터로 미리 형질 전환시킨 상기 실시예 1-2에서 제작된 W3-BT 균주에 전기천공을 이용하여 도입하였다. 도입이 확인된 균주는 다시 pCP20 벡터로 형질전환시켜 LB 배지에서 배양하였으며 클로람페니콜 마커가 제거되고 metA 유전자가 metA(EH)로 교체된 균주를 W3-BTA 라 명명하였다.
이와 같은 호모세린 아세틸 트랜스퍼라제 강화 균주 등에 대한 내용의 일 예는 대한민국 등록특허 제10-1335841호 또는 국제공개 WO2012/087039호에 개시되어 있으며, 상기 특허의 명세서 전체는 본 발명의 참고자료로서 포함될 수 있다.
1-4. ppc, aspC 및 asd 유전자를 2 copy 포함하는 균주의 제작
상기 실시예 1-3에서 제작한 W3-BTA 균주의 O-아세틴 호모세린 생산능을 증가시키기 위하여, 기존에 알려진 생합성 경로 강화 전략을 도입하였다. 포스포에놀파이루베이트로부터 옥살로아세테이트의 생합성에 관여하는 포스포에놀파이루베이트 카복실라아제(phosphoenolpyruvate carboxylase), 옥살로아세테이트로부터 아스파테이트의 생합성에 관여하는 아스파테이트 아미노트랜스퍼라아제 및 β-아스파틸 포스페이트로부터 호모세린의 생합성에 관여하는 아스파테이트 세미할데히드 디히드로게나아제(aspartate-semialdehyde dehydrogenase), 즉, ppc 유전자, aspC 유전자 및 asd 유전자를 2 copy로 증폭시킨 균주를 제작하고자 하였다.
이에 따라, 서열번호 29, 30, 31 및 32 프라이머를 이용하여 ppc 유전자를 2 copy로 증폭하였으며, 서열번호 33 및 34 프라이머를 이용하여 aspC 유전자를 2 copy로 증폭하였고, asd 유전자는 서열번호 35, 36, 37 및 38 프라이머를 이용하여 각각의 유전자를 2 copy로 증폭시켰다.
상기 과정을 통하여, W3-BTA 균주를 바탕으로 O-아세틸 호모세린 생합성 경로가 강화된 균주를 W3-BTA2PCD(=WCJM)라 명명하였다.
이와 같은 포스포에놀파이루베이트 카복실라아제, 아스파테이트 아미노트랜스퍼라아제 및 아스파테이트 세미할데히드 디히드로게나아제 강화 균주 등에 대한 내용의 일 예는 대한민국 등록특허 제 10-0905381호 또는 국제공개 WO2008/013432호에 개시되어 있으며, 상기 특허의 명세서 전체는 본 발명의 참고자료로서 포함될 수 있다.
1-5. 플라스크 배양 실험
상기 실시예 1-3 및 1-4에서 제작된 균주의 O-아세틸 호모세린 생산량을 실험하기 위하여 삼각플라스트 배양을 실시하였다. LB 배지에 W3110, W3-BTA, WCJM 균주를 접종하여 33 ℃에서 하룻밤 배양한 후, 단일 콜로니를 3 mL LB 배지에 접종한 후 33 ℃에서 5시간 배양하고, 다시 25 mL O-아세틸 호모세린 생산 배지를 포함한 250 mL 삼각플라스크에 200배 희석하여 33 ℃ 200 rpm에서 30 시간 배양하여 HPLC 분석을 통하여 O-아세틸 호모세린 생산량을 확인하였다. 이에 사용한 배지조성은 하기 표 1에 정리하였다.
표 1 O-아세틸 호모세린 생산 플라스크 배지 조성
조성 농도(리터당)
포도당 40 g
황산암모늄 17 g
KH2PO4 1.0 g
MgSO4·7H2O 0.5 g
FeSO4·7H2O 5 mg
MnSO4·8H2O 5 mg
ZnSO4 5 mg
탄산칼슘 30 g
효모 엑기스 2 g
메치오닌 0.15 g
쓰레오닌 0.15 g
상기 배지를 이용하여 30 시간 배양한 HPLC 분석을 통하여 O-아세틸 호모세린 생산량을 확인한 결과는 하기 표 2에 정리하였다.
표 2 플라스크 배양을 통한 O-아세틸 호모세린 생산
OD(562 nm) 포도당 소모(g/L) O-AH(g/L)
W3110 14.2 40 0
W3-BTA 8.4 36 0.9
WCJM 9.6 35 1.2
상기 표 2에서 확인할 수 있듯이, 야생형 W3110에서는 O-아세틸 호모세린이 전혀 생성되지 않지만, W3-BTA 균주에서 O-아세틸 호모세린이 0.9 g/L 생성되었고, 생합성 경로가 강화된 WCJM 균주에서는 1.2 g/L가 생성되었다.
실시예 2 : O-아세틸 호모세린 생산능을 증가시키는 막 단백질의 동정
본 발명자들은 O-아세틸 호모세린 배출능 및 O-아세틸 호모세린 생산능과의 연관성이 개시된 바 없는 yjeH(서열번호 1)를 적용해보았다.
균주에서 yjeH 유전자를 강화하기 위하여 yjeH 유전자를 bac 벡터에 클로닝하였으며, bac 벡터에 있는 HindⅢ 제한 효소 자리를 이용하여 진행하였다. 사용한 bac 벡터는 epicentre의 copycontrol BAC Cloning kit (Cat. No. CCBAC1H - HindⅢ)를 이용하였다.
우선, yjeH 유전자를 얻기 위하여 서열번호 9 및 10의 프라이머를 이용하여 변성(denaturation) 단계는 94℃에서 30초, 어닐링(annealing) 단계는 55℃에서 30초, 연장(extension) 단계는 68℃에서 1분 동안 실시하고, 이를 30회 수행하는 PCR 반응을 진행하였다. 그 결과 얻어진 PCR 산물을 1.0% 아가로즈 겔에서 전기영동한 후, 1.2kbp 크기의 밴드로부터 DNA를 정제하였다. 정제된 DNA를 제한효소 Hind III로 밤새 37℃에서 처리해 준 후, 한 번 더 정제 후, T4 리가아제(ligase)를 이용하여 yjeH와 BAC 벡터를 클로닝하였다. 클로닝된 플라스미드를 이용하여 대장균 DH5α를 형질전환한 후, 클로람페니콜 (chloramphenichol) 50μg/ml를 포함하는 LB 평판 배지에서 형질전환된 대장균 DH5α를 선별하여 플라스미드를 획득하였다. 제작된 플라스미드를 O-아세틸 호모세린 생산주인 W3-BTA 및 WCJM에 균주를 도입하여 O-아세틸 호모세린의 생산능에 대한 플라스크 평가를 진행하였다.
그 결과 얻어진 PCR 산물을 1.0% 아가로즈 겔에서 전기영동한 후, 1.2kbp 크기의 밴드로부터 DNA를 정제하였다. 정제된 DNA를 제한효소 HindⅢ로 밤새 37℃에서 처리해 준 후, 한 번 더 정제 후, T4 리가아제(ligase)를 이용하여 yjeH와 BAC 벡터를 클로닝하였다. 클로닝된 플라스미드를 이용하여 대장균 DH5α를 형질전환한 후, 클로람페니콜 (chloramphenichol) 50 ㎍/ml를 포함하는 LB 평판 배지에서 형질전환된 대장균 DH5α를 선별하여 플라스미드를 획득하였다. 제작된 플라스미드를 O-아세틸 호모세린 생산주인 W3-BTA 및 WCJM에 균주를 도입하여 O-아세틸 호모세린의 생산능에 대한 플라스크 평가를 진행하였다.
구체적으로, 각각의 균주를 LB 고체 배지에 도말 한 후 33℃ 배양기에서 밤새 배양하였다. LB 평판 배지에 밤새 배양한 균주의 단일 콜로니를 3 ml LB 배지에 접종한 후, 이를 33 ℃에서 5시간 배양하고, 다시 25 ml O-아세틸 호모세린 생산배지를 포함한 250 ml 삼각 플라스크에서 200배 희석하여 33 ℃, 200 rpm의 배양기에서 30시간 배양하였으며, HPLC 분석을 통하여 O-아세틸 호모세린 생산량을 확인하였다. 이의 결과를 정리하면 하기 표 3과 같다.
표 3 플라스크 배양을 통한 O-아세틸 호모세린 생산 측정
OD(562nm) 포도당 소모(g/L) O-AH(g/L)
W3-BTA/pBAC 9.5 35 0.8
WCJM/pBAC 9.6 35 1.2
W3-BTA/ pBAC-yjeH 9.8 36 1.5
WCJM/pBAC-yjeH 10.1 37 2.3
상기 표 3에서 확인할 수 있듯이, WCJM에 yjeH 플라스미드의 도입은 공벡터가 들어간 컨트롤 균주보다 OD가 더 높았고, 포도당 소모도 향상하였다. O-아세틸 호모세린은 2.3 g/L가 생산되어 yjeH 도입으로써 O-아세틸 호모세린은 생산능이 향상됨을 확인하였다.
실시예 3 : yjeH 프로모터 강화 플라스미드 제작 및 O-아세틸 호모세린 생산능 평가
3-1. yjeH 프로모터 강화 플라스미드 제작
실시예 2에서 제작한 플라스미드를 기본으로 하여 내재적인 yjeH 프로모터보다 발현 유도 활성이 강한 3개의 프로모터로 교체하는 실험을 진행하였다.
구체적으로는, pro, cysk 또는 icd 프로모터를 이용하여 PCL 벡터에 프로모터 강화 균주를 제작하였다. PCL 벡터의 smaⅠ 제한효소 자리를 이용하여 제작하였으며, icd 프로모터(서열번호 51)는 서열번호 39 및 40 프라이머, pro 프로모터(서열번호 52)는 서열번호 41 및 42 프라이머, cysk 프로모터(서열번호 53)는 서열번호 43 및 44 프라이머를 이용하여 PCR로 증폭하여 제작하였다. 제작된 플라스미드를 WCJM에 도입하여 플라스크에서 O-아세틸 호모세린의 생산능을 평가하였다.
구체적으로, 각각의 균주를 LB 평판 배지에 도말 한 후 33 ℃ 배양기에서 밤새 배양하였다, LB 고체 배지에 밤새 배양한 균주를 상기에서 나타낸 25 ml 역가 배지에 접종한 다음, 이를 33 ℃, 200 rpm의 배양기에서 40시간 배양하였으며, 이의 결과를 표 4에 나타내었다.
표 4 플라스크 배양을 통한 O-아세틸 호모세린 생산 측정
OD(562nm) 포도당 소모(g/L) O-AH(g/L)
WCJM/pCL1920 9.6 35 1.2
WCJM/pCL-yjeH 10.1 37 2.3
WCJM/pCL-Picd-yjeH 10.5 38 3.1
WCJM/pCL-Ppro-yjeH 10.7 38 3.5
WCJM/pCL-Pcysk-yjeH 9.4 39 4.4
상기 표 4에서 확인할 수 있듯이, pCL-Pcysk-yjeH 플라스미드가 도입된 균주의 경우 자가 프로모터보다 OD가 감소하였으나, 빠른 당소모 속도를 보였고, O-아세틸 호모세린 4.4 g/L 생산되어 생산능이 가장 높았다.
3-2. 생합성 경로 유전자 및 프로모터 강화 플라스미드 제작
O-아세틸 호모세린의 생산능을 극대화시키기 위해 호모세린까지의 생합성 경로를 강화시키는 플라스미드를 제작하였다. 아스파테이트 카이네이즈(aspartate kinase)와 호모세린 O-아세틸 트랜스퍼라제 (homoserine O-acetyltransferase)와 yjeH를 PCL 벡터에 클로닝하기 위해 기존에 제작되어있던 pCL-thrA-metX 플라스미드를 이용하였다.
구체적으로, yjeH 유전자를 얻기 위해서 서열번호 11 및 12 프라이머를 이용하여 변성(denaturation) 단계는 94℃에서 30초, 어닐링(annealing) 단계는 55℃에서 30초, 연장(extension) 단계는 68℃에서 1분 동안 실시하고, 이를 30 회 수행하는 PCR 반응을 진행하였다.
그 결과 얻어진 PCR 산물을 1.0% 아가로즈 겔에서 전기영동한 후, 1.2kbp 크기의 밴드로부터 DNA를 정제하였다. 정제된 DNA와 플라스미드를 제한효소 kpnI으로 밤새 37 ℃에서 처리해 준 후, 한 번 더 정제 후, T4 리가아제(ligase)를 이용하여 yjeH와 pCL 벡터를 클로닝하였다. 클로닝된 플라스미드를 이용하여 대장균 DH5α를 형질전환한 후, 스펙티노마이신 (spectinomycin) 50㎍/mL를 포함하는 LB 평판 배지에서 형질전환된 대장균 DH5α를 선별하여 플라스미드를 획득하였다. 제작된 플라스미드를 O-아세틸 호모세린 생산주인 WCJM 에 도입하여 O-아세틸 호모세린의 생산능에 대한 플라스크 평가를 진행하였다. 제작된 플라스미드는 모두 3종으로 실시예 3-1에서 제작된 프로모터 3종을 이용하였다. 3종 플라스미드는 WCJM 균주에 넣고 실시예 3-1와 동일한 방법으로 플라스크 평가를 진행하였고, 그 결과는 다음 표 5와 같다.
표 5 플라스크 배양을 통한 O-아세틸 호모세린 생산 측정
OD(562nm) 포도당 소모(g/L) O-AH(g/L)
WCJM/pC2 9.6 35 1.5
WCJM/pC2-yjeH 10.1 37 2.8
WCJM/pC2-Picd-yjeH 10.5 38 4.2
WCJM/pC2-Ppro-yjeH 10.7 38 4.5
WCJM/pC2-Pcysk-yjeH 9.4 39 5.4
상기 표 5에서 확인할 수 있듯이, 생합성 경로와 yjeH를 동시에 강화시켜준 결과, O-아세틸 호모세린의 생산능은 더욱 향상되었으며, 그 순서는 앞서 기재한 바와 동일하게 pC2-Pcysk-yjeH 플라스미드가 도입된 균주의 경우 자가 프로모터보다 OD가 감소하였으나, 빠른 당소모 속도를 보였고, O-아세틸 호모세린이 5.4 g/L 생산되어 생산능이 가장 높았다.
실시예 4 : 내재적 yjeH 프로모터 강화 균주 제작 및 O-아세틸 호모세린 생산능 평가
4-1. 내재적 yjeH 강화 균주 제작 및 평가
O-아세틸 호모세린 생산 균주인 WCJM의 내재적 yjeH 유전자 활성을 강화시킨 균주를 제작하기 위하여 프로모터를 치환하는 실험을 진행하였다. 본 발명의 WCJM 균주에는 yjeH가 1 copy 존재하며, 이 유전자를 강화시키기 위해 yjeH의 copy 수를 늘리는 대신 프로모터를 강화하는 방법으로 균주를 제작하였다.
구체적으로, 교체를 위한 프로모터는 상기 실시예 3에서 활성을 확인한 icd, cysK 및 pro 프로모터(Picd, Pcysk 및 Ppro)를 선정하였으며, 상기에서 명시된 FRT 1단계 PCR 결손(FRT one step PCR deletion) 방법을 사용하였다 (Wanner BL., Proc. Natl. Acad. Sci. USA 97: 6640-6645, 2000). icd 프로모터는 서열번호 45 및 46 프라이머, cysk 프로모터는 서열번호 47 및 48 프라이머, pro 프로모터는 서열번호 49 및 50 프라이머를 이용하여 pKD4 벡터를 주형으로 하여 PCR 반응으로 삽입 카세트를 제작하였다. 상기 PCR은 변성(denaturation) 단계는 94℃에서 30초, 어닐링(annealing) 단계는 55℃에서 30초, 연장(extension) 단계는 72℃에서 1분 동안 실시하고, 이를 30 회 수행하였다.
상기 실험 결과 얻어진 PCR 산물을 1.0% 아가로즈 겔에서 전기영동한 후, 2.5 kbp 크기의 밴드로부터 DNA를 정제하였다. 회수된 DNA 절편은 pKD46 벡터 (Wanner BL., Proc. Natl. Acad. Sci. USA 97: 6640-6645, 2000)를 미리 형질 전환시킨 WCJM 균주에 전기천공하였다. 전기천공을 위하여 pKD46으로 형질전환된 WCJM 균주는 100 ㎍/L 암피실린 (ampicilin)과 5mM 아라비노스 (l-arabinose) 가 포함된 LB 배지를 이용하여 30 ℃에서 OD600 = 0.6 까지 배양시킨 후, 멸균 증류수로 2회, 10% 글리세롤 (glycerol) 로 1회 세척하여 사용하였다. 전기천공은 2500V로 수행하였다. 회수된 균주를 25 ㎍/L 클로람페니콜 (chloramphenichol)을 포함한 LB 평판 배지에 도말하여 37 ℃에서 하루밤 배양한 후 내성을 보이는 균주를 선별하였다.
상기 선별된 균주를 주형으로 하여 icd 프로모터는 서열번호 45, 46의 프라이머, cysk 프로모터는 서열번호 47, 48의 프라이머, pro프로모터는 서열번호 49, 50의 프라이머를 이용하여 상기와 동일한 조건으로 PCR 한 후, 1.0% 아가로스 겔 상에서 유전자의 크기가 2.5Kb로 관찰되는 것을 확인함으로서 yjeH 내재적 프로모터가 각각의 외래 프로모터로 교체되었음을 확인하였다. 교체된 것이 확인된 균주는 다시 pCP20 벡터 (PNAS (2000) vol97: P6640-6645) 로 형질전환시켜 LB 배지에서 배양하였으며, 다시 동일한 조건의 PCR을 통하여 1.0% 아가로스 겔 상에서 유전자의 크기가 1Kb로 작아진 최종 프로모터 교체 균주를 제작하였고, 카나마이신 마커가 제거되었음을 확인하였다. 이렇게 제작된 균주를 각각의 프로모터에 따라 icd 프로모터 교체 균주는 WCJM-PIY, cysk 프로모터 교체 균주는 WCJM-PCY, pro 프로모터 교체 균주는 WCJM-PPY로 명명하였다. 상기 yjeH 프로모터 교체 균주의 O-아세틸 호모세린 생산능을 측정하기 위하여 플라스크 배양 평가를 진행하였고, 그 결과는 표 6과 같다.
표 6 플라스크 배양을 통한 O-아세틸 호모세린 생산 측정
OD(562nm) 포도당 소모(g/L) O-AH(g/L)
WCJM 9.6 35 1.2
WCJM-PIY 9.2 38 1.8
WCJM-PCY 10.5 38 3.1
WCJM-PPY 10.1 38 1.9
상기 표 6에서 확인할 수 있듯이, 염색체 내에 내재적 yjeH 프로모터를 발현 활성이 강한 프로모터로 교체하여 yjeH 유전자 발현을 강화한 결과 플라스미드를 도입하여 형질변환한 상기 실시예 3의 결과 대비(5 copy)하여 O-아세틸 호모세린 생산능이 급격한 변화를 보이지는 않았으나, 생산균주인 WCJM 대비 각각의 균주들의 O-아세틸 호모세린 생산능이 증가함을 확인하였다.
4-2. O-아세틸 호모세린 고수율 균주에서의 yjeH 프로모터 강화 균주 제작 및 O-아세틸 호모세린 생산능 평가
기존에 야생형 W3110 유래의 NTG mutation을 통하여 쓰레오닌을 생산하는 능력을 가지는 균주를 이용하여 O-아세틸 호모세린을 생산하는 균주를 제작하는 방법이 알려져 있다(국제 공개출원 WO2012/087039). 이때 제작된 고수율의 O-아세틸 호모세린을 생산하는 균주는 한국 미생물 보존센터에 수탁번호 KCCM11146P로 기탁되어 있다.
상기 수탁번호 KCCM11146P 균주는 플라스크 배양시 포도당 40 g/L를 소진하고 약 15 내지 16 g/L의 O-아세틸 호모세린을 생산하는, 고수율의 O-아세틸 호모세린 생산능을 가지고 있다. 이에 본 발명자들은 이미 O-아세틸 호모세린 고생산능을 가지고 있는 상기 균주를 바탕으로 본 발명의 yjeH 유전자를 강화시켜 O-아세틸 호모세린 생산능을 더욱 증진시킬 수 있을지 확인해보았다.
구체적으로, yjeH 유전자의 프로모터를 발현 유도 활성이 높은 프로모터로 교체하여 보았으며, 이는 상기 실시예 4-1과 동일한 방법을 이용하여 진행하였다. 이렇게 제작한 KCCM11146P 균주의 yjeH 프로모터 교체 균주는 각각의 프로모터에 따라 icd 프로모터 교체 균주는 KCCM11146P- PIY, cysk 프로모터 교체 균주는 KCCM11146P- PCY, pro 프로모터 교체 균주는 KCCM11146P- PPY로 명명하였다.
상기 yjeH 프로모터 교체 균주의 O-아세틸 호모세린 생산능을 측정하기 위하여 플라스크 배양 평가를 진행하였다. 구체적으로는, LB 배지에 KCCM11146P, KCCM11146P- PIY, KCCM11146P- PCY, 또는 KCCM11146P- PPY 균주를 접종하여 33 ℃에서 하룻밤 배양한 후, 단일 콜로니를 3 ml LB 배지에 접종한 후 33 ℃에서 5 시간 배양하고, 다시 25 ml O-아세틸 호모세린 생산 배지가 첨가된 250 ml 삼각플라스크에 200배 희석하여 33 ℃ 200 rpm에서 30시간 배양하여 HPLC 분석을 통하여 O-아세틸 호모세린 생산량을 확인하였다. 상기 실험한 결과를 정리하면 하기 표 7과 같다.
표 7 플라스크 배양을 통한 O-아세틸 호모세린 생산 측정
OD(562nm) 포도당 소모(g/L) O-AH(g/L)
KCCM11146P 18.3 40 14.2
KCCM11146P- PIY 16.2 40 16.3
KCCM11146P- PCY 19.2 40 18.2
KCCM11146P- PPY 18.8 40 16.2
상기 표 7에서 확인할 수 있듯이, KCCM11146P 균주에서 O-아세틸 호모세린이 14.2g/L 생성되었고, 프로모터 교체주의 경우 PCY가 18.2 g/L로 O-아세틸 호모세린의 생산량이 가장 높아졌으며, PIY와 PPY의 경우도 본래 균주보다도 O-아세틸 호모세린의 생산량이 증가하였다.
본 발명자들은 KCCM11146P 균주 기반 yjeH 강화 균주에서 O-아세틸호모세린 생산이 증가함을 확인하고, 상기 균주를 'CA05-4008'으로 명명한 후 부다페스트 조약 하에 2013년 11월 22일자로 한국미생물보존센터(KCCM)에 기탁하여 수탁번호 KCCM11484P를 부여받았다.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
Figure PCTKR2015005659-appb-I000001

Claims (9)

  1. 서열번호 1의 아미노산 서열을 포함하는 단백질의 활성이 비변이 미생물에 비하여 강화된, O-아세틸 호모세린 생산능을 가지는 에스케리키아(Escherichia) 속 미생물.
  2. 제1항에 있어서, 상기 에스케리키아 속 미생물은 대장균(Escherichia coli)인 것인, O-아세틸 호모세린 생산능을 가지는 에스케리키아 속 미생물.
  3. 제1항에 있어서, 상기 에스케리키아 속 미생물은 추가적으로 시스타치오닌 신타아제(cystathionine synthase)의 활성이 약화 또는 불활성화된 것인, O-아세틸 호모세린 생산능을 가지는 에스케리키아 속 미생물.
  4. 제1항에 있어서, 상기 에스케리키아 속 미생물은 추가적으로 호모세린 키나아제(homoserine kinase)의 활성이 약화 또는 불활성화된 것인, O-아세틸 호모세린 생산능을 가지는 에스케리키아 속 미생물.
  5. 제1항에 있어서, 상기 에스케리키아 속 미생물은 추가적으로 호모세린 아세틸 트랜스퍼라제(homoserine acetyltransferase)의 활성이 비변이 미생물에 비하여 강화된, O-아세틸 호모세린 생산능을 가지는 에스케리키아 속 미생물.
  6. 제1항에 있어서, 상기 미생물에 포스포에놀파이루베이트 카복실라아제(phosphoenolpyruvate carboxylases), 아스파테이트 아미노트랜스퍼라아제(aspartate aminotransferase) 및 아스파테이트 세미알데히드 디히드로게나아제(apartate semialdehyde dehydrogenase)로 구성된 군으로부터 선택된 1종 이상의 효소 활성이 추가로 강화된 것인, O-아세틸 호모세린 생산능을 가지는 에스케리키아 속 미생물.
  7. 제1항에 있어서, 상기 에스케리키아 속 미생물은 아스파테이트 키나아제(Aspartate kinase)의 활성이 비변이 미생물에 비하여 강화된, O-아세틸 호모세린 생산능을 가지는 에스케리키아 속 미생물.
  8. 제1항 내지 제7항 중 어느 한 항에 따른, O-아세틸 호모세린 생산능을 가지는 에스케리아 속 미생물을 배양하여 배양물을 수득하는 단계를 포함하는, O-아세틸 호모세린의 생산방법.
  9. 제8항에 있어서, 상기 배양된 미생물 또는 그의 배양물로부터 O-아세틸 호모세린을 회수하는 단계를 추가로 포함하는, O-아세틸 호모세린의 생산방법.
PCT/KR2015/005659 2014-06-05 2015-06-05 O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 o-아세틸-호모세린을 생산하는 방법 WO2015186990A1 (ko)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2016571122A JP6375391B2 (ja) 2014-06-05 2015-06-05 O−アセチル−ホモセリンを生産する微生物及びこれを用いてo−アセチル−ホモセリンを生産する方法
AU2015269041A AU2015269041B2 (en) 2014-06-05 2015-06-05 Microorganism for producing o-acetyl-homoserine and method for producing o-acetyl-homoserine by using same
EP15802588.2A EP3153574B1 (en) 2014-06-05 2015-06-05 Microorganism producing o-acetyl-homoserine and method for producing o-acetylhomoserine using the same
SG11201610171VA SG11201610171VA (en) 2014-06-05 2015-06-05 Microorganism producing o-acetyl-homoserine and method for producing o-acetylhomoserine using the same
CN201580041968.1A CN106574237B (zh) 2014-06-05 2015-06-05 生产o-乙酰高丝氨酸的微生物和使用其生产o-乙酰高丝氨酸的方法
US15/316,475 US10501763B2 (en) 2014-06-05 2015-06-05 Microorganism producing O-acetyl-homoserine and method for producing O-acetylhomoserine using the same
BR112016028527-1A BR112016028527B1 (pt) 2014-06-05 2015-06-05 Micro-organismo produtor de o-acetil-homoserina e método para produção de o-acetil homoserina usando o mesmo
MYPI2016704481A MY183321A (en) 2014-06-05 2015-06-05 Microorganism producing o-acetyl-homoserine and method for producing o-acetylhomoserine using the same
RU2016149077A RU2676137C2 (ru) 2014-06-05 2015-06-05 Микроорганизм для продуцирования О-ацетилгомосерина и способ получения О-ацетилгомосерина с использованием этого микроорганизма

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0068613 2014-06-05
KR1020140068613A KR101825777B1 (ko) 2014-06-05 2014-06-05 O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 o-아세틸-호모세린을 생산하는 방법

Publications (1)

Publication Number Publication Date
WO2015186990A1 true WO2015186990A1 (ko) 2015-12-10

Family

ID=54767005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005659 WO2015186990A1 (ko) 2014-06-05 2015-06-05 O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 o-아세틸-호모세린을 생산하는 방법

Country Status (11)

Country Link
US (1) US10501763B2 (ko)
EP (1) EP3153574B1 (ko)
JP (1) JP6375391B2 (ko)
KR (1) KR101825777B1 (ko)
CN (1) CN106574237B (ko)
AU (1) AU2015269041B2 (ko)
BR (1) BR112016028527B1 (ko)
MY (1) MY183321A (ko)
RU (2) RU2676137C2 (ko)
SG (2) SG10201806655TA (ko)
WO (1) WO2015186990A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101825777B1 (ko) * 2014-06-05 2018-02-07 씨제이제일제당 (주) O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 o-아세틸-호모세린을 생산하는 방법
KR101915433B1 (ko) * 2018-02-13 2018-11-05 씨제이제일제당 (주) 시트레이트 신타아제 (Citrate synthase)의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 L-아미노산 생산방법
WO2020138178A1 (en) 2018-12-27 2020-07-02 Ajinomoto Co., Inc. Method for producing basic l-amino acids or salts thereof by fermentation of an enterobacteriaceae bacterium
CN110804634B (zh) * 2019-12-04 2022-02-25 深圳瑞德林生物技术有限公司 酶催化法制备2,4-二氨基丁酸的工艺
KR102182497B1 (ko) * 2019-12-20 2020-11-24 씨제이제일제당 주식회사 내막 단백질의 변이체 및 이를 이용한 목적 산물 생산 방법
CN112094872A (zh) * 2020-09-22 2020-12-18 浙江工业大学 一种产o-乙酰l-高丝氨酸菌株发酵方法
CN113388564B (zh) * 2021-06-04 2022-03-01 浙江工业大学 一种o-乙酰-l-高丝氨酸生产菌、构建方法及应用
KR20230139597A (ko) * 2022-03-28 2023-10-05 씨제이제일제당 (주) O-아세틸 호모세린 생산 미생물 및 이를 이용한 o-아세틸 호모세린 또는 l-메치오닌 생산 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090298135A1 (en) * 2003-02-06 2009-12-03 Consortium Fur Elektrochemische Industrie Gmbh Method for fermentative production of L-methionine
KR100951766B1 (ko) * 2006-07-28 2010-04-08 씨제이제일제당 (주) L-메치오닌 전구체 생산 균주 및 상기 l-메치오닌 전구체로부터의 l-메치오닌 및 유기산의 생산방법
KR101117012B1 (ko) * 2009-08-28 2012-03-20 씨제이제일제당 (주) O-아세틸-l-호모세린 생산 균주 및 이를 이용하여 o-아세틸-l-호모세린을 생산하는 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2316588C1 (ru) * 2004-01-30 2008-02-10 Адзиномото Ко., Инк. Бактерия - продуцент l-аминокислоты и способ получения l-аминокислоты (варианты)
BRPI0611909A2 (pt) * 2005-06-17 2009-01-20 Microbia Inc biossÍntese aperfeiÇoada de aminoÁcido e metabàlito
RU2355759C1 (ru) * 2007-08-14 2009-05-20 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) СПОСОБ ПОЛУЧЕНИЯ АРОМАТИЧЕСКОЙ L-АМИНОКИСЛОТЫ С ИСПОЛЬЗОВАНИЕМ БАКТЕРИИ, ПРИНАДЛЕЖАЩЕЙ К РОДУ Escherichia, В КОТОРОЙ ИНАКТИВИРОВАН ГЕН ydiB, СПОСОБ ПОЛУЧЕНИЯ СЛОЖНОГО ЭФИРА НИЗШИХ АЛКИЛОВ АЛЬФА-L-АСПАРТИЛ-L-ФЕНИЛАЛАНИНА
US9005952B2 (en) 2008-04-04 2015-04-14 Cj Cheiljedang Corporation Microorganism producing L-methionine precursor and the method of producing L-methionine precursor using the microorganism
PL2657250T3 (pl) 2010-12-21 2018-02-28 Cj Cheiljedang Corporation Odmiana polipeptydu posiadającego aktywność acetylotransferazy homoseryny oraz mikroorganizm wyrażający to samo
KR101825777B1 (ko) * 2014-06-05 2018-02-07 씨제이제일제당 (주) O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 o-아세틸-호모세린을 생산하는 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090298135A1 (en) * 2003-02-06 2009-12-03 Consortium Fur Elektrochemische Industrie Gmbh Method for fermentative production of L-methionine
KR100951766B1 (ko) * 2006-07-28 2010-04-08 씨제이제일제당 (주) L-메치오닌 전구체 생산 균주 및 상기 l-메치오닌 전구체로부터의 l-메치오닌 및 유기산의 생산방법
KR101117012B1 (ko) * 2009-08-28 2012-03-20 씨제이제일제당 (주) O-아세틸-l-호모세린 생산 균주 및 이를 이용하여 o-아세틸-l-호모세린을 생산하는 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3153574A4 *

Also Published As

Publication number Publication date
AU2015269041B2 (en) 2018-11-08
MY183321A (en) 2021-02-18
BR112016028527B1 (pt) 2023-11-14
AU2015269041A1 (en) 2017-01-05
US20170137853A1 (en) 2017-05-18
CN106574237B (zh) 2020-03-27
RU2016149077A3 (ko) 2018-07-10
EP3153574A4 (en) 2017-12-13
JP6375391B2 (ja) 2018-08-15
SG11201610171VA (en) 2017-01-27
BR112016028527A2 (pt) 2017-10-24
RU2018132244A3 (ko) 2019-05-31
KR101825777B1 (ko) 2018-02-07
SG10201806655TA (en) 2018-09-27
RU2018132244A (ru) 2019-03-20
CN106574237A (zh) 2017-04-19
KR20150140507A (ko) 2015-12-16
JP2017516485A (ja) 2017-06-22
EP3153574A1 (en) 2017-04-12
RU2676137C2 (ru) 2018-12-26
EP3153574B1 (en) 2024-08-21
RU2016149077A (ru) 2018-07-10
US10501763B2 (en) 2019-12-10
RU2710323C2 (ru) 2019-12-25

Similar Documents

Publication Publication Date Title
WO2015186990A1 (ko) O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 o-아세틸-호모세린을 생산하는 방법
WO2019160301A1 (ko) 시트레이트 신타아제의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 l-아미노산 생산방법
WO2012099396A2 (en) A microorganism having enhanced l-amino acids productivity and process for producing l-amino acids using the same
WO2013105802A2 (ko) 자일로즈 이용능이 부여된 코리네박테리움 속 미생물 및 이를 이용한 l-라이신의 생산방법
WO2014142463A1 (ko) L-발린 생산능이 향상된 균주 및 이를 이용한 l-발린 생산방법
WO2013105827A2 (ko) 퓨트레신 생산능이 향상된 재조합 미생물 및 이를 이용하여 퓨트레신을 생산하는 방법
WO2013095071A2 (ko) L-라이신 생산능을 갖는 미생물을 이용하여 l-라이신을 생산하는 방법
WO2012077995A2 (ko) 퓨트레신을 생산하는 미생물 및 이를 이용하여 퓨트레신을 생산하는 방법
WO2013105800A2 (ko) L-트립토판 생산능이 강화된 에스케리키아속 미생물 및 이를 이용하여 l-트립토판을 생산하는 방법
WO2015199396A1 (ko) O-아세틸 호모세린을 생산하는 미생물 및 상기 미생물을 이용하여 o-아세틸 호모세린을 생산하는 방법
WO2012018226A2 (ko) 카다베린 고생성능을 가지는 변이 미생물 및 이를 이용한 카다베린의 제조방법
WO2019164346A1 (ko) L-트립토판을 생산하는 재조합 코리네형 미생물 및 이를 이용한 l-트립토판을 생산하는 방법
WO2021112469A1 (ko) 신규한 분지쇄 아미노산 아미노트랜스퍼라제 변이체 및 이를 이용한 류신 생산방법
WO2017007159A1 (ko) L-라이신 생산능을 갖는 미생물 및 이를 이용한 l-라이신 생산 방법
WO2013103246A2 (ko) 퀴놀린산을 생산하는 재조합 미생물 및 이를 이용한 퀴놀린산의 생산 방법
WO2014171747A1 (ko) L-트립토판 생산능을 갖는 미생물 및 이를 이용하여 l-트립토판을 생산하는 방법
WO2014126384A1 (ko) L-쓰레오닌 생산능을 가지는 재조합 에스케리키아 속 미생물 및 이를 이용한 l-쓰레오닌의 생산방법
WO2015156583A1 (ko) L-라이신 생산능을 갖는 미생물 및 이를 이용한 l-라이신 생산 방법
WO2016195439A1 (ko) O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 o-아세틸-호모세린을 생산하는 방법
WO2020067618A1 (ko) 알파-글루코시다제의 활성이 강화된 l-아미노산을 생산하는 미생물 및 이를 이용한 l-아미노산 생산 방법
KR101851452B1 (ko) O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 o-아세틸-호모세린을 생산하는 방법
WO2022154190A1 (ko) 신규한 포스포노아세테이트 하이드롤라제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022225319A1 (ko) 신규한 l-세린 암모니아 분해 효소 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022239953A1 (ko) 3-메틸-2-옥소뷰타노에이트 하이드록시 메틸트랜스퍼라아제의 활성이 강화된 미생물, 및 이의 용도
WO2022231371A1 (ko) 신규한 5-(카르복시아미노)이미다졸리보뉴클레오티드합성효소 변이체 및 이를 이용한 imp 생산 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15802588

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016571122

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15316475

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016028527

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: IDP00201608879

Country of ref document: ID

REEP Request for entry into the european phase

Ref document number: 2015802588

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015802588

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015269041

Country of ref document: AU

Date of ref document: 20150605

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016149077

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016028527

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161205