WO2015186649A1 - ポリビニルホスホン酸ジメチル及びポリビニルホスホン酸の製造方法 - Google Patents

ポリビニルホスホン酸ジメチル及びポリビニルホスホン酸の製造方法 Download PDF

Info

Publication number
WO2015186649A1
WO2015186649A1 PCT/JP2015/065721 JP2015065721W WO2015186649A1 WO 2015186649 A1 WO2015186649 A1 WO 2015186649A1 JP 2015065721 W JP2015065721 W JP 2015065721W WO 2015186649 A1 WO2015186649 A1 WO 2015186649A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimethyl
polyvinylphosphonate
molecular weight
monomer component
acid
Prior art date
Application number
PCT/JP2015/065721
Other languages
English (en)
French (fr)
Inventor
孝 高橋
圭介 松下
征樹 杉山
憲弘 吉田
英市 伊川
孝仁 三田
雅大 遠藤
Original Assignee
丸善石油化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丸善石油化学株式会社 filed Critical 丸善石油化学株式会社
Priority to US15/315,588 priority Critical patent/US10087265B2/en
Priority to CN201580029515.7A priority patent/CN106459272B/zh
Priority to JP2016525153A priority patent/JP6524074B2/ja
Priority to EP15803277.1A priority patent/EP3153533A4/en
Publication of WO2015186649A1 publication Critical patent/WO2015186649A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F130/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F130/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis

Definitions

  • the present invention relates to a method for producing dimethyl polyvinyl phosphonate and a method for producing polyvinyl phosphonic acid by hydrolyzing dimethyl polyvinyl phosphonate obtained by the method.
  • Polyvinylphosphonates such as dimethylpolyvinylphosphonate and polyvinylphosphonic acid are being developed as polymer electrolyte materials for fuel cells, halogen-free flame retardants, metal surface treatment agents, biocompatible materials, food packaging materials, etc. Analysis of the structure and investigation of polymerization methods are actively conducted.
  • Polyvinylphosphonic acid can be obtained, for example, by radical polymerization of vinylphosphonic acid.
  • Polyvinylphosphonic acid obtained by radical polymerization of vinylphosphonic acid can be obtained from head-to-head or tail-to-head. It has been reported that the proportion of tail-to-tail bonding is high and the positional regularity is low (Non-patent Document 1).
  • polyvinylphosphonic acid can be obtained by hydrolyzing polyvinylphosphonic acid diester obtained by radical polymerization of vinylphosphonic acid diester in the presence of an acid.
  • Polyvinylphosphonic acid obtained by this hydrolysis has many head-to-tail bonds, and has higher regioregularity than that obtained by radical polymerization of vinylphosphonic acid (same as above). .
  • Non-patent Document 2 Anionic polymerization is used as a method for obtaining a polyvinyl phosphonic acid diester having a higher molecular weight.
  • this anionic polymerization not only a polyvinyl phosphonic acid diester having a higher molecular weight is obtained, but also the stereoregularity of polyvinyl phosphonic acid obtained by hydrolyzing the obtained polyvinyl phosphonic acid diester hydrolyzed the radical polymerized product. It is reported that the thermal behavior and solubility in solvents are different (same as above).
  • Non-patent Document 3 a group transfer polymerization method (GTP) using a tricyclopentadienyl lanthanoid complex as an initiator has been reported (Non-patent Document 3).
  • This GTP is a kind of living anionic polymerization, the molecular weight can be controlled by the ratio of the monomer and the initiator, and a higher molecular weight and low dispersion polymer can be obtained.
  • dimethyl ester diethyl ester, diisopropyl ester, and the like are used as the vinyl phosphonic acid diester which is a raw material monomer for producing the polyvinyl phosphonic acid diester.
  • dimethyl ester has high solubility in water and is suitable for hydrolysis in an aqueous solution. It is also advantageous in that it is easily available industrially.
  • the solubility of the produced polymer is low, so the polymerization yield does not increase, and the molecular weight can be increased or the molecular weight can be controlled. It was not possible (cited references 2 and 3). For this reason, the molecular weight (weight average molecular weight; Mw) of the polymer produced using dimethyl vinylphosphonate as a monomer is 50,000 or less, and polyvinyl dimethyl phosphonate having a high molecular weight of 60,000 or more is obtained. The use was limited. As a result, only a low molecular weight polyvinyl phosphonic acid obtained by hydrolyzing dimethyl polyvinyl phosphonate was obtained.
  • polyvinyl phosphonate diisopropyl produced using diisopropyl vinyl phosphonate as a monomer has low water solubility, and in order to produce polyvinyl phosphonic acid from this, an ester group is formed by reacting trimethylsilyl bromide in dichloromethane. After conversion to trimethylsilyl ester, it was necessary to hydrolyze in the presence of an acid, and it was difficult to hydrolyze directly in an aqueous solution (Non-patent Document 3).
  • the present invention has been made in view of the above circumstances, and one of the problems is to provide a method for easily producing dimethyl polyvinylphosphonate having a high molecular weight of 60,000 or more. is there.
  • Another object of the present invention is to provide a method for producing dimethylpolyvinylphosphonate containing the above high molecular weight while controlling its molecular weight.
  • Another object of the present invention is to provide a method for producing polyvinyl phosphonic acid, which directly hydrolyzes dimethyl polyvinyl phosphonate including a polymer having a high molecular weight and whose molecular weight is controlled.
  • dimethylpolyvinylphosphonate having a molecular weight of 60,000 or more by using a specific solvent as a polymerization solvent. It has been found that the molecular weight can be easily controlled by controlling the content of specific impurities and the like.
  • polyvinyl phosphonic acid having a high molecular weight and a controlled molecular weight can be easily obtained by subjecting dimethyl polyvinyl phosphonate thus obtained to hydrolysis in the presence of an acid.
  • the present invention is based on the above knowledge, and the first invention of the present invention is that polyvinyl dimethyl phosphonate is obtained by anionic polymerization from a monomer component containing dimethyl vinyl phosphonate as a main component in the presence of an anionic polymerization initiator. And a method for producing dimethyl polyvinylphosphonate, characterized in that an aliphatic ether is used as a polymerization solvent.
  • the second invention of the present invention provides the above-mentioned method for producing dimethyl polyvinylphosphonate using a monomer component having an adjusted content of dimethyl phosphite.
  • the third invention of the present invention provides a method for producing polyvinylphosphonic acid, wherein dimethylpolyvinylphosphonate obtained by the method of the first invention or the second invention is hydrolyzed in the presence of an acid. To do.
  • the amount of dimethyl phosphite contained in the monomer component is 0.01-5 mass%.
  • % Is a method for controlling the molecular weight of the resulting dimethyl polyvinylphosphonate.
  • dimethyl polyvinyl phosphonate having a weight average molecular weight of 60,000 or more which has been difficult in the past, can be easily produced.
  • dimethyl polyvinylphosphonate having a weight average molecular weight (Mw) controlled in the range of, for example, 10,000 to 300,000.
  • polyvinyl phosphonic acid having a high molecular weight and a controlled molecular weight can be obtained by directly hydrolyzing dimethyl polyvinyl phosphonate having a high molecular weight and a controlled molecular weight.
  • the weight average molecular weight (Mw) and the molecular weight distribution (Mw / Mn) are measured by gel permeation chromatography (GPC). Specifically, it means a value measured by the method described in the examples.
  • the method for producing dimethyl polyvinyl phosphonate according to the present invention comprises, in the presence of an anionic polymerization initiator, a monomer component containing dimethyl vinyl phosphonate as a main component by anionic polymerization.
  • the raw material compound for producing dimethyl polyvinylphosphonate is a monomer component containing dimethyl vinylphosphonate as a main component.
  • the monomer component means a component containing substantially non-polymerizable components such as impurities derived from raw materials such as dimethyl phosphite and a residual solvent in addition to substantially only dimethyl vinylphosphonate.
  • this monomer component commercially available products such as those manufactured by Katayama Chemical Co., Ltd. are commercially available, or acetylene is added to dimethyl phosphite using a known method such as a palladium complex or nickel complex as a catalyst. (For example, JP 2000-256381, JP 2001-518905, JP 2002-179691, JP 2004-075688, WO 2009/051025) and the like.
  • aliphatic ethers used as a polymerization solvent include, for example, diethyl ether, dipropyl ether, methyl-tert-butyl ether (MTBE), ethyl-tert-butyl ether (ETBE), dibutyl ether, diisoamyl.
  • aliphatic ethers having about 2 to 10 carbon atoms such as ether, hexyl methyl ether, octyl methyl ether, cyclopentyl methyl ether (CPME), and dicyclopentyl ether.
  • MTBE is particularly preferable in terms of solubility of the monomer component and the polymerization initiator and polymerization reactivity.
  • the amount of the solvent used in the anionic polymerization reaction is usually 100 to 2000 parts by weight, preferably 300 to 1000 parts by weight, based on 100 parts by weight of the monomer dimethyl vinylphosphonate.
  • a high molecular weight dimethyl polyvinylphosphonate having a molecular weight of 60,000 or more which has been difficult in the past when an aromatic compound such as toluene or a cyclic ether such as THF, is used. It can be easily synthesized by anionic polymerization. Of course, as described later, it is also possible to obtain dimethyl polyvinylphosphonate having a molecular weight of 60,000 or less by the method of the present invention.
  • anionic polymerization in the present invention is not particularly limited, there is a dropping polymerization method in which a monomer component solution containing dimethyl vinylphosphonate dissolved in the polymerization solvent is maintained at a predetermined temperature, and an initiator is added dropwise thereto. preferable. Moreover, it is preferable to carry out in high vacuum or inert gas atmosphere, such as nitrogen, argon, and helium.
  • Examples of the initiator in anionic polymerization include organic lithium compounds such as methyllithium, ethyllithium, n-butyllithium, sec-butyllithium, t-butyllithium and hexyllithium; MeMgBr, EtMgBr, t-BuMgBr, t- Examples include basic organometallic compounds such as organomagnesium compounds (Grignard reagent) such as BuMgCl and PhMgBr.
  • an organic magnesium compound can be particularly preferably used.
  • the amount of the initiator used is usually in the range of 0.0001 to 0.1 mol, preferably 0.001 to 0.05 mol, relative to 1 mol of dimethyl vinylphosphonate.
  • these basic organometallic compounds and Lewis acids can be used in combination.
  • the Lewis acid include organoaluminum compounds such as tri-t-butylaluminum, triisobutylaluminum, and trioctylaluminum.
  • the amount of Lewis acid used in combination is usually 1.0 to 50 mol, preferably 2.5 to 40 mol, based on 1 mol of the basic organometallic compound.
  • the polymerization conditions in the anionic polymerization are not particularly limited, but the polymerization temperature is usually ⁇ 80 to 100 ° C., preferably ⁇ 20 to 60 ° C., more preferably 0 to 50 ° C.
  • the polymerization time is usually 0.5 to 24 hours, preferably 1 to 12 hours, and more preferably 1.5 to 6 hours.
  • the polymerization is carried out by dropping the initiator, it is preferable to drop the initiator in the range of 1 to 4 hours and ripen it in the range of 0.5 to 1 hour.
  • the polymerization reaction can be stopped by adding a polymerization terminator to the reaction mixture when a polymer having a target molecular weight is formed.
  • a polymerization terminator for example, a protic compound such as water, methanol, isopropanol, acetic acid, hydrochloric acid in methanol or the like can be used.
  • the amount of the polymerization terminator used is not particularly limited, but in general, it is preferably used in the range of 1 to 100 mol with respect to 1 mol of the polymerization initiator used.
  • the desired polyvinyl phosphonic acid diester is separated and obtained from the reaction mixture.
  • the polymerized polyvinylphosphonic acid diester does not dissolve in the solvent, the polymer can be easily recovered by filtration.
  • the polymer solution can be contacted with water to extract the polymer to the aqueous phase side, and the polyvinylphosphonic acid diester can be recovered as an aqueous polymer solution.
  • a monomer component containing dimethyl vinylphosphonate as a main component (hereinafter sometimes abbreviated as “monomer component”) is used as a raw material.
  • dimethyl phosphite By adjusting the content of dimethyl phosphite, it is possible to control the molecular weight of the resulting dimethyl polyvinylphosphonate.
  • dimethyl polyvinylphosphonate In order to produce dimethyl polyvinylphosphonate while controlling the molecular weight, for example, the relationship between the content of dimethyl phosphite in the monomer component as a raw material and the molecular weight of the resulting dimethyl polyvinylphosphonate is experimentally investigated. However, the content of dimethyl phosphite in the raw material may be adjusted as appropriate. Preferably, a monomer component having a content of dimethyl phosphite adjusted in the range of 0.01 to 5% by mass is used. .
  • dimethyl phosphite is generally contained in dimethyl vinylphosphonate as an impurity
  • adjustment of the content of dimethyl phosphite in the monomer component can be accomplished by adding dimethyl phosphite or by distillation. It can carry out by removing by means, such as.
  • the molecular weight of dimethyl polyvinylphosphonate obtained by this method increases as the amount of dimethyl phosphite contained in the monomer component decreases, as shown in the Examples below.
  • chain transfer tends to occur and the molecular weight is decreased when the temperature is increased. Therefore, by controlling the dimethyl phosphite content at a predetermined polymerization temperature, the weight average molecular weight of dimethyl polyvinylphosphonate ( Mw) can be controlled in the range of approximately 10,000 to 300,000.
  • the weight average molecular weight (Mw) of the dimethyl polyvinylphosphonate obtained by the method of the present invention can be arbitrarily selected from the above range according to the use, but is preferably in the range of 30,000 to 250,000. Particularly preferred is the range of 60,000 to 200,000.
  • dimethyl polyvinyl phosphonate having a controlled molecular weight obtained by the above method is hydrolyzed in the presence of an acid to obtain polyvinyl phosphonic acid having a controlled molecular weight. be able to.
  • dimethyl polyvinylphosphonate a polymer recovered as a solid from the polymerization solution may be used as the dimethyl polyvinylphosphonate.
  • the polymer obtained by contacting the polymerization solution with water and extracting polyvinyl dimethyl phosphonate to the aqueous phase side is obtained.
  • An aqueous solution may be used.
  • Hydrolysis using an aqueous polymer solution obtained by water extraction is preferable because steps such as filtration and drying are unnecessary and the steps can be simplified.
  • the acid used for the hydrolysis those usually used in the hydrolysis of phosphate esters can be used, and any of inorganic acids, organic acids and solid acids can be used. Inorganic acids such as hydrochloric acid and phosphoric acid are preferred, and hydrochloric acid is particularly preferred. Further, the amount of acid used is preferably equal to or more than 1 mol with respect to 1 mol of the ester group of the polyvinylphosphonic acid diester used for hydrolysis, usually in the range of 1 to 3 mol, preferably 1 to 2 mol, more preferably 1 to 1.5 mol. is there.
  • the inorganic acids such as sulfuric acid, hydrochloric acid and phosphoric acid are preferably used as an aqueous solution.
  • the concentration of the acid is not particularly limited, but when hydrochloric acid is used as the acid, the amount of acid used can be reduced by lowering the ratio of water as the solvent, so concentrated hydrochloric acid (12 mol / L) is used. It is preferable.
  • Hydrolysis is usually performed in a solvent composed of water, a hydrophilic solvent, or a mixed solvent thereof.
  • the hydrophilic solvent include polyhydric alcohols such as ethylene glycol, propylene glycol, and glycerin; cellosolve, methyl cellosolve, ethyl cellosolve, carbitol, methyl carbitol, ethyl carbitol, butyl carbitol, propylene glycol monomethyl ether,
  • glycol ether solvents such as propylene glycol monoethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, triethylene glycol monomethyl ether, and triethylene glycol monoethyl ether.
  • the amount of the solvent used is usually in the range of 100 to 1000 parts by weight, preferably 400 to 600 parts by weight, more preferably 300 to 500 parts by weight with respect to 100 parts by weight of the polyvinylphosphonic diester used for hydrolysis.
  • an antifoaming agent may be used as long as the reaction is not inhibited.
  • the antifoaming agent generally known antifoaming agents having a foam breaking effect or a foam suppressing effect can be used.
  • oil-type silicone antifoaming agents, emulsion-type silicone antifoaming agents, foam-breaking polymer-type antifoaming agents such as nonionic polyethers, special nonionic surfactants, and polyether-modified methylalkylpolysiloxane Examples thereof include a polymer, a polyethylene glycol type nonionic surfactant, and a vegetable oil-based antifoaming agent. These may be used alone or in combination of two or more.
  • the amount of the antifoaming agent used is usually in the range of 0.001 to 1 part by weight, preferably 0.01 to 0.1 part by weight, based on 100 parts by weight of the solvent.
  • the reaction temperature in the hydrolysis is not particularly limited, but is usually selected from the range of 80 to 100 ° C., preferably 90 to 100 ° C., more preferably 95 to 100 ° C. of water.
  • the reaction time may be appropriately selected in consideration of the reaction temperature, and is usually in the range of 2 to 24 hours, preferably 4 to 16 hours, more preferably 6 to 8 hours.
  • the hydrolysis reaction is preferably performed while removing methanol generated by the hydrolysis.
  • the weight average molecular weight (Mw) of the polyvinylphosphonic acid obtained by the above hydrolysis is in the range of 10,000 to 300,000, preferably 30,000 to 250,000, particularly preferably 60,000 to 200,000. is there.
  • the molecular weight of polyvinylphosphonic acid obtained by hydrolysis is theoretically lower than that of the polymer before hydrolysis due to elimination of the protecting group.
  • the weight average molecular weight (Mw) measured by GPC according to the method described in the examples is measured as a polymer having a higher molecular weight than that before hydrolysis due to the interaction with the column. Is done. Therefore, in consideration of this point, it is preferable to adjust the anionic polymerization conditions so that the molecular weight of the polymer after hydrolysis falls within a desired range.
  • the polymer solution after hydrolysis contains an excessive amount of acid, it is preferable to remove the acid.
  • the polymer solution obtained by hydrolysis may be treated as it is or after being diluted to an appropriate concentration with water.
  • the acid removal treatment method may be any method as long as the acid can be separated and removed from the polymer solution. Specific examples include reprecipitation using a poor solvent of polyvinylphosphonic acid, adsorption treatment, ultrafiltration, dialysis, electrodialysis, ion exchange membrane, and the like, one or more of these. It is desirable to carry out in combination.
  • Polyvinylphosphonic acid after the above acid removal treatment can be used as a polymer solution as it is, but it should be used after further concentration, reprecipitation, solvent replacement, solvent extraction, drying, etc. as necessary. You can also.
  • the weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the polymers obtained in the examples were measured by gel permeation chromatography (GPC), and calculated from converted values using standard polyethylene oxide samples.
  • GPC measuring device LC-Solution manufactured by SHIMADZU Column: Shodex SB-805HQ, SB-804HQ Precolumn: Shodex SB-G Column temperature: 40 ° C Mobile phase: 0.2 M NaCl aqueous solution Flow rate: 0.5 mL / min Detector: RI detector
  • hydrolysis rate was calculated by 1 H-NMR, based on the integrated value of the peak derived from the methoxy group of dimethyl polyvinylphosphonate.
  • NMR measuring device JEOL AL-400 Solvent: heavy water
  • the polymer concentration in the aqueous solution was obtained by drying 0.5 mL of the aqueous solution on a petri dish at 120 ° C. for 2 hours under reduced pressure, and then measuring the weight of the residue.
  • Example 1 Production example (1) of dimethyl polyvinylphosphonate: A glass container having a capacity of 10 L was prepared, the adsorbed water in the container was removed by heating, and nitrogen substitution was further performed. In this container, 980 g of monomer component (1) (dimethyl phosphite content 0.02%) and methyl t-butyl ether (MTBE) 6444 g prepared by distillation to a dimethyl vinylphosphonate purity of 99.8% were added. The reaction system was cooled to 0 ° C.
  • monomer component (1) dimethyl phosphite content 0.02%
  • MTBE methyl t-butyl ether
  • t-BuMgCl prepared to 0.25 mol / L with THF (0.12 mol as t-BuMgCl) was added dropwise over 1 hour while maintaining the temperature in the system at 0 ° C., and the polymerization reaction was allowed to proceed. After the entire amount of t-BuMgCl was dropped, the mixture was aged for 30 minutes to complete the conversion of dimethyl vinylphosphonate.
  • Example 2 Production examples (2) to (4) of dimethyl polyvinylphosphonate: Dimethyl phosphite was added to the monomer component (1) used in Example 1, and the monomer component (2) having a purity of 99.1% (dimethyl phosphite content 0.7%), Monomer component (3) with a purity of 98.5% (dimethyl phosphite content 1.3%) and monomer component (4) with a purity of 98.3% (dimethyl phosphite content 1.5%) ) Were prepared respectively.
  • Polyvinyl chloride was prepared by the same procedure as in Example 1 except that each of the monomer components (2) to (4) was used, and an initiator (t-BuMgCl) and a stopper (methanol) in the amounts shown in Table 1 below were used. Dimethyl phosphonate was obtained (Production Examples (2) to (4)).
  • Example 3 Production examples (5) to (8) of dimethyl polyvinylphosphonate: Distillation of 83.5% pure dimethyl vinylphosphonate (containing 3.1% dimethyl phosphite, 13.1% toluene, 0.2% methanol, 0.1% others) to a purity of 99.7 % Monomer component (5) (dimethyl phosphite content 0.04%), purity 99.3% monomer component (6) (dimethyl phosphite content 0.32%), purity 98 9.9% monomer component (7) (dimethyl phosphite content 0.64%) and purity 98.6% monomer component (8) (dimethyl phosphite content 0.96%) Each was prepared.
  • a glass container with a capacity of 500 mL was prepared, the adsorbed water in the container was removed by heating, and nitrogen substitution was further performed.
  • this vessel 40.0 g of monomer component (5) and 245.7 g of methyl t-butyl ether (MTBE) were placed, and the reaction system was cooled to 0 ° C.
  • MTBE methyl t-butyl ether
  • dimethyl polyvinylphosphonate was obtained by the same procedure (Production Examples (6) to (8)). The yield of the obtained dimethyl polyvinylphosphonate and the GPC measurement results are shown in Table 1 below.
  • Example 4 Production examples (9) to (12) of dimethyl polyvinylphosphonate: Except for carrying out the polymerization reaction at a temperature in the reaction system of 25 ° C., dimethyl polyvinylphosphonate was obtained by the same procedure as in Example 3 (Production Examples (9) to (12)). The yield of the obtained dimethyl polyvinylphosphonate and the GPC measurement results are shown in Table 1 below.
  • Example 5 Production examples (13) to (16) of dimethyl polyvinylphosphonate: Except for carrying out the polymerization reaction at a temperature of 50 ° C. in the reaction system, dimethyl polyvinylphosphonate was obtained by the same procedure as in Example 3 (Production Examples (13) to (16)).
  • FIG. 2 shows the relationship between the weight average molecular weight (Mw) of the dimethyl polyvinylphosphonate obtained in Examples 3 to 5 and the dimethyl phosphite concentration.
  • Example 6 Production examples (17) to (20) of dimethyl polyvinylphosphonate: Dimethyl phosphite was added to the monomer component (1) used in Example 1, and the monomer component (17) having a purity of 98.9% (dimethyl phosphite content 0.9%), Monomer component (18) with a purity of 98.3% (dimethyl phosphite content 1.5%), monomer component (19) with a purity of 96.3% (dimethyl phosphite content 3.5%) ) And 95.1% pure monomer component (20) (dimethyl phosphite content 4.7%).
  • dimethylpolyvinylphosphonate was obtained by the same procedure as in Example 3 except that the amounts of initiator (t-BuMgCl) and terminator (methanol) shown in Table 1 were used (production) Examples (17) to (20)).
  • Table 1 shows the yield and GPC measurement results of the obtained dimethyl polyvinylphosphonate. Moreover, the relationship between the weight average molecular weight (Mw) of the dimethyl polyvinylphosphonate obtained in Example 6 and the dimethyl phosphite concentration is shown in FIG.
  • Example 7 Production example (21) of dimethyl polyvinylphosphonate: A glass container with a capacity of 500 mL was prepared, the adsorbed water in the container was removed by heating, and nitrogen substitution was further performed. In this container, 40.0 g of monomer component (19) (dimethyl phosphite content 4.3%) adjusted to 95.5% dimethyl vinylphosphonate purity and 245.0 g of methyl t-butyl ether (MTBE) And the reaction system was heated to 50 ° C.
  • monomer component (19) dimethyl phosphite content 4.3%) adjusted to 95.5% dimethyl vinylphosphonate purity and 245.0 g of methyl t-butyl ether (MTBE)
  • Example 8 Production Examples and Hydrolysis Examples of Polyvinylphosphonic Acid (1): (1) A glass container having a capacity of 500 mL was prepared, the adsorbed water in the container was removed by heating, and nitrogen substitution was further performed. In this container, 40.0 g of the monomer component (18) having the same purity as that used in Example 6 (18) (dimethyl phosphite content 1.5%) and methyl t-butyl ether (MTBE) 245 0.0 g was added and the reaction system was cooled to 0 ° C.
  • MTBE methyl t-butyl ether
  • PhMgBr (7.4 mmol as PhMgBr) prepared to 0.25 mol / L with THF was added dropwise over 1 hour while maintaining the temperature in the system at 0 ° C., and the polymerization reaction was allowed to proceed. After the entire amount of PhMgBr was dropped, the mixture was aged for 30 minutes to complete the conversion of dimethyl vinylphosphonate.
  • Example 9 Production examples and hydrolysis examples of polyvinylphosphonic acid (2): (1) Production of dimethyl polyvinylphosphonate A glass container having a capacity of 500 mL was prepared, and the adsorbed water in the container was removed by heating, followed by nitrogen substitution. In this vessel, 40.3 g of dimethyl vinylphosphonate and 246.2 g of methyl t-butyl ether were placed, and the reaction system was cooled to 0 ° C. After cooling, 27.0 g of t-BuMgCl prepared with THF to 0.25 mol / L (7.5 mmol as t-BuMgCl) was added dropwise over 1 hour while maintaining the temperature in the system at 0 ° C., and the polymerization reaction proceeded. I let you. After the entire amount of t-BuMgCl was dropped, the mixture was aged for 30 minutes to complete the conversion of dimethyl vinylphosphonate.
  • t-BuMgCl prepared with THF to 0.25 mol / L (7.5 mmol as
  • Acid removal step 283.4 g of methyl ethyl ketone was added to the reaction solution obtained in the hydrolysis step to precipitate a polyvinylphosphonic acid solid, and the solid was recovered by filtration.
  • the recovered solid was dissolved in 157.9 g of ion-exchanged water, and 70.0 g of ion-exchange resin (Dowex Monosphere-550A, manufactured by Dow Chemical Co., Ltd.) was added and stirred for 2 hours.
  • the polymer concentration of the aqueous solution was 12.2% by mass (22.0 g as a solid content; yield 92%).
  • the residual chlorine ion was less than 1% based on the polymer.
  • Comparative Example 1 Production example (22) of dimethyl polyvinylphosphonate: A comparative example in which a solvent other than aliphatic ether is used as the polymerization solvent is shown below. That is, a glass container having a capacity of 500 mL was prepared, the adsorbed water in the container was removed by heating, and nitrogen substitution was further performed. In this container, the monomer component (18) having the same purity as that used in Example 6 (18) (dimethyl phosphite content 1.5%) and 266.7 g (2.89 mol) of toluene were added. The reaction system was cooled to 0 ° C.
  • PhMgBr (7.4 mmol as PhMgBr) prepared to 0.25 mol / L with THF was added dropwise over 1 hour while maintaining the temperature in the system at 0 ° C., and the polymerization reaction was allowed to proceed. After the entire amount of PhMgBr was dropped, the mixture was aged for 30 minutes to complete the conversion of dimethyl vinylphosphonate.
  • dimethyl polyvinyl phosphonate having a weight average molecular weight of 60,000 or more which has been difficult in the past, can be easily produced, and the molecular weight can be controlled.
  • this dimethyl polyvinylphosphonate and polyvinylphosphonic acid can be used as polymer electrolyte materials for fuel cells, halogen-free flame retardants, metal surface treatment agents, biocompatible materials, food packaging materials, etc., as polymers having different physical properties. It is a thing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

アニオン重合開始剤の存在下、ビニルホスホン酸ジメチルを主成分として含む単量体成分からアニオン重合によりポリビニルホスホン酸ジメチルを製造する方法であって、重合溶媒として脂肪族エーテルを用いることを特徴とするポリビニルホスホン酸ジメチルの製造方法およびこの方法により得られたポリビニルホスホン酸ジメチルを、酸の存在下で加水分解することを特徴とするポリビニルホスホン酸の製造方法により、 この高分子量かつ分子量が制御されたポリビニルホスホン酸ジメチルを容易に製造することができ、かつ、前記ポリビニルホスホン酸ジメチルに対応する高分子量かつ分子量が制御されたポリビニルホスホン酸を製造することができる。

Description

ポリビニルホスホン酸ジメチル及びポリビニルホスホン酸の製造方法
 本発明は、ポリビニルホスホン酸ジメチルの製造方法及び当該方法により得られたポリビニルホスホン酸ジメチルを加水分解するポリビニルホスホン酸の製造方法に関する。
 ポリビニルホスホン酸ジメチル等のポリビニルホスホン酸エステルやポリビニルホスホン酸は、燃料電池のポリマー電解質材料、ハロゲンフリー難燃剤、金属表面処理剤、生体適合材料、食品包装材料等として開発が進められており、ポリマー構造の解析や重合方法の検討が活発に行われている。
 ポリビニルホスホン酸は、例えば、ビニルホスホン酸のラジカル重合により得られるが、ビニルホスホン酸をラジカル重合して得られるポリビニルホスホン酸は、ヘッド-ツゥ-ヘッド(head-to-head)またはテイル-ツゥ-テイル(tail-to-tail)で結合している割合が高く、位置規則性が低いことが報告されている(非特許文献1)。
 一方、ビニルホスホン酸ジエステルをラジカル重合して得られるポリビニルホスホン酸ジエステルを酸の存在下で加水分解することにより、ポリビニルホスホン酸を得ることができる。この加水分解により得られたポリビニルホスホン酸はヘッド-ツゥ-テイル(head-to-tail)での結合が多く、ビニルホスホン酸のラジカル重合により得られるものに比べて位置規則性が高い(同上)。
 しかしながら、ビニルホスホン酸ジエステルのラジカル重合では、アルコキシが結合しているリン原子に連鎖移動するため、ポリビニルホスホン酸ジエステルやこれを加水分解したポリビニルホスホン酸の分子量を上げることができなかった。
 より分子量の大きなポリビニルホスホン酸ジエステルが得られる方法としてアニオン重合が用いられる(非特許文献2)。このアニオン重合では、より分子量の大きなポリビニルホスホン酸ジエステルが得られるだけではなく、得られたポリビニルホスホン酸ジエステルを加水分解して得られるポリビニルホスホン酸の立体規則性が、ラジカル重合品を加水分解したものに比べて高く、熱的挙動や溶剤への溶解性も異なることが報告されている(同上)。
 さらに、分子量制御が可能な方法として、トリシクロペンタジエニルランタノイド錯体を開始剤として用いるグループ移動重合法(GTP)が報告されている(非特許文献3)。このGTPはリビングアニオン重合の一種で、モノマーと開始剤の比により分子量制御が可能であり、より高分子量かつ低分散のポリマーを得ることができる。
 ところで、ポリビニルホスホン酸ジエステル製造の原料モノマーであるビニルホスホン酸ジエステルとしては、ジメチルエステル、ジエチルエステル、ジイソプロピルエステルなどが使用される。これらの中でも、ジメチルエステルは水への溶解性が高く、水溶液中での加水分解に好適である。また、工業的に入手が容易な点でも有利である。
 しかしながら、アニオン重合やGTPにおいて、原料モノマーとしてビニルホスホン酸ジメチルを用いた場合は、生成したポリマーの溶解性が低いため重合収率が上がらず、分子量を大きくすることも、分子量を制御する事もできなかった(前記引用文献2及び3)。このため、モノマーとしてビニルホスホン酸ジメチルを用いて製造されるポリマーの分子量(重量平均分子量;Mw)はいずれも50,000以下であり、60,000以上の高い分子量を有するポリビニルホスホン酸ジメチルは得られておらず、用途が限定されていた。また、この結果、ポリビニルホスホン酸ジメチルを加水分解して得られるポリビニルホスホン酸も、低分子量のものしか得られなかった。
 一方、モノマーとしてビニルホスホン酸ジイソプロピルを用いて製造されるポリビニルホスホン酸ジイソプロピル等は水溶性の低いものであり、これからポリビニルホスホン酸を製造するには、ジクロロメタン中でトリメチルシリルブロミドを反応させてエステル基をトリメチルシリルエステルに変換した後、酸の存在下で加水分解する必要があり、直接水溶液中で加水分解することは困難であった(前記非特許文献3)。
Macromol. Rapid Commun. 2006, 27, 1719-1724 J Polym Sci Part A: Polym Chem 48, 1677-1682, 2010 Macromolecules, 2011, 44(15), 5920-5927
 本発明は上記実情に鑑みなされたものであり、その課題の一つは、分子量が60,000以上の高分子量である、ポリビニルホスホン酸ジメチルを容易に製造することができる方法を提供することである。
 また、本発明の別の課題は、上記高分子量のものを含むポリビニルホスホン酸ジメチルについて、その分子量を制御しつつ製造する方法を提供することである。
 更に、本発明の他の課題は、高分子量でその分子量が制御されたものを含むポリビニルホスホン酸ジメチルを、直接加水分解するポリビニルホスホン酸の製造方法を提供することである。
 本発明者は、ポリビニルホスホン酸ジメチルのアニオン重合による製造法について鋭意検討を行った結果、重合溶媒として特定の溶媒を用いることにより、分子量60,000以上の高分子量のポリビニルホスホン酸ジメチルを容易に製造することができること、さらに特定の不純物の含有量等を制御する事により、容易に分子量を制御する事ができることを見出した。  
 また、このようにして得られたポリビニルホスホン酸ジメチルを、酸存在下での加水分解に付すことで、容易に高分子量で、かつ分子量が制御されたポリビニルホスホン酸が得られることを見出した。
 本発明は、上記知見に基づくものであり、本発明の第一の発明は、アニオン重合開始剤の存在下、ビニルホスホン酸ジメチルを主成分として含む単量体成分からアニオン重合によりポリビニルホスホン酸ジメチルを製造する方法であって、重合溶媒として脂肪族エーテルを用いることを特徴とするポリビニルホスホン酸ジメチルの製造方法を提供するものである。
 また、本発明の第二の発明は、前記単量体成分として、亜リン酸ジメチルの含有量が調整されたものを用いる上記ポリビニルホスホン酸ジメチルの製造方法を提供するものである。
 更に、本発明の第三の発明は、第一の発明又は第二の発明に記載の方法により得られたポリビニルホスホン酸ジメチルを、酸の存在下で加水分解するポリビニルホスホン酸の製造方法を提供するものである。
 更にまた、本発明の第四の発明は、ビニルホスホン酸ジメチルを主成分として含む単量体成分のアニオン重合において、単量体成分に含まれる亜リン酸ジメチルの量を0.01~5質量%の範囲で調整することを特徴とする、生成ポリビニルホスホン酸ジメチルの分子量の制御方法である。
 本発明の第一の発明によれば、従来困難であった重量平均分子量60,000以上のポリビニルホスホン酸ジメチルを容易に製造することができる。
 また、第二の発明によれば、重量平均分子量(Mw)が、例えば、10,000~300,000の範囲で制御されたポリビニルホスホン酸ジメチルを製造することができる。
 更に、第三の発明によれば、高分子量かつ分子量が制御されたポリビニルホスホン酸ジメチルを直接加水分解することにより、高分子量かつ分子量が制御されたポリビニルホスホン酸を得ることができる。
 更にまた、第四の発明によれば、アニオン重合反応によって得られるポリビニルホスホン酸ジメチルの分子量を予め制御することが可能となる。
実施例1及び2で得られたポリビニルホスホン酸ジメチルの重量平均分子量(Mw)と、亜リン酸ジメチルの濃度との関係を示す図である。 実施例3、4及び5で得られたポリビニルホスホン酸ジメチルの重量平均分子量(Mw)と、亜リン酸ジメチルの濃度との関係を示す図である。 実施例6で得られたポリビニルホスホン酸ジメチルの重量平均分子量(Mw)と、亜リン酸ジメチルの濃度との関係を示す図である。
 以下、本発明の好適な実施形態について詳細に説明するが、本明細書中において、重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、ゲルパーミエイションクロマトグラフィー(GPC)で測定された値であり、具体的には実施例に記載の方法により測定した値を意味する。
(a)ポリビニルホスホン酸ジメチルの製造
 本発明のポリビニルホスホン酸ジメチルの製造方法は、アニオン重合開始剤の存在下、ビニルホスホン酸ジメチルを主成分として含む単量体成分から、アニオン重合によりポリビニルホスホン酸ジメチルを製造する方法であって、重合溶媒として脂肪族エーテルを用いることを特徴とする。
 ポリビニルホスホン酸ジメチル製造のための原料化合物は、ビニルホスホン酸ジメチルを主成分として含有する単量体成分である。この単量体成分とは、実質的にビニルホスホン酸ジメチルのみのものの他、これに、亜リン酸ジメチル等原料由来の不純物や残溶媒などの非重合性成分を含むものを意味する。この単量体成分は、市販品として、例えば片山化学工業(株)製等を商業的に入手可能であり、もしくは公知の方法、例えばパラジウム錯体又はニッケル錯体を触媒として、亜リン酸ジメチルにアセチレンを反応させる方法(例えば、特開2000-256381、特表2001-518905、特開2002-179691、特開2004-075688、WO2009/051025等)などにより得ることができる。
 また、上記製造方法において、重合溶媒として用いる脂肪族エーテル類としては、例えば、ジエチルエーテル、ジプロピルエーテル、メチル-tert-ブチルエーテル(MTBE)、エチル-tert-ブチルエーテル(ETBE)、ジブチルエーテル、ジイソアミルエーテル、ヘキシルメチルエーテル、オクチルメチルエーテル、シクロペンチルメチルエーテル(CPME)、ジシクロペンチルエーテル等の炭素数2~10程度の脂肪族エーテル類が挙げられる。これらの中でも、単量体成分および重合開始剤の溶解性並びに重合反応性の点で、MTBEが特に好ましい。
 上記アニオン重合反応における溶媒の使用量は、モノマーであるビニルホスホン酸ジメチル100重量部に対して通常100~2000重量部、好ましくは300~1000重量部の範囲である。
 本発明では、これらの溶媒を用いることにより、従来、トルエンなどの芳香族化合物やTHFなどの環状エーテルを用いた場合には困難であった分子量60,000以上の高分子量のポリビニルホスホン酸ジメチルを、アニオン重合により容易に合成することができる。なお、当然のことながら、後述するように本発明方法により分子量60,000以下のポリビニルホスホン酸ジメチルを得ることも可能である。
 本発明におけるアニオン重合の形態は特に限定されないが、前記重合溶媒に溶解したビニルホスホン酸ジメチルを含む単量体成分溶液を、所定の温度に保持し、これに開始剤を滴下する滴下重合法が好ましい。また、高真空下、若しくは、窒素、アルゴン、ヘリウム等の不活性ガス雰囲気下で行うことが好ましい。
 アニオン重合における開始剤としては、例えば、メチルリチウム、エチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、へキシルリチウム等の有機リチウム化合物;MeMgBr、EtMgBr、t-BuMgBr、t-BuMgCl、PhMgBr等の有機マグネシウム化合物(グリニャール試薬)等の塩基性有機金属化合物が挙げられる。これらの開始剤の中でも、特に有機マグネシウム化合物を好適に使用することができる。この開始剤の使用量はビニルホスホン酸ジメチル1molに対して通常0.0001~0.1mol、好ましくは0.001~0.05molの範囲である。
 また、これら塩基性有機金属化合物とルイス酸とを併せて使用することができる。ルイス酸としては、例えば、トリt-ブチルアルミニウム、トリイソブチルアルミニウム、トリオクチルアルミニウム等の有機アルミニウム化合物等が挙げられる。ルイス酸を併用する場合の使用量は、通常塩基性有機金属化合物1molに対して通常1.0~50mol、好ましくは2.5~40molの範囲である。
 更にまた、アニオン重合における重合条件は特に限定されないが、重合温度は、通常-80~100℃、好ましくは-20~60℃、より好ましくは0~50℃である。重合時間は、通常0.5~24時間、好ましくは1~12時間、より好ましくは1.5~6時間である。なお、開始剤を滴下して重合を行う場合には、1~4時間の範囲で開始剤を滴下し、0.5~1時間の範囲で熟成することが好ましい。
 本発明のアニオン重合では、目的とする分子量の重合体が形成された段階で、重合停止剤を反応混合物に添加することによって、重合反応を停止させることができる。重合停止剤としては、例えば、水、メタノール、イソプロパノール、酢酸、塩酸のメタノール溶液等のプロトン性化合物を使用することができる。重合停止剤の使用量は特に限定されるものではないが、一般には、使用した重合開始剤1molに対して1~100molの範囲で用いることが好ましい。
 重合反応を停止させた後、反応混合物から目的のポリビニルホスホン酸ジエステルを分離取得する。本発明方法では、重合後のポリビニルホスホン酸ジエステルは溶媒に溶解しないため、ろ過によって容易にポリマーを回収することができる。また、重合溶媒として用いられる脂肪族エーテル類は水と混和しないため、重合液を水と接触させてポリマーを水相側に抽出し、ポリビニルホスホン酸ジエステルをポリマー水溶液として回収することができる。
 なお、上記の方法において、分子量を制御しながらポリビニルホスホン酸ジメチルを生成させることもできる。
 すなわち、上記アニオン重合反応では、原料としてビニルホスホン酸ジメチルを主成分として含む単量体成分(以下、「単量体成分」と略称することがある)を利用するが、この単量体成分中の亜リン酸ジメチルの含有量を調整することで、生成するポリビニルホスホン酸ジメチルの分子量を制御することが可能である。
 この分子量を制御しながらポリビニルホスホン酸ジメチルを製造するには、例えば、原料である単量体成分中の亜リン酸ジメチルの含有量と得られるポリビニルホスホン酸ジメチルの分子量の関係を実験的に調べつつ、原料中の亜リン酸ジメチルの含有料を適宜調整すれば良いが、好ましくは、亜リン酸ジメチルの含有量が0.01~5質量%の範囲で調整された単量体成分を用いる。
 なお、亜リン酸ジメチルは、一般に不純物としてビニルホスホン酸ジメチルに含まれているので、単量体成分中の亜リン酸ジメチルの含有量の調整は、亜リン酸ジメチルを添加するか、あるいは蒸留などの手段により除去することにより行うことができる。
 この方法により得られるポリビニルホスホン酸ジメチルの分子量は、後記実施例に示すように単量体成分に含まれる亜リン酸ジメチルの量が低いほど高くなる。また、アニオン重合では、一般に温度が高くなると連鎖移動が起こりやすくなり低分子量化するため、所定の重合温度において、亜リン酸ジメチル含有量を制御する事により、ポリビニルホスホン酸ジメチルの重量平均分子量(Mw)を概ね10,000~300,000の範囲で制御することができる。
 従って、本発明方法により得られるポリビニルホスホン酸ジメチルの重量平均分子量(Mw)は、上記範囲から用途に応じて任意に選定することができるが、好ましくは30,000~250,000の範囲であり、特に好ましくは60,000~200,000の範囲である。
(b)ポリビニルホスホン酸の製造
 本発明では、上記方法により得られた分子量が制御されたポリビニルホスホン酸ジメチルを、酸の存在下、加水分解することにより、分子量が制御されたポリビニルホスホン酸を得ることができる。
 なお、ポリビニルホスホン酸ジメチルとしては、重合液から固体として回収されたポリマーを用いてもよりし、重合液を水と接触させて、ポリビニルホスホン酸ジメチルを水相側に抽出し、得られたポリマー水溶液を用いてもよい。水抽出により得られたポリマー水溶液を用いて加水分解を行うと、ろ過や乾燥等の工程が不要となり、工程を簡略化することができるための好ましい。
 加水分解に用いられる酸は、リン酸エステルの加水分解において通常用いられるものを使用することができ、無機酸、有機酸、固体酸のいずれも使用可能であるが、反応性の点で、硫酸、塩酸、リン酸等の無機酸が好ましく、塩酸が特に好ましい。また、酸の使用量は、加水分解に用いるポリビニルホスホン酸ジエステルのエステル基1molに対し等mol以上が好ましく、通常1~3mol、好ましくは1~2mol、より好ましくは1~1.5molの範囲である。
 上記の、硫酸、塩酸、リン酸等の無機酸は、水溶液として使用されることが好ましい。この際、酸の濃度は特に限定されないが、酸として塩酸を用いた場合、溶媒としての水の比率を下げることで、酸の使用量を低減できることから、濃塩酸(12mol/L)を使用することが好ましい。
 加水分解は、通常、水、親水性溶媒又はこれらの混合溶媒からなる溶媒中において行われる。親水性溶媒としては、例えば、エチレングリコール、プロピレングリコール、グリセリン等の多価アルコール類;セロソルブ、メチルセロソルブ、エチルセロソルブ、カルビトール、メチルカルビトール、エチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル系溶媒等が挙げられる。
 上記溶媒の使用量は、加水分解に用いるポリビニルホスホン酸ジエステル100重量部に対して通常100~1000重量部、好ましくは400~600重量部、より好ましくは300~500重量部の範囲である。
 なお、加水分解反応においては、反応を阻害しない範囲で消泡剤を使用してもよい。消泡剤としては一般的に破泡効果又は抑泡効果を有する公知のものを使用することができる。具体的には、オイル型シリコーン消泡剤、エマルジョン型シリコーン消泡剤、非イオン系ポリエーテルなどの破泡性ポリマー型消泡剤、特殊非イオン界面活性剤、ポリエーテル変成メチルアルキルポリシロキサン共重合体、ポリエチレングリコール型非イオン界面活性剤、植物油系消泡剤などが挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。消泡剤の使用量は溶媒100重量部に対して通常0.001~1重量部、好ましくは0.01~0.1重量部の範囲である。
 また、加水分解における反応温度は特に制限されないが、通常水の80~100℃、好ましくは90~100℃、より好ましくは95~100℃の範囲から選択される。また、反応時間は前記反応温度との兼ね合いで適宜選択すれば良く、通常2~24時間、好ましくは4~16時間、より好ましくは6時間~8時間の範囲である。
 更に、上記加水分解反応は、加水分解により生じたメタノールを除去しながら行うことが好ましい。
 以上の加水分解により得られたポリビニルホスホン酸の重量平均分子量(Mw)は10,000~300,000、好ましくは30,000~250,000、特に好ましくは60,000~200,000の範囲である。なお、加水分解により得られたポリビニルホスホン酸は、保護基の脱離により理論的には加水分解前のポリマーよりも分子量が減少することになる。しかし、実施例に記載の方法によりGPCで測定された重量平均分子量(Mw)は、カラムとの相互作用の影響により、加水分解後のポリマーの方が加水分解前のポリマーより高分子量体として測定される。従って、この点を考慮して加水分解後のポリマーの分子量が所望の範囲となるようにアニオン重合条件を調整することが好ましい。
 加水分解後のポリマー溶液は、過剰量の酸を含有していることから、酸を除去することが好ましい。酸の除去に当たっては、加水分解により得られたポリマー溶液を、そのまま処理しても、また水で適当な濃度に希釈してから処理してもよい。
 酸除去処理の方法は、ポリマー溶液から酸を分離除去可能であればいずれの方法でも構わない。具体的には、ポリビニルホスホン酸の貧溶媒を用いて行う再沈殿法、吸着処理、限外濾過法、透析法、電気透析法及びイオン交換膜法等が挙げられ、これらの一種あるいは二種以上を組み合わせて行うことが望ましい。
 上記の酸除去処理後のポリビニルホスホン酸は、そのままポリマー溶液として使用することも可能であるが、更に必要に応じて濃縮、再沈殿、溶剤置換、溶媒抽出、乾燥等を行ってから使用することもできる。
 以下に実施例により本発明を説明するが、本発明の技術思想がこれらの例示によって限定されるものではない。なお、各実施例において、重合原料として用いた単量体成分の組成分析、得られたポリマーの分子量、塩化物イオン残存量、加水分解率の測定は以下の方法により行った。また、「%」は特に記載のない限り重量基準である。
 < 組成分析 >
 重合原料として用いた単量体成分のビニルホスホン酸ジメチル純度及び亜リン酸ジメチル含有量の測定は、ガスクロマトグラフィーにより行った。
  ガスクロ装置:SHIMADZU社製 GC-2010
  カラム:DB-1
  測定条件:試料気化室250℃、検出器280℃
    カラムオーブン100℃3分保持、昇温速度15℃/分で280℃
    まで昇温、280℃で20分保持
 < 分子量の測定 >
 実施例において得られたポリマーの重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、ゲルパーミエイションクロマトグラフィー(GPC)により測定し、標準ポリエチレンオキサイド試料を用いた換算値から算出した。
  GPC測定装置:SHIMADZU社製LC-Solution
  カラム:Shodex SB-805HQ、SB-804HQ
  プレカラム:Shodex SB-G
  カラム温度:40℃
  移動相:0.2M NaCl水溶液
  流量:0.5mL/min
  検出器:RI検出器
 < 塩化物イオン濃度 >
 ポリマー中に残存する塩化物イオン濃度は、イオンクロマトグラフ法により定量した。
  IC測定装置:DIONEX ICS-2000
  カラム:AS17-C
  溶離液:KOH
  検出器:電気伝導度検出器
 < 加水分解率の測定 >
 加水分解率の測定はH-NMRによって、ポリビニルホスホン酸ジメチルのメトキシ基に由来するピークの積分値によって算出した。
  NMR測定装置:JEOL AL-400
  溶媒:重水
 < ポリマー濃度 >
 水溶液中のポリマー濃度は、水溶液 0.5mLをシャーレ上で120℃、2時間減圧乾燥した後、残分の重量を測定して求めた。
実 施 例 1
   ポリビニルホスホン酸ジメチルの製造例(1):
 容量10Lのガラス容器を準備し、加熱によって容器内の吸着水を除き、さらに窒素置換を行った。この容器内に、蒸留によりビニルホスホン酸ジメチル純度を99.8%に調製した単量体成分(1)(亜リン酸ジメチル含有量0.02%)980g及びメチルt-ブチルエーテル(MTBE)6444gを入れ、反応系内を0℃に冷却した。
 冷却後、THFによって0.25mol/Lに調製したt-BuMgCl406g(t-BuMgClとして0.12mol)を系内の温度を0℃に保ちつつ1時間かけて滴下し、重合反応を進行させた。t-BuMgClを全量滴下後、30分間熟成し、ビニルホスホン酸ジメチルの転化を終了させた。
 反応液にメタノール3.9g(0.12mol)を加えて30分撹拌し、反応を停止させた。析出したポリマーをろ別によって回収し、減圧乾燥を行い、ポリビニルホスホン酸ジメチルの固体959gを回収した(収率97.9%)。得られたポリビニルホスホン酸ジメチルの収率及びGPC測定結果を表1に示す。
実 施 例 2
   ポリビニルホスホン酸ジメチルの製造例(2)~(4):
 実施例1で用いた単量体成分(1)に、亜リン酸ジメチルを添加して、純度99.1%の単量体成分(2)(亜リン酸ジメチル含有量0.7%)、純度98.5%の単量体成分(3)(亜リン酸ジメチル含有量1.3%)及び純度98.3%の単量体成分(4)(亜リン酸ジメチル含有量1.5%)をそれぞれ調製した。
 単量体成分(2)~(4)を各々用い、後記表1に示した量の開始剤(t-BuMgCl)及び停止剤(メタノール)を用いた以外は実施例1と同様の手順によりポリビニルホスホン酸ジメチルを得た(製造例(2)~(4))。
 得られたポリビニルホスホン酸ジメチルの収率及びGPC測定結果を後記表1に示す。また、実施例1及び2で得られたポリビニルホスホン酸ジメチルの重量平均分子量(Mw)との亜リン酸ジメチル濃度との関係を、図1に示す。
実 施 例 3
  ポリビニルホスホン酸ジメチルの製造例(5)~(8):
 純度83.5%の粗ビニルホスホン酸ジメチル(亜リン酸ジメチル3.1%、トルエン13.1%、メタノール0.2%、その他0.1%を含む)を蒸留して、純度99.7%の単量体成分(5)(亜リン酸ジメチル含有量0.04%)、純度99.3%の単量体成分(6)(亜リン酸ジメチル含有量0.32%)、純度98.9%の単量体成分(7)(亜リン酸ジメチル含有量0.64%)及び純度98.6%の単量体成分(8)(亜リン酸ジメチル含有量0.96%)をそれぞれ調製した。
 容量500mLのガラス容器を準備し、加熱によって容器内の吸着水を除き、さらに窒素置換を行った。この容器内に、単量体成分(5)40.0g及びメチルt-ブチルエーテル(MTBE)245.7gを入れ、反応系内を0℃に冷却した。
 冷却後、THFによって0.25mol/Lに調製したt-BuMgCl 31.8g(t-BuMgClとして8.9mmol)を系内の温度を0℃に保ちつつ1時間かけて滴下し、重合反応を進行させた。t-BuMgClを全量滴下後、30分間熟成し、ビニルホスホン酸ジメチルの転化を終了させた。
 反応液にメタノール0.29g(9.1mmol)加えて30分撹拌し、反応を停止させた。析出したポリマーをろ別によって回収し、減圧乾燥を行うことでポリビニルホスホン酸ジメチルの固体38.9gを回収した(収率97.3%;製造例(5))。
 単量体成分(6)~(8)についても、同様の手順によりポリビニルホスホン酸ジメチルを得た(製造例(6)~(8))。得られたポリビニルホスホン酸ジメチルの収率及びGPC測定結果を後記表1に示す。
実 施 例 4
   ポリビニルホスホン酸ジメチルの製造例(9)~(12):
 反応系内の温度を25℃として重合反応を行う以外は実施例3と同様の手順によりポリビニルホスホン酸ジメチルを得た(製造例(9)~(12))。得られたポリビニルホスホン酸ジメチルの収率及びGPC測定結果を後記表1に示す。
実 施 例 5
   ポリビニルホスホン酸ジメチルの製造例(13)~(16):
 反応系内の温度を50℃として重合反応を行う以外は実施例3と同様の手順によりポリビニルホスホン酸ジメチルを得た(製造例(13)~(16))。
 得られたポリビニルホスホン酸ジメチルの収率及びGPC測定結果を後記表1に示す。また、実施例3~5で得られたポリビニルホスホン酸ジメチルの重量平均分子量(Mw)との亜リン酸ジメチル濃度との関係を、図2に示す。
実 施 例 6
  ポリビニルホスホン酸ジメチルの製造例(17)~(20):
 実施例1で用いた単量体成分(1)に、亜リン酸ジメチルを添加して、純度98.9%の単量体成分(17)(亜リン酸ジメチル含有量0.9%)、純度98.3%の単量体成分(18)(亜リン酸ジメチル含有量1.5%)、純度96.3%の単量体成分(19)(亜リン酸ジメチル含有量3.5%)及び純度95.1%の単量体成分(20)(亜リン酸ジメチル含有量4.7%)をそれぞれ調製した。
 各単量体成分を用い、表1に示した量の開始剤(t-BuMgCl)及び停止剤(メタノール)を用いた以外は実施例3と同様の手順によりポリビニルホスホン酸ジメチルを得た(製造例(17)~(20))。
 得られたポリビニルホスホン酸ジメチルの収率及びGPC測定結果を表1に示す。また、実施例6で得られたポリビニルホスホン酸ジメチルの重量平均分子量(Mw)との亜リン酸ジメチル濃度との関係を、図3に示す。
Figure JPOXMLDOC01-appb-T000001
実 施 例 7
   ポリビニルホスホン酸ジメチルの製造例(21):
 容量500mLのガラス容器を準備し、加熱によって容器内の吸着水を除き、さらに窒素置換を行った。この容器内にビニルホスホン酸ジメチル純度を95.5%に調製した単量体成分(19)(亜リン酸ジメチル含有量4.3%)40.0g及びメチルt-ブチルエーテル(MTBE)245.0gを入れ、反応系内を50℃に加熱した。
 THFによって0.25mol/Lに調製したt-BuMgCl 37.5g(t-BuMgClとして10.6mmol)を系内の温度を50℃に保ちつつ1時間かけて滴下し、重合反応を進行させた。t-BuMgClを全量滴下後、30分間熟成し、ビニルホスホン酸ジメチルの転化を終了させた。
 反応液にメタノール0.35g(11.0mmol)加えて30分撹拌し、反応を停止させた。析出したポリマーをろ別によって回収し、減圧乾燥を行うことでポリビニルホスホン酸ジメチルの固体34.6gを回収した(収率86.5%)。
 得られたポリビニルホスホン酸ジメチルは、GPC測定の結果は、上記表1に示すようにMw=14,900、Mw/Mn=2.22であった。
実 施 例 8
   ポリビニルホスホン酸の製造例および加水分解例(1):
(1)容量500mLのガラス容器を準備し、加熱によって容器内の吸着水を除き、さらに窒素置換を行った。この容器内に実施例6で用いたものと同じ純度98.3%の単量体成分(18)(亜リン酸ジメチル含有量1.5%)40.0g及びメチルt-ブチルエーテル(MTBE)245.0gを入れ、反応系内を0℃に冷却した。
 冷却後、THFによって0.25mol/Lに調製したPhMgBr30.5g(PhMgBrとして7.4mmol)を系内の温度を0℃に保ちつつ1時間かけて滴下し、重合反応を進行させた。PhMgBrを全量滴下後、30分間熟成し、ビニルホスホン酸ジメチルの転化を終了させた。
 反応液にメタノール0.24g(7.5mmol)加えて30分撹拌し、反応を停止させた。析出したポリマーをろ別によって回収し、減圧乾燥を行うことでポリビニルホスホン酸ジメチルの固体39.3gを回収した(収率98.3%)。
 得られたポリビニルホスホン酸ジメチルは、GPC測定の結果、Mw=104,000、Mw/Mn=3.16であった。
(2)容量500mLのガラス容器に上記(1)の操作によって得られたポリビニルホスホン酸ジメチル30.0g(ビニルホスホン酸ジメチル換算で0.22mol)、イオン交換水72.0g(4.00mol)、12mol/L塩酸88.0g(0.87mol)を加え、100℃で6時間反応させた。反応中はディーン・スターク装置を用いて副生物として生成したメタノールを除去した。
 反応終了後、H-NMRの測定によって確認したところ、ポリビニルホスホン酸ジメチルの加水分解率は100%であった。この反応液を濃縮乾燥し、固体状のポリビニルホスホン酸23.0gを得た(収率96.5%)。得られたポリビニルホスホン酸は、GPC測定の結果、Mw=138,000、Mw/Mn=3.20であった。また、塩素分析の結果、残存塩素イオンはポリマーに対して2.7%であった。
実 施 例 9
   ポリビニルホスホン酸の製造例および加水分解例(2):
(1)ポリビニルホスホン酸ジメチルの製造
 容量500mLのガラス容器を準備し、加熱によって容器内の吸着水を除き、さらに窒素置換を行った。この容器内に、ビニルホスホン酸ジメチル40.3g及びメチルt-ブチルエーテル246.2gを入れ、反応系内を0℃に冷却した。冷却後、THFによって0.25mol/Lに調製したt-BuMgCl 27.0g(t-BuMgClとして7.5mmol)を系内の温度を0℃に保ちつつ1時間かけて滴下し、重合反応を進行させた。t-BuMgClを全量滴下後、30分間熟成し、ビニルホスホン酸ジメチルの転化を終了させた。
(2)水抽出工程
 反応液にイオン交換水120.9gを加えて60分撹拌し、反応を停止させた。撹拌終了後、30分静置し有機相と水相を分液することによりポリビニルホスホン酸ジメチルの水溶液167gを回収した。
 得られたポリビニルホスホン酸ジメチルは、GPC測定の結果、Mw=125,000、Mw/Mn=4.40であった。また、水溶液のポリマー濃度は24.5質量%であった(固形分として40.9g;収率102%)。
(3)加水分解工程
 容量500mLのガラス容器に上記のポリビニルホスホン酸ジメチル水溶液124.9g(固形分として30.6g;ビニルホスホン酸ジメチル換算で0.22mol)を加え、ポリビニルホスホン酸ジメチル濃度が30%になるまで100℃で濃縮を行った。濃縮した液に12mol/L塩酸85.6g(0.84mol)を加え、100℃で6時間反応させた。反応中はディーン・スターク装置を用いて副生物として生成したメタノールを除去した。反応終了後、1H-NMRの測定によってポリビニルホスホン酸ジメチルが完全に加水分解されていることを確認した。
(4)酸除去工程
 加水分解工程で得られた反応液にメチルエチルケトン283.4gを加え、ポリビニルホスホン酸の固体を析出させ、ろ過によって固体を回収した。回収した固体をイオン交換水157.9gに溶解させ、イオン交換樹脂(ダウエックスモノスフィア―550A、ダウ・ケミカル社製、商標)70.0gを加えて2時間撹拌した。
 得られたポリビニルホスホン酸は、GPC測定の結果、Mw=170,000、Mw/Mn=3.80であった。また、水溶液のポリマー濃度は12.2質量%であった(固形分として22.0g;収率92%)。また、塩素分析の結果、残存塩素イオンはポリマーに対して1%未満であった。
比 較 例 1
   ポリビニルホスホン酸ジメチルの製造例(22):
 重合溶媒として、脂肪族エーテル以外の溶媒を用いた場合の比較例を以下に示す。すなわち、容量500mLのガラス容器を準備し、加熱によって容器内の吸着水を除き、さらに窒素置換を行った。この容器内に、実施例6で用いたものと同じ純度98.3%の単量体成分(18)(亜リン酸ジメチル含有量1.5%)及びトルエン266.7g(2.89mol)を入れ、反応系内を0℃に冷却した。
 冷却後、THFによって0.25mol/Lに調製したPhMgBr30.5g(PhMgBrとして7.4mmol)を系内の温度を0℃に保ちつつ1時間かけて滴下し、重合反応を進行させた。PhMgBrを全量滴下後、30分間熟成し、ビニルホスホン酸ジメチルの転化を終了させた。
 反応液にメタノール0.24g(7.5mmol)加えて30分撹拌し、反応を停止させた。析出したポリマーをろ別によって回収し、減圧乾燥を行うことでポリビニルホスホン酸ジメチルの固体24.4gを回収した(収率61.1%)。得られたポリビニルホスホン酸ジメチルは、GPC測定の結果、Mw=57,000、Mw/Mn=1.91であった。
 本発明によれば、従来困難であった重量平均分子量60,000以上のポリビニルホスホン酸ジメチルを容易に製造することができ、更に、その分子量も制御することができる。
 また、この高分子量かつ分子量が制御されたポリビニルホスホン酸ジメチルを直接加水分解することで、対応する高分子量かつ分子量が制御されたポリビニルホスホン酸を得ることができる。
 従って、このポリビニルホスホン酸ジメチルやポリビニルホスホン酸は、従来と異なる物性を有するポリマーとして、燃料電池のポリマー電解質材料、ハロゲンフリー難燃剤、金属表面処理剤、生体適合材料、食品包装材料等として利用可能なものである。

 

Claims (8)

  1.  アニオン重合開始剤の存在下、ビニルホスホン酸ジメチルを主成分として含む単量体成分からアニオン重合によりポリビニルホスホン酸ジメチルを製造する方法であって、重合溶媒として脂肪族エーテルを用いることを特徴とするポリビニルホスホン酸ジメチルの製造方法。
  2.  前記脂肪族エーテルが、炭素数2~10のものである請求項1記載のポリビニルホスホン酸ジメチルの製造方法。
  3.  前記単量体成分として、亜リン酸ジメチルの含有量が調整された単量体成分を用いる請求項1または2記載のポリビニルホスホン酸ジメチルの製造方法。
  4.  前記単量体成分中の亜リン酸ジメチルの含有量を、0.01~5質量%の範囲に調整する請求項1ないし3の何れかの項記載のポリビニルホスホン酸ジメチルの製造方法。
  5.  請求項1~4のいずれかの項記載の方法により得られたポリビニルホスホン酸ジメチルを、酸の存在下で加水分解するポリビニルホスホン酸の製造方法。
  6.  アニオン重合により得られた重合液を水と接触させて、ポリビニルホスホン酸ジメチルを水相側に抽出し、得られたポリマー水溶液を用いて加水分解を行う請求項5記載のポリビニルホスホン酸の製造方法。
  7.  ビニルホスホン酸ジメチルを主成分として含む単量体成分のアニオン重合において、単量体成分に含まれる亜リン酸ジメチルの量を0.01~5質量%の範囲で調整することを特徴とする、生成ポリビニルホスホン酸ジメチルの分子量制御方法。
  8.  更に温度を、0℃ないし50℃の範囲内で調整する、請求項7記載の生成ポリビニルホスホン酸ジメチルの分子量の制御方法。

     
PCT/JP2015/065721 2014-06-03 2015-06-01 ポリビニルホスホン酸ジメチル及びポリビニルホスホン酸の製造方法 WO2015186649A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/315,588 US10087265B2 (en) 2014-06-03 2015-06-01 Method for producing dimethyl polyvinylphosphonate and polyvinylphosphonic acid
CN201580029515.7A CN106459272B (zh) 2014-06-03 2015-06-01 聚乙烯基膦酸二甲酯及聚乙烯基膦酸的制备方法
JP2016525153A JP6524074B2 (ja) 2014-06-03 2015-06-01 ポリビニルホスホン酸ジメチル及びポリビニルホスホン酸の製造方法
EP15803277.1A EP3153533A4 (en) 2014-06-03 2015-06-01 Method for producing dimethyl polyvinylphosphonate and polyvinylphosphonic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-114975 2014-06-03
JP2014114975 2014-06-03

Publications (1)

Publication Number Publication Date
WO2015186649A1 true WO2015186649A1 (ja) 2015-12-10

Family

ID=54766721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065721 WO2015186649A1 (ja) 2014-06-03 2015-06-01 ポリビニルホスホン酸ジメチル及びポリビニルホスホン酸の製造方法

Country Status (5)

Country Link
US (1) US10087265B2 (ja)
EP (1) EP3153533A4 (ja)
JP (1) JP6524074B2 (ja)
CN (1) CN106459272B (ja)
WO (1) WO2015186649A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229690A (ja) * 2014-06-03 2015-12-21 丸善石油化学株式会社 ポリビニルホスホン酸の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109879989B (zh) * 2019-02-12 2021-06-04 上海应用技术大学 一种聚乙烯基磷酸及其制备方法
US20220238916A1 (en) * 2021-01-27 2022-07-28 Global Graphene Group, Inc. Flame-resistant electrolyte compositions from phosphonate vinyl monomers, quasi-solid and solid-state electrolytes, and lithium batteries
CN116082541A (zh) * 2022-11-03 2023-05-09 重庆市化工研究院有限公司 一种聚乙烯基膦酸二甲酯的水解方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415208A (ja) * 1990-05-09 1992-01-20 Shiro Kobayashi ビニルエステル基を有するポリ(n―アシルエチレンイミン)マクロモノマー及びその製造方法並びにポリ(n―アシルエチレンイミン)誘導体鎖をグラフト鎖として有する共重合体及びその製造方法
JP2002179691A (ja) * 2000-11-02 2002-06-26 Basf Ag アルケニルホスホン酸誘導体の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB812983A (en) * 1956-06-15 1959-05-06 Ici Ltd New polymerisable ester and polymers obtained therefrom
US6479687B2 (en) * 1997-04-15 2002-11-12 Basf Aktiengesellschaft Preparation of vinylphosphonic acid compounds
DE19715667A1 (de) * 1997-04-15 1998-10-22 Basf Ag Verfahren zur Herstellung von Vinylphosphonsäure-Verbindungen
US6350723B1 (en) * 1998-11-30 2002-02-26 Ethyl Corporation Block copolymers prepared by anionic polymerization
DE10350674A1 (de) * 2003-10-30 2005-06-02 Basf Ag Verfahren zur Herstellung eines Alkenylphosphonsäure-Derivats
CN101365727B (zh) * 2006-01-09 2011-11-09 巴斯夫欧洲公司 共聚物、其制备方法及其在处理表面中的用途
FR2967925B1 (fr) * 2010-11-30 2012-12-28 Commissariat Energie Atomique Procede de preparation de particules inorganiques conductrices de protons
CN103224639A (zh) * 2013-05-10 2013-07-31 天津大学 高分子-微囊复合膜及其制备和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415208A (ja) * 1990-05-09 1992-01-20 Shiro Kobayashi ビニルエステル基を有するポリ(n―アシルエチレンイミン)マクロモノマー及びその製造方法並びにポリ(n―アシルエチレンイミン)誘導体鎖をグラフト鎖として有する共重合体及びその製造方法
JP2002179691A (ja) * 2000-11-02 2002-06-26 Basf Ag アルケニルホスホン酸誘導体の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP3153533A4 *
STEPHAN SALZINGER ET AL.: "Poly (vinylphosphonate)s Synthesized by Trivalent Cyclopentadienyl Lanthanide-Induced Group Transfer Polymerization", MACROMOLECULES, vol. 44, no. 15, 2011, pages 5920 - 5927, XP001564720, ISSN: 0024-9297 *
TAKEHIRO KAWAUCHI ET AL.: "Preparation of Isotactic-Rich Poly(dimethyl vinylphosphonate) and Poly(vinylphosphonic acid) via the Anionic Polymerization of Dimethyl Vinylphosphonate", J POLYM SCI PART A: POLYM CHEM, vol. 48, no. 8, 2010, pages 1677 - 1682, XP055241667, ISSN: 0887-624x *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229690A (ja) * 2014-06-03 2015-12-21 丸善石油化学株式会社 ポリビニルホスホン酸の製造方法

Also Published As

Publication number Publication date
JP6524074B2 (ja) 2019-06-05
EP3153533A1 (en) 2017-04-12
JPWO2015186649A1 (ja) 2017-04-20
CN106459272B (zh) 2019-04-30
US20170198073A1 (en) 2017-07-13
EP3153533A4 (en) 2018-01-03
CN106459272A (zh) 2017-02-22
US10087265B2 (en) 2018-10-02

Similar Documents

Publication Publication Date Title
WO2015186649A1 (ja) ポリビニルホスホン酸ジメチル及びポリビニルホスホン酸の製造方法
JP5531244B2 (ja) 1−メチレンテトラリン重合体及びその製造方法
KR101774740B1 (ko) 주기율표의 제2족에 속하는 금속을 함유하는 신규한 유기금속 화합물, 및 이의 제조방법
Hou et al. Synthesis of poly (2-hydroxyethyl methacrylate) end-capped with asymmetric functional groups via atom transfer radical polymerization
CN114380961A (zh) 聚烯烃-聚苯乙烯多嵌段共聚物,用于制备其的有机锌化合物及其制备方法
Rixens et al. Synthesis of phosphonated copolymers with tailored architecture by reversible addition‐fragmentation chain transfer polymerization (RAFT)
Jankova et al. Controlled/“living” atom transfer radical polymerization of styrene in the synthesis of amphiphilic diblock copolymers from a poly (ethylene glycol) macroinitiator
Shimomoto et al. Pd‐initiated polymerization of diazo compounds bearing dialkoxyphosphinyl group and hydrolysis of the resulting polymers and oligomers to afford phosphonic acid‐containing products
JP3871463B2 (ja) プロピレンオキシドの重合触媒組成物およびポリ(プロピレンオキシド)の製造方法
JP6359879B2 (ja) ポリビニルホスホン酸の製造方法
JPH02105802A (ja) モリブデン触媒系を用いる高ビニルポリブタジエンの合成
JPS6317282B2 (ja)
Higashimura et al. Living cationic polymerization of vinyl ethers with a functional group. VII. Polymerization of vinyl ethers with a silyloxyl group and synthesis of polyalcohols and related functional polymers
JP2015054917A (ja) 末端不飽和基含有重合体の精製方法、末端不飽和基含有ポリエーテルの製造方法、および加水分解性シリル基含有ポリエーテルの製造方法
JP2002128886A (ja) プロピレンオキシドの重合触媒組成物およびプロピレンオキシドの重合体の製造方法
JP4109668B2 (ja) 両親媒性コイル−ロッド型の2−ビニルピリジンとn−ヘキシルイソシアネートブロック共重合体およびその重合方法
Hua et al. Synthesis of phenylphosphinic acid-containing amphiphilic homopolymers by reversible addition-fragmentation transfer (RAFT) polymerization and its aggregation in water
JP6630662B2 (ja) アルキレンオキシド重合体の製造方法
KR101593782B1 (ko) 디엔 중합용 촉매 및 이를 이용한 디엔 중합 방법
US11827729B2 (en) Method for producing polyvinylphosphonic acid copolymer
JP2019065146A (ja) 共重合体、組成物、共重合体の製造方法
JP2015527463A (ja) 高分子量ポリ(2,3,3,3−テトラフルオロプロペン)の合成
JPH03106890A (ja) 2―アリルフェノールのシリル誘導体
CN110088148B (zh) 1,3,7-辛三烯聚合物和其氢化物、以及该聚合物的制造方法
Blas et al. SYNTHESIS OF HYBRID PARTICLES: SURFACE-INITIATED POLYMERIZATION OF STYRENE VIA NMP FROM ORDERED MESOPOROUS SILICA

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803277

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016525153

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15315588

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015803277

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015803277

Country of ref document: EP