WO2015186325A1 - リチウム複合金属酸化物の製造方法 - Google Patents

リチウム複合金属酸化物の製造方法 Download PDF

Info

Publication number
WO2015186325A1
WO2015186325A1 PCT/JP2015/002725 JP2015002725W WO2015186325A1 WO 2015186325 A1 WO2015186325 A1 WO 2015186325A1 JP 2015002725 W JP2015002725 W JP 2015002725W WO 2015186325 A1 WO2015186325 A1 WO 2015186325A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite metal
zirconium
lithium
fired body
metal oxide
Prior art date
Application number
PCT/JP2015/002725
Other languages
English (en)
French (fr)
Inventor
潤 齊田
武文 福本
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54766410&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015186325(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to JP2016525686A priority Critical patent/JP6202205B2/ja
Publication of WO2015186325A1 publication Critical patent/WO2015186325A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a lithium composite metal oxide.
  • Li a Ni b Co c Mn d De O f (0.2 ⁇ a ⁇ 2, b + c + d + e 1, 0 ⁇ e ⁇ 1, D is Fe, Cr, Cu, Zn, Ca, Mg, Zr, S, Si, Na, K, Al, Ti, P, Ga, Ge, V, Mo At least one element selected from Nb, W, La, Hf, and Rf, 1.7 ⁇ f ⁇ 3) is widely used as an active material for lithium ion secondary batteries. .
  • Patent Literature 1 and Patent Literature 2 describe a method for producing the above lithium composite metal oxide in which various production parameters are specified.
  • Patent Document 2 also describes a method for producing a lithium composite metal oxide in which D is Zr in the above general formula.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a new method for producing a lithium composite metal oxide that can be an active material.
  • a precursor manufacturing process in which a composite metal hydroxide containing nickel, cobalt and manganese is heated to form a precursor;
  • a first firing step in which a mixture obtained by mixing the precursor and the lithium salt is heated at 500 to 700 ° C. for 10 to 30 hours to form a first fired body;
  • a second firing step in which the first fired body is heated at 750 to 1000 ° C. to form a second fired body; It is characterized by including.
  • a precursor manufacturing process in which the composite metal hydroxide is heated to form a precursor;
  • a firing step in which a mixture obtained by mixing the precursor and the lithium salt is heated to form a fired body, It is characterized by including.
  • a precursor manufacturing process in which a composite metal hydroxide containing nickel, cobalt and manganese is heated to form a precursor;
  • a first firing step in which a mixture obtained by mixing the precursor and the lithium salt is heated to form a first fired body,
  • the production method of the present invention can provide a new lithium composite metal oxide that can be an active material.
  • FIG. 2 is a SEM photograph of secondary particles of the lithium composite metal oxide of Example 1.
  • FIG. 2 is a SEM photograph of primary particles of a lithium composite metal oxide of Example 1.
  • 4 is a SEM photograph of primary particles of a lithium composite metal oxide of Comparative Example 1.
  • 4 is an EDX chart of a lithium composite metal oxide according to Example 2.
  • 6 is an EDX chart of a lithium composite metal oxide of Example 4.
  • 4 is a SEM photograph of the lithium composite metal oxide of Example 5.
  • the numerical range “x to y” described in this specification includes the lower limit x and the upper limit y.
  • the numerical range can be configured by arbitrarily combining these upper limit value and lower limit value and the numerical values listed in the examples.
  • numerical values arbitrarily selected from the numerical value range can be used as upper and lower numerical values.
  • a, e, f may be any numerical value within the range defined by the general formula, and preferably 0.5 ⁇ a ⁇ 1.5, 0 ⁇ e ⁇ 0.2, 1.8 ⁇ f ⁇ 2.5 More preferably, 0.8 ⁇ a ⁇ 1.3, 0 ⁇ e ⁇ 0.1, 1.9 ⁇ f ⁇ 2.1 can be exemplified.
  • the precursor manufacturing process is a process in which a composite metal hydroxide containing nickel, cobalt and manganese is heated to form a precursor.
  • the composite metal hydroxide containing nickel, cobalt and manganese can be produced by mixing an aqueous solution containing nickel, cobalt and manganese and a basic aqueous solution. The manufacturing process of the composite metal hydroxide will be described in detail.
  • the production process of composite metal hydroxide is Dissolving a nickel salt, a cobalt salt and a manganese salt in water to prepare a composite metal-containing aqueous solution containing nickel, cobalt and manganese in a predetermined ratio; Preparing a basic aqueous solution, Supplying the composite metal-containing aqueous solution to the basic aqueous solution, and depositing nickel, cobalt and manganese as composite metal hydroxide, a composite metal hydroxide precipitation step, including.
  • nickel salt examples include nickel sulfate, nickel carbonate, nickel nitrate, nickel acetate, and nickel chloride.
  • cobalt salt examples include cobalt sulfate, cobalt carbonate, cobalt nitrate, cobalt acetate, and cobalt chloride.
  • manganese salt examples include manganese sulfate, manganese carbonate, manganese nitrate, manganese acetate, and manganese chloride.
  • the step of preparing the composite metal-containing aqueous solution is preferably carried out in a reaction vessel equipped with a stirring device, and more preferably carried out in a reaction vessel equipped with a device capable of introducing an inert gas such as nitrogen or argon.
  • the reaction tank provided with the apparatus used as a constant temperature condition is more preferable.
  • the aqueous solution containing a composite metal is preferably heated in the range of 40 to 70 ° C., more preferably 40 to 60 ° C.
  • the pH of the basic aqueous solution is preferably in the range of 9 to 14, more preferably in the range of 10 to 13, and further preferably in the range of 10.5 to 12. Unless otherwise specified, the pH specified in this specification refers to a value measured at 25 ° C.
  • the basic compound that can be used is not particularly limited as long as it dissolves in water and exhibits basicity, and examples thereof include alkali metal hydroxides such as ammonia, sodium hydroxide, potassium hydroxide, and lithium hydroxide, sodium carbonate, and carbonate.
  • alkali metal carbonates such as potassium and lithium carbonate
  • alkali metal phosphates such as trisodium phosphate, tripotassium phosphate and trilithium phosphate
  • alkali metal acetates such as sodium acetate, potassium acetate and lithium acetate.
  • a basic compound may be used independently and may use multiple together.
  • the pH of the aqueous solution is preferably kept in a suitable range, and thus the basic aqueous solution preferably contains at least a basic compound having a buffering capacity.
  • the basic compound having a buffering ability include ammonia, alkali metal carbonates, alkali metal phosphates, and alkali metal acetates.
  • the step of preparing the basic aqueous solution is preferably performed in a reaction tank equipped with a stirring device, and more preferably performed in a reaction tank equipped with a device capable of introducing an inert gas such as nitrogen or argon. Moreover, the reaction tank provided with the apparatus used as a constant temperature condition is more preferable.
  • the basic aqueous solution is preferably heated in the range of 40 to 70 ° C., more preferably 40 to 60 ° C.
  • the composite metal hydroxide precipitation step by supplying the composite metal-containing aqueous solution to the basic aqueous solution, metal ions and hydroxide ions react, and nickel, cobalt, and manganese having low solubility in water A composite metal hydroxide containing is produced and deposited.
  • the precipitated composite metal hydroxide particles serve as the basis of primary particles of the lithium composite metal oxide. Therefore, if the composite metal hydroxide precipitation step is performed under a condition where the precipitation rate of the composite metal hydroxide is extremely high, that is, a condition where the core of the composite metal hydroxide is generated everywhere, As a result, particles may be formed, and as a result, undesired crystal habits of primary particles of the lithium composite metal oxide may occur. Therefore, in the composite metal hydroxide precipitation step, it is preferable to deposit the composite metal hydroxide particles under as mild a condition as possible.
  • the rate of supplying the composite metal-containing aqueous solution is preferably 10 to 1000 mL / h, more preferably 20 to 500 mL / h, and particularly preferably 50 to 300 mL / h.
  • the reaction temperature in the composite metal hydroxide precipitation step is 40 to 70 ° C., preferably 40 to 60 ° C.
  • pH value here means the numerical value itself which measured the reaction liquid with the pH meter.
  • the pH is preferably in the range of 9 to 14, more preferably in the range of 10 to 12, and particularly preferably in the range of 10.5 to 11.
  • the composite metal hydroxide precipitation step is preferably carried out in a reaction vessel equipped with a stirring device, and more preferably carried out in a reaction vessel equipped with a device capable of introducing an inert gas such as nitrogen or argon. Moreover, the reaction tank provided with the apparatus used as a constant temperature condition is more preferable. After the composite metal hydroxide precipitation step, the composite metal hydroxide is separated by filtration or the like. By the above method, a composite metal hydroxide can be obtained.
  • the purpose of the heating in the precursor production process is to remove water adhering to the composite metal hydroxide.
  • the heating temperature is preferably 100 ° C. or higher, more preferably in the range of 150 to 500 ° C., and particularly preferably in the range of 200 to 400 ° C.
  • the precursor production process may be performed under normal pressure or under reduced pressure.
  • the first firing step is a step of heating the mixture obtained by mixing the precursor and the lithium salt at 500 to 700 ° C. for 10 to 30 hours to form a first fired body.
  • lithium salts include lithium carbonate, lithium hydroxide, lithium nitrate, lithium acetate, lithium oxalate, and lithium halide. What is necessary is just to determine suitably the compounding quantity of lithium salt so that it may become a lithium complex metal oxide of a desired lithium composition.
  • Examples of the mixing device include a mortar and pestle, a stirring mixer, a V-type mixer, a W-type mixer, a ribbon-type mixer, a drum mixer, and a ball mill.
  • the first firing step is preferably performed under atmospheric conditions, but may be performed in the presence of an inert gas such as helium or argon.
  • the temperature of the first firing step is 500 to 700 ° C., preferably 550 to 650 ° C.
  • the heating time of the first firing step is 10 to 30 hours, preferably 11 to 25 hours, and more preferably 14 to 25 hours.
  • each metal moves within the particles of the mixture.
  • the mixture is heated at 500 to 700 ° C. for 10 to 30 hours, so that a specific bias occurs in the metal composition in the particles of the obtained first fired body.
  • the first fired body in which the specific composition of the metal composition in the particles is generated is fired in the second firing process under a condition different from that of the first firing process, whereby a lithium composite metal that can be a suitable active material. Oxides can be produced.
  • the second firing step is a step of heating the first fired body at 750 to 1000 ° C.
  • the second firing step is desirably performed under atmospheric conditions.
  • the temperature of the second firing step is 750 to 1000 ° C.
  • the temperature in the second firing step is preferably 750 to 900 ° C, more preferably 800 to 875 ° C.
  • crystal nuclei of a specific composition that can be generated within this temperature range are at specific locations (for example, the central portion) that satisfy the crystallizable composition conditions in the particles. Further, in the vicinity of the crystal nucleus, crystals grow sequentially as the crystallizable composition condition is satisfied due to the movement of the metal.
  • the heating time of the second baking step is preferably 1 to 30 hours, preferably 3 to 25 hours, and more preferably 5 to 15 hours.
  • the lithium composite metal oxide obtained in the second firing step has a constant particle size distribution through a pulverization step and a classification step.
  • the average particle diameter (D50) is preferably 100 ⁇ m or less, more preferably 1 ⁇ m or more and 50 ⁇ m or less, and even more preferably 1 ⁇ m or more and 30 ⁇ m or less in the measurement with a general laser scattering diffraction particle size distribution analyzer. 2 ⁇ m or more and 20 ⁇ m or less is particularly preferable.
  • the primary particle size of the lithium composite metal oxide according to the first aspect of the present invention is preferably in the range of 50 nm to 1500 nm by microscopic observation.
  • Li a Ni b Co c Mn d De O f (0.2 ⁇ a ⁇ 2, b + c + d + e 1, 0 ⁇ b ⁇ 1, 0 ⁇ c, which is the first invention of the present invention.
  • ⁇ 1, 0 ⁇ d ⁇ 1, 0 ⁇ e ⁇ 1, D is Fe, Cr, Cu, Zn, Ca, Mg, Zr, S, Si, Na, K, Al, Ti, P, Ga, Ge, V
  • At least one element selected from Mo, Nb, W, La, Hf, and Rf, 1.7 ⁇ f ⁇ 3) can be produced.
  • the doping element D When producing a lithium composite metal oxide containing 0 ⁇ e ⁇ 1 in the above general formula, that is, the doping element D, and / or at any point in the production process of the composite metal hydroxide, and / or What is necessary is just to add dope element D containing compound to the mixing time of the precursor and lithium salt in a 1st baking process.
  • the doping element D is zirconium
  • zirconium may be doped by the method described in the following second or third invention of the present invention. What is necessary is just to determine suitably the compounding quantity of dope element D containing compound so that it may become desired dope amount ( De ).
  • doping element D-containing compound examples include doping element D oxide, doping element D hydroxide, doping element D sulfate, doping element D nitrate, doping element D phosphate, and doping element D halide.
  • doping element D when the doping element D is zirconium, specific examples include zirconium oxide, zirconium hydroxide, zirconium sulfate, zirconium nitrate, zirconium phosphate and zirconium halide.
  • the lithium composite metal oxide according to the first invention of the present invention has a layered rock salt structure.
  • the lithium composite metal oxide according to the first invention of the present invention is manufactured with the parameters in the manufacturing process being limited in detail. Therefore, in the lithium composite metal oxide according to the first aspect of the present invention, it is difficult for nickel to enter the lithium layer of the layered rock salt structure, or lithium does not easily enter the nickel position of the transition metal layer. It is thought that it is hard to produce a calation.
  • the value of each primary particle (maximum length / second maximum length perpendicular to the maximum length direction) in scanning electron microscope (SEM) observation is approximately 1.
  • the value of (maximum length / second maximum length perpendicular to the maximum length direction) is 2 to 9, preferably 3 to 9, Those in the range of 5-9 are preferably observed.
  • the lithium composite metal oxide according to the first aspect of the present invention preferably contains 50% (number) or more, more preferably 70% (number) or more of primary particles within the above range.
  • the maximum length of the primary particles is the length of the layered salt structure in the ab-axis direction
  • the second maximum length perpendicular to the maximum length direction is the length of the layered salt structure in the c-axis direction.
  • lithium composite metal oxide according to the first aspect of the present invention primary particles having a value of (maximum length / second maximum length perpendicular to the maximum length direction) within the above range are observed as described above. Since the temperature condition of the second baking step is low, disordered formation of crystal nuclei is suppressed and crystal growth is performed with a uniform composition, resulting in no Li—Ni intercalation or Rietveld The degree of Li-Ni intercalation calculated in the analysis is approximately 0.4% or less, which is thought to be due to the formation of a layered rock salt structure of an ideal lithium layer and a transition metal layer having a uniform metal composition. .
  • the primary particle means a particle recognized as one particle in SEM observation
  • the secondary particle means a mass in which primary particles are combined in SEM observation.
  • a precursor manufacturing process in which the composite metal hydroxide is heated to form a precursor;
  • a firing step in which a mixture obtained by mixing the precursor and the lithium salt is heated to form a fired body, It is characterized by including.
  • C, d, and e are 10/100 ⁇ b ⁇ 90/100, 10/100 ⁇ c ⁇ 90/100, 5/100 ⁇ d ⁇ 70/100, 0 ⁇ e ⁇ 10/100
  • the range is preferably 12/100 ⁇ b ⁇ 80/100, 12/100 ⁇ c ⁇ 80/100, 10/100 ⁇ . More preferably, the ranges are d ⁇ 60/100, 1/10000 ⁇ e ⁇ 5/100, and 15/100 ⁇ b ⁇ 70/100, 15/100 ⁇ c ⁇ 70/100, 12/100 ⁇ d ⁇ . More preferably, the ranges are 50/100 and 1/1000 ⁇ e ⁇ 1/100.
  • a, f and g may be numerical values within the range defined by the general formula, and preferably 0.5 ⁇ a ⁇ 1.5, 0 ⁇ f ⁇ 0.1, 1.8 ⁇ g ⁇ 2.5 More preferably, 0.8 ⁇ a ⁇ 1.3, 0 ⁇ f ⁇ 0.01, 1.9 ⁇ g ⁇ 2.1 can be exemplified.
  • the composite metal hydroxide production process comprises mixing an aqueous solution containing nickel, cobalt, manganese and zirconium and a basic aqueous solution, and a composite metal containing nickel, cobalt, manganese and zirconium under the conditions of pH 10-11 and 40-70 ° C. This is a process for producing a hydroxide.
  • NiCoMnZr aqueous solution An aqueous solution containing nickel, cobalt, manganese and zirconium (hereinafter sometimes referred to as NiCoMnZr aqueous solution) may be produced by dissolving nickel salt, cobalt salt, manganese salt and zirconium salt in water at a predetermined ratio.
  • the NiCoMnZr aqueous solution may be appropriately adjusted in pH so that each metal salt is easily dissolved, and the NiCoMnZr aqueous solution has a dissolution aid such as a coordination capable compound or chelate compound having a hydroxyl group, an amino group, a carboxyl group, etc. May be added.
  • the pH of the NiCoMnZr aqueous solution is preferably within the range of 1 to 2.
  • the NiCoMnZr aqueous solution is preferably heated in the range of 40 to 70 ° C., more preferably 45 to 65 ° C., and further preferably 55 to 65 ° C.
  • Examples of the nickel salt include nickel sulfate, nickel carbonate, nickel nitrate, nickel acetate, and nickel chloride.
  • Examples of the cobalt salt include cobalt sulfate, cobalt carbonate, cobalt nitrate, cobalt acetate, and cobalt chloride.
  • Examples of the manganese salt include manganese sulfate, manganese carbonate, manganese nitrate, manganese acetate, and manganese chloride.
  • Examples of the zirconium salt include zirconium oxide, zirconium hydroxide, zirconium sulfate, zirconium nitrate, zirconium phosphate, and zirconium halide.
  • the step of preparing the NiCoMnZr aqueous solution is preferably carried out in a reaction vessel equipped with a stirring device, and more preferably carried out in a reaction vessel equipped with a device capable of introducing an inert gas such as nitrogen or argon.
  • the reaction tank provided with the apparatus used as a constant temperature condition is more preferable.
  • the pH of the basic aqueous solution is preferably in the range of 10 to 14, more preferably in the range of 10 to 13, and further preferably in the range of 10.5 to 12.
  • the basic compound that can be used is not particularly limited as long as it dissolves in water and exhibits basicity, and examples thereof include alkali metal hydroxides such as ammonia, sodium hydroxide, potassium hydroxide, and lithium hydroxide, sodium carbonate, and carbonate.
  • alkali metal carbonates such as potassium and lithium carbonate, alkali metal phosphates such as trisodium phosphate, tripotassium phosphate and trilithium phosphate, and alkali metal acetates such as sodium acetate, potassium acetate and lithium acetate. Can do.
  • a basic compound may be used independently and may use multiple together.
  • the pH of the aqueous solution is preferably kept in a suitable range, and thus the basic aqueous solution preferably contains at least a basic compound having a buffering capacity.
  • the basic compound having a buffering ability include ammonia, alkali metal carbonates, alkali metal phosphates, and alkali metal acetates.
  • the step of preparing the basic aqueous solution is preferably performed in a reaction tank equipped with a stirring device, and more preferably performed in a reaction tank equipped with a device capable of introducing an inert gas such as nitrogen or argon. Moreover, the reaction tank provided with the apparatus used as a constant temperature condition is more preferable.
  • the basic aqueous solution is preferably heated in the range of 40 to 70 ° C., more preferably 45 to 65 ° C.
  • a NiCoMnZr aqueous solution and a basic aqueous solution are mixed to produce a composite metal hydroxide containing nickel, cobalt, manganese and zirconium under the conditions of pH 10 to 11 and 40 to 70 ° C.
  • pH value here means the numerical value itself which measured the reaction liquid with the pH meter.
  • metal ions and hydroxide ions react to include nickel, cobalt, manganese, and zirconium, which have low solubility in water.
  • a composite metal hydroxide is formed and deposited.
  • the precipitated composite metal hydroxide particles serve as the basis of primary particles of the lithium composite metal oxide. Therefore, if the composite metal hydroxide production process is performed under conditions where the precipitation rate of the composite metal hydroxide is extremely high, that is, under conditions where the core of the composite metal hydroxide is generated everywhere, As a result, particles may be formed, and as a result, undesired crystal habits of primary particles of the lithium composite metal oxide may occur.
  • the composite metal hydroxide production process it is preferable to deposit the composite metal hydroxide particles under as mild conditions as possible.
  • a method of supplying the NiCoMnZr aqueous solution to the basic aqueous solution is preferable.
  • the rate of supplying the composite metal-containing aqueous solution is preferably 10 to 1000 mL / h, more preferably 20 to 500 mL / h, and particularly preferably 50 to 300 mL / h.
  • the pH of the composite metal hydroxide production process is preferably in the range of 10.2 to 10.7.
  • the reaction temperature in the composite metal hydroxide production step is preferably within the range of 45 to 65 ° C, and more preferably within the range of 55 to 65 ° C.
  • the composite metal hydroxide production process is preferably carried out in a reaction vessel equipped with a stirring device, and more preferably carried out in a reaction vessel equipped with a device capable of introducing an inert gas such as nitrogen or argon.
  • the reaction tank provided with the apparatus used as a constant temperature condition is more preferable.
  • the composite metal hydroxide is separated by filtration or the like. In the obtained composite metal hydroxide, it is estimated that each metal is uniformly distributed.
  • the precursor production process is a process in which the composite metal hydroxide is heated to form a precursor.
  • the purpose of the heating in the precursor production process is to remove water adhering to the composite metal hydroxide.
  • the heating temperature is preferably 100 ° C. or higher, more preferably in the range of 150 to 500 ° C., and particularly preferably in the range of 200 to 400 ° C.
  • the precursor production process may be performed under normal pressure or under reduced pressure.
  • the firing step is a step in which a mixture obtained by mixing the precursor and the lithium salt is heated to obtain a fired body.
  • lithium salts include lithium carbonate, lithium hydroxide, lithium nitrate, lithium acetate, lithium oxalate, and lithium halide. What is necessary is just to determine suitably the compounding quantity of lithium salt so that it may become a lithium complex metal oxide of a desired lithium composition.
  • Examples of the mixing device include a mortar and pestle, a stirring mixer, a V-type mixer, a W-type mixer, a ribbon-type mixer, a drum mixer, and a ball mill.
  • the calcination step may be performed under atmospheric conditions or in the presence of an inert gas such as helium or argon.
  • the heating temperature in the firing step can be exemplified as a range of 500 to 1200 ° C.
  • the heating time in the firing step can be 1 to 50 hours.
  • the firing process may be carried out under a single temperature condition, or may be carried out by combining a plurality of firing processes with different temperature conditions, or may be carried out by setting a specific temperature raising program. .
  • a first firing step in which the mixture of the precursor and lithium salt is heated at 500 to 700 ° C. for 10 to 30 hours to form a first fired body, and the first A second firing step in which one fired body is heated at 750 to 1000 ° C. can be exemplified.
  • the temperature of the first firing step is 500 to 700 ° C., preferably 550 to 650 ° C.
  • the heating time of the first firing step is 10 to 30 hours, preferably 11 to 25 hours, and more preferably 14 to 25 hours.
  • each metal moves within the particles of the mixture.
  • the mixture is heated at 500 to 700 ° C. for 10 to 30 hours, so that a specific bias occurs in the metal composition in the particles of the obtained first fired body.
  • the first fired body in which the specific composition of the metal composition in the particles is generated is fired in the second firing process under a condition different from that of the first firing process, whereby a lithium composite metal that can be a suitable active material. Oxides can be produced.
  • the second firing step is a step of heating the first fired body at 750 to 1000 ° C.
  • the temperature of the second firing step is 750 to 1000 ° C.
  • the temperature in the second baking step is preferably 750 to 900 ° C., more preferably 800 to 870 ° C.
  • crystal nuclei of a specific composition that can be generated within this temperature range are at specific locations (for example, the central portion) that satisfy the crystallizable composition conditions in the particles. Further, in the vicinity of the crystal nucleus, crystals grow sequentially as the crystallizable composition condition is satisfied due to the movement of the metal.
  • the heating time of the second baking step is preferably 1 to 30 hours, preferably 3 to 25 hours, and more preferably 5 to 15 hours.
  • a zirconium addition step of further adding zirconium may be performed on the first fired body obtained in the first firing step.
  • an appropriate amount of zirconium may be added so that the zirconium composition of the desired lithium composite metal oxide is obtained.
  • a dry method of mixing a zirconium salt powder with the first fired body may be employed, or a wet method described in detail below may be employed.
  • zirconium salt examples include zirconium oxide, zirconium hydroxide, zirconium sulfate, zirconium nitrate, zirconium phosphate, and zirconium halide.
  • Mixing devices include mortar and pestle, stirring mixer, V-type mixer, W-type mixer, ribbon-type mixer, drum mixer, ball mill, Nara Machinery Co., Ltd. Hybridization System (NHS) and Miraro , Hosokawa Micron Corporation's Mechano-Fusion and Nobilta, and Deoksugaku Factory's Theta Composer. From the viewpoint of high stirring shearing force, the mixing apparatus is preferably a hybridization system, Miraro, mechanofusion, nobilta, or theta composer.
  • the wet method includes a dispersion preparation step of dispersing the first fired body in water, and a zirconium precipitation step of mixing the hydroxycarboxylic acid-containing zirconium aqueous solution and the dispersion to precipitate zirconium on the surface of the first fired body. Including.
  • the first fired body it is preferable to pulverize the first fired body before the dispersion preparation step. Further, in the dispersion liquid preparation step, lithium contained in the first fired body may be dissolved in water. Therefore, it is preferable to add the above-described lithium salt to the dispersion in an appropriate amount. Furthermore, it is preferable to adjust the pH so that the pH of the dispersion is in the range of about 9-12.
  • the hydroxycarboxylic acid-containing zirconium aqueous solution is produced by dissolving a zirconium salt and a hydroxycarboxylic acid in water.
  • zirconium salts include zirconium oxide, zirconium hydroxide, zirconium sulfate, zirconium nitrate, zirconium phosphate, and zirconium halide.
  • hydroxycarboxylic acid having a hydroxyl group and a carboxylic acid group in the molecule examples include aliphatic hydroxycarboxylic acids and aromatic hydroxycarboxylic acids.
  • Aliphatic hydroxycarboxylic acids include glycolic acid, lactic acid, tartronic acid, glyceric acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, ⁇ -hydroxybutyric acid, malic acid, tartaric acid, citramalic acid, citric acid, isocitric acid, leucine acid And mevalonic acid, pantoic acid, quinic acid, and shikimic acid.
  • aromatic hydroxycarboxylic acid examples include o-hydroxybenzoic acid derivatives such as salicylic acid, gentisic acid, and orthoric acid, mandelic acid, benzylic acid, and 2-hydroxy-2-phenylpropionic acid.
  • Any of the above specific hydroxycarboxylic acids can form a conformation in which an OH group and a CO 2 H group can coordinate to the same zirconium ion.
  • the zirconium precipitation step is a step of mixing the hydroxycarboxylic acid-containing zirconium aqueous solution and the dispersion to precipitate zirconium on the surface of the first fired body.
  • the first fired body that has undergone the zirconium precipitation step is preferably separated by a method such as filtration, and further dried within a range of 100 to 500 ° C., preferably 200 to 400 ° C.
  • the first fired body that has undergone the zirconium addition step is subjected to the second firing step.
  • the lithium composite metal oxide obtained in the second firing step has a constant particle size distribution through a pulverization step and a classification step.
  • the average particle diameter (D50) is preferably 100 ⁇ m or less, more preferably 1 ⁇ m or more and 50 ⁇ m or less, and even more preferably 1 ⁇ m or more and 30 ⁇ m or less in the measurement with a general laser scattering diffraction particle size distribution analyzer. 2 ⁇ m or more and 20 ⁇ m or less is particularly preferable.
  • the primary particle size of the lithium composite metal oxide according to the second invention of the present invention is preferably within the range of 50 nm to 1500 nm by microscopic observation. The primary particles mean particles recognized as one particle in SEM observation.
  • Li a Ni b Co c Mn d Zr e D f O g (0.2 ⁇ a ⁇ 2, b + c + d + e + f 1, 0 ⁇ b ⁇ 1, 0, which is the second invention of the present invention.
  • ⁇ C ⁇ 1, 0 ⁇ d ⁇ 1, 0 ⁇ e ⁇ 1, 0 ⁇ f ⁇ 1, D is Fe, Cr, Cu, Zn, Ca, Mg, S, Si, Na, K, Al, Ti, P , Ga, Ge, V, Mo, Nb, W, La, Hf, and Rf, at least one element, 1.7 ⁇ g ⁇ 3) can be produced.
  • a precursor manufacturing process in which a composite metal hydroxide containing nickel, cobalt and manganese is heated to form a precursor;
  • a first firing step in which a mixture obtained by mixing the precursor and the lithium salt is heated to form a first fired body,
  • C, d, and e are 10/100 ⁇ b ⁇ 90/100, 10/100 ⁇ c ⁇ 90/100, 5/100 ⁇ d ⁇ 70/100, 0 ⁇ e ⁇ 10/100
  • the range is preferably 12/100 ⁇ b ⁇ 80/100, 12/100 ⁇ c ⁇ 80/100, 10/100 ⁇ . More preferably, the ranges are d ⁇ 60/100, 1/10000 ⁇ e ⁇ 5/100, and 15/100 ⁇ b ⁇ 70/100, 15/100 ⁇ c ⁇ 70/100, 12/100 ⁇ d ⁇ . More preferably, the ranges are 50/100 and 1/1000 ⁇ e ⁇ 1/100.
  • a, f and g may be numerical values within the range defined by the general formula, and preferably 0.5 ⁇ a ⁇ 1.5, 0 ⁇ f ⁇ 0.1, 1.8 ⁇ g ⁇ 2.5 More preferably, 0.8 ⁇ a ⁇ 1.3, 0 ⁇ f ⁇ 0.01, 1.9 ⁇ g ⁇ 2.1 can be exemplified.
  • the precursor production process is a process for producing a precursor by heating a composite metal hydroxide containing nickel, cobalt, and manganese.
  • a composite metal hydroxide containing nickel, cobalt and manganese can be produced by mixing an aqueous solution containing nickel, cobalt and manganese and a basic aqueous solution. The manufacturing process of the composite metal hydroxide will be described in detail.
  • the production process of composite metal hydroxide is Dissolving a nickel salt, a cobalt salt and a manganese salt in water to prepare a composite metal-containing aqueous solution containing nickel, cobalt and manganese in a predetermined ratio; Preparing a basic aqueous solution, Supplying the composite metal-containing aqueous solution to the basic aqueous solution, and depositing nickel, cobalt and manganese as composite metal hydroxide, a composite metal hydroxide precipitation step, including.
  • nickel salt examples include nickel sulfate, nickel carbonate, nickel nitrate, nickel acetate, and nickel chloride.
  • cobalt salt examples include cobalt sulfate, cobalt carbonate, cobalt nitrate, cobalt acetate, and cobalt chloride.
  • manganese salt examples include manganese sulfate, manganese carbonate, manganese nitrate, manganese acetate, and manganese chloride.
  • the compounding ratio of the nickel salt, cobalt salt and manganese salt in the composite metal-containing aqueous solution may be adjusted so that these compounding ratios are the desired metal composition ratio of the lithium composite metal oxide.
  • the step of preparing the composite metal-containing aqueous solution is preferably carried out in a reaction vessel equipped with a stirring device, and more preferably carried out in a reaction vessel equipped with a device capable of introducing an inert gas such as nitrogen or argon.
  • the reaction tank provided with the apparatus used as a constant temperature condition is more preferable.
  • the aqueous solution containing a composite metal is preferably heated in the range of 40 to 70 ° C., more preferably 45 to 65 ° C.
  • the pH of the basic aqueous solution is preferably in the range of 9 to 14, more preferably in the range of 10 to 13, and further preferably in the range of 10.5 to 12. Unless otherwise specified, the pH specified in this specification refers to a value measured at 25 ° C.
  • the basic compound that can be used is not particularly limited as long as it dissolves in water and exhibits basicity, and examples thereof include alkali metal hydroxides such as ammonia, sodium hydroxide, potassium hydroxide, and lithium hydroxide, sodium carbonate, and carbonate.
  • alkali metal carbonates such as potassium and lithium carbonate
  • alkali metal phosphates such as trisodium phosphate, tripotassium phosphate and trilithium phosphate
  • alkali metal acetates such as sodium acetate, potassium acetate and lithium acetate.
  • a basic compound may be used independently and may use multiple together.
  • the pH of the aqueous solution is preferably kept in a suitable range, and thus the basic aqueous solution preferably contains at least a basic compound having a buffering capacity.
  • the basic compound having a buffering ability include ammonia, alkali metal carbonates, alkali metal phosphates, and alkali metal acetates.
  • the step of preparing the basic aqueous solution is preferably performed in a reaction tank equipped with a stirring device, and more preferably performed in a reaction tank equipped with a device capable of introducing an inert gas such as nitrogen or argon. Moreover, the reaction tank provided with the apparatus used as a constant temperature condition is more preferable.
  • the basic aqueous solution is preferably heated in the range of 40 to 70 ° C., more preferably 45 to 65 ° C.
  • the composite metal hydroxide precipitation step by supplying the composite metal-containing aqueous solution to the basic aqueous solution, metal ions and hydroxide ions react, and nickel, cobalt, and manganese having low solubility in water A composite metal hydroxide containing is produced and deposited.
  • the precipitated composite metal hydroxide particles serve as the basis of primary particles of the lithium composite metal oxide. Therefore, if the composite metal hydroxide precipitation step is performed under a condition where the precipitation rate of the composite metal hydroxide is extremely high, that is, a condition where the core of the composite metal hydroxide is generated everywhere, As a result, particles may be formed, and as a result, undesired crystal habits of primary particles of the lithium composite metal oxide may occur. Therefore, in the composite metal hydroxide precipitation step, it is preferable to deposit the composite metal hydroxide particles under as mild a condition as possible.
  • the rate of supplying the composite metal-containing aqueous solution is preferably 10 to 1000 mL / h, more preferably 20 to 500 mL / h, and particularly preferably 50 to 300 mL / h.
  • the reaction temperature in the composite metal hydroxide precipitation step is 40 to 70 ° C., preferably 45 to 65 ° C.
  • pH value here means the numerical value itself which measured the reaction liquid with the pH meter.
  • the pH is preferably in the range of 9 to 14, more preferably in the range of 10 to 12, and particularly preferably in the range of 10.5 to 11.
  • the composite metal hydroxide precipitation step is preferably carried out in a reaction vessel equipped with a stirring device, and more preferably carried out in a reaction vessel equipped with a device capable of introducing an inert gas such as nitrogen or argon. Moreover, the reaction tank provided with the apparatus used as a constant temperature condition is more preferable. After the composite metal hydroxide precipitation step, the composite metal hydroxide is separated by filtration or the like. By the above method, a composite metal hydroxide can be obtained.
  • the purpose of the heating in the precursor production process is to remove water adhering to the composite metal hydroxide.
  • the heating temperature is preferably 100 ° C. or higher, more preferably in the range of 150 to 500 ° C., and particularly preferably in the range of 200 to 400 ° C.
  • the precursor production process may be performed under normal pressure or under reduced pressure.
  • a 1st baking process is a process of heating the mixture which mixed the said precursor and lithium salt, and setting it as a 1st baking body.
  • lithium salts include lithium carbonate, lithium hydroxide, lithium nitrate, lithium acetate, lithium oxalate, and lithium halide. What is necessary is just to determine suitably the compounding quantity of lithium salt so that it may become a lithium complex metal oxide of a desired lithium composition.
  • Examples of the mixing device include a mortar and pestle, a stirring mixer, a V-type mixer, a W-type mixer, a ribbon-type mixer, a drum mixer, and a ball mill.
  • the first firing step may be performed under atmospheric conditions or in the presence of an inert gas such as helium or argon.
  • the heating temperature in the first firing step can be exemplified by a range of 500 to 1200 ° C.
  • the heating time of the first baking step can be exemplified by 1 to 50 hours.
  • the temperature of the first firing step is preferably 500 to 700 ° C, more preferably 550 to 650 ° C.
  • the heating time of the first baking step is preferably 10 to 30 hours, more preferably 11 to 25 hours, and particularly preferably 14 to 25 hours.
  • each metal moves within the particles of the mixture.
  • the mixture is heated at 500 to 700 ° C. for 10 to 30 hours, thereby causing a specific bias in the metal composition in the particles of the obtained first fired body. Is done.
  • a suitable active material is obtained by firing the first fired body having a specific bias in the metal composition in the particles in the second firing process under conditions different from the first firing process in the subsequent process. It is thought that the lithium composite metal oxide which can become can be manufactured.
  • the dispersion preparing step is a step of preparing a dispersion by dispersing the first fired body in water.
  • the first fired body it is preferable to pulverize the first fired body before the dispersion preparation step.
  • lithium contained in the first fired body may be dissolved in water. Therefore, it is preferable to add the above-described lithium salt to the dispersion in an appropriate amount. Furthermore, it is preferable to adjust the pH so that the pH of the dispersion is in the range of about 9-12.
  • the zirconium precipitation step is a step of mixing the hydroxycarboxylic acid-containing zirconium aqueous solution and the dispersion to precipitate zirconium on the surface of the first fired body.
  • the hydroxycarboxylic acid-containing zirconium aqueous solution is produced by dissolving a zirconium salt and a hydroxycarboxylic acid in water.
  • zirconium salts include zirconium oxide, zirconium hydroxide, zirconium sulfate, zirconium nitrate, zirconium phosphate, and zirconium halide.
  • hydroxycarboxylic acid having a hydroxyl group and a carboxylic acid group in the molecule examples include aliphatic hydroxycarboxylic acids and aromatic hydroxycarboxylic acids.
  • Aliphatic hydroxycarboxylic acids include glycolic acid, lactic acid, tartronic acid, glyceric acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, ⁇ -hydroxybutyric acid, malic acid, tartaric acid, citramalic acid, citric acid, isocitric acid, leucine acid And mevalonic acid, pantoic acid, quinic acid, and shikimic acid.
  • aromatic hydroxycarboxylic acid examples include o-hydroxybenzoic acid derivatives such as salicylic acid, gentisic acid, and orthoric acid, mandelic acid, benzylic acid, and 2-hydroxy-2-phenylpropionic acid.
  • Any of the above specific hydroxycarboxylic acids can form a conformation in which an OH group and a CO 2 H group can coordinate to the same zirconium ion.
  • the zirconium precipitation step it is preferable to control the pH of the solution in the zirconium precipitation step in order to precipitate zirconium efficiently.
  • a basic aqueous solution so that the pH of the solution in the zirconium precipitation step is within the range of 9 to 13. What is necessary is just to employ
  • the first fired body that has undergone the zirconium precipitation step is preferably separated by a method such as filtration, and further dried within a range of 100 to 500 ° C., preferably 200 to 400 ° C.
  • the second firing step is a step of heating the first fired body that has undergone the zirconium precipitation step to form a second fired body.
  • the temperature in the second firing step is preferably 750 to 1000 ° C.
  • the temperature in the second baking step is more preferably 750 to 900 ° C., and further preferably 800 to 870 ° C.
  • crystal nuclei of a specific composition that can be generated within this temperature range are at specific locations (for example, the central portion) that satisfy the crystallizable composition conditions in the particles.
  • crystals grow sequentially as the crystallizable composition condition is satisfied due to the movement of the metal.
  • crystals having a uniform composition and a uniform shape are generated.
  • the generation rate of crystal nuclei increases and the composition capable of generating crystal nuclei increases, so that crystal nuclei of various compositions are generated everywhere in the particles, and as a result. It is estimated that crystals having a non-uniform composition and a non-uniform shape may be generated.
  • the heating time of the second baking step is preferably 1 to 30 hours, preferably 3 to 25 hours, and more preferably 5 to 15 hours.
  • the lithium composite metal oxide obtained in the second firing step has a constant particle size distribution through a pulverization step and a classification step.
  • the average particle diameter (D50) is preferably 100 ⁇ m or less, more preferably 1 ⁇ m or more and 50 ⁇ m or less, and even more preferably 1 ⁇ m or more and 30 ⁇ m or less in the measurement with a general laser scattering diffraction particle size distribution analyzer. 2 ⁇ m or more and 20 ⁇ m or less is particularly preferable.
  • the primary particle size of the lithium composite metal oxide according to the third aspect of the present invention is preferably in the range of 50 nm to 1500 nm by microscopic observation. The primary particles mean particles recognized as one particle in SEM observation.
  • the general formula: Li a Ni b Co c Mn d Zr e D f O g (0.2 ⁇ a ⁇ 1.5, b + c + d + e + f 1, 0 ⁇ b ⁇ 1), which is the third invention of the present invention.
  • D is Fe, Cr, Cu, Zn, Ca, Mg, S, Si, Na, K, Al, Ti , P, Ga, Ge, V, Mo, Nb, W, La, Hf, at least one element selected from Rf, 1.7 ⁇ g ⁇ 2.1) can be produced. .
  • General formula: Li a Ni b Co c Mn d D f O g (0.2 ⁇ a ⁇ 2, b + c + d + f 1, 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 1, 0 ⁇ d ⁇ 1, 0 ⁇ f ⁇ 1, D is
  • the above materials may be those produced by the method described in the first invention of the present invention, those produced by known methods may be used, or commercially available materials may be used.
  • the dispersion preparation step and the zirconium precipitation step may be performed according to the same step of the third invention of the present invention.
  • the material having undergone the zirconium precipitation step is preferably separated by a method such as filtration and further dried within a range of 100 to 500 ° C., preferably 200 to 400 ° C.
  • the calcination step may be performed under atmospheric conditions or in the presence of an inert gas such as helium or argon.
  • the heating temperature in the firing step can be exemplified by a range of 500 to 1200 ° C., preferably in the range of 600 to 800 ° C.
  • the heating time in the firing step can be 1 to 50 hours, and preferably 2 to 5 hours.
  • 3rd invention of this invention is used for the suitable range of a, b, c, d, e, f, and g in each said general formula.
  • a range of 1/500 ⁇ e ⁇ 1/300 is added as a particularly preferable range of e. If the range of e is 1/500 ⁇ e ⁇ 1/300, the layered rock salt structure material can be efficiently and uniformly coated with zirconium.
  • the lithium composite metal oxides of the first invention, the second invention, the third invention and the 3-1 invention of the present invention can be used as an active material of a lithium ion secondary battery.
  • the lithium ion secondary battery of the present invention comprises the lithium composite metal oxide of the present invention as an active material.
  • the lithium ion secondary battery of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator that include the lithium composite metal oxide of the present invention as an active material.
  • the positive electrode has a current collector and a positive electrode active material layer bound to the surface of the current collector.
  • the current collector refers to a chemically inert electronic conductor that keeps a current flowing through an electrode during discharge or charging of a lithium ion secondary battery.
  • As the current collector at least one selected from silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, and stainless steel, etc. Metal materials can be exemplified.
  • the current collector may be covered with a known protective layer. What collected the surface of the electrical power collector by the well-known method may be used as an electrical power collector.
  • the current collector can take the form of a foil, a sheet, a film, a linear shape, a rod shape, a mesh, or the like. Therefore, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector.
  • a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector.
  • the thickness is preferably in the range of 1 ⁇ m to 100 ⁇ m.
  • the positive electrode active material layer contains a positive electrode active material and, if necessary, a conductive additive and / or a binder.
  • Any positive electrode active material may be used as long as it contains the lithium composite metal oxide of the present invention, and only the lithium composite metal oxide of the present invention may be employed.
  • a positive electrode active material may be used in combination.
  • Conductive aid is added to increase the conductivity of the electrode. Therefore, the conductive auxiliary agent may be added arbitrarily when the electrode conductivity is insufficient, and may not be added when the electrode conductivity is sufficiently excellent.
  • the conductive auxiliary agent may be any chemically inert electronic high conductor, such as carbon black, graphite, acetylene black, ketjen black (registered trademark), or vapor grown carbon fiber (Vapor Grown Carbon). Fiber: VGCF) and various metal particles are exemplified. These conductive assistants can be added to the active material layer alone or in combination of two or more.
  • the binder serves to hold the active material and the conductive auxiliary agent on the surface of the current collector and maintain the conductive network in the electrode.
  • the binder include fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, alkoxysilyl group-containing resins, poly ( Examples thereof include acrylic resins such as (meth) acrylic acid, styrene-butadiene rubber (SBR), and carboxymethylcellulose. These binders may be used singly or in plural.
  • the negative electrode has a current collector and a negative electrode active material layer bound to the surface of the current collector. What is necessary is just to employ
  • the negative electrode active material layer includes a negative electrode active material and, if necessary, a conductive additive and / or a binder.
  • Examples of the negative electrode active material include a carbon-based material capable of inserting and extracting lithium, an element that can be alloyed with lithium, a compound having an element that can be alloyed with lithium, a polymer material, and the like.
  • the carbon-based material examples include non-graphitizable carbon, graphite, coke, graphite, glassy carbon, organic polymer compound fired body, carbon fiber, activated carbon, or carbon black.
  • the organic polymer compound fired body refers to a material obtained by firing and carbonizing a polymer material such as phenols and furans at an appropriate temperature.
  • elements that can be alloyed with lithium include Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si. , Ge, Sn, Pb, Sb, Bi can be exemplified, and Si or Sn is particularly preferable.
  • Specific examples of compounds having elements that can be alloyed with lithium include ZnLiAl, AlSb, SiB 4 , SiB 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2, CrSi 2, Cu 5 Si, FeSi 2, MnSi 2, NbSi 2, TaSi 2, VSi 2, WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SiO v (0 ⁇ v ⁇ 2), SnO w (0 ⁇ w ⁇ 2), SnSiO 3 , LiSiO 2 or LiSnO, particularly SiO x (0.3 ⁇ x ⁇ 1.6, or 0.5 ⁇ x ⁇ 1.5) Is preferred.
  • the negative electrode active material preferably includes a Si-based material having Si.
  • the Si-based material may be made of silicon or / and a silicon compound capable of occluding / releasing lithium ions, for example, SiOx (0.5 ⁇ x ⁇ 1.5).
  • SiOx 0.5 ⁇ x ⁇ 1.5
  • silicon has a large theoretical charge / discharge capacity
  • silicon has a large volume change during charge / discharge. Therefore, the volume change of silicon can be mitigated by using SiOx containing silicon as the negative electrode active material.
  • the Si-based material preferably has a Si phase and a SiO 2 phase.
  • the Si phase is composed of simple silicon, and is a phase that can occlude and release Li ions, and expands and contracts as Li ions are occluded and released.
  • the SiO 2 phase is made of SiO 2 and serves as a buffer phase that absorbs the expansion and contraction of the Si phase.
  • a Si-based material in which the Si phase is covered with the SiO 2 phase is preferable.
  • it is preferable that a plurality of micronized Si phases are covered with a SiO 2 phase to form particles integrally. In this case, the volume change of the entire Si-based material can be effectively suppressed.
  • the mass ratio of the SiO 2 phase to the Si phase in the Si-based material is preferably 1 to 3. If the mass ratio is too small, the expansion and contraction of the Si-based material becomes relatively large, and there is a possibility that a crack may occur in the negative electrode active material layer containing the Si-based material. On the other hand, when the mass ratio is too large, the amount of insertion and extraction of Li ions of the negative electrode active material is reduced, and the electric capacity per unit mass of the negative electrode of the battery is reduced.
  • a tin compound such as a tin alloy (Cu—Sn alloy, Co—Sn alloy, etc.) can be exemplified.
  • polymer material examples include polyacetylene and polypyrrole.
  • the negative electrode active material a Si material obtained by heating a layered polysilane obtained by treating CaSi 2 with an acid such as hydrochloric acid or hydrofluoric acid at 300 to 1000 ° C. may be employed. Furthermore, the Si material heated with a carbon source and carbon coated may be adopted as the negative electrode active material.
  • the negative electrode active material one or more of the above can be used.
  • a current collecting method such as a roll coating method, a die coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method
  • An active material may be applied to the surface of the body.
  • an active material, a solvent, and, if necessary, a binder and / or a conductive aid are mixed to prepare a slurry.
  • the solvent include N-methyl-2-pyrrolidone, methanol, methyl isobutyl ketone, and water.
  • the slurry is applied to the surface of the current collector and then dried. In order to increase the electrode density, the dried product may be compressed.
  • the electrolytic solution contains a non-aqueous solvent and an electrolyte dissolved in the non-aqueous solvent.
  • cyclic esters examples include ethylene carbonate, propylene carbonate, butylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, and gamma valerolactone.
  • chain esters include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, ethyl methyl carbonate, propionic acid alkyl ester, malonic acid dialkyl ester, and acetic acid alkyl ester.
  • ethers examples include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, and 1,2-dibutoxyethane.
  • non-aqueous solvent a compound in which part or all of hydrogen in the chemical structure of the specific solvent is substituted with fluorine may be employed.
  • Examples of the electrolyte include lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , and LiN (CF 3 SO 2 ) 2 .
  • a lithium salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 in a nonaqueous solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, and diethyl carbonate.
  • a solution dissolved at a concentration of about / L can be exemplified.
  • the separator separates the positive electrode and the negative electrode and allows lithium ions to pass while preventing a short circuit due to contact between the two electrodes.
  • natural resins such as polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamide, polyaramid (Aromatic polymer), polyester, polyacrylonitrile, etc., polysaccharides such as cellulose, amylose, fibroin, keratin, lignin, suberin, etc. Examples thereof include porous bodies, nonwoven fabrics, and woven fabrics using one or more electrically insulating materials such as polymers and ceramics.
  • the separator may have a multilayer structure.
  • a separator is sandwiched between the positive electrode and the negative electrode as necessary to form an electrode body.
  • the electrode body may be either a stacked type in which the positive electrode, the separator and the negative electrode are stacked, or a wound type in which the positive electrode, the separator and the negative electrode are sandwiched.
  • an electrolyte is added to the electrode body and a lithium ion secondary Use batteries.
  • the lithium ion secondary battery of this invention should just be charged / discharged in the voltage range suitable for the kind of active material contained in an electrode.
  • the shape of the lithium ion secondary battery of the present invention is not particularly limited, and various shapes such as a cylindrical shape, a square shape, a coin shape, and a laminate shape can be adopted.
  • the lithium ion secondary battery of the present invention may be mounted on a vehicle.
  • the vehicle may be a vehicle that uses electric energy from a lithium ion secondary battery for all or a part of its power source, and may be, for example, an electric vehicle or a hybrid vehicle.
  • a lithium ion secondary battery is mounted on a vehicle, a plurality of lithium ion secondary batteries may be connected in series to form an assembled battery.
  • devices equipped with lithium ion secondary batteries include various home appliances driven by batteries such as personal computers and portable communication devices, office devices, and industrial devices in addition to vehicles.
  • the lithium ion secondary battery of the present invention includes wind power generation, solar power generation, hydroelectric power generation and other power system power storage devices and power smoothing devices, power supplies for ships and / or auxiliary power supply sources, aircraft, Power supply for spacecraft and / or auxiliary equipment, auxiliary power supply for vehicles that do not use electricity as a power source, power supply for mobile home robots, power supply for system backup, power supply for uninterruptible power supply, You may use for the electrical storage apparatus which stores temporarily the electric power required for charge in the charging station for electric vehicles.
  • each lithium composite metal oxide may include the manufacturing process of another invention.
  • the lithium composite metal oxide produced in such a production process has the effect of the incorporated production process.
  • Example 1 The lithium composite metal oxide of Example 1 was produced as follows.
  • Nickel sulfate, cobalt sulfate, and manganese sulfate were dissolved in 1200 mL of pure water so that the composition ratio of Ni: Co: Mn was 5: 3: 2 to prepare a composite metal-containing aqueous solution.
  • the aqueous composite metal-containing solution was warmed to 50 ° C. and maintained.
  • a first basic aqueous solution was prepared by mixing 14 mL of 28% aqueous ammonia and 400 mL of pure water. The first basic aqueous solution was warmed to 50 ° C. and maintained.
  • a second basic aqueous solution was prepared by mixing 96 g of sodium hydroxide, 84 mL of 28% ammonia water, and 500 mL of pure water.
  • the composite metal-containing aqueous solution was supplied to the first basic aqueous solution under stirring conditions at a rate of 200 mL / h to precipitate nickel, cobalt, and manganese as composite metal hydroxide.
  • the second basic aqueous solution was appropriately added dropwise.
  • pH value here means the numerical value itself which measured the reaction liquid with the pH meter.
  • the composite metal hydroxide was separated by filtration. The composite metal hydroxide was washed with pure water using an ultrasonic cleaner, and then the composite metal hydroxide was isolated by filtration.
  • the composite metal hydroxide was dried at 300 ° C. for 5 hours to obtain a precursor.
  • 19 g of precursor and 9.35 g of lithium carbonate were mixed in a mortar to obtain a mixture.
  • the said mixture was heated at 600 degreeC in air
  • the first fired body was crushed with a mortar to obtain a powder.
  • the powdery first fired body was heated at 850 ° C. for 7 hours in an air atmosphere to obtain a lithium composite metal oxide.
  • the lithium composite metal oxide was crushed in a mortar to obtain the lithium composite metal oxide of Example 1.
  • the lithium ion secondary battery of Example 1 was manufactured as follows.
  • An aluminum foil having a thickness of 20 ⁇ m was prepared as a positive electrode current collector. 94 parts by mass of the lithium composite metal oxide of Example 1 as an active material, 3 parts by mass of acetylene black as a conductive additive, and 3 parts by mass of polyvinylidene fluoride (PVDF) as a binder were mixed. This mixture was dispersed in an appropriate amount of N-methyl-2-pyrrolidone (NMP) to prepare a slurry. The slurry was placed on the surface of the aluminum foil, and applied using a doctor blade so that the slurry became a film. The aluminum foil coated with the slurry was dried at 80 ° C.
  • NMP N-methyl-2-pyrrolidone
  • the aluminum foil having the active material layer formed on the surface thereof was compressed using a roll press, and the aluminum foil and the active material layer were firmly bonded.
  • the joined product was heated at 120 ° C. for 6 hours with a vacuum dryer, cut into a predetermined shape (rectangular shape of 25 mm ⁇ 30 mm), and used as a positive electrode.
  • the negative electrode was produced as follows. 98.3 parts by mass of graphite, 1 part by mass of styrene-butadiene rubber and 0.7 part by mass of carboxymethyl cellulose as a binder were mixed, and the mixture was dispersed in an appropriate amount of ion-exchanged water to prepare a slurry. This slurry was applied to a copper foil having a thickness of 20 ⁇ m as a negative electrode current collector so as to form a film using a doctor blade, and the current collector coated with the slurry was dried and pressed. It was heated with a vacuum dryer for a period of time and cut into a predetermined shape (rectangular shape of 25 mm ⁇ 30 mm) to obtain a negative electrode.
  • a laminate type lithium ion secondary battery was manufactured using the positive electrode and the negative electrode. Specifically, a rectangular sheet (27 ⁇ 32 mm, thickness 25 ⁇ m) made of a resin film having a three-layer structure of polypropylene / polyethylene / polypropylene was sandwiched between the positive electrode and the negative electrode to form an electrode plate group. The electrode plate group was covered with a set of two laminated films, and the three sides were sealed, and then an electrolyte solution was injected into the bag-like laminated film.
  • the electrolytic solution a solution obtained by dissolving LiPF 6 in a solvent obtained by mixing ethylene carbonate, ethyl methyl carbonate and dimethyl carbonate in a volume ratio of 3: 3: 4 so as to be 1 mol / L was used. Thereafter, the remaining one side was sealed to obtain a laminate type lithium ion secondary battery of Example 1 in which the four sides were hermetically sealed and the electrode plate group and the electrolyte were sealed. Note that the positive electrode and the negative electrode have a tab that can be electrically connected to the outside, and a part of the tab extends to the outside of the laminated lithium ion secondary battery.
  • the lithium ion secondary battery of Example 1 was fabricated through the above steps.
  • Example 2 The lithium composite metal oxide of Example 2 was produced as follows.
  • Nickel sulfate, cobalt sulfate, and manganese sulfate were dissolved in 1200 mL of pure water so that the composition ratio of Ni: Co: Mn was 5: 3: 2 to prepare a composite metal-containing aqueous solution.
  • the aqueous composite metal-containing solution was warmed to 50 ° C. and maintained.
  • a first basic aqueous solution was prepared by mixing 14 mL of 28% aqueous ammonia and 400 mL of pure water. The first basic aqueous solution was warmed to 50 ° C. and maintained.
  • a second basic aqueous solution was prepared by mixing 96 g of sodium hydroxide, 84 mL of 28% ammonia water, and 500 mL of pure water.
  • the composite metal-containing aqueous solution was supplied to the first basic aqueous solution under stirring conditions at a rate of 200 mL / h to precipitate nickel, cobalt, and manganese as composite metal hydroxide.
  • the second basic aqueous solution was appropriately added dropwise.
  • pH value here means the numerical value itself which measured the reaction liquid with the pH meter.
  • the composite metal hydroxide was separated by filtration. The composite metal hydroxide was washed with pure water using an ultrasonic cleaner, and then the composite metal hydroxide was isolated by filtration.
  • the composite metal hydroxide was dried at 300 ° C. for 5 hours to obtain a precursor.
  • 19 g of precursor and 9.35 g of lithium carbonate were mixed in a mortar to obtain a mixture.
  • the said mixture was heated at 600 degreeC in air
  • the first fired body was crushed with a mortar to obtain a powder.
  • Sulfuric acid was added to adjust the pH of the dispersion to 10.
  • Zirconium sulfate and glycolic acid as hydroxycarboxylic acid were dissolved in water to prepare a hydroxycarboxylic acid-containing zirconium aqueous solution.
  • the molar ratio of zirconium and glycolic acid is 1: 2
  • the number of moles of zirconium contained in the hydroxycarboxylic acid-containing zirconium aqueous solution is included in 87 g of the first fired body. 0.005 times the total number of moles of nickel, cobalt and manganese.
  • the dispersion of the first fired body and the hydroxycarboxylic acid-containing zirconium aqueous solution were mixed to obtain a mixed solution.
  • a sodium hydroxide solution was added over 1 hour until the pH of the mixed solution reached 12.5, and zirconium was deposited on the surface of the first fired body.
  • the first fired body with zirconium deposited on the surface was separated by filtration, and the first fired body was dried at 300 ° C.
  • the first fired body in which zirconium was deposited on the dried surface was heated at 850 ° C. for 10 hours in an air atmosphere to obtain a lithium composite metal oxide.
  • the lithium composite metal oxide was crushed in a mortar to obtain the lithium composite metal oxide of Example 2.
  • Example 2 a lithium ion secondary battery of Example 2 was manufactured in the same manner as Example 1 except that the lithium composite metal oxide of Example 2 was adopted as the active material.
  • Example 3 The first fired body of Example 1 and zirconium oxide were mixed in a mortar for 30 minutes to obtain a mixture. Note that the number of moles of zirconium contained in the mixture is 0.005 times the total number of moles of nickel, cobalt, and manganese contained in the mixture. The mixture was heated at 850 ° C. for 7 hours in an air atmosphere to obtain a lithium composite metal oxide. The lithium composite metal oxide was crushed in a mortar to obtain the lithium composite metal oxide of Example 3.
  • Example 3 a lithium ion secondary battery of Example 3 was manufactured in the same manner as Example 1 except that the lithium composite metal oxide of Example 3 was adopted as the active material.
  • Example 4 The lithium composite metal oxide of Example 4 was produced as follows.
  • Nickel sulfate, cobalt sulfate, manganese sulfate and zirconium sulfate are dissolved in 1200 mL of pure water so that the composition ratio of Ni: Co: Mn: Zr is 5: 3: 2: 0.05, and a composite metal-containing aqueous solution is obtained.
  • the composite metal-containing aqueous solution was heated to 60 ° C. and maintained.
  • a first basic aqueous solution was prepared by mixing 14 mL of 28% aqueous ammonia and 400 mL of pure water. The first basic aqueous solution was warmed to 60 ° C. and maintained.
  • a second basic aqueous solution was prepared by mixing 96 g of sodium hydroxide, 84 mL of 28% ammonia water, and 500 mL of pure water.
  • a composite metal-containing aqueous solution is supplied to the first basic aqueous solution under stirring conditions at a rate of 200 mL / h to precipitate nickel, cobalt, manganese and zirconium as a composite metal hydroxide. It was.
  • pH value here means the numerical value itself which measured the reaction liquid with the pH meter.
  • the composite metal hydroxide was separated by filtration. The composite metal hydroxide was washed with pure water using an ultrasonic cleaner, and then the composite metal hydroxide was isolated by filtration.
  • the composite metal hydroxide was dried at 300 ° C. for 5 hours to obtain a precursor.
  • 19 g of precursor and 9.35 g of lithium carbonate were mixed in a mortar to obtain a mixture.
  • the said mixture was heated at 600 degreeC in air
  • the first fired body was crushed with a mortar to obtain a powder.
  • the powdery first fired body was heated at 850 ° C. for 7 hours in an air atmosphere to obtain a lithium composite metal oxide.
  • the lithium composite metal oxide was crushed in a mortar to obtain the lithium composite metal oxide of Example 4.
  • Example 4 a lithium ion secondary battery of Example 4 was manufactured in the same manner as Example 1 except that the lithium composite metal oxide of Example 4 was adopted as the active material.
  • Comparative Example 1 The lithium composite metal oxide of Comparative Example 1 was produced as follows.
  • Nickel sulfate, cobalt sulfate, and manganese sulfate were dissolved in 1200 mL of pure water so that the composition ratio of Ni: Co: Mn was 5: 3: 2 to prepare a composite metal-containing aqueous solution.
  • the aqueous composite metal-containing solution was warmed to 50 ° C. and maintained.
  • a first basic aqueous solution was prepared by mixing 14 mL of 28% aqueous ammonia and 400 mL of pure water. The first basic aqueous solution was warmed to 40 ° C. and maintained.
  • a second basic aqueous solution was prepared by mixing 96 g of sodium hydroxide, 84 mL of 28% ammonia water, and 500 mL of pure water.
  • the composite metal-containing aqueous solution was supplied to the first basic aqueous solution under stirring conditions at a rate of 200 mL / h to precipitate nickel, cobalt, and manganese as composite metal hydroxide.
  • a second basic aqueous solution was appropriately added dropwise.
  • pH value here means the numerical value itself which measured the reaction liquid with the pH meter.
  • the composite metal hydroxide was separated by filtration. The composite metal hydroxide was washed with pure water using an ultrasonic cleaner, and then the composite metal hydroxide was isolated by filtration.
  • the composite metal hydroxide was dried at 300 ° C. for 5 hours to obtain a precursor.
  • 19 g of precursor and 9.35 g of lithium carbonate were mixed in a mortar to obtain a mixture. Then, the mixture was heated at 760 ° C. for 5 hours in an air atmosphere to obtain a first fired body.
  • the first fired body was crushed with a mortar to obtain a powder.
  • the powdered first fired body was heated at 900 ° C. for 5 hours in an air atmosphere to obtain a lithium composite metal oxide.
  • the lithium composite metal oxide was crushed in a mortar to obtain a lithium composite metal oxide of Comparative Example 1.
  • a lithium ion secondary battery of Comparative Example 1 was manufactured in the same manner as Example 1 except that the lithium composite metal oxide of Comparative Example 1 was adopted as the active material.
  • Example 2 The same operation as in Example 2 was performed except that ethanolamine was used instead of glycolic acid. However, even if the pH of the solution was adjusted, zirconium did not precipitate on the surface of the first fired body.
  • Example 3 The same operation as in Example 2 was performed except that ammonia was used instead of glycolic acid. However, even if the pH of the solution was adjusted, zirconium did not precipitate on the surface of the first fired body.
  • Example 4 The same operation as in Example 2 was performed except that ammonium sulfate was used instead of glycolic acid. However, even if the pH of the solution was adjusted, zirconium did not precipitate on the surface of the first fired body.
  • Example 5 The same operation as in Example 2 was performed except that glycine was used instead of glycolic acid. However, even if the pH of the solution was adjusted, zirconium did not precipitate on the surface of the first fired body.
  • Example 6 The same operation as in Example 2 was performed except that alanine was used instead of glycolic acid. However, even if the pH of the solution was adjusted, zirconium did not precipitate on the surface of the first fired body.
  • Example 7 The same operation as in Example 2 was performed except that acetic acid was used instead of glycolic acid. However, even if the pH of the solution was adjusted, zirconium did not precipitate on the surface of the first fired body.
  • Example 8 The same operation as in Example 2 was performed except that maleic acid was used instead of glycolic acid. However, even if the pH of the solution was adjusted, zirconium did not precipitate on the surface of the first fired body.
  • Example 9 The same operation as in Example 2 was performed except that ethylenediaminetetraacetic acid was used instead of glycolic acid. However, even if the pH of the solution was adjusted, zirconium did not precipitate on the surface of the first fired body.
  • Example 2 From the results of Example 2 and Comparative Examples 2 to 9, it can be seen that the method using the hydroxycarboxylic acid-containing zirconium aqueous solution is a special method for precipitating zirconium on the surface of the first fired body.
  • FIG. 1 shows a photograph of secondary particles of the lithium composite metal oxide of Example 1
  • FIG. 2 shows a photograph of primary particles of the lithium composite metal oxide of Example 1.
  • FIG. 3 shows a photograph of primary particles of the lithium composite metal oxide of Comparative Example 1.
  • the value of (maximum length / second maximum length perpendicular to the maximum length direction) of the primary particles of the lithium composite metal oxide of Comparative Example 1 was approximately 1.
  • the primary particles of the lithium composite metal oxide of Example 1 were observed to have values of (maximum length / second maximum length perpendicular to the maximum length direction) of 6.30, 6.80, and 7.11. It was done. It is estimated that the difference in these values mainly reflected the difference in the firing temperature and firing time of the lithium composite metal oxide.
  • the Mn peak observed from the edge part of the primary particles of Example 4 to the inside in a range of about 14 nm was observed to be different from the Mn peak observed inside.
  • the Mn peak observed in the range of about 14 nm from the edge portion of the primary particle to the inside is considered to be derived from Mn having a lower valence than the inner Mn peak.
  • the initial capacities of the lithium ion secondary batteries of Examples 1 to 4 and Comparative Example 1 were measured as follows.
  • the battery to be measured is CCCV charged (constant current constant voltage charge) at 25 ° C., 0.33 C rate and voltage 4.5 V, and then CC discharge (constant current discharge) is performed at a rate of 0.33 C up to a voltage of 3.0 V.
  • the discharge capacity when measured was measured and used as the initial capacity.
  • the battery to be measured was subjected to 200 charge / discharge cycles in the range of voltage 4.5V to 3.0V at 60 ° C. and 1 C rate, and then left at room temperature for 5 hours or more, and under the same conditions as the initial capacity measurement.
  • the discharge capacity was measured. This was the post-cycle capacity.
  • the current rate at which the battery is completely discharged in 1 hour is referred to as 1C.
  • the secondary battery comprising the lithium composite metal oxide of the present invention as an active material is excellent in initial capacity, post-cycle capacity, and capacity retention rate.
  • the initial capacities of the lithium ion secondary batteries of Examples 1 to 4 and Comparative Example 1 were measured as follows.
  • the battery to be measured is CCCV charged (constant current constant voltage charge) at 25 ° C., 0.33 C rate and voltage 4.5 V, and then CC discharge (constant current discharge) is performed at a rate of 0.33 C up to a voltage of 3.0 V.
  • the discharge capacity when measured was measured and used as the initial capacity.
  • each battery was charged to a voltage of 4.32 V, and each battery after charging was stored in a thermostatic chamber at a temperature of 60 ° C. for 30 days.
  • the discharge capacity of the battery after storage was measured by the same method as the measurement of the initial capacity, and the capacity retention rate was calculated.
  • the capacity retention rate (%) was obtained by the following formula.
  • Capacity retention rate (%) discharge capacity after storage / initial capacity ⁇ 100 The results are shown in Table 2.
  • the secondary battery comprising the lithium composite metal oxide of the present invention as an active material is excellent in both the discharge capacity after storage and the capacity retention rate.
  • the lithium ion secondary batteries of Examples 1 to 4 after storage and the lithium ion secondary battery of Comparative Example 1 after storage were disassembled to determine how much Mn eluted from the positive electrode was attached to the negative electrode. Analysis was performed using an coupled plasma (ICP) emission spectrometer. The results are shown in Table 3.
  • the positive electrode comprising the lithium composite metal oxide of the present invention as an active material can suppress the degree of Mn elution.
  • Example 5 To 400 mL of pure water, 25 g of the powdered lithium composite metal oxide of Example 1 was added to prepare a dispersion. Sulfuric acid was added to adjust the pH of the dispersion to 10.
  • Zirconium sulfate and glycolic acid as hydroxycarboxylic acid were dissolved in water to prepare a hydroxycarboxylic acid-containing zirconium aqueous solution.
  • the molar ratio of zirconium and glycolic acid is 1: 2
  • the number of moles of zirconium contained in the hydroxycarboxylic acid-containing zirconium aqueous solution is the nickel or cobalt contained in the material. And 0.0025 times the total number of moles of manganese.
  • the dispersion and the hydroxycarboxylic acid-containing zirconium aqueous solution were mixed to obtain a mixed solution.
  • a sodium hydroxide solution was added over 1 hour until the pH of the mixed solution reached 12, and zirconium was deposited on the surface of the lithium composite metal oxide.
  • the lithium composite metal oxide with zirconium deposited on the surface was separated by filtration and dried at 120 ° C. for 5 hours.
  • the lithium composite metal oxide with zirconium deposited on the surface after drying was heated at 700 ° C. for 3 hours in an air atmosphere to obtain a lithium composite metal oxide as a fired body.
  • the lithium composite metal oxide was crushed in a mortar to obtain the lithium composite metal oxide of Example 5.
  • FIG. 6 shows an SEM photograph of the lithium composite metal oxide of Example 5. From the SEM photograph of FIG. 6, it can be said that the surface of the lithium composite metal oxide of Example 5 is uniformly coated with a zirconium-containing film.
  • the volume resistivity of the lithium composite metal oxide of Example 5 was significantly reduced by the zirconium coating. This phenomenon is caused by partial substitution of the transition metal of the layered rock salt structure LiNi 5/10 Co 3/10 Mn 2/10 O 2 and zirconium in the lithium composite metal oxide of Example 5. It is inferred that the result reflects the reduction of the band gap.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 活物質となり得る新たな材料を提供する。 ニッケル、コバルト及びマンガンを含む複合金属水酸化物を加熱して前駆体とする前駆体製造工程、前記前駆体及びリチウム塩を混合した混合物を500~700℃で10~30時間加熱して第1焼成体とする第1焼成工程、前記第1焼成体を750~1000℃で加熱して第2焼成体とする第2焼成工程、を含む、一般式:LiNiCoMn(0.2≦a≦2、b+c+d+e=1、0<b<1、0<c<1、0<d<1、0≦e<1、DはFe、Cr、Cu、Zn、Ca、Mg、Zr、S、Si、Na、K、Al、Ti、P、Ga、Ge、V、Mo、Nb、W、La、Hf、Rfから選ばれる少なくとも1の元素、1.7≦f≦3) で表されるリチウム複合金属酸化物の製造方法。

Description

リチウム複合金属酸化物の製造方法
 本発明は、リチウム複合金属酸化物の製造方法に関するものである。
 リチウムイオン二次電池の活物質には種々の材料が用いられることが知られており、そのうち、層状岩塩構造の一般式:LiNiCoMn(0.2≦a≦2、b+c+d+e=1、0≦e<1、DはFe、Cr、Cu、Zn、Ca、Mg、Zr、S、Si、Na、K、Al、Ti、P、Ga、Ge、V、Mo、Nb、W、La、Hf、Rfから選ばれる少なくとも1の元素、1.7≦f≦3) で表されるリチウム複合金属酸化物は、リチウムイオン二次電池用活物質として汎用されている。
 そして、近年、より優れた活物質を提供すべく、上記リチウム複合金属酸化物をベースとした研究が盛んに行われている。
 例えば、特許文献1及び特許文献2には、種々の製造パラメータを特定した上記リチウム複合金属酸化物の製造方法が記載されている。また、特許文献2には、上記一般式においてDがZrであるリチウム複合金属酸化物の製造方法も記載されている。
特開2012-018827号公報 特開2012-256435号公報
 しかしながら、リチウムイオン二次電池の活物質に対する要求は増加しており、より優れた活物質となり得る新たなリチウム複合金属酸化物の提供が熱望されている。
 本発明は、かかる事情に鑑みて為されたものであり、活物質となり得る新たなリチウム複合金属酸化物の製造方法を提供することを目的とする。
 本発明者が鋭意検討した結果、少なくとも3種類の特定の製造方法で得られたリチウム複合金属酸化物を活物質としたリチウムイオン二次電池が、優れた電池特性を示し得ることを見出し、本発明を完成させた。
 すなわち、本発明の第1発明である、一般式:LiNiCoMn(0.2≦a≦2、b+c+d+e=1、0<b<1、0<c<1、0<d<1、0≦e<1、DはFe、Cr、Cu、Zn、Ca、Mg、Zr、S、Si、Na、K、Al、Ti、P、Ga、Ge、V、Mo、Nb、W、La、Hf、Rfから選ばれる少なくとも1の元素、1.7≦f≦3) で表されるリチウム複合金属酸化物の製造方法は、
 ニッケル、コバルト及びマンガンを含む複合金属水酸化物を加熱して前駆体とする前駆体製造工程、
 前記前駆体及びリチウム塩を混合した混合物を500~700℃で10~30時間加熱して第1焼成体とする第1焼成工程、
 前記第1焼成体を750~1000℃で加熱して第2焼成体とする第2焼成工程、
を含むことを特徴とする。
 本発明の第2発明である、一般式:LiNiCoMnZr(0.2≦a≦2、b+c+d+e+f=1、0<b<1、0<c<1、0<d<1、0<e<1、0≦f<1、DはFe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Al、Ti、P、Ga、Ge、V、Mo、Nb、W、La、Hf、Rfから選ばれる少なくとも1の元素、1.7≦g≦3) で表されるリチウム複合金属酸化物の製造方法は、
 ニッケル、コバルト、マンガン及びジルコニウムを含む水溶液と塩基性水溶液を混合して、pH10~11及び40~70℃の条件でニッケル、コバルト、マンガン及びジルコニウムを含む複合金属水酸化物を製造する複合金属水酸化物製造工程、
 前記複合金属水酸化物を加熱して前駆体とする前駆体製造工程、
 前記前駆体及びリチウム塩を混合した混合物を加熱して焼成体とする焼成工程、
を含むことを特徴とする。
 本発明の第3発明である、一般式:LiNiCoMnZr(0.2≦a≦2、b+c+d+e+f=1、0<b<1、0<c<1、0<d<1、0<e<1、0≦f<1、DはFe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Al、Ti、P、Ga、Ge、V、Mo、Nb、W、La、Hf、Rfから選ばれる少なくとも1の元素、1.7≦g≦3) で表されるリチウム複合金属酸化物の製造方法は、
 ニッケル、コバルト及びマンガンを含む複合金属水酸化物を加熱して前駆体とする前駆体製造工程、
 前記前駆体及びリチウム塩を混合した混合物を加熱して第1焼成体とする第1焼成工程、
 前記第1焼成体を水に分散させる分散液調製工程、
 ヒドロキシカルボン酸含有ジルコニウム水溶液と、前記分散液を混合し、第1焼成体の表面にジルコニウムを析出させるジルコニウム析出工程、
 前記ジルコニウム析出工程を経た第1焼成体を加熱して第2焼成体とする第2焼成工程、
を含むことを特徴とする。
 本発明の製造方法により、活物質となり得る新たなリチウム複合金属酸化物を提供できる。
実施例1のリチウム複合金属酸化物の二次粒子のSEM写真である。 実施例1のリチウム複合金属酸化物の一次粒子のSEM写真である。 比較例1のリチウム複合金属酸化物の一次粒子のSEM写真である。 実施例2のリチウム複合金属酸化物のEDXチャートである。 実施例4のリチウム複合金属酸化物のEDXチャートである。 実施例5のリチウム複合金属酸化物のSEM写真である。
 以下に、本発明を実施するための最良の形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「x~y」は、下限xおよび上限yをその範囲に含む。そして、これらの上限値および下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。さらに数値範囲内から任意に選択した数値を上限、下限の数値とすることができる。
 <第1発明>
 本発明の第1発明について説明する。
 本発明の第1発明である、一般式:LiNiCoMn(0.2≦a≦2、b+c+d+e=1、0<b<1、0<c<1、0<d<1、0≦e<1、DはFe、Cr、Cu、Zn、Ca、Mg、Zr、S、Si、Na、K、Al、Ti、P、Ga、Ge、V、Mo、Nb、W、La、Hf、Rfから選ばれる少なくとも1の元素、1.7≦f≦3) で表されるリチウム複合金属酸化物の製造方法は、
 ニッケル、コバルト及びマンガンを含む複合金属水酸化物を加熱して前駆体とする前駆体製造工程、
 前記前駆体及びリチウム塩を混合した混合物を500~700℃で10~30時間加熱して第1焼成体とする第1焼成工程、
 前記第1焼成体を750~1000℃で加熱して第2焼成体とする第2焼成工程、
を含むことを特徴とする。
 一般式:LiNiCoMn(0.2≦a≦2、b+c+d+e=1、0<b<1、0<c<1、0<d<1、0≦e<1、DはFe、Cr、Cu、Zn、Ca、Mg、Zr、S、Si、Na、K、Al、Ti、P、Ga、Ge、V、Mo、Nb、W、La、Hf、Rfから選ばれる少なくとも1の元素、1.7≦f≦3) において、b、c、dの値は、上記条件を満足するものであれば特に制限はないが、b、c、dの少なくともいずれか一つが10/100<b<90/100、10/100<c<90/100、5/100<d<70/100の範囲であることが好ましく、12/100<b<80/100、12/100<c<80/100、10/100<d<60/100の範囲であることがより好ましく、15/100<b<70/100、15/100<c<70/100、12/100<d<50/100の範囲であることがさらに好ましい。
 a、e、fについては一般式で規定する範囲内の数値であればよく、好ましくは0.5≦a≦1.5、0≦e<0.2、1.8≦f≦2.5、より好ましくは0.8≦a≦1.3、0≦e<0.1、1.9≦f≦2.1を例示することができる。
 前駆体製造工程は、ニッケル、コバルト及びマンガンを含む複合金属水酸化物を加熱して前駆体とする工程である。
 ここで、ニッケル、コバルト及びマンガンを含む複合金属水酸化物は、ニッケル、コバルト及びマンガンを含む水溶液と塩基性水溶液を混合することで、製造できる。上記複合金属水酸化物の製造工程について詳細に説明する。
 複合金属水酸化物の製造工程は、
 ニッケル塩、コバルト塩及びマンガン塩を水に溶解し、ニッケル、コバルト及びマンガンを所定の比で含む複合金属含有水溶液を調製する工程、
 塩基性水溶液を調製する工程、
 前記塩基性水溶液に前記複合金属含有水溶液を供給し、ニッケル、コバルト及びマンガンを複合金属水酸化物として析出させる複合金属水酸化物析出工程、
を含む。
 ニッケル塩としては、例えば、硫酸ニッケル、炭酸ニッケル、硝酸ニッケル、酢酸ニッケル、塩化ニッケルを挙げることができる。コバルト塩としては、例えば、硫酸コバルト、炭酸コバルト、硝酸コバルト、酢酸コバルト、塩化コバルトを挙げることができる。マンガン塩としては、例えば、硫酸マンガン、炭酸マンガン、硝酸マンガン、酢酸マンガン、塩化マンガンを挙げることができる。
 複合金属含有水溶液におけるニッケル塩、コバルト塩及びマンガン塩の配合比は、これらの配合比が、所望の第一発明のリチウム複合金属酸化物の金属組成比となるように調製すればよい。
 複合金属含有水溶液を調製する工程は、撹拌装置を備えた反応槽で行われるのが好ましく、さらに窒素やアルゴンなどの不活性ガスを導入できる装置を備えた反応槽で行われるのが好ましい。また、恒温条件となる装置を備えた反応槽がより好ましい。
 複合金属含有水溶液は、好ましくは40~70℃、より好ましくは40~60℃の範囲内に加温しておくのがよい。
 塩基性水溶液のpHは9~14の範囲が好ましく、10~13の範囲がより好ましく、10.5~12の範囲がさらに好ましい。なお、特段の言及がない限り、本明細書で規定するpHは25℃で測定した場合の値をいう。使用し得る塩基性化合物としては水に溶解して塩基性を示すものであれば良く、例えば、アンモニア、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸リチウムなどのアルカリ金属炭酸塩、リン酸三ナトリウム、リン酸三カリウム、リン酸三リチウムなどのアルカリ金属リン酸塩、酢酸ナトリウム、酢酸カリウム、酢酸リチウムなどのアルカリ金属酢酸塩を挙げることができる。塩基性化合物は単独で用いても良いし、複数を併用しても良い。以下の工程において、水溶液のpHは、それぞれ好適な範囲に保たれることが好ましいため、塩基性水溶液には、少なくとも緩衝能を有する塩基性化合物が含まれるのが好ましい。緩衝能を有する塩基性化合物としては、例えば、アンモニア、アルカリ金属炭酸塩、アルカリ金属リン酸塩、アルカリ金属酢酸塩を挙げることができる。
 塩基性水溶液を調製する工程は、撹拌装置を備えた反応槽で行われるのが好ましく、さらに窒素やアルゴンなどの不活性ガスを導入できる装置を備えた反応槽で行われるのが好ましい。また、恒温条件となる装置を備えた反応槽がより好ましい。
 塩基性水溶液は、好ましくは40~70℃、より好ましくは40~60℃の範囲内に加温しておくのがよい。
 複合金属水酸化物析出工程においては、前記塩基性水溶液に前記複合金属含有水溶液を供給することにより、金属イオンと水酸化物イオンが反応して、水に対して溶解度の低いニッケル、コバルト及びマンガンを含む複合金属水酸化物が生成し、これが析出する。析出した複合金属水酸化物の粒子がリチウム複合金属酸化物の一次粒子の基礎となる。そのため、複合金属水酸化物析出工程を複合金属水酸化物の析出速度が著しく速い条件下、すなわち複合金属水酸化物の核がいたるところで発生する条件下とすると、無秩序な複合金属水酸化物の粒子が形成されることになり、その結果、リチウム複合金属酸化物の一次粒子の好ましくない晶癖を生じる恐れがある。従って、複合金属水酸化物析出工程においては、できるだけ緩和な条件下で、複合金属水酸化物の粒子を析出させることが好ましい。
 上記の観点から、複合金属含有水溶液を供給する速度は、10~1000mL/hが好ましく、20~500mL/hがより好ましく、50~300mL/hが特に好ましい。また、複合金属水酸化物析出工程の反応温度は、40~70℃、好ましくは40~60℃の範囲内とするのがよい。
 複合金属水酸化物析出工程においては、反応溶液を一定のpHに保つことが好ましい。なお、ここでのpH値は、反応液をpHメーターで測定した数値そのものを意味する。当該pHとしては、9~14の範囲が好ましく、10~12の範囲がより好ましく、10.5~11の範囲が特に好ましい。反応溶液を一定のpHに保つために、他の塩基性水溶液を準備して、複合金属水酸化物析出工程の反応溶液に適宜添加することが好ましい。
 複合金属水酸化物析出工程は、撹拌装置を備えた反応槽で行われるのが好ましく、さらに窒素やアルゴンなどの不活性ガスを導入できる装置を備えた反応槽で行われるのが好ましい。また、恒温条件となる装置を備えた反応槽がより好ましい。
 複合金属水酸化物析出工程後に、複合金属水酸化物を濾過などで分離する。
 以上の方法で、複合金属水酸化物を得ることができる。
 前駆体製造工程における加熱は、複合金属水酸化物に付着した水などを除去することが目的である。加熱温度としては、100℃以上が好ましく、150~500℃の範囲内がより好ましく、200~400℃の範囲内が特に好ましい。前駆体製造工程は常圧下で行ってもよいし、減圧下で行ってもよい。
 第1焼成工程は、前記前駆体及びリチウム塩を混合した混合物を500~700℃で10~30時間加熱して第1焼成体とする工程である。
 リチウム塩としては、炭酸リチウム、水酸化リチウム、硝酸リチウム、酢酸リチウム、シュウ酸リチウム、ハロゲン化リチウムを例示することができる。リチウム塩の配合量は、所望のリチウム組成のリチウム複合金属酸化物となるように適宜決定すればよい。
 混合装置としては、乳鉢及び乳棒、攪拌混合機、V型混合機、W型混合機、リボン型混合機、ドラムミキサー、ボールミルを例示できる。
 第1焼成工程は、大気条件下で行うのが望ましいが、ヘリウム、アルゴンなどの不活性ガス存在下で行ってもよい。
 第1焼成工程の温度は、500~700℃であり、550~650℃が好ましい。第1焼成工程の加熱時間は、10~30時間であり、11~25時間が好ましく、14~25時間がより好ましい。一般に、複合金属水酸化物及びリチウム塩の混合物を高温で加熱すると、混合物の粒子内で各金属が移動することが知られている。本発明では、第1焼成工程で、混合物を500~700℃で10~30時間加熱することにより、得られる第1焼成体の粒子内における金属組成に特定の偏りが生じると推定される。このように、粒子内の金属組成に特定の偏りが生じた第1焼成体を、第1焼成工程とは異なる条件の第2焼成工程で焼成することで、好適な活物質となり得るリチウム複合金属酸化物を製造することができる。
 第2焼成工程は、前記第1焼成体を750~1000℃で加熱する工程である。
 第2焼成工程は、大気条件下で行うのが望ましい。
 第2焼成工程の温度は750~1000℃である。ここで、リチウム複合金属酸化物の結晶生成の点から言及すると、なるべく低温で加熱した方が、均一な組成であって均一な形状の結晶が生成しやすい。そのため、第2焼成工程の温度は750~900℃が好ましく、800~875℃がより好ましい。例えば、800~875℃の範囲内で加熱することにより、この温度範囲内で生成可能な特定の組成の結晶核が、粒子内における結晶可能組成条件を満足する特定の箇所(例えば中心部)で生成し、さらに、該結晶核近傍において、金属の移動に因り、結晶可能組成条件を満足するに従い、順次、結晶が成長することになる。その結果として、均一な組成であって均一な形状の結晶が生成すると推定される。他方、例えば、1100℃で焼成すると、結晶核の生成速度が増加すること及び結晶核を生成し得る組成が増加することにより、粒子内のいたるところで多様な組成の結晶核が生成し、その結果として、不均一な組成であって不均一な形状の結晶が生成すると推定される。
 第2焼成工程の加熱時間は、1~30時間が好ましく、3~25時間が好ましく、5~15時間がより好ましい。
 第2焼成工程で得られたリチウム複合金属酸化物は、粉砕工程、分級工程を経て、一定の粒度分布のものとするのが好ましい。粒度分布の範囲としては、一般的なレーザー散乱回折式粒度分布計での測定において、平均粒子径(D50)が100μm以下が好ましく、1μm以上50μm以下がより好ましく、1μm以上30μm以下がさらに好ましく、2μm以上20μm以下が特に好ましい。また、本発明の第1発明であるリチウム複合金属酸化物の一次粒子の大きさは、顕微鏡観察にて50nm~1500nmの範囲内のものが好ましい。
 以上のとおり、本発明の第1発明である、一般式:LiNiCoMn(0.2≦a≦2、b+c+d+e=1、0<b<1、0<c<1、0<d<1、0≦e<1、DはFe、Cr、Cu、Zn、Ca、Mg、Zr、S、Si、Na、K、Al、Ti、P、Ga、Ge、V、Mo、Nb、W、La、Hf、Rfから選ばれる少なくとも1の元素、1.7≦f≦3) で表されるリチウム複合金属酸化物を製造できる。
 なお、上記一般式において0<e<1のもの、すなわちドープ元素Dを含むリチウム複合金属酸化物を製造する場合には、複合金属水酸化物の製造工程のいずれかの時点、及び/又は、第1焼成工程における前駆体及びリチウム塩の混合時点に、ドープ元素D含有化合物を添加すればよい。また、ドープ元素Dがジルコニウムの場合には、以下の本発明の第2発明や第3発明で述べる方法で、ジルコニウムをドープしてもよい。ドープ元素D含有化合物の配合量は、所望のドープ量(D)となるように適宜決定すればよい。ドープ元素D含有化合物としては、ドープ元素D酸化物、ドープ元素D水酸化物、ドープ元素D硫酸塩、ドープ元素D硝酸塩、ドープ元素Dリン酸塩、ドープ元素Dハロゲン化物を挙げることができる。例えば、ドープ元素Dがジルコニウムの場合には、酸化ジルコニウム、水酸化ジルコニウム、硫酸ジルコニウム、硝酸ジルコニウム、リン酸ジルコニウム、ハロゲン化ジルコニウムを具体的に挙げることができる。
 本発明の第1発明であるリチウム複合金属酸化物は層状岩塩構造である。上述のように、本発明の第1発明であるリチウム複合金属酸化物は、製造工程におけるパラメータが詳細に限定されて製造される。そのため、本発明の第1発明であるリチウム複合金属酸化物においては、層状岩塩構造のリチウム層にニッケルが入りにくい、又は、遷移金属層のニッケル位置にリチウムが入りにくい、すなわち所謂Li-Niインターカレーションが生じにくいと考えられる。
 一般的なリチウム複合金属酸化物においては、走査型電子顕微鏡(SEM)観察の際の各一次粒子の(最大長/最大長方向に垂直な第2最大長)の値が概ね1であるのに対し、本発明の第1発明であるリチウム複合金属酸化物の一次粒子においては、(最大長/最大長方向に垂直な第2最大長)の値が2~9、好ましくは3~9、より好ましくは5~9の範囲内のものが観察される。そして、本発明の第1発明であるリチウム複合金属酸化物においては、上記範囲内の一次粒子を好ましくは50%(個数)以上、より好ましくは70%(個数)以上含有する。
 なお、一次粒子における最大長は層状岩塩構造のab軸方向の長さであり、最大長方向に垂直な第2最大長は層状岩塩構造のc軸方向の長さであるとも解される。
 本発明の第1発明であるリチウム複合金属酸化物において、(最大長/最大長方向に垂直な第2最大長)の値が上述の範囲内の一次粒子が観察されるのは、上述したとおり、第2焼成工程の温度条件を低温としたことで、結晶核の無秩序な生成が抑制されつつ、均一な組成で結晶成長が為された結果、Li-Niインターカレーションが生じず又はリートベルト解析にて算出したLi-Niインターカレーションの程度が概ね0.4%以下であり、理想的なリチウム層と均一な金属組成の遷移金属層の層状岩塩構造を形成しているためと考えられる。
 なお、一次粒子とは、SEM観察の際に1粒と認識される粒子のことを意味し、二次粒子とは、SEM観察の際に一次粒子が結合した塊のことを意味する。
 <第2発明>
 本発明の第2発明について説明する。
 本発明の第2発明である、一般式:LiNiCoMnZr(0.2≦a≦2、b+c+d+e+f=1、0<b<1、0<c<1、0<d<1、0<e<1、0≦f<1、DはFe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Al、Ti、P、Ga、Ge、V、Mo、Nb、W、La、Hf、Rfから選ばれる少なくとも1の元素、1.7≦g≦3) で表されるリチウム複合金属酸化物の製造方法は、
 ニッケル、コバルト、マンガン及びジルコニウムを含む水溶液と塩基性水溶液を混合して、pH10~11及び40~70℃の条件でニッケル、コバルト、マンガン及びジルコニウムを含む複合金属水酸化物を製造する複合金属水酸化物製造工程、
 前記複合金属水酸化物を加熱して前駆体とする前駆体製造工程、
 前記前駆体及びリチウム塩を混合した混合物を加熱して焼成体とする焼成工程、
を含むことを特徴とする。
 一般式:LiNiCoMnZr(0.2≦a≦2、b+c+d+e+f=1、0<b<1、0<c<1、0<d<1、0<e<1、0≦f<1、DはFe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Al、Ti、P、Ga、Ge、V、Mo、Nb、W、La、Hf、Rfから選ばれる少なくとも1の元素、1.7≦g≦3)において、b、c、d、eの値は、上記条件を満足するものであれば特に制限はないが、b、c、d、eの少なくともいずれか一つが10/100<b<90/100、10/100<c<90/100、5/100<d<70/100、0<e<10/100の範囲であることが好ましく、12/100<b<80/100、12/100<c<80/100、10/100<d<60/100、1/10000<e<5/100の範囲であることがより好ましく、15/100<b<70/100、15/100<c<70/100、12/100<d<50/100、1/1000<e<1/100の範囲であることがさらに好ましい。
 a、f、gについては一般式で規定する範囲内の数値であればよく、好ましくは0.5≦a≦1.5、0≦f<0.1、1.8≦g≦2.5、より好ましくは0.8≦a≦1.3、0≦f<0.01、1.9≦g≦2.1を例示することができる。
 複合金属水酸化物製造工程は、ニッケル、コバルト、マンガン及びジルコニウムを含む水溶液と塩基性水溶液を混合して、pH10~11及び40~70℃の条件でニッケル、コバルト、マンガン及びジルコニウムを含む複合金属水酸化物を製造する工程である。
 ニッケル、コバルト、マンガン及びジルコニウムを含む水溶液(以下、NiCoMnZr水溶液ということがある。)は、ニッケル塩、コバルト塩、マンガン塩及びジルコニウム塩を所定の比で水に溶解して製造すればよい。NiCoMnZr水溶液は、各金属塩が溶解しやすいように、pHを適宜調製してもよいし、NiCoMnZr水溶液に、水酸基、アミノ基、カルボキシル基などを有する配位可能化合物やキレート化合物などの溶解助剤を添加しても良い。NiCoMnZr水溶液のpHとしては1~2の範囲内が好ましい。NiCoMnZr水溶液は、好ましくは40~70℃、より好ましくは45~65℃、さらに好ましくは55~65℃の範囲内に加温しておくのがよい。
 ニッケル塩としては、例えば、硫酸ニッケル、炭酸ニッケル、硝酸ニッケル、酢酸ニッケル、塩化ニッケルを挙げることができる。コバルト塩としては、例えば、硫酸コバルト、炭酸コバルト、硝酸コバルト、酢酸コバルト、塩化コバルトを挙げることができる。マンガン塩としては、例えば、硫酸マンガン、炭酸マンガン、硝酸マンガン、酢酸マンガン、塩化マンガンを挙げることができる。ジルコニウム塩としては、例えば、酸化ジルコニウム、水酸化ジルコニウム、硫酸ジルコニウム、硝酸ジルコニウム、リン酸ジルコニウム、ハロゲン化ジルコニウムを挙げることができる。
 NiCoMnZr水溶液を調製する工程は、撹拌装置を備えた反応槽で行われるのが好ましく、さらに窒素やアルゴンなどの不活性ガスを導入できる装置を備えた反応槽で行われるのが好ましい。また、恒温条件となる装置を備えた反応槽がより好ましい。
 塩基性水溶液のpHは10~14の範囲が好ましく、10~13の範囲がより好ましく、10.5~12の範囲がさらに好ましい。使用し得る塩基性化合物としては水に溶解して塩基性を示すものであれば良く、例えば、アンモニア、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸リチウムなどのアルカリ金属炭酸塩、リン酸三ナトリウム、リン酸三カリウム、リン酸三リチウムなどのアルカリ金属リン酸塩、酢酸ナトリウム、酢酸カリウム、酢酸リチウムなどのアルカリ金属酢酸塩を挙げることができる。塩基性化合物は単独で用いても良いし、複数を併用しても良い。以下の工程において、水溶液のpHは、それぞれ好適な範囲に保たれることが好ましいため、塩基性水溶液には、少なくとも緩衝能を有する塩基性化合物が含まれるのが好ましい。緩衝能を有する塩基性化合物としては、例えば、アンモニア、アルカリ金属炭酸塩、アルカリ金属リン酸塩、アルカリ金属酢酸塩を挙げることができる。
 塩基性水溶液を調製する工程は、撹拌装置を備えた反応槽で行われるのが好ましく、さらに窒素やアルゴンなどの不活性ガスを導入できる装置を備えた反応槽で行われるのが好ましい。また、恒温条件となる装置を備えた反応槽がより好ましい。
 塩基性水溶液は、好ましくは40~70℃、より好ましくは45~65℃の範囲内に加温しておくのがよい。
 複合金属水酸化物製造工程においては、NiCoMnZr水溶液と塩基性水溶液を混合して、pH10~11及び40~70℃の条件でニッケル、コバルト、マンガン及びジルコニウムを含む複合金属水酸化物を製造する。なお、ここでのpH値は、反応液をpHメーターで測定した数値そのものを意味する。
 複合金属水酸化物製造工程においては、NiCoMnZr水溶液と塩基性水溶液を混合することにより、金属イオンと水酸化物イオンが反応して、水に対して溶解度の低いニッケル、コバルト、マンガン及びジルコニウムを含む複合金属水酸化物が生成し、これが析出する。析出した複合金属水酸化物の粒子がリチウム複合金属酸化物の一次粒子の基礎となる。そのため、複合金属水酸化物製造工程を複合金属水酸化物の析出速度が著しく速い条件下、すなわち複合金属水酸化物の核がいたるところで発生する条件下とすると、無秩序な複合金属水酸化物の粒子が形成されることになり、その結果、リチウム複合金属酸化物の一次粒子の好ましくない晶癖を生じる恐れがある。従って、複合金属水酸化物製造工程においては、できるだけ緩和な条件下で、複合金属水酸化物の粒子を析出させることが好ましい。複合金属水酸化物の析出を好適に制御するためには、前記塩基性水溶液に前記NiCoMnZr水溶液を供給する方法が好ましい。複合金属含有水溶液を供給する速度は、10~1000mL/hが好ましく、20~500mL/hがより好ましく、50~300mL/hが特に好ましい。
 複合金属水酸化物製造工程においては、pH及び温度が上記の範囲外であれば、特定の金属塩のみが析出したり、特定の金属水酸化物のみが先もしくは後に析出したり、特定の金属塩が十分に析出しなかったりする恐れがあり、その結果、所望の組成の複合金属水酸化物が得られない恐れがある。複合金属水酸化物製造工程のpHは10.2~10.7の範囲内が好ましい。複合金属水酸化物製造工程においては、反応溶液を一定のpHに保つことが好ましい。反応溶液を一定のpHに保つために、他の塩基性水溶液を準備して、複合金属水酸化物製造工程の反応溶液に適宜添加することが好ましい。複合金属水酸化物製造工程の反応温度は45~65℃の範囲内とするのが好ましく、55~65℃の範囲内とするのがより好ましい。
 複合金属水酸化物製造工程は、撹拌装置を備えた反応槽で行われるのが好ましく、さらに窒素やアルゴンなどの不活性ガスを導入できる装置を備えた反応槽で行われるのが好ましい。また、恒温条件となる装置を備えた反応槽がより好ましい。
 複合金属水酸化物製造工程後に、複合金属水酸化物を濾過などで分離する。得られた複合金属水酸化物においては、各金属が均一に分布していると推定される。
 前駆体製造工程は、前記複合金属水酸化物を加熱して前駆体とする工程である。
 前駆体製造工程における加熱は、複合金属水酸化物に付着した水などを除去することが目的である。加熱温度としては、100℃以上が好ましく、150~500℃の範囲内がより好ましく、200~400℃の範囲内が特に好ましい。前駆体製造工程は常圧下で行ってもよいし、減圧下で行ってもよい。
 焼成工程は、前記前駆体及びリチウム塩を混合した混合物を加熱して焼成体とする工程である。
 リチウム塩としては、炭酸リチウム、水酸化リチウム、硝酸リチウム、酢酸リチウム、シュウ酸リチウム、ハロゲン化リチウムを例示することができる。リチウム塩の配合量は、所望のリチウム組成のリチウム複合金属酸化物となるように適宜決定すればよい。
 混合装置としては、乳鉢及び乳棒、攪拌混合機、V型混合機、W型混合機、リボン型混合機、ドラムミキサー、ボールミルを例示できる。
 焼成工程は、大気条件下で行ってもよいし、ヘリウム、アルゴンなどの不活性ガス存在下で行ってもよい。焼成工程の加熱温度は500~1200℃の範囲を例示できる。焼成工程の加熱時間は1~50時間を例示できる。
 焼成工程は、単一の温度条件で実施してもよいし、温度条件が異なる複数の焼成工程を組み合わせて実施してもよく、また、特定の昇温プログラムを設定して実施してもよい。
 温度条件が異なる複数の焼成工程を組み合わせる方法としては、前記前駆体及びリチウム塩の混合物を500~700℃で10~30時間加熱して第1焼成体とする第1焼成工程、及び、前記第1焼成体を750~1000℃で加熱する第2焼成工程を挙げることができる。
 第1焼成工程の温度は、500~700℃であり、550~650℃が好ましい。第1焼成工程の加熱時間は、10~30時間であり、11~25時間が好ましく、14~25時間がより好ましい。一般に、複合金属水酸化物及びリチウム塩の混合物を高温で加熱すると、混合物の粒子内で各金属が移動することが知られている。本発明では、第1焼成工程で、混合物を500~700℃で10~30時間加熱することにより、得られる第1焼成体の粒子内における金属組成に特定の偏りが生じると推定される。このように、粒子内の金属組成に特定の偏りが生じた第1焼成体を、第1焼成工程とは異なる条件の第2焼成工程で焼成することで、好適な活物質となり得るリチウム複合金属酸化物を製造することができる。
 第2焼成工程は、前記第1焼成体を750~1000℃で加熱する工程である。
 第2焼成工程の温度は750~1000℃である。ここで、リチウム複合金属酸化物の結晶生成の点から言及すると、なるべく低温で加熱した方が、均一な組成であって均一な形状の結晶が生成しやすい。そのため、第2焼成工程の温度は750~900℃が好ましく、800~870℃がより好ましい。例えば、800~870℃の範囲内で加熱することにより、この温度範囲内で生成可能な特定の組成の結晶核が、粒子内における結晶可能組成条件を満足する特定の箇所(例えば中心部)で生成し、さらに、該結晶核近傍において、金属の移動に因り、結晶可能組成条件を満足するに従い、順次、結晶が成長することになる。その結果として、均一な組成であって均一な形状の結晶が生成すると推定される。他方、例えば、1100℃で焼成すると、結晶核の生成速度が増加すること及び結晶核を生成し得る組成が増加することにより、粒子内のいたるところで多様な組成の結晶核が生成し、その結果として、不均一な組成であって不均一な形状の結晶が生成すると推定される。
 第2焼成工程の加熱時間は、1~30時間が好ましく、3~25時間が好ましく、5~15時間がより好ましい。
 また、第1焼成工程で得られた第1焼成体に対し、さらにジルコニウムを添加するジルコニウム追加工程を実施してもよい。ジルコニウム追加工程においては、所望のリチウム複合金属酸化物のジルコニウム組成となるように、適切な量のジルコニウムを追加すればよい。
 ジルコニウム追加工程としては、第1焼成体にジルコニウム塩の粉末を混合するドライ方法を採用してもよく、以下で詳細に説明するウェット方法を採用してもよい。
 ドライ方法について説明する。ジルコニウム塩としては、例えば、酸化ジルコニウム、水酸化ジルコニウム、硫酸ジルコニウム、硝酸ジルコニウム、リン酸ジルコニウム、ハロゲン化ジルコニウムを挙げることができる。混合装置としては、乳鉢及び乳棒、攪拌混合機、V型混合機、W型混合機、リボン型混合機、ドラムミキサー、ボールミル、株式会社奈良機械製作所のハイブリダイゼーションシステム(NHS)及びミラーロ(MIRALO)、ホソカワミクロン株式会社のメカノフュージョン及びノビルタ、株式会社徳寿工作所のシータ・コンポーザを例示することができる。高い撹拌せん断力を有する点から、混合装置としてはハイブリダイゼーションシステム、ミラーロ、メカノフュージョン、ノビルタ、シータ・コンポーザが好ましい。
 ウェット方法について説明する。ウェット方法は、前記第1焼成体を水に分散させる分散液調製工程、及び、ヒドロキシカルボン酸含有ジルコニウム水溶液と前記分散液を混合し第1焼成体の表面にジルコニウムを析出させるジルコニウム析出工程、を含む。
 分散液調製工程の前に、第1焼成体を粉砕しておくのが好ましい。また、分散液調製工程においては、第1焼成体に含まれるリチウムが水に溶解する可能性が有るため、分散液に上述したリチウム塩を適宜適切な量で添加しておくのが好ましい。さらに、分散液のpHが9~12程度の範囲内となるようにpH調製を行うことが好ましい。
 ヒドロキシカルボン酸含有ジルコニウム水溶液は、ジルコニウム塩とヒドロキシカルボン酸を水に溶解して製造される。ジルコニウム塩とヒドロキシカルボン酸の配合比は、モル比でジルコニウム:ヒドロキシカルボン酸=1:1~1:3の範囲内が好ましい。
 ジルコニウム塩としては、例えば、酸化ジルコニウム、水酸化ジルコニウム、硫酸ジルコニウム、硝酸ジルコニウム、リン酸ジルコニウム、ハロゲン化ジルコニウムを挙げることができる。
 分子内に水酸基とカルボン酸基を有するヒドロキシカルボン酸としては、脂肪族ヒドロキシカルボン酸及び芳香族ヒドロキシカルボン酸を挙げることができる。
 脂肪族ヒドロキシカルボン酸としては、グリコール酸、乳酸、タルトロン酸、グリセリン酸、2-ヒドロキシ酪酸、3-ヒドロキシ酪酸、γ-ヒドロキシ酪酸、リンゴ酸、酒石酸、シトラマル酸、クエン酸、イソクエン酸、ロイシン酸、メバロン酸、パントイン酸、キナ酸、シキミ酸を例示できる。
 芳香族ヒドロキシカルボン酸としては、サリチル酸、ゲンチジン酸、オルセリン酸などのo-ヒドロキシ安息香酸誘導体、マンデル酸、ベンジル酸、2-ヒドロキシ-2-フェニルプロピオン酸を例示できる。
 上記具体的なヒドロキシカルボン酸は、いずれも、同一のジルコニウムイオンにOH基とCOH基が配位可能なコンホメーションを形成できる。
 ジルコニウム析出工程は、ヒドロキシカルボン酸含有ジルコニウム水溶液と前記分散液を混合し第1焼成体の表面にジルコニウムを析出させる工程である。効率的にジルコニウムを析出させるために、ジルコニウム析出工程の溶液のpHをコントロールするのが好ましい。例えば、ジルコニウム析出工程の溶液のpHが9~13の範囲内となるように、塩基性水溶液を添加するのが好ましい。塩基性水溶液としては、上述したものを採用すればよい。
 ジルコニウム析出工程を経た第1焼成体は、濾過などの方法で分離され、さらに100~500℃、好ましくは200~400℃の範囲内で乾燥されるのが好ましい。
 ジルコニウム追加工程を経た第1焼成体は、第2焼成工程に供される。
 第2焼成工程で得られたリチウム複合金属酸化物は、粉砕工程、分級工程を経て、一定の粒度分布のものとするのが好ましい。粒度分布の範囲としては、一般的なレーザー散乱回折式粒度分布計での測定において、平均粒子径(D50)が100μm以下が好ましく、1μm以上50μm以下がより好ましく、1μm以上30μm以下がさらに好ましく、2μm以上20μm以下が特に好ましい。また、本発明の第2発明であるリチウム複合金属酸化物の一次粒子の大きさは、顕微鏡観察にて50nm~1500nmの範囲内のものが好ましい。なお、一次粒子とは、SEM観察の際に1粒と認識される粒子のことを意味する。
 以上のとおり、本発明の第2発明である、一般式:LiNiCoMnZr(0.2≦a≦2、b+c+d+e+f=1、0<b<1、0<c<1、0<d<1、0<e<1、0≦f<1、DはFe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Al、Ti、P、Ga、Ge、V、Mo、Nb、W、La、Hf、Rfから選ばれる少なくとも1の元素、1.7≦g≦3) で表されるリチウム複合金属酸化物を製造できる。
 <第3発明>
 本発明の第3発明について説明する。
 本発明の第3発明である、一般式:LiNiCoMnZr(0.2≦a≦2、b+c+d+e+f=1、0<b<1、0<c<1、0<d<1、0<e<1、0≦f<1、DはFe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Al、Ti、P、Ga、Ge、V、Mo、Nb、W、La、Hf、Rfから選ばれる少なくとも1の元素、1.7≦g≦3) で表されるリチウム複合金属酸化物の製造方法は、
 ニッケル、コバルト及びマンガンを含む複合金属水酸化物を加熱して前駆体とする前駆体製造工程、
 前記前駆体及びリチウム塩を混合した混合物を加熱して第1焼成体とする第1焼成工程、
 前記第1焼成体を水に分散させる分散液調製工程、
 ヒドロキシカルボン酸含有ジルコニウム水溶液と、前記分散液を混合し、第1焼成体の表面にジルコニウムを析出させるジルコニウム析出工程、
 前記ジルコニウム析出工程を経た第1焼成体を加熱して第2焼成体とする第2焼成工程、
を含むことを特徴とする。
 一般式:LiNiCoMnZr(0.2≦a≦2、b+c+d+e+f=1、0<b<1、0<c<1、0<d<1、0<e<1、0≦f<1、DはFe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Al、Ti、P、Ga、Ge、V、Mo、Nb、W、La、Hf、Rfから選ばれる少なくとも1の元素、1.7≦g≦3)において、b、c、d、eの値は、上記条件を満足するものであれば特に制限はないが、b、c、d、eの少なくともいずれか一つが10/100<b<90/100、10/100<c<90/100、5/100<d<70/100、0<e<10/100の範囲であることが好ましく、12/100<b<80/100、12/100<c<80/100、10/100<d<60/100、1/10000<e<5/100の範囲であることがより好ましく、15/100<b<70/100、15/100<c<70/100、12/100<d<50/100、1/1000<e<1/100の範囲であることがさらに好ましい。
 a、f、gについては一般式で規定する範囲内の数値であればよく、好ましくは0.5≦a≦1.5、0≦f<0.1、1.8≦g≦2.5、より好ましくは0.8≦a≦1.3、0≦f<0.01、1.9≦g≦2.1を例示することができる。
 前駆体製造工程は、ニッケル、コバルト及びマンガンを含む複合金属水酸化物を加熱して前駆体を製造する工程である。
 ニッケル、コバルト及びマンガンを含む複合金属水酸化物は、ニッケル、コバルト及びマンガンを含む水溶液と塩基性水溶液を混合することで、製造できる。上記複合金属水酸化物の製造工程について詳細に説明する。
 複合金属水酸化物の製造工程は、
 ニッケル塩、コバルト塩及びマンガン塩を水に溶解し、ニッケル、コバルト及びマンガンを所定の比で含む複合金属含有水溶液を調製する工程、
 塩基性水溶液を調製する工程、
 前記塩基性水溶液に前記複合金属含有水溶液を供給し、ニッケル、コバルト及びマンガンを複合金属水酸化物として析出させる複合金属水酸化物析出工程、
を含む。
 ニッケル塩としては、例えば、硫酸ニッケル、炭酸ニッケル、硝酸ニッケル、酢酸ニッケル、塩化ニッケルを挙げることができる。コバルト塩としては、例えば、硫酸コバルト、炭酸コバルト、硝酸コバルト、酢酸コバルト、塩化コバルトを挙げることができる。マンガン塩としては、例えば、硫酸マンガン、炭酸マンガン、硝酸マンガン、酢酸マンガン、塩化マンガンを挙げることができる。
 複合金属含有水溶液におけるニッケル塩、コバルト塩及びマンガン塩の配合比は、これらの配合比が、所望のリチウム複合金属酸化物の金属組成比となるように調製すればよい。
 複合金属含有水溶液を調製する工程は、撹拌装置を備えた反応槽で行われるのが好ましく、さらに窒素やアルゴンなどの不活性ガスを導入できる装置を備えた反応槽で行われるのが好ましい。また、恒温条件となる装置を備えた反応槽がより好ましい。
 複合金属含有水溶液は、好ましくは40~70℃、より好ましくは45~65℃の範囲内に加温しておくのがよい。
 塩基性水溶液のpHは9~14の範囲が好ましく、10~13の範囲がより好ましく、10.5~12の範囲がさらに好ましい。なお、特段の言及がない限り、本明細書で規定するpHは25℃で測定した場合の値をいう。使用し得る塩基性化合物としては水に溶解して塩基性を示すものであれば良く、例えば、アンモニア、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸リチウムなどのアルカリ金属炭酸塩、リン酸三ナトリウム、リン酸三カリウム、リン酸三リチウムなどのアルカリ金属リン酸塩、酢酸ナトリウム、酢酸カリウム、酢酸リチウムなどのアルカリ金属酢酸塩を挙げることができる。塩基性化合物は単独で用いても良いし、複数を併用しても良い。以下の工程において、水溶液のpHは、それぞれ好適な範囲に保たれることが好ましいため、塩基性水溶液には、少なくとも緩衝能を有する塩基性化合物が含まれるのが好ましい。緩衝能を有する塩基性化合物としては、例えば、アンモニア、アルカリ金属炭酸塩、アルカリ金属リン酸塩、アルカリ金属酢酸塩を挙げることができる。
 塩基性水溶液を調製する工程は、撹拌装置を備えた反応槽で行われるのが好ましく、さらに窒素やアルゴンなどの不活性ガスを導入できる装置を備えた反応槽で行われるのが好ましい。また、恒温条件となる装置を備えた反応槽がより好ましい。
 塩基性水溶液は、好ましくは40~70℃、より好ましくは45~65℃の範囲内に加温しておくのがよい。
 複合金属水酸化物析出工程においては、前記塩基性水溶液に前記複合金属含有水溶液を供給することにより、金属イオンと水酸化物イオンが反応して、水に対して溶解度の低いニッケル、コバルト及びマンガンを含む複合金属水酸化物が生成し、これが析出する。析出した複合金属水酸化物の粒子がリチウム複合金属酸化物の一次粒子の基礎となる。そのため、複合金属水酸化物析出工程を複合金属水酸化物の析出速度が著しく速い条件下、すなわち複合金属水酸化物の核がいたるところで発生する条件下とすると、無秩序な複合金属水酸化物の粒子が形成されることになり、その結果、リチウム複合金属酸化物の一次粒子の好ましくない晶癖を生じる恐れがある。従って、複合金属水酸化物析出工程においては、できるだけ緩和な条件下で、複合金属水酸化物の粒子を析出させることが好ましい。
 上記の観点から、複合金属含有水溶液を供給する速度は、10~1000mL/hが好ましく、20~500mL/hがより好ましく、50~300mL/hが特に好ましい。また、複合金属水酸化物析出工程の反応温度は、40~70℃、好ましくは45~65℃の範囲内とするのがよい。
 複合金属水酸化物析出工程においては、反応溶液を一定のpHに保つことが好ましい。なお、ここでのpH値は、反応液をpHメーターで測定した数値そのものを意味する。当該pHとしては、9~14の範囲が好ましく、10~12の範囲がより好ましく、10.5~11の範囲が特に好ましい。反応溶液を一定のpHに保つために、他の塩基性水溶液を準備して、複合金属水酸化物析出工程の反応溶液に適宜添加することが好ましい。
 複合金属水酸化物析出工程は、撹拌装置を備えた反応槽で行われるのが好ましく、さらに窒素やアルゴンなどの不活性ガスを導入できる装置を備えた反応槽で行われるのが好ましい。また、恒温条件となる装置を備えた反応槽がより好ましい。
 複合金属水酸化物析出工程後に、複合金属水酸化物を濾過などで分離する。
 以上の方法で、複合金属水酸化物を得ることができる。
 前駆体製造工程における加熱は、複合金属水酸化物に付着した水などを除去することが目的である。加熱温度としては、100℃以上が好ましく、150~500℃の範囲内がより好ましく、200~400℃の範囲内が特に好ましい。前駆体製造工程は常圧下で行ってもよいし、減圧下で行ってもよい。
 次に、第1焼成工程について説明する。第1焼成工程は、前記前駆体及びリチウム塩を混合した混合物を加熱して第1焼成体とする工程である。
 リチウム塩としては、炭酸リチウム、水酸化リチウム、硝酸リチウム、酢酸リチウム、シュウ酸リチウム、ハロゲン化リチウムを例示することができる。リチウム塩の配合量は、所望のリチウム組成のリチウム複合金属酸化物となるように適宜決定すればよい。
 混合装置としては、乳鉢及び乳棒、攪拌混合機、V型混合機、W型混合機、リボン型混合機、ドラムミキサー、ボールミルを例示できる。
 第1焼成工程は、大気条件下で行ってもよいし、ヘリウム、アルゴンなどの不活性ガス存在下で行ってもよい。第1焼成工程の加熱温度は500~1200℃の範囲を例示できる。第1焼成工程の加熱時間は1~50時間を例示できる。
 第1焼成工程の温度は、500~700℃が好ましく、550~650℃がより好ましい。第1焼成工程の加熱時間は、10~30時間が好ましく、11~25時間がより好ましく、14~25時間が特に好ましい。一般に、複合金属水酸化物及びリチウム塩の混合物を高温で加熱すると、混合物の粒子内で各金属が移動することが知られている。本発明の好ましい一態様では、第1焼成工程で、混合物を500~700℃で10~30時間加熱することにより、得られる第1焼成体の粒子内における金属組成に特定の偏りが生じると推定される。このように、粒子内の金属組成に特定の偏りが生じた第1焼成体を、後の工程で、第1焼成工程とは異なる条件の第2焼成工程で焼成することで、好適な活物質となり得るリチウム複合金属酸化物を製造することができると考えられる。
 次に、分散液調製工程について説明する。分散液調製工程は、前記第1焼成体を水に分散させ分散液を調製する工程である。
 分散液調製工程の前に、第1焼成体を粉砕しておくのが好ましい。また、分散液調製工程においては、第1焼成体に含まれるリチウムが水に溶解する可能性があるため、分散液に上述したリチウム塩を適宜適切な量で添加しておくのが好ましい。さらに、分散液のpHが9~12程度の範囲内となるようにpH調製を行うことが好ましい。
 次に、ジルコニウム析出工程について説明する。ジルコニウム析出工程は、ヒドロキシカルボン酸含有ジルコニウム水溶液と、前記分散液を混合し、第1焼成体の表面にジルコニウムを析出させる工程である。
 ヒドロキシカルボン酸含有ジルコニウム水溶液は、ジルコニウム塩とヒドロキシカルボン酸を水に溶解して製造される。ジルコニウム塩とヒドロキシカルボン酸の配合比は、モル比でジルコニウム:ヒドロキシカルボン酸=1:1~1:3の範囲内が好ましい。
 ジルコニウム塩としては、例えば、酸化ジルコニウム、水酸化ジルコニウム、硫酸ジルコニウム、硝酸ジルコニウム、リン酸ジルコニウム、ハロゲン化ジルコニウムを挙げることができる。
 分子内に水酸基とカルボン酸基を有するヒドロキシカルボン酸としては、脂肪族ヒドロキシカルボン酸及び芳香族ヒドロキシカルボン酸を挙げることができる。
 脂肪族ヒドロキシカルボン酸としては、グリコール酸、乳酸、タルトロン酸、グリセリン酸、2-ヒドロキシ酪酸、3-ヒドロキシ酪酸、γ-ヒドロキシ酪酸、リンゴ酸、酒石酸、シトラマル酸、クエン酸、イソクエン酸、ロイシン酸、メバロン酸、パントイン酸、キナ酸、シキミ酸を例示できる。
 芳香族ヒドロキシカルボン酸としては、サリチル酸、ゲンチジン酸、オルセリン酸などのo-ヒドロキシ安息香酸誘導体、マンデル酸、ベンジル酸、2-ヒドロキシ-2-フェニルプロピオン酸を例示できる。
 上記具体的なヒドロキシカルボン酸は、いずれも、同一のジルコニウムイオンにOH基とCOH基が配位可能なコンホメーションを形成できる。
 ジルコニウム析出工程においては、効率的にジルコニウムを析出させるために、ジルコニウム析出工程の溶液のpHをコントロールするのが好ましい。例えば、ジルコニウム析出工程の溶液のpHが9~13の範囲内となるように、塩基性水溶液を添加するのが好ましい。塩基性水溶液としては、上述したものを採用すればよい。
 ジルコニウム析出工程を経た第1焼成体は、濾過などの方法で分離され、さらに100~500℃、好ましくは200~400℃の範囲内で乾燥されるのが好ましい。
 第2焼成工程は、前記ジルコニウム析出工程を経た第1焼成体を加熱して第2焼成体とする工程である。第2焼成工程の温度は750~1000℃が好ましい。ここで、リチウム複合金属酸化物の結晶生成の点から言及すると、なるべく低温で加熱した方が、均一な組成であって均一な形状の結晶が生成しやすい。そのため、第2焼成工程の温度は750~900℃がより好ましく、800~870℃がさらに好ましい。例えば、800~870℃の範囲内で加熱することにより、この温度範囲内で生成可能な特定の組成の結晶核が、粒子内における結晶可能組成条件を満足する特定の箇所(例えば中心部)で生成し、さらに、該結晶核近傍において、金属の移動に因り、結晶可能組成条件を満足するに従い、順次、結晶が成長することになる。その結果として、均一な組成であって均一な形状の結晶が生成すると推定される。他方、例えば、1100℃で焼成すると、結晶核の生成速度が増加すること及び結晶核を生成し得る組成が増加することにより、粒子内のいたるところで多様な組成の結晶核が生成し、その結果として、不均一な組成であって不均一な形状の結晶が生成する場合があると推定される。
 第2焼成工程の加熱時間は、1~30時間が好ましく、3~25時間が好ましく、5~15時間がより好ましい。
 第2焼成工程で得られたリチウム複合金属酸化物は、粉砕工程、分級工程を経て、一定の粒度分布のものとするのが好ましい。粒度分布の範囲としては、一般的なレーザー散乱回折式粒度分布計での測定において、平均粒子径(D50)が100μm以下が好ましく、1μm以上50μm以下がより好ましく、1μm以上30μm以下がさらに好ましく、2μm以上20μm以下が特に好ましい。また、本発明の第3発明であるリチウム複合金属酸化物の一次粒子の大きさは、顕微鏡観察にて50nm~1500nmの範囲内のものが好ましい。なお、一次粒子とは、SEM観察の際に1粒と認識される粒子のことを意味する。
 以上のとおり、本発明の第3発明である、一般式:LiNiCoMnZr(0.2≦a≦1.5、b+c+d+e+f=1、0<b<1、0<c<1、0<d<1、0<e<1、0≦f<1、DはFe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Al、Ti、P、Ga、Ge、V、Mo、Nb、W、La、Hf、Rfから選ばれる少なくとも1の元素、1.7≦g≦2.1) で表されるリチウム複合金属酸化物を製造できる。
 また、本発明の第3発明から派生した本発明の第3-1発明として、以下の発明を把握できる。
 本発明の第3-1発明である、一般式:LiNiCoMnZr(0.2≦a≦2、b+c+d+e+f=1、0<b<1、0<c<1、0<d<1、0<e<1、0≦f<1、DはFe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Al、Ti、P、Ga、Ge、V、Mo、Nb、W、La、Hf、Rfから選ばれる少なくとも1の元素、1.7≦g≦3) で表されるリチウム複合金属酸化物の製造方法は、
 一般式:LiNiCoMn(0.2≦a≦2、b+c+d+f=1、0<b<1、0<c<1、0<d<1、0≦f<1、DはFe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Al、Ti、P、Ga、Ge、V、Mo、Nb、W、La、Hf、Rfから選ばれる少なくとも1の元素、1.7≦g≦3) で表される層状岩塩構造の材料を水に分散させる分散液調製工程、
 ヒドロキシカルボン酸含有ジルコニウム水溶液と、前記分散液を混合し、前記材料の表面にジルコニウムを析出させるジルコニウム析出工程、
 前記ジルコニウム析出工程を経た材料を加熱して焼成体とする焼成工程、
を含むことを特徴とする。
 上記材料は、本発明の第1発明で説明された方法で製造したものを用いてもよいし、公知の方法で製造したものを用いてもよく、また、市販のものを用いてもよい。
 分散液調製工程及びジルコニウム析出工程については、本発明の第3発明の同じ工程に準じて行えばよい。ジルコニウム析出工程を経た材料は、濾過などの方法で分離され、さらに100~500℃、好ましくは200~400℃の範囲内で乾燥されるのが好ましい。
 焼成工程は、大気条件下で行ってもよいし、ヘリウム、アルゴンなどの不活性ガス存在下で行ってもよい。焼成工程の加熱温度は500~1200℃の範囲を例示でき、600~800℃の範囲内が好ましい。焼成工程の加熱時間は1~50時間を例示でき、2~5時間が好ましい。
 なお、上記の各一般式におけるa、b、c、d、e、f、gの好適な範囲は、本発明の第3発明の説明を援用する。ただし、eの特に好ましい範囲として、1/500<e<1/300の範囲を追加する。eの範囲が1/500<e<1/300であれば、層状岩塩構造の材料を効率よく均一にジルコニウムで被覆できる。
 本発明の第3-1発明に関するその他の事項は、本発明の第3発明の説明を援用する。
 <用途>
 本発明の第1発明、第2発明、第3発明及び第3-1発明のリチウム複合金属酸化物は、リチウムイオン二次電池の活物質として使用し得る。本発明のリチウムイオン二次電池は、本発明のリチウム複合金属酸化物を活物質として具備する。具体的には、本発明のリチウムイオン二次電池は、本発明のリチウム複合金属酸化物を活物質として具備する正極、負極、電解液及びセパレータを具備する。
 正極は、集電体と、集電体の表面に結着させた正極活物質層を有する。
 集電体は、リチウムイオン二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子伝導体をいう。集電体としては、銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。集電体は公知の保護層で被覆されていても良い。集電体の表面を公知の方法で処理したものを集電体として用いても良い。
 集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが1μm~100μmの範囲内であることが好ましい。
 正極活物質層は正極活物質、並びに必要に応じて導電助剤及び/又は結着剤を含む。
 正極活物質としては、本発明のリチウム複合金属酸化物を含むものであればよく、本発明のリチウム複合金属酸化物のみを採用してもよいし、本発明のリチウム複合金属酸化物と公知の正極活物質を併用してもよい。
 導電助剤は、電極の導電性を高めるために添加される。そのため、導電助剤は、電極の導電性が不足する場合に任意に加えればよく、電極の導電性が十分に優れている場合には加えなくても良い。導電助剤としては化学的に不活性な電子高伝導体であれば良く、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック、ケッチェンブラック(登録商標)、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)、および各種金属粒子などが例示される。これらの導電助剤を単独または二種以上組み合わせて活物質層に添加することができる。
 活物質層中の導電助剤の配合割合は、質量比で、活物質:導電助剤=1:0.005~1:0.5であるのが好ましく、1:0.01~1:0.2であるのがより好ましく、1:0.03~1:0.1であるのがさらに好ましい。導電助剤が少なすぎると効率のよい導電パスを形成できず、また、導電助剤が多すぎると活物質層の成形性が悪くなるとともに電極のエネルギー密度が低くなるためである。
 結着剤は、活物質や導電助剤を集電体の表面に繋ぎ止め、電極中の導電ネットワークを維持する役割を果たすものである。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂、ポリ(メタ)アクリル酸等のアクリル系樹脂、スチレン-ブタジエンゴム(SBR)、カルボキシメチルセルロースを例示することができる。これらの結着剤を単独で又は複数で採用すれば良い。
 活物質層中の結着剤の配合割合は、質量比で、活物質:結着剤=1:0.001~1:0.3であるのが好ましく、1:0.005~1:0.2であるのがより好ましく、1:0.01~1:0.15であるのがさらに好ましい。結着剤が少なすぎると電極の成形性が低下し、また、結着剤が多すぎると電極のエネルギー密度が低くなるためである。
 負極は、集電体と、集電体の表面に結着させた負極活物質層を有する。集電体については、正極で説明したものを適宜適切に採用すれば良い。負極活物質層は負極活物質、並びに必要に応じて導電助剤及び/又は結着剤を含む。
 負極活物質としては、リチウムを吸蔵及び放出可能な炭素系材料、リチウムと合金化可能な元素、リチウムと合金化可能な元素を有する化合物、あるいは高分子材料などを例示することができる。
 炭素系材料としては、難黒鉛化性炭素、黒鉛、コークス類、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維、活性炭あるいはカーボンブラック類が例示できる。ここで、有機高分子化合物焼成体とは、フェノール類やフラン類などの高分子材料を適当な温度で焼成して炭素化したものをいう。
 リチウムと合金化可能な元素としては、具体的にNa、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Biが例示でき、特に、Si又はSnが好ましい。
 リチウムと合金化可能な元素を有する化合物としては、具体的にZnLiAl、AlSb、SiB、SiB、MgSi、MgSn、NiSi、TiSi、MoSi、 CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2)、SnO(0<w≦2)、SnSiO、LiSiO あるいはLiSnOを例示でき、特に、SiO(0.3≦x≦1.6、又は0.5≦x≦1.5)が好ましい。
 中でも、負極活物質は、Siを有するSi系材料を含むものがよい。Si系材料は、リチウムイオンを吸蔵・放出可能な珪素又は/及び珪素化合物からなるとよく、例えば、SiOx(0.5≦x≦1.5)がよい。珪素は理論充放電容量が大きいものの、珪素は充放電時の体積変化が大きい。そこで、負極活物質を珪素を含むSiOxとすることで珪素の体積変化を緩和することができる。
 また、Si系材料は、Si相と、SiO相とをもつことが好ましい。Si相は、珪素単体からなり、Liイオンを吸蔵・放出し得る相であり、Liイオンの吸蔵及び放出に伴って膨張及び収縮する。SiO相は、SiOからなり、Si相の膨張及び収縮を吸収する緩衝相となる。Si相がSiO相により被覆されるSi系材料が好ましい。さらには、微細化された複数のSi相がSiO相により被覆されて一体となって粒子を形成しているものがよい。この場合には、Si系材料全体の体積変化を効果的に抑えることができる。
 Si系材料でのSi相に対するSiO相の質量比は、1~3であることが好ましい。前記質量比が小さすぎると、Si系材料の膨張及び収縮が比較的大きくなり、Si系材料を含む負極活物質層にクラックが生じるおそれがある。一方、前記質量比が大きすぎると、負極活物質のLiイオンの吸蔵及び放出量が少なくなり、電池の負極単位質量あたりの電気容量が低くなる。
 また、リチウムと合金化反応可能な元素を有する化合物として、スズ合金(Cu-Sn合金、Co-Sn合金等)などの錫化合物を例示できる。
 高分子材料としては、具体的にポリアセチレン、ポリピロールを例示できる。
 負極活物質として、CaSiを塩酸やフッ化水素酸などの酸で処理して得られる層状ポリシランを、300~1000℃で加熱して得られるSi材料を採用しても良い。さらに、上記Si材料を炭素源とともに加熱して、カーボンコートしたものを負極活物質として採用してもよい。
 負極活物質としては、以上のものの一種以上を使用することができる。
 負極に用いる導電助剤及び結着剤については、正極で説明したものを同様の配合割合で適宜適切に採用すれば良い。
 集電体の表面に活物質層を形成させるには、ロールコート法、ダイコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いて、集電体の表面に活物質を塗布すればよい。具体的には、活物質、溶剤、並びに必要に応じて結着剤及び/又は導電助剤を混合し、スラリーを調製する。上記溶剤としては、N-メチル-2-ピロリドン、メタノール、メチルイソブチルケトン、水を例示できる。該スラリーを集電体の表面に塗布後、乾燥する。電極密度を高めるべく、乾燥後のものを圧縮しても良い。
 電解液は、非水溶媒と非水溶媒に溶解した電解質とを含んでいる。
 非水溶媒としては、環状エステル類、鎖状エステル類、エーテル類等が使用できる。環状エステル類としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ガンマブチロラクトン、ビニレンカーボネート、2-メチル-ガンマブチロラクトン、アセチル-ガンマブチロラクトン、ガンマバレロラクトンを例示できる。鎖状エステル類としては、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、エチルメチルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル等を例示できる。エーテル類としては、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタンを例示できる。非水溶媒としては、上記具体的な溶媒の化学構造のうち一部又は全部の水素がフッ素に置換した化合物を採用しても良い。
 電解質としては、LiClO、LiAsF、LiPF、LiBF、LiCFSO、LiN(CFSO等のリチウム塩を例示できる。
 電解液としては、エチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジエチルカーボネートなどの非水溶媒に、LiClO、LiPF、LiBF、LiCFSOなどのリチウム塩を0.5mol/Lから1.7mol/L程度の濃度で溶解させた溶液を例示できる。
 セパレータは、正極と負極とを隔離し、両極の接触による短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータとしては、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミド、ポリアラミド(Aromatic polyamide)、ポリエステル、ポリアクリロニトリル等の合成樹脂、セルロース、アミロース等の多糖類、フィブロイン、ケラチン、リグニン、スベリン等の天然高分子、セラミックスなどの電気絶縁性材料を1種若しくは複数用いた多孔体、不織布、織布などを挙げることができる。また、セパレータは多層構造としてもよい。
 次に、リチウムイオン二次電池の製造方法について説明する。
 正極および負極に必要に応じてセパレータを挟装させ電極体とする。電極体は、正極、セパレータ及び負極を重ねた積層型、又は、正極、セパレータ及び負極を捲いた捲回型のいずれの型にしても良い。正極の集電体および負極の集電体から、外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後に、電極体に電解液を加えてリチウムイオン二次電池とするとよい。また、本発明のリチウムイオン二次電池は、電極に含まれる活物質の種類に適した電圧範囲で充放電を実行されればよい。
 本発明のリチウムイオン二次電池の形状は特に限定されるものでなく、円筒型、角型、コイン型、ラミネート型等、種々の形状を採用することができる。
 本発明のリチウムイオン二次電池は、車両に搭載してもよい。車両は、その動力源の全部あるいは一部にリチウムイオン二次電池による電気エネルギーを使用している車両であればよく、たとえば、電気車両、ハイブリッド車両などであるとよい。車両にリチウムイオン二次電池を搭載する場合には、リチウムイオン二次電池を複数直列に接続して組電池とするとよい。リチウムイオン二次電池を搭載する機器としては、車両以外にも、パーソナルコンピュータ、携帯通信機器など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。さらに、本発明のリチウムイオン二次電池は、風力発電、太陽光発電、水力発電その他電力系統の蓄電装置及び電力平滑化装置、船舶等の動力及び/又は補機類の電力供給源、航空機、宇宙船等の動力及び/又は補機類の電力供給源、電気を動力源に用いない車両の補助用電源、移動式の家庭用ロボットの電源、システムバックアップ用電源、無停電電源装置の電源、電動車両用充電ステーションなどにおいて充電に必要な電力を一時蓄える蓄電装置に用いてもよい。
 以上、本発明の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。本発明の第1発明、第2発明、第3発明及び第3-1発明において、各リチウム複合金属酸化物の製造工程には他の発明の製造工程を取り入れても良い。そのような製造工程で製造されたリチウム複合金属酸化物には、取り入れられた製造工程の効果が奏される。
 以下に、実施例および比較例を示し、本発明をより具体的に説明する。なお、本発明は、これらの実施例によって限定されるものではない。以下において、特に断らない限り、「部」とは質量部を意味し、「%」とは質量%を意味する。
 (実施例1)
 以下のとおり、実施例1のリチウム複合金属酸化物を製造した。
 硫酸ニッケル、硫酸コバルト及び硫酸マンガンを、Ni:Co:Mnの組成比が5:3:2となるように、1200mLの純水に溶解させ、複合金属含有水溶液を調製した。複合金属含有水溶液を50℃に加温し、維持した。
 28%アンモニア水14mLと純水400mLを混合し、第1塩基性水溶液を調製した。第1塩基性水溶液を50℃に加温し、維持した。
 水酸化ナトリウム96g、28%アンモニア水84mL、純水500mLを混合し、第2塩基性水溶液を調製した。
 50℃に維持した恒温槽中で、撹拌条件下の第1塩基性水溶液に複合金属含有水溶液を200mL/hの速度で供給し、ニッケル、コバルト及びマンガンを複合金属水酸化物として析出させた。この際に、反応溶液のpHを10.75~10.80の範囲内に維持させるために、第2塩基性水溶液を適宜滴下した。なお、ここでのpH値は、反応液をpHメーターで測定した数値そのものを意味する。
 複合金属水酸化物を濾過により分離した。超音波洗浄機を用いて、複合金属水酸化物を純水で洗浄し、その後、濾過により複合金属水酸化物を単離した。
 複合金属水酸化物を300℃で5時間乾燥し、前駆体とした。前駆体19gと炭酸リチウム9.35gを乳鉢で混合し、混合物とした。そして、前記混合物を、大気雰囲気下、600℃で16時間加熱し、第1焼成体とした。
 第1焼成体を乳鉢で解砕し、粉末状とした。粉末状の第1焼成体を、大気雰囲気下、850℃で7時間加熱し、リチウム複合金属酸化物を得た。該リチウム複合金属酸化物を乳鉢で解砕し、実施例1のリチウム複合金属酸化物とした。
 以下のとおり、実施例1のリチウムイオン二次電池を製造した。
 正極用集電体として厚み20μmのアルミニウム箔を準備した。活物質として実施例1のリチウム複合金属酸化物を94質量部、導電助剤として3質量部のアセチレンブラック、および結着剤として3質量部のポリフッ化ビニリデン(PVDF)を混合した。この混合物を適量のN-メチル-2-ピロリドン(NMP)に分散させて、スラリーを作製した。上記アルミニウム箔の表面に上記スラリーをのせ、ドクターブレードを用いてスラリーが膜状になるように塗布した。スラリーを塗布したアルミニウム箔を80℃で20分間乾燥することで、NMPを揮発により除去し、アルミニウム箔表面に活物質層を形成させた。表面に活物質層を形成させたアルミニウム箔を、ロ-ルプレス機を用いて圧縮し、アルミニウム箔と活物質層とを強固に密着接合させた。接合物を120℃で6時間、真空乾燥機で加熱し、所定の形状(25mm×30mmの矩形状)に切り取り、正極とした。
 負極は以下のように作製した。
 グラファイト98.3質量部と、結着剤としてスチレン-ブタジエンゴム1質量部及びカルボキシメチルセルロース0.7質量部とを混合し、この混合物を適量のイオン交換水に分散させてスラリーを作製した。このスラリーを負極用集電体である厚み20μmの銅箔にドクターブレードを用いて膜状になるように塗布し、スラリーを塗布した集電体を乾燥後プレスし、接合物を120℃で6時間、真空乾燥機で加熱し、所定の形状(25mm×30mmの矩形状)に切り取り、負極とした。
 上記の正極および負極を用いて、ラミネート型リチウムイオン二次電池を製作した。詳しくは、正極および負極の間に、セパレータとしてポリプロピレン/ポリエチレン/ポリプロピレンの3層構造の樹脂膜からなる矩形状シート(27×32mm、厚さ25μm)を挟装して極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに電解液を注入した。電解液としては、エチレンカーボネート、エチルメチルカーボネート及びジメチルカーボネートを体積比3:3:4で混合した溶媒にLiPF6を1モル/Lとなるよう溶解した溶液を用いた。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群および電解液が密閉された実施例1のラミネート型リチウムイオン二次電池を得た。なお、正極および負極は外部と電気的に接続可能なタブを備え、このタブの一部はラミネート型リチウムイオン二次電池の外側に延出している。
 以上の工程で、実施例1のリチウムイオン二次電池を作製した。
 (実施例2)
 以下のとおり、実施例2のリチウム複合金属酸化物を製造した。
 硫酸ニッケル、硫酸コバルト及び硫酸マンガンを、Ni:Co:Mnの組成比が5:3:2となるように、1200mLの純水に溶解させ、複合金属含有水溶液を調製した。複合金属含有水溶液を50℃に加温し、維持した。
 28%アンモニア水14mLと純水400mLを混合し、第1塩基性水溶液を調製した。第1塩基性水溶液を50℃に加温し、維持した。
 水酸化ナトリウム96g、28%アンモニア水84mL、純水500mLを混合し、第2塩基性水溶液を調製した。
 50℃に維持した恒温槽中で、撹拌条件下の第1塩基性水溶液に複合金属含有水溶液を200mL/hの速度で供給し、ニッケル、コバルト及びマンガンを複合金属水酸化物として析出させた。この際に、反応溶液のpHを10.75~10.80の範囲内に維持させるために、第2塩基性水溶液を適宜滴下した。なお、ここでのpH値は、反応液をpHメーターで測定した数値そのものを意味する。
 複合金属水酸化物を濾過により分離した。超音波洗浄機を用いて、複合金属水酸化物を純水で洗浄し、その後、濾過により複合金属水酸化物を単離した。
 複合金属水酸化物を300℃で5時間乾燥し、前駆体とした。前駆体19gと炭酸リチウム9.35gを乳鉢で混合し、混合物とした。そして、前記混合物を、大気雰囲気下、600℃で16時間加熱し、第1焼成体とした。
 第1焼成体を乳鉢で解砕し、粉末状とした。純水200mLに、炭酸リチウム2.33gと、粉末状の第1焼成体87gを加え、第1焼成体の分散液を調製した。硫酸を加えて分散液のpHを10に調整した。
 硫酸ジルコニウム、及び、ヒドロキシカルボン酸としてのグリコール酸を水に溶解して、ヒドロキシカルボン酸含有ジルコニウム水溶液を調製した。なお、当該ヒドロキシカルボン酸含有ジルコニウム水溶液において、ジルコニウムとグリコール酸のモル比は1:2であり、また、当該ヒドロキシカルボン酸含有ジルコニウム水溶液に含まれるジルコニウムのモル数は第1焼成体87gに含まれるニッケル、コバルト及びマンガンの合計モル数に対して0.005倍である。
 上記第1焼成体の分散液と、上記ヒドロキシカルボン酸含有ジルコニウム水溶液を混合し混合液とした。次いで、該混合液のpHが12.5になるまで、水酸化ナトリウム溶液を1時間かけて添加し、第1焼成体の表面にジルコニウムを析出させた。表面にジルコニウムが析出した第1焼成体につき、濾過で分離し、該第1焼成体を300℃で乾燥した。
 乾燥後の表面にジルコニウムが析出した第1焼成体を、大気雰囲気下、850℃で10時間加熱し、リチウム複合金属酸化物を得た。該リチウム複合金属酸化物を乳鉢で解砕し、実施例2のリチウム複合金属酸化物とした。
 以下、活物質として実施例2のリチウム複合金属酸化物を採用した以外は、実施例1と同様にして、実施例2のリチウムイオン二次電池を製造した。
 (実施例3)
 実施例1の第1焼成体と、酸化ジルコニウムを、乳鉢で30分間混合し、混合物とした。なお、当該混合物に含まれるジルコニウムのモル数は混合物に含まれるニッケル、コバルト及びマンガンの合計モル数に対して0.005倍である。当該混合物を、大気雰囲気下、850℃で7時間加熱し、リチウム複合金属酸化物を得た。該リチウム複合金属酸化物を乳鉢で解砕し、実施例3のリチウム複合金属酸化物とした。
 以下、活物質として実施例3のリチウム複合金属酸化物を採用した以外は、実施例1と同様にして、実施例3のリチウムイオン二次電池を製造した。
 (実施例4)
 以下のとおり、実施例4のリチウム複合金属酸化物を製造した。
 硫酸ニッケル、硫酸コバルト、硫酸マンガン及び硫酸ジルコニウムを、Ni:Co:Mn:Zrの組成比が5:3:2:0.05となるように、1200mLの純水に溶解させ、複合金属含有水溶液を調製した。複合金属含有水溶液を60℃に加温し、維持した。
 28%アンモニア水14mLと純水400mLを混合し、第1塩基性水溶液を調製した。第1塩基性水溶液を60℃に加温し、維持した。
 水酸化ナトリウム96g、28%アンモニア水84mL、純水500mLを混合し、第2塩基性水溶液を調製した。
 60℃に維持した恒温槽中で、撹拌条件下の第1塩基性水溶液に複合金属含有水溶液を200mL/hの速度で供給し、ニッケル、コバルト、マンガン及びジルコニウムを複合金属水酸化物として析出させた。この際に、反応溶液のpHを10.5に維持させるために、第2塩基性水溶液を適宜滴下した。なお、ここでのpH値は、反応液をpHメーターで測定した数値そのものを意味する。
 複合金属水酸化物を濾過により分離した。超音波洗浄機を用いて、複合金属水酸化物を純水で洗浄し、その後、濾過により複合金属水酸化物を単離した。
 複合金属水酸化物を300℃で5時間乾燥し、前駆体とした。前駆体19gと炭酸リチウム9.35gを乳鉢で混合し、混合物とした。そして、前記混合物を、大気雰囲気下、600℃で16時間加熱し、第1焼成体とした。
 第1焼成体を乳鉢で解砕し、粉末状とした。粉末状の第1焼成体を、大気雰囲気下、850℃で7時間加熱し、リチウム複合金属酸化物を得た。該リチウム複合金属酸化物を乳鉢で解砕し、実施例4のリチウム複合金属酸化物とした。
 以下、活物質として実施例4のリチウム複合金属酸化物を採用した以外は、実施例1と同様にして、実施例4のリチウムイオン二次電池を製造した。
 (比較例1)
 以下のとおり、比較例1のリチウム複合金属酸化物を製造した。
 硫酸ニッケル、硫酸コバルト及び硫酸マンガンを、Ni:Co:Mnの組成比が5:3:2となるように、1200mLの純水に溶解させ、複合金属含有水溶液を調製した。複合金属含有水溶液を50℃に加温し、維持した。
 28%アンモニア水14mLと純水400mLを混合し、第1塩基性水溶液を調製した。第1塩基性水溶液を40℃に加温し、維持した。
 水酸化ナトリウム96g、28%アンモニア水84mL、純水500mLを混合し、第2塩基性水溶液を調製した。
 50℃に維持した恒温槽中で、撹拌条件下の第1塩基性水溶液に複合金属含有水溶液を200mL/hの速度で供給し、ニッケル、コバルト及びマンガンを複合金属水酸化物として析出させた。この際に、反応溶液のpHを11.2に維持させるために、第2塩基性水溶液を適宜滴下した。なお、ここでのpH値は、反応液をpHメーターで測定した数値そのものを意味する。
 複合金属水酸化物を濾過により分離した。超音波洗浄機を用いて、複合金属水酸化物を純水で洗浄し、その後、濾過により複合金属水酸化物を単離した。
 複合金属水酸化物を300℃で5時間乾燥し、前駆体とした。前駆体19gと炭酸リチウム9.35gを乳鉢で混合し、混合物とした。そして、前記混合物を、大気雰囲気下、760℃で5時間加熱し、第1焼成体とした。
 第1焼成体を乳鉢で解砕し、粉末状とした。粉末状の第1焼成体を、大気雰囲気下、900℃で5時間加熱し、リチウム複合金属酸化物を得た。該リチウム複合金属酸化物を乳鉢で解砕し、比較例1のリチウム複合金属酸化物とした。
 以下、活物質として比較例1のリチウム複合金属酸化物を採用した以外は、実施例1と同様にして、比較例1のリチウムイオン二次電池を製造した。
 (比較例2)
 グリコール酸の代わりにエタノールアミンを用いた以外は、実施例2と同様の操作を行った。しかし、溶液のpHを調整しても、第1焼成体の表面にジルコニウムが析出しなかった。
 (比較例3)
 グリコール酸の代わりにアンモニアを用いた以外は、実施例2と同様の操作を行った。しかし、溶液のpHを調整しても、第1焼成体の表面にジルコニウムが析出しなかった。
 (比較例4)
 グリコール酸の代わりに硫酸アンモニウムを用いた以外は、実施例2と同様の操作を行った。しかし、溶液のpHを調整しても、第1焼成体の表面にジルコニウムが析出しなかった。
 (比較例5)
 グリコール酸の代わりにグリシンを用いた以外は、実施例2と同様の操作を行った。しかし、溶液のpHを調整しても、第1焼成体の表面にジルコニウムが析出しなかった。
 (比較例6)
 グリコール酸の代わりにアラニンを用いた以外は、実施例2と同様の操作を行った。しかし、溶液のpHを調整しても、第1焼成体の表面にジルコニウムが析出しなかった。
 (比較例7)
 グリコール酸の代わりに酢酸を用いた以外は、実施例2と同様の操作を行った。しかし、溶液のpHを調整しても、第1焼成体の表面にジルコニウムが析出しなかった。
 (比較例8)
 グリコール酸の代わりにマレイン酸を用いた以外は、実施例2と同様の操作を行った。しかし、溶液のpHを調整しても、第1焼成体の表面にジルコニウムが析出しなかった。
 (比較例9)
 グリコール酸の代わりにエチレンジアミン四酢酸を用いた以外は、実施例2と同様の操作を行った。しかし、溶液のpHを調整しても、第1焼成体の表面にジルコニウムが析出しなかった。
 実施例2及び比較例2~9の結果から、ヒドロキシカルボン酸含有ジルコニウム水溶液を用いた方法が、第1焼成体の表面にジルコニウムを析出させるための特別な方法であることがわかる。
 (評価例1)
 実施例1、比較例1のリチウム複合金属酸化物につき、走査型電子顕微鏡(SEM)にて、表面観察を行った。図1に実施例1のリチウム複合金属酸化物の二次粒子の写真、図2に実施例1のリチウム複合金属酸化物の一次粒子の写真を示す。図3に比較例1のリチウム複合金属酸化物の一次粒子の写真を示す。
 比較例1のリチウム複合金属酸化物の一次粒子は、(最大長/最大長方向に垂直な第2最大長)の値が概ね1であった。それに対し、実施例1のリチウム複合金属酸化物の一次粒子では、(最大長/最大長方向に垂直な第2最大長)の値が6.30、6.80、7.11のものが観察された。これら値の差異は、主にリチウム複合金属酸化物の焼成温度及び焼成時間の差異が反映されたと推定される。
 (評価例2)
 実施例2、実施例4のリチウム複合金属酸化物につき、走査型電子顕微鏡-エネルギー分散型X線分析(SEM-EDX)にて表面のジルコニウム分布を測定した。実施例2、4のリチウム複合金属酸化物の表面に、均一にジルコニウムが分布しているのが確認できた。図4及び図5に、実施例2及び実施例4のリチウム複合金属酸化物のEDXチャートを載せる。図4及び図5において、強度が大きいのがNi、Co及びMnのピークであり、強度が小さいのがZrのピークである。
 (評価例3)
 実施例2及び実施例4のリチウム複合金属酸化物における一次粒子につき、イオンスライサー(EM-09100IS、日本電子株式会社製)を用いたArイオンミリング法にて断面を形成させ、該断面を、電子エネルギー損失分光法(EELS)にて、Mnを対象として分析を行った。
 実施例2の一次粒子のエッジ部分から内部へわたり、Mnのピークに特段の変化は観察されなかった。他方、実施例4の一次粒子のエッジ部分から内部へ14nm程度の範囲で観察されるMnのピークには、それよりも内部で観察されるMnのピークとは異なるものが観察された。一次粒子のエッジ部分から内部へ14nm程度の範囲で観察されるMnピークは、それよりも内部のMnピークよりも低価数のMnに由来するものと考えられる。
 (評価例4)
 以下のとおり、実施例1~4、比較例1のリチウムイオン二次電池の初期容量を測定した。測定する電池に対し、25℃、0.33Cレート、電圧4.5VでCCCV充電(定電流定電圧充電)し、そして、電圧3.0Vまで0.33CレートでCC放電(定電流放電)を行ったときの放電容量を測定し、これを初期容量とした。
 さらに、測定する電池に対し、60℃、1Cレートで電圧4.5Vから3.0Vの範囲の充放電サイクルを200サイクル行い、その後、室温に5時間以上放置後、初期容量測定と同じ条件で放電容量を測定した。これをサイクル後容量とした。なお、例えば1時間で電池を完全放電させる電流レートを1Cという。容量維持率(%)は以下の式で求めた。
 容量維持率(%)=100×サイクル後容量/初期容量
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、本発明のリチウム複合金属酸化物を活物質として具備する二次電池は、初期容量、サイクル後容量、容量維持率ともに優れていることが裏付けられた。
 (評価例5)
 以下のとおり、実施例1~4、比較例1のリチウムイオン二次電池の初期容量を測定した。測定する電池に対し、25℃、0.33Cレート、電圧4.5VでCCCV充電(定電流定電圧充電)し、そして、電圧3.0Vまで0.33CレートでCC放電(定電流放電)を行ったときの放電容量を測定し、これを初期容量とした。
 さらに、各電池に対し、電圧4.32Vまで充電を行い、充電後の各電池を温度60℃の恒温庫に30日間保存した。保存後の電池の放電容量を初期容量の測定と同様の方法で測定して、容量維持率を算出した。容量維持率(%)は以下の式で求めた。
 容量維持率(%)=保存後の放電容量/初期容量×100
 結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から、本発明のリチウム複合金属酸化物を活物質として具備する二次電池は、保存後の放電容量、容量維持率ともに優れていることが裏付けられた。
 また、保存後の実施例1~4のリチウムイオン二次電池及び保存後の比較例1のリチウムイオン二次電池を分解し、正極から溶出したMnが負極にどの程度付着しているかを、誘導結合プラズマ(ICP)発光分析装置を用いて分析した。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 本発明のリチウム複合金属酸化物を活物質として具備する正極は、Mn溶出の程度を抑制できることが裏付けられた。
 (実施例5)
 純水400mLに粉末状の実施例1のリチウム複合金属酸化物25gを加え、分散液を調製した。硫酸を加えて分散液のpHを10に調整した。
 硫酸ジルコニウム、及び、ヒドロキシカルボン酸としてのグリコール酸を水に溶解して、ヒドロキシカルボン酸含有ジルコニウム水溶液を調製した。なお、当該ヒドロキシカルボン酸含有ジルコニウム水溶液において、ジルコニウムとグリコール酸のモル比は1:2であり、また、当該ヒドロキシカルボン酸含有ジルコニウム水溶液に含まれるジルコニウムのモル数は上記材料に含まれるニッケル、コバルト及びマンガンの合計モル数に対して0.0025倍である。
 上記分散液と、上記ヒドロキシカルボン酸含有ジルコニウム水溶液を混合し混合液とした。次いで、該混合液のpHが12になるまで、水酸化ナトリウム溶液を1時間かけて添加し、リチウム複合金属酸化物の表面にジルコニウムを析出させた。表面にジルコニウムが析出したリチウム複合金属酸化物を、濾過で分離し、120℃で5時間乾燥した。
 乾燥後の表面にジルコニウムが析出したリチウム複合金属酸化物を、大気雰囲気下、700℃で3時間加熱し、焼成体としてのリチウム複合金属酸化物を得た。該リチウム複合金属酸化物を乳鉢で解砕し、実施例5のリチウム複合金属酸化物とした。
 (評価例6)
 実施例5のリチウム複合金属酸化物につき、SEMにて表面観察を行った。図6に実施例5のリチウム複合金属酸化物のSEM写真を示す。図6のSEM写真から、実施例5のリチウム複合金属酸化物の表面は均一にジルコニウム含有膜で被覆されているといえる。
 (評価例7)
 実施例5のリチウム複合金属酸化物につき、粉体抵抗率測定システム(株式会社三菱アナリテック)に供して、粉体の体積抵抗率を測定した。同様に、未被覆材料である実施例1のリチウム複合金属酸化物の体積抵抗率を測定した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 実施例5のリチウム複合金属酸化物は、ジルコニウム被覆により、体積抵抗率が著しく低減したといえる。この現象は、実施例5のリチウム複合金属酸化物において、層状岩塩構造のLiNi5/10Co3/10Mn2/10の遷移金属とジルコニウムとの一部置換が生じており、それに伴うバンドギャップの縮小が反映された結果であると推察される。
 

Claims (11)

  1.  ニッケル、コバルト及びマンガンを含む複合金属水酸化物を加熱して前駆体とする前駆体製造工程、
     前記前駆体及びリチウム塩を混合した混合物を500~700℃で10~30時間加熱して第1焼成体とする第1焼成工程、
     前記第1焼成体を750~1000℃で加熱して第2焼成体とする第2焼成工程、
    を含む、一般式:LiNiCoMn(0.2≦a≦2、b+c+d+e=1、0<b<1、0<c<1、0<d<1、0≦e<1、DはFe、Cr、Cu、Zn、Ca、Mg、Zr、S、Si、Na、K、Al、Ti、P、Ga、Ge、V、Mo、Nb、W、La、Hf、Rfから選ばれる少なくとも1の元素、1.7≦f≦3) で表されるリチウム複合金属酸化物の製造方法。
  2.  前記第1焼成工程の温度が550~650℃であり、加熱時間が11~25時間である請求項1に記載のリチウム複合金属酸化物の製造方法。
  3.  前記第2焼成工程の温度が800~870℃であり、加熱時間が5~15時間である請求項1又は2に記載のリチウム複合金属酸化物の製造方法。
  4.  前記前駆体製造工程の前に、
     ニッケル、コバルト及びマンガンを含む水溶液と塩基性水溶液を40~70℃で混合してニッケル、コバルト及びマンガンを含む複合金属水酸化物を製造する複合金属水酸化物製造工程、を含む請求項1~3のいずれかに記載のリチウム複合金属酸化物の製造方法。
  5.  前記リチウム複合金属酸化物が、(最大長/最大長方向に垂直な第2最大長)の値が2~9の範囲内である一次粒子を50%(個数)以上含有する請求項1~4のいずれかに記載のリチウム複合金属酸化物の製造方法。
  6.  前記リチウム複合金属酸化物が、(最大長/最大長方向に垂直な第2最大長)の値が5~9の範囲内である一次粒子を含有する請求項1~5のいずれかに記載のリチウム複合金属酸化物の製造方法。
  7.  ニッケル、コバルト、マンガン及びジルコニウムを含む水溶液と塩基性水溶液を混合して、pH10~11及び40~70℃の条件でニッケル、コバルト、マンガン及びジルコニウムを含む複合金属水酸化物を製造する複合金属水酸化物製造工程、
     前記複合金属水酸化物を加熱して前駆体とする前駆体製造工程、
     前記前駆体及びリチウム塩を混合した混合物を加熱して焼成体とする焼成工程、
    を含む、一般式:LiNiCoMnZr(0.2≦a≦2、b+c+d+e+f=1、0<b<1、0<c<1、0<d<1、0<e<1、0≦f<1、DはFe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Al、Ti、P、Ga、Ge、V、Mo、Nb、W、La、Hf、Rfから選ばれる少なくとも1の元素、1.7≦g≦3) で表されるリチウム複合金属酸化物の製造方法。
  8.  前記複合金属水酸化物製造工程において、pHが10.2~10.7の範囲内であり、温度が55~65℃の範囲内である請求項7に記載のリチウム複合金属酸化物の製造方法。
  9.  前記焼成工程が、
     前記混合物を500~700℃で10~30時間加熱して第1焼成体とする第1焼成工程、
     前記第1焼成体を水に分散させる分散液調製工程、
     ヒドロキシカルボン酸含有ジルコニウム水溶液と、前記分散液を混合し、第1焼成体の表面にジルコニウムを析出させるジルコニウム析出工程、
     前記ジルコニウム析出工程を経た第1焼成体を750~1000℃で加熱して第2焼成体とする第2焼成工程、を含む請求項7又は8に記載のリチウム複合金属酸化物の製造方法。
  10.  ニッケル、コバルト及びマンガンを含む複合金属水酸化物を加熱して前駆体とする前駆体製造工程、
     前記前駆体及びリチウム塩を混合した混合物を加熱して第1焼成体とする第1焼成工程、
     前記第1焼成体を水に分散させる分散液調製工程、
     ヒドロキシカルボン酸含有ジルコニウム水溶液と、前記分散液を混合し、第1焼成体の表面にジルコニウムを析出させるジルコニウム析出工程、
     前記ジルコニウム析出工程を経た第1焼成体を加熱して第2焼成体とする第2焼成工程、
    を含む、一般式:LiNiCoMnZr(0.2≦a≦2、b+c+d+e+f=1、0<b<1、0<c<1、0<d<1、0<e<1、0≦f<1、DはFe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Al、Ti、P、Ga、Ge、V、Mo、Nb、W、La、Hf、Rfから選ばれる少なくとも1の元素、1.7≦g≦3) で表されるリチウム複合金属酸化物の製造方法。
  11.  一般式:LiNiCoMn(0.2≦a≦2、b+c+d+f=1、0<b<1、0<c<1、0<d<1、0≦f<1、DはFe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Al、Ti、P、Ga、Ge、V、Mo、Nb、W、La、Hf、Rfから選ばれる少なくとも1の元素、1.7≦g≦3) で表される層状岩塩構造の材料を水に分散させる分散液調製工程、
     ヒドロキシカルボン酸含有ジルコニウム水溶液と、前記分散液を混合し、前記材料の表面にジルコニウムを析出させるジルコニウム析出工程、
     前記ジルコニウム析出工程を経た材料を加熱して焼成体とする焼成工程、
    を含む、一般式:LiNiCoMnZr(0.2≦a≦2、b+c+d+e+f=1、0<b<1、0<c<1、0<d<1、0<e<1、0≦f<1、DはFe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Al、Ti、P、Ga、Ge、V、Mo、Nb、W、La、Hf、Rfから選ばれる少なくとも1の元素、1.7≦g≦3) で表されるリチウム複合金属酸化物の製造方法。
PCT/JP2015/002725 2014-06-04 2015-05-29 リチウム複合金属酸化物の製造方法 WO2015186325A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016525686A JP6202205B2 (ja) 2014-06-04 2015-05-29 リチウム複合金属酸化物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014115860 2014-06-04
JP2014-115860 2014-06-04

Publications (1)

Publication Number Publication Date
WO2015186325A1 true WO2015186325A1 (ja) 2015-12-10

Family

ID=54766410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002725 WO2015186325A1 (ja) 2014-06-04 2015-05-29 リチウム複合金属酸化物の製造方法

Country Status (2)

Country Link
JP (1) JP6202205B2 (ja)
WO (1) WO2015186325A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021523529A (ja) * 2018-06-28 2021-09-02 エルジー・ケム・リミテッド リチウム二次電池用正極活物質、この製造方法、これを含むリチウム二次電池用正極及びリチウム二次電池
CN114127994A (zh) * 2019-07-18 2022-03-01 株式会社丰田自动织机 铝均匀分散的正极活性物质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102290959B1 (ko) 2018-06-20 2021-08-19 주식회사 엘지화학 리튬 이차 전지용 양극 활물질 및 리튬 이차 전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027455A1 (ja) * 2009-09-04 2011-03-10 トヨタ自動車株式会社 リチウム二次電池用正極活物質およびその利用
WO2011052607A1 (ja) * 2009-10-29 2011-05-05 Agcセイミケミカル株式会社 リチウムイオン二次電池用正極材料の製造方法
JP2012018827A (ja) * 2010-07-08 2012-01-26 Sony Corp 正極活物質、非水電解質電池および正極活物質の製造方法
JP2012254889A (ja) * 2011-06-07 2012-12-27 Sumitomo Metal Mining Co Ltd ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに、非水系電解質二次電池
WO2013073633A1 (ja) * 2011-11-16 2013-05-23 Agcセイミケミカル株式会社 リチウム含有複合酸化物の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099470A (ja) * 2010-10-08 2012-05-24 Sumitomo Chemical Co Ltd リチウム二次電池用正極材料前駆体の製造方法およびリチウム二次電池用正極材料の製造方法
JP2012253009A (ja) * 2011-05-10 2012-12-20 Nippon Chem Ind Co Ltd リチウム二次電池用正極活物質粉体、その製造方法及びリチウム二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027455A1 (ja) * 2009-09-04 2011-03-10 トヨタ自動車株式会社 リチウム二次電池用正極活物質およびその利用
WO2011052607A1 (ja) * 2009-10-29 2011-05-05 Agcセイミケミカル株式会社 リチウムイオン二次電池用正極材料の製造方法
JP2012018827A (ja) * 2010-07-08 2012-01-26 Sony Corp 正極活物質、非水電解質電池および正極活物質の製造方法
JP2012254889A (ja) * 2011-06-07 2012-12-27 Sumitomo Metal Mining Co Ltd ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに、非水系電解質二次電池
WO2013073633A1 (ja) * 2011-11-16 2013-05-23 Agcセイミケミカル株式会社 リチウム含有複合酸化物の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021523529A (ja) * 2018-06-28 2021-09-02 エルジー・ケム・リミテッド リチウム二次電池用正極活物質、この製造方法、これを含むリチウム二次電池用正極及びリチウム二次電池
JP2022159384A (ja) * 2018-06-28 2022-10-17 エルジー・ケム・リミテッド リチウム二次電池用正極活物質の製造方法
JP7345794B2 (ja) 2018-06-28 2023-09-19 エルジー・ケム・リミテッド リチウム二次電池用正極活物質、この製造方法、これを含むリチウム二次電池用正極及びリチウム二次電池
CN114127994A (zh) * 2019-07-18 2022-03-01 株式会社丰田自动织机 铝均匀分散的正极活性物质
CN114127994B (zh) * 2019-07-18 2023-05-23 株式会社丰田自动织机 铝均匀分散的正极活性物质

Also Published As

Publication number Publication date
JP6202205B2 (ja) 2017-09-27
JPWO2015186325A1 (ja) 2017-04-20

Similar Documents

Publication Publication Date Title
US10651500B2 (en) Positive electrode active material for lithium secondary battery, method for preparing the same, and secondary battery including the same
JP6413949B2 (ja) リチウム複合金属酸化物部及び導電性酸化物部を含有する材料
JP6296156B2 (ja) リチウム複合金属酸化物部とホウ素含有部とを有する材料及びその製造方法
JP6803028B2 (ja) リチウム金属複合酸化物粉末の製造方法及びリチウム金属複合酸化物粉末
JP7213427B2 (ja) アルミニウムの分散が均一である正極活物質
JP7215260B2 (ja) 層状岩塩構造を示し、リチウム、ニッケル、コバルト、タングステン、アルミニウム、ジルコニウム及び酸素を含有する正極活物質、並びに、その製造方法
WO2020026486A1 (ja) 正極材料および二次電池
WO2016042728A1 (ja) MSix(Mは第3~9族元素から選択される少なくとも一元素。ただし、1/3≦x≦3)含有シリコン材料およびその製造方法
US10135061B2 (en) Composite for anode active material, anode including the composite, lithium secondary battery including the anode, and method of preparing the composite
CN113825725B (zh) 非水电解质二次电池用正极活性物质及非水电解质二次电池用正极
JP2017069135A (ja) リチウム複合金属酸化物部、中間部及び導電性酸化物部を有する材料
WO2020003848A1 (ja) 層状岩塩構造のリチウムニッケルコバルトタングステン酸化物
JP6202205B2 (ja) リチウム複合金属酸化物の製造方法
JP6519796B2 (ja) リチウム複合金属酸化物部とホウ素含有部とを有する材料及びその製造方法
JP2020007210A (ja) 層状岩塩構造のリチウムニッケルコバルトタングステン酸化物
JP7172896B2 (ja) 層状岩塩構造を示し、リチウム、ニッケル、コバルト、タングステン、アルミニウム及び酸素を含有する正極活物質の製造方法
JP7218687B2 (ja) 層状岩塩構造を示し、リチウム、ニッケル、タングステン及び酸素を含有する正極活物質の製造方法
JP7404886B2 (ja) 層状岩塩構造を示し、リチウム、ニッケル、コバルト、タングステン、アルミニウム及び酸素を含有する正極活物質、並びに、その製造方法
JP7215259B2 (ja) 層状岩塩構造を示し、リチウム、ニッケル、アルミニウム、タングステン及び酸素を含有する正極活物質、並びに、その製造方法
CN114127994A (zh) 铝均匀分散的正极活性物质
JP5846453B2 (ja) 正極活物質の製造方法
JP2016119190A (ja) 電極活物質及びその製造方法、リチウムイオン二次電池用電極並びにリチウムイオン二次電池
JP6443675B2 (ja) スピネル型結晶構造のLiaMxMnyO4粉末を含む正極及びリチウムイオン二次電池、並びにこれらの製造方法
JP7215261B2 (ja) 層状岩塩構造を示し、リチウム、ニッケル、コバルト、タングステン、ジルコニウム及び酸素を含有する正極活物質、並びに、その製造方法
JP7099286B2 (ja) リチウムニッケルコバルトモリブデン酸化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15802380

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016525686

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15802380

Country of ref document: EP

Kind code of ref document: A1