WO2015186228A1 - パワーモニタ装置および受信装置 - Google Patents

パワーモニタ装置および受信装置 Download PDF

Info

Publication number
WO2015186228A1
WO2015186228A1 PCT/JP2014/065005 JP2014065005W WO2015186228A1 WO 2015186228 A1 WO2015186228 A1 WO 2015186228A1 JP 2014065005 W JP2014065005 W JP 2014065005W WO 2015186228 A1 WO2015186228 A1 WO 2015186228A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
sample
voltage
circuit
hold circuit
Prior art date
Application number
PCT/JP2014/065005
Other languages
English (en)
French (fr)
Inventor
白井 聡
芦田 哲郎
正道 野上
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016521816A priority Critical patent/JP5964001B2/ja
Priority to CN201480079447.0A priority patent/CN106464358A/zh
Priority to US15/307,979 priority patent/US20170063452A1/en
Priority to PCT/JP2014/065005 priority patent/WO2015186228A1/ja
Publication of WO2015186228A1 publication Critical patent/WO2015186228A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver

Definitions

  • the present invention relates to a power monitor device and a receiving device.
  • the receiver for optical communication includes a power monitor circuit for monitoring the power of received light.
  • a power monitor circuit for monitoring the power of received light.
  • the received optical signal is a burst signal. Therefore, the power monitor circuit is required to have high-speed response that can follow a burst signal and high resolution that can be accurately monitored even when the received power is low.
  • a conventional power monitor circuit generally includes a current mirror circuit and a sample and hold circuit as disclosed in, for example, Patent Document 1.
  • a current (APD current) proportional to the intensity of an optical signal input to an APD (Avalanche Photo Diode) that is a light receiving element is input to the current mirror circuit, and the current mirror circuit converts the APD current into an APD current. Proportional mirror current is output.
  • the voltage conversion circuit converts the mirror current into a voltage.
  • the sample-and-hold circuit holds the converted voltage value, and converts the held voltage into a digital value by AD (Analog to Digital) conversion. It is possible to monitor the power of received light using this digital value.
  • AD Analog to Digital
  • the signal light is generated so as to have intensities corresponding to the data values “1” and “0”, respectively, and is configured by a pattern in which the data values “1” and “0” are repeated at random.
  • the mirror current fluctuates to the “1” side or the “0” side.
  • the mirror current output from the current mirror circuit is a mirror current that fluctuates up and down from a constant current value.
  • the input voltage of the sample and hold circuit also changes.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a power monitoring device and a receiving device that can improve the monitoring accuracy of the power of received light without reducing the response speed of the circuit. .
  • the present invention relates to a photodetector that converts a received optical signal into a current signal, and duplicates the current signal and outputs the duplicated current signal as a mirror current.
  • the capacitor is connected to the sample and hold circuit when the trigger voltage is input to the sample and hold circuit. Connected to the input side, characterized in that it does not connect said capacitor when said sample and said trigger voltage hold circuit is not input to the input side of the sample-and-hold circuit.
  • the power monitoring device and the receiving device according to the present invention have an effect that the monitoring accuracy of the power of the received light can be improved without reducing the response speed of the circuit.
  • FIG. 1 is a diagram showing a configuration example of a first embodiment of a power monitor circuit (power monitor device) according to the present invention.
  • FIG. 2 is a diagram illustrating an example of an input signal and a sample-and-hold circuit input voltage in a power monitor circuit of a comparative example that does not include a capacitor and an inverter.
  • FIG. 3 is a diagram illustrating an example of an effect in the power monitor circuit according to the first embodiment.
  • FIG. 4 is a diagram illustrating a configuration example of the power monitor circuit according to the second embodiment.
  • FIG. 5 is a diagram for explaining the effect of the second embodiment.
  • FIG. 1 is a diagram showing a configuration example of a first embodiment of a power monitor circuit (power monitor device) according to the present invention.
  • the power monitor circuit of the present embodiment includes a current mirror circuit 20, a sample and hold circuit 10, an APD 3, resistors 4, 5 and a capacitor 6. , An inverter 9, a current-voltage conversion amplifier (TIA) 11, and an inverter 30.
  • the power monitor circuit of this embodiment is mounted on an optical receiver in a receiving apparatus that receives an optical reception signal in an optical communication system such as a PON system, for example.
  • APD 3 is a photodetector that converts a received optical signal into a current signal. Note that although an example in which an APD is used as a photodetector is described here, a photodiode other than an APD may be used.
  • the current mirror circuit 20 includes transistors 1 and 2. The bases of the transistors 1 and 2 are connected to each other. The collector of the transistor 2 is connected to the cathode of the APD 3.
  • a current mirror unit is configured by the current mirror circuit 20 and the resistor 4 for supplying a constant current to the current mirror circuit 20.
  • a resistor 5 which is a current-voltage conversion circuit for converting a current into a voltage
  • the capacitor 30 connected to the output of the inverter 30 and the sample and hold circuit 10 to which the voltage converted by the resistor 5 is input are connected.
  • a sample and hold trigger signal indicating the start and end timing of sample and hold is input to the sample and hold circuit 10.
  • the sample and hold trigger signal is also input to the inverter 9.
  • the inverter 9 inverts the input sample and hold trigger signal and inputs it to the inverter 30.
  • FIG. 2 is a diagram illustrating an example of an input signal and an input voltage of a sample and hold circuit in a power monitor circuit of a comparative example that does not include the capacitor 6 and the inverter 30.
  • the sample-and-hold circuit of FIG. As shown in the input voltage, it takes time to converge the mirror current until the signal light transitions from the high power signal light to the small signal light, and the input voltage of the sample and hold circuit also takes time to converge.
  • the signal light has a pattern in which data values “1” and “0” are randomly repeated. Therefore, when the current mirror circuit follows a pattern in which the same data value continues, the input voltage of the sample and hold circuit also fluctuates as shown as the input voltage of the sample and hold circuit in the lower diagram of FIG. .
  • the capacitor 6 and the inverter 30 are provided in order to improve the monitoring accuracy of the received light power without reducing the response speed of the circuit. Thus, the input voltage to the sample and hold circuit is smoothed while being able to respond quickly when a burst signal is input.
  • a current proportional to the power of the received optical signal output from the APD 3 is duplicated by the current mirror circuit 20 and output as a mirror current.
  • Mirror current is input to the sample-and-hold circuit 10 is converted into a voltage V Rm by a resistor 5 having a resistance value R m.
  • the sample and hold circuit 10 starts an operation for holding the voltage value of the input voltage V Rm . Specifically, for example, the sample-and-hold circuit 10 starts to charge the internal capacitor.
  • the sample and hold circuit 10 samples and holds the input voltage at the timing when the trigger voltage is input.
  • the sample and hold circuit 10 outputs a voltage value held in the ADC (AD converter).
  • the ADC converts the input voltage value into a digital value. For example, the digital value is input to the arithmetic device, and the power of the optical signal received by the arithmetic device can be calculated.
  • a resistor 4 having a resistance value R off connected to the current mirror circuit 20 is a resistor for causing a constant current to flow through the transistors 1 and 2 of the current mirror circuit 20. Since the transistor 4 can be always operated by the resistor 4, a burst response is possible.
  • the capacitor 6 that smoothes the voltage fluctuation is connected to the output of the inverter 30.
  • the sample and hold trigger is not turned on, that is, when the sample and hold trigger signal is low (while the trigger voltage is not input)
  • the pMOS 7 is OFF and the input side of the sample and hold circuit 10 Is not connected to the capacitor 6. Therefore, at the moment when the burst signal is input, the current mirror circuit 20 responds at high speed without being affected by the capacitance of the capacitor 6 and outputs a constant current value with a quick convergence time.
  • FIG. 3 is a diagram illustrating an example of an effect in the power monitor circuit of the present embodiment.
  • FIG. 3 shows a sample-and-hold circuit when a signal light # 2 having a reception power smaller than that of the optical signal # 1 is input after the optical signal # 1 having a large reception power is input to the power monitor circuit of the present embodiment.
  • the time response of 10 input voltages V Rm is shown.
  • the input voltage 101 indicates the case where the inverter 30 is present, and the input voltage 102 indicates the case where the inverter 30 is not present (the capacitor 6 is always connected to the input side of the sample and hold circuit 10).
  • the input voltage VRm can be converged at high speed even after receiving an optical signal having a large reception power.
  • connection switching circuit that performs this switching is as follows.
  • the invention is not limited to the inverter 30 shown in FIG.
  • This connection switching circuit connects the capacitor 6 to the input side of the sample and hold circuit 10 when the sample and hold trigger is input, and inputs the sample and hold circuit 10 when the sample and hold trigger is not input. Any circuit configuration may be used as long as the capacitor 6 can be separated from the capacitor.
  • the capacitor 6 is connected to the inverter 30 as described above, and the capacitor 6 is connected only while the sample and hold trigger is on. For this reason, it is possible to achieve both smoothing of the input voltage at the sample and hold timing while reducing the convergence time by responding to the burst signal at high speed, and the monitor accuracy is improved.
  • FIG. FIG. 4 is a diagram showing a configuration example of a second embodiment of a power monitor circuit (power monitor device) according to the present invention.
  • the power monitor circuit according to the present embodiment is the same as the power monitor circuit according to the first embodiment, except that the inverter 30 and the inverter 9 are not provided, and a voltage follower (circuit separation unit) 12 is provided. is there.
  • Components having the same functions as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and redundant description is omitted.
  • the capacitor 6 is always connected in parallel to the resistor 5 for voltage conversion.
  • a voltage follower 12 is disposed after the resistor 5 and the capacitor 6, and a sample and hold circuit 10 is connected to the subsequent stage.
  • the process is the same as in the first embodiment until the current generated by the APD 3 is converted into a voltage.
  • the purpose of arranging the voltage follower 12 between the sample and hold circuit 10 and the capacitor 6 will be described.
  • the sample and hold circuit 10 has a capacitor inside, and samples and holds the input voltage by charging the capacitor. For this reason, a transient response (unsteady state) occurs until the charge is charged and a constant voltage is maintained.
  • the resistor 5 and the capacitor 6 are connected to the input side of the sample and hold circuit 10, the time constant becomes longer due to the resistor 5 and the capacitor 6 and the capacitor inside the sample and hold circuit 10, and the transient response time is delayed.
  • the resistor 5 and the capacitor 6 connected to the output of the current mirror circuit 20 are separated from the sample-and-hold circuit 10, thereby shortening the time constant and the transient response time. Prevent slowing down.
  • the voltage follower 12 has a very large input impedance and a very small output impedance. For this reason, the front-stage circuit and the rear-stage circuit can be separated.
  • FIG. 5 is a diagram for explaining the effect of the present embodiment.
  • the input voltage V VF of the sample and hold circuit 10 rises due to a transient response and then becomes a constant voltage.
  • an input voltage 103 is an input voltage of the sample and hold circuit 10 when the voltage follower 12 is present
  • an input voltage 104 is an input voltage of the sample and hold circuit 10 when there is no voltage follower 12.
  • the output voltage 105 is the output voltage of the sample and hold circuit 10 when the voltage follower 12 is present
  • the output voltage 106 is the output voltage of the sample and hold circuit 10 when there is no voltage follower 12. .
  • the rise time of the input voltage of the sample-and-hold circuit 10 differs depending on whether the voltage follower 12 is present or not. When the voltage follower 12 is present, the rise time is early, and when the voltage follower 12 is not present, the rise time is slow. At this time, when a sample-and-hold trigger (trigger voltage) is input, the sample-and-hold circuit 10 operates, and the input voltage of the sample-and-hold circuit 10 is held when the sample-and-hold trigger falls. When the trigger width is short, if there is no voltage follower 12, the voltage is held in the middle of rising due to a transient response, so that a voltage smaller than a desired voltage value is held. For this reason, a value smaller than the received power input as the monitor value is returned, and the monitoring accuracy is deteriorated.
  • a sample-and-hold trigger trigger voltage
  • the power monitor circuit of the present embodiment includes the capacitor 6, the input voltage can be smoothed as in the first embodiment, and the monitoring accuracy can be improved.
  • the voltage follower 12 is disposed between the sample and hold circuit 10 and the capacitor 6. For this reason, the time of the transient response can be shortened, and it is possible to prevent the monitor accuracy from deteriorating even when the trigger width is short.
  • the power monitoring device and the receiving device according to the present invention are useful for a receiving device that receives an optical signal.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Light Receiving Elements (AREA)
  • Optical Communication System (AREA)

Abstract

 受信した光信号を電流信号に変換するAPD3と、電流信号を複製し、複製した電流信号をミラー電流として出力するカレントミラー回路20と、ミラー電流を電圧に変換する抵抗5と、変換された電圧をトリガー電圧が入力されたタイミングでサンプルし、サンプルした電圧値を保持するサンプルアンドホールド回路10と、抵抗5とサンプルアンドホールド回路10との間に接続されたインバータ30と、インバータ30の出力側に接続されたコンデンサ6と、を備え、インバータ30は、サンプルアンドホールド回路10にトリガー電圧が入力されているときにコンデンサ6をサンプルアンドホールド回路10の入力側に接続し、サンプルアンドホールド回路10にトリガー電圧が入力されていないときにコンデンサ6をサンプルアンドホールド回路10の入力側に接続しない。

Description

パワーモニタ装置および受信装置
 本発明は、パワーモニタ装置および受信装置に関する。
 光通信用の受信器は、受信光のパワーをモニタするためのパワーモニタ回路を備えている。アクセス系ネットワークとして用いられるPON(Passive Optical Network)のようなシステムでは、受信光信号はバースト信号である。したがって、パワーモニタ回路は、バースト信号に追従できる高速な応答性と受信パワーの低い場合でも精度よくモニタできる高分解能性とが必要とされる。
 従来のパワーモニタ回路は、例えば特許文献1に開示されているように、一般的に、カレントミラー回路とサンプルアンドホールド回路を備える。このような受信パワーモニタ回路では、受光素子であるAPD(Avalanche Photo Diode)に入力された光信号の強度に比例した電流(APD電流)がカレントミラー回路に入力され、カレントミラー回路はAPD電流に比例したミラー電流を出力される。そして、電圧変換回路がミラー電流を電圧に変換する。サンプルアンドホールド回路は、変換された電圧値を保持し、保持した電圧をAD(Analog to Digital)変換してデジタル値に変換する。このデジタル値を用いて受信光のパワーをモニタすることが可能である。
国際公開第2013/111286号
 バースト光通信では、パワーの異なるパケットが時間をずらして多重されるため、受信器は時間的にパワーの異なる信号を受信しなければならない。受光素子であるAPDでは信号光パワーに比例した電流が流れる。パワーモニタ回路は、この電流の大きさを検出してモニタ値を求める。しかしながら、カレントミラー回路が、内部のトランジスタの応答速度や周辺の容量によってバースト信号に対して高速に応答しきれないと、大きなパワーの信号光から小さな信号光へ遷移するまでのミラー電流の収束に時間が掛かかる。そのため、サンプルアンドホールド回路への入力電圧にも裾引きが発生する。
 また、信号光は“1”と“0”のデータ値にそれぞれ対応した強度を有するよう生成され、“1”と“0”のデータ値がランダムに繰り返されるパターンで構成されている。特に同じデータ値が連続するパターンに対してカレントミラー回路が追従すると、ミラー電流が“1”側や“0”側に変動する。このため、カレントミラー回路から出力されるミラー電流は一定電流値から上下に変動したミラー電流となる。ミラー電流の変動を受けてサンプルアンドホールド回路の入力電圧も変動する。
 従来のパワーモニタ回路では、上記のような過渡応答(裾引き)やデータ値のパターンに追従することによるミラー電流の変動によるサンプルアンドホールド回路への入力電圧に変動が生じることにより、モニタ精度が悪くなってしまうという問題があった。データ値のパターンに追従することによるミラー電流の変動に対しては、電圧変換回路に用いられている抵抗に並列にコンデンサを追加することにより電圧変換回路の出力を平滑化し、サンプルアンドホールド回路の入力電圧の変動を抑圧することが可能である。しかし、コンデンサを追加することによってバースト応答が遅くなるため、収束時間が長くなってしまうという問題が新たに発生する。
 本発明は、上記に鑑みてなされたものであって、回路の応答速度を低下させずに受信光のパワーのモニタ精度を向上させることができるパワーモニタ装置および受信装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、受信した光信号を電流信号に変換する光検出器と、前記電流信号を複製し、複製した電流信号をミラー電流として出力するカレントミラー回路と、前記ミラー電流を電圧に変換する電流電圧変換回路と、前記電流電圧変換回路により変換された電圧をトリガー電圧が入力されたタイミングでサンプルし、サンプルした電圧値を保持するサンプルアンドホールド回路と、前記電流電圧変換回路と前記サンプルアンドホールド回路との間に接続された接続切替回路と、前記接続切替回路の出力側に接続されたコンデンサと、を備え、前記接続切替回路は、前記サンプルアンドホールド回路に前記トリガー電圧が入力されているときに前記コンデンサを前記サンプルアンドホールド回路の入力側に接続し、前記サンプルアンドホールド回路に前記トリガー電圧が入力されていないときに前記コンデンサを前記サンプルアンドホールド回路の入力側に接続しないことを特徴とする。
 本発明にかかるパワーモニタ装置および受信装置は、回路の応答速度を低下させずに受信光のパワーのモニタ精度を向上させることができるという効果を奏する。
図1は、本発明にかかるパワーモニタ回路(パワーモニタ装置)の実施の形態1の構成例を示す図である。 図2は、コンデンサおよびインバータを備えない比較例のパワーモニタ回路における入力信号とサンプルアンドホールド回路の入力電圧の一例を示す図である。 図3は、実施の形態1のパワーモニタ回路における効果の一例を示す図である。 図4は、実施の形態2のパワーモニタ回路の構成例を示す図である。 図5は、実施の形態2の効果を説明するための図である。
 以下に、本発明にかかるパワーモニタ装置および受信装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明にかかるパワーモニタ回路(パワーモニタ装置)の実施の形態1の構成例を示す図である。図1に示すように、本実施の形態のパワーモニタ回路は、カレントミラー(Current Mirror)回路20、サンプルアンドホールド(Sample and Hold)回路10と、APD3と、抵抗4,5と、コンデンサ6と、インバータ9と、電流電圧変換増幅器(TIA)11と、インバータ30と、を備える。本実施の形態のパワーモニタ回路は、例えば、PONシステム等の光通信システムにおいて光受信信号を受信する受信装置内の光受信器に搭載される。
 APD3は、受信した光信号を電流信号に変換する光検出器である。なお、ここでは、光検出器としてAPDを用いる例について説明するが、APDではないフォトダイオードを用いてもよい。カレントミラー回路20は、トランジスタ1,2を備える。トランジスタ1とトランジスタ2はベース同士が接続される。トランジスタ2のコレクタはAPD3のカソードに接続される。カレントミラー回路20とカレントミラー回路20に定電流を流すための抵抗4とでカレントミラー部が構成される。カレントミラー回路20の出力側には、電流を電圧に変換するための電流電圧変換回路である抵抗5と、p型MOS(Metal Oxide Semiconductor)トランジスタ(pMOS)7とn型MOSトランジスタ(nMOS)8で形成されたインバータ30とインバータ30の出力に接続されたコンデンサ6と抵抗5により変換された電圧が入力されるサンプルアンドホールド回路10とが接続される。サンプルアンドホールド回路10には、サンプルアンドホールドの開始と終了のタイミングを示すサンプルアンドホールドトリガー信号が入力される。サンプルアンドホールドトリガー信号は、インバータ9にも入力される。インバータ9は、入力されたサンプルアンドホールドトリガー信号を反転してインバータ30に入力する。
 ここで、コンデンサ6およびインバータ30を備えない比較例のパワーモニタ回路におけるモニタ値の変動について説明する。図2は、コンデンサ6およびインバータ30を備えない比較例のパワーモニタ回路における入力信号とサンプルアンドホールド回路の入力電圧の一例を示す図である。コンデンサ6およびインバータ30を備えない場合、カレントミラー回路が内部のトランジスタの応答速度や周辺の容量によってバースト信号に対して高速に応答しきれないと、図2の上側の図でサンプルアンドホールド回路の入力電圧に示すように、大きなパワーの信号光から小さな信号光へ遷移するまでのミラー電流の収束に時間が掛かかり、サンプルアンドホールド回路の入力電圧も収束に時間が掛かる。
 また、信号光は、“1”と“0”のデータ値がランダムに繰り返されるパターンで構成されている。したがって、同じデータ値が連続するパターンに対してカレントミラー回路が追従すると、図2の下側の図でサンプルアンドホールド回路の入力電圧として示したように、サンプルアンドホールド回路の入力電圧も変動する。本実施の形態では、回路の応答速度を低下させずに受信光のパワーのモニタ精度を向上させるために、コンデンサ6およびインバータ30を備える。これにより、バースト信号が入力された際に速やかに応答できるようにしつつ、サンプルアンドホールド回路への入力電圧を平滑化する。
 次に、本実施の形態の動作について説明する。APD3から出力される受信した光信号のパワーに比例した電流は、カレントミラー回路20によって複製されミラー電流として出力される。ミラー電流は抵抗値Rmを有する抵抗5により電圧VRmに変換されサンプルアンドホールド回路10に入力される。サンプルアンドホールド回路10は、サンプルアンドホールドトリガー信号がHighになると(トリガー電圧が入力されると)、入力される電圧VRmの電圧値の保持するための動作を開始する。具体的には、例えば、サンプルアンドホールド回路10は内部に有するコンデンサへの電荷のチャージを開始する。そして、サンプルアンドホールドトリガー信号がHighからLowとなると入力される電圧VRmの電圧値を保持するための動作を終了し、サンプルアンドホールドトリガー信号がHighのときに入力された電圧VRmの電圧値を保持する。このようにして、サンプルアンドホールド回路10は、入力された電圧をトリガー電圧の入力されたタイミングでサンプルして保持する。サンプルアンドホールド回路10は、ADC(ADコンバータ)に保持した電圧値を出力する。ADCは、入力された電圧値をデジタル値に変換する。このデジタル値は、例えば、演算装置に入力され、演算装置により受信した光信号のパワーを算出することができる。カレントミラー回路20に接続された抵抗値Roffを有する抵抗4はカレントミラー回路20のトランジスタ1,2に一定電流を流すための抵抗である。抵抗4により、トランジスタ1,2を常に動作した状態にできるためバースト応答が可能である。
 本実施の形態では、インバータ30の出力に電圧変動を平滑化するコンデンサ6が接続される。そして、サンプルアンドホールドトリガーが入っていない時、すなわちサンプルアンドホールドトリガー信号がLowの時(トリガー電圧が入力されていない間)には、pMOS7はOFFとなっておりサンプルアンドホールド回路10の入力側にはコンデンサ6が接続されていない状態となる。そのため、バースト信号が入力された瞬間にはカレントミラー回路20はコンデンサ6の容量の影響を受けずに高速に応答し、早い収束時間で一定電流値を出力する。サンプルアンドホールドトリガーが入力されている(トリガー電圧が入力されている)時、すなわちサンプルアンドホールドトリガー信号がHighの時には、pMOS7がONとなるためサンプルアンドホールド回路10の入力側にコンデンサ6が接続される。この効果によりサンプルアンドホールド回路10の入力電圧は平滑化され変動幅が小さくなる。
 図3は、本実施の形態のパワーモニタ回路における効果の一例を示す図である。図3は、受信パワーの大きな光信号#1が本実施の形態のパワーモニタ回路に入力された後に、光信号#1より受信パワーの小さな信号光#2が入力されたときのサンプルアンドホールド回路10の入力電圧VRmの時間応答を示している。入力電圧101はインバータ30がある場合であり、入力電圧102はインバータ30が無い場合(コンデンサ6が常時サンプルアンドホールド回路10の入力側に接続)を示している。このように、インバータ30を用いることにより、大きな受信パワーの光信号を受信した後にも、入力電圧VRmを高速に収束させることができる。
 なお、上記の例では、コンデンサ6がサンプルアンドホールド回路10の入力側に接続されるか否かの切替えを図1に示したインバータ30を用いて実施したが、この切替えを行う接続切替え回路は、図1に示すインバータ30に限定されない。この接続切替回路は、サンプルアンドホールドトリガーが入力されている時にサンプルアンドホールド回路10の入力側にコンデンサ6を接続し、サンプルアンドホールドトリガーが入力されていないときにサンプルアンドホールド回路10の入力側からコンデンサ6を切り離すことが可能な構成であれば、どのような回路構成であってもよい。
 以上のように、本実施の形態では、このようにインバータ30に接続されたコンデンサ6を用いて、サンプルアンドホールドトリガーの入っている間だけコンデンサ6が接続されるようにするようにした。このため、バースト信号に対して高速に応答することにより収束時間を低減しつつ、サンプルアンドホールドするタイミングでの入力電圧の平滑化を両立することが可能となり、モニタ精度が向上する。
実施の形態2.
 図4は、本発明にかかるパワーモニタ回路(パワーモニタ装置)の実施の形態2の構成例を示す図である。図4に示すように、本実施の形態のパワーモニタ回路は、インバータ30およびインバータ9を備えず、ボルテージフォロア(回路分離部)12を備える以外は、実施の形態1のパワーモニタ回路と同様である。実施の形態1と同様の機能を有する構成要素は、実施の形態1と同一の符号を付して重複する説明を省略する。
 本実施の形態では、コンデンサ6は、常に電圧変換のための抵抗5に並列に接続されている。抵抗5とコンデンサ6の後段にボルテージフォロア12が配置され、その後段にサンプルアンドホールド回路10が接続されている。
 次に、本実施の形態の動作について説明する。APD3によって生成された電流を電圧に変換するまでは実施の形態1と同様である。サンプルアンドホールド回路10とコンデンサ6との間にボルテージフォロア12を配置した目的について説明する。サンプルアンドホールド回路10は内部にコンデンサを有しており、このコンデンサに電荷をチャージすることで入力電圧をサンプルアンドホールドする。そのため電荷をチャージして一定電圧を保持するまでに過渡応答(非定常状態)が発生する。サンプルアンドホールド回路10の入力側に抵抗5やコンデンサ6が接続されていると、抵抗5やコンデンサ6とサンプルアンドホールド回路10内部のコンデンサとにより時定数が長くなり、過渡応答時間が遅くなる。本実施の形態では、ボルテージフォロア12を備えることにより、カレントミラー回路20の出力に接続された抵抗5とコンデンサ6をサンプルアンドホールド回路10と切り離すことで、時定数を短くして過渡応答時間が遅くなるのを防止する。ボルテージフォロア12は、入力インピーダンスは非常に大きく、出力インピーダンスは非常に小さい。このため、前段の回路と後段の回路を切り離すことができる。
 図5は、本実施の形態の効果を説明するための図である。信号光が入力されるとサンプルアンドホールド回路10の入力電圧VVFは過渡応答により立ち上がり、その後一定電圧となる。図5において、入力電圧103は、ボルテージフォロア12がある場合のサンプルアンドホールド回路10の入力電圧であり、入力電圧104は、ボルテージフォロア12が無い場合のサンプルアンドホールド回路10の入力電圧である。また、図5において、出力電圧105はボルテージフォロア12がある場合のサンプルアンドホールド回路10の出力電圧であり、出力電圧106は、ボルテージフォロア12が無い場合のサンプルアンドホールド回路10の出力電圧である。
 サンプルアンドホールド回路10の入力電圧は、ボルテージフォロア12がある場合とない場合とで立ち上がりの時間が異なり、ボルテージフォロア12がある場合は早く立ち上がり、ない場合には立ち上がりが遅くなる。この時、サンプルアンドホールドトリガー(トリガー電圧)が入力されるとサンプルアンドホールド回路10が動作し、サンプルアンドホールドトリガーの立下りの時にサンプルアンドホールド回路10の入力電圧を保持する。トリガー幅が短い場合、ボルテージフォロア12がないと、過渡応答によって立ち上がりの途中で電圧を保持することになるため、所望の電圧値よりも小さい電圧を保持してしまう。このため、モニタ値として入力された受信パワーよりも小さい値を返してしまうことになりモニタ精度が悪くなる。
 これに対し、ボルテージフォロア12がある場合には立ち上がりが早いためトリガー幅が短い場合でも収束が完了しているため所望の電圧値を返すためモニタ精度が悪くなるのを防止できる。また、本実施の形態のパワーモニタ回路は、コンデンサ6を有しているため、実施の形態1と同様に入力電圧の平滑化を行うことができモニタ精度を向上させることができる。
 以上のように、本実施の形態では、サンプルアンドホールド回路10とコンデンサ6との間にボルテージフォロア12を配置した。このため、過渡応答の時間を短くすることができ、トリガー幅が短い場合でもモニタ精度が悪化するのを防止することができる。
 以上のように、本発明にかかるパワーモニタ装置および受信装置は、光信号を受信する受信装置に有用である。
 1,2 トランジスタ、3 APD、4,5 抵抗、6 コンデンサ、9,30 インバータ、10 サンプルアンドホールド回路、11 TIA、20 カレントミラー回路、12 ボルテージフォロア。

Claims (5)

  1.  受信した光信号を電流信号に変換する光検出器と、
     前記電流信号を複製し、複製した電流信号をミラー電流として出力するカレントミラー回路と、
     前記ミラー電流を電圧に変換する電流電圧変換回路と、
     前記電流電圧変換回路により変換された電圧をトリガー電圧が入力されたタイミングでサンプルし、サンプルした電圧値を保持するサンプルアンドホールド回路と、
     前記電流電圧変換回路と前記サンプルアンドホールド回路との間に接続された接続切替回路と、
     前記接続切替回路の出力側に接続されたコンデンサと、
     を備え、
     前記接続切替回路は、前記サンプルアンドホールド回路に前記トリガー電圧が入力されているときに前記コンデンサを前記サンプルアンドホールド回路の入力側に接続し、前記サンプルアンドホールド回路に前記トリガー電圧が入力されていないときに前記コンデンサを前記サンプルアンドホールド回路の入力側に接続しないことを特徴とするパワーモニタ装置。
  2.  前記接続切替回路は、p型MOSトランジスタとn型MOSトランジスタで構成されるインバータであることを特徴とする請求項1に記載のパワーモニタ装置。
  3.  受信した光信号を電流信号に変換する光検出器と、
     前記電流信号を複製し、複製した電流信号をミラー電流として出力するカレントミラー回路と、
     前記ミラー電流を電圧に変換する電流電圧変換回路と、
     前記電流電圧変換回路により変換された電圧をトリガー電圧が入力されたタイミングでサンプルし、サンプルした電圧値を保持するサンプルアンドホールド回路と、
     前記電流電圧変換回路と前記サンプルアンドホールド回路との間に接続されたコンデンサと、
     前記コンデンサと前記サンプルアンドホールド回路との間に接続されたボルテージフォロアと、
     を備えることを特徴とするパワーモニタ装置。
  4.  光信号を受信する受信装置であって、
     前記光信号を電流信号に変換する光検出器と、
     前記電流信号を複製し、複製した電流信号をミラー電流として出力するカレントミラー回路と、
     前記ミラー電流を電圧に変換する電流電圧変換回路と、
     前記電流電圧変換回路により変換された電圧をトリガー電圧が入力されたタイミングでサンプルし、サンプルした電圧値を保持するサンプルアンドホールド回路と、
     前記電流電圧変換回路と前記サンプルアンドホールド回路との間に接続された接続切替回路と、
     前記接続切替回路の出力側に接続されたコンデンサと、
     を備え、
     前記接続切替回路は、前記サンプルアンドホールド回路に前記トリガー電圧が入力されているときに前記コンデンサを前記サンプルアンドホールド回路の入力側に接続し、前記サンプルアンドホールド回路に前記トリガー電圧が入力されていないときに前記コンデンサを前記サンプルアンドホールド回路の入力側に接続しないことを特徴とする受信装置。
  5.  光信号を受信する受信装置であって、
     前記光信号を電流信号に変換する光検出器と、
     前記電流信号を複製し、複製した電流信号をミラー電流として出力するカレントミラー回路と、
     前記ミラー電流を電圧に変換する電流電圧変換回路と、
     前記電流電圧変換回路により変換された電圧をトリガー電圧が入力されたタイミングでサンプルし、サンプルした電圧値を保持するサンプルアンドホールド回路と、
     前記電流電圧変換回路と前記サンプルアンドホールド回路との間に接続されたコンデンサと、
     前記コンデンサと前記サンプルアンドホールド回路との間に接続されたボルテージフォロアと、
     を備えることを特徴とする受信装置。
PCT/JP2014/065005 2014-06-05 2014-06-05 パワーモニタ装置および受信装置 WO2015186228A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016521816A JP5964001B2 (ja) 2014-06-05 2014-06-05 パワーモニタ装置および受信装置
CN201480079447.0A CN106464358A (zh) 2014-06-05 2014-06-05 功率监视装置及接收装置
US15/307,979 US20170063452A1 (en) 2014-06-05 2014-06-05 Power monitoring device and receiving apparatus
PCT/JP2014/065005 WO2015186228A1 (ja) 2014-06-05 2014-06-05 パワーモニタ装置および受信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/065005 WO2015186228A1 (ja) 2014-06-05 2014-06-05 パワーモニタ装置および受信装置

Publications (1)

Publication Number Publication Date
WO2015186228A1 true WO2015186228A1 (ja) 2015-12-10

Family

ID=54766324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065005 WO2015186228A1 (ja) 2014-06-05 2014-06-05 パワーモニタ装置および受信装置

Country Status (4)

Country Link
US (1) US20170063452A1 (ja)
JP (1) JP5964001B2 (ja)
CN (1) CN106464358A (ja)
WO (1) WO2015186228A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10079643B2 (en) * 2016-11-23 2018-09-18 Stmicroelectronics (Research & Development) Limited Devices and methods for transmitting and receiving in an optical communications system
CN108847897B (zh) * 2018-08-03 2021-05-28 青岛海信宽带多媒体技术有限公司 一种光模块
CN110289906A (zh) * 2019-08-01 2019-09-27 青岛海信宽带多媒体技术有限公司 多路接收光功率监控装置、方法及光模块

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11186971A (ja) * 1997-12-19 1999-07-09 Sumitomo Electric Ind Ltd 光受信器
JP2008011299A (ja) * 2006-06-30 2008-01-17 Fujitsu Ltd Pon通信用光パワーモニタ
JP2010273221A (ja) * 2009-05-22 2010-12-02 Fujikura Ltd モニタ回路、モニタ信号の出力方法、及び、光受信器
US20120099857A1 (en) * 2009-06-11 2012-04-26 Hisense Broadband Multimedia Technologies Co., Ltd Optical line terminal

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3881336B2 (ja) * 2003-12-09 2007-02-14 ローム株式会社 光受信装置及びそれを備えるデータ通信装置
US7912380B2 (en) * 2005-03-25 2011-03-22 Sumitomo Electric Industries, Ltd. Optical receiver
CN101510802A (zh) * 2008-12-16 2009-08-19 成都优博创技术有限公司 突发模式光信号功率的测量电路
CN102185649B (zh) * 2011-05-09 2015-08-05 成都优博创技术有限公司 一种高精度突发接收光功率监测的系统及方法
CN102780525A (zh) * 2011-05-09 2012-11-14 深圳新飞通光电子技术有限公司 一种突发接收光功率检测装置及其方法
CN104054185B (zh) * 2012-01-25 2016-05-18 三菱电机株式会社 光接收器、站侧光终端装置以及受光等级监视方法
CN103067076A (zh) * 2012-12-27 2013-04-24 武汉华工正源光子技术有限公司 光模块突发光功率的检测电路
WO2015162759A1 (ja) * 2014-04-24 2015-10-29 三菱電機株式会社 受信光パワーモニタ回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11186971A (ja) * 1997-12-19 1999-07-09 Sumitomo Electric Ind Ltd 光受信器
JP2008011299A (ja) * 2006-06-30 2008-01-17 Fujitsu Ltd Pon通信用光パワーモニタ
JP2010273221A (ja) * 2009-05-22 2010-12-02 Fujikura Ltd モニタ回路、モニタ信号の出力方法、及び、光受信器
US20120099857A1 (en) * 2009-06-11 2012-04-26 Hisense Broadband Multimedia Technologies Co., Ltd Optical line terminal

Also Published As

Publication number Publication date
US20170063452A1 (en) 2017-03-02
CN106464358A (zh) 2017-02-22
JPWO2015186228A1 (ja) 2017-04-20
JP5964001B2 (ja) 2016-08-03

Similar Documents

Publication Publication Date Title
CN108737753B (zh) 用于飞行时间系统的主动像素电路及其操作方法
CN111629161B (zh) 比较器及包括该比较器的图像感测装置
US10212374B2 (en) Pixel circuit, driving method thereof, image sensor, and image acquisition apparatus
CN108064446B (zh) 模拟读取电路及影像传感模块
US9438830B2 (en) Analog-to-digital converter and CMOS image sensor including the same
JP6415785B2 (ja) バースト光受信器
CN104967793B (zh) 适用于cmos图像传感器的电源噪声抵消电路
JP5964001B2 (ja) パワーモニタ装置および受信装置
JP2008236455A (ja) トランスインピーダンスアンプ及びトランスインピーダンスアンプの制御方法
CN105743340A (zh) 雪崩光电二极管的偏压产生电路及相关的控制电路
US8525094B2 (en) Photoelectric conversion circuit
US20160149648A1 (en) Optical receiver with threshold control block
CN110109501B (zh) 负载跳变快速响应电路及快速响应方法
JP4569369B2 (ja) 光受信器
KR20150112217A (ko) 타임-디지털 컨버터 및 타임-디지털 변환 방법
KR101070118B1 (ko) 응답속도를 개선한 아날로그 회로
US9369147B2 (en) Adjustable and buffered reference for ADC resolution and accuracy enhancements
JP2015012540A (ja) 受光回路
JP5519838B1 (ja) 光トリガ型パラレルシリアル変換回路
US20140240042A1 (en) Operational amplifier
JP2015204540A (ja) A/d変換装置及びそれを用いた光センサ
JP6179718B2 (ja) サンプルホールド回路
CN104571735A (zh) 面板时间延迟检测电路
JP5526935B2 (ja) 電流制御回路
US10330723B2 (en) Operation voltage testing circuit and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893719

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016521816

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15307979

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14893719

Country of ref document: EP

Kind code of ref document: A1