WO2015186228A1 - パワーモニタ装置および受信装置 - Google Patents
パワーモニタ装置および受信装置 Download PDFInfo
- Publication number
- WO2015186228A1 WO2015186228A1 PCT/JP2014/065005 JP2014065005W WO2015186228A1 WO 2015186228 A1 WO2015186228 A1 WO 2015186228A1 JP 2014065005 W JP2014065005 W JP 2014065005W WO 2015186228 A1 WO2015186228 A1 WO 2015186228A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- current
- sample
- voltage
- circuit
- hold circuit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/079—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/079—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
- H04B10/0795—Performance monitoring; Measurement of transmission parameters
- H04B10/07955—Monitoring or measuring power
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
- H04B10/69—Electrical arrangements in the receiver
Definitions
- the present invention relates to a power monitor device and a receiving device.
- the receiver for optical communication includes a power monitor circuit for monitoring the power of received light.
- a power monitor circuit for monitoring the power of received light.
- the received optical signal is a burst signal. Therefore, the power monitor circuit is required to have high-speed response that can follow a burst signal and high resolution that can be accurately monitored even when the received power is low.
- a conventional power monitor circuit generally includes a current mirror circuit and a sample and hold circuit as disclosed in, for example, Patent Document 1.
- a current (APD current) proportional to the intensity of an optical signal input to an APD (Avalanche Photo Diode) that is a light receiving element is input to the current mirror circuit, and the current mirror circuit converts the APD current into an APD current. Proportional mirror current is output.
- the voltage conversion circuit converts the mirror current into a voltage.
- the sample-and-hold circuit holds the converted voltage value, and converts the held voltage into a digital value by AD (Analog to Digital) conversion. It is possible to monitor the power of received light using this digital value.
- AD Analog to Digital
- the signal light is generated so as to have intensities corresponding to the data values “1” and “0”, respectively, and is configured by a pattern in which the data values “1” and “0” are repeated at random.
- the mirror current fluctuates to the “1” side or the “0” side.
- the mirror current output from the current mirror circuit is a mirror current that fluctuates up and down from a constant current value.
- the input voltage of the sample and hold circuit also changes.
- the present invention has been made in view of the above, and an object of the present invention is to obtain a power monitoring device and a receiving device that can improve the monitoring accuracy of the power of received light without reducing the response speed of the circuit. .
- the present invention relates to a photodetector that converts a received optical signal into a current signal, and duplicates the current signal and outputs the duplicated current signal as a mirror current.
- the capacitor is connected to the sample and hold circuit when the trigger voltage is input to the sample and hold circuit. Connected to the input side, characterized in that it does not connect said capacitor when said sample and said trigger voltage hold circuit is not input to the input side of the sample-and-hold circuit.
- the power monitoring device and the receiving device according to the present invention have an effect that the monitoring accuracy of the power of the received light can be improved without reducing the response speed of the circuit.
- FIG. 1 is a diagram showing a configuration example of a first embodiment of a power monitor circuit (power monitor device) according to the present invention.
- FIG. 2 is a diagram illustrating an example of an input signal and a sample-and-hold circuit input voltage in a power monitor circuit of a comparative example that does not include a capacitor and an inverter.
- FIG. 3 is a diagram illustrating an example of an effect in the power monitor circuit according to the first embodiment.
- FIG. 4 is a diagram illustrating a configuration example of the power monitor circuit according to the second embodiment.
- FIG. 5 is a diagram for explaining the effect of the second embodiment.
- FIG. 1 is a diagram showing a configuration example of a first embodiment of a power monitor circuit (power monitor device) according to the present invention.
- the power monitor circuit of the present embodiment includes a current mirror circuit 20, a sample and hold circuit 10, an APD 3, resistors 4, 5 and a capacitor 6. , An inverter 9, a current-voltage conversion amplifier (TIA) 11, and an inverter 30.
- the power monitor circuit of this embodiment is mounted on an optical receiver in a receiving apparatus that receives an optical reception signal in an optical communication system such as a PON system, for example.
- APD 3 is a photodetector that converts a received optical signal into a current signal. Note that although an example in which an APD is used as a photodetector is described here, a photodiode other than an APD may be used.
- the current mirror circuit 20 includes transistors 1 and 2. The bases of the transistors 1 and 2 are connected to each other. The collector of the transistor 2 is connected to the cathode of the APD 3.
- a current mirror unit is configured by the current mirror circuit 20 and the resistor 4 for supplying a constant current to the current mirror circuit 20.
- a resistor 5 which is a current-voltage conversion circuit for converting a current into a voltage
- the capacitor 30 connected to the output of the inverter 30 and the sample and hold circuit 10 to which the voltage converted by the resistor 5 is input are connected.
- a sample and hold trigger signal indicating the start and end timing of sample and hold is input to the sample and hold circuit 10.
- the sample and hold trigger signal is also input to the inverter 9.
- the inverter 9 inverts the input sample and hold trigger signal and inputs it to the inverter 30.
- FIG. 2 is a diagram illustrating an example of an input signal and an input voltage of a sample and hold circuit in a power monitor circuit of a comparative example that does not include the capacitor 6 and the inverter 30.
- the sample-and-hold circuit of FIG. As shown in the input voltage, it takes time to converge the mirror current until the signal light transitions from the high power signal light to the small signal light, and the input voltage of the sample and hold circuit also takes time to converge.
- the signal light has a pattern in which data values “1” and “0” are randomly repeated. Therefore, when the current mirror circuit follows a pattern in which the same data value continues, the input voltage of the sample and hold circuit also fluctuates as shown as the input voltage of the sample and hold circuit in the lower diagram of FIG. .
- the capacitor 6 and the inverter 30 are provided in order to improve the monitoring accuracy of the received light power without reducing the response speed of the circuit. Thus, the input voltage to the sample and hold circuit is smoothed while being able to respond quickly when a burst signal is input.
- a current proportional to the power of the received optical signal output from the APD 3 is duplicated by the current mirror circuit 20 and output as a mirror current.
- Mirror current is input to the sample-and-hold circuit 10 is converted into a voltage V Rm by a resistor 5 having a resistance value R m.
- the sample and hold circuit 10 starts an operation for holding the voltage value of the input voltage V Rm . Specifically, for example, the sample-and-hold circuit 10 starts to charge the internal capacitor.
- the sample and hold circuit 10 samples and holds the input voltage at the timing when the trigger voltage is input.
- the sample and hold circuit 10 outputs a voltage value held in the ADC (AD converter).
- the ADC converts the input voltage value into a digital value. For example, the digital value is input to the arithmetic device, and the power of the optical signal received by the arithmetic device can be calculated.
- a resistor 4 having a resistance value R off connected to the current mirror circuit 20 is a resistor for causing a constant current to flow through the transistors 1 and 2 of the current mirror circuit 20. Since the transistor 4 can be always operated by the resistor 4, a burst response is possible.
- the capacitor 6 that smoothes the voltage fluctuation is connected to the output of the inverter 30.
- the sample and hold trigger is not turned on, that is, when the sample and hold trigger signal is low (while the trigger voltage is not input)
- the pMOS 7 is OFF and the input side of the sample and hold circuit 10 Is not connected to the capacitor 6. Therefore, at the moment when the burst signal is input, the current mirror circuit 20 responds at high speed without being affected by the capacitance of the capacitor 6 and outputs a constant current value with a quick convergence time.
- FIG. 3 is a diagram illustrating an example of an effect in the power monitor circuit of the present embodiment.
- FIG. 3 shows a sample-and-hold circuit when a signal light # 2 having a reception power smaller than that of the optical signal # 1 is input after the optical signal # 1 having a large reception power is input to the power monitor circuit of the present embodiment.
- the time response of 10 input voltages V Rm is shown.
- the input voltage 101 indicates the case where the inverter 30 is present, and the input voltage 102 indicates the case where the inverter 30 is not present (the capacitor 6 is always connected to the input side of the sample and hold circuit 10).
- the input voltage VRm can be converged at high speed even after receiving an optical signal having a large reception power.
- connection switching circuit that performs this switching is as follows.
- the invention is not limited to the inverter 30 shown in FIG.
- This connection switching circuit connects the capacitor 6 to the input side of the sample and hold circuit 10 when the sample and hold trigger is input, and inputs the sample and hold circuit 10 when the sample and hold trigger is not input. Any circuit configuration may be used as long as the capacitor 6 can be separated from the capacitor.
- the capacitor 6 is connected to the inverter 30 as described above, and the capacitor 6 is connected only while the sample and hold trigger is on. For this reason, it is possible to achieve both smoothing of the input voltage at the sample and hold timing while reducing the convergence time by responding to the burst signal at high speed, and the monitor accuracy is improved.
- FIG. FIG. 4 is a diagram showing a configuration example of a second embodiment of a power monitor circuit (power monitor device) according to the present invention.
- the power monitor circuit according to the present embodiment is the same as the power monitor circuit according to the first embodiment, except that the inverter 30 and the inverter 9 are not provided, and a voltage follower (circuit separation unit) 12 is provided. is there.
- Components having the same functions as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and redundant description is omitted.
- the capacitor 6 is always connected in parallel to the resistor 5 for voltage conversion.
- a voltage follower 12 is disposed after the resistor 5 and the capacitor 6, and a sample and hold circuit 10 is connected to the subsequent stage.
- the process is the same as in the first embodiment until the current generated by the APD 3 is converted into a voltage.
- the purpose of arranging the voltage follower 12 between the sample and hold circuit 10 and the capacitor 6 will be described.
- the sample and hold circuit 10 has a capacitor inside, and samples and holds the input voltage by charging the capacitor. For this reason, a transient response (unsteady state) occurs until the charge is charged and a constant voltage is maintained.
- the resistor 5 and the capacitor 6 are connected to the input side of the sample and hold circuit 10, the time constant becomes longer due to the resistor 5 and the capacitor 6 and the capacitor inside the sample and hold circuit 10, and the transient response time is delayed.
- the resistor 5 and the capacitor 6 connected to the output of the current mirror circuit 20 are separated from the sample-and-hold circuit 10, thereby shortening the time constant and the transient response time. Prevent slowing down.
- the voltage follower 12 has a very large input impedance and a very small output impedance. For this reason, the front-stage circuit and the rear-stage circuit can be separated.
- FIG. 5 is a diagram for explaining the effect of the present embodiment.
- the input voltage V VF of the sample and hold circuit 10 rises due to a transient response and then becomes a constant voltage.
- an input voltage 103 is an input voltage of the sample and hold circuit 10 when the voltage follower 12 is present
- an input voltage 104 is an input voltage of the sample and hold circuit 10 when there is no voltage follower 12.
- the output voltage 105 is the output voltage of the sample and hold circuit 10 when the voltage follower 12 is present
- the output voltage 106 is the output voltage of the sample and hold circuit 10 when there is no voltage follower 12. .
- the rise time of the input voltage of the sample-and-hold circuit 10 differs depending on whether the voltage follower 12 is present or not. When the voltage follower 12 is present, the rise time is early, and when the voltage follower 12 is not present, the rise time is slow. At this time, when a sample-and-hold trigger (trigger voltage) is input, the sample-and-hold circuit 10 operates, and the input voltage of the sample-and-hold circuit 10 is held when the sample-and-hold trigger falls. When the trigger width is short, if there is no voltage follower 12, the voltage is held in the middle of rising due to a transient response, so that a voltage smaller than a desired voltage value is held. For this reason, a value smaller than the received power input as the monitor value is returned, and the monitoring accuracy is deteriorated.
- a sample-and-hold trigger trigger voltage
- the power monitor circuit of the present embodiment includes the capacitor 6, the input voltage can be smoothed as in the first embodiment, and the monitoring accuracy can be improved.
- the voltage follower 12 is disposed between the sample and hold circuit 10 and the capacitor 6. For this reason, the time of the transient response can be shortened, and it is possible to prevent the monitor accuracy from deteriorating even when the trigger width is short.
- the power monitoring device and the receiving device according to the present invention are useful for a receiving device that receives an optical signal.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Amplifiers (AREA)
- Light Receiving Elements (AREA)
- Optical Communication System (AREA)
Abstract
Description
図1は、本発明にかかるパワーモニタ回路(パワーモニタ装置)の実施の形態1の構成例を示す図である。図1に示すように、本実施の形態のパワーモニタ回路は、カレントミラー(Current Mirror)回路20、サンプルアンドホールド(Sample and Hold)回路10と、APD3と、抵抗4,5と、コンデンサ6と、インバータ9と、電流電圧変換増幅器(TIA)11と、インバータ30と、を備える。本実施の形態のパワーモニタ回路は、例えば、PONシステム等の光通信システムにおいて光受信信号を受信する受信装置内の光受信器に搭載される。
図4は、本発明にかかるパワーモニタ回路(パワーモニタ装置)の実施の形態2の構成例を示す図である。図4に示すように、本実施の形態のパワーモニタ回路は、インバータ30およびインバータ9を備えず、ボルテージフォロア(回路分離部)12を備える以外は、実施の形態1のパワーモニタ回路と同様である。実施の形態1と同様の機能を有する構成要素は、実施の形態1と同一の符号を付して重複する説明を省略する。
Claims (5)
- 受信した光信号を電流信号に変換する光検出器と、
前記電流信号を複製し、複製した電流信号をミラー電流として出力するカレントミラー回路と、
前記ミラー電流を電圧に変換する電流電圧変換回路と、
前記電流電圧変換回路により変換された電圧をトリガー電圧が入力されたタイミングでサンプルし、サンプルした電圧値を保持するサンプルアンドホールド回路と、
前記電流電圧変換回路と前記サンプルアンドホールド回路との間に接続された接続切替回路と、
前記接続切替回路の出力側に接続されたコンデンサと、
を備え、
前記接続切替回路は、前記サンプルアンドホールド回路に前記トリガー電圧が入力されているときに前記コンデンサを前記サンプルアンドホールド回路の入力側に接続し、前記サンプルアンドホールド回路に前記トリガー電圧が入力されていないときに前記コンデンサを前記サンプルアンドホールド回路の入力側に接続しないことを特徴とするパワーモニタ装置。 - 前記接続切替回路は、p型MOSトランジスタとn型MOSトランジスタで構成されるインバータであることを特徴とする請求項1に記載のパワーモニタ装置。
- 受信した光信号を電流信号に変換する光検出器と、
前記電流信号を複製し、複製した電流信号をミラー電流として出力するカレントミラー回路と、
前記ミラー電流を電圧に変換する電流電圧変換回路と、
前記電流電圧変換回路により変換された電圧をトリガー電圧が入力されたタイミングでサンプルし、サンプルした電圧値を保持するサンプルアンドホールド回路と、
前記電流電圧変換回路と前記サンプルアンドホールド回路との間に接続されたコンデンサと、
前記コンデンサと前記サンプルアンドホールド回路との間に接続されたボルテージフォロアと、
を備えることを特徴とするパワーモニタ装置。 - 光信号を受信する受信装置であって、
前記光信号を電流信号に変換する光検出器と、
前記電流信号を複製し、複製した電流信号をミラー電流として出力するカレントミラー回路と、
前記ミラー電流を電圧に変換する電流電圧変換回路と、
前記電流電圧変換回路により変換された電圧をトリガー電圧が入力されたタイミングでサンプルし、サンプルした電圧値を保持するサンプルアンドホールド回路と、
前記電流電圧変換回路と前記サンプルアンドホールド回路との間に接続された接続切替回路と、
前記接続切替回路の出力側に接続されたコンデンサと、
を備え、
前記接続切替回路は、前記サンプルアンドホールド回路に前記トリガー電圧が入力されているときに前記コンデンサを前記サンプルアンドホールド回路の入力側に接続し、前記サンプルアンドホールド回路に前記トリガー電圧が入力されていないときに前記コンデンサを前記サンプルアンドホールド回路の入力側に接続しないことを特徴とする受信装置。 - 光信号を受信する受信装置であって、
前記光信号を電流信号に変換する光検出器と、
前記電流信号を複製し、複製した電流信号をミラー電流として出力するカレントミラー回路と、
前記ミラー電流を電圧に変換する電流電圧変換回路と、
前記電流電圧変換回路により変換された電圧をトリガー電圧が入力されたタイミングでサンプルし、サンプルした電圧値を保持するサンプルアンドホールド回路と、
前記電流電圧変換回路と前記サンプルアンドホールド回路との間に接続されたコンデンサと、
前記コンデンサと前記サンプルアンドホールド回路との間に接続されたボルテージフォロアと、
を備えることを特徴とする受信装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016521816A JP5964001B2 (ja) | 2014-06-05 | 2014-06-05 | パワーモニタ装置および受信装置 |
CN201480079447.0A CN106464358A (zh) | 2014-06-05 | 2014-06-05 | 功率监视装置及接收装置 |
US15/307,979 US20170063452A1 (en) | 2014-06-05 | 2014-06-05 | Power monitoring device and receiving apparatus |
PCT/JP2014/065005 WO2015186228A1 (ja) | 2014-06-05 | 2014-06-05 | パワーモニタ装置および受信装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/065005 WO2015186228A1 (ja) | 2014-06-05 | 2014-06-05 | パワーモニタ装置および受信装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015186228A1 true WO2015186228A1 (ja) | 2015-12-10 |
Family
ID=54766324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/065005 WO2015186228A1 (ja) | 2014-06-05 | 2014-06-05 | パワーモニタ装置および受信装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20170063452A1 (ja) |
JP (1) | JP5964001B2 (ja) |
CN (1) | CN106464358A (ja) |
WO (1) | WO2015186228A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10079643B2 (en) * | 2016-11-23 | 2018-09-18 | Stmicroelectronics (Research & Development) Limited | Devices and methods for transmitting and receiving in an optical communications system |
CN108847897B (zh) * | 2018-08-03 | 2021-05-28 | 青岛海信宽带多媒体技术有限公司 | 一种光模块 |
CN110289906A (zh) * | 2019-08-01 | 2019-09-27 | 青岛海信宽带多媒体技术有限公司 | 多路接收光功率监控装置、方法及光模块 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11186971A (ja) * | 1997-12-19 | 1999-07-09 | Sumitomo Electric Ind Ltd | 光受信器 |
JP2008011299A (ja) * | 2006-06-30 | 2008-01-17 | Fujitsu Ltd | Pon通信用光パワーモニタ |
JP2010273221A (ja) * | 2009-05-22 | 2010-12-02 | Fujikura Ltd | モニタ回路、モニタ信号の出力方法、及び、光受信器 |
US20120099857A1 (en) * | 2009-06-11 | 2012-04-26 | Hisense Broadband Multimedia Technologies Co., Ltd | Optical line terminal |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3881336B2 (ja) * | 2003-12-09 | 2007-02-14 | ローム株式会社 | 光受信装置及びそれを備えるデータ通信装置 |
US7912380B2 (en) * | 2005-03-25 | 2011-03-22 | Sumitomo Electric Industries, Ltd. | Optical receiver |
CN101510802A (zh) * | 2008-12-16 | 2009-08-19 | 成都优博创技术有限公司 | 突发模式光信号功率的测量电路 |
CN102185649B (zh) * | 2011-05-09 | 2015-08-05 | 成都优博创技术有限公司 | 一种高精度突发接收光功率监测的系统及方法 |
CN102780525A (zh) * | 2011-05-09 | 2012-11-14 | 深圳新飞通光电子技术有限公司 | 一种突发接收光功率检测装置及其方法 |
CN104054185B (zh) * | 2012-01-25 | 2016-05-18 | 三菱电机株式会社 | 光接收器、站侧光终端装置以及受光等级监视方法 |
CN103067076A (zh) * | 2012-12-27 | 2013-04-24 | 武汉华工正源光子技术有限公司 | 光模块突发光功率的检测电路 |
WO2015162759A1 (ja) * | 2014-04-24 | 2015-10-29 | 三菱電機株式会社 | 受信光パワーモニタ回路 |
-
2014
- 2014-06-05 US US15/307,979 patent/US20170063452A1/en not_active Abandoned
- 2014-06-05 JP JP2016521816A patent/JP5964001B2/ja not_active Expired - Fee Related
- 2014-06-05 WO PCT/JP2014/065005 patent/WO2015186228A1/ja active Application Filing
- 2014-06-05 CN CN201480079447.0A patent/CN106464358A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11186971A (ja) * | 1997-12-19 | 1999-07-09 | Sumitomo Electric Ind Ltd | 光受信器 |
JP2008011299A (ja) * | 2006-06-30 | 2008-01-17 | Fujitsu Ltd | Pon通信用光パワーモニタ |
JP2010273221A (ja) * | 2009-05-22 | 2010-12-02 | Fujikura Ltd | モニタ回路、モニタ信号の出力方法、及び、光受信器 |
US20120099857A1 (en) * | 2009-06-11 | 2012-04-26 | Hisense Broadband Multimedia Technologies Co., Ltd | Optical line terminal |
Also Published As
Publication number | Publication date |
---|---|
US20170063452A1 (en) | 2017-03-02 |
CN106464358A (zh) | 2017-02-22 |
JPWO2015186228A1 (ja) | 2017-04-20 |
JP5964001B2 (ja) | 2016-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108737753B (zh) | 用于飞行时间系统的主动像素电路及其操作方法 | |
CN111629161B (zh) | 比较器及包括该比较器的图像感测装置 | |
US10212374B2 (en) | Pixel circuit, driving method thereof, image sensor, and image acquisition apparatus | |
CN108064446B (zh) | 模拟读取电路及影像传感模块 | |
US9438830B2 (en) | Analog-to-digital converter and CMOS image sensor including the same | |
JP6415785B2 (ja) | バースト光受信器 | |
CN104967793B (zh) | 适用于cmos图像传感器的电源噪声抵消电路 | |
JP5964001B2 (ja) | パワーモニタ装置および受信装置 | |
JP2008236455A (ja) | トランスインピーダンスアンプ及びトランスインピーダンスアンプの制御方法 | |
CN105743340A (zh) | 雪崩光电二极管的偏压产生电路及相关的控制电路 | |
US8525094B2 (en) | Photoelectric conversion circuit | |
US20160149648A1 (en) | Optical receiver with threshold control block | |
CN110109501B (zh) | 负载跳变快速响应电路及快速响应方法 | |
JP4569369B2 (ja) | 光受信器 | |
KR20150112217A (ko) | 타임-디지털 컨버터 및 타임-디지털 변환 방법 | |
KR101070118B1 (ko) | 응답속도를 개선한 아날로그 회로 | |
US9369147B2 (en) | Adjustable and buffered reference for ADC resolution and accuracy enhancements | |
JP2015012540A (ja) | 受光回路 | |
JP5519838B1 (ja) | 光トリガ型パラレルシリアル変換回路 | |
US20140240042A1 (en) | Operational amplifier | |
JP2015204540A (ja) | A/d変換装置及びそれを用いた光センサ | |
JP6179718B2 (ja) | サンプルホールド回路 | |
CN104571735A (zh) | 面板时间延迟检测电路 | |
JP5526935B2 (ja) | 電流制御回路 | |
US10330723B2 (en) | Operation voltage testing circuit and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14893719 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016521816 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15307979 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14893719 Country of ref document: EP Kind code of ref document: A1 |