WO2015184677A1 - 工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工艺和装置系统 - Google Patents

工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工艺和装置系统 Download PDF

Info

Publication number
WO2015184677A1
WO2015184677A1 PCT/CN2014/082837 CN2014082837W WO2015184677A1 WO 2015184677 A1 WO2015184677 A1 WO 2015184677A1 CN 2014082837 W CN2014082837 W CN 2014082837W WO 2015184677 A1 WO2015184677 A1 WO 2015184677A1
Authority
WO
WIPO (PCT)
Prior art keywords
outlet
column
tower
carbonylation
gas
Prior art date
Application number
PCT/CN2014/082837
Other languages
English (en)
French (fr)
Inventor
王保明
王东辉
李玉江
徐长青
Original Assignee
上海戊正工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201420296748.6U external-priority patent/CN203890271U/zh
Application filed by 上海戊正工程技术有限公司 filed Critical 上海戊正工程技术有限公司
Priority to RU2016146715A priority Critical patent/RU2659069C1/ru
Priority to CA2951165A priority patent/CA2951165C/en
Priority to US15/316,178 priority patent/US10017438B2/en
Publication of WO2015184677A1 publication Critical patent/WO2015184677A1/zh
Priority to SA516380431A priority patent/SA516380431B1/ar

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/36Preparation of carboxylic acid esters by reaction with carbon monoxide or formates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0278Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0453Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0457Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being placed in separate reactors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/20Dihydroxylic alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/023Details
    • B01J2208/027Beds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/34Esters of acyclic saturated polycarboxylic acids having an esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/36Oxalic acid esters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the invention relates to a process and a device system for industrial synthesis gas to produce ethylene glycol, in particular to a process for high-pressure carbonylation of industrial synthesis gas to produce dimethyl oxalate and hydrogenation to ethylene glycol, and a device system thereof.
  • Ethylene glycol is a versatile chemical used in a variety of production areas such as polyester (PET), antifreeze, ethanolamine and explosives. It is used as a solvent, lubricant and plasticizer.
  • PET polyester polyester
  • the use of diols in the PET polyester industry is close to 95%.
  • ethylene glycol production in the industry mainly adopts a route in which petroleum ethylene is subjected to gas phase oxidation to obtain ethylene oxime, and then liquid phase catalytic hydration to ethylene glycol.
  • the world's ethylene-based ethylene glycol industry chain is facing tremendous pressure. Therefore, the use of syngas to ethylene glycol technology has attracted more and more attention due to its low production cost.
  • the tubular-type reactor is mainly used in the process of coal-to-ethylene glycol.
  • the heat transfer efficiency of the reaction heat is low, the utilization coefficient of the catalyst and the packing coefficient are low, thereby affecting the reactor production capacity.
  • Patent Publication No. CN101462961
  • the process includes the process of synthesizing dimethyl oxalate and dimethyl carbonate from CO and methyl nitrite, and separating the carbonate by distillation.
  • the reactor adopts a tubular reactor, and the exhaust gas and waste liquid generated during the reaction process are not recycled and reused, and the energy consumption of the device is high, which cannot meet the increasing environmental protection needs of the country.
  • Patent discloses a method and a device for co-production of dimethyl carbonate and dimethyl oxalate, the patent uses two carbonylation reactors, the first is a dimethyl carbonate synthesis reactor, the second It is a reactor of dimethyl oxalate. After the reaction of methyl nitrite is formed, it enters two reactors to produce dimethyl carbonate and dimethyl oxalate respectively, and then the product is separated and purified. From the perspective of process design, its essence It is only the simple accumulation of the two types of reactors, which can not truly realize the practical significance of DMO co-production DMC in the same device.
  • Patent CN201210531022.1 discloses a method of concentrating the produced nitric acid and then reacting it with a portion of the NO-containing recycle gas to produce NO 2 and replenishing it back to the methyl nitrite regeneration reactor.
  • the NO-containing recycle gas also contains a large amount of gases such as methyl nitrite and methanol. These gases also react with concentrated nitric acid, and the products are complicated, which affects the performance of the device.
  • the coal-to-ethylene glycol process mainly has low catalyst utilization rate and low catalyst loading coefficient.
  • the valuable gas in the device cannot be fully utilized, but the environment is polluted, and the heat of the device system cannot be fully utilized, thereby causing social and social
  • the economic benefits are not satisfactory.
  • the object of the present invention is to solve the problems of low utilization rate of raw materials, high production cost, low catalyst utilization rate, low packing factor, excessive equipment investment, single series equipment cannot adapt to large-scale equipment, and high system consumption.
  • the use of the device cannot meet the requirements of the country for increasingly industrial environments, and provides a process and a device system for improving the production capacity of a single series of devices, exhaust gas treatment, by-product recovery, and comprehensive utilization of raw materials.
  • the invention is achieved by the following technical solutions:
  • An apparatus system for high-pressure carbonylation of industrial syngas to produce dimethyl oxalate and hydrogenation to ethylene glycol comprising a carbonylation reaction system, an esterification reaction system, a gas-and-gassing and waste acid coupling recovery system, and a hydrogenation reaction system;
  • the carbonylation reaction system comprises a carbonylation reactor, a first gas-liquid separator, a methanol scrubber, a methanol condensate column and a DMO condensate column;
  • the carbonylation reactor is provided with a top feed port and a bottom discharge port a bottom refrigerant inlet and a top refrigerant outlet;
  • the first gas-liquid separator is provided with a feed port, a gas outlet, and a liquid outlet;
  • the methanol scrubber is provided with an upper feed port, a lower feed port, a top outlet, and a bottom An outlet of the methanol, an upper feed port, a lower feed port, a top outlet, and a bottom
  • the purge gas and waste acid coupling recovery system comprises a nitric acid concentration tower, a NO recovery tower, and a MN recovery tower And a pressure swing adsorption tank;
  • the nitric acid concentration tower is provided with a middle feed port, a top outlet, and a bottom outlet;
  • the NO recovery tower is provided with a top feed port, a middle feed port, a bottom feed port, a top outlet, and a bottom portion
  • the MN recovery tower is provided with an upper feed port, a lower feed port, a top outlet and a bottom outlet;
  • the pressure swing adsorption tank is provided with a feed port, a recovery gas outlet and an exhaust gas outlet;
  • the system comprises a hydrogenation cycle compressor, a hydrogenation reactor, a second gas-liquid separator, a membrane separator, a methanol separation column, a light component refined column and an ethylene glycol product column;
  • the hydrogenation cycle compressor includes an inlet And an outlet;
  • the hydrogenation reactor is provided with
  • the light component fine crucible tower is provided with a lower feed port, a top outlet and a bottom outlet;
  • the ethylene glycol product tower is provided with a lower feed port, a top outlet, an upper outlet and a bottom outlet;
  • the carbonylation reactor The top feed port is connected to the CO raw material pipe and the N 2 raw material pipe via a pipeline;
  • the bottom discharge port of the carbonylation reactor is connected to the feed port of the first gas-liquid separator via a pipeline;
  • the first gas a gas outlet of the liquid separator is connected to a lower feed port of the methanol scrubber;
  • a liquid outlet of the first gas-liquid separator is connected to an upper feed port of the methanol streamer;
  • the top outlet of the methanol scrubber is provided with a branch outlet A and a branch outlet B, and the branch outlet A is connected to a lower feed port of the esterification reaction tower via a line, the branch outlet B and the bottom feed port of the NO recovery tower Connected via a pipeline;
  • the branch outlet E is connected to the upper feed port of the esterification reaction tower via a line, and the branch outlet F and the upper portion of the MN recovery tower are fed.
  • the bottom outlet of the methanol recovery tower is connected to the middle feed port of the nitric acid concentration column via a pipeline; the top outlet of the nitric acid concentration column is a waste liquid discharge port; the bottom outlet of the nitric acid concentration tower a middle feed port of the NO recovery column is connected via a pipeline; a top outlet of the NO recovery column is connected to a lower feed port of the MN recovery column; a bottom outlet of the NO recovery column and the methanol a middle and lower feed port of the recovery tower is connected by a pipeline; a top outlet of the MN recovery tower is connected to a feed port of the pressure swing adsorption tank via a pipeline; a bottom outlet of the MN recovery tower and the esterification reaction tower
  • the upper feed port is connected by a pipeline; the recovery gas outlet of the pressure swing adsorption tank is
  • a dehydration tower is connected outside the carbonylation reactor; the dehydration tower is provided with a feed port and a dry gas outlet; a top outlet of the esterification reaction column and a recovery gas outlet of the pressure swing adsorption tank are connected to a feed port of the dehydration column via a line; a dry gas outlet of the dehydration column and a top feed of the carbonation reactor The mouth is connected by a pipeline.
  • the dehydration column is composed of two molecular sieve dryers A and molecular sieve dryers B which are alternately operated and regenerated; molecular sieve dryer A and molecular sieve dryer B are filled with adsorbent; the adsorbent is selected from 3A molecular sieve, 4A molecular sieve, 5A Molecular sieves, 9A molecular sieves and calcium oxide.
  • the bottom discharge port of the carbonylation reactor is connected with an outlet heat exchanger I; the outlet heat exchanger I is provided with a cold stream inlet, a cold stream outlet, a hot material inlet and a hot stream outlet; the CO raw material pipeline, a drying gas outlet of the N 2 raw material pipeline and the dehydration tower is connected to the cold heat exchanger inlet of the outlet heat exchanger I; a cold stream outlet of the outlet heat exchanger I and a top feed port of the carbonation reactor a pipeline connection; a bottom discharge port of the carbonylation reactor is connected to a hot stream inlet of the outlet heat exchanger I; a hot stream outlet of the outlet heat exchanger I and the first gas-liquid separator
  • the feed port is connected by a pipeline.
  • the steaming reactor is externally connected with a steam drum I; the steam drum I is provided with a refrigerant inlet, a refrigerant outlet, a vapor-liquid mixture inlet and a steam outlet; and the refrigerant inlet of the steam drum I and the refrigerant raw material pipeline are connected by a pipeline;
  • the refrigerant outlet of the steam drum I is connected to the bottom refrigerant inlet of the carbonylation reactor via a pipeline;
  • the top refrigerant outlet of the carbonylation reactor is connected to the vapor-liquid mixture inlet of the steam drum I via a pipeline;
  • the steam outlet of the steam drum I is connected to the outer steam recovery system via a pipeline.
  • a carbonylation cycle compressor is connected between the branch outlet A of the methanol scrubber and the lower feed port of the esterification reaction tower; the carbonylation cycle compressor is provided with an inlet and an outlet; The inlet of the carbonylation cycle compressor is connected by a pipeline; the outlet of the carbonylation cycle compressor is connected to a lower feed port of the esterification reaction column via a pipeline.
  • a compressor is connected between a top outlet of the NO recovery tower and a bottom feed inlet of the MN recovery tower; the compressor is provided with an inlet and an outlet; a top outlet of the NO recovery tower is connected to the compressor The inlet is connected via a pipeline; the outlet of the compressor is connected to the bottom feed port of the MN recovery tower via a pipeline.
  • the bottom discharge port of the hydrogenation reactor is connected with an outlet heat exchanger ⁇ ; the outlet heat exchanger II is provided with a cold stream inlet, a cold stream outlet, a hot material inlet and a hot stream outlet; a bottom outlet, a recovery gas outlet of the membrane separator, and an outlet of the hydrogenation cycle compressor connected to a cold stream inlet of the outlet heat exchanger II; a cold stream outlet of the outlet heat exchanger II Reversing with the hydrogenation
  • the top feed port of the reactor is connected by a pipeline; the bottom discharge port of the hydrogenation reactor and the outlet heat exchanger
  • the hot stream inlet of II is connected via a line; the hot stream outlet of the outlet heat exchanger II is connected to the feed port of the second gas-liquid separator via a line.
  • a top feed inlet of the hydrogenation reactor is connected with a starter heater; the starter heater is provided with a feed port and a discharge port; a cold stream outlet of the outlet heat exchanger II and the start heater
  • the feed port is connected by a pipeline; the discharge port of the start heater is connected to the top feed port of the hydrogenation reactor via a pipeline.
  • the steam reactor is connected with a steam drum II; the steam drum II is provided with a refrigerant inlet, a refrigerant outlet, a vapor-liquid mixture inlet and a steam outlet; and the refrigerant inlet of the steam drum II and the refrigerant raw material pipeline are connected by a pipeline;
  • the refrigerant outlet of the steam drum II is connected to the bottom refrigerant inlet of the hydrogenation reactor via a pipeline;
  • the top refrigerant outlet of the hydrogenation reactor is connected to the vapor-liquid mixture inlet of the steam drum II via a pipeline;
  • the steam outlet of the steam drum II is connected to the outer steam recovery system via a pipeline.
  • the second gas-liquid separator comprises a high-pressure gas-liquid separator and a low-pressure gas-liquid separator; the high-pressure gas-liquid separator is provided with a feed port, a gas outlet and a liquid outlet; and the low-pressure gas-liquid separator is provided with a feed port, a gas outlet and a liquid outlet; the hot stream outlet of the outlet heat exchanger II is connected to a feed port of the high-pressure gas-liquid separator; the gas outlet of the high-pressure gas-liquid separator is provided with a branch outlet K and branch outlet L, the branch outlet K is connected to the inlet of the hydrogenation cycle compressor via a line, and the branch outlet L is connected to the inlet of the low-pressure gas-liquid separator via a pipeline; the high-pressure gas-liquid separator a liquid outlet is connected to a middle feed port of the methanol separation column via a pipeline; a gas outlet of the low pressure gas-liquid separator is connected to a feed port of the membrane separator via a pipeline; and a liquid
  • a methanol absorption tank is disposed in front of the feed port of the membrane separator; the methanol absorption tank is provided with a feed port and a purge gas outlet; the gas outlet of the low pressure gas-liquid separator and the top of the methanol separation column are not
  • the condensate outlet is connected to the feed port of the methanol absorption tank via a pipeline; the purge gas outlet of the methanol absorption tank is connected to the feed port of the membrane separator via a pipeline.
  • the carbonylation reactor is a plate reactor, a tubular reactor or a tubular-plate composite reactor.
  • the carbonylation reactor is a plate type fixed bed carbonylation reactor.
  • the center of the plate type fixed bed carbonylation reactor is provided with a plate group fixing cavity, and the plate group a fixed plate is provided with a plate group, the plate group fixing cavity is further provided with a bottom inlet and a top outlet;
  • a catalyst bed is arranged between the outer wall of the plate group fixing cavity and the inner wall of the plate fixed bed carbonation reactor a catalyst bed is filled with a carbonylation catalyst, the catalyst bed is further provided with a top inlet and a bottom outlet;
  • the plate fixed bed carbonylation reactor a bottom refrigerant inlet is connected to the bottom inlet of the fixed portion of the plate group via a pipeline, and a bottom outlet of the catalyst bed is connected to a bottom discharge port of the plate fixed bed carbonylation reactor via a pipeline;
  • the top feed port of the plate fixed bed carbonylation reactor is connected to the top in
  • the esterification reaction column is a packed column.
  • the esterification reaction column is a tray-filler mixing tower having both a tray portion and a packed portion of the filler.
  • the methanol scrubbing tower, the methanol quenching tower, the methanol recovery tower, the NO recovery tower, the MN recovery tower, the DMO fine crucible tower and the nitric acid concentration tower are packed towers, tray towers or bubble columns.
  • the filler packed in the packed tower is a random packing or an efficient structured packing; the random packing is in the shape of a saddle shape, a Raschig ring, a Pall ring, a wheel shape, a saddle ring, a spherical shape or a column shape.
  • the high efficiency structured packing is a corrugated packing, a grid packing or a pulse packing.
  • the hydrogenation reactor is more preferably a plate reactor, a tubular reactor or a tubular-plate composite reactor, and the hydrogenation reactor is a plate type fixed bed hydrogenation reactor.
  • the center of the plate-type fixed-bed hydrogenation reactor is provided with a plate group fixing cavity, and the plate group fixing cavity is provided with a plate group, and the plate group fixing cavity is further provided with a bottom inlet and a top a catalyst bed is disposed between the outer wall of the fixed portion of the plate group and the inner wall of the plate-type fixed bed hydrogenation reactor; the catalyst bed is filled with a hydrogenation catalyst, and the catalyst bed is further provided a top inlet and a bottom outlet; at a bottom of the plate-type fixed-bed hydrogenation reactor, a bottom refrigerant inlet of the plate-type fixed-bed hydrogenation reactor is connected to a bottom inlet of the plate-set fixed chamber via a line, the catalyst a bottom outlet of the bed is connected to the bottom discharge port of the plate-type fixed bed hydrogenation reactor via a pipeline; in the plate-type fixed bed hydrogenation reaction At the top of the apparatus, a top feed port of the plate-type fixed bed hydrogenation reactor is connected to a top inlet of the catalyst bed
  • the membrane separator is composed of 1 to 100 hollow fiber membrane modules connected in parallel or in series.
  • a process for high-pressure carbonylation of industrial synthesis gas to produce dimethyl oxalate and hydrogenation to ethylene glycol, to produce methyl nitrite by esterification reaction using industrial grade NO, 0 2 and methanol as raw materials, and then use industrial grade CO The carbonylation reaction with methyl nitrite produces carbonylation products mainly of dimethyl oxalate and dimethyl carbonate.
  • the carbonylation product is separated to obtain dimethyl carbonate product, and dimethyl oxalate is hydrogenated to form ethylene.
  • the alcohol product; and the waste acid of the esterification reaction and the purge gas of the carbonylation reaction are recycled by the coupled recovery treatment.
  • the process for producing dimethyl oxalate by high pressure carbonylation of an industrial syngas and hydrogenating it to ethylene glycol comprises the following steps:
  • esterification reaction (1) introducing esterification reaction of industrial grade NO, 0 2 and methanol into the esterification reaction column; esterification reaction tower top methyl nitrite mixed gas is introduced into the carbonylation reactor for carbonylation reaction; esterification reaction The acid alcohol solution of the Tata kettle is partially refluxed to the esterification reaction column, and partially passed to the methanol recovery column; the methanol recovered from the top of the methanol recovery column is partially recycled to the esterification reaction column for recycling, and the rest is taken to the MN recovery column as a washing liquid; The waste acid in the Tata kettle enters the nitric acid concentration tower for concentration treatment;
  • the carbonylation product enters the first gas-liquid separator to be separated from the gas-liquid separation, the gas phase enters the methanol scrubber, and the liquid phase enters the methanol-fine column; the gas phase component of the methanol scrubber is partially recycled to the esterification column, partly as The gas is discharged into the NO recovery tower for recovery; the liquid phase component of the methanol scrubbing tower is sent to the methanol fine column for fine separation; the mixture of methanol and methyl nitrite recovered from the top of the methanol refined column is recycled to the esterification reaction.
  • the tower is reused, and the heavy components of the tower are entered into the DMO fine tower; The DMO product is obtained from the top of the DMO fine column, and the dimethyl oxalate component of the column is charged into the hydrogenation reactor for hydrogenation reaction;
  • the spent acid from the methanol recovery tower is concentrated in a nitric acid concentration column to a concentration of 10 to 68% by weight of nitric acid, and then recycled to the NO recovery tower; in the NO recovery tower, concentrated nitric acid, methanol and a washing tower from the methanol washing tower Gas generation esterification regeneration reaction; NO recovery tower overhead gas phase light component enters MN recovery tower, and methanol-containing nitric acid waste liquid generated in the tower reactor is recycled to the methanol recovery tower for further recovery treatment; in the MN recovery tower, the gas phase feed is passed through After washing the recovered methanol, it enters the pressure swing adsorption tank, and the alcohol solution containing methyl nitrite in the MN recovery tower is recycled to the esterification reaction tower; the CO 2 separated from the pressure swing adsorption tank is discharged to the outside treatment, and the recovered N 2 and The CO purification gas enters the carbonylation reactor for recycling;
  • the hydrogenation product enters the second gas-liquid separator to be gas-liquid separated, and the gas phase is recycled to the hydrogenation reactor after being pressurized by the hydrogenation cycle compressor, and partially enters the membrane separator and is returned to the hydrogenation after being recovered.
  • the reactor is recycled, and the liquid phase is separated into an ethylene glycol product column to obtain an ethylene glycol product.
  • the decarbonylation reactor is connected with a dehydration tower; the gas phase recovered by the pressure swing adsorption tank and the methyl nitrite mixture from the top of the esterification reaction tower are removed by the dehydration tower, The carbonylation reactor is further introduced into the carbonylation reactor.
  • the dehydration column is composed of two molecular sieve dryers A and molecular sieve dryers B which are alternately operated and regenerated; the molecular sieve dryer A and the molecular sieve dryer B are filled with an adsorbent; the adsorbent is selected from the group consisting of 3A molecular sieves, 4A molecular sieve, 5A molecular sieve, 9A molecular sieve and calcium oxide.
  • the molecular sieve dryer A and the molecular sieve dryer B have an operating temperature of 40 to 260 ° C and a pressure of 1 to 10 MPa. Unless otherwise stated, all pressures in the present invention refer to gauge pressure.
  • the drying gas is obtained by a dehydration tower, and the moisture content in the drying gas is 0.1 to 100 ppm.
  • the carbonylation reactor is externally connected with an outlet heat exchanger I; industrial grade CO, N 2 and from The drying gas of the dehydration tower is used as a raw material for the carbonylation reaction, and is exchanged with the carbonylation reaction product from the carbonylation reactor through the outlet heat exchanger I to be subjected to a carbonylation reaction.
  • a portion of the gas phase component from the top of the methanol scrubber is pressurized by a carbonylation recycler and then passed to the esterification column.
  • the top gas phase light component of the NO recovery tower is compressed and pressurized by a compressor and then enters the MN recovery tower.
  • the hydrogenation reactor is externally connected with an outlet heat exchanger ⁇ ; a dimethyl oxalate component from a DMO condensate column, industrial hydrogen and recycle gas from a pressurized recycle compressor, and recovery from a membrane separator.
  • the gas is used as a hydrogenation reaction raw material, and is exchanged with the hydrogenation product from the hydrogenation reactor through the outlet heat exchanger, and then enters the hydrogenation reactor for hydrogenation reaction.
  • the liquid phase separated by the second gas-liquid separator first enters the methanol separation column; the non-condensed gas recovered at the top of the methanol separation column enters the membrane separator, and the liquid phase light component such as methanol recovered at the top of the methanol separation column Partially entering the upper part of the methanol scrubbing tower as a washing liquid, and partially entering the NO recovery tower; the liquid phase heavy component of the methanol separation tower bottom tank enters the light component fine crucible tower for further separation and purification; the light component fine tower top light component Entering the extra-regional alcohol recovery unit for recycling treatment; the light component refined ⁇ Tata kettle heavy component enters the ethylene glycol product tower; the ethylene glycol product tower top light component enters the boundary 1, 2-BDO recovery treatment device is further recycled The heavy component of the glycol product Tata kettle enters the out-of-band recovery treatment device for subsequent treatment, and the upper side line of the ethylene glycol product tower leads to the ethylene glycol product.
  • the second gas-liquid separator comprises a high-pressure gas-liquid separator and a low-pressure gas-liquid separator; a gas phase separated by a high-pressure gas-liquid separator enters the hydrogenation cycle compressor, and partially enters the low-pressure gas a liquid separator; a liquid phase separated by the high-pressure gas-liquid separator enters the methanol separation column; a gas phase separated by the low-pressure gas-liquid separator enters the membrane separator, and the liquid separated by the low-pressure gas-liquid separator The phase enters the methanol separation column.
  • 0.1 to 10% of the gas phase separated by the high-pressure gas-liquid separator enters the low-pressure gas-liquid separator.
  • the gas phase separated by the low pressure gas-liquid separator and the non-condensable gas from the top of the methanol separation column are absorbed by the methanol absorption tank and then enter the membrane separator.
  • the carbonylation reactor is a plate reactor, a tubular reactor or a tubular-plate composite reactor. More preferably, the carbonylation plate reactor is a plate type fixed bed carbonylation reactor.
  • the center of the plate type fixed bed carbonylation reactor is provided with a plate group fixing cavity, and the plate piece group is provided with a plate group in the fixing cavity; the plate group fixing cavity outer wall to the plate type fixed bed carbonyl a catalyst bed is disposed between the inner walls of the reactor; the catalyst bed is filled with a carbonylation catalyst; after the carbonylation feed reaches the catalyst bed inlet temperature, the catalyst is introduced from the top of the plate-type fixed bed carbonylation reactor.
  • the carbonylation reaction takes place in the bed; the refrigerant introduced from the outside enters the plate group fixed cavity from the bottom of the plate-type fixed bed carbonylation reactor, and is taken out from the top of the plate-type fixed-bed carbonylation reactor, and the heat exchange is carried out in the countercurrent process.
  • the plate type fixed bed carbonylation reactor is connected with a steam drum I; the refrigerant introduced from the outside enters the steam drum I, and the refrigerant in the steam drum I enters the plate group fixed cavity of the plate type fixed bed carbonylation reactor.
  • the heat exchange with the catalyst bed removes the heat of reaction; the heated refrigerant is a vapor-liquid mixture, enters the steam drum I for gas-liquid separation, and the generated low-pressure saturated steam enters the extra-low pressure steam recovery system for recycling.
  • the carbonylation catalyst is a commercially available catalyst of Shanghai Wuzheng Engineering Technology Co., Ltd., and the catalyst brand number is DM0-0701T.
  • the esterification reaction column is a packed column; preferably, the esterification reaction column is a tray-filler mixing tower having both a tray portion and a packed portion of the filler.
  • the number of theoretical plates of the esterification reaction column is 20 to 50 pieces. The order of the number of the trays is set to be the first tray, and then sequentially arranged to the bottom of the tower.
  • the 0 2 points 2 to 8 channels are respectively fed from the 16th to 50th trays; the NO and the overhead gas phase light group from the methanol scrubber Distilled from the 18th to 50th trays; the fresh methanol, the recovered methanol from the top of the methanol recovery tower, the methanol and nitrite mixture recovered from the top of the methanol refinery tower, and the MN recovery tower
  • the methanol solution containing methyl nitrite in the kettle is fed from the first to fifth trays; the refluxing material in the esterification reaction tray is fed from the 10th to 25th trays.
  • the molar ratio of 0 2 , NO and methanol in the esterification reaction column is 0.01 ⁇ 0.8: 0.1 ⁇ 3.2: 0. 8 ⁇ 50.
  • the temperature of the top of the esterification reaction column is 30 to 80 ° C
  • the temperature of the column is 50 to 200 ° C
  • the temperature of the reaction zone is 50 to 160 ° C
  • the reaction pressure is 0.5 to 10 MPa.
  • the methanol recovery tower, the methanol scrubber, the methanol condensate tower, the nitric acid concentration tower, the NO recovery tower, the MN recovery tower, and the DMO fine condensate tower are packed towers, tray towers or bubble columns.
  • the filler packed in the packed tower is a random packing or an efficient structured packing; the random packing is in the shape of a saddle shape, a Raschig ring, a Pall ring, a wheel shape, a saddle ring, a spherical shape or a column shape.
  • the high efficiency structured packing is a corrugated packing, a grid packing or a pulse packing.
  • the number of theoretical plates of the methanol recovery column is 5 to 50, the temperature at the top of the column is 40 to 150 ° C, the temperature of the column is 60 to 230 ° C, and the pressure at the top of the column is 0.01 to 2.0 MPa.
  • the reflux ratio of the top component of the methanol recovery column is from 0.1 to 3.0.
  • the proportion of the portion recycled to the esterification reaction column is 10 to 90 wt%.
  • the number of theoretical plates of the methanol scrubber is 10 to 50, the temperature at the top of the column is 15 to 70 ° C, the temperature in the column is 10 to 100 ° C, and the pressure at the top of the column is 0.9 to 10 MPa.
  • the proportion of the purge gas is 0.05 to 5 v%.
  • the methanol condensate tower is an extractive condensate tower, the number of theoretical trays is 10 to 60, the temperature at the top of the column is 50 to 150 ° C, the temperature of the column is 130 to 250 ° C, and the pressure at the top of the column is 0.01. ⁇ 0.5MPa.
  • the number of theoretical plates of the nitric acid concentration column is 1 to 30 pieces, the temperature at the top of the column is 30 to 110 ° C, the temperature of the column is 60 to 160 ° C, and the pressure at the top of the column is 0.01 to 0.3 MPa.
  • the reflux ratio of the overhead light component of the nitric acid concentration column is 0.01 to 3.
  • the number of theoretical plates of the NO recovery column is 5 to 30, the temperature at the top of the column is 30 to 120 ° C, the temperature of the column is 50 to 200 ° C, and the pressure at the top of the column is 1 to 10 MPa.
  • the purge gas is fed from the 5th to 30th trays of the NO recovery tower; the concentrated nitric acid is fed from the 1st to 10th trays of the NO recovery tower; from the methanol separation tower The top recovered methanol is fed from the 1st to 10th trays.
  • the molar ratio of NO in nitric acid, methanol, and purge gas is 1.1 ⁇ 10: 2 ⁇ 100: 1 ⁇ 5.
  • the number of theoretical plates of the MN recovery column is 10 60
  • the temperature at the top of the column is 0 to 50 ° C
  • the temperature of the column is 0 to 80 ° C
  • the reaction pressure is l 10 10 MPa.
  • the number of theoretical plates of the DMO fine turret is 10 to 50, the temperature at the top of the column is 80 to 120 ° C, the temperature of the column is 120 to 200 ° C, and the operation is performed under normal pressure or reduced pressure.
  • the DMO fine column has a light component reflux ratio of 0.1100.
  • the composition of the purified gas recovered in the pressure swing adsorption tank is: N 2 is 60 to 80 v%, CO is 20 to 40 v%; and the separated C 2 2 gas accounts for 0.1 to 5 v% of the total amount of the intake air.
  • the concentration of C0 2 is 99.8 to 99.9 v%; the separated CO 2 gas can be treated by an out-of-bounds device.
  • the hydrogenation reactor is a plate reactor, a tubular reactor or a tubular-plate composite reactor.
  • the hydrogenation plate reactor is a plate type fixed bed hydrogenation reactor.
  • the center of the plate type fixed bed hydrogenation reactor is provided with a plate group fixing cavity, and the plate group fixed cavity is provided with a plate group; the plate group fixing cavity outer wall to the plate type fixed bed plus a catalyst bed is disposed between the inner walls of the hydrogen reactor; the catalyst bed is filled with a hydrogenation reaction catalyst; after the hydrogenation reaction raw material reaches the catalyst bed inlet temperature, from the top of the plate type fixed bed hydrogenation reactor The hydrogenation reaction takes place in the catalyst bed; the refrigerant introduced from the outside enters the plate group fixed cavity from the bottom of the plate-type fixed-bed hydrogenation reactor, and is taken out from the top of the plate-type fixed-bed hydrogenation reactor, and is subjected to a countercurrent process.
  • the heat exchange takes away the heat of reaction of the hydrogenation reaction; the hydrogenation product from the bottom of the catalyst bed is withdrawn from the bottom of the plated fixed bed hydrogenation reactor.
  • the plate type fixed bed hydrogenation reactor is connected with a steam drum II; the refrigerant introduced from the outside enters the steam drum II, and the refrigerant in the steam drum II enters the plate group fixed cavity of the plate type fixed bed hydrogenation reactor.
  • the heat exchange with the catalyst bed removes the reaction heat; the heated refrigerant is a vapor-liquid mixture, enters the steam drum II for gas-liquid separation, and the generated low-pressure saturated steam enters the extra-low pressure steam recovery system for recycling.
  • the refrigerant is water or a heat transfer oil, preferably water.
  • the plate type fixed bed hydrogenation reactor is connected with a starting heater; at the initial stage of operation, the temperature does not reach the reaction requirement, and the hydrogenation reaction raw material enters the starting heater for preheating, and the preheating reaches the catalyst bed inlet temperature. Entering a catalyst bed for hydrogenation reaction; in the initial stage of operation, the starting heater provides a unique heat source for the hydrogenation reaction in the plate type fixed bed hydrogenation reactor; the heat source of the starting heater is a low pressure Steam.
  • the hydrogenation reaction catalyst is selected from a commercially available catalyst of Shanghai Wuzheng Engineering Technology Co., Ltd., and the catalyst manufacturer brand name is MEG-801T.
  • the number of theoretical plates of the methanol separation column is 10 to 40, the temperature at the top of the column is 40 to 70 ° C, the temperature of the column is 80 to 180 ° C, and the operation is performed under normal pressure or reduced pressure;
  • the top light component reflux ratio is 0.1 ⁇ 3.
  • the number of theoretical plates of the light component fine bismuth column is 10 to 60 pieces, the temperature of the top of the column is 58 to 90 ° C, the temperature of the column is 70 to 160 ° C, and the absolute pressure of the top of the column is 5 to 50 KPa.
  • the light component reflux ratio of the light component fine column is from 1 to 50.
  • the number of theoretical plates of the ethylene glycol product column is 30 to 100 pieces, the temperature of the top of the column is 100 to 150 ° C, the temperature of the column is 130 to 230 ° C, and the absolute pressure of the top of the column is 5 to 50 KPa;
  • the reflux ratio of the light component of the top of the ethylene glycol product is 50-120 or full reflux.
  • the membrane separator is composed of 1 to 100 hollow fiber membrane modules connected in parallel or in series.
  • the membrane separator has a withstand pressure of 4.75 MPa, a maximum differential pressure of 1.5 MPa (raw gas to permeate), and a membrane separator operating temperature of up to 85 °C.
  • the purified gas obtained by separation and purification by a membrane separator has a hydrogen concentration of 88 to 99.00 v% and a hydrogen recovery rate of 90 to 98.5%.
  • the basic principle of the membrane separator is to use the partial pressure difference of the gas on both sides of the hollow fiber membrane as a driving force, and through the steps of the permeation-dissolution-diffusion-analysis, the hollow fiber membrane has different permeability to various gases. Thereby achieving the purpose of separation.
  • the raw material gas moves away from the shell side of the hollow fiber membrane module, the permeate gas passes through the tube, and the exhaust gas enters the next hollow fiber membrane module.
  • H 2 Since the permeation rate of H 2 on the surface of the membrane is several tens of times that of CH 4 , N 2 , Ar, etc., H 2 enters each hollow fiber tube and is collected from the lower portion of the membrane separator, and the non-permeate gas (exhaust gas) is removed from the hollow fiber membrane. The upper part of the assembly is discharged.
  • the inside of the hollow fiber membrane module is a core member composed of 1000 to 100000 hollow fiber membranes, and the fiber tube is specially processed from a polymer material.
  • the raw material gas enters from the side port of the separator. When the gas flowing downward along the outer side of the fiber bundle is in contact with the outer surface of the fiber membrane, the gas dissolves, penetrates and diffuses on the fiber wall, and utilizes various gases to dissolve and penetrate. Difference, separate different types of gases.
  • the large-scale synthesis gas can be greatly reduced.
  • the volumetric requirements of the alcohol process unit are conducive to the large-scale production of single-series units, which is conducive to safe production of equipment and reduced equipment investment.
  • the nitric acid waste liquid recycling process and the purge gas recycling process are highly coupled, and the waste liquid generated in the device can be recycled as a raw material for recovering a large amount of nitrogen monoxide gas to generate a methyl nitrite required for the main reaction. .
  • the technology of the process combination is scientific and reasonable, and the exhaust gas and waste liquid can be fully recycled through a reactor, which is economical and environmentally friendly.
  • the methyl nitrite is a heat sensitive substance, especially after a certain temperature is higher, the temperature of the methyl nitrite is increased, and the reaction of CO carbonylation to dimethyl oxalate is strong.
  • the thermal reaction using a suitable reactor to maintain a uniform temperature distribution of the bed and controlling the hot spot temperature is the key to preventing the decomposition of methyl nitrite and increasing the yield of the product.
  • the carbonylation plate reactor of the present invention is a plate reactor.
  • the reaction of CO carbonylation to dimethyl oxalate can fully utilize the characteristics of uniform temperature distribution of the reactor, and achieve the characteristics of increasing the space-time yield of dimethyl oxalate and recycling the heat of reaction.
  • the recovery of the hydrogenation section of the process described in the process fully saves valuable hydrogen resources, thereby reducing the unit coal consumption, and is beneficial to reducing the overall energy consumption and pollution emissions of the device, which has practical significance.
  • the process of the hydrogenation section of the process is recovered, and the membrane separation system used can reduce the pressure of the reaction system by about 1 MPa under the same load.
  • the outlet pressure can be reduced, and a large amount of power consumption can be saved. .
  • the membrane separation system is used, which is beneficial to increase the rate of hydrogenation reaction, and the daily output of ethylene glycol is increased by about 10%.
  • the bottleneck of the large-scale device is effectively solved, the equipment investment is reduced, the heat recovery of the reaction heat is recovered, the effective heat recovery is performed, the energy consumption per unit of ethylene glycol production is reduced, steam is reduced, and cooling is performed.
  • the invention realizes the full reuse of the exhaust gas and the waste liquid, the comprehensive energy utilization of the device reaction heat and the tower separation, improves the energy utilization efficiency, saves energy consumption, and has remarkable industrial application value.
  • the invention provides a guarantee for the development of a more environmentally friendly, more efficient and more energy-saving technology for the synthesis gas glycol technology.
  • the use of the invention is technically feasible and economically justifiable.
  • the above process optimization design can significantly increase the yield, which has not been described in any literature.
  • the process proposed by the invention is also particularly advantageous from the viewpoint of energy consumption, and has the characteristics of significant energy saving, and the combination should
  • the use of a useful material recycling step, in particular, a nitric acid waste liquid recycling process and a high degree of coupling of the purge gas recycle process and its separation process and recycle of hydrogen in the reaction off-gas, the effect is very significant.
  • Figure 1 An apparatus system for high-pressure carbonylation of industrial syngas to produce dimethyl oxalate and hydrogenated to ethylene glycol (part)
  • Figure 2 Device system for high-pressure carbonylation of industrial syngas to produce dimethyl oxalate and hydrogenation to ethylene glycol (part)
  • a system for the high-pressure carbonylation of industrial syngas to produce dimethyl oxalate and hydrogenate to ethylene glycol including a carbonylation reaction system, an esterification reaction system, and a gas-depleted waste acid coupling Recycling system to And a hydrogenation reaction system;
  • the carbonylation reaction system comprises a carbonylation reactor 1, a first gas-liquid separator 4, a methanol scrubber 7, a methanol condensate column 5, and a DMO condensate column 6;
  • the carbonylation reactor 1 is provided with a top feed port, a bottom discharge port, a bottom refrigerant inlet and a top refrigerant outlet;
  • the first gas-liquid separator 4 is provided with a feed port, a gas outlet and a liquid outlet;
  • the methanol scrubber 7 is provided
  • the purge gas and waste acid coupling recovery system comprises a nitric acid concentration tower 12, a NO recovery tower 13, a MN recovery tower 15 and a pressure swing adsorption tank 16;
  • the nitric acid concentration tower 12 is provided with a middle feed port, a top outlet and a bottom outlet;
  • the NO recovery tower 13 is provided with a top feed port, a middle feed port, a bottom feed port, a top outlet, and a bottom outlet;
  • the MN recovery column 15 is provided with an upper feed port, a lower feed port, a top outlet and a bottom outlet;
  • the pressure swing adsorption tank 16 is provided with a feed port, a recovery gas outlet and an exhaust gas outlet;
  • the hydrogenation reaction system comprises a hydrogenation cycle compressor 14, a hydrogenation reactor 17, and a second gas.
  • the hydrogenation cycle compressor 14 includes an inlet and an outlet; and the hydrogenation plate reactor 17 a top feed port, a bottom discharge port, a bottom refrigerant inlet and a top refrigerant outlet; the second gas-liquid separator is provided with a feed port, a gas outlet and a liquid outlet; and the membrane separator 28 is provided with a feed Port, recovery gas outlet and vent gas outlet; the methanol
  • the off-column 22 is provided with a middle feed port, a top non-condensable gas outlet, an upper liquid phase light component outlet and a bottom liquid phase heavy component outlet;
  • the light component fine crucible tower 23 is provided with a lower feed port, a top outlet and a bottom outlet;
  • the ethylene glycol product column 24 is provided with a lower feed port, a top outlet, an upper outlet and a bottom outlet; the top feed inlet of the carbonylation reactor
  • the branch outlet A is connected to a lower feed port of the esterification reaction column 9 via a line, a branch outlet B and the NO recovery column 13 a bottom feed port is connected by a pipeline; a bottom outlet of the methanol scrubber 7 is connected to a lower feed port of the methanol condensate column 5; a top outlet of the methanol condensate column 5 and the esterification
  • the upper feed port of the reaction column 9 is connected by a pipeline;
  • the bottom outlet of the methanol condensate column 5 is connected to the lower feed port of the DMO fine sorghum column 6;
  • the bottom outlet of the DMO fine boring tower 6 is
  • the top feed port of the hydrogenation reactor 17 is connected by a pipeline, the top outlet of the DMO fine crucible tower 6 is a DMC product outlet; the other lower feed inlet of the esterification reaction tower 9 and the NO raw material pipeline and
  • the raw material pipelines of the road 0 2 are respectively connected by pipelines; the top feed inlet of
  • An inlet of the hydrogenation cycle compressor 14 is connected to an industrial hydrogen feedstock line via a line, and an outlet of the hydrogenation cycle compressor 14 is connected to a top feed port of the hydrogenation reactor 17 via a line;
  • the bottom discharge port of the reactor 17 is connected to the feed port of the second gas-liquid separator via a pipeline;
  • the gas outlet of the second gas-liquid separator is provided with a branch outlet G and a branch outlet H, and the branch outlet G and
  • the inlet of the hydrogenation cycle compressor 14 is connected by a pipeline, and the branch outlet H is connected to the inlet of the membrane separator 28 via a pipeline;
  • a liquid outlet of the second gas-liquid separator is connected to a lower feed port of the methanol separation column 22 via a line;
  • a top non-condensing gas outlet of the methanol separation column 22 and a feed port of the membrane separator 28 Connected via a pipeline;
  • the top liquid phase light component outlet of the methanol separation column 22 is provided with a
  • the carbonylation reactor 1 is externally connected with a dehydration column 10; the dehydration column 10 is provided with a feed port and a dry gas outlet; a top outlet of the esterification reaction column 9 and the The recovery gas outlet of the pressure swing adsorption tank 16 is connected to the feed port of the dehydration column 10 via a line; the dry gas outlet of the dehydration column 10 is connected to the top feed port of the carbonation reactor 1 via a pipeline.
  • the dehydration column is composed of two molecular sieve dryers A and molecular sieve dryers B which are alternately operated and regenerated; the molecular sieve dryer A and the molecular sieve dryer B are filled with an adsorbent.
  • the bottom discharge port of the carbonylation reactor 1 is connected with an outlet heat exchanger I 3 ;
  • the outlet heat exchanger I 3 is provided with a cold stream inlet, a cold stream outlet, and a hot material inlet.
  • the CO feed line, the N 2 feed line, and the dry gas outlet of the dehydration column 10 are connected to the outlet of the outlet heat exchanger I 3 via a line;
  • the cold stream of the outlet heat exchanger I 3 The outlet is connected to the top feed port of the carbonylation reactor 1 via a line;
  • the bottom discharge port of the carbonylation reactor 1 is connected to the hot stream inlet of the outlet heat exchanger I 3 via a line;
  • the hot stream outlet of the heat exchanger I 3 is connected to the feed port of the first gas-liquid separator 4 via a line.
  • the carbonylation reactor 1 is externally connected with a steam drum I 2 ;
  • the steam drum I 2 is provided with a refrigerant inlet, a refrigerant outlet, a vapor-liquid mixture inlet and a steam outlet;
  • the refrigerant inlet of the refrigerant is connected to the refrigerant feed pipe via a pipeline;
  • the refrigerant outlet of the steam drum I 2 is connected to the bottom refrigerant inlet of the carbonylation plate reactor 1;
  • the top refrigerant outlet of the carbonylation reactor 1 is The steam drum 1 2
  • the vapor-liquid mixture inlet is connected by a pipeline;
  • the steam outlet of the steam drum 12 is connected to the outer steam recovery system via a pipeline.
  • a carbonylation cycle compressor 8 is connected between the branch outlet A of the methanol scrubber 7 and the lower feed port of the esterification reaction column 9; the carbonylation cycle compressor 8 An inlet and an outlet are provided; the branch outlet A is connected to the inlet of the carbonylation cycle compressor 8 via a line; the outlet of the carbonylation cycle compressor 8 and the lower feed port of the esterification reaction column 9 are Pipeline connection.
  • a top outlet of the NO recovery column 13 is connected to a bottom feed port of the MN recovery column 15 with a compressor 14; the compressor 14 is provided with an inlet and an outlet; The top outlet of the column 13 is connected to the inlet of the compressor 14 via a line; the outlet of the compressor is connected to the bottom feed port of the MN recovery column 15 via a line.
  • the bottom discharge port of the hydrogenation reactor 17 is connected with an outlet heat exchanger ⁇ 20; the outlet heat exchanger II 20 is provided with a cold stream inlet, a cold stream outlet, and a hot material inlet. And a hot stream outlet; a bottom outlet of the DMO fine column 6, a recovery gas outlet of the membrane separator 28, and an outlet of the hydrogenation cycle compressor 25 and a cold stream inlet of the outlet heat exchanger Connected via a pipeline; a cold stream outlet of the outlet heat exchanger ⁇ 20 is connected to a top feed port of the hydrogenation reactor 17 via a line; a bottom discharge port of the hydrogenation reactor 17 is exchanged with the outlet
  • the hot stream inlet of the heat exchanger ⁇ 20 is connected via a line; the hot stream outlet of the outlet heat exchanger ⁇ 20 is connected to the feed port of the second gas-liquid separator via a line.
  • the top feed inlet of the hydrogenation reactor 17 is connected with a starter heater 19; the starter heater 19 is provided with a feed port and a discharge port; the outlet heat exchanger II
  • the cold stream outlet of 20 is connected to the feed port of the starter heater 19 via a line; the discharge port of the starter heater is connected to the top feed port of the hydrogenation reactor 17 via a line.
  • the hydrogenation reactor 17 is externally connected with a steam drum II 18; the steam drum II 18 is provided with a refrigerant inlet, a refrigerant outlet, a vapor-liquid mixture inlet and a steam outlet;
  • the refrigerant inlet of 18 and the refrigerant feed pipe are connected by a pipeline;
  • the refrigerant outlet of the steam drum II 18 is connected to the bottom refrigerant inlet of the hydrogenation reactor 17 via a pipeline;
  • the top refrigerant outlet of the hydrogenation reactor 17 is The vapor-liquid mixture inlet of the steam drum 11 18 is connected by a line;
  • the steam outlet of the steam drum II 18 is connected to the outer steam recovery system via a pipeline.
  • the second gas-liquid separator comprises a high-pressure gas-liquid separator 21 and a low-pressure gas-liquid separator 26;
  • the high-pressure gas-liquid separator 21 is provided with a feed port, a gas outlet and a liquid outlet
  • the low-pressure gas-liquid separator 26 is provided with a feed port, a gas outlet and a liquid outlet;
  • a bottom discharge port of the hydrogenation reactor 17 is connected to a feed port of the high-pressure gas-liquid separator 21 via a pipeline;
  • the gas outlet of the high-pressure gas-liquid separator 21 is provided with a branch outlet K and a branch outlet L, and the branch outlet K is connected to the inlet of the hydrogenation cycle compressor 25 via a line, the branch outlet L and the low-pressure gas-liquid separator a feed port of 26 is connected by a line;
  • a liquid outlet of the high-pressure gas-liquid separator 21 is connected to a middle feed port of the methanol separation column 22 via a line;
  • the feed port of the membrane separator 28 is provided with a methanol absorption tank 27; the methanol absorption tank 27 is provided with a feed port and a purge gas outlet; and the low pressure gas-liquid separator 26 a gas outlet and a top non-condensable gas outlet of the methanol separation column 22 are connected to a feed port of the methanol absorption tank 27 via a line; a purge gas outlet of the methanol absorption tank 27 and the membrane separator 28
  • the feed port is connected by a pipeline.
  • the carbonylation reactor 1 may be a plate reactor, a tubular reactor or a tubular-plate composite reactor;
  • the carbonylation reactor 1 is a plate type fixed bed carbonylation reactor; the center of the plate type fixed bed carbonylation reactor is provided with a plate group fixed cavity, and the plate group fixed cavity a plate group is disposed therein, the plate group fixing cavity is further provided with a bottom inlet and a top outlet; a catalyst bed layer is disposed between the outer wall of the plate group fixing cavity and the inner wall of the plate fixed bed carbonation reactor; The catalyst bed is filled with a carbonylation catalyst, and the catalyst bed is further provided with a top inlet and a bottom outlet; at the bottom of the plate fixed bed carbonylation reactor, the bottom refrigerant of the plate fixed bed carbonylation reactor The inlet is connected to the bottom inlet of the fixed portion of the plate group via a pipeline, and the bottom outlet of the catalyst bed is connected to the bottom discharge port of the plate fixed bed carbonylation reactor via a pipeline; At the top of the reactor, the top feed port of the plate fixed bed carbonylation reactor is connected to the top inlet of the catalyst
  • the esterification reaction column 9 is a packed column; As a more preferred embodiment, the esterification reaction column 9 is a tray-filler mixing column having both a tray portion and a filler packed portion.
  • the methanol scrubber 7, the methanol condensate column 5, the methanol recovery column 11, the NO recovery column 13, the MN recovery column 15, the DM0 fine column 6 and the nitric acid concentration column 12 are packed columns, Plate tower or bubble tower.
  • the filler packed in the packed tower is a random packing or an efficient structured packing;
  • the random packing is in the shape of a saddle shape, a Raschig ring, a Pall ring, a wheel shape, and a saddle. Ring, spherical or columnar;
  • the high efficiency structured packing is corrugated packing, grid packing, pulse packing.
  • the hydrogenation plate reactor 17 may be a plate reactor, a tubular reactor or a tubular-plate composite reactor;
  • the hydrogenation reactor 17 is a plate type fixed bed hydrogenation reactor; the center of the plate type fixed bed hydrogenation reactor is provided with a plate group fixed cavity, and the plate group fixed cavity a plate group is disposed therein, the plate group fixing cavity is further provided with a bottom inlet and a top outlet; a catalyst bed layer is disposed between the outer wall of the plate group fixing cavity and the inner wall of the plate fixed bed hydrogenation reactor; The catalyst bed is filled with a hydrogenation reaction catalyst, and the catalyst bed is further provided with a top inlet and a bottom outlet; at the bottom of the plate fixed bed hydrogenation reactor, the plate type fixed bed hydrogenation reactor a bottom refrigerant inlet is connected to a bottom inlet of the plate group fixing chamber via a pipeline, and a bottom outlet of the catalyst bed is connected to a bottom discharge port of the plate type fixed bed hydrogenation reactor through a pipeline; At the top of the bed hydrogenation reactor, the top feed port of the plate fixed bed hydrogenation reactor is connected to the top inlet of the catalyst bed via
  • the membrane separator 28 is composed of 1 to 100 hollow fiber membrane modules connected in parallel or in series.
  • the NO from the line 18, the fresh methanol from the line 26, and the 0 2 of the 2 to 8 feeds are subjected to a gas-liquid countercurrent contact in the esterification reaction column 9 to effect an esterification reaction, and the MN mixture generated at the top of the column is passed through the line 23 It is combined with the recovered gas phase of the pressure swing adsorption tank from the pipeline 39, and then enters the dehydration tower 10 through the pipeline 24 for dehydration treatment, and the dehydrated dry gas is mixed with the CO from the pipeline 1 and the N 2 of the pipeline 2 through the pipeline 25 as The carbonation reaction feed gas enters the conduit 3.
  • the column reactor in the esterification reaction column 9 is an acidic waste liquid containing a large amount of methanol, and is refluxed to the esterification reaction column 9 through a pipe 20 in a certain amount, and the remaining acid waste liquid passes through the pipe 21 and the methanol acid waste liquid from the pipe 33 at the same time.
  • the methanol recovery tower 11 is introduced to carry out methanol recovery; the methanol light component generated at the top of the methanol recovery tower 11 is diverted through the pipeline 28, and part of it is passed through the pipeline 29 into the MN recovery tower 15 for washing liquid, and the other portions are merged from the pipeline 26
  • the fresh methanol is passed through the line 22 as an alcohol source for the esterification reaction column 9; the acid-containing wastewater produced in the methanol recovery column 11 column is passed through a line 27 to the nitric acid concentration column 12 for nitric acid concentration.
  • the carbonylation reaction starting material from the pipe 3 is exchanged with the carbonylation reaction product discharged from the bottom of the carbonylation reactor 1 through the outlet heat exchanger I 3 , and then enters the catalyst bed from the top of the carbonylation reactor 1 to carry out a carbonylation reaction.
  • the purified water from outside the system enters the steam drum I 2 through the pipe 8, and the refrigerant in the steam drum I 2 passes through the pipe 9 from the bottom of the carbonation reactor 1 into the fixed space of the plate group to exchange heat with the catalyst bed, and is removed.
  • the carbonation reaction product is subjected to heat exchange in the outlet heat exchanger I 3 and then enters the first gas-liquid separator 4 to be gas-liquid separated.
  • the gas phase component containing most of the DMC (dimethyl carbonate) enters the methanol scrubber 7 through the pipe 11.
  • the first gas-liquid separator 4 tower DMO heavy component via the pipeline 10 and the methanol scrubber 7 tower contains MN (methyl nitrite), DMC and DMO (dimethyl oxalate)
  • MN methyl nitrite
  • DMC dimethyl oxalate
  • the methanol washing solution of the ester enters the methanol refining tower 5 through the pipe 12, and the two streams are countercurrently contacted for extraction separation; the gas phase light component of the top of the methanol scrubbing tower 7 is mostly passed through the carbonylation cycle compressor 8 through the pipeline 17
  • the esterification reaction column 9 is recycled, and a small portion is taken as a purge gas through the pipeline 32 to the NO recovery tower 13 for recovery; the methanol and nitrite mixture recovered at the top of the methanol purification tower 5 is recycled to the esterification reaction through the pipeline 14.
  • Tower 9 is reused, the heavy component of the tower is passed through the pipeline 13 into the DMO fine tower 6; the top of the DMO fine tower 6 is obtained from the DMC product, and the dimethyl oxalate component of the tower is introduced into the pipeline 15 as the original hydrogenation reaction. .
  • the top of the nitric acid concentration tower 12 is mainly for the environmental treatment of the acid-containing wastewater discharged through the pipeline 30 to the boundary area, and the concentrated nitric acid concentrated at the bottom of the tower enters the NO recovery tower 13 through the pipeline 31 as an acid source and recovers methanol from the pipeline 57 and comes from
  • the reversed-flow contact of the pipe 32 generates an esterification regeneration reaction to recover NO in the purge gas;
  • the N 0 recovery tower 13 contains a methanol-containing nitric acid waste liquid which enters the methanol recovery tower 11 through the pipeline 33 for recycling.
  • the resulting light component containing MN is pressurized by compressor 14 and passed to MN recovery column 15.
  • the MN recovery column 15 is in countercurrent contact with the recovered methanol from the line 29, elutes the MN therein, and passes from the column tank through the line 36 to the esterification reaction column 9, and the overhead gas phase light component enters the pressure swing adsorption tank through the line 37. 16, after pressure swing adsorption, remove the CO-containing mixture after C0 2 through the pipeline
  • the industrial hydrogen from the line 54 and the recycle gas from the line 53 are mixed, pressurized by the hydrocycling compressor 25, and then introduced into the line 55, and then mixed with the dimethyl oxalate component from the line 15 and the recovered hydrogen from the line 68 as Hydrogenation reaction feedstock, from line 40 to outlet heat exchanger 1120, and from the hydrogenation reactor
  • the hydrogenation reaction product withdrawn at the bottom of 17 is subjected to heat exchange, and then enters the catalyst bed from the top of the hydrogenation reactor 17 to carry out catalytic hydrogenation reaction; at the same time, the purified water from outside the system enters the steam drum through the pipe 48.
  • the refrigerant in the steam drum II 18 passes through the pipe 49 from the bottom of the hydrogenation reactor 17 into the fixed space of the plate group and exchanges heat with the catalyst bed, and the heat generated by the reaction is removed, and the heated refrigerant is a vapor-liquid mixture. After being taken out from the top of the hydrogenation reactor 17, it enters the steam drum ⁇ 18 for gas-liquid separation, and the generated low-pressure saturated steam enters the extra-low pressure steam recovery system through the pipeline 47 for recycling.
  • the hydrogenation reaction product enters the high-pressure gas-liquid separator 21 from the pipeline 44 for gas-liquid separation, and the gas phase partially passes through the pipeline 51 and is mostly circulated as the recycle gas into the pipeline 53, and the remaining gas passes through the pipeline 52 to enter the low-pressure gas-liquid.
  • the separator 26 performs gas-liquid separation; the liquid phase methanol in the low-pressure gas-liquid separator 26 flows out through the pipe 64, and the gas phase portion merges with the non-condensable gas from the pipe 58 through the pipe 65 and then enters the methanol absorption tank through the pipe 66.
  • the liquid phase ethylene glycol crude product separated from the high pressure gas-liquid separator 21 flows out of the pipe 50, merges with the liquid phase methanol from the pipe 64, and enters the methanol separation column 22; the top of the methanol separation column 22 is suspended by the pipe 58.
  • the amount of non-condensed steam is recovered, and the light component of the liquid phase in the top of the column enters the pipeline 57, and the liquid phase of the tower is passed through the pipeline.
  • the polyol mixture is further purified through a conduit 59 into the ethylene glycol product column 24, wherein the mixed light components comprising 1,2-BDO and ethylene glycol are further recycled through line 63, and the lateral line of the tower body is produced.
  • the ethylene glycol is produced as a product through line 62, which is treated as a mixture containing a small amount of ethylene glycol and ethylene glycol polycondensate to enter the boundary.
  • the hydrogenation reaction raw material is heated by using the start-up heater 19, and the heat source is low-pressure steam.
  • the hydrogenation feedstock from line 40 enters line 45 and is preheated to the bed inlet temperature by a starter heater 19 and then enters the catalyst bed from the top of hydrogenation reactor 17 via line 46 and line 42 for hydrogenation.
  • the top light component from the methanol scrubber (composition: MN: 5.22 v%, CO: 22.12 v%, N 2: 58. 5 v%, NO: 11.14 v%, CO 2 : 0.63 v%, methanol 1.57 v% , Others: 0.82v%) and mixed with NO from the boundary to enter the esterification reaction tower 9 (inner diameter 50mm, height 2600mm, theoretical number of plates 25, tray structure is packed tower) from the 25th tray 0, 2 , 3 way from the 22nd, 23rd and 25th trays respectively into the esterification reaction tower 9, with fresh methanol fed from the first tray at the top of the tower and from the methanol recovery tower 11 Recovery of the methanol mixture, the fifth feed of the methanol and nitrite mixture recovered from the methanol refinery column 5, and the methyl nitrite-containing alcohol solution from the MN recovery column 15 column and feed from the 10th block
  • the reflux of the column kettle is subjected to gas-liquid countercurrent contact in
  • the temperature at the top of the esterification column 9 was 50 ° C, the temperature in the column was 93 ° C, the temperature in the reaction zone was 70 ⁇ 10 ° C, and the reaction pressure was 2 MPa.
  • the esterification reaction column 9 was discharged from the column (composition: methanol: 71.8 wt%, MN: 8.0 wt%, and other heavy components such as acid and water formed by the reaction, 20.2 wt%), and after recovery, it was returned to the methanol recovery column 11 for recovery treatment.
  • the gas phase component of the esterification reaction column 9 (composition: MN: 10.05 v%, CO: 26.42 v%, N 2 : 55.88 v%, NO: 5.2 v%, CO 2 : 0.60 v%, methanol 1.57 v%, Other: 0.28v %) then dehydrated into dehydration tower 10.
  • adsorbent is 4A molecular sieve, operating temperature: 43 V: pressure: 1.9 MPa, alternating operation and regeneration of two molecular sieve dryers A and molecular sieve dryer B
  • a dry gas having a water content of 60 ppm is obtained. .
  • Esterification reaction tower 9 The acid-containing waste alcohol liquid in the column reactor enters the methanol recovery tower 11 (inner diameter 50mm, height 2100mm, theoretical plate number 20, built-in high-efficiency structured packing, tower top temperature 120 °C, bottom temperature 140 ° C, the pressure at the top of the column is 0.7 MPa, the reflux ratio of the light component at the top of the column is 1.2, and the top of the column is a light component containing methanol (component: methanol: 90 wt%, MN: 8 wt%, H 2 0: 2 wt %) a part (75% by weight) is combined with fresh methanol, enters the top of the esterification column 9, and remains as the washing liquid in the MN recovery column 15; the methanol recovery tower 11 contains the acid wastewater into the nitric acid concentration column 12 for nitric acid Concentrate.
  • the methanol recovery tower 11 contains the acid wastewater into the nitric acid concentration column 12 for nitric acid Concentrate.
  • the carbonylation reactor 1 (plate fixed bed reactor, inner diameter: 320 mm, height 2000 mm), the center is provided with a plate group fixed cavity, and the plate group fixed cavity is provided with 3 sets of plates, each set of 3 plates;
  • a catalyst bed layer is disposed between the outer wall of the fixed cavity of the plate group and the inner wall of the carbonylation reactor 1, and the catalyst for carbonation high pressure reaction is loaded therein (commercially available catalyst of Shanghai Wuzheng Engineering Technology Co., Ltd., the catalyst brand name is DM0-0701T).
  • the drying gas of the column 10 is mixed with the deuterated industrial grade CO (99 v%;) as a raw material for the carbonylation reaction and nitrogen as an inert gas source, and then exchanged with the carbonylation reaction product through the outlet heat exchanger 13 to preheat Heat to 95 °C, first enters from the top of the carbonylation reactor 1, and then enters the catalyst bed by radial flow to carry out carbonylation reaction (catalyst bed hot spot temperature 130 ° C, reaction pressure 1.8 MPa, gas hourly space velocity It is lOOOOh- 1 ); the carbonylation product then enters the outlet heat exchanger 3 for heat exchange and then enters the first gas-liquid separator 4 where it is subjected to gas-liquid separation.
  • CO 99 v%
  • the carbonylation reactor 1 is a fixed medium refrigerant medium.
  • the purified water from the outside of the system enters the steam drum I 2 to be replenished into the water, and the water in the steam drum I enters the carbonization reactor 1 to exchange heat with the catalyst bed in the fixed cavity of the plate group, and removes the heat generated by the reaction, after heating
  • the water is a vapor-liquid mixture, enters the steam drum for gas-liquid separation, and the generated low-pressure saturated steam is sent to the low-pressure steam pipe network outside the boundary area for recycling.
  • the liquid phase (methanol: 1.16 wt%, DMC: 0.45 wt%, DMO: 97.6 wt%, other 0.79 wt%) drawn from the first gas-liquid separator 4 is used as an extractant to be separated into the methanol condensate column 5;
  • the mixed gas phase component containing DMC enters the methanol scrubber 7 (internal diameter: 50mm, height is 3200mm, theoretical plate number is 30 pieces, and the high-efficiency structured packing is built in.
  • the temperature at the top of the column is 28.1 °C, and the temperature of the column is 39.8 °C.
  • the top pressure is 1.5 MPa.
  • the DMC and DMO in the mixed gas are eluted, and most of the gas phase light components at the top of the methanol scrubber 7 pass through the carbonylation cycle.
  • the compressor 8 enters the esterification reaction tower 9, and recycles the nitrogen oxides formed by the carbonylation reaction; a small portion of non-condensable gas (gas ratio: 0.5 v%) is taken as a purge gas into the NO recovery column 13 for recovery treatment; The liquid phase of the scrubber 7 column is passed into the methanol fine column 5 for separation.
  • Methanol fine tower 5 (inner diameter: 50mm, height 2600mm, extraction precision tower, theoretical plate number is 25 pieces, with high-efficiency structured packing, tower top temperature is 73.12 °C, tower kettle temperature is 185.0 °C, tower top pressure
  • the light component of the top of the O. lMPa) column (methanol: 88.2 wt%, MN: 11.8 wt%) enters the esterification reaction column 9 as one of the alcohol sources, and the heavy component of DMC and DMO enters the DMO fine Tower 6 is separated.
  • DMO Fine Tower 6 (inner diameter: 50mm, height 3000mm, theoretical plate number 28, built-in high efficiency structured packing, tower top temperature 103 °C, column kettle temperature 180 ° C, atmospheric pressure operation, reflux ratio 50), tower
  • the top DMC was collected as a product (DMC product purity was 99.41 wt%); the tower bottoms heavy component (DMO purity was 99.9 wt%) was used as the raw material for the hydrogenation section.
  • the nitric acid concentration tower 12 (inner diameter 32mm, height 850mm, number of theoretical plates 8 pieces, high efficiency structured packing, peak temperature 64 ° C, column temperature 87 ° C, top pressure 0.15 MPa, reflux ratio 0.05) In the middle of the tower, the acid-containing wastewater is discharged to the outside of the boundary area for environmental protection treatment, and the concentration of the tower is concentrated to 68% by weight.
  • the concentrated nitric acid serves as an acid source for the NO recovery column 13.
  • NO recovery tower 13 (inner diameter: 32mm, height 2100mm, theoretical plate number 20, built-in high efficiency structured packing, tower top temperature 50 ° C, tower kettle temperature 100 ° C, tower top pressure 1.4 MPa)
  • the purge gas from the methanol scrubber 7 is fed from the 20th tray, the recovered methanol (99.9 wt%) from the methanol separation column 22 fed from the first tray, and the 8th tower from the 8th column
  • the esterification regeneration reaction occurs in countercurrent contact of concentrated nitric acid from the nitric acid concentration column 12 fed at the plate.
  • the molar ratio of HN0 3 and methanol in the NO and concentrated nitric acid in the purge gas is 1:2.5:20.
  • the top light component of the recovery column 13 (composition: CO: 21.1 v %, CO 2 : 0.6 v % , MN: 20.8v %, N 2 : 55.7 v %, methanol: 1.8 v %) Pressurized by compressor 14 into MN recovery tower 15; NO recovery tower 13 tower heavy component (composition: methanol 71.8wt%, reaction formation The other heavy components such as acid and water (28.2 wt%) were recovered into the third tray of the methanol recovery column 11.
  • MN recovery tower 15 (inner diameter: 32mm, height 3200mm, theoretical plate number 30, built-in high efficiency structured packing, tower top temperature 30.8 ° C, tower kettle temperature 41.3 ° C, tower top pressure 2MPa)
  • the material is countercurrently contacted with the recovered methanol from the methanol recovery column 11 fed from the first tray, and absorbs a large amount of paint in the intake air, and the remaining gas (composition: CO: 27.3v%, CO 2 : 0.8 v %, N 2: 71.9 v%,) from the top of the column into the pressure swing adsorption tank 16, the material in the column reactor (composition: methanol: 79.3 mol%, MN: 20.7mol %) of 5 proceeds esterification tray column 9 Recycling.
  • the gas phase at the top of the MN recovery column 15 is pressure-adsorbed by the pressure swing adsorption tank 16, and the purified gas (N 2 : 72 v%, CO: 28 v%) is sent to the dehydration column 10 to be processed into the hydroformation reactor 1, and The 0.95 v% gas (composition: C0 2 is 99.8 v%) is discharged to the outside of the boundary for disposal.
  • Hydrogenation reactor 17 (plate type fixed bed hydrogenation reactor, inner diameter: 325mm, height of 900mm), the center is provided with a plate group fixed cavity, and the plate group fixed cavity is provided with three sets of plates, each set of three plates
  • the outer wall of the fixed cavity of the plate group is provided with a catalyst bed between the inner wall of the hydrogenation reactor, and the hydrogenation reaction catalyst is filled in: a commercially available catalyst of Shanghai Wuzheng Engineering Technology Co., Ltd., the catalyst brand name is MEG-801T).
  • the material passing through the heat exchanger ⁇ 20 enters the starter heater 19 for preheating, and the preheated gas is used as the feed gas to reach the inlet temperature of the catalyst bed and then enters the catalyst bed for hydrogenation reaction.
  • the cooling medium of the plate group is an aqueous medium.
  • the refined water from the outside of the system enters the steam drum II 18 to be replenished into the water, and the water in the steam drum II 18 enters the hydrogenation reactor 17 to exchange heat with the catalyst bed in the fixed cavity of the plate group, and removes the heat generated by the reaction, after heating
  • the water is a vapor-liquid mixture, and enters the steam drum II for gas-liquid separation.
  • the generated low-pressure saturated steam is sent to the low-pressure steam pipe network outside the boundary area for recycling.
  • the liquid phase separated by the low-pressure gas-liquid separator 26 enters the methanol separation column 22 for separation, and the gas phase is further removed by methanol through a methanol absorption tank 27 (inner diameter 160 mm, height 900 mm), wherein the gas phase (composition: hydrogen 97 v%, formazan) 0.15 v%, nitrogen 0.06 v%, carbon monoxide 0.27 v%, and other 2.52 v%) enter the membrane separator 28 for recycling.
  • the hydrogen (purity of 99.9v%) separated by the membrane separator is preheated by the outlet heat exchanger and then enters the hydrogenation plate reactor 17, and only a small amount of non-condensable gas such as formazan is discharged as a purge gas. Recycling.
  • Methanol separation tower 22 (inner diameter: 50mm, height 2600mm, theoretical plate number 25, built-in high efficiency structured packing, tower top temperature 50.82 ° C, tower kettle temperature 171 ° C, tower top absolute pressure 90 kPa) The material was fed at the 12th tray, and the top of the column was not condensed into the methanol absorption tank 27 and then passed to the membrane separator 28.
  • the reflux ratio of the column was 1.6, and the top of the column was discharged (99.9 wt% methanol, 0.1 wt% other
  • the low-boiling component is taken into the methanol scrubber 7 and the NO recovery column 13 respectively;
  • the methanol separation column 22 is a heavy component of the column (composition: 96 wt% ethylene glycol, 0.12 wt% methyl glycolate, 2.68 wt% 1.2-BDO) , 0.8 wt% ethanol, 0.4 wt% other components) Enter the light component fine crucible tower 23.
  • Light component fine crucible tower 23 (inner diameter: 50mm, height 4000mm, theoretical plate number 40, built-in high efficiency structured packing, tower top temperature 83.8 ° C, tower kettle temperature 146.9 ° C, tower top absolute pressure 16kPa, tower top With a reflux ratio of 50), the top of the column is taken out of the crude ethanol product (98 wt% ethanol, 2 wt% methyl glycolate) and sent to the outside of the boundary for collection and treatment; the heavy component of the column (97.9 wt% ethylene glycol, 2.1 wt% 1.2-BDO) ) Ethylene glycol product tower 24 in.
  • Ethylene glycol product tower 24 (inner diameter 50mm, height 6500mm, tower theoretical plate number 60, built-in high efficiency structured packing, tower top temperature 130 ° C, tower kettle temperature 170.rC, tower top absolute pressure 5 kPa), tower The top reflux ratio is 98, and the top of the column is produced (component: 1, 2-BDO is 19.79 wt%; ethylene glycol is 80 wt%, other 0.21 wt%) is recovered as a by-product outside the boundary zone, and the column kettle contains a small amount of ethylene.
  • the alcohol and ethylene glycol polycondensate were treated outside the boundary, and the final product ethylene glycol (content 99.99 wt%) was produced at the fifth tray of the side line of the ethylene glycol product tower.

Abstract

本发明涉及工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工艺和装置系统,该工艺为采用工业级NO、O2和甲醇为原料发生酯化反应生成亚硝酸甲酯,然后用工业级CO和亚硝酸甲酯在板式反应器中进行羰化反应生成主要为草酸二甲酯和碳酸二甲酯的羰化产物,羰化产物经分离后获得碳酸二甲酯产品,草酸二甲酯在板式反应器中经后续加氢生成乙二醇产品;而酯化反应的废酸和羰化反应的驰放气经耦合回收处理循环利用;所述系统包括酯化反应系统、羰化反应系统、驰放气与废酸耦合回收系统以及加氢反应系统。该工艺具有显著节约装置消耗的特点,特别是硝酸废液循环利用与驰放气循环利用高度耦合及其分离工艺,反应废气中原料的回收循环利用,效果显著。

Description

工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工艺和装置系统 技术领域
本发明涉及一种工业合成气制乙二醇的工艺和装置系统, 尤其涉及一种工业 合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工艺及其装置系统。 背景技术
乙二醇是一种用途广泛的化学品, 主要应用于聚酯纤维 (PET)、 防冻剂、 乙 醇胺以及炸药等多种生产领域, 并且作为溶剂、 润滑剂和增塑剂被大量使用, 而 乙二醇在 PET聚酯行业的应用接近 95%。当前工业上乙二醇生产主要采用石油乙 烯经气相氧化得环氧乙垸, 再经液相催化水合制乙二醇的路线。 但是随着近年来 国际油价长期居高价位,目前世界以乙烯为原料制取乙二醇产业链面临巨大压力。 因此, 采用合成气制乙二醇技术路线由于低廉的生产成本, 已越来越引起广泛的 关注。
目前煤制乙二醇工艺过程中主要采用列管式反应器, 普遍存在反应热量移热 效率低, 催化剂的利用系数和装填系数低, 从而影响反应器生产能力。
专利 (公开号 CN101462961 ) 提供了一种生产乙二醇并联产碳酸二甲酯的工 艺, 工艺过程包括 CO与亚硝酸甲酯合成草酸二甲酯和碳酸二甲酯过程, 蒸熘分离 得到碳酸二甲酯产品过程, 重组分草酸二甲酯催化加氢合成乙二醇过程, 还包括 系统中亚硝酸甲酯的再生反应过程。 但是反应器采用列管式反应器, 反应过程中 产生的废气和废液没有实现循环回收再利用, 装置能耗较高, 不能满足国家日益 增长的环保需要。
专利 (公开号 CN101830806) 公开了一种联产碳酸二甲酯和草酸二甲酯的方 法和装置, 专利采用两个羰化反应器, 第一个是碳酸二甲酯合成反应器, 第二个 是草酸二甲酯的反应器, 亚硝酸甲酯反应生成后分别进入两个反应器分别产生碳 酸二甲酯和草酸二甲酯, 然后产物进行分离提纯, 这从工艺路线设计角度看, 其 实质仅仅是两类反应器的简单累加, 无法真正实现同一装置中 DMO联产 DMC的 实际意义。 专利中也没有对整体工艺流程进行能量优化, 对反应过程中必须的环 保措施也未有揭示。 实验过程还未是工业化过程。 此外, 在驰放过程中 NO的损失以及处理反应过程中产生的硝酸副产物是个 棘手的问题。 专利 CN201210531022.1 公开了一种方法, 将产生的硝酸浓缩, 然 后用部分含 NO的循环气与之反应,产生 N02,补充回到亚硝酸甲酯再生反应器。 但是含 NO的循环气中还含有大量亚硝酸甲酯和甲醇等气体, 这些气体也会与浓 硝酸发生反应, 产物较复杂, 从而影响装置效能。
综上所述, 目前煤制乙二醇工艺主要存在催化剂利用率低、 催化剂装填系数 低, 装置中有价值的气体不能充分利用, 反而污染环境, 装置系统热量不能充分 得到利用, 从而造成社会和经济效益不理想。 发明内容
本发明的目的在于解决目前生产乙二醇技术存在的原料利用率低、 生产成本 高、 催化剂利用率低、 装填系数低、 设备投资过大、 单系列设备无法适应装置大 型化, 系统消耗高以及装置使用不能满足国家日益对工业环境的要求等问题, 提 供一种用于提高单系列装置生产能力、 尾气治理、 副产回收及原料综合利用的工 艺及其装置系统。 本发明是通过以下技术方案实现的:
一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的装置系统, 包括 羰化反应系统、 酯化反应系统、 驰放气与废酸耦合回收系统以及加氢反应系统; 所述羰化反应系统包括羰化反应器、 第一气液分离器、 甲醇洗涤塔、 甲醇精 熘塔和 DMO精熘塔; 所述羰化反应器设有顶部进料口、 底部出料口、 底部冷媒 进口以及顶部冷媒出口;所述第一气液分离器设有进料口、气体出口和液体出口; 所述甲醇洗涤塔设有上部进料口、 下部进料口、 顶部出口和底部出口; 所述甲醇 精熘塔设有上部进料口、 下部进料口、 顶部出口和底部出口; 所述 DMO精熘塔 设有下部进料口、 顶部出口和底部出口; 所述酯化反应系统包括酯化反应塔和甲醇回收塔; 所述酯化反应塔设有顶部 进料口、 上部进料口、 多个下部进料口、 中部回流入口、顶部出口以及底部出口; 所述甲醇回收塔设有中下部进料口、 下部进料口、 顶部出口和底部出口;
所述驰放气与废酸耦合回收系统包括硝酸浓缩塔、 NO 回收塔、 MN 回收塔 和变压吸附罐;所述硝酸浓缩塔设有中部进料口、顶部出口和底部出口;所述 NO 回收塔设有顶部进料口、 中部进料口、 底部进料口、 顶部出口和底部出口; 所述 MN回收塔设有上部进料口、 下部进料口、 顶部出口和底部出口; 所述变压吸附 罐设有进料口、 回收气出口和排放气出口; 所述加氢反应系统包括加氢循环压缩机、 加氢反应器、 第二气液分离器、 膜 分离器、 甲醇分离塔、 轻组分精熘塔和乙二醇产品塔; 所述加氢循环压缩机包括 进口和出口; 所述加氢反应器设有顶部进料口、 底部出料口、 底部冷媒进口以及 顶部冷媒出口; 所述第二气液分离器设有进料口、 气体出口和液体出口; 所述膜 分离器设有进料口、回收气出口和排放气出口;所述甲醇分离塔设有中部进料口、 顶部不凝气出口、 顶部液相轻组分出口和底部液相重组分出口; 所述轻组分精熘 塔设有下部进料口、 顶部出口和底部出口; 所述乙二醇产品塔设有下部进料口、 顶部出口、 上部出口和底部出口; 所述羰化反应器的顶部进料口与 CO原料管道和 N2原料管道经管线连接;所 述羰化反应器的底部出料口与所述第一气液分离器的进料口经管线连接; 所述第 一气液分离器的气体出口与所述甲醇洗涤塔的下部进料口经管线连接; 所述第一 气液分离器的液体出口与所述甲醇精熘塔的上部进料口经管线连接; 所述甲醇洗 涤塔的顶部出口设有分支出口 A和分支出口 B,分支出口 A与所述酯化反应塔的 一个下部进料口经管线连接, 分支出口 B与所述 NO回收塔的底部进料口经管线 连接; 所述甲醇洗涤塔的底部出口与所述甲醇精熘塔的下部进料口经管线连接; 所述甲醇精熘塔的顶部出口与所述酯化反应塔的上部进料口经管线连接; 所述甲 醇精熘塔的底部出口与所述 DMO精熘塔的下部进料口经管线连接; 所述 DMO 精熘塔的底部出口与所述加氢反应器的顶部进料口经管线连接, 所述 DMO精熘 塔的顶部出口为 DMC产品出口; 所述酯化反应塔的其它下部进料口与 NO原料管道以及多路 02原料管道分别 经管线连接; 所述酯化反应塔的顶部进料口与甲醇原料管道经管线连接; 所述酯 化反应塔的底部出口设有分支出口 C和分支出口 D,分支出口 C与所述酯化反应 塔的中部回流入口经管线连接,分支出口 D与所述甲醇回收塔的下部进料口经管 线连接;所述酯化反应塔的顶部出口与所述羰化反应器的顶部进料口经管线连接; 所述甲醇回收塔的顶部出口设有分支出口 E和分支出口 F, 分支出口 E与所述酯 化反应塔的上部进料口经管线连接, 分支出口 F与所述 MN回收塔的上部进料口 经管线连接; 所述甲醇回收塔的底部出口与所述硝酸浓缩塔的中部进料口经管线 连接; 所述硝酸浓缩塔的顶部出口为废液排出口; 所述硝酸浓缩塔的底部出口与所 述 NO回收塔的中部进料口经管线连接; 所述 NO回收塔的顶部出口与所述 MN 回收塔的下部进料口经管线连接; 所述 NO回收塔的底部出口与所述甲醇回收塔 的中下部进料口经管线连接; 所述 MN回收塔的顶部出口与所述变压吸附罐的进 料口经管线连接; 所述 MN回收塔的底部出口与所述酯化反应塔的上部进料口经 管线连接; 所述变压吸附罐的回收气出口与所述羰化反应器的顶部进料口经管线 连接; 所述变压吸附罐的排放气出口与界外回收装置经管线连接; 所述加氢循环压缩机的进口与工业氢气原料管道经管线连接, 所述加氢循环 压缩机的出口与所述加氢反应器的顶部进料口经管线连接; 所述加氢反应器的底 部出料口与所述第二气液分离器的进料口经管线连接; 所述第二气液分离器的气 体出口设有分支出口 G和分支出口 H,分支出口 G与所述加氢循环压缩机的进口 经管线连接, 分支出口 H与所述膜分离器的进料口经管线连接; 所述第二气液分 离器的液体出口与所述甲醇分离塔的下部进料口经管线连接; 所述甲醇分离塔的 顶部不凝气出口与所述膜分离器的进料口经管线连接; 所述甲醇分离塔的顶部液 相轻组分出口设有分支出口 I和分支出口 J,分支出口 I与所述甲醇洗涤塔的上部 进料口经管线连接, 分支出口 J与所述 NO回收塔的顶部进料口经管线连接; 所 述甲醇分离塔的底部液相重组分出口与所述轻组分精熘塔的下部进料口经管线连 接; 所述轻组分精熘塔的顶部轻组分出口与界外醇回收装置经管线连接; 所述轻 组分精熘塔的底部重组分出口与所述乙二醇产品塔的下部进料口经管线连接; 所 述乙二醇产品塔的顶部出口与界外 1, 2-BDO回收处理装置经管线连接; 所述乙 二醇产品塔的底部出口与界外回收处理装置经管线连接; 所述乙二醇产品塔的上 部出口为乙二醇产品出口; 所述膜分离器的排放气出口与界外回收装置经管线连 接, 所述膜分离器的回收气出口与所述加氢反应器的顶部进料口经管线连接。 所述羰化反应器外连接有脱水塔; 所述脱水塔设有进料口和干燥气出口; 所 述酯化反应塔的顶部出口和所述变压吸附罐的回收气出口与所述脱水塔的进料口 经管线连接;所述脱水塔的干燥气出口与所述羰化反应器顶部进料口经管线连接。 所述脱水塔由两台交替运行与再生的分子筛干燥器 A和分子筛干燥器 B组 成; 分子筛干燥器 A和分子筛干燥器 B内装填吸附剂; 所述吸附剂选自 3A分子 筛、 4A分子筛、 5A分子筛、 9A分子筛和氧化钙。 所述羰化反应器的底部出料口连接有出口换热器 I; 所述出口换热器 I设有 冷物流进口、 冷物流出口、 热物料进口和热物流出口; 所述 CO原料管道、 N2原 料管道以及脱水塔的干燥气出口与所述出口换热器 I冷物流进口经管线连接; 所 述出口换热器 I的冷物流出口与所述羰化反应器的顶部进料口经管线连接; 所述 羰化反应器的底部出料口与所述出口换热器 I的热物流进口经管线连接; 所述出 口换热器 I的热物流出口与所述第一气液分离器的进料口经管线连接。 所述羰化反应器外连接有汽包 I; 所述汽包 I设有冷媒进口、 冷媒出口、 汽 液混合物进口和蒸汽出口; 所述汽包 I的冷媒进口与冷媒原料管道经管线连接; 所述汽包 I的冷媒出口与所述羰化反应器的底部冷媒进口经管线连接; 所述羰化 反应器的顶部冷媒出口与所述汽包 I的汽液混合物进口经管线连接; 所述汽包 I 的蒸汽出口与界外蒸汽回收系统经管线连接。 所述甲醇洗涤塔的分支出口 A与所述酯化反应塔的下部进料口之间连接有羰 化循环压缩机; 所述羰化循环压缩机设有进口和出口; 所述分支出口 A与所述羰 化循环压缩机的进口经管线连接; 所述羰化循环压缩机的出口与所述酯化反应塔 的下部进料口经管线连接。 所述 NO回收塔的顶部出口与所述 MN回收塔的底部进料口之间连接有压缩 机; 所述压缩机设有进口和出口; 所述 NO回收塔的顶部出口与所述压缩机的进 口经管线连接; 所述压缩机的出口与所述 MN回收塔的底部进料口经管线连接。 所述加氢反应器的底部出料口连接有出口换热器 Π; 所述出口换热器 II设有 冷物流进口、 冷物流出口、 热物料进口和热物流出口; 所述 DMO精熘塔的底部 出口、 所述膜分离器的回收气出口以及所述加氢循环压缩机的出口与所述出口换 热器 II的冷物流进口经管线连接; 所述出口换热器 II的冷物流出口与所述加氢反 应器的顶部进料口经管线连接; 所述加氢反应器的底部出料口与所述出口换热器
II的热物流进口经管线连接; 所述出口换热器 II的热物流出口与所述第二气液分 离器的进料口经管线连接。 所述加氢反应器的顶部进料口连接有开工加热器; 所述开工加热器设有进料 口和出料口; 所述出口换热器 II的冷物流出口与所述开工加热器的进料口经管线 连接; 所述开工加热器的出料口与所述加氢反应器的顶部进料口经管线连接。 所述加氢反应器外连接有汽包 II; 所述汽包 II设有冷媒进口、 冷媒出口、 汽 液混合物进口和蒸汽出口; 所述汽包 II的冷媒进口与冷媒原料管道经管线连接; 所述汽包 II的冷媒出口与所述加氢反应器的底部冷媒进口经管线连接; 所述加氢 反应器的顶部冷媒出口与所述汽包 II的汽液混合物进口经管线连接; 所述汽包 II 的蒸汽出口与界外蒸汽回收系统经管线连接。 所述第二气液分离器包括高压气液分离器和低压气液分离器; 所述高压气液 分离器设有进料口、 气体出口和液体出口; 所述低压气液分离器设有进料口、 气 体出口和液体出口; 所述出口换热器 II的热物流出口与所述高压气液分离器的进 料口经管线连接;所述高压气液分离器的气体出口设有分支出口 K和分支出口 L, 分支出口 K与所述加氢循环压缩机的进口经管线连接,分支出口 L与所述低压气 液分离器的进料口经管线连接; 所述高压气液分离器的液体出口与所述甲醇分离 塔的中部进料口经管线连接; 所述低压气液分离器的气体出口与所述膜分离器的 进料口经管线连接; 所述低压气液分离器的液体出口与所述甲醇分离塔的中部进 料口经管线连接。 所述膜分离器的进料口之前设有甲醇吸收罐; 所述甲醇吸收罐设有进料口和 净化气出口; 所述低压气液分离器的气体出口和所述甲醇分离塔的顶部不凝气出 口与所述甲醇吸收罐的进料口经管线连接; 所述甲醇吸收罐的净化气出口与所述 膜分离器的进料口经管线连接。
优选的, 所述羰化反应器为板式反应器、管式反应器或管式-板式复合型反应 器°
优选的, 所述羰化反应器为板式固定床羰化反应器。 优选的, 所述板式固定床羰化反应器的中心设有板片组固定腔, 所述板片组 固定腔内设有板片组, 所述板片组固定腔还设有底部入口和顶部出口; 所述板片 组固定腔的外壁到板式固定床羰化反应器的内壁之间设有催化剂床层; 催化剂床 层内装填有羰化反应催化剂, 所述催化剂床层还设有顶部入口和底部出口; 在所 述板式固定床羰化反应器的底部, 所述板式固定床羰化反应器的底部冷媒进口与 所述板片组固定腔的底部入口经管线连接, 所述催化剂床层的底部出口与所述板 式固定床羰化反应器的底部出料口经管线连接; 在所述板式固定床羰化反应器的 顶部, 所述板式固定床羰化反应器的顶部进料口与所述催化剂床层的顶部入口经 管线连接, 所述板片组固定腔的顶部出口与所述板式固定床羰化反应器的顶部冷 媒出口经管线连接。 优选的, 所述酯化反应塔为填料塔。 优选的,所述酯化反应塔为同时具有塔板部分和填料填充部分的塔板-填料混 合塔。 优选的, 所述甲醇洗涤塔、 甲醇精熘塔、 甲醇回收塔、 NO 回收塔、 MN 回 收塔、 DMO精熘塔和硝酸浓缩塔为填料塔、 板式塔或泡罩塔。 优选的, 所述填料塔中装填的填料为乱堆填料或高效规整填料; 所述乱堆填 料的形状为马鞍形、 拉西环、 鲍尔环、 车轮状、 矩鞍环、 球状或柱状; 所述高效 规整填料为波纹填料、 格栅填料或脉冲填料。 优选的, 所述加氢反应器为板式反应器、管式反应器或管式-板式复合型反应 器° 更优选的, 所述加氢反应器为板式固定床加氢反应器。 优选的, 所述板式固定床加氢反应器的中心设有板片组固定腔, 所述板片组 固定腔内设有板片组, 所述板片组固定腔还设有底部入口和顶部出口; 所述板片 组固定腔的外壁到板式固定床加氢反应器的内壁之间设有催化剂床层; 所述催化 剂床层内装填有加氢反应催化剂, 所述催化剂床层还设有顶部入口和底部出口; 在所述板式固定床加氢反应器的底部, 所述板式固定床加氢反应器的底部冷媒进 口与所述板片组固定腔的底部入口经管线连接, 所述催化剂床层的底部出口与所 述板式固定床加氢反应器的底部出料口经管线连接; 在所述板式固定床加氢反应 器的顶部, 所述板式固定床加氢反应器的顶部进料口与所述催化剂床层的顶部入 口经管线连接, 所述板片组固定腔的顶部出口与所述板式固定床加氢反应器的顶 部冷媒出口经管线连接。
优选的, 所述膜分离器由 1〜100个中空纤维膜组件并联或串联连接组成。 一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工艺, 为采用工 业级 NO、 02和甲醇为原料发生酯化反应生成亚硝酸甲酯, 然后用工业级 CO和 亚硝酸甲酯进行羰化反应生成主要为草酸二甲酯和碳酸二甲酯的羰化产物, 羰化 产物经分离后获得碳酸二甲酯产品, 草酸二甲酯经后续加氢生成乙二醇产品; 而 酯化反应的废酸和羰化反应的驰放气经耦合回收处理循环利用。
反应方程式如下:
酯化反应: 4NO + 02 + 4CH3OH→ 4CH3ONO + 2H20;
羰化反应: 2CO + 2CH3ONO→(COOCH3) 2 + 2NO;
加氢反应: (COOCH3) 2+ 4H2→(CH2OH) 2 + 2CH3OH;
总反应: 4CO + 02 + 8 H2→ 2(CH2OH) 2 + 2¾0;
所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工艺, 具 体包括以下步骤:
( 1 ) 在酯化反应塔中通入工业级 NO、 02和甲醇进行酯化反应; 酯化反应塔 塔顶亚硝酸甲酯混合气通入羰化反应器进行羰化反应; 酯化反应塔塔釜 酸性醇溶液部分回流至酯化反应塔, 部分通入甲醇回收塔; 甲醇回收塔 塔顶回收的甲醇部分循环至酯化反应塔循环利用, 其余进入 MN回收塔 作为洗涤液; 甲醇回收塔塔釜废酸进入硝酸浓缩塔进行浓缩处理;
(2) 来自酯化反应塔的亚硝酸甲酯与工业级 CO、 N2进料进入羰化反应器, 在羰化反应催化剂存在下发生羰化反应;羰化反应的温度为 30〜200°C, 反应压力为 l〜10MPa, 气时空速 3000〜30000h4;
( 3 ) 羰化产物进入第一气液分离器发生气液分离,气相进入甲醇洗涤塔,液 相进入甲醇精熘塔; 甲醇洗涤塔塔顶气相组分部分循环至酯化反应塔, 部分作为驰放气进入 NO回收塔进行回收处理; 甲醇洗涤塔塔釜液相组 分进入甲醇精熘塔进行精熘分离; 甲醇精熘塔塔顶回收的甲醇和亚硝酸 甲酯混合物循环至酯化反应塔再利用, 塔釜重组分进入 DMO精熘塔; DMO精熘塔塔顶得到 DMC产品, 塔釜草酸二甲酯组分则进入加氢反应 器进行加氢反应;
(4) 来自甲醇回收塔的废酸经硝酸浓缩塔提浓至硝酸浓度为 10~68wt%后, 循环至 NO回收塔; 在 NO回收塔中, 浓硝酸、 甲醇和来自甲醇洗涤塔 的驰放气发生酯化再生反应; NO回收塔塔顶气相轻组分进入 MN回收 塔,塔釜产生的含有甲醇的硝酸废液循环至甲醇回收塔进一步回收处理; 在 MN 回收塔中, 气相进料经回收甲醇洗涤后, 进入变压吸附罐, MN 回收塔塔釜含亚硝酸甲酯的醇溶液循环进入酯化反应塔; 变压吸附罐分 离出的 C02排放至界外处理, 回收的 N2和 CO净化气进入羰化反应器循 环利用;
( 5 ) 来自 DMO精熘塔塔釜的草酸二甲酯组分与经加氢循环压缩机加压后 的工业氢气混合后进入加氢反应器, 在加氢催化剂存在下, 加氢反应生 成甲醇和乙二醇等; 加氢反应的温度为 160〜320°C, 反应压力为 1〜 10MP, 液时空速为 1~3 Kg/Kg.h;
(6) 加氢产物进入第二气液分离器发生气液分离,气相部分经所述加氢循环 压缩机加压后循环至加氢反应器, 部分进入膜分离器经回收处理后返回 加氢反应器循环利用, 液相则进入乙二醇产品塔分离得到乙二醇产品。 其中, 优选的, 所述羰化反应器外连接有脱水塔; 经变压吸附罐回收的气相以及来 自酯化反应塔塔顶的亚硝酸甲酯混合气经所述脱水塔脱除水分后, 再进入羰化反 应器中进行羰化反应。 优选的,所述脱水塔由两台交替运行与再生的分子筛干燥器 A和分子筛干燥 器 B组成; 分子筛干燥器 A和分子筛干燥器 B内装填有吸附剂; 所述吸附剂选 自 3A分子筛、 4A分子筛、 5A分子筛、 9A分子筛和氧化钙。 所述分子筛干燥器 A和分子筛干燥器 B的操作温度为 40〜260°C, 压力为 l〜10MPa。 除特别指出 外, 本发明中所有压力均指表压。 优选的, 经脱水塔处理获得干燥气, 干燥气中水分含量 0.1~100ppm。 优选的, 所述羰化反应器外连接有出口换热器 I; 工业级 CO、 N2以及来自 脱水塔的干燥气作为羰化反应原料经所述出口换热器 I与来自羰化反应器的羰化 反应产物换热后再进入羰化反应器中进行羰化反应。 优选的, 来自甲醇洗涤塔塔顶的部分气相组分经羰化循环压缩机加压后再进 入酯化反应塔。 优选的, 所述 NO回收塔塔顶气相轻组分经压缩机压缩增压后再进入 MN回 收塔。 优选的, 所述加氢反应器外连接有出口换热器 Π; 来自 DMO精熘塔的草酸 二甲酯组分、 来自加压循环压缩机的工业氢气和循环气以及来自膜分离器的回收 气作为加氢反应原料经所述出口换热器 Π与来自加氢反应器的加氢产物换热后再 进入加氢反应器中进行加氢反应。 优选的, 所述第二气液分离器分离的液相首先进入甲醇分离塔; 甲醇分离塔 顶部回收的不凝气进入所述膜分离器, 甲醇分离塔顶部回收的甲醇等液相轻组分 部分进入所述甲醇洗涤塔的上部作为洗涤液, 部分进入 NO回收塔; 甲醇分离塔 塔釜液相重组分进入轻组分精熘塔进一步分离提纯; 轻组分精熘塔塔顶轻组分进 入界外醇回收装置回收处理; 轻组分精熘塔塔釜重组分进入所述乙二醇产品塔; 乙二醇产品塔塔顶轻组分进入界外 1, 2-BDO回收处理装置进一步回收处理, 乙 二醇产品塔塔釜重组分进入界外回收处理装置进行后续处理, 乙二醇产品塔的上 部侧线引出乙二醇产品。 优选的, 所述第二气液分离器包括高压气液分离器和低压气液分离器; 经高 压气液分离器分离出的气相部分进入所述加氢循环压缩机, 部分进入所述低压气 液分离器; 高压气液分离器分离出的液相进入所述甲醇分离塔; 经所述低压气液 分离器分离出的气相进入所述膜分离器, 经低压气液分离器分离出的液相进入所 述甲醇分离塔。 优选的, 所述高压气液分离器分离出的气相中, 其中 0.1~10v%进入低压气液 分离器。 优选的, 经所述低压气液分离器分离出的气相以及来自所述甲醇分离塔塔顶 的不凝气经甲醇吸收罐吸收甲醇后再进入所述膜分离器。 优选的, 所述羰化反应器为板式反应器、管式反应器或管式-板式复合型反应 器° 更优选的, 所述羰化板式反应器为板式固定床羰化反应器。 优选的, 所述板式固定床羰化反应器的中心设有板片组固定腔, 所述板片组 固定腔内设有板片组; 所述板片组固定腔的外壁到板式固定床羰化反应器的内壁 之间设有催化剂床层; 催化剂床层内装填有羰化反应催化剂; 羰化反应原料达到 催化剂床层进口温度后, 从所述板式固定床羰化反应器的顶部进入催化剂床层内 发生羰化反应; 从外部引入的冷媒从板式固定床羰化反应器的底部进入板片组固 定腔, 并从所述板式固定床羰化反应器的顶部引出, 逆流过程进行热交换带走羰 化反应的反应热; 来自催化剂床层底部的羰化产物从板式固定床羰化反应器的底 部引出。 优选的, 所述板式固定床羰化反应器外连接有汽包 I; 从外部引入的冷媒进 入汽包 I中, 汽包 I中的冷媒进入板式固定床羰化反应器的板片组固定腔中与催 化剂床层进行热交换, 移出反应热; 加热后的冷媒为汽液混合物, 进入汽包 I进 行气液分离, 产生的低压饱和蒸汽进入界外低压蒸汽回收系统进行回收利用。
优选的, 所述羰化反应催化剂采用上海戊正工程技术有限公司市售催化剂, 催化剂商品牌号为 DM0-0701T。 优选的, 所述酯化反应塔为填料塔; 优选的,所述酯化反应塔为同时具有塔板部分和填料填充部分的塔板-填料混 合塔。 优选的,所述酯化反应塔的理论板数为 20〜50块。所述各塔塔板数顺序表达 均设定塔顶为第一块塔板, 然后依序按数至塔底部排列。
优选的,所述酯化反应塔的进料中,所述 02分 2〜8路分别从第 16〜50块塔 板处进料;所述 NO以及来自甲醇洗涤塔的塔顶气相轻组分从第 18〜50块塔板处 进料; 所述新鲜甲醇、 来自甲醇回收塔塔顶的回收甲醇、 来自甲醇精熘塔塔顶回 收的甲醇和亚硝酸甲酯混合物以及来自 MN回收塔塔釜的含亚硝酸甲酯的醇溶液 从第 1〜5块塔板处进料; 酯化反应塔塔釜回流物料从第 10〜25块塔板处进料。 优选的, 所述酯化反应塔中, 02、 NO和甲醇的摩尔比例为 0.01〜0.8: 0.1〜 3.2: 0. 8〜50。
优选的, 所述酯化反应塔塔顶温度为 30〜80°C, 塔釜温度为 50〜200°C, 反 应区温度为 50〜160°C, 反应压力为 0.5〜10MPa。 优选的, 所述甲醇回收塔、 甲醇洗涤塔、 甲醇精熘塔、 硝酸浓缩塔、 NO 回 收塔、 MN回收塔、 DMO精熘塔为填料塔、 板式塔或泡罩塔。 优选的, 所述填料塔中装填的填料为乱堆填料或高效规整填料; 所述乱堆填 料的形状为马鞍形、 拉西环、 鲍尔环、 车轮状、 矩鞍环、 球状或柱状; 所述高效 规整填料为波纹填料、 格栅填料或脉冲填料。 优选的, 所述甲醇回收塔的理论塔板数为 5〜50块, 塔顶温度 40〜150°C, 塔釜温度为 60〜230°C, 塔顶压力为 0.01〜2.0MPa。
优选的, 所述甲醇回收塔塔顶轻组分的回流比为 0.1〜3.0。
优选的, 所述甲醇回收塔塔顶回收甲醇中, 循环进入酯化反应塔的部分所占 比例为 10~90 wt%。
优选的, 所述甲醇洗涤塔的理论塔板数为 10~50块, 塔顶温度为 15~70°C, 塔釜温度为 10~100°C, 塔顶压力为 0.9~10MPa。
优选的, 所述甲醇洗涤塔塔顶气相组分中, 所述驰放气的占比为 0.05~5v%。 优选的, 所述甲醇精熘塔为萃取精熘塔, 理论塔板数为 10~60块, 塔顶温度 为 50~150°C, 塔釜温度为 130~250°C, 塔顶压力为 0.01~0.5MPa。
优选的, 所述硝酸浓缩塔的理论塔板数为 1〜30块, 塔顶温度 30〜110°C, 塔釜温度 60〜160°C, 塔顶压力 0.01〜0.3MPa。
优选的, 所述硝酸浓缩塔的塔顶轻组分的回流比为 0.01〜3。
优选的, 所述 NO回收塔的理论塔板数为 5〜30块, 塔顶温度为 30〜120°C, 塔釜温度为 50〜200°C, 塔顶压力为 l〜10MPa。
优选的, 所述驰放气从 NO回收塔的第 5〜30块塔板处进料; 所述提浓硝酸 从 NO回收塔的第 1〜10块塔板处进料;来自甲醇分离塔塔顶的回收甲醇从第 1〜 10块塔板处进料。
优选的, 所述 NO回收塔中, 硝酸、 甲醇以及驰放气中的 NO的摩尔配比为 1.1〜10:2〜100: 1〜5。
优选的, 所述 MN回收塔的理论塔板数为 10 60块, 塔顶温度为 0〜50°C, 塔釜温度为 0〜80°C, 反应压力为 l〜10MPa。
优选的,所述 DMO精熘塔的理论塔板数为 10~50块,塔顶温度为 80~120°C, 塔釜温度为 120~200°C, 常压或减压操作。
优选的, 所述 DMO精熘塔塔顶轻组分回流比为 0.1 100。
优选的, 所述变压吸附罐中回收的净化气的组成为: N2为 60〜80v%, CO为 20〜40v%;分离出的 C02气体占进气总量的 0.1〜5v%,其中 C02的浓度为 99.8〜 99.9v%; 分离出的 C02气体可经界外装置处理。
优选的, 所述加氢反应器为板式反应器、管式反应器或管式-板式复合型反应 器°
更优选的, 所述加氢板式反应器为板式固定床加氢反应器。
优选的, 所述板式固定床加氢反应器的中心设有板片组固定腔, 所述板片组 固定腔内设有板片组; 所述板片组固定腔的外壁到板式固定床加氢反应器的内壁 之间设有催化剂床层; 所述催化剂床层内装填有加氢反应催化剂; 加氢反应原料 达到催化剂床层进口温度后, 从所述板式固定床加氢反应器的顶部进入催化剂床 层内发生加氢反应; 从外部引入的冷媒从板式固定床加氢反应器的底部进入板片 组固定腔, 并从所述板式固定床加氢反应器的顶部引出, 逆流过程进行热交换带 走加氢反应的反应热; 来自催化剂床层底部的加氢产物从板式固定床加氢反应器 的底部引出。 优选的, 所述板式固定床加氢反应器外连接有汽包 II; 从外部引入的冷媒进 入汽包 II中, 汽包 II中的冷媒进入板式固定床加氢反应器的板片组固定腔中与催 化剂床层进行热交换, 移出反应热; 加热后的冷媒为汽液混合物, 进入汽包 II进 行气液分离, 产生的低压饱和蒸汽进入界外低压蒸汽回收系统进行回收利用。
优选的, 所述冷媒为水或导热油, 优选为水。 优选的, 所述板式固定床加氢反应器外连接有开工加热器; 开工初期, 温度 达不到反应要求, 加氢反应原料进入开工加热器进行预热, 预热达到催化剂床层 入口温度后进入催化剂床层进行加氢反应; 开工初期, 所述开工加热器为所述板 式固定床加氢反应器中的加氢反应提供唯一热源; 所述开工加热器的热源为低压 蒸汽。
优选的, 所述加氢反应催化剂选自上海戊正工程技术有限公司市售催化剂, 催化剂商品牌号为 MEG-801T。
优选的, 所述甲醇分离塔的理论塔板数为 10~40块, 塔顶温度 40〜70°C, 塔 釜温度 80〜180°C, 常压或者减压操作; 所述甲醇分离塔塔顶轻组分回流比为 0.1~3。
优选的, 所述轻组分精熘塔的理论塔板数为 10~60块, 塔顶温度 58〜90°C, 塔釜温度 70〜160°C, 塔顶绝对压力 5〜50KPa。
优选的, 所述轻组分精熘塔的塔顶轻组分回流比为 1~50。
优选的, 所述乙二醇产品塔的理论塔板数为 30~100块, 塔顶的温度 100〜 150°C, 塔釜温度 130〜230°C, 塔顶绝对压力为 5〜50KPa; 所述乙二醇产品塔塔 顶轻组分回流比为 50~120或全回流。
优选的, 所述膜分离器由 1〜100个中空纤维膜组件并联或串联连接组成。 优选的, 所述膜分离器的管壳的耐受压力为 4.75MPa, 最大压差 1.5MPa (原 料气对渗透气); 膜分离器的操作温度最高为 85°C。
优选的, 经膜分离器分离提纯获得的提纯气中氢气浓度为 88〜99.00v%, 氢 气回收率 90〜98.5%。
所述膜分离器的基本原理是利用中空纤维膜两侧气体的分压差作为推动力, 通过渗透-溶解-扩散-解析等步骤,利用中空纤维膜对各种气体的选择透过性不同, 从而达到分离的目的。 原料气走中空纤维膜组件的壳程, 渗透气走管程, 尾气进 入下一中空纤维膜组件。 因 H2在膜表面渗透速率是 CH4、 N2、 Ar等的几十倍, 所以 H2进入每根中空纤维管内汇集后从膜分离器下部排出, 非渗透气(尾气)从 中空纤维膜组件的上部排出。中空纤维膜组件内部是一个由 1000〜100000根中空 纤维膜丝管组成的芯件, 纤维管是由高分子材料经特殊加工而成。 原料气由分离 器侧口进入, 沿纤维管束外侧向下流动气体同纤维膜丝管外表面接触时气体便在 纤维壁上进行溶解、 渗透和扩散过程, 利用各种气体溶解、 渗透能力上的差异, 把不同种类的气体分离出来。
本发明的技术效果及优点在于:
由于在羰化系统和酯化系统采用高压操作, 可大大减小大型化合成气制乙二 醇工艺装置对设备体积的要求, 利于单系列装置生产大型化, 利于装置安全生产 以及降低设备投资。
硝酸废液循环利用工艺和驰放气循环利用工艺高度耦合, 可将装置中产生的 废液通过循环处理作为回收含有大量一氧化氮驰放气的原料, 生成主反应所需的 亚硝酸甲酯。 工艺组合技术科学合理, 通过一个反应器实现排放废气和废液的充 分循环利用, 经济而环保。
所述亚硝酸甲酯是热敏性物质, 尤其在高于一定温度后, 随温度继续升高, 亚硝酸甲酯的分解会不断加剧, 而 CO羰化偶联制草酸二甲酯的反应为强放热反 应, 采用合适的反应器保持床层均匀的温度分布、 控制反应热点温度是防止亚硝 酸甲酯的分解并提高产物的收率的关键, 本发明羰化板式反应器为板式反应器, 实现 CO羰化偶联制草酸二甲酯的反应,可充分利用反应器温度分布均匀的特点, 达到提高草酸二甲酯时空产率并循环利用反应热的特点。 同时提高催化剂的利用 系数和反应器容积利用率、 增大了催化剂装填量、 提高反应器生产能力。 这样的 反应特点在草酸二甲酯加氢制乙二醇中也得到了同样的节能降耗效果。
工艺所述的加氢工段驰放气的回收充分节约了宝贵的氢气资源, 进而减少了 单位煤耗, 有利于降低装置整体能耗和污染排放, 具有比较现实的意义。 同时, 工艺所述的加氢工段驰放气的回收, 所采用的膜分离系统在同等负荷下反应系统 压力可降低 IMPa左右, 对压缩系统来说, 出口压力的降低, 可以节约大量的动 力消耗。 充分节约了宝贵的氢气资源, 进而减少了单位煤耗, 有利于降低装置整 体能耗和污染排放, 具有比较现实的意义。 采用本膜分离系统, 这有利于提高加 氢反应速率, 乙二醇日产量较原来增加 10%左右。
综上所述,通过采用高压工艺流程和板式反应器,有效解决装置大型化瓶颈, 降低设备投资, 通过回收反应热量余热, 进行有效热回收, 单位乙二醇生产能耗 降低, 减少蒸汽、 冷却水耗量; 通过废气和废液工艺耦合, 减少毒物排放, 从而 达到节能、 环保的双重目的。 本发明实现排放废气和废液的充分回用以及装置反 应热、 塔分离的综合能量运用, 提高能源利用效率, 节省能耗, 具有显著的工业 应用价值。 本发明为合成气制乙二醇技术向更加环保、 效率更高、 更加节能的技 术发展提供了保障。 采用本发明在技术上可行和经济上合理。 上述工艺优化设计可显著地提高产率, 是任何文献都未曾记载过的。 而本发 明提出的工艺过程从能耗角度看也特别有利, 具有显著节约能耗的特点, 结合应 用有用物质循环步骤, 特别是硝酸废液循环利用工艺和驰放气循环利用工艺高度 耦合及其分离工艺和反应废气中氢气的循环回收利用, 效果是非常显著的。 附图说明
图 1 一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的装置系统 (部 分)
图 2 —种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的装置系统 (部 分)
附图标记:
1, 羰化反应器; 2, 汽包 I; 3; 出口换热器 I; 4, 第一气液分离器; 5, 甲醇精 熘塔; 6, DMO精熘塔; 7, 甲醇洗涤塔; 8, 羰化循环压缩机; 9, 酯化反应塔; 10, 脱水塔; 11, 甲醇回收塔; 12, 硝酸浓缩塔; 13, NO回收塔; 14, 压缩机; 15, MN回收塔; 16, 变压吸附罐; 17, 加氢反应器; 18, 汽包 II; 19, 开工加 热器; 20, 出口换热器 II; 21, 高压气液分离器; 22, 甲醇分离塔; 23, 轻组分 精熘塔; 24, 乙二醇产品塔; 25, 加氢循环压缩机; 26, 低压气液分离器; 27, 甲醇吸收罐; 28, 膜分离器。 具体实施方式
以下通过特定的具体实例说明本发明的技术方案。 应理解, 本发明提到的一 个或多个方法步骤并不排斥在所述组合步骤前后还存在其他方法步骤或在这些明 确提到的步骤之间还可以插入其他方法步骤; 还应理解, 这些实施例仅用于说明 本发明而不用于限制本发明的范围。 而且, 除非另有说明, 各方法步骤的编号仅 为鉴别各方法步骤的便利工具, 而非为限制各方法步骤的排列次序或限定本发明 可实施的范围, 其相对关系的改变或调整, 在无实质变更技术内容的情况下, 当 亦视为本发明可实施的范畴。
下面实施例中未注明具体条件的实验方法, 通常按照常规条件, 如: 化工操 作手册, 或按照制造厂商所建议的条件。 如图 1、 图 2所示, 一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二 醇的装置系统, 包括羰化反应系统、 酯化反应系统、 驰放气废酸耦合回收系统以 及加氢反应系统; 所述羰化反应系统包括羰化反应器 1、 第一气液分离器 4、 甲醇洗涤塔 7、 甲 醇精熘塔 5和 DMO精熘塔 6; 所述羰化反应器 1设有顶部进料口、 底部出料口、 底部冷媒进口以及顶部冷媒出口; 所述第一气液分离器 4设有进料口、 气体出口 和液体出口; 所述甲醇洗涤塔 7设有上部进料口、 下部进料口、 顶部出口和底部 出口; 所述甲醇精熘塔 5设有上部进料口、 下部进料口、 顶部出口和底部出口; 所述 DMO精熘塔 6设有下部进料口、 顶部出口和底部出口; 所述酯化反应系统包括酯化反应塔 9和甲醇回收塔 11 ; 所述酯化反应塔 9设 有顶部进料口、 上部进料口、 多个下部进料口、 中部回流入口、 顶部出口以及底 部出口; 所述甲醇回收塔 11设有中下部进料口、下部进料口、顶部出口和底部出 Π ;
所述驰放气与废酸偶联回收系统包括硝酸浓缩塔 12、 NO回收塔 13、 MN回 收塔 15和变压吸附罐 16; 所述硝酸浓缩塔 12设有中部进料口、顶部出口和底部 出口; 所述 NO回收塔 13设有顶部进料口、 中部进料口、底部进料口、 顶部出口 和底部出口; 所述 MN回收塔 15设有上部进料口、 下部进料口、 顶部出口和底 部出口; 所述变压吸附罐 16设有进料口、 回收气出口和排放气出口; 所述加氢反应系统包括加氢循环压缩机 14、加氢反应器 17、第二气液分离器、 膜分离器 28、 甲醇分离塔 22、 轻组分精熘塔 23和乙二醇产品塔 24; 所述加氢循 环压缩机 14包括进口和出口;所述加氢板应器 17设有顶部进料口、底部出料口、 底部冷媒进口以及顶部冷媒出口; 所述第二气液分离器设有进料口、 气体出口和 液体出口; 所述膜分离器 28设有进料口、 回收气出口和排放气出口; 所述甲醇分 离塔 22设有中部进料口、顶部不凝气出口、顶部液相轻组分出口和底部液相重组 分出口; 所述轻组分精熘塔 23设有下部进料口、顶部出口和底部出口; 所述乙二 醇产品塔 24设有下部进料口、 顶部出口、 上部出口和底部出口; 所述羰化反应器 1的顶部进料口与 CO原料管道和 N2原料管道经管线连接; 所述羰化反应器 1的底部出料口与所述第一气液分离器 4的进料口经管线连接; 所述第一气液分离器 4的气体出口与所述甲醇洗涤塔 7的下部进料口经管线连接; 所述第一气液分离器 4的液体出口与所述甲醇精熘塔 5的上部进料口经管线连接; 所述甲醇洗涤塔 7的顶部出口设有分支出口 A和分支出口 B,分支出口 A与所述 酯化反应塔 9的一个下部进料口经管线连接, 分支出口 B与所述 NO回收塔 13 的底部进料口经管线连接; 所述甲醇洗涤塔 7的底部出口与所述甲醇精熘塔 5的 下部进料口经管线连接; 所述甲醇精熘塔 5的顶部出口与所述酯化反应塔 9的上 部进料口经管线连接; 所述甲醇精熘塔 5的底部出口与所述 DMO精熘塔 6的下 部进料口经管线连接;所述 DMO精熘塔 6的底部出口与所述加氢反应器 17的顶 部进料口经管线连接, 所述 DMO精熘塔 6的顶部出口为 DMC产品出口; 所述酯化反应塔 9的其它下部进料口与 NO原料管道以及多路 02原料管道分 别经管线连接; 所述酯化反应塔 9的顶部进料口与甲醇原料管道经管线连接; 所 述酯化反应塔 9的底部出口设有分支出口 C和分支出口 D,分支出口 C与所述酯 化反应塔 9的中部回流入口经管线连接, 分支出口 D与所述甲醇回收塔 11的下 部进料口经管线连接; 所述酯化反应塔 9的顶部出口与所述羰化反应器 1的顶部 进料口经管线连接;所述甲醇回收塔 11的顶部出口设有分支出口 E和分支出口 F, 分支出口 E与所述酯化反应塔 9的上部进料口经管线连接, 分支出口 F与所述 MN回收塔 15的上部进料口经管线连接; 所述甲醇回收塔 11的底部出口与所述 硝酸浓缩塔 12的中部进料口经管线连接; 所述硝酸浓缩塔 12的顶部出口为废液排出口; 所述硝酸浓缩塔 12的底部出 口与所述 NO回收塔 13的中部进料口经管线连接; 所述 NO回收塔 13的顶部出 口与所述 MN回收塔 15的下部进料口经管线连接; 所述 NO回收塔 13的底部出 口与所述甲醇回收塔 11的中下部进料口经管线连接; 所述 MN回收塔 15的顶部 出口与所述变压吸附罐 16的进料口经管线连接; 所述 MN回收塔 15的底部出口 与所述酯化反应塔 9的上部进料口经管线连接;所述变压吸附罐 16的回收气出口 与所述羰化板式反应器 1的顶部进料口经管线连接;所述变压吸附罐 16的排放气 出口与界外回收装置经管线连接;
所述加氢循环压缩机 14的进口与工业氢气原料管道经管线连接,所述加氢循 环压缩机 14的出口与所述加氢反应器 17的顶部进料口经管线连接; 所述加氢反 应器 17的底部出料口与所述第二气液分离器的进料口经管线连接;所述第二气液 分离器的气体出口设有分支出口 G和分支出口 H,分支出口 G与所述加氢循环压 缩机 14的进口经管线连接,分支出口 H与所述膜分离器 28的进料口经管线连接; 所述第二气液分离器的液体出口与所述甲醇分离塔 22的下部进料口经管线连接; 所述甲醇分离塔 22的顶部不凝气出口与所述膜分离器 28的进料口经管线连接; 所述甲醇分离塔 22的顶部液相轻组分出口设有分支出口 I和分支出口 J, 分支出 口 I与所述甲醇洗涤塔 7的上部进料口经管线连接, 分支出口 J与所述 NO回收 塔 13的顶部进料口经管线连接; 所述甲醇分离塔 22的底部液相重组分出口与所 述轻组分精熘塔 23的下部进料口经管线连接; 所述轻组分精熘塔 23的顶部轻组 分出口与界外醇回收装置经管线连接;所述轻组分精熘塔 23的底部重组分出口与 所述乙二醇产品塔 24的下部进料口经管线连接; 所述乙二醇产品塔 24的顶部出 口与界外 1, 2-BDO回收处理装置经管线连接;所述乙二醇产品塔 24的底部出口 与界外回收处理装置经管线连接;所述乙二醇产品塔 24的上部出口为乙二醇产品 出口;所述膜分离器 28的排放气出口与界外回收装置经管线连接,所述膜分离器 28的回收气出口与所述加氢反应器 17的顶部进料口经管线连接。
作为一种优选的实施方式, 所述羰化反应器 1外连接有脱水塔 10; 所述脱水 塔 10设有进料口和干燥气出口;所述酯化反应塔 9的顶部出口和所述变压吸附罐 16的回收气出口与所述脱水塔 10的进料口经管线连接;所述脱水塔 10的干燥气 出口与所述羰化反应器 1顶部进料口经管线连接。
所述脱水塔由两台交替运行与再生的分子筛干燥器 A和分子筛干燥器 B组 成; 分子筛干燥器 A和分子筛干燥器 B内装填吸附剂。
作为一种优选的实施方式, 所述羰化反应器 1的底部出料口连接有出口换热 器 I 3 ; 所述出口换热器 I 3设有冷物流进口、 冷物流出口、 热物料进口和热物流 出口; 所述 CO原料管道、 N2原料管道以及脱水塔 10的干燥气出口与所述出口 换热器 I 3冷物流进口经管线连接;所述出口换热器 I 3的冷物流出口与所述羰化 反应器 1的顶部进料口经管线连接; 所述羰化反应器 1的底部出料口与所述出口 换热器 I 3的热物流进口经管线连接;所述出口换热器 I 3的热物流出口与所述第 一气液分离器 4的进料口经管线连接。
作为一种优选的实施方式,所述羰化反应器 1外连接有汽包 I 2;所述汽包 I 2设有冷媒进口、冷媒出口、汽液混合物进口和蒸汽出口; 所述汽包 I 2的冷媒进 口与冷媒原料管道经管线连接;所述汽包 I 2的冷媒出口与所述羰化板式反应器 1 的底部冷媒进口经管线连接; 所述羰化反应器 1 的顶部冷媒出口与所述汽包 1 2 的汽液混合物进口经管线连接; 所述汽包 1 2 的蒸汽出口与界外蒸汽回收系统经 管线连接。
作为一种优选的实施方式,所述甲醇洗涤塔 7的分支出口 A与所述酯化反应 塔 9的下部进料口之间连接有羰化循环压缩机 8; 所述羰化循环压缩机 8设有进 口和出口; 所述分支出口 A与所述羰化循环压缩机 8的进口经管线连接; 所述羰 化循环压缩机 8的出口与所述酯化反应塔 9的下部进料口经管线连接。
作为一种优选的实施方式, 所述 NO回收塔 13的顶部出口与所述 MN回收 塔 15的底部进料口连接有压缩机 14; 所述压缩机 14设有进口和出口; 所述 NO 回收塔 13的顶部出口与所述压缩机 14的进口经管线连接; 所述压缩机的出口与 所述 MN回收塔 15的底部进料口经管线连接。
作为一种优选的实施方式,所述加氢反应器 17的底部出料口连接有出口换热 器 Π 20; 所述出口换热器 II 20设有冷物流进口、 冷物流出口、 热物料进口和热物 流出口; 所述 DMO精熘塔 6的底部出口、所述膜分离器 28的回收气出口以及所 述加氢循环压缩机 25的出口与所述出口换热器 Π 20的冷物流进口经管线连接; 所述出口换热器 Π 20的冷物流出口与所述加氢反应器 17的顶部进料口经管线连 接; 所述加氢反应器 17的底部出料口与所述出口换热器 Π 20的热物流进口经管 线连接;所述出口换热器 Π 20的热物流出口与所述第二气液分离器的进料口经管 线连接。
作为一种优选的实施方式,所述加氢反应器 17的顶部进料口连接有开工加热 器 19; 所述开工加热器 19设有进料口和出料口; 所述出口换热器 II 20的冷物流 出口与所述开工加热器 19的进料口经管线连接;所述开工加热器的出料口与所述 加氢反应器 17的顶部进料口经管线连接。
作为一种优选的实施方式,所述加氢反应器 17外连接有汽包 II 18;所述汽包 II 18设有冷媒进口、冷媒出口、汽液混合物进口和蒸汽出口; 所述汽包 II 18的冷 媒进口与冷媒原料管道经管线连接;所述汽包 II 18的冷媒出口与所述加氢反应器 17的底部冷媒进口经管线连接; 所述加氢反应器 17的顶部冷媒出口与所述汽包 11 18的汽液混合物进口经管线连接;所述汽包 II 18的蒸汽出口与界外蒸汽回收系 统经管线连接。 作为一种优选的实施方式,所述第二气液分离器包括高压气液分离器 21和低 压气液分离器 26; 所述高压气液分离器 21设有进料口、 气体出口和液体出口; 所述低压气液分离器 26设有进料口、 气体出口和液体出口; 所述加氢反应器 17 的底部出料口与所述高压气液分离器 21的进料口经管线连接;所述高压气液分离 器 21的气体出口设有分支出口 K和分支出口 L,分支出口 K与所述加氢循环压缩 机 25的进口经管线连接, 分支出口 L与所述低压气液分离器 26的进料口经管线 连接; 所述高压气液分离器 21的液体出口与所述甲醇分离塔 22的中部进料口经 管线连接; 所述低压气液分离器 26的气体出口与所述膜分离器 28的进料口经管 线连接; 所述低压气液分离器 26的液体出口与所述甲醇分离塔 22的中部进料口 经管线连接。
作为一种优选的实施方式, 所述膜分离器 28的进料口之前设有甲醇吸收罐 27; 所述甲醇吸收罐 27设有进料口和净化气出口; 所述低压气液分离器 26的气 体出口和所述甲醇分离塔 22的顶部不凝气出口与所述甲醇吸收罐 27的进料口经 管线连接; 所述甲醇吸收罐 27的净化气出口与所述膜分离器 28的进料口经管线 连接。
所述羰化反应器 1可以为板式反应器、 管式反应器或管式-板式复合型反应 器;
作为一种优选的实施方式, 所述羰化反应器 1为板式固定床羰化反应器; 所述板式固定床羰化反应器的中心设有板片组固定腔, 所述板片组固定腔内 设有板片组, 所述板片组固定腔还设有底部入口和顶部出口; 所述板片组固定腔 的外壁到板式固定床羰化反应器的内壁之间设有催化剂床层; 催化剂床层内装填 有羰化反应催化剂, 所述催化剂床层还设有顶部入口和底部出口; 在所述板式固 定床羰化反应器的底部, 所述板式固定床羰化反应器的底部冷媒进口与所述板片 组固定腔的底部入口经管线连接, 所述催化剂床层的底部出口与所述板式固定床 羰化反应器的底部出料口经管线连接; 在所述板式固定床羰化反应器的顶部, 所 述板式固定床羰化反应器的顶部进料口与所述催化剂床层的顶部入口经管线连 接, 所述板片组固定腔的顶部出口与所述板式固定床羰化反应器的顶部冷媒出口 经管线连接。
作为一种优选的实施方式, 所述酯化反应塔 9为填料塔; 作为一种更加优选的实施方式, 所述酯化反应塔 9为同时具有塔板部分和填 料填充部分的塔板 -填料混合塔。
作为一种优选的实施方式, 所述甲醇洗涤塔 7、 甲醇精熘塔 5、 甲醇回收塔 11、 NO回收塔 13、 MN回收塔 15、 DM0精熘塔 6和硝酸浓缩塔 12为填料塔、 板式 塔或泡罩塔。
作为一种优选的实施方式, 所述填料塔中装填的填料为乱堆填料或高效规整 填料; 所述乱堆填料的形状为马鞍形、 拉西环、 鲍尔环、 车轮状、 矩鞍环、 球状 或柱状; 所述高效规整填料为波纹填料、 格栅填料、 脉冲填料。
所述加氢板式反应器 17可以为板式反应器、 管式反应器或管式 -板式复合型 反应器;
作为一种优选的实施方式, 所述加氢反应器 17为板式固定床加氢反应器; 所述板式固定床加氢反应器的中心设有板片组固定腔, 所述板片组固定腔内 设有板片组, 所述板片组固定腔还设有底部入口和顶部出口; 所述板片组固定腔 的外壁到板式固定床加氢反应器的内壁之间设有催化剂床层; 所述催化剂床层内 装填有加氢反应催化剂, 所述催化剂床层还设有顶部入口和底部出口; 在所述板 式固定床加氢反应器的底部, 所述板式固定床加氢反应器的底部冷媒进口与所述 板片组固定腔的底部入口经管线连接, 所述催化剂床层的底部出口与所述板式固 定床加氢反应器的底部出料口经管线连接;在所述板式固定床加氢反应器的顶部, 所述板式固定床加氢反应器的顶部进料口与所述催化剂床层的顶部入口经管线连 接, 所述板片组固定腔的顶部出口与所述板式固定床加氢反应器的顶部冷媒出口 经管线连接。
作为一种优选的实施方式, 所述膜分离器 28由 1〜100中空纤维膜组件并联 或串联连接组成。
如图 1、 图 2所示, 本发明所提供的一种工业合成气高压羰化生产草酸二甲 酯并加氢制乙二醇的工艺流程如下:
来自管道 18的 NO、来自管道 26的新鲜甲醇以及分 2~8路进料的 02在酯化 反应塔 9中进行气液逆流接触发生酯化反应, 塔顶生成的 MN混合气经管道 23 和来自管道 39的变压吸附罐的回收气相汇合后经管道 24进入脱水塔 10进行脱水 处理, 脱水后的干燥气经管道 25与来自管道 1的 CO和管道 2的 N2混合后作为 羰化反应原料气进入管道 3。酯化反应塔 9中的塔釜为含有大量甲醇的酸性废液, 除按一定量通过管道 20回流至酯化反应塔 9, 其余酸性废液通过管道 21与同时 来自管道 33 的甲醇酸性废液进入甲醇回收塔 11 进行甲醇回收; 甲醇回收塔 11 塔顶产生的甲醇轻组分经过管道 28后分流, 除一部分通过管道 29进入 MN回收 塔 15中做洗涤液外,其它部分汇同来自管道 26的新鲜甲醇,通过管道 22作为酯 化反应塔 9的醇源; 甲醇回收塔 11塔釜产生的含酸废水通过管道 27进入硝酸浓 缩塔 12进行硝酸提浓。
来自管道 3的羰化反应原料经出口换热器 I 3与从羰化反应器 1底部出料的 羰化反应产物换热后, 从羰化反应器 1的顶部进入催化剂床层进行羰化反应; 同 时来自系统外的精制水通过管道 8进入汽包 I 2中,汽包 I 2中的冷媒通过管道 9 从羰化反应器 1底部进入板片组固定腔与催化剂床层进行热交换, 移出反应产生 的热量,加热后的冷媒为汽液混合物,从羰化反应器 1的顶部引出后进入汽包 I 2 进行气液分离, 产生的低压饱和蒸汽通过管道 7进入界外低压蒸汽回收系统进行 回收利用。 羰化反应产物经出口换热器 I 3换热后进入第一气液分离器 4发生气 液分离, 含有大部分 DMC (碳酸二甲酯) 的气相组分经管道 11进入甲醇洗涤塔 7, 并与来自管道 57的回收甲醇逆流接触; 第一气液分离器 4塔釜 DMO重组分 经管道 10以及甲醇洗涤塔 7塔釜中含有 MN (亚硝酸甲酯)、 DMC和 DMO (草 酸二甲酯) 的甲醇洗液经管道 12进入甲醇精熘塔 5, 两股物流逆流接触, 进行萃 取分离; 甲醇洗涤塔 7塔顶的气相轻组分大部分通过羰化循环压缩机 8经管道 17 进入酯化反应塔 9循环利用, 少部分作为驰放气经过管道 32进入 NO回收塔 13 进行回收处理; 甲醇精熘塔 5 塔顶回收的甲醇和亚硝酸甲酯混合物通过管道 14 循环至酯化反应塔 9再利用,塔釜重组分通过管道 13进入 DMO精熘塔 6; DMO 精熘塔 6塔顶得到 DMC产品,塔釜草酸二甲酯组分进入管道 15作为加氢反应的 原料。
硝酸浓缩塔 12塔顶主要为含酸废水通过管道 30排至界区外进行环保处理, 塔底提浓的浓硝酸经管道 31进入 NO回收塔 13作为酸源和来自管道 57的回收甲 醇与来自管道 32的驰放气逆流接触发生酯化再生反应以回收驰放气中的 NO; N 0回收塔 13塔釜含有甲醇的硝酸废液通过管道 33进入到甲醇回收塔 11进行循环 回收, 塔顶生成的含 MN的轻组分则经压缩机 14增压后进入 MN回收塔 15。 在 MN回收塔 15中与来自管道 29的回收甲醇逆流接触, 洗脱掉其中的 MN, 并从 塔釜经过管道 36进入酯化反应塔 9, 塔顶气相轻组分通过管道 37进入变压吸附 罐 16, 经过变压吸附, 脱除 C02后的含 CO的混合气通过管道
39进入脱水塔 10, 而脱除的 C02气体可作为排放至界区外进行处理。
来自管道 54的工业氢气和来自管道 53的循环气混合后经加氢循环压缩机 25 加压后进入管道 55,然后与来自管道 15的草酸二甲酯组分以及来自管道 68的回 收氢气混合作为加氢反应原料,从管道 40进入出口换热器 1120,与从加氢反应器
17底部引出的加氢反应产物进行热交换, 然后从加氢反应器 17的塔顶进入催化 剂床层进行催化加氢反应;与此同时,来自系统外的精制水通过管道 48进入汽包
II 18,汽包 II 18中的冷媒通过管道 49从加氢反应器 17的底部进入板片组固定腔 与催化剂床层进行热交换, 移出反应产生的热量, 加热后的冷媒为汽液混合物, 从加氢反应器 17的顶部引出后进入汽包 Π 18进行气液分离, 产生的低压饱和蒸 汽通过管道 47进入界外低压蒸汽回收系统进行回收利用。加氢反应产物经换热后 从管道 44进入高压气液分离器 21进行气液分离,气相部分经过管道 51后大部分 作为循环气进入管道 53进行循环, 剩余一部分气体通过管道 52进入低压气液分 离器 26进行气液分离;低压气液分离器 26中的液相甲醇通过管道 64流出,气相 部分则通过管道 65和来自管道 58的不凝气汇合后通过管道 66进入甲醇吸收罐
27进行进一步脱除甲醇, 脱液后的气体从管道 67进入膜分离器 28, 经过膜系统 的回收处理, 除一小部分 C02、 CO和 CH4等不凝汽从管道 69驰放, 大部分回收 的 H2经增压后进入管道 68循环利用。
从高压气液分离器 21分离出来的液相乙二醇粗产品从管道 50流出, 经与来 自管道 64液相甲醇汇合后进入甲醇分离塔 22; 甲醇分离塔 22塔顶通过管道 58 驰放一定量的不凝汽进行回收, 塔顶液相轻组分进入管道 57, 塔釜液相通过管道
56进入轻组分精熘塔 23中进行分离; 轻组分精熘塔 23塔顶轻组分乙醇、 乙醇酸 甲酯等轻组分通过管道 60进入界区外醇回收装置进行回收,塔釜多元醇混合物则 通过管道 59进入乙二醇产品塔 24中进行进一步纯化, 其中主要含 1, 2-BDO、 乙二醇的混合轻组分通过管道 63进行进一步回收处理,塔身上部侧线产出的乙二 醇通过管道 62作为产品采出,塔釜为含有少量乙二醇和乙二醇缩聚物的混合物进 入界区外处理。
开车初期,使用开工加热器 19对加氢反应原料进行加热,热源采用低压蒸汽, 来自管道 40的加氢原料进入管道 45经开工加热器 19预热至床层入口温度后经管 道 46和管道 42从加氢反应器 17的顶部进入催化剂床层进行加氢反应。
利用上述工艺流程进行工业生产的实例如下:
来自甲醇洗涤塔的塔顶轻组分 (组成: MN:5.22v%, CO:22.12v%, N2: 58. 5v%, NO: 11.14v%, CO2:0.63v%, 甲醇 1.57v%, 其它: 0.82v%) 及来自界区外的 NO混合后进入酯化反应塔 9 (内径 50mm, 高度 2600mm, 理论塔板数 25, 塔板 结构为填料塔) 从第 25块塔板处进料, 02分 3路分别从第 22、 第 23和第 25块 塔板处进入酯化反应塔 9, 与从塔顶第 1块塔板处进料的新鲜甲醇和来自甲醇回 收塔 11的回收甲醇混合液、第 5块进料的来自甲醇精熘塔 5回收的甲醇和亚硝酸 甲酯混合物以及来自 MN回收塔 15塔釜的含亚硝酸甲酯的醇溶液以及从第 10块 进料的塔釜回流液在塔内进行气液逆流接触, 发生酯化反应 (其中 02、 NO和甲 醇的摩尔配比为: 0.1 :0.6:50)。酯化反应塔 9塔顶温度为 50°C, 塔釜温度为 93 °C, 反应区温度为 70 ± 10°C, 反应压力为 2MPa。 酯化反应塔 9塔釜出料 (组成: 甲 醇: 71.8wt%, MN:8.0wt%, 反应生成的酸及水等其它重组分 20.2 wt%) 经采出后 进入甲醇回收塔 11回收处理。酯化反应塔 9塔顶气相组分(组成: MN: 10.05v%, CO:26.42v%, N2: 55.88v%, NO:5.2v%, CO2:0.60v%, 甲醇 1.57v%, 其它: 0.28v %) 则进入脱水塔 10脱水。 经脱水塔 10 (吸附剂为 4A分子筛, 操作温度: 43 V: 压力: 1.9MPa, 两台分子筛干燥器 A和分子筛干燥器 B交替运行和再生) 的脱水后, 得到含水量为 60ppm的干燥气。
酯化反应塔 9 塔釜的含酸废醇液进入甲醇回收塔 11 (内径 50mm, 高度 2100mm, 理论塔板数 20块, 内装高效规整填料, 塔顶温度 120°C, 塔底温度为 140 °C , 塔顶压力 0.7 MPa, 塔顶轻组分的回流比 1.2, 塔顶为含甲醇的轻组分(组 分: 甲醇: 90 wt %, MN: 8 wt %, H20: 2 wt %) 一部分 (占比 75wt%) 与补充 新鲜甲醇汇合, 进入酯化反应塔 9的顶部, 剩余作为 MN回收塔 15中的洗涤液; 甲醇回收塔 11塔釜含酸废水进入硝酸浓缩塔 12进行硝酸提浓。
羰化反应器 1 (板式固定床反应器, 内径: 320mm, 高为 2000mm ), 中心设 有板片组固定腔, 板片组固定腔内设有 3组板片, 每组 3块板片; 板片组固定腔 的外壁到羰化反应器 1内壁之间设有催化剂床层,内装填羰化高压反应催化剂 (上 海戊正工程技术有限公司市售催化剂, 催化剂商品牌号为 DM0-0701T)。来自脱水 塔 10的干燥气与作为羰化反应原料的脱氢处理后工业级 CO(99v%;)和作为惰性 气源的氮气混合后经出口换热器 1 3与羰化反应产物换热后, 预热至 95 °C, 首先 从羰化反应器 1的顶部进入, 然后经径向流动方式进入催化剂床层进行羰化反应 (催化剂床层热点温度 130°C, 反应压力为 1.8MPa, 气时空速为 lOOOOh—1 ); 羰化 产物然后进入出口换热器 3换热后进入第一气液分离器 4, 在此进行气液分离。
所述羰化反应器 1板片组固定腔冷媒为水介质。 来自系统外的精制水进入汽 包 I 2补充进水, 汽包 I中的水进入羰化反应器 1 中板片组固定腔与催化剂床层 进行热交换, 移出反应产生的热量, 加热后的水为汽液混合物, 进入汽包进行气 液分离, 产生的低压饱和蒸汽送往界区外低压蒸汽管网进行回收利用。
第一气液分离器 4引出的液相 (甲醇: 1.16wt%, DMC: 0.45 wt %, DMO: 97.6wt %, 其它 0.79 wt %) 作为萃取剂进入甲醇精熘塔 5中进行分离; 引出的 含 DMC的混合气相组分进入甲醇洗涤塔 7 (内径: 50mm, 高为 3200mm, 理论 板数为 30块, 内装高效规整填料, 塔顶温度为 28.1 °C, 塔釜温度为 39.8°C, 塔顶 压力为 1.5MPa) 通过与甲醇分离塔 22回收甲醇 (含量 99.9wt%) 逆流接触, 将 混合气中的 DMC和 DMO洗脱, 甲醇洗涤塔 7顶部的气相轻组分大部分通过羰 化循环压缩机 8进入酯化反应塔 9, 将羰化反应生成的氮氧化物进行循环利用; 少部分不凝气 (气体占比 0.5v%) 作为驰放气进入 NO回收塔 13进行回收处理; 甲醇洗涤塔 7塔釜液相进入甲醇精熘塔 5中进行分离。
甲醇精熘塔 5 (内径: 50mm, 高为 2600mm, 萃取精熘塔, 理论板数为 25 块, 内装高效规整填料, 塔顶温度为 73.12°C, 塔釜温度为 185.0°C, 塔顶压力为 O. lMPa) 塔顶的轻组分 (甲醇: 88.2 wt%, MN: 11.8 wt%) 进入酯化反应塔 9 作为醇源之一,塔釜中含有 DMC和 DMO的重组分进入 DMO精熘塔 6进行分离。
DMO精熘塔 6 (内径: 50mm, 高为 3000mm, 理论板数为 28块, 内装高效 规整填料, 塔顶温度 103 °C, 塔釜温度 180°C, 常压操作, 回流比 50), 塔顶 DMC 作为产品进行收集 (DMC产品纯度为 99.41 wt %); 塔釜重组分 (DMO纯度为 99.9 wt %) 全部作为加氢工段的原料。
所述硝酸浓缩塔 12 (内径 32mm, 高度 850mm, 理论塔板数 8块, 内装高效 规整填料, 塔顶温度 64°C, 塔釜温度为 87°C, 塔顶压力 0.15 MPa, 回流比 0.05) 中, 塔顶主要为含酸废水排至界区外进行环保处理, 塔釜提浓产生浓度为 68wt% 的浓硝酸, 作为 NO回收塔 13的酸源。
NO回收塔 13 (内径: 32mm, 高为 2100mm, 理论板数为 20块, 内装高效 规整填料, 塔顶温度为 50°C, 塔釜温度为 100°C, 塔顶压力为 1.4MPa) 中, 所述 来自甲醇洗涤塔 7的驰放气从第 20块塔板处进料,从第 1块塔板处进料的来自甲 醇分离塔 22的回收甲醇(99.9wt%)和从第 8块塔板处进料的来自硝酸浓缩塔 12 的浓硝酸逆流接触发生酯化再生反应。 所述驰放气中 NO、 提浓硝酸中的 HN03、 甲醇的摩尔比为 1 :2.5:20οΝΟ回收塔 13的塔顶轻组分(组成: CO:21.1 v %、CO2:0.6 v %、 MN:20.8v %、 N2: 55.7 v %, 甲醇: 1.8 v %) 经压缩机 14增压进入 MN回 收塔 15 ; NO回收塔 13塔釜重组分(组成: 甲醇 71.8wt%, 反应生成的酸及水等 其它重组分 28.2 wt %) 进入甲醇回收塔 11的第 3块塔板进行回收。
MN回收塔 15 (内径: 32mm, 高为 3200mm, 理论板数为 30块, 内装高效 规整填料, 塔顶温度为 30.8°C, 塔釜温度为 41.3 °C, 塔顶压力为 2MPa) 中的进 料与从第 1块塔板进料的来自于甲醇回收塔 11的回收甲醇逆流接触,吸收进气中 的大量画, 其余气体 (组成: CO:27.3v %, CO2:0.8 v %, N2 : 71.9 v %,) 从塔 顶进入变压吸附罐 16, 塔釜中的物料(组成: 甲醇: 79.3 mol%, MN: 20.7mol %) 则进入酯化反应塔 9的第 5块塔板进行回收利用。 所述 MN回收塔 15的塔顶气 相经变压吸附罐 16变压吸附, 净化后的气体 (N2 : 72v%, CO: 28v%) 进入脱 水塔 10处理后进入羰化反应器 1, 并将 0.95 v%气体 (组成: C02为 99.8v%) 排 放至界区外进行处理。
加氢反应器 17 (板式固定床加氢反应器, 内径: 325mm, 高为 900mm ), 中 心设有板片组固定腔, 板片组固定腔内设有三组板片, 每组 3块板片; 板片组固 定腔的外壁到加氢反应器内壁之间设有催化剂床层, 内装填加氢反应催化剂: 上 海戊正工程技术有限公司市售催化剂, 催化剂商品牌号为 MEG-801T)。
工业级 ¾(纯度为 99.9v% ) 和来自高压气液分离器 21的循环气 (组成: 氢 气 96v%,甲垸 0.05v%,氮气 0.02v%,一氧化碳 0.02v%,甲醇 3v%,其它 0.91 v%) 经加氢循环压缩机 25压缩后与来自 DMO精熘塔 6塔釜的草酸二甲酯(99.9%wt) 汇合后进入加氢板式反应器 17的出口换热器 Π 20预热至 175 °C后,首先从加氢反 应器 17的顶部进入,然后经径向流动方式进入催化剂床层进行加氢反应(催化剂 床层热点温度 190°C, 反应压力为 3.0MPa, 液时空速为 2.8Kg/Kg.h); 加氢产物 从底部出料后进入出口换热器 Π20换热后进入高压气液分离器 21,在此进行气液 分离。
开工初期, 经出口换热器 Π20的物料进入开工加热器 19进行预热, 预热后 的气体作为原料气达到催化剂床层入口温度后进入催化剂床层进行加氢反应。
加氢反应器 17板片组固定腔冷媒为水介质。来自系统外的精制水进入汽包 II 18补充进水, 汽包 II 18中的水进入加氢反应器 17中板片组固定腔与催化剂床层 进行热交换, 移出反应产生的热量, 加热后的水为汽液混合物, 进入汽包 II进行 气液分离, 产生的低压饱和蒸汽送往界区外低压蒸汽管网进行回收利用。
加氢产物经高压气液分离器 21分离后,气相大部分作为循环气进入加氢循环 压缩机 25, 剩余不凝气 (气体占比 1.2 v%) 进入低压气液分离器 26, 高压气液 分离器 21引出的液相(甲醇 :50.1wt%, 乙二醇 :48.55 wt%, 乙醇酸甲酯: 0.06 wt %, 乙醇: 0.39wt%, BDO:0.12 wt%, 其它 0.78wt%) 进入甲醇分离塔 22中进行分 离。 低压气液分离器 26分离的液相进入甲醇分离塔 22中进行分离, 气相经甲醇 吸收罐 27 (内径 160mm, 高度 900mm)进一步脱除甲醇后, 其中的气相 (组成: 氢气 97v%, 甲垸 0.15v%, 氮气 0.06v%, 一氧化碳 0.27v%, 其它 2.52 v%)进入 膜分离器 28进行回收利用。 经过膜分离器分离后的氢气(纯度为 99.9v%)经出 口换热器 Π预热后进入加氢板式反应器 17,只有少部分富甲垸等不凝气作为驰放 气排出界外进行再回收。
甲醇分离塔 22 (内径: 50mm, 高为 2600mm, 理论板数为 25块, 内装高效 规整填料, 塔顶温度为 50.82°C, 塔釜温度为 171°C, 塔顶绝对压力为 90kPa)中, 物料在第 12块塔板处进料, 塔顶不凝气进入甲醇吸收罐 27处理后进入膜分离器 28, 塔顶回流比 1.6, 塔顶出料 (99.9 wt %的甲醇, 0.1wt%其它低沸点成分) 采 出后分别进入甲醇洗涤塔 7和 NO回收塔 13; 甲醇分离塔 22塔釜重组分(组成: 96wt%乙二醇, 0.12 wt%乙醇酸甲酯, 2.68 wt%1.2-BDO, 0.8wt%乙醇, 0.4 wt %其它组分) 进入轻组分精熘塔 23。
轻组分精熘塔 23 (内径: 50mm, 高为 4000mm, 理论板数为 40块, 内装高 效规整填料, 塔顶温度 83.8°C, 塔釜温度 146.9°C, 塔顶绝对压力 16kPa, 塔顶回 流比 50), 塔顶引出乙醇粗产品 (98wt%乙醇, 2wt%乙醇酸甲酯) 送至界区外 进行收集处理; 塔釜重组分(97.9wt%乙二醇, 2.1 wt%1.2-BDO) 乙二醇产品塔 24中。
乙二醇产品塔 24(内径 50mm, 高度 6500mm, 塔理论板数 60块, 内装高效 规整填料, 塔顶温度 130°C, 塔釜温度为 170.rC, 塔顶绝对压力 5 kPa)中, 塔顶 回流比 98, 塔顶采出 (组分: 1, 2-BDO 为 19.79 wt %; 乙二醇为 80wt%, 其它 0.21 wt %) 至界区外作为副产品回收, 塔釜为含有少量乙二醇和乙二醇缩聚物进 行界区外处理,乙二醇产品塔 24塔身侧线第 5块塔板处则采出最终产品乙二醇 (含 量为 99.99wt%)。
上述实施例仅示例性说明本发明的原理及功效, 而非用于限制本发明。 任何 熟悉此技术的人士皆可在不违背本发明的精神及范畴下, 对上述实施例进行修饰 或改变。 因此, 凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神 与技术思想下所完成的一切等效修饰或改变, 仍应由本发明的权利要求所涵盖。

Claims

权利要求书 、 一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工艺, 具体包括以下步骤: (1) 在酯化反应塔 (9) 中通入工业级 NO、 02和甲醇进行酯化反应; 酯化反应塔 (9) 塔 顶亚硝酸甲酯混合气通入羰化反应器 (1) 进行羰化反应; 酯化反应塔 (9) 塔釜酸性醇 溶液部分回流至酯化反应塔 (9), 部分通入甲醇回收塔 (11); 甲醇回收塔 (11) 塔顶 回收的甲醇部分循环至酯化反应塔 (9) 循环利用, 其余进入 MN 回收塔 (15) 作为洗 涤液; 甲醇回收塔 (11) 塔釜废酸进入硝酸浓缩塔 (12) 进行浓缩处理;
(2) 来自酯化反应塔的亚硝酸甲酯与工业级 CO、 N2进料进入羰化反应器 (1), 在羰化反 应催化剂存在下发生羰化反应; 羰化反应的温度为 30〜200°C, 反应压力为 1〜 lOMPa, 气时空速 3000〜30000h—
(3) 羰化产物进入第一气液分离器 (4) 发生气液分离, 气相进入甲醇洗涤塔 (7), 液相进 入甲醇精熘塔 (5); 甲醇洗涤塔 (7) 塔顶气相组分部分循环至酯化反应塔 (9), 部分 作为驰放气进入 NO 回收塔 (13) 进行回收处理; 甲醇洗涤塔 (7) 塔釜液相组分进入 甲醇精熘塔 (5) 进行精熘分离; 甲醇精熘塔 (5) 塔顶回收的甲醇和亚硝酸甲酯混合物 循环至酯化反应塔 (9) 再利用, 塔釜重组分进入 DMO 精熘塔 (6); DMO 精熘塔
(6) 塔顶得到 DMC 产品, 塔釜草酸二甲酯组分则进入加氢反应器 (17) 进行加氢反 应;
(4) 来自甲醇回收塔 (11) 的废酸经硝酸浓缩塔 (12) 提浓至硝酸浓度为 10~68wt%后, 循 环至 NO 回收塔 (13); 在 NO 回收塔 (13) 中, 浓硝酸、 甲醇和来自甲醇洗涤塔
(7) 的驰放气发生酯化再生反应; NO回收塔 (13) 塔顶气相轻组分进入 MN回收塔 (15), 塔釜产生的含有甲醇的硝酸废液循环至甲醇回收塔 (11) 进一步回收处理; 在 MN 回收塔 (15) 中, 气相进料经回收甲醇洗涤后, 进入变压吸附罐 (16), MN 回收 塔 (15) 塔釜含亚硝酸甲酯的醇溶液循环进入酯化反应塔 (9); 变压吸附罐 (16) 分 离出的 C02排放至界外处理, 回收的 ?^和 CO 净化气进入羰化反应器 (1) 循环利 用;
(5) 来自 DMO精熘塔 (6) 塔釜的草酸二甲酯组分与经加氢循环压缩机 (25) 加压后的工 业氢气混合后进入加氢反应器 (17), 在加氢催化剂存在下, 加氢反应生成甲醇和乙二 醇等; 加氢反应温度为 160〜320°C, 反应压力为 1〜10MP, 液时空速为 1〜 3Kg/Kg.h;
(6) 加氢产物进入第二气液分离器发生气液分离, 气相部分经所述加氢循环压缩机 (25) 加压后循环至加氢反应器 (17), 部分进入膜分离器 (28) 经回收处理后返回加氢反应 器 (17) 循环利用, 液相则进入乙二醇产品塔 (24) 分离得到乙二醇产品。
2、 如权利要求 1 所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工艺, 其特征在于, 还包括以下特征中的任一项或多项:
(一) 所述羰化反应器 (1 ) 外连接有脱水塔 (10); 经变压吸附罐 (16) 回收的气相以 及来自酯化反应塔 (9) 塔顶的亚硝酸甲酯混合气经所述脱水塔 (10) 脱除水分后, 再进入 羰化反应器 (1 ) 中进行羰化反应;
(二) 所述羰化反应器 (1 ) 外连接有出口换热器 I (3 ); 工业级 CO、 N2以及来自脱水 塔 (10) 的干燥气作为羰化反应原料经所述出口换热器 I (3 ) 与来自羰化反应器 (1 ) 的羰 化反应产物换热后再进入羰化反应器 (1 ) 中进行羰化反应;
(三) 来自甲醇洗涤塔 (7 ) 塔顶的部分气相组分经羰化循环压缩机 (8 ) 加压后再进入 酯化反应塔 (9);
(四) 所述加氢反应器 (17 ) 外连接有出口换热器 II (20); 来自 DMO 精熘塔 (6) 的 草酸二甲酯组分、 来自加压循环压缩机的工业氢气和循环气以及来自膜分离器 (28) 的回收 气作为加氢反应原料经所述出口换热器 Π (20) 与来自加氢反应器 (17) 的加氢产物换热后 再进入加氢反应器 (17) 中进行加氢反应;
(五) 所述 NO回收塔 (13 ) 塔顶气相轻组分经压缩机 (14) 压缩增压后再进入 MN回 收塔 (15);
(六) 所述第二气液分离器分离的液相首先进入甲醇分离塔 (22); 甲醇分离塔 (22) 顶 部回收的不凝气进入所述膜分离器 (28), 甲醇分离塔 (22) 顶部回收的甲醇等液相轻组分 部分进入所述甲醇洗涤塔 (7) 的上部作为洗涤液, 部分进入 NO回收塔 (13 ); 甲醇分离塔
(22) 塔釜液相重组分进入轻组分精熘塔 (23 ) 进一步分离提纯; 轻组分精熘塔 (23 ) 塔顶 轻组分进入界外醇回收装置回收处理; 轻组分精熘塔 (23 ) 塔釜重组分进入所述乙二醇产品 塔 (24); 乙二醇产品塔 (24) 塔顶轻组分进入界外 1, 2-BDO 回收处理装置进一步回收处 理, 乙二醇产品塔 (24) 塔釜重组分进入界外回收处理装置进行后续处理, 乙二醇产品塔
(24) 的上部侧线引出乙二醇产品。
3、 如权利要求 2所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工艺, 其特征在于, 所述脱水塔由两台交替运行与再生的分子筛干燥器 A和分子筛干燥器 B组 成; 分子筛干燥器 A和分子筛干燥器 B 内装填有吸附剂; 所述吸附剂选自 3A分子筛、 4A分子筛、 5A分子筛、 9A分子筛和氧化钙; 所述分子筛干燥器 A和分子筛干燥器 B 的操作温度为 40〜260°C, 压力为 l〜10MPa; 经脱水塔 (10) 处理获得干燥气, 干燥气 中水分含量 0.1~100ppm。
、 如权利要求 2所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工艺, 其特征在于, 所述第二气液分离器包括高压气液分离器 (21 ) 和低压气液分离器 (26); 经高压气液分离器 (21 ) 分离出的气相部分进入所述加氢循环压缩机 (25), 部分进入所 述低压气液分离器 (26 ) ; 高压气液分离器 (21 ) 分离出的液相进入所述甲醇分离塔
( 22); 经所述低压气液分离器 (26 ) 分离出的气相进入所述膜分离器 (28 ), 经低压气 液分离器 (26) 分离出的液相进入所述甲醇分离塔 (22)。
、 如权利要求 4 所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工艺, 其特征在于, 所述高压气液分离器分离出的气相中, 其中 0.1~10v%进入低压气液分离 器°
、 如权利要求 4 所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工艺, 其特征在于, 经所述低压气液分离器 (26 ) 分离出的气相以及来自所述甲醇分离塔
(22) 塔顶的不凝气经甲醇吸收罐 (27 ) 吸收甲醇后再进入所述膜分离器 (28)。
、 如权利要求 1 所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工艺, 其特征在于, 还包括以下特征中的任一项或两项:
(一) 所述羰化反应器为板式反应器、 管式反应器或管式-板式复合型反应器;
(二) 所述加氢反应器为板式反应器、 管式反应器或管式-板式复合型反应器。
、 如权利要求 7 所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工艺, 其特征在于, 还包括以下特征中的任一项或两项:
(一)所述羰化反应器 (1 ) 为板式固定床羰化反应器; 所述板式固定床羰化反应器的中心 设有板片组固定腔, 所述板片组固定腔内设有板片组; 所述板片组固定腔的外壁到 板式固定床羰化反应器的内壁之间设有催化剂床层; 催化剂床层内装填有羰化反应 催化剂; 羰化反应原料达到催化剂床层进口温度后, 从所述板式固定床羰化反应器 的顶部进入催化剂床层内发生羰化反应; 从外部引入的冷媒从板式固定床羰化反应 器的底部进入板片组固定腔, 并从所述板式固定床羰化反应器的顶部引出, 逆流过 程进行热交换带走羰化反应的反应热; 来自催化剂床层底部的羰化产物从板式固定 床羰化反应器的底部引出;
(二)所述加氢反应器 (17 ) 为板式固定床加氢反应器; 所述板式固定床加氢反应器的中 心设有板片组固定腔, 所述板片组固定腔内设有板片组; 所述板片组固定腔的外壁 到板式固定床加氢反应器的内壁之间设有催化剂床层; 所述催化剂床层内装填有加 氢反应催化剂; 加氢反应原料达到催化剂床层进口温度后, 从所述板式固定床加氢 反应器的顶部进入催化剂床层内发生加氢反应; 从外部引入的冷媒从板式固定床加 氢反应器的底部进入板片组固定腔, 并从所述板式固定床加氢反应器的顶部引出, 逆流过程进行热交换带走加氢反应的反应热; 来自催化剂床层底部的加氢产物从板 式固定床加氢反应器的底部引出。
、 如权利要求 8 所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工艺, 其特征在于, 所述板式固定床羰化反应器外连接有汽包 I (2); 从外部引入的冷媒进入 汽包 I (2) 中, 汽包 I (2) 中的冷媒进入板式固定床羰化反应器的板片组固定腔中与 催化剂床层进行热交换, 移出反应热; 加热后的冷媒为汽液混合物, 进入汽包 I (2) 进 行气液分离, 产生的低压饱和蒸汽进入界外低压蒸汽回收系统进行回收利用; 所述板式固定床加氢反应器外连接有汽包 Π ( 18); 从外部引入的冷媒进入汽包 II ( 18) 中, 汽包 II ( 18) 中的冷媒进入板式固定床加氢反应器的板片组固定腔中与催化剂床层 进行热交换, 移出反应热; 加热后的冷媒为汽液混合物, 进入汽包 II ( 18) 进行气液分 离, 产生的低压饱和蒸汽进入界外低压蒸汽回收系统进行回收利用。
、 如权利要求 8 所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工 艺, 其特征在于, 所述板式固定床加氢反应器外连接有开工加热器 (19); 开工初期, 加 氢反应原料从出口换热器 Π (20) 出来后进入开工加热器 (19) 进行预热, 预热达到催 化剂床层入口温度后进入催化剂床层进行加氢反应; 开工初期, 所述开工加热器 (19) 为所述板式固定床加氢反应器中的加氢反应提供唯一热源; 所述开工加热器 (19) 的热 源为低压蒸汽。
1、 如权利要求 1 所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工 艺, 其特征在于, 所述酯化反应塔 (9 ) 的理论板数为 20〜50 块; 所述酯化反应塔
(9) 的进料中, 所述 02分 2〜8路分别从第 16〜50块塔板处进料; 所述 NO以及来自 甲醇洗涤塔 (7) 的塔顶气相轻组分从第 18〜50块塔板处进料; 所述新鲜甲醇、 来自甲 醇回收塔 (11 ) 塔顶的回收甲醇、 来自甲醇精熘塔 (5) 的塔顶回收的甲醇和亚硝酸甲酯 混合物以及来自 MN 回收塔 (15) 塔釜的含亚硝酸甲酯的醇溶液从第 1〜5 块塔板处进 料; 酯化反应塔 (9) 塔釜回流物料从第 10〜25块塔板处进料;
所述酯化反应塔 (9) 中, 02、 NO和甲醇的摩尔比例为 0.01〜0.8: 0.1〜3.2: 0.8〜50; 所述酯化反应塔 (9) 塔顶温度为 30〜80°C, 塔釜温度为 50〜200°C, 反应区温度为 50〜160°C, 反应压力为 0.5〜10MPa。
、 如权利要求 1 所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工 艺, 其特征在于, 所述甲醇回收塔 (11 ) 的塔理论塔板数为 5〜50 块, 塔顶温度 40〜 150 °C , 塔釜温度为 60〜230°C, 塔顶压力为 0.1〜2.0MPa; 所述甲醇回收塔 (11 ) 塔顶 轻组分的回流比为 0.1〜3.0; 所述甲醇回收塔塔顶回收甲醇中, 循环进入酯化反应塔的 部分所占比例为 10~90 wt %。
、 如权利要求 1 所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工 艺, 其特征在于, 所述甲醇洗涤塔 (7 ) 的理论塔板数为 10~50 块, 塔顶温度为 15~70°C , 塔釜温度为 10~100°C, 塔顶压力为 0.9~10MPa; 所述甲醇洗涤塔塔顶气相组 分中, 所述驰放气的占比为 0.05~5v%。
、 如权利要求 1 所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工 艺, 其特征在于, 甲醇精熘塔 (5) 为萃取精熘塔, 理论塔板数为 10~60块, 塔顶温度为 50~150°C , 塔釜温度为 130~250°C, 塔顶压力为 0.01~0.5MPa。
、 如权利要求 1 所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工 艺, 其特征在于, 所述硝酸浓缩塔 (12) 的理论塔板数为 1〜30块, 塔顶温度 30〜110 V, 塔釜温度 60〜160°C, 塔顶压力 0.01〜0.3MPa; 所述硝酸浓缩塔 (12) 的塔顶轻组 分的回流比为 0.01〜3。
、 如权利要求 1 所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工 艺, 其特征在于, 所述 NO 回收塔 (13 ) 的理论塔板数为 5〜30块, 塔顶温度为 30〜 120 °C , 塔釜温度为 50〜200°C, 塔顶压力为 l〜10MPa; 所述驰放气从 NO 回收塔
( 13 ) 的第 5〜30块塔板处进料; 所述提浓硝酸从 NO回收塔 (13 ) 的第 1〜10块塔板 处进料; 来自甲醇分离塔 (22) 塔顶的回收甲醇从第 1〜10块塔板处进料; 所述 NO 回 收塔 (13 ) 中, 硝酸、 甲醇以及驰放气中的 NO的摩尔配比为 1.1〜10:2〜100:1〜5。 、 如权利要求 1 所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工 艺, 其特征在于, 所述 MN回收塔 (15) 的理论塔板数为 10~60块, 塔顶温度为 0〜50 V, 塔釜温度为 0〜80°C, 反应压力为 l〜10MPa。
、 如权利要求 1 所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工 艺, 其特征在于, 所述 DMO 精熘塔 (6 ) 的理论塔板数为 10~50 块, 塔顶温度为 80~120°C , 塔釜温度为 120~200°C, 常压或减压操作; 所述 DMO精熘塔 (6) 塔顶轻组 分回流比为 0.1~100。
、 如权利要求 2 所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工 艺, 其特征在于, 所述甲醇分离塔 (22 ) 的理论塔板数为 10~40 块, 塔顶温度 40〜 70V , 塔釜温度 80〜180°C, 常压或者减压操作; 所述甲醇分离塔塔顶轻组分回流比为 0.1~3 o 20、 如权利要求 2 所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工 艺, 其特征在于, 所述轻组分精熘塔 (23) 的理论塔板数为 10~60 块, 塔顶温度 58〜 90°C, 塔釜温度 70〜160°C, 塔顶绝对压力为 5〜50KPa; 所述轻组分精熘塔 (23) 的塔 顶轻组分回流比为 1~50。
21、 如权利要求 2 所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工 艺, 其特征在于, 所述乙二醇产品塔 (24) 的理论塔板数为 30~100 块, 塔顶的温度 100〜150°C, 塔釜温度 130〜230°C, 塔顶绝对压力为 5〜50KPa; 所述乙二醇产品塔塔 顶轻组分回流比为 50~200或全回流。
22、 如权利要求 1 所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工 艺, 其特征在于, 所述变压吸附罐中回收的净化气的组成为: ?^为 60〜80v%, CO 为 20〜40v%; 分离出的 C02气体占进气总量的 0.1〜5v%, 其中 C02的浓度为 99.8〜 99.9v%。
23、 如权利要求 2 所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工 艺, 其特征在于, 所述膜分离器 (28) 由多个中空纤维膜组件并联或串联连接组成; 经 所述膜分离器 (28) 分离提纯获得的提纯气中氢气浓度为 88〜99.99v%, 氢气回收率 90〜98.5%。
24、 一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的装置系统, 其特征在于, 包括羰化反应系统、 酯化反应系统、 驰放气与废酸耦合回收系统以及加氢反应系统; 所述羰化反应系统包括羰化反应器 (1)、 第一气液分离器 (4)、 甲醇洗涤塔 (7)、 甲醇 精熘塔 (5) 和 DMO精熘塔 (6); 所述羰化反应器 (1) 设有顶部进料口、 底部出料口、 底 部冷媒进口以及顶部冷媒出口; 所述第一气液分离器 (4) 设有进料口、 气体出口和液体出 口; 所述甲醇洗涤塔 (7) 设有上部进料口、 下部进料口、 顶部出口和底部出口; 所述甲醇 精熘塔 (5) 设有上部进料口、 下部进料口、 顶部出口和底部出口; 所述 DMO精熘塔 (6) 设有下部进料口、 顶部出口和底部出口; 所述酯化反应系统包括酯化反应塔 (9) 和甲醇回收塔 (11); 所述酯化反应塔 (9) 设 有顶部进料口、 上部进料口、 多个下部进料口、 中部回流入口、 顶部出口以及底部出口; 所 述甲醇回收塔 (11) 设有中下部进料口、 下部进料口、 顶部出口和底部出口;
所述驰放气与废酸耦合回收系统包括硝酸浓缩塔 (12)、 NO 回收塔 (13)、 MN 回收塔 (15) 和变压吸附罐 (16); 所述硝酸浓缩塔 (12) 设有中部进料口、 顶部出口和底部出 口; 所述 NO回收塔 (13) 设有顶部进料口、 中部进料口、 底部进料口、 顶部出口和底部出 口; 所述 MN回收塔 (15) 设有上部进料口、 下部进料口、 顶部出口和底部出口; 所述变压 吸附罐 (16) 设有进料口、 回收气出口和排放气出口; 所述加氢反应系统包括加氢循环压缩机 (14)、 加氢反应器 (17 )、 第二气液分离器、 膜 分离器 (28 )、 甲醇分离塔 (22)、 轻组分精熘塔 (23 ) 和乙二醇产品塔 (24); 所述加氢循 环压缩机 (14) 包括进口和出口; 所述加氢反应器 (17) 设有顶部进料口、 底部出料口、 底 部冷媒进口以及顶部冷媒出口; 所述第二气液分离器设有进料口、 气体出口和液体出口; 所 述膜分离器 (28) 设有进料口、 回收气出口和排放气出口; 所述甲醇分离塔 (22) 设有中部 进料口、 顶部不凝气出口、 顶部液相轻组分出口和底部液相重组分出口; 所述轻组分精熘塔
(23 ) 设有下部进料口、 顶部出口和底部出口; 所述乙二醇产品塔 (24) 设有下部进料口、 顶部出口、 上部出口和底部出口; 所述羰化反应器 (1 ) 的顶部进料口与 CO原料管道和 N2原料管道经管线连接; 所述羰 化反应器 (1 ) 的底部出料口与所述第一气液分离器 (4) 的进料口经管线连接; 所述第一气 液分离器 (4) 的气体出口与所述甲醇洗涤塔 (7 ) 的下部进料口经管线连接; 所述第一气液 分离器 (4) 的液体出口与所述甲醇精熘塔 (5) 的上部进料口经管线连接; 所述甲醇洗涤塔
(7) 的顶部出口设有分支出口 A和分支出口 B, 分支出口 A与所述酯化反应塔 (9) 的一 个下部进料口经管线连接, 分支出口 B与所述 NO回收塔 (13 ) 的底部进料口经管线连接; 所述甲醇洗涤塔 (7) 的底部出口与所述甲醇精熘塔 (5) 的下部进料口经管线连接; 所述甲 醇精熘塔 (5 ) 的顶部出口与所述酯化反应塔 (9) 的上部进料口经管线连接; 所述甲醇精熘 塔 (5) 的底部出口与所述 DMO精熘塔 (6) 的下部进料口经管线连接; 所述 DMO精熘塔
( 6 ) 的底部出口与所述加氢反应器 (17 ) 的顶部进料口经管线连接, 所述 DMO 精熘塔
(6) 的顶部出口为 DMC产品出口; 所述酯化反应塔 (9) 的其它下部进料口与 NO原料管道以及多路 02原料管道分别经管 线连接; 所述酯化反应塔 (9) 的顶部进料口与甲醇原料管道经管线连接; 所述酯化反应塔
(9) 的底部出口设有分支出口 C和分支出口 D, 分支出口 C与所述酯化反应塔 (9) 的中 部回流入口经管线连接, 分支出口 D 与所述甲醇回收塔 (11 ) 的下部进料口经管线连接; 所述酯化反应塔 (9) 的顶部出口与所述羰化反应器 (1 ) 的顶部进料口经管线连接; 所述甲 醇回收塔 (11 ) 的顶部出口设有分支出口 E和分支出口 F, 分支出口 E 与所述酯化反应塔
(9) 的上部进料口经管线连接, 分支出口 F与所述 MN回收塔 (15) 的上部进料口经管线 连接; 所述甲醇回收塔 (11 ) 的底部出口与所述硝酸浓缩塔 (12) 的中部进料口经管线连 接; 所述硝酸浓缩塔 (12) 的顶部出口为废液排出口; 所述硝酸浓缩塔 (12) 的底部出口与 所述 NO回收塔 (13 ) 的中部进料口经管线连接; 所述 NO回收塔 (13 ) 的顶部出口与所述 MN回收塔 (15) 的下部进料口经管线连接; 所述 NO回收塔 (13 ) 的底部出口与所述甲醇 回收塔 (11 ) 的中下部进料口经管线连接; 所述 MN回收塔 (15) 的顶部出口与所述变压吸 附罐 (16 ) 的进料口经管线连接; 所述 MN 回收塔 (15 ) 的底部出口与所述酯化反应塔 ( 9 ) 的上部进料口经管线连接; 所述变压吸附罐 (16 ) 的回收气出口与所述羰化反应器 ( 1 ) 的顶部进料口经管线连接; 所述变压吸附罐 (16) 的排放气出口与界外回收装置经管 线连接; 所述加氢循环压缩机 (14) 的进口与工业氢气原料管道经管线连接, 所述加氢循环压缩 机 (14) 的出口与所述加氢反应器 (17 ) 的顶部进料口经管线连接; 所述加氢反应器 (17 ) 的底部出料口与所述第二气液分离器的进料口经管线连接; 所述第二气液分离器的气体出口 设有分支出口 G和分支出口 H, 分支出口 G与所述加氢循环压缩机 (14) 的进口经管线连 接, 分支出口 H 与所述膜分离器 (28 ) 的进料口经管线连接; 所述第二气液分离器的液体 出口与所述甲醇分离塔 (22) 的下部进料口经管线连接; 所述甲醇分离塔 (22) 的顶部不凝 气出口与所述膜分离器 (28 ) 的进料口经管线连接; 所述甲醇分离塔 (22) 的顶部液相轻组 分出口设有分支出口 I和分支出口 J, 分支出口 I与所述甲醇洗涤塔 (7) 的上部进料口经管 线连接, 分支出口 J 与所述 NO 回收塔 (13 ) 的顶部进料口经管线连接; 所述甲醇分离塔
(22) 的底部液相重组分出口与所述轻组分精熘塔 (23 ) 的下部进料口经管线连接; 所述轻 组分精熘塔 (23 ) 的顶部轻组分出口与界外醇回收装置经管线连接; 所述轻组分精熘塔
(23 ) 的底部重组分出口与所述乙二醇产品塔 (24) 的下部进料口经管线连接; 所述乙二醇 产品塔 (24) 的顶部出口与界外 1, 2-BDO 回收处理装置经管线连接; 所述乙二醇产品塔
(24) 的底部出口与界外回收处理装置经管线连接; 所述乙二醇产品塔 (24) 的上部出口为 乙二醇产品出口; 所述膜分离器 (28) 的排放气出口与界外回收装置经管线连接, 所述膜分 离器 (28) 的回收气出口与所述加氢反应器 (17) 的顶部进料口经管线连接。
25、 如权利要求 24 所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的 装置系统, 其特征在于, 所述羰化反应器 (1 ) 外连接有脱水塔 (10) ; 所述脱水塔 ( 10) 设有进料口和干燥气出口; 所述酯化反应塔 (9) 的顶部出口和所述变压吸附罐 ( 16) 的回收气出口与所述脱水塔 (10) 的进料口经管线连接; 所述脱水塔 (10) 的干 燥气出口与所述羰化反应器 (1 ) 顶部进料口经管线连接。 、 如权利要求 25 所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的 装置系统, 其特征在于, 所述脱水塔由两台交替运行与再生的分子筛干燥器 A和分子筛 干燥器 B组成; 分子筛干燥器 A和分子筛干燥器 B内装填吸附剂。
、 如权利要求 25所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的装 置系统, 其特征在于, 所述羰化反应器 (1 ) 的底部出料口连接有出口换热器 I ( 3) ; 所述出口换热器 I ( 3 ) 设有冷物流进口、 冷物流出口、 热物料进口和热物流出口; 所述 CO原料管道、 N2原料管道以及脱水塔 (10) 的干燥气出口与所述出口换热器 I ( 3) 冷物 流进口经管线连接; 所述出口换热器 I ( 3) 的冷物流出口与所述羰化反应器 (1 ) 的顶 部进料口经管线连接; 所述羰化反应器 (1 ) 的底部出料口与所述出口换热器 I ( 3) 的 热物流进口经管线连接; 所述出口换热器 I ( 3) 的热物流出口与所述第一气液分离器
(4) 的进料口经管线连接。
、 如权利要求 27所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的装 置系统, 其特征在于, 所述羰化反应器 (1 ) 外连接有汽包 I ( 2) ; 所述汽包 I ( 2) 设 有冷媒进口、 冷媒出口、 汽液混合物进口和蒸汽出口; 所述汽包 I ( 2) 的冷媒进口与冷 媒原料管道经管线连接; 所述汽包 I ( 2) 的冷媒出口与所述羰化反应器 (1 ) 的底部冷 媒进口经管线连接; 所述羰化反应器 (1 ) 的顶部冷媒出口与所述汽包 I ( 2) 的汽液混 合物进口经管线连接; 所述汽包 I ( 2) 的蒸汽出口与界外蒸汽回收系统经管线连接。 、 如权利要求 28所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的装 置系统, 其特征在于, 所述甲醇洗涤塔 (7) 的分支出口 A与所述酯化反应塔 (9) 的下 部进料口之间连接有羰化循环压缩机 (8) ; 所述羰化循环压缩机 (8) 设有进口和出 口; 所述分支出口 A与所述羰化循环压缩机 (8) 的进口经管线连接; 所述羰化循环压缩 机 (8) 的出口与所述酯化反应塔 (9) 的下部进料口经管线连接。
、 如权利要求 29所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的装 置系统, 其特征在于, 所述 NO回收塔 (13) 的顶部出口与所述 MN回收塔 (15) 的底部 进料口连接有压缩机 (14) ; 所述压缩机 (14) 设有进口和出口; 所述 NO回收塔 (13) 的顶部出口与所述压缩机 (14) 的进口经管线连接; 所述压缩机的出口与所述 MN回收塔
( 15) 的底部进料口经管线连接。
、 如权利要求 30所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的装 置系统, 其特征在于, 所述加氢反应器 (17) 的底部出料口连接有出口换热器 II
( 20) ; 所述出口换热器 II ( 20) 设有冷物流进口、 冷物流出口、 热物料进口和热物流 出口; 所述 DM0精熘塔 (6) 的底部出口、 所述膜分离器 (28) 的回收气出口以及所述加 氢循环压缩机 (25) 的出口与所述出口换热器 Π ( 20) 的冷物流进口经管线连接; 所述 出口换热器 Π ( 20) 的冷物流出口与所述加氢反应器 (17) 的顶部进料口经管线连接; 所述加氢反应器 (17) 的底部出料口与所述出口换热器 II ( 20) 的热物流进口经管线连 接; 所述出口换热器 Π ( 20) 的热物流出口与所述第二气液分离器的进料口经管线连 接。
、 如权利要求 31所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的装 置系统, 其特征在于, 所述加氢反应器 (17) 的顶部进料口连接有开工加热器 (19) ; 所述开工加热器 (19) 设有进料口和出料口; 所述出口换热器 II ( 20) 的冷物流出口与 所述开工加热器 (19) 的进料口经管线连接; 所述开工加热器的出料口与所述加氢反应 器 (17) 的顶部进料口经管线连接。
、 如权利要求 32所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的装 置系统, 其特征在于, 所述加氢反应器 (17) 外连接有汽包 II ( 18) ; 所述汽包 II
( 18) 设有冷媒进口、 冷媒出口、 汽液混合物进口和蒸汽出口; 所述汽包 II ( 18) 的冷 媒进口与冷媒原料管道经管线连接; 所述汽包 II ( 18) 的冷媒出口与所述加氢反应器
( 17) 的底部冷媒进口经管线连接; 所述加氢反应器 (17) 的顶部冷媒出口与所述汽包 II ( 18) 的汽液混合物进口经管线连接; 所述汽包 II ( 18) 的蒸汽出口与界外蒸汽回收 系统经管线连接。
、 如权利要求 33所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的装 置系统, 其特征在于, 所述第二气液分离器包括高压气液分离器 (21 ) 和低压气液分离 器 (26) ; 所述高压气液分离器 (21 ) 设有进料口、 气体出口和液体出口; 所述低压气 液分离器 (26) 设有进料口、 气体出口和液体出口; 所述加氢反应器 (17) 的底部出料 口与所述高压气液分离器 (21 ) 的进料口经管线连接; 所述高压气液分离器 (21 ) 的气 体出口设有分支出口 Κ和分支出口 L, 分支出口 K与所述加氢循环压缩机 (25) 的进口 经管线连接, 分支出口 L与所述低压气液分离器 (26) 的进料口经管线连接; 所述高压 气液分离器 (21 ) 的液体出口与所述甲醇分离塔 (22) 的中部进料口经管线连接; 所述 低压气液分离器 (26) 的气体出口与所述膜分离器 (28) 的进料口经管线连接; 所述低 压气液分离器 (26) 的液体出口与所述甲醇分离塔 (22) 的中部进料口经管线连接。 、 如权利要求 31所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的装 置系统, 其特征在于, 所述膜分离器 (28) 的进料口之前设有甲醇吸收罐 (27) ; 所述 甲醇吸收罐 (27) 设有进料口和净化气出口; 所述低压气液分离器 (26) 的气体出口和 所述甲醇分离塔 (22 ) 的顶部不凝气出口与所述甲醇吸收罐 (27 ) 的进料口经管线连 接; 所述甲醇吸收罐 (27 ) 的净化气出口与所述膜分离器 (28 ) 的进料口经管线连接。 、 如权利要求 24所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的装 置系统, 其特征在于, 所述羰化反应器 (1 ) 为板式反应器、 管式反应器或管式-板式复 合型反应器。
、 如权利要求 36所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的装 置系统, 其特征在于, 所述羰化反应器 (1 ) 为板式固定床羰化反应器; 所述板式固定床 羰化反应器的中心设有板片组固定腔, 所述板片组固定腔内设有板片组, 所述板片组固 定腔还设有底部入口和顶部出口; 所述板片组固定腔的外壁到板式固定床羰化反应器的 内壁之间设有催化剂床层; 催化剂床层内装填有羰化反应催化剂, 所述催化剂床层还设 有顶部入口和底部出口; 在所述板式固定床羰化反应器的底部, 所述板式固定床羰化反 应器的底部冷媒进口与所述板片组固定腔的底部入口经管线连接, 所述催化剂床层的底 部出口与所述板式固定床羰化反应器的底部出料口经管线连接; 在所述板式固定床羰化 反应器的顶部, 所述板式固定床羰化反应器的顶部进料口与所述催化剂床层的顶部入口 经管线连接, 所述板片组固定腔的顶部出口与所述板式固定床羰化反应器的顶部冷媒出 口经管线连接。
、 如权利要求 24所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的装 置系统, 其特征在于, 所述酯化反应塔 (9 ) 为填料塔或同时具有塔板部分和填料填充部 分的塔板-填料混合塔。
、 如权利要求 24所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的装 置系统, 其特征在于, 所述甲醇洗涤塔 (7 ) 、 甲醇精熘塔 (5 ) 、 甲醇回收塔 (11 ) 、 NO回收塔 (13 ) 、 MN回收塔 (15 ) 、 DM0精熘塔 (6 ) 和硝酸浓缩塔 (12 ) 为填料塔、 板式塔或泡罩塔。
、 如权利要求 24所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的装 置系统, 其特征在于, 所述加氢反应器 (17 ) 为板式床反应器、 管式反应器或板式 -管式 复合式反应器。
、 如权利要求 35所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的装 置系统, 其特征在于, 所述加氢反应器 (17 ) 为板式固定床加氢反应器; 所述板式固定 床加氢反应器的中心设有板片组固定腔, 所述板片组固定腔内设有板片组, 所述板片组 固定腔还设有底部入口和顶部出口; 所述板片组固定腔的外壁到板式固定床加氢反应器 的内壁之间设有催化剂床层; 所述催化剂床层内装填有加氢反应催化剂, 所述催化剂床 层还设有顶部入口和底部出口; 在所述板式固定床加氢反应器的底部, 所述板式固定床 加氢反应器的底部冷媒进口与所述板片组固定腔的底部入口经管线连接, 所述催化剂床 层的底部出口与所述板式固定床加氢反应器的底部出料口经管线连接; 在所述板式固定 床加氢反应器的顶部, 所述板式固定床加氢反应器的顶部进料口与所述催化剂床层的顶 部入口经管线连接, 所述板片组固定腔的顶部出口与所述板式固定床加氢反应器的顶部 冷媒出口经管线连接。
、 如权利要求 24所述的一种工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的装 置系统, 其特征在于, 所述膜分离器 (28 ) 由 1〜100个中空纤维膜组件并联或串联连接 组成。
PCT/CN2014/082837 2014-06-05 2014-07-23 工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工艺和装置系统 WO2015184677A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2016146715A RU2659069C1 (ru) 2014-06-05 2014-07-23 Способ и система устройств для получения диметилоксалата карбонилированием промышленного синтез-газа при средневысоком и высоком давлении и получения этиленгликоля гидрированием диметилоксалата
CA2951165A CA2951165C (en) 2014-06-05 2014-07-23 Method and device system for producing dimethyl oxalate through medium and high-pressure carbonylation of industrial synthesis gas and producing ethylene glycol through dimethyl oxalate hydrogenation
US15/316,178 US10017438B2 (en) 2014-06-05 2014-07-23 Method and device system for producing dimethyl oxalate through carbonylation of industrial synthesis gas and producing ethylene glycol through dimethyl oxalate hydrogenation
SA516380431A SA516380431B1 (ar) 2014-06-05 2016-12-05 طريقة ونظام وسيلة لإنتاج أوكسالات داي ميثيل وإيثان-1، 2-ديول

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2014202967486 2014-06-05
CN201410246978 2014-06-05
CN2014102469786 2014-06-05
CN201420296748.6U CN203890271U (zh) 2014-06-05 2014-06-05 一种工业合成气生产乙二醇并联产碳酸二甲酯的装置系统

Publications (1)

Publication Number Publication Date
WO2015184677A1 true WO2015184677A1 (zh) 2015-12-10

Family

ID=54765985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082837 WO2015184677A1 (zh) 2014-06-05 2014-07-23 工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工艺和装置系统

Country Status (5)

Country Link
US (1) US10017438B2 (zh)
CA (1) CA2951165C (zh)
RU (1) RU2659069C1 (zh)
SA (1) SA516380431B1 (zh)
WO (1) WO2015184677A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107056582A (zh) * 2017-02-21 2017-08-18 安阳永金化工有限公司 煤制乙二醇羰化合成系统回收亚硝酸甲酯的系统及方法
AU2015203733B2 (en) * 2014-07-03 2019-06-27 China Petroleum & Chemical Corporation Method for recycling methanol in the process of preparing dimethyl oxalate from synthesis gas

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160321579A1 (en) * 2015-04-28 2016-11-03 Siemens Aktiengesellschaft Simulation based cloud service for industrial energy management
CN107935856A (zh) * 2017-12-29 2018-04-20 成都盛利达科技有限公司 节能型甲酸甲酯生产装置及其工艺
CN108452553B (zh) * 2018-04-01 2023-12-15 重庆梁彬新材料技术有限公司 一种气凝胶用醇水回收装置
CN108456139B (zh) * 2018-04-09 2024-01-30 石家庄白龙化工股份有限公司 一种间歇催化反应精馏制备邻苯二甲酸二丁酯的装置及方法
WO2020082202A1 (en) * 2018-10-22 2020-04-30 Pujing Chemical Industry Co., Ltd Large-scale ethylene glycol reactor
CN109942371A (zh) * 2019-03-20 2019-06-28 江苏凯美普瑞工程技术有限公司 迭合式煤制乙二醇反应装置及方法
CN109956851B (zh) * 2019-04-08 2020-04-07 宁波中科远东催化工程技术有限公司 合成气制乙二醇中乙二醇精馏的系统和方法
CN111644172B (zh) * 2019-09-09 2023-12-01 上海浦景化工技术股份有限公司 一种用于液相加氢的催化剂及其制备方法和应用
CN112759505B (zh) * 2019-10-21 2024-01-30 中国石油化工股份有限公司 一种制备乙二醇的方法及系统
CN111256432B (zh) * 2020-03-12 2024-03-08 金昌隆博气体有限责任公司 一种二氧化碳精馏分离废液处理装置和方法
CN112479822A (zh) * 2020-11-30 2021-03-12 南京延长反应技术研究院有限公司 一种草酸酯法制备乙二醇的强化微界面反应系统及方法
CN113527051A (zh) * 2021-08-30 2021-10-22 濮阳市志峰化工有限公司 合成气乙二醇工序副产物甲酸甲酯再利用系统
CN113792439B (zh) * 2021-09-24 2023-12-26 浙江中控技术股份有限公司 一种煤制乙二醇中草酸二甲酯和乙二醇单元的建模方法
CN113856567A (zh) * 2021-11-05 2021-12-31 华东理工大学 一种碳酸乙烯酯加氢反应器及其应用
CN114602393B (zh) * 2022-03-21 2023-05-26 南平青华科技有限公司 一种连续反应除对伞花烃中桉叶素的装置及方法
WO2023206109A1 (zh) * 2022-04-26 2023-11-02 中国神华煤制油化工有限公司 草酸二甲酯中草酸含量的测定方法
CN114956387B (zh) * 2022-06-13 2024-04-09 新疆天业汇合新材料有限公司 一种含硝盐废水与煤气化灰水耦合除硬的装置及方法
CN115321486B (zh) * 2022-07-23 2023-11-17 四川红华实业有限公司 电子级别三氟化氯纯化方法
CN115245791B (zh) * 2022-08-17 2024-01-19 陕西延长石油(集团)有限责任公司 一种生产高端精细化工品α-烷基酯的装置及方法
CN115501733B (zh) * 2022-09-23 2024-02-02 中国五环工程有限公司 甲醇液相法合成碳酸二甲酯工艺中不凝气的净化工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101462961A (zh) * 2008-01-28 2009-06-24 上海戊正工程技术有限公司 一种生产乙二醇并联产碳酸二甲酯的工艺流程
CN101830806A (zh) * 2010-05-21 2010-09-15 上海浦景化工技术有限公司 一种联产碳酸二甲酯和草酸二甲酯的方法和装置
CN104098441A (zh) * 2014-06-05 2014-10-15 上海戊正工程技术有限公司 工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工艺和装置系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1078033B (it) * 1977-04-07 1985-05-08 Snam Progetti Processo per la preparazione di esteri dell'acido ossalico
CN102276459B (zh) * 2010-06-11 2013-12-18 中国石油化工股份有限公司 采用co气相法制备草酸酯的方法
CN202297421U (zh) * 2011-10-18 2012-07-04 济南钢铁股份有限公司 一种利用冶金尾气生产乙二醇的生产装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101462961A (zh) * 2008-01-28 2009-06-24 上海戊正工程技术有限公司 一种生产乙二醇并联产碳酸二甲酯的工艺流程
CN101830806A (zh) * 2010-05-21 2010-09-15 上海浦景化工技术有限公司 一种联产碳酸二甲酯和草酸二甲酯的方法和装置
CN104098441A (zh) * 2014-06-05 2014-10-15 上海戊正工程技术有限公司 工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工艺和装置系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2015203733B2 (en) * 2014-07-03 2019-06-27 China Petroleum & Chemical Corporation Method for recycling methanol in the process of preparing dimethyl oxalate from synthesis gas
CN107056582A (zh) * 2017-02-21 2017-08-18 安阳永金化工有限公司 煤制乙二醇羰化合成系统回收亚硝酸甲酯的系统及方法

Also Published As

Publication number Publication date
RU2659069C1 (ru) 2018-06-28
US10017438B2 (en) 2018-07-10
US20170267615A1 (en) 2017-09-21
SA516380431B1 (ar) 2020-08-02
CA2951165C (en) 2020-10-13
CA2951165A1 (en) 2015-12-10

Similar Documents

Publication Publication Date Title
WO2015184677A1 (zh) 工业合成气高压羰化生产草酸二甲酯并加氢制乙二醇的工艺和装置系统
CN104098441B (zh) 工业合成气中高压羰化生产草酸二甲酯并加氢制乙二醇的工艺和装置系统
US3659401A (en) Gas purification process
CN106588536B (zh) 一种环己酮的制备方法与系统
CN106669376B (zh) 一种丁烷氧化尾气的利用方法
CN103408428A (zh) 一种由工业合成气生产碳酸二甲酯的工艺
CN101069803A (zh) 用于再生物理气体洗涤中的负载洗涤剂的方法和设备
CN112608232B (zh) 甲醇低压羰基合成醋酸工艺反应热回收利用的系统及方法
CN206232628U (zh) 一种环己酮的生产系统
CN102942488B (zh) 回收甲胺溶液的再生工艺方法及装置
CN102675028A (zh) 采用离子液体吸收从裂解气中分离制备乙炔的方法
CN102489120B (zh) 低温甲醇洗方法及设备
CN101058534B (zh) 一种用甲醇生产二甲醚的设备和方法
CN111253229B (zh) 甲醛吡啶双氧水联产方法
CN107266289A (zh) 一种利用二氧化碳生产正丙醇的装置和方法
CN109929638A (zh) 一种集水合物法与醇胺法于一体联合脱除天然气中酸气的方法和装置
CN109420417B (zh) 一种水合法分离酸性气工艺及装置
CN207451978U (zh) 一种利用二氧化碳生产醋酸正丙酯的装置
CN203890271U (zh) 一种工业合成气生产乙二醇并联产碳酸二甲酯的装置系统
CN212128029U (zh) 甲醛吡啶双氧水联产装置
CN203411491U (zh) 一种由工业合成气生产碳酸二甲酯的工艺系统
CN109200770B (zh) 丁烷氧化制顺酐尾气的处理方法
CN1850586B (zh) 合成氨贮槽放空气提氢工艺及设备
CN215828661U (zh) 一种碳酸乙烯酯装置废气系统物料回收装置
CN203668330U (zh) 利用低温甲醇洗干燥、净化和冷却变换粗合成气和sng产品气的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894009

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2951165

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016146715

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15316178

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/03/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14894009

Country of ref document: EP

Kind code of ref document: A1