CN111253229B - 甲醛吡啶双氧水联产方法 - Google Patents

甲醛吡啶双氧水联产方法 Download PDF

Info

Publication number
CN111253229B
CN111253229B CN202010240549.3A CN202010240549A CN111253229B CN 111253229 B CN111253229 B CN 111253229B CN 202010240549 A CN202010240549 A CN 202010240549A CN 111253229 B CN111253229 B CN 111253229B
Authority
CN
China
Prior art keywords
formaldehyde
gas
pyridine
hydrogen peroxide
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010240549.3A
Other languages
English (en)
Other versions
CN111253229A (zh
Inventor
韩刚
宋敏
李裕超
李坚
郑珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Minghua New Material Co ltd
Original Assignee
Shandong Minghua New Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Minghua New Material Co ltd filed Critical Shandong Minghua New Material Co ltd
Priority to CN202010240549.3A priority Critical patent/CN111253229B/zh
Publication of CN111253229A publication Critical patent/CN111253229A/zh
Application granted granted Critical
Publication of CN111253229B publication Critical patent/CN111253229B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • C07C45/38Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups being a primary hydroxyl group
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/013Separation; Purification; Concentration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/029Preparation from hydrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/79Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/81Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • C07C45/82Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/08Preparation by ring-closure
    • C07D213/09Preparation by ring-closure involving the use of ammonia, amines, amine salts, or nitriles
    • C07D213/10Preparation by ring-closure involving the use of ammonia, amines, amine salts, or nitriles from acetaldehyde or cyclic polymers thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pyridine Compounds (AREA)

Abstract

本发明公开了一种甲醛吡啶双氧水联产方法,属于甲醛、吡啶、双氧水生产领域领域。所述方法包括甲醇氧化工序、净化分离工序,甲醇氧化工序得到的甲醛混合气经净化分离工序分离后,得到浓度不低于98%的甲醛气、和浓度不低于99%的氢气,甲醛气送吡啶生产装置,氢气送双氧水生产装置。与现有技术相比,本发明的甲醛吡啶双氧水联产方法克服了现有甲醛生产装置投资大、工艺流程长、氢气燃烧造成浪费等不足,可实现甲醛、吡啶和双氧水联产,具有很好的推广应用价值。

Description

甲醛吡啶双氧水联产方法
技术领域
本发明涉及甲醛、吡啶、双氧水生产领域,具体提供一种甲醛吡啶双氧水联产方法。
背景技术
甲醛、吡啶、双氧水均为化工基础原料,应用量巨大。现有技术中甲醛生产主要采用甲醇氧化法,在600~700℃下,使甲醇、空气和水通过银、铜或五氧化二矾等催化剂,在氧化器中直接氧化生成含有甲醛混合气体。混合气体再经一级、二级、三级吸收塔,与软水、稀甲醛液逆流接触,逐级提浓,得到37%左右的甲醛溶液。尾气(含18%的氢气)则送至燃烧锅炉焚烧,副产蒸汽。不仅投资大、工艺流程长,还会造成大量氢气的浪费。
另一方面,现有技术生产吡啶时,甲醛溶液需要经过泵加压、蒸汽加热气化、蒸汽过热提温等工序,才能送到反应器参与吡啶生成反应,存在原料利用率低、产物纯度低、能耗高等不足。
发明内容
本发明是针对上述现有技术的不足,提供一种甲醛吡啶双氧水联产方法。
本发明解决其技术问题所采用的技术方案是:一种甲醛吡啶双氧水联产方法,其特点是包括甲醇氧化工序、净化分离工序,甲醇氧化工序得到的甲醛混合气经净化分离工序分离后,得到质量百分比浓度不低于98%的甲醛气、和质量百分比浓度不低于99%的氢气,甲醛气送吡啶生产装置,氢气送双氧水生产装置。
所述净化分离工序用于对甲醛混合气进行分离提纯,得到可用于吡啶、双氧水生产的高浓度甲醛气和氢气。作为优选,可采用以下净化分离方法:
来自甲醇氧化工序的甲醛混合气经提压、冷却(冷却至100-110℃)、气液分离后,分离得到的生成气进入膜分离器,利用膜分离的渗透选择性,将氢气渗透提浓,得到质量百分比浓度不低于99%的氢气,膜分离器得到的尾气进入变压吸附净化装置,吸附除去无效气体后得到质量百分比浓度不低于98%的甲醛气。
作为优选,所述变压吸附净化装置包括一级吸附罐、二级吸附罐,一级吸附罐中装填普通碳分子筛,用于吸附氮气;二级吸附罐中装填MH-317 型高效碳分子筛,用于吸附二氧化碳、一氧化碳、甲烷。
在本发明的实施例中,一级吸附罐设置有六个罐,均装填普通碳分子筛。二级吸附罐设置有六个罐,均装填MH-317型高效碳分子筛。罐子的个数可根据工况、分子筛品质等进行调整,本发明不作限定。
为了促进热能的回收利用,在所述净化分离工序中,经提压的甲醛混合气可经热交换器后再进入冷却环节,而变压吸附净化装置输出的甲醛气通过热交换器吸收甲醛混合气的热量后再送吡啶生产装置。
作为优选,甲醇氧化工序的甲醛混合气提压至2.0-2.1Mpa后进入后续流程。压力过小时,虽然得到的氢气纯度高,但会出现氢气渗透量少,氢气产量低,无法适应后续生产的情况;过大则会造成氢气纯度低,氢气有效气体内杂质多的问题。
为了保证双氧水生产装置氢气供应的稳定,膜分离器输出的氢气可经缓冲罐缓冲后再送双氧水生产装置。
所述甲醇氧化工序可选用现有常规的甲醇氧化工艺实现,甲醇、空气经蒸发器后,与蒸汽一起通过过热器、过滤器,进入氧化反应器进行氧化脱氢反应,氧化反应器输出的甲醛混合气直接降温后送往净化分离工序。
作为优选,甲醇氧化工序中氧化反应器输出的甲醛混合气可先返回蒸发器放热降温后再送净化分离工序,优选为降温至115-125℃。
净化分离工序得到的甲醛气体直接与乙醛气混合,加热后进入吡啶反应器,与氨气进行反应得到吡啶、甲基吡啶和其他副产物。
甲醛气体与乙醛气的质量比优选为(0.76-0.81):1。
和现有技术相比,本发明的甲醛吡啶双氧水联产方法具有以下突出的有益效果:
一、克服了现有甲醛生产装置投资大、工艺流程长、氢气燃烧造成浪费等不足,通过增加膜分离及变压吸附装置,即可实现甲醛气用于生产吡啶,回收的氢气用于双氧水生产;
二、甲醛双氧水联产,解决了无氢气来源地区上马双氧水项目的困难;
三、甲醛气直接降温到所需的反应温度用于吡啶生产,既节约设备投资,又减少蒸汽用量,运行成本大幅下降;
四、甲醛吡啶联产,因甲醛气含水量极低,生成的吡啶粗物料纯度高,精馏负荷轻,副产的废水减少,既节约精馏塔蒸汽用量,又降低环保设施热氧化炉投资与运行成本。
附图说明
附图1是实施例甲醛吡啶双氧水联产方法的结构示意图;
附图2是实施例吡啶生产装置结构示意图;
附图3是实施例双氧水生产装置结构示意图。
附图中的标记分别表示:
1、甲醇蒸发器,2、过热器,3、过滤器,4、氧化反应器,5、压缩机,6、热交换器,7、冷却器,8气液分离器,9、膜分离器,10、缓冲罐,11、变压吸附净化装置,12、吡啶生产装置,12.1、流化床反应器, 12.2、再生器,12.3、粗物料气提塔,12.4、氨吸收塔,12.5、氨气提塔,12.6、萃取塔,12.7、苯汽提塔,12.8、精馏单元,12.81、精馏塔,12.82、精馏塔,12.83、成品精馏塔,12.9、粗物料储槽,13、双氧水生产装置, 13.1、氢化塔,13.2、氧化塔,13.3、分离器,13.4、萃取塔,13.5、净化器,13.6、氢化液气液分离及氢化液再生床,13.7、聚结分离器,13.8、真空脱水器,13.9、干燥塔,13.10、工作液槽,13.11、工作液预热器, 13.12、氢化液储槽,13.13、氢化液冷却器,13.14、离心式空压机,13.15、氧化液储槽。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,但不作为对本发明的限定。
如无特别说明,实施例中所述浓度为质量百分比浓度。
实施例:
【主要设备】
如附图1所示,本发明的甲醛吡啶双氧水联产系统主要由甲醇蒸发器 1、过热器2、过滤器3、氧化反应器4、压缩机5、热交换器6、冷却器7、气液分离器8、膜分离器9、缓冲罐10、变压吸附净化装置11、吡啶生产装置12及双氧水生产装置13构成。
甲醇蒸发器1、过热器2、过滤器3、氧化反应器4位于甲醇氧化工序。蒸发器1出气口通过过热器2、过滤器3接氧化反应器4进气口。氧化反应器4的出气口接甲醇蒸发器1热介质进口。甲醇蒸发器1热介质出口接压缩机5。
压缩机5、热交换器6、冷却器7、气液分离器8、膜分离器9、缓冲罐10、变压吸附净化装置11构成净化分离工序。压缩机5串接热交换器 6、冷却器7、气液分离器8后,气液分离器8的气体出口与膜分离器9 进料口连接。膜分离器9生成出口通过缓冲罐10接双氧水生产装置13。膜分离器9尾气出口接变压吸附净化装置11进气口。变压吸附净化装置 11出气口接热交换器6的冷介质进口。热交换器6的冷介质出口接吡啶生产装置12。
膜分离器9采用采用中空纤维膜,如大连化物的H_2/N_2分离回收氢气装置。
变压吸附净化装置采用两级变压吸附。一级变压吸附采用装填有普通碳分子筛的六个罐;二级变压吸附采用装填MH-317型高效碳分子筛的六个罐。
如附图2所示,吡啶生产装置12主要由流化床反应器12.1、再生器 12.2、粗物料气提塔12.3、氨吸收塔12.4、氨气提塔12.5、萃取塔12.6、苯汽提塔12.7、精馏单元12.8构成,其结构及管路连接均为现有技术。
如附图3所示,双氧水生产装置13主要由氢化塔13.1、氧化塔13.2、分离器13.3、萃取塔13.4、净化器13.5、氢化液气液分离及氢化液再生床13.6、聚结分离器13.7、真空脱水器13.8、干燥塔13.9构成,其结构及管路连接均为现有技术。
【工艺流程】
(一)甲醇氧化工序
甲醇从甲醇计量槽经甲醇泵加压,由调节阀控制流量后进入甲醇蒸发器1底部,经反应气(甲醛混合气)间接加热。甲醇蒸发器1内的甲醇与罗茨鼓风机送入的一定量空气混合成为二元混合气(二元混合气体中甲醇与空气的摩尔比值为0.37-0.39),再加入一定量的饱和水蒸汽配成三元混合气。三元混合气送入过热器2,用蒸汽间接加热至108℃左右,经阻火装置进入三元气体过滤器3后,送入装有催化剂的氧化反应器4中,自上而下通过触媒层,在640℃高温下甲醇的氧化和脱氢反应同时进行,生成的甲醛混合气迅速通过氧化反应器4的急冷段加热软水,副产0.4Mpa 蒸汽。降温后的甲醛混合气再经甲醛蒸发器1间接加热甲醇,温度控制在 120℃,进入净化回收工序。
甲醇氧化工序所得甲醛混合气成分见下表:
每小时甲醛(折100%)产量3.095吨,每小时氢气产量1478Nm3
物料名称 kg/h kmol/h
反应生成气总量 14351.836 611.743
甲醛CH<sub>2</sub>O 3095.834 103.105
甲醇CH<sub>3</sub>OH 58.545 1.827
水H<sub>2</sub>O 2716.947 150.816
甲酸HCOOH 0.521 0.011
氮气N<sub>2</sub> 7624.528 272.178
氢气H<sub>2</sub> 134.291 66.612
二氧化碳CO<sub>2</sub> 675.317 15.345
一氧化碳CO 10.252 0.366
甲烷CH<sub>4</sub> 11.890 0.741
氧O<sub>2</sub> 23.711 0.741
(2)净化回收工序
来自甲醛装置的甲醛混合气,经压缩机5提压到2.0Mpa,然后经过热交换器5与变压吸附净化装置11输出的甲醛气换热,再经过冷却器7 降温至105℃后进入分离器8。在分离器8中进行气液分离。分离的冷凝水中含有少量甲醛,可回收利用(例如,可以经甲醛回收塔加压精馏,得到0.6Mpa的甲醛气,与变压吸附后降压的甲醛气混合去生产吡啶)。分离后的生成气进入膜分离器9,通过膜分离的渗透选择性,将生成气中的氢气渗透提浓后,获得0.5MPa的99.5%高浓氢气,经缓冲罐10送双氧水生产装置13反应。
经过膜分离器9的2.0MPa的尾气进入变压吸附净化装置11,在 2.0MPa下经过两级变压吸附,将尾气中的氮气及其他无效气体吸附,最终获得98%高浓度的甲醛气,经过热交换器6换热提温至100℃后送往吡啶生产装置12。
两级变压吸附中,一级变压吸附用于吸附氮气。其它混合气体进入二级变压吸附,用于吸附除去二氧化碳、一氧化碳、甲烷。
(3)吡啶生产工序
乙醛经泵加压到0.6Mpa,经过滤、气化,与净化回收工序来的100℃甲醛气体混合,加热至120℃后,进入由流化床反应器12.1中部,液氨经气化加热到100℃以上,从反应器12.1底部进入,甲醛、乙醛、氨气在流化床反应器内催化剂表面进行反应,生成粗物料(吡啶的含量为 22.3%,甲基吡啶的含量为11.8%,余量为其他副产物)。
进入流化床反应器12.1的甲醛气体、乙醛、气氨的质量比为 0.8:1:0.8(气氨过量,25%左右的气氨参加反应,其余作为反应催化剂流化的载体)。
反应生成的粗物料气体进入粗物料塔12.3进行吸收,吸收下来的粗物料进入进入粗物料储槽12.9,未被吸收的气相依次进入氨吸收塔12.4、氨气提塔12.5进行氨回收。回收的氨返回流化床反应器12.1进行再利用。
粗物料储槽12.9中的粗物料泵入萃取塔12.6。萃取塔12.6将吡啶、甲基吡啶及其他副产物从水溶液中分离出来。萃取液进入苯汽提塔12.7 进行萃取剂和吡啶等的分离。萃取剂循环利用,分离出来的吡啶及其副产物进入精馏单元12.8(由精馏塔12.81、精馏塔12.82、成品精馏塔12.83 组成)进行产品的分离和精制。得到99.9%的成品吡啶和99%的成品3-甲基吡啶。
以甲醇氧化工序产量计,1吨吡啶消耗甲醛1.135吨,3.095吨甲醛可生产吡啶2.727吨,年吡啶产量为21800吨。
(4)双氧水生产工序
来自工作液槽13.10的工作液,经工作液预热器13.11加热后,与来自净化回收工序的0.5MPa、99.5%的高浓度氢气一并进入氢化塔13.1。工作液与氢气顺流进入上节塔床顶部混合,并流而下通过上下塔触媒层进行加氢反应得到氢化液,而后进入氢化液气液分离及氢化液再生床13.6进行气液分离和再生,再经过滤器后进入氢化液储槽13.12。氢化液储槽 13.12中的氢化液借助氢化液泵流经氢化液冷却器13.13使其冷却,与离心式空压机13.14送来的空气一同进入氧化塔13.2,并流进行氧化。完成氧化的氧化液经分离器13.3后进入氧化液储槽13.15。氧化液经氧化液泵打入萃取塔13.4底部进行双氧水的萃取,用纯水萃取含有过氧化氢的氧化液,得到含有过氧化氢的粗双氧水。萃取塔13.4顶流出的萃余液经萃余液聚结分离器13.7、真空脱水器13.8、干燥塔13.9后送至入循环工作液储槽13.10。萃取所得的粗双氧水由萃取塔13.4底部流出,经净化塔13.5净化后得到质量百分比浓度为27.5%的双氧水产品。
以甲醇氧化工序产量计,1吨双氧水消耗氢气200Nm3,1478Nm3氢气可生产浓度27.5%双氧水7.39吨,年双氧水产量为59000吨。
以上所述的实施例,只是本发明较优选的具体实施方式,本领域的技术人员在本发明技术方案范围内进行的通常变化和替换都应包含在本发明的保护范围内。

Claims (8)

1.甲醛吡啶双氧水联产方法,其特征在于:包括甲醇氧化工序、净化分离工序,甲醇氧化工序得到的甲醛混合气经提压、冷却、气液分离后,分离得到的生成气进入膜分离器,利用膜分离的渗透选择性,将氢气渗透提浓,得到质量百分比浓度不低于99%的氢气,膜分离器得到的尾气进入变压吸附净化装置,吸附除去无效气体后得到质量百分比浓度不低于98%的甲醛气,甲醛气送吡啶生产装置,氢气送双氧水生产装置,
所述变压吸附净化装置包括一级吸附罐、二级吸附罐,一级吸附罐中装填普通碳分子筛,用于吸附氮气,二级吸附罐中装填MH-317型高效碳分子筛,用于吸附二氧化碳、一氧化碳、甲烷。
2.根据权利要求1所述的甲醛吡啶双氧水联产方法,其特征在于:所述净化分离工序中,经提压的甲醛混合气经热交换器后再进入冷却环节,变压吸附净化装置输出的甲醛气通过热交换器吸收甲醛混合气的热量后,送吡啶生产装置。
3.根据权利要求1所述的甲醛吡啶双氧水联产方法,其特征在于:甲醇氧化工序的甲醛混合气提压至2.0-2.1Mpa后进入后续流程。
4.根据权利要求1所述的甲醛吡啶双氧水联产方法,其特征在于:膜分离器输出的氢气经缓冲罐缓冲后,送双氧水生产装置。
5.根据权利要求1或2所述的甲醛吡啶双氧水联产方法,其特征在于:甲醇氧化工序包括蒸发器、过热器、过滤器及氧化反应器,甲醇、空气经蒸发器后,与蒸汽一起通过过热器、过滤器,进入氧化反应器进行氧化脱氢反应,氧化反应器输出的甲醛混合气返回蒸发器放热降温后送净化分离工序。
6.根据权利要求5所述的甲醛吡啶双氧水联产方法,其特征在于:甲醛混合气降温至115-125℃后送净化分离工序。
7.根据权利要求1或2所述的甲醛吡啶双氧水联产方法,其特征在于:净化分离工序得到的甲醛气体直接与乙醛气混合,加热后进入吡啶反应器,与氨气进行反应得到吡啶、甲基吡啶和其他副产物。
8.根据权利要求7所述的甲醛吡啶双氧水联产方法,其特征在于:甲醛气体与乙醛气的质量比为(0.76-0.81):1。
CN202010240549.3A 2020-03-31 2020-03-31 甲醛吡啶双氧水联产方法 Active CN111253229B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010240549.3A CN111253229B (zh) 2020-03-31 2020-03-31 甲醛吡啶双氧水联产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010240549.3A CN111253229B (zh) 2020-03-31 2020-03-31 甲醛吡啶双氧水联产方法

Publications (2)

Publication Number Publication Date
CN111253229A CN111253229A (zh) 2020-06-09
CN111253229B true CN111253229B (zh) 2022-08-30

Family

ID=70951616

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010240549.3A Active CN111253229B (zh) 2020-03-31 2020-03-31 甲醛吡啶双氧水联产方法

Country Status (1)

Country Link
CN (1) CN111253229B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113893785B (zh) * 2021-11-22 2023-02-10 安徽国星生物化学有限公司 一种吡啶碱合成方法及装置
CN115784855A (zh) * 2022-12-15 2023-03-14 山东明化新材料有限公司 一种乙醛吡啶联产简化流程的新工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1154058A (en) * 1966-09-27 1969-06-04 Perstorp Ab Process for the Production of Formaldehyde.
US4691060A (en) * 1983-11-07 1987-09-01 Mitsubishi Gas Chemical Company, Inc. Process for recovering waste heat from formaldehyde product gas
CN1566093A (zh) * 2003-07-09 2005-01-19 中国石油化工股份有限公司 吡啶和3-甲基吡啶的制备方法
CN102757324A (zh) * 2012-05-22 2012-10-31 山西阳煤丰喜肥业(集团)有限责任公司 一种甲醇富氧生产甲醛及甲醛尾气利用方法
CN104477909A (zh) * 2014-11-24 2015-04-01 西南化工研究设计院有限公司 一种用于甲醇脱氢合成甲酸甲酯装置脱氢尾气中一氧化碳和氢气回收的工艺
CN104610031A (zh) * 2014-12-31 2015-05-13 湖北沙隆达股份有限公司 一种高浓度甲醛的生产方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1154058A (en) * 1966-09-27 1969-06-04 Perstorp Ab Process for the Production of Formaldehyde.
US4691060A (en) * 1983-11-07 1987-09-01 Mitsubishi Gas Chemical Company, Inc. Process for recovering waste heat from formaldehyde product gas
CN1566093A (zh) * 2003-07-09 2005-01-19 中国石油化工股份有限公司 吡啶和3-甲基吡啶的制备方法
CN102757324A (zh) * 2012-05-22 2012-10-31 山西阳煤丰喜肥业(集团)有限责任公司 一种甲醇富氧生产甲醛及甲醛尾气利用方法
CN104477909A (zh) * 2014-11-24 2015-04-01 西南化工研究设计院有限公司 一种用于甲醇脱氢合成甲酸甲酯装置脱氢尾气中一氧化碳和氢气回收的工艺
CN104610031A (zh) * 2014-12-31 2015-05-13 湖北沙隆达股份有限公司 一种高浓度甲醛的生产方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
从含氢气体中分离提浓氢气技术的研究进展;朱红莉等;《青岛科技大学学报(自然科学版)》;20041030;第25卷(第5期);第421-425页 *
用变压吸附法从甲醛尾气中提取氢的工业开发;滕燕程等;《天然气化工(C1化学与化工)》;19870225(第1期);第31-34页 *

Also Published As

Publication number Publication date
CN111253229A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
CA2951165C (en) Method and device system for producing dimethyl oxalate through medium and high-pressure carbonylation of industrial synthesis gas and producing ethylene glycol through dimethyl oxalate hydrogenation
CN112638849B (zh) 在没有二氧化碳排放下由合成气制备甲醇的方法
CN111253229B (zh) 甲醛吡啶双氧水联产方法
CN115210204A (zh) 在利用二氧化碳量下由二氧化碳和氢气制备甲醇的方法
CN212128029U (zh) 甲醛吡啶双氧水联产装置
WO2014157699A1 (ja) エチレンオキシドの製造方法
CN113562695A (zh) 一种焦炉煤气膜分离、蒸汽重整、变压吸附联用制氢方法
CN217498681U (zh) 基于技术融合的天然气液化过程氢能回收提纯装置
CN109456139B (zh) 甲烷制乙烯反应产物的油吸收分离方法
CN114712984B (zh) 一种天然气smb制氢中胺吸收脱碳的全温程变压吸附回收co2替代工艺
WO2023153928A1 (en) Hybrid ammonia decomposition system
CN215288580U (zh) 一种二氧化碳加氢制备甲醇的系统
CN114955996A (zh) 天然气液化过程氢能回收提纯装置
CN104477909A (zh) 一种用于甲醇脱氢合成甲酸甲酯装置脱氢尾气中一氧化碳和氢气回收的工艺
CN113559675B (zh) 一种环氧乙烷的分离方法与分离装置
CN110201487A (zh) 一种乙烯法制环氧乙烷中高纯度高收率甲烷致稳气净化与再利用方法
CN113428861B (zh) 一种甲烷与硫化氢重整制氢工艺
JPS60174732A (ja) 酸化エチレン製造プラントの排ガス回収法
CN103992198A (zh) 一种以焦炉煤气为原料生产苯的工艺
CN117029381B (zh) 一种捕集液体二氧化碳过程中提取氪氙的系统和方法
CN220432358U (zh) 一种由煤化工酸性气制备电子级硫酸的生产系统
CN113277924B (zh) 一种用于丙烯制备的热交换系统
CN215828661U (zh) 一种碳酸乙烯酯装置废气系统物料回收装置
CN216171201U (zh) 一种变压吸附解析气回收利用装置
CN111137864B (zh) 一种蒽醌法制备过氧化氢的氧化塔

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant