WO2020082202A1 - Large-scale ethylene glycol reactor - Google Patents

Large-scale ethylene glycol reactor Download PDF

Info

Publication number
WO2020082202A1
WO2020082202A1 PCT/CN2018/111139 CN2018111139W WO2020082202A1 WO 2020082202 A1 WO2020082202 A1 WO 2020082202A1 CN 2018111139 W CN2018111139 W CN 2018111139W WO 2020082202 A1 WO2020082202 A1 WO 2020082202A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
reactor
cylinder
heat exchange
catalyst
Prior art date
Application number
PCT/CN2018/111139
Other languages
French (fr)
Inventor
Jian Huang
Original Assignee
Pujing Chemical Industry Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pujing Chemical Industry Co., Ltd filed Critical Pujing Chemical Industry Co., Ltd
Priority to PCT/CN2018/111139 priority Critical patent/WO2020082202A1/en
Priority to RU2018145371A priority patent/RU2719441C1/en
Priority to AU2018446829A priority patent/AU2018446829B2/en
Publication of WO2020082202A1 publication Critical patent/WO2020082202A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/001Controlling catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • B01J8/009Membranes, e.g. feeding or removing reactants or products to or from the catalyst bed through a membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/025Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0278Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/20Dihydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/36Preparation of carboxylic acid esters by reaction with carbon monoxide or formates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00132Tubes

Definitions

  • the invention relates to synthesis of ethylene glycol in a gas phase, especially on a large scale.
  • a carbonylation reactor and a hydrogenation reactor are core components of the equipment for synthesis of ethylene glycol from syngas. Synthesis of an oxalate from syngas by carbonylation and synthesis of ethylene glycol from the oxalate by hydrogenation are both exothermic reactions.
  • the carbonylation reaction is a fast reaction in the order of seconds, and takes place mainly in the upper part of a catalyst tube while the lower part plays a balance role to remove from the catalyst bed layer mainly depending on the heat exchange area of the upper part of the catalyst tube. In case of emergency, the reaction heat accumulates and the catalyst bed is overheated such that nitrite degrades by heat and can easily cause an explosion accident.
  • the catalyst In the hydrogenation reaction, the catalyst is easy to coke and be pulverized, resulting in different resistance in each catalyst tube in the reactor. As a result, gas drifts, the catalyst bed is locally overheated, side reactants are high, and the catalyst utilization rate is low. The pressure drop in the catalyst bed layer is high. The compressor consumes much more electricity.
  • the carbonylation reactor and the hydrogenation reactor in operation or under design are tubular reactors.
  • the catalyst loading of a single reactor is small, and the resistance in the reaction system is reduced.
  • Each reactor in a single set of 200,000 tons/year dimethyl oxalate production plant may have a diameter of 6 m and a height of 8 m, and causes many problems during transportation, installation and operation.
  • the tubular reactor has restricted large-scale development.
  • the present invention provides a reactor for large-scale production of dimethyl oxalate or ethylene glycol and uses thereof.
  • a reactor for a large-scale production of a target product is provided.
  • the reactor comprises a shell, a gas distribution member, an internal heat exchange member, inlet pipe members and outlet pipe members.
  • the shell has a reactor cylinder inner wall (M) .
  • the shell forms an upper head (I) , a reactor cylinder (II) and a lower head (III) .
  • the gas distribution member comprises one or more raw material gas inlets (A) , one or more gas distribution enhancers (G) , a gas distributor (D) having pores, a hollow gas cylinder (L) , and one or more tail gas outlets (F) .
  • the internal heat exchange member comprises a heat exchange tube bundle (J) .
  • the two or more inlet pipe members comprise two or more boiler water inlets (E) .
  • the two or more outlet pipe members comprise two or more high-temperature boiling water outlets (H) .
  • Each of the two or more inlet pipe members corresponds to one of the two or more outlet pipe members.
  • Each inlet pipe member and its corresponding outlet pipe member are arranged symmetrically along a circumference on the lower head (III) and the upper head (I) , respectively, or on a lower part and an upper part of the barrel (II) , respectively.
  • the one or more raw material gas inlets (A) , the one or more gas distribution enhancers (G) , and at least two of the two or more outlet pipe members are in the upper head (I) .
  • the one or more tail gas outlets (F) and the at least two of the two or more inlet pipe members are in the lower head (III) .
  • the gas distributor (D) , the heat exchange tube bundle (J) , a catalyst bed (C) and the gas cylinder (L) are in the reactor cylinder (II) .
  • the catalyst bed (C) is arranged between the gas distributor (D) and the gas cylinder (L) , and outside the heat exchange tube bundle (J) .
  • the catalyst bed comprises a catalyst.
  • the heat exchange tube bundle (J) is arranged between the gas distributor (D) and the gas cylinder (L) , and provides a tube path for boiler water to flow continuously from the two or more boiler water inlets (E) to the two or more high-temperature boiling water outlets (H) . Heat is released from the heat exchange tube bundle (J) .
  • the reactor cylinder inner wall, the pores in the gas distributor (D) , the holes in the gas cylinder (L) provide a space path for a raw material gas to flow continuously from the one or more raw material gas inlets (A) to the one or more tail gas outlets (F) such that the raw mater gas contacts with the catalyst in the presence of the released heat.
  • the raw material gas comprises carbon monoxide (CO) and methyl nitrite (MN)
  • the catalyst catalyzes synthesis of dimethyl oxalate from the carbon monoxide (CO) and the methyl nitrite (MN)
  • the target product is the dimethyl oxalate
  • the reactor has a production capacity for the dimethyl oxalate of greater than 400 kt/a.
  • the catalyst catalyzes synthesis of ethylene glycol from the dimethyl oxalate and the hydrogen (H 2 ) , and the target product is the ethylene glycol
  • the reactor has a production capacity for the ethylene glycol of greater than 200 kt/a.
  • the reactor may further comprise a steam drum in the upper head (I) .
  • the reactor may be a radial reactor.
  • the reactor cylinder (II) and the gas cylinder (L) may be vertical.
  • the reactor cylinder (II) and the gas cylinder (L) may share the same vertical axis.
  • the holes in the gas cylinder wall may have a higher density in a lower portion of the gas cylinder wall than those in an upper portion of the gas cylinder wall.
  • the holes are in the shape of circles or vertical strips.
  • the porous gas distributor (D) may be separated from the catalyst bed (C) by a catalyst frame (K) of a stainless steel mesh.
  • the gas cylinder (L) may be separated from the catalyst bed (C) by a catalyst frame (K) of a stainless steel mesh.
  • the one or more raw material gas inlets (A) may be in the upper head (I) and the one or more tail gas outlets (F) may be in the lower head (III) .
  • the gas cylinder (L) may have a closed top end.
  • the cylinder body (II) may be connected to the upper head (I) with an upper flange, the cylinder body (II) may be connected to the lower head with a lower flange, and the gas cylinder (L) may have a top end closed with a gas cylinder flange.
  • the two or more boiler water inlets (E) may be at the lower flange.
  • the reactor may further comprise one or more additional reactor cylinders on top of the reactor cylinder (II) and one or more additional gas cylinders on top of the gas cylinder (L) .
  • the one or more additional reactor cylinders may be connected to the cylinder body (II) with an additional flange and the one or more additional gas cylinders are connected to the gas collection cylinder (L) with a gas cylinder flange.
  • a steam drum is formed between the one or more additional cylinder bodies and the cylinder body (II) .
  • the heat exchange tube bundle may comprise tubes.
  • Each tube is selected from the group consisting of a straight tube, a serpentine coil and a combination thereof.
  • the tubes may have an external diameter of 15-50 mm and a tube center distance of 25-90 mm.
  • the reactor cylinder (II) may have a diameter of 4000-7000 mm and a height of 2800-8000 mm.
  • the catalyst bed may have a pressure drop less than 30 kPa.
  • the one or more catalysts may have a volume greater than 100 m 3 .
  • the apparatus comprises the reactor having an ethylene glycol production capacity greater than 200 kt/a and a single water-cooling straight tube or serpentine coil.
  • a process for producing a target product on a large scale in a reactor is further provided.
  • the reactor comprises a shell, a gas inlet, a gas outlet, a water inlet and a water outlet.
  • the shell forms a vertical reactor cylinder.
  • a cylinder inner wall, a gas distributor having pores, a catalyst bed layer, a heat exchange tube bundle and a vertical hollow gas cylinder having a gas cylinder wall with holes are in the reactor cylinder.
  • the gas cylinder is in the center of the cylinder body, and the gas outlet is connected with the gas cylinder.
  • the gas distributor is between the reactor cylinder inner wall and the gas cylinder, and the gas inlet is connected with a space between the gas distributor and the reactor cylinder inner wall.
  • the catalyst bed is between the gas distributor and the gas cylinder, and outside the heat exchange tube bundle.
  • the catalyst bed comprises a catalyst.
  • the heat exchange tube bundle is between the gas distributor and the gas cylinder, and connects with the water inlet and the water outlet.
  • the space between the reactor cylinder inner wall and the gas distributor, the pores in the gas distributor, and the holes in the gas cylinder wall provide a gas path from the gas inlet to the gas outlet.
  • the process comprises feeding boiler water into the water inlet; moving the boiler water continuously through the heat exchange tube bundle such that the boiler water releases heat from the heat exchange tube bundle and high-temperature boiling water and steam are formed; discharging the high-temperature boiling water and steam from the reactor through the water outlet; feeding a raw material gas into the gas inlet; moving the raw material gas continuously through the gas path; contacting the raw material gas with the catalyst in the presence of the released heat, whereby a target product is produced and a tail gas is formed; and discharging the tail gas from the reactor through the gas outlet.
  • the target product is the dimethyl oxalate produced continuously in the reactor at a yield greater than 400 kt/a for at least one year.
  • the target product is the ethylene glycol produced continuously in the reactor at a yield greater than 200 kt/a for at least one year.
  • the heat exchange tube bundle may comprise one or more tubes, which are selected from the group consisting of a straight tube, a serpentine coil and a combination thereof.
  • the one or more tubes may have an external diameter of 15-50 mm and a tube center distance of 25-90 mm.
  • the reactor cylinder may have a diameter of 4000-7000 mm and a height of 2800-8000 mm.
  • the catalyst bed may have a pressure drop less than 30 kPa.
  • the one or more catalysts may have a volume greater than 100 m 3 .
  • FIG. 1A is a side view of a reactor according to one embodiment of the invention and FIG. 1B. is a top view of the reactor.
  • FIG. 2 is a schematic diagram showing that (1) a raw material gas enters a reactor and (2) a tail gas exits the reactor while (3) boiler water enters the reactor and (4) high-temperature boiling water and steam exit the reactor.
  • the present invention provides a reactor for large-scale production of dimethyl oxalate by carbonylation or ethylene glycol by hydrogenation.
  • the invention not only provides the advantages of a general radial reactor, in which a catalyst loading amount is high, a pressure drop in the catalyst bed layer is reduced, the apparatus saves energy consumption, the operation cost is reduced, but also overcomes the difficulties associated with manufacturing and transportation of a large fixed bed reactor.
  • Multiple reactor cylinders and gas cylinders may be used to increase reactor productivity within a desirable weight tolerance range and reduce equipment investment; the radial temperature difference in the reactor is small, which is beneficial to the full and effective utilization of catalysts, lowering the temperature of the catalytic bed, prolonging the service life of the catalyst, and reducing the operating cost.
  • the reactor of the present invention may have a pressure drop less than 30 kPa in the catalyst bed packed with a catalyst in a volume greater than 100 m 3 .
  • the reactor can be fully adapted to large-scale ethylene glycol production plants.
  • a large-scale carbonylation and hydrogenation radial reactor comprises a shell, an internal heat exchange member, a gas distribution member, an inlet pipe member and an outlet pipe member, wherein the internal heat exchange member comprises a heat exchange a tube bundle, the shell forms an upper head (I) , a reactor cylinder (II) and a lower head (III) , and the upper head (I) and the lower head (III) are respectively provided with a gas inlet and a gas outlet.
  • the reactor is characterized in that: The inlet pipe member and the outlet pipe member are respectively arranged on the lower head (III) and the upper head (I) , or a lower part and an upper part of the reactor cylinder (II) , and are arranged symmetrically along a circumference. Each head has two or more of inlet or outlet members.
  • a feed gas inlet pipe A is disposed with a gas distribution enhancer.
  • the heat exchange tube bundle is arranged between a porous gas distributor D and a gas cylinder L.
  • the upper head (I) is provided with a boiling water or high-temperature steam outlet member, which serves as a steam drum.
  • the boiler water flows through the heat exchange tube bundle J.
  • the catalyst is packed in between the heat exchange tube bundle J to form a catalyst bed.
  • the gas cylinder is in the center of the reactor cylinder (II) .
  • the gas cylinder wall has holes with a higher density in a lower portion of the gas cylinder wall than those in an upper portion of the gas cylinder wall. The holes are circles and reduce pressure drop.
  • the porous gas distributor D and the central gas collecting cylinder L are each separated from the catalyst of bed with a catalyst frame of stainless steel wire mesh K.
  • the central gas cylinder L is a hollow member whose top end is closed.
  • the reactor cylinder (I) and each head are connected by a flange B.
  • the top end of the gas cylinder L is closed by a flange.
  • the heat exchange tube bundle J is a straight pipe, and boiler water is supplied through E, which is located on the lower flange.
  • FIG. 2 shows that the raw material gas flows radially from the porous gas distributor D through the catalyst bed C, reaches the gas cylinder L, and flows out from the lower exhaust gas outlet F. Boiler water follows the tube and exits from upper high-temperature boiling water outlet F.
  • a reactor for producing a target product on a large scale is provided.
  • the target product may be dimethyl oxalate or ethylene glycol.
  • the reactor comprises a shell, a gas distribution member, an internal heat exchange member, an inlet pipe member and an outlet pipe member.
  • the reactor may have a dimethyl oxalate production capacity greater than about 400 kt/a or an ethylene glycol production capacity greater than about 200 kt/a.
  • the shell has a reactor cylinder inner wall (M) .
  • the shell forms an upper head (I) , a reactor cylinder (II) and a lower head (III) .
  • the gas distribution member comprises a raw material gas inlet (A) , through which a raw material gas enters the reactor; a gas distribution enhancer (G) , which enhances the distribution of the raw material gas in the reactor by, for example, using a fan-like turbofan structure to rotate the gas to change its flow direction; a gas distributor (D) , which has pores and distributes the raw material gas through the catalysts in the catalyst bed by allowing the raw material gas to flow through its pores into a hollow gas cylinder (L) having a wall with holes.
  • a tail gas accumulates in the hollow gas cylinder and is discharged from the reactor through a tail gas outlet (F) .
  • the internal heat exchange member comprises a heat exchange tube bundle (J) .
  • the inlet pipe member comprises two or more boiler water inlets (E) .
  • the outlet pipe member comprises a high-temperature boiling water outlet (H) .
  • Each inlet pipe member corresponds to an outlet pipe member.
  • Each inlet pipe member and its corresponding outlet pipe member are arranged symmetrically along a circumference on the lower head (III) and the upper head (I) , respectively, or on a lower part and an upper part of the barrel (II) , respectively.
  • the raw material gas inlet (A) , the gas distribution enhancer (G) , and at least two outlet pipe members are in the upper head (I) .
  • the gas distributor (D) , the heat exchange tube bundle (J) , a catalyst bed (C) and the gas cylinder (L) are in the reactor cylinder (II) .
  • the tail gas outlet (F) and at least two inlet pipe members are in the lower head (III) .
  • the catalyst bed (C) is arranged between the gas distributor (D) and the gas cylinder (L) , but outside the heat exchange tube bundle (J) .
  • the catalyst bed comprises a catalyst.
  • the heat exchange tube bundle (J) is arranged between the gas distributor (D) and the gas cylinder (L) , and provides a tube path for boiler water to flow continuously from the boiler water inlet (E) to the high-temperature boiling water outlet (H) . Heat is released from the heat exchange tube bundle (J) .
  • the reactor cylinder inner wall, the pores in the gas distributor (D) , the holes in the gas cylinder (L) provide a space path for a raw material gas to flow continuously from the raw material gas inlet (A) to the tail gas outlet (F) such that the raw mater gas contacts with the catalysts in the presence of the released heat.
  • the target product is the dimethyl oxalate and the reactor may have a production capacity for the dimethyl oxalate of greater than 400, 500, 600, 700 or 800 kt/a.
  • the target product is ethylene glycol and the reactor may have a production capacity for the ethylene glycol of greater than 100, 150, 200, 250, 300, 350, 400, 450 or 500 kt/a.
  • the reactor may further comprise a steam drum in the upper head (I) .
  • the reactor may be a radial reactor.
  • the reactor cylinder (II) and the gas cylinder (L) may be vertical.
  • the reactor cylinder (II) and the gas cylinder (L) may share the same vertical axis.
  • the holes in the gas cylinder wall may have a higher density in a lower portion of the gas cylinder wall than those in an upper portion of the gas cylinder wall, and the holes may be in the shape of circles or vertical strips.
  • the porous gas distributor (D) may be separated from the catalyst bed (C) by a catalyst frame (K) of a stainless steel mesh.
  • the gas cylinder (L) may be separated from the catalyst bed (C) by a catalyst frame (K) of a stainless steel mesh.
  • the raw material gas inlet (A) may be in the upper head (I) and the tail gas outlet (F) may be in the lower head (III) .
  • the gas cylinder (L) may have a closed top end.
  • the cylinder body (II) may be connected to the upper head (I) with an upper flange, the cylinder body (II) may be connected to the lower head with a lower flange, and the gas cylinder (L) may have a top end closed with a gas cylinder flange.
  • the two or more boiler water inlets (E) may be at the lower flange.
  • the reactor may further comprise an additional reactor cylinder on top of the reactor cylinder (II) .
  • the additional reactor cylinder may be connected to the cylinder body (II) with an additional flange.
  • the gas collection cylinder (L) may be connected with a gas cylinder flange.
  • a steam drum may be formed between the one or more additional cylinder bodies and the cylinder body (II) .
  • the heat exchange tube bundle may comprise tubes.
  • Each tube may be selected from the group consisting of a straight tube, a serpentine coil and a combination thereof.
  • the tubes may have an inner diameter of about 15-50 mm and/or a tube center distance of about 25-90 mm.
  • the reactor cylinder (II) may have a diameter of about 4000-7000 mm and/or a height of about 2800-8000 mm.
  • the catalyst bed may have a pressure drop less than about 5, 10, 12, 15, 20, 25, 30, kPa.
  • the one or more catalysts may have a volume greater than about 100, 110, 120, 130, 140, 150, 160, 170, 180, 190 or 200 m 3 .
  • the apparatus comprises the reactor of the invention and a single water-cooling straight tube or serpentine coil.
  • the reactor comprises a shell, a gas inlet, a gas outlet, a water inlet and a water outlet.
  • the shell forms a vertical reactor cylinder.
  • a cylinder inner wall, a gas distributor having pores, a catalyst bed layer, a heat exchange tube bundle and a vertical hollow gas cylinder having a gas cylinder wall with holes are in the reactor cylinder.
  • the gas cylinder is in the center of the cylinder body, and the gas outlet is connected with the gas cylinder.
  • the gas distributor is between the reactor cylinder inner wall and the gas cylinder, and the gas inlet is connected with a space between the gas distributor and the reactor cylinder inner wall.
  • the catalyst bed and the heat exchange tube bundle are between the gas distributor and the gas cylinder, and outside the heat exchange tube bundle.
  • the catalyst bed comprises a catalyst.
  • the heat exchange tube bundle connects with the water inlet and the water outlet, and provides a tube path for water flow from the water inlet to the water outlet.
  • the space between the reactor cylinder inner wall and the gas distributor, the pores in the gas distributor, and the holes in the gas cylinder wall provide a gas path for gas flow from the gas inlet to the gas outlet.
  • the process comprises feeding boiler water into the water inlet; moving the boiler water continuously through the heat exchange tube bundle such that the boiler water releases heat from the heat exchange tube bundle and high-temperature boiling water and steam are formed; discharging the high-temperature boiling water and steam from the reactor through the water outlet; feeding a raw material gas into the gas inlet; moving the raw material gas continuously through the gas path; contacting the raw material gas with the catalyst in the presence of the released heat, whereby a target product is produced and a tail gas is formed; and discharging the tail gas from the reactor through the gas outlet.
  • the target product is the dimethyl oxalate, which is produced continuously in the reactor at a yield greater than 400, 500, 600, 700 or 800 kt/afor at least one year.
  • the target product is the ethylene glycol, which is produced continuously in the reactor at a yield greater than 100, 150, 200, 250, 300, 350, 400, 450 or 500 kt/a for at least one year.
  • the heat exchange tube bundle may comprise tubes.
  • the tubes may be selected from the group consisting of a straight tube, a serpentine coil and a combination thereof.
  • the tubes may have an inner diameter of about 15-50 mm and/or a tube center distance of about 25-90 mm.
  • the reactor cylinder may have a diameter of about 4000-7000 mm and/or a height of about 2800-8000 mm.
  • the catalyst bed may have a pressure drop less than about 5, 10, 12, 15, 20, 25, 30, kPa.
  • the one or more catalysts may have a volume greater than about 100, 110, 120, 130, 140, 150, 160, 170, 180, 190 or 200 m 3 .
  • a carbonylation reactor having two reactor cylinders having a height of DN 4000mm and a diameter of DN 4600 mm was used.
  • the heat exchange tubes in the heat exchange tube bundle had an outer diameter of 28 mm, and were arranged in a positive triangle shape with a tube center distance of 44 mm.
  • the catalyst was packed in a volume greater than 120 m 3 . Under normal operation, the production capacity of dimethyl oxalate was greater than 400 kt/a.
  • the catalyst bed had a pressure drop less than 12 kPa.
  • a carbonylation reactor having two reactor cylinders having a height of DN 4000mm and a diameter of DN 5800 mm was used.
  • the heat exchange tubes in the heat exchange tube bundle had an outer diameter of 28 mm, and were arranged in a positive triangle shape with a tube center distance of 44 mm.
  • the catalyst was packed in a volume greater than 200 m 3 . Under normal operation, the production capacity of dimethyl oxalate was greater than 600 kt/a.
  • the catalyst bed had a pressure drop less than 12 kPa.
  • a hydrogenation reactor having two reactor cylinders with a height of DN 4000mm and a diameter of DN 4000 mm was used.
  • the heat exchange tubes in the heat exchange tube bundle had an outer diameter of 25 mm, and were arranged in a positive triangle shape with a tube center distance of 44 mm.
  • the catalyst was packed with a volume greater than 110 m 3 . Under normal operation, the production capacity of ethylene glycol was greater than 200 kt/a.
  • the catalyst bed had a pressure drop less than 30 kPa.
  • a hydrogenation reactor having two reactor cylinders with a height of DN 5000mm and a diameter of DN 4400 mm was used.
  • the heat exchange tubes in the heat exchange tube bundle had an outer diameter of 25 mm, and were arranged in a positive triangle shape with a tube center distance of 44 mm.
  • the catalyst was packed with a volume greater than 162 m 3 . Under normal operation, the production capacity of ethylene glycol was greater than 300 kt/a.
  • the catalyst bed had a pressure drop less than 30 kPa.

Abstract

A reactor having a large-scale dimethyl oxalate or ethylene glycol production capacity is provided.The reactor comprises a shell,a gas distribution member,an internal heat exchange member,a inlet pipe member and an outlet pipe member.The large-scale dimethyl oxalate or ethylene glycol production capacity may be greater than about 400 or 200kt/a respectively.A large volume of catalysts may be used in a catalyst bed (c) having a reduced pressure drop.Also provided is a process for producing ethylene glycol on a large scale in a reactor.

Description

LARGE-SCALE ETHYLENE GLYCOL REACTOR FIELD OF THE INVENTION
The invention relates to synthesis of ethylene glycol in a gas phase, especially on a large scale.
BACKGROUND OF THE INVENTION
A carbonylation reactor and a hydrogenation reactor are core components of the equipment for synthesis of ethylene glycol from syngas. Synthesis of an oxalate from syngas by carbonylation and synthesis of ethylene glycol from the oxalate by hydrogenation are both exothermic reactions. The carbonylation reaction is a fast reaction in the order of seconds, and takes place mainly in the upper part of a catalyst tube while the lower part plays a balance role to remove from the catalyst bed layer mainly depending on the heat exchange area of the upper part of the catalyst tube. In case of emergency, the reaction heat accumulates and the catalyst bed is overheated such that nitrite degrades by heat and can easily cause an explosion accident. In the hydrogenation reaction, the catalyst is easy to coke and be pulverized, resulting in different resistance in each catalyst tube in the reactor. As a result, gas drifts, the catalyst bed is locally overheated, side reactants are high, and the catalyst utilization rate is low. The pressure drop in the catalyst bed layer is high. The compressor consumes much more electricity.
At present, the carbonylation reactor and the hydrogenation reactor in operation or under design are tubular reactors. Under the same transportation conditions, the catalyst loading of a single reactor is small, and the resistance in the reaction system is reduced. For a 200,000 tons/year, or 200 kt/a, ethylene glycol plant, it is usually necessary to provide two carbonylation reactors and three to four hydrogenation reactors, which not only occupy a large area, but also cost a lot to build. In such a plant, gas drifting can easily happen and the operation is difficult. Each reactor in a single set of 200,000 tons/year dimethyl oxalate production plant may have a diameter of 6 m and a height of 8 m, and causes many problems during transportation, installation and operation. The tubular reactor has restricted large-scale development.
In order to save energy and reduce investment, newly installed ethylene glycol plants are getting larger and larger, and some have reached a production level in the millions of tons. The existing tubular carbonylation reactors and hydrogenation reactors limit large-scale production of ethylene glycol. Therefore, there remains a need for ethylene glycol synthesis reactors suitable for large or super large reaction plants.
SUMMARY OF THE INVENTION
The present invention provides a reactor for large-scale production of dimethyl oxalate or ethylene glycol and uses thereof.
A reactor for a large-scale production of a target product is provided.
The reactor comprises a shell, a gas distribution member, an internal heat exchange member, inlet pipe members and outlet pipe members. The shell has a reactor cylinder inner wall (M) . The shell forms an upper head (I) , a reactor cylinder (II) and a lower head (III) . The gas distribution member comprises one or more raw material gas inlets (A) , one or more gas distribution enhancers (G) , a gas distributor (D) having pores, a hollow gas cylinder (L) , and one or more tail gas outlets (F) . The internal heat exchange member comprises a heat exchange tube bundle (J) . The two or more inlet pipe members comprise two or more boiler water inlets (E) . The two or more outlet pipe members comprise two or more high-temperature boiling water outlets (H) . Each of the two or more inlet pipe members corresponds to one of the two or more outlet pipe members. Each inlet pipe member and its corresponding outlet pipe member are arranged symmetrically along a circumference on the lower head (III) and the upper head (I) , respectively, or on a lower part and an upper part of the barrel (II) , respectively.
The one or more raw material gas inlets (A) , the one or more gas distribution enhancers (G) , and at least two of the two or more outlet pipe members are in the upper head (I) . The one or more tail gas outlets (F) and the at least two of the two or more inlet pipe members are in the lower head (III) . The gas distributor (D) , the heat exchange tube bundle (J) , a catalyst bed (C) and the gas cylinder (L) are in the reactor cylinder (II) . The catalyst bed (C) is arranged between the gas distributor (D) and the gas cylinder (L) , and outside the heat exchange tube bundle (J) . The catalyst bed comprises a catalyst.
The heat exchange tube bundle (J) is arranged between the gas distributor (D) and the gas cylinder (L) , and provides a tube path for boiler water to flow continuously from the two or more boiler water inlets (E) to the two or more high-temperature boiling water outlets (H) . Heat is released from the heat exchange tube bundle (J) .
The reactor cylinder inner wall, the pores in the gas distributor (D) , the holes in the gas cylinder (L) provide a space path for a raw material gas to flow continuously from the one or more raw material gas inlets (A) to the one or more tail gas outlets (F) such that the raw mater gas contacts with the catalyst in the presence of the released heat. Where the raw material gas comprises carbon monoxide (CO) and methyl nitrite (MN) , the catalyst  catalyzes synthesis of dimethyl oxalate from the carbon monoxide (CO) and the methyl nitrite (MN) , and the target product is the dimethyl oxalate, the reactor has a production capacity for the dimethyl oxalate of greater than 400 kt/a. Alternatively, where the raw material gas comprises dimethyl oxalate and hydrogen (H 2) , the catalyst catalyzes synthesis of ethylene glycol from the dimethyl oxalate and the hydrogen (H 2) , and the target product is the ethylene glycol, the reactor has a production capacity for the ethylene glycol of greater than 200 kt/a.
The reactor may further comprise a steam drum in the upper head (I) .
The reactor may be a radial reactor. In the radial reactor, the reactor cylinder (II) and the gas cylinder (L) may be vertical. The reactor cylinder (II) and the gas cylinder (L) may share the same vertical axis. The holes in the gas cylinder wall may have a higher density in a lower portion of the gas cylinder wall than those in an upper portion of the gas cylinder wall. The holes are in the shape of circles or vertical strips. The porous gas distributor (D) may be separated from the catalyst bed (C) by a catalyst frame (K) of a stainless steel mesh. The gas cylinder (L) may be separated from the catalyst bed (C) by a catalyst frame (K) of a stainless steel mesh. The one or more raw material gas inlets (A) may be in the upper head (I) and the one or more tail gas outlets (F) may be in the lower head (III) . The gas cylinder (L) may have a closed top end.
In the radial reactor, the cylinder body (II) may be connected to the upper head (I) with an upper flange, the cylinder body (II) may be connected to the lower head with a lower flange, and the gas cylinder (L) may have a top end closed with a gas cylinder flange. The two or more boiler water inlets (E) may be at the lower flange.
The reactor may further comprise one or more additional reactor cylinders on top of the reactor cylinder (II) and one or more additional gas cylinders on top of the gas cylinder (L) . The one or more additional reactor cylinders may be connected to the cylinder body (II) with an additional flange and the one or more additional gas cylinders are connected to the gas collection cylinder (L) with a gas cylinder flange. As a result, a steam drum is formed between the one or more additional cylinder bodies and the cylinder body (II) .
The heat exchange tube bundle may comprise tubes. Each tube is selected from the group consisting of a straight tube, a serpentine coil and a combination thereof. The tubes may have an external diameter of 15-50 mm and a tube center distance of 25-90 mm.
The reactor cylinder (II) may have a diameter of 4000-7000 mm and a height of 2800-8000 mm.
The catalyst bed may have a pressure drop less than 30 kPa. The one or more catalysts may have a volume greater than 100 m 3.
An apparatus is also provided. The apparatus comprises the reactor having an ethylene glycol production capacity greater than 200 kt/a and a single water-cooling straight tube or serpentine coil.
A process for producing a target product on a large scale in a reactor is further provided.
According to the process, the reactor comprises a shell, a gas inlet, a gas outlet, a water inlet and a water outlet. The shell forms a vertical reactor cylinder. A cylinder inner wall, a gas distributor having pores, a catalyst bed layer, a heat exchange tube bundle and a vertical hollow gas cylinder having a gas cylinder wall with holes are in the reactor cylinder. The gas cylinder is in the center of the cylinder body, and the gas outlet is connected with the gas cylinder. The gas distributor is between the reactor cylinder inner wall and the gas cylinder, and the gas inlet is connected with a space between the gas distributor and the reactor cylinder inner wall. The catalyst bed is between the gas distributor and the gas cylinder, and outside the heat exchange tube bundle. The catalyst bed comprises a catalyst. The heat exchange tube bundle is between the gas distributor and the gas cylinder, and connects with the water inlet and the water outlet. The space between the reactor cylinder inner wall and the gas distributor, the pores in the gas distributor, and the holes in the gas cylinder wall provide a gas path from the gas inlet to the gas outlet.
The process comprises feeding boiler water into the water inlet; moving the boiler water continuously through the heat exchange tube bundle such that the boiler water releases heat from the heat exchange tube bundle and high-temperature boiling water and steam are formed; discharging the high-temperature boiling water and steam from the reactor through the water outlet; feeding a raw material gas into the gas inlet; moving the raw material gas continuously through the gas path; contacting the raw material gas with the catalyst in the presence of the released heat, whereby a target product is produced and a tail gas is formed; and discharging the tail gas from the reactor through the gas outlet.
Where the raw material gas comprises carbon monoxide (CO) and methyl nitrite (MN) , and the catalyst catalyzes synthesis of dimethyl oxalate from the carbon monoxide (CO) and the methyl nitrite (MN) , the target product is the dimethyl oxalate produced continuously in the reactor at a yield greater than 400 kt/a for at least one year. Alternatively, where the raw material gas comprises dimethyl oxalate and hydrogen (H 2) , and the catalyst catalyzes synthesis of ethylene glycol from the dimethyl oxalate and the  hydrogen (H 2) , the target product is the ethylene glycol produced continuously in the reactor at a yield greater than 200 kt/a for at least one year.
According to the process of the invention, the heat exchange tube bundle may comprise one or more tubes, which are selected from the group consisting of a straight tube, a serpentine coil and a combination thereof. The one or more tubes may have an external diameter of 15-50 mm and a tube center distance of 25-90 mm. The reactor cylinder may have a diameter of 4000-7000 mm and a height of 2800-8000 mm. The catalyst bed may have a pressure drop less than 30 kPa. The one or more catalysts may have a volume greater than 100 m 3.
BRIEF DESCRIPTION OF THE DRAWING
FIG. 1A is a side view of a reactor according to one embodiment of the invention and FIG. 1B. is a top view of the reactor. (I) Upper head; (II) Cylinder; (III) Lower head; A: Raw material gas inlet pipe; B: Flange; C: Catalyst bed; D: Gas distributor; E: Boiler water inlet; F: Tail gas outlet; G: Gas distribution enhancer; H: High-temperature boiling water outlet; J: Tube bundle (straight tube or serpentine tube) ; K: Catalyst frame; L: Gas cylinder; M: Cylinder inner wall.
FIG. 2 is a schematic diagram showing that (1) a raw material gas enters a reactor and (2) a tail gas exits the reactor while (3) boiler water enters the reactor and (4) high-temperature boiling water and steam exit the reactor.
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides a reactor for large-scale production of dimethyl oxalate by carbonylation or ethylene glycol by hydrogenation. The invention not only provides the advantages of a general radial reactor, in which a catalyst loading amount is high, a pressure drop in the catalyst bed layer is reduced, the apparatus saves energy consumption, the operation cost is reduced, but also overcomes the difficulties associated with manufacturing and transportation of a large fixed bed reactor. Multiple reactor cylinders and gas cylinders may be used to increase reactor productivity within a desirable weight tolerance range and reduce equipment investment; the radial temperature difference in the reactor is small, which is beneficial to the full and effective utilization of catalysts, lowering the temperature of the catalytic bed, prolonging the service life of the catalyst, and reducing the operating cost. For example, the reactor of the present invention may have a pressure drop less than 30 kPa in the catalyst bed packed with a catalyst in a volume  greater than 100 m 3. The reactor can be fully adapted to large-scale ethylene glycol production plants.
One object of the present invention is to overcome the problems associated with large-scale synthesis of dimethyl oxalate by carbonylation and/or ethylene glycol by hydrogenation in a gas phase by providing a reactor capable of effectively reducing pressure drop in the reactor and related apparatus. For example, as shown in FIG. 1, a large-scale carbonylation and hydrogenation radial reactor comprises a shell, an internal heat exchange member, a gas distribution member, an inlet pipe member and an outlet pipe member, wherein the internal heat exchange member comprises a heat exchange a tube bundle, the shell forms an upper head (I) , a reactor cylinder (II) and a lower head (III) , and the upper head (I) and the lower head (III) are respectively provided with a gas inlet and a gas outlet. The reactor is characterized in that: The inlet pipe member and the outlet pipe member are respectively arranged on the lower head (III) and the upper head (I) , or a lower part and an upper part of the reactor cylinder (II) , and are arranged symmetrically along a circumference. Each head has two or more of inlet or outlet members. A feed gas inlet pipe A is disposed with a gas distribution enhancer. The heat exchange tube bundle is arranged between a porous gas distributor D and a gas cylinder L. The upper head (I) is provided with a boiling water or high-temperature steam outlet member, which serves as a steam drum. The boiler water flows through the heat exchange tube bundle J. The catalyst is packed in between the heat exchange tube bundle J to form a catalyst bed. Gas flows in the space between an outer wall of the porous gas distributor D and an inner wall of the cylinder wall. The gas cylinder is in the center of the reactor cylinder (II) . The gas cylinder wall has holes with a higher density in a lower portion of the gas cylinder wall than those in an upper portion of the gas cylinder wall. The holes are circles and reduce pressure drop. The porous gas distributor D and the central gas collecting cylinder L are each separated from the catalyst of bed with a catalyst frame of stainless steel wire mesh K. The central gas cylinder L is a hollow member whose top end is closed. The reactor cylinder (I) and each head are connected by a flange B. The top end of the gas cylinder L is closed by a flange. The heat exchange tube bundle J is a straight pipe, and boiler water is supplied through E, which is located on the lower flange. FIG. 2 shows that the raw material gas flows radially from the porous gas distributor D through the catalyst bed C, reaches the gas cylinder L, and flows out from the lower exhaust gas outlet F. Boiler water follows the tube and exits from upper high-temperature boiling water outlet F.
A reactor for producing a target product on a large scale is provided. The target product may be dimethyl oxalate or ethylene glycol. The reactor comprises a shell, a gas  distribution member, an internal heat exchange member, an inlet pipe member and an outlet pipe member. The reactor may have a dimethyl oxalate production capacity greater than about 400 kt/a or an ethylene glycol production capacity greater than about 200 kt/a.
The shell has a reactor cylinder inner wall (M) . The shell forms an upper head (I) , a reactor cylinder (II) and a lower head (III) .
The gas distribution member comprises a raw material gas inlet (A) , through which a raw material gas enters the reactor; a gas distribution enhancer (G) , which enhances the distribution of the raw material gas in the reactor by, for example, using a fan-like turbofan structure to rotate the gas to change its flow direction; a gas distributor (D) , which has pores and distributes the raw material gas through the catalysts in the catalyst bed by allowing the raw material gas to flow through its pores into a hollow gas cylinder (L) having a wall with holes. A tail gas accumulates in the hollow gas cylinder and is discharged from the reactor through a tail gas outlet (F) .
The internal heat exchange member comprises a heat exchange tube bundle (J) . The inlet pipe member comprises two or more boiler water inlets (E) . The outlet pipe member comprises a high-temperature boiling water outlet (H) .
Each inlet pipe member corresponds to an outlet pipe member. Each inlet pipe member and its corresponding outlet pipe member are arranged symmetrically along a circumference on the lower head (III) and the upper head (I) , respectively, or on a lower part and an upper part of the barrel (II) , respectively.
The raw material gas inlet (A) , the gas distribution enhancer (G) , and at least two outlet pipe members are in the upper head (I) . The gas distributor (D) , the heat exchange tube bundle (J) , a catalyst bed (C) and the gas cylinder (L) are in the reactor cylinder (II) . The tail gas outlet (F) and at least two inlet pipe members are in the lower head (III) .
The catalyst bed (C) is arranged between the gas distributor (D) and the gas cylinder (L) , but outside the heat exchange tube bundle (J) . The catalyst bed comprises a catalyst.
The heat exchange tube bundle (J) is arranged between the gas distributor (D) and the gas cylinder (L) , and provides a tube path for boiler water to flow continuously from the boiler water inlet (E) to the high-temperature boiling water outlet (H) . Heat is released from the heat exchange tube bundle (J) .
The reactor cylinder inner wall, the pores in the gas distributor (D) , the holes in the gas cylinder (L) provide a space path for a raw material gas to flow continuously from the  raw material gas inlet (A) to the tail gas outlet (F) such that the raw mater gas contacts with the catalysts in the presence of the released heat.
Where the raw material gas comprises carbon monoxide (CO) and methyl nitrite, and the catalyst catalyzes synthesis of dimethyl oxalate from the carbon monoxide (CO) and the methyl nitrite, the target product is the dimethyl oxalate and the reactor may have a production capacity for the dimethyl oxalate of greater than 400, 500, 600, 700 or 800 kt/a.
Alternatively, where the raw material gas comprises dimethyl oxalate and hydrogen (H 2) , and the catalyst catalyzes synthesis of ethylene glycol from the dimethyl oxalate and the hydrogen (H 2) , the target product is ethylene glycol and the reactor may have a production capacity for the ethylene glycol of greater than 100, 150, 200, 250, 300, 350, 400, 450 or 500 kt/a. The reactor may further comprise a steam drum in the upper head (I) .
The reactor may be a radial reactor. In the radial reactor, the reactor cylinder (II) and the gas cylinder (L) may be vertical. The reactor cylinder (II) and the gas cylinder (L) may share the same vertical axis. The holes in the gas cylinder wall may have a higher density in a lower portion of the gas cylinder wall than those in an upper portion of the gas cylinder wall, and the holes may be in the shape of circles or vertical strips. The porous gas distributor (D) may be separated from the catalyst bed (C) by a catalyst frame (K) of a stainless steel mesh. The gas cylinder (L) may be separated from the catalyst bed (C) by a catalyst frame (K) of a stainless steel mesh. The raw material gas inlet (A) may be in the upper head (I) and the tail gas outlet (F) may be in the lower head (III) . The gas cylinder (L) may have a closed top end.
In the radial reactor, the cylinder body (II) may be connected to the upper head (I) with an upper flange, the cylinder body (II) may be connected to the lower head with a lower flange, and the gas cylinder (L) may have a top end closed with a gas cylinder flange. The two or more boiler water inlets (E) may be at the lower flange.
The reactor may further comprise an additional reactor cylinder on top of the reactor cylinder (II) . The additional reactor cylinder may be connected to the cylinder body (II) with an additional flange. The gas collection cylinder (L) may be connected with a gas cylinder flange. As a result, a steam drum may be formed between the one or more additional cylinder bodies and the cylinder body (II) .
The heat exchange tube bundle may comprise tubes. Each tube may be selected from the group consisting of a straight tube, a serpentine coil and a combination thereof.  The tubes may have an inner diameter of about 15-50 mm and/or a tube center distance of about 25-90 mm.
The reactor cylinder (II) may have a diameter of about 4000-7000 mm and/or a height of about 2800-8000 mm.
The catalyst bed may have a pressure drop less than about 5, 10, 12, 15, 20, 25, 30, kPa. The one or more catalysts may have a volume greater than about 100, 110, 120, 130, 140, 150, 160, 170, 180, 190 or 200 m 3.
An apparatus for large-scale production is also provided. The apparatus comprises the reactor of the invention and a single water-cooling straight tube or serpentine coil.
A process for producing a target product on a large scale in a reactor is further provided. The reactor comprises a shell, a gas inlet, a gas outlet, a water inlet and a water outlet. The shell forms a vertical reactor cylinder. A cylinder inner wall, a gas distributor having pores, a catalyst bed layer, a heat exchange tube bundle and a vertical hollow gas cylinder having a gas cylinder wall with holes are in the reactor cylinder. The gas cylinder is in the center of the cylinder body, and the gas outlet is connected with the gas cylinder. The gas distributor is between the reactor cylinder inner wall and the gas cylinder, and the gas inlet is connected with a space between the gas distributor and the reactor cylinder inner wall. The catalyst bed and the heat exchange tube bundle are between the gas distributor and the gas cylinder, and outside the heat exchange tube bundle. The catalyst bed comprises a catalyst. The heat exchange tube bundle connects with the water inlet and the water outlet, and provides a tube path for water flow from the water inlet to the water outlet. The space between the reactor cylinder inner wall and the gas distributor, the pores in the gas distributor, and the holes in the gas cylinder wall provide a gas path for gas flow from the gas inlet to the gas outlet.
The process comprises feeding boiler water into the water inlet; moving the boiler water continuously through the heat exchange tube bundle such that the boiler water releases heat from the heat exchange tube bundle and high-temperature boiling water and steam are formed; discharging the high-temperature boiling water and steam from the reactor through the water outlet; feeding a raw material gas into the gas inlet; moving the raw material gas continuously through the gas path; contacting the raw material gas with the catalyst in the presence of the released heat, whereby a target product is produced and a tail gas is formed; and discharging the tail gas from the reactor through the gas outlet.
Where the raw material gas comprises carbon monoxide (CO) and methyl nitrite (MN) , and the catalyst catalyzes synthesis of dimethyl oxalate from the carbon monoxide (CO) and the methyl nitrite (MN) , the target product is the dimethyl oxalate, which is produced continuously in the reactor at a yield greater than 400, 500, 600, 700 or 800 kt/afor at least one year. Alternatively, where the raw material gas comprises dimethyl oxalate and hydrogen (H 2) , and the catalyst catalyzes synthesis of ethylene glycol from the dimethyl oxalate and the hydrogen (H 2) , the target product is the ethylene glycol, which is produced continuously in the reactor at a yield greater than 100, 150, 200, 250, 300, 350, 400, 450 or 500 kt/a for at least one year. According to the process of the invention, the heat exchange tube bundle may comprise tubes. The tubes may be selected from the group consisting of a straight tube, a serpentine coil and a combination thereof. The tubes may have an inner diameter of about 15-50 mm and/or a tube center distance of about 25-90 mm. The reactor cylinder may have a diameter of about 4000-7000 mm and/or a height of about 2800-8000 mm. The catalyst bed may have a pressure drop less than about 5, 10, 12, 15, 20, 25, 30, kPa. The one or more catalysts may have a volume greater than about 100, 110, 120, 130, 140, 150, 160, 170, 180, 190 or 200 m 3.
The term “about” as used herein when referring to a measurable value such as an amount, a percentage, and the like, is meant to encompass variations of ±20%or ±10%, more preferably ±5%, even more preferably ±1%, and still more preferably ±0.1%from the specified value, as such variations are appropriate.
Example 1.
A carbonylation reactor having two reactor cylinders having a height of DN 4000mm and a diameter of DN 4600 mm was used. The heat exchange tubes in the heat exchange tube bundle had an outer diameter of 28 mm, and were arranged in a positive triangle shape with a tube center distance of 44 mm. The catalyst was packed in a volume greater than 120 m 3. Under normal operation, the production capacity of dimethyl oxalate was greater than 400 kt/a. The catalyst bed had a pressure drop less than 12 kPa.
Example 2
A carbonylation reactor having two reactor cylinders having a height of DN 4000mm and a diameter of DN 5800 mm was used. The heat exchange tubes in the heat exchange tube bundle had an outer diameter of 28 mm, and were arranged in a positive triangle shape with a tube center distance of 44 mm. The catalyst was packed in a volume greater than 200 m 3. Under normal operation, the production capacity of dimethyl oxalate was greater than 600 kt/a. The catalyst bed had a pressure drop less than 12 kPa.
Example 3
A hydrogenation reactor having two reactor cylinders with a height of DN 4000mm and a diameter of DN 4000 mm was used. The heat exchange tubes in the heat exchange tube bundle had an outer diameter of 25 mm, and were arranged in a positive triangle shape with a tube center distance of 44 mm. The catalyst was packed with a volume greater than 110 m 3. Under normal operation, the production capacity of ethylene glycol was greater than 200 kt/a. The catalyst bed had a pressure drop less than 30 kPa.
Example 4
A hydrogenation reactor having two reactor cylinders with a height of DN 5000mm and a diameter of DN 4400 mm was used. The heat exchange tubes in the heat exchange tube bundle had an outer diameter of 25 mm, and were arranged in a positive triangle shape with a tube center distance of 44 mm. The catalyst was packed with a volume greater than 162 m 3. Under normal operation, the production capacity of ethylene glycol was greater than 300 kt/a. The catalyst bed had a pressure drop less than 30 kPa.
Although the invention is illustrated and described herein with reference to specific embodiments, the invention is not intended to be limited to the details shown. Rather, various modifications may be made in the details within the scope and range of equivalents of the claims without departing from the invention.

Claims (20)

  1. A reactor for large-scale production of a target product, comprising
    (a) a shell having a reactor cylinder inner wall (M) , wherein the shell forms an upper head (I) , a reactor cylinder (II) and a lower head (III) ;
    (b) a gas distribution member comprising one or more raw material gas inlets (A) , one or more gas distribution enhancers (G) , a gas distributor (D) having pores, a hollow gas cylinder (L) having a gas cylinder wall with holes, and one or more tail gas outlets (F) ;
    (c) an internal heat exchange member comprising a heat exchange tube bundle (J) ;
    (d) two or more inlet pipe members comprising two or more boiler water inlets (E) ; and
    (e) two or more outlet pipe members comprising two or more high temperature boiling water outlets (H) ;
    wherein each of the two or more inlet pipe members corresponds to one of the two or more outlet pipe members, and each inlet pipe member and its corresponding outlet pipe member are arranged symmetrically along a circumference on the lower head (III) and the upper head (I) , respectively, or on a lower part and an upper part of the barrel (II) , respectively;
    wherein the one or more raw material gas inlets (A) , the one or more gas distribution enhancers (G) , and at least two of the two or more outlet pipe members are in the upper head (I) ;
    wherein the one or more tail gas outlets (F) and at least two of the two or more inlet pipe members are in the lower head (III) ;
    wherein the gas distributor (D) , the heat exchange tube bundle (J) , a catalyst bed (C) and the gas cylinder (L) are in the reactor cylinder (II) ;
    wherein the catalyst bed (C) is arranged between the gas distributor (D) and the gas cylinder (L) , and outside the heat exchange tube bundle (J) , and comprises a catalyst;
    wherein the heat exchange tube bundle (J) is arranged between the gas distributor (D) and the gas cylinder (L) , and provides a tube path for boiler water to flow continuously from the two or more boiler water inlets (E) to the two or more high temperature boiling water outlets (H) and release heat;
    wherein the reactor cylinder inner wall, the pores in the gas distributor (D) , the holes in the gas cylinder (L) provide a space path for a raw material gas to flow continuously from the one or more raw material gas inlets (A) to the one or more tail gas outlets (F) and contact with the catalyst in the presence of the released heat; and
    wherein the raw material gas comprises carbon monoxide (CO) and methyl nitrite (MN) , and the catalyst catalyzes synthesis of dimethyl oxalate from the carbon monoxide (CO) and the methyl nitrite (MN) , the target product is dimethyl oxalate, and the reactor has a production capacity for the dimethyl oxalate of greater than 400 kt/a, or
    wherein the raw material gas comprises dimethyl oxalate and hydrogen (H 2) , the catalyst catalyzes synthesis of ethylene glycol from the dimethyl oxalate and the hydrogen (H 2) , the target product is ethylene glycol, and the reactor has a production capacity for the ethylene glycol of greater than 200 kt/a. 2. The reactor of claim 1, further comprising a steam drum in the upper head (I) .
  2. The reactor of claim 1, wherein the reactor is a radial reactor, wherein the reactor cylinder (II) and the gas cylinder (L) are vertical.
  3. The reactor of claim 3, wherein the holes on the gas cylinder wall have a higher density in a lower portion of the gas cylinder wall than those in an upper portion of the gas cylinder wall, and wherein the holes are in the shape of circles or vertical strips;
  4. The reactor of claim 3, wherein the porous gas distributor (D) is separated from the catalyst bed (C) by a catalyst frame (K) of a stainless steel mesh.
  5. The reactor of claim 3, wherein the gas cylinder (L) is separated from the catalyst bed (C) by a catalyst frame (K) of a stainless steel mesh.
  6. The reactor of claim 3, wherein the one or more raw material gas inlets (A) are in the upper head (I) and the one or more tail gas outlets (F) are in the lower head (III) .
  7. The reactor of claim 3, wherein the gas cylinder (L) has a closed top end.
  8. The reactor of claim 3, wherein the cylinder body (II) is connected to the upper head (I) with an upper flange, wherein the cylinder body (II) is connected to the lower head with a lower flange, and wherein the gas cylinder (L) has a top end closed with a gas cylinder flange.
  9. The reactor of claim 9, wherein the two or more boiler water inlets (E) are at the lower flange.
  10. The reactor of claim 1, further comprising one or more additional reactor cylinders on top of the reactor cylinder (II) and one or more additional gas cylinders on top of the gas cylinder (L) , wherein the one or more additional reactor cylinders are connected to the cylinder body (II) with an additional flange and the one or more additional gas cylinders are connected to the gas collection cylinder (L) with a gas cylinder flange, and whereby a steam drum is formed between the one or more additional cylinder bodies and the cylinder body (II) .
  11. The reactor of claim 1, wherein the heat exchange tube bundle comprises tubes each selected from the group consisting of a straight tube, a serpentine coil and a combination thereof, and wherein the tubes have an external diameter of 15-50 mm and a tube center distance of 25-90 mm.
  12. The reactor of claim 1, wherein the reactor cylinder (II) has a diameter of 4000-7000 mm and a height of 2800-8000 mm.
  13. The reactor of claim 1, wherein the catalyst bed has a pressure drop less than 30 kPa.
  14. The reactor of claim 1, wherein the one or more catalysts have a volume greater than 100 m 3.
  15. An apparatus comprising the reactor of claim 1 and a single water-cooling straight tube or serpentine coil.
  16. A process for producing a target product on a large scale in a reactor, wherein a reactor comprises a shell, a gas inlet, a gas outlet, a water inlet and a water outlet; the shell forms a vertical reactor cylinder; a cylinder inner wall, a gas distributor having pores, a catalyst bed layer, a heat exchange tube bundle and a vertical hollow gas cylinder having a gas cylinder wall with holes are in the reactor cylinder; the gas cylinder is in the center of the cylinder body, and the gas outlet is connected with the gas cylinder; the gas distributor is between the reactor cylinder inner wall and the gas cylinder, and the gas inlet is connected with a space between the gas distributor and the reactor cylinder inner wall; the catalyst bed is between the gas distributor and the gas cylinder, and outside the heat exchange tube bundle, and comprises a catalyst; wherein the heat exchange tube bundle is between the gas distributor and the gas cylinder, and connects with the water inlet and the water outlet; and wherein the space between the reactor cylinder inner wall and the gas distributor, the pores in the gas distributor, and the holes in the gas cylinder wall provide a gas path from the gas inlet to the gas outlet;
    the process comprising:
    (a) feeding boiler water into the water inlet;
    (b) moving the boiler water continuously through the heat exchange tube bundle, whereby the boiler water releases heat from the heat exchange tube bundle and high temperature boiling water and steam are formed;
    (c) discharging the high temperature boiling water and steam from the reactor through the water outlet;
    (d) feeding a raw material gas into the gas inlet;
    (e) moving the raw material gas continuously through the gas path;
    (f) contacting the raw material gas with the catalyst in the presence of the released heat, whereby the target product is produced and a tail gas is formed; and
    (g) discharging the tail gas from the reactor through the gas outlet;
    wherein the raw material gas comprises carbon monoxide (CO) and methyl nitrite (MN) , the catalyst catalyzes synthesis of dimethyl oxalate from the carbon monoxide (CO) and the methyl nitrite (MN) , and the target product is the dimethyl oxalate, which is produced continuously in the reactor at a yield greater than 400 kt/afor at least one year, or
    wherein the raw material gas comprises dimethyl oxalate and hydrogen (H 2) , the catalyst catalyzes synthesis of ethylene glycol from the dimethyl oxalate and the hydrogen (H 2) , and the target product is ethylene glycol, which is produced continuously in the reactor at a yield greater than 200 kt/afor at least one year.
  17. The process of claim 17, wherein the heat exchange tube bundle comprise one or more tubes selected from the group consisting of a straight tube, a serpentine coil and a combination thereof, and wherein the one or more tubes have an external diameter of 15-50 mm and a tube center distance of 25-90 mm.
  18. The process of claim 17, wherein the reactor cylinder has a diameter of 4000-7000 mm and a height of 2800-8000 mm.
  19. The process of claim 17, wherein the catalyst bed has a pressure drop less than 30 kPa.
  20. The process of claim 17, wherein the one or more catalysts have a volume greater than 100 m 3.
PCT/CN2018/111139 2018-10-22 2018-10-22 Large-scale ethylene glycol reactor WO2020082202A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/111139 WO2020082202A1 (en) 2018-10-22 2018-10-22 Large-scale ethylene glycol reactor
RU2018145371A RU2719441C1 (en) 2018-10-22 2018-10-22 Reactor for large-scale synthesis of ethylene glycol
AU2018446829A AU2018446829B2 (en) 2018-10-22 2018-10-22 Large-scale ethylene glycol reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/111139 WO2020082202A1 (en) 2018-10-22 2018-10-22 Large-scale ethylene glycol reactor

Publications (1)

Publication Number Publication Date
WO2020082202A1 true WO2020082202A1 (en) 2020-04-30

Family

ID=70277916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111139 WO2020082202A1 (en) 2018-10-22 2018-10-22 Large-scale ethylene glycol reactor

Country Status (3)

Country Link
AU (1) AU2018446829B2 (en)
RU (1) RU2719441C1 (en)
WO (1) WO2020082202A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111676058A (en) * 2020-06-19 2020-09-18 中耐工程科技有限公司 Residual oil hydrogenation reactor with alternately changed material flow directions, residual oil hydrogenation system comprising reactor and residual oil hydrogenation process
CN113912491A (en) * 2020-07-10 2022-01-11 中国石油化工股份有限公司 Method and device for safely preparing dimethyl oxalate in coupling reactor and application of method and device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112387219A (en) * 2020-11-13 2021-02-23 华东理工大学 Gasification-reaction integrated multi-stage reactor for ethylene carbonate hydrogenation
CN113680305B (en) * 2021-10-25 2022-01-04 东营明德化工有限公司 Constant temperature type hydrogenation reaction kettle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0260530A2 (en) * 1986-09-17 1988-03-23 Linde Aktiengesellschaft Process for carrying out catalytic reactions
JP2010069355A (en) * 2008-09-16 2010-04-02 Mitsubishi Chemicals Corp Plate type reactor and method for manufacturing reaction product using the same
CN102649736A (en) * 2011-02-25 2012-08-29 中国石油化工股份有限公司 Method for producing oxalate through carbon monoxide gas phase- coupled catalytic reaction
CN102872767A (en) * 2012-10-23 2013-01-16 上海戊正工程技术有限公司 Industrialized plate type reactor for carbonylating and coupling to synthesize ester
CN102895922A (en) * 2012-10-23 2013-01-30 上海戊正工程技术有限公司 Industrial plate type reactor for preparing glycol by hydrogenating oxalate or preparing alcohol by hydrogenating ester
CN108636298A (en) * 2018-06-15 2018-10-12 南京聚拓化工科技有限公司 The oxonation device of synthesis gas preparing ethylene glycol device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101396647B (en) * 2007-09-29 2011-03-16 中科合成油技术有限公司 Gas-liquid-solid three-phase suspended bed reactor for f-t synthesis and use thereof
MY162972A (en) * 2011-02-25 2017-07-31 China Petroleum & Chem Corp Method for the production of ethylene glycol
RU2659069C1 (en) * 2014-06-05 2018-06-28 Шанхай Учжэн Инжиниринг Текнолоджи Ко., Лтд Method and system of devices for producing dimethyloxalate by carbonylation of industrial synthesis gas under medium-high and high pressure and production of ethylene glycol by hydration of dimethyloxalate
CN204619939U (en) * 2015-04-16 2015-09-09 中国五环工程有限公司 A kind of novel hydrogenation reactor for the synthesis of gas preparing ethylene glycol technique
CN106866363B (en) * 2017-02-10 2020-05-22 南京敦先化工科技有限公司 Device and method for preparing ethylene glycol from large-scale synthesis gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0260530A2 (en) * 1986-09-17 1988-03-23 Linde Aktiengesellschaft Process for carrying out catalytic reactions
JP2010069355A (en) * 2008-09-16 2010-04-02 Mitsubishi Chemicals Corp Plate type reactor and method for manufacturing reaction product using the same
CN102649736A (en) * 2011-02-25 2012-08-29 中国石油化工股份有限公司 Method for producing oxalate through carbon monoxide gas phase- coupled catalytic reaction
CN102872767A (en) * 2012-10-23 2013-01-16 上海戊正工程技术有限公司 Industrialized plate type reactor for carbonylating and coupling to synthesize ester
CN102895922A (en) * 2012-10-23 2013-01-30 上海戊正工程技术有限公司 Industrial plate type reactor for preparing glycol by hydrogenating oxalate or preparing alcohol by hydrogenating ester
CN108636298A (en) * 2018-06-15 2018-10-12 南京聚拓化工科技有限公司 The oxonation device of synthesis gas preparing ethylene glycol device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111676058A (en) * 2020-06-19 2020-09-18 中耐工程科技有限公司 Residual oil hydrogenation reactor with alternately changed material flow directions, residual oil hydrogenation system comprising reactor and residual oil hydrogenation process
CN111676058B (en) * 2020-06-19 2022-01-07 中耐工程科技有限公司 Residual oil hydrogenation reactor with alternately changed material flow directions, residual oil hydrogenation system comprising reactor and residual oil hydrogenation process
CN113912491A (en) * 2020-07-10 2022-01-11 中国石油化工股份有限公司 Method and device for safely preparing dimethyl oxalate in coupling reactor and application of method and device

Also Published As

Publication number Publication date
RU2719441C1 (en) 2020-04-17
AU2018446829B2 (en) 2022-12-15
AU2018446829A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
AU2018446829B2 (en) Large-scale ethylene glycol reactor
CN101959585B (en) Method and reactor for preparation of methanol
WO2016045585A1 (en) Large reactor and device and process thereof
CN102850183B (en) Methanol synthesis system and method
CN102836676A (en) Gas-solid phase catalytic reactor
CN101249406A (en) Heat insulation-cold stimulated-shell of pipe exterior cold combined gas solid phase fixed bed catalyst chamber
JPS5892456A (en) Reactor
CN102872767B (en) Industrialized plate type reactor for carbonylating and coupling to synthesize ester
CN100579643C (en) By-product steam combined axial flow gas-solid phase fixed bed catalyst chamber
WO2014181079A1 (en) Reactor
CN107162912A (en) A kind of method that use segmented insulation fix bed reactor prepares methyl acetate
JP5188895B2 (en) Methanol synthesis reactor and methanol synthesis method
CN113426384A (en) Multi-section fixed bed reactor and Fischer-Tropsch synthesis reaction system
CN102886229B (en) CO (carbon monoxide) full-radial isothermal converting furnace
CN109294627B (en) Isothermal conversion device and synthesis gas complete conversion reaction system comprising same
CN209197530U (en) A kind of cage heat exchanger in catalytic hydrogenation reaction device
CN109111342A (en) A kind of water cooling methanol synthesizing process
CN202876771U (en) Industrialized plate type reactor for preparing glycol by oxalate hydrogenation or alcohol by ester hydrogenation
CN202808648U (en) Methanol synthetic system
KR101923231B1 (en) Exchanger-reactor for the production of hydrogen with an integrated steam generation bundle
CN101890324A (en) Reactor used in crude gas variable-temperature reaction process
JPS6124372B2 (en)
JP5312355B2 (en) Reactor and reaction product manufacturing method using the same
CN205328607U (en) Be used for large -scale for methanol steam reforming hydrogen plant methyl alcohol converter
CN103920429A (en) Axial-radial fixed bed methanation reactor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937930

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018446829

Country of ref document: AU

Date of ref document: 20181022

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18937930

Country of ref document: EP

Kind code of ref document: A1