WO2015180034A1 - 一种高优值的P型FeNbTiSb热电材料及其制备方法 - Google Patents

一种高优值的P型FeNbTiSb热电材料及其制备方法 Download PDF

Info

Publication number
WO2015180034A1
WO2015180034A1 PCT/CN2014/078513 CN2014078513W WO2015180034A1 WO 2015180034 A1 WO2015180034 A1 WO 2015180034A1 CN 2014078513 W CN2014078513 W CN 2014078513W WO 2015180034 A1 WO2015180034 A1 WO 2015180034A1
Authority
WO
WIPO (PCT)
Prior art keywords
fenbtisb
type
thermoelectric material
ingot
thermoelectric
Prior art date
Application number
PCT/CN2014/078513
Other languages
English (en)
French (fr)
Inventor
朱铁军
付晨光
赵新兵
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to US14/900,132 priority Critical patent/US10446732B2/en
Priority to PCT/CN2014/078513 priority patent/WO2015180034A1/zh
Priority to JP2016541776A priority patent/JP6250172B2/ja
Publication of WO2015180034A1 publication Critical patent/WO2015180034A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment

Definitions

  • the invention relates to the field of semiconductor thermoelectric materials, in particular to a high-quality P-type FeNbTiSb thermoelectric material and a preparation method thereof.
  • thermoelectric material is a semiconductor material that directly converts electrical energy and thermal energy into each other through movement of carriers (electrons or holes) inside the material.
  • the thermoelectric material can convert the thermal energy into an electrical energy output, which is called Seebeck effect; after the electric field is applied to both ends of the thermoelectric material, the thermoelectric material can convert electrical energy into heat energy, one end radiates heat and the other end absorbs heat, which is called Petier Effects, these two effects make thermoelectric materials have a wide range of applications in power generation or refrigeration.
  • thermoelectric materials can be used as power sources for deep spacecraft, field operations, marine lighthouses, nomadic people, or for industrial waste heat and waste heat power generation.
  • the refrigerating device made of thermoelectric material is small in size and does not require chemical medium, and can be applied to local cooling of small refrigerators, computer chips and laser detectors, medical portable ultra-low temperature refrigerators, etc., and a wider range of potential application fields will include: household Refrigerator, cooling, car or home air conditioning units.
  • the device made of thermoelectric material has the advantages of no mechanical moving parts, no noise, no wear, simple structure, and the shape can be designed as needed.
  • thermoelectric material The performance of thermoelectric materials is characterized by the "thermoelectric figure of merit" - zT :
  • a is the thermoelectric potential coefficient of the material
  • s is the electrical conductivity
  • T is the absolute temperature
  • k is the thermal conductivity
  • thermoelectric material should have high electrical conductivity and thermoelectric potential coefficient and low thermal conductivity. High-performance thermoelectric devices require performance and structural matching. Type and P type materials.
  • thermoelectric materials have important applications in the automotive industry, waste heat recovery in factories, and space satellites.
  • a typical high-temperature thermoelectric material is a SiGe alloy.
  • the N-type material has a high performance and a zT value of about 1.0, but the P-type material has a poor performance of about 0.5.
  • the Half-Heusler system has attracted the attention of researchers in the field of thermoelectrics due to its rich content of components and good electrical properties.
  • the N-type ZrNiSn-based Half-Heusler material has a zT value of 1.0, which is comparable to N-type SiGe.
  • the performance of P-type Half-Heusler materials is still low, which is a major problem that restricts the application of this system in high-temperature power generation.
  • thermoelectric materials The raw materials of thermoelectric materials are abundant in the earth's crust and the price is relatively low. However, at present, there are few studies on such thermoelectric materials.
  • the invention provides a novel high-quality P-type FeNbTiSb thermoelectric material and a preparation method thereof, and the highest zT value of the P-type FeNbTiSb thermoelectric material is about 1.1 at 1100K.
  • the invention also discloses a preparation method of the P-type FeNbTiSb thermoelectric material, the steps are as follows:
  • the raw material is smelted three times by a suspension smelting method to obtain an ingot.
  • the ingot is pulverized into particles having a particle diameter of 200 nm to 10.0 ⁇ m.
  • step (2) sintering is performed at 850 ° C and 65 MPa by a spark plasma sintering technique. At 10 min, the P-type FeNbTiSb thermoelectric material was obtained.
  • the present invention has the following beneficial effects:
  • the invention prepares a high-value P-type FeNbTiSb thermoelectric material with a maximum zT value of 1.1 at 1100K, which is the highest performance obtained in the current Half-Heusler system.
  • Figure 1 is an XRD pattern of FeNb 0.8 Ti 0.2 Sb prepared in Example 1.
  • Example 2 is a thermogravimetric analysis diagram of a FeNb 0.8 Ti 0.2 Sb sample prepared in Example 1.
  • Figure 3 is a graph showing the thermal conductivity k (a), conductivity s (b), Seebeck coefficient a (c) and power factor a 2 s as a function of temperature for the FeNb 1-x Ti x Sb sample prepared in the examples.
  • Fig. 4 is a graph showing the zT value of the FeNb 1-x Ti x Sb sample prepared in the example as a function of temperature.
  • the raw materials were weighed according to the stoichiometric ratio of FeNb 0.8 Ti 0.2 Sb, placed in an Ar gas-protected copper tube, and repeatedly smelted three times by high-frequency melting to obtain an ingot, and then the ingot was obtained by mechanical ball milling to obtain submicron.
  • the small particles were then sintered by spark plasma sintering at 850 ° C and 65 MPa for 10 min to obtain the final sample.
  • XRD X-ray polycrystalline diffractometer
  • the thermal conductivity k is calculated from the thermal diffusivity measured by the Netzsch LFA-457 laser pulse thermal analyzer, the specific heat measured by the Netzsch DSC-404 differential calorimeter, and the density of the material.
  • the zT value of the sample prepared in this example was about 1.1 at 1100 K.
  • the sample was subjected to thermogravimetric analysis under nitrogen and air atmosphere using DSCQ1000 equipment.
  • the test results are shown in Figure 2.
  • the heating rate is 10K/min and the temperature range is 300K-1200K. From 300K to 1000K
  • the sample sample was kept stable under nitrogen and air atmosphere, which indicates that the prepared sample has high temperature stability. 1000K Above, the sample remained stable under a nitrogen atmosphere, but in an air atmosphere, the weight increased due to surface oxidation.
  • the raw materials were weighed according to the stoichiometric ratio of FeNb 0.76 Ti 0.24 Sb, placed in an Ar gas-protected copper tube, and repeatedly smelted three times by high-frequency melting to obtain an ingot, and then the ingot was obtained by mechanical ball milling to obtain a submicron.
  • the small particles were then sintered by spark plasma sintering at 850 ° C and 65 MPa for 10 min to obtain the final sample.
  • the zT value of the sample prepared in this example was about 1.06 at 1100 K.
  • the raw materials were weighed according to the stoichiometric ratio of FeNb 0.84 Ti 0.16 Sb, placed in an Ar gas-protected copper tube, and repeatedly smelted three times by high-frequency melting to obtain an ingot, and then the ingot was obtained by mechanical ball milling to obtain a submicron.
  • the small particles were then sintered by spark plasma sintering at 850 ° C and 65 MPa for 10 min to obtain the final sample.
  • the zT value of the sample prepared in this example was about 0.96 at 1100 K.
  • the raw materials were weighed according to the stoichiometric ratio of FeNb 0.88 Ti 0.12 Sb, placed in an Ar gas-protected copper tube, and repeatedly smelted three times by high-frequency melting to obtain an ingot, and then the ingot was obtained by mechanical ball milling to obtain a submicron.
  • the small particles were then sintered by spark plasma sintering at 850 ° C and 65 MPa for 10 min to obtain the final sample.
  • the zT value of the sample prepared in this example was about 0.72 at 1100 K.
  • the raw materials were weighed according to the stoichiometric ratio of FeNb 0.92 Ti 0.08 Sb, placed in an Ar gas-protected copper tube, and repeatedly smelted three times by high-frequency melting to obtain an ingot, and then the ingot was obtained by mechanical ball milling to obtain a submicron.
  • the small particles were then sintered by spark plasma sintering at 850 ° C and 65 MPa for 10 min to obtain the final sample.
  • the zT value of the sample prepared in this example was about 0.61 at 1100 K.
  • the raw materials were weighed according to the stoichiometric ratio of FeNb 0.94 Ti 0.06 Sb, placed in an Ar gas-protected copper tube, and repeatedly smelted three times by high-frequency melting to obtain an ingot, and then the ingot was obtained by mechanical ball milling to obtain a submicron.
  • the small particles were then sintered by spark plasma sintering at 850 ° C and 65 MPa for 10 min to obtain the final sample.
  • the zT value of the sample prepared in this example was about 0.54 at 1000 K.
  • P-type FeNbTiSb prepared by the invention
  • Thermoelectric materials, the elements contained in the material composition are rich in reserves in the earth's crust, and therefore, the production cost is relatively low.
  • P type FeNbTiSb Thermoelectric materials have high temperature stability, simple preparation process, short production cycle and high production efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种高优值的P型FeNbTiSb热电材料,原料组成为FeNb1-xTixSb,其中,x=0.06~0.24。上述热电材料的制备方法,首先按组成的化学剂量比称取原料铁、铌、钛和锑,氩气保护下,经熔炼得到铸锭;将铸锭粉碎成颗粒,再经烧结得到所述的P型FeNbTiSb热电材料。

Description

一种高优值的P型FeNbTiSb热电材料及其制备方法
本发明涉及半导体热电材料领域,具体涉及一种 高优值的 P 型 FeNbTiSb 热电材料及其制备方法 。
热电材料是一种通过材料内部的载流子(电子或空穴)运动实现电能和热能直接相互转换的半导体材料。当热电材料两端存在温差时,热电材料能将热能转化为电能输出,这个被称为 Seebeck 效应;而在热电材料两端加上电场后,热电材料能将电能转化为热能,一端放热而另一端吸热,被称为 Petier 效应,这两种效应分别使热电材料可以在发电或制冷等方面有广泛的应用背景。
用热电材料制造的发电装置可作为深层空间航天器、野外作业、海洋灯塔、游牧人群使用的电源,或用于工业余热、废热发电。用热电材料制造的制冷装置体积小、不需要化学介质,可应用于小型冷藏箱、计算机芯片和激光探测器等的局部冷却、医用便携式超低温冰箱等方面,更广泛的潜在应用领域将包括:家用冰箱、冷却,车用或家用空调装置等。用热电材料制造的装置具有无机械运动部件、无噪声、无磨损、结构简单、体积形状可按需要设计等突出优点。
热电材料的性能用“ 热电优值 ”-zT 进行 表征 :
zT = ( a 2 sT / k )
a 是材料的热电势系数, s 是电导率, T 是绝对温度, k 是热导率。
一种好的热电材料应具有高的电导率和热电势系数和低的热导率,高性能的热电器件要求具有性能、结构相匹配的 N 型和 P 型材料。
目前,高温发电热电材料在汽车工业、工厂废热回收、太空卫星等领域有着重要的应用。典型的高温发电热电材料为 SiGe 合金,其 N 型材料性能较高, zT 值约为 1.0 ,但 P 型材料性能较差,约为 0.5 。
近年来, Half-Heusler 体系由于组成元素含量丰富,电学性能好等优点引起热电领域学者的关注。其中, N 型 ZrNiSn 基 Half-Heusler 材料的 zT 值可达 1.0 ,与 N 型 SiGe 相媲美。但是 P 型 Half-Heusler 材料的性能仍然较低,这是制约该体系在高温发电方面应用的一大难题。
FeNbTiSb 热电材料的原料在地壳中的储量丰富,价格相对低廉。但目前,对此类热电材料的研究却很少。
本发明提供一种新型的高优值 P 型 FeNbTiSb 热电材料及其制备方法,所述 P 型 FeNbTiSb 热电材料的最高 zT 值在 1100K 时约为 1.1 。
本发明公开了一种高优值的 P 型 FeNbTiSb 热电材料,原料组成为 FeNb1-xTixSb ,其中, x= 0.06 ~ 0.24 , x 代表原子百分比。
作为优选, x = 0.2 ~ 0.24 ;更优选, x = 0.2 。
本发明还公开了所述 P 型 FeNbTiSb 热电材料的制备方法,步骤如下:
( 1 )按组成为 FeNb1-xTixSb 的化学剂量比称取原料铁、铌、钛和锑,氩气保护下,经熔炼得到铸锭;
( 2 )将步骤( 1 )得到的铸锭粉碎成颗粒,再经烧结得到所述的 P 型 FeNbTiSb 热电材料。
作为优选,步骤( 1 )中, 原料经悬浮熔炼法熔炼 3 次后得到 铸锭。
作为优选,步骤( 2 )中,铸锭粉碎成颗粒的粒度直径为 200nm ~ 10.0μm 。
作为优选,步骤( 2 )中,经放电等离子烧结技术,在 850 ° C 、 65MPa 下烧结 10min ,得到所述的 P 型 FeNbTiSb 热电材料。
与现有技术相比,本发明具有的有益效果是:
本发明制备了一种高优值 P 型 FeNbTiSb 热电材料,其最大 zT 值在 1100K 时达到 1.1 ,这是目前 Half-Heusler 体系中获得的最高性能。
图 1 为实施例 1 制备的 FeNb0.8Ti0.2Sb 的 XRD 图谱。
图 2 为实施例 1 制备的 FeNb0.8Ti0.2Sb 试样的热重分析图。
图 3 为实施例制备得到的 FeNb1-xTixSb 试样的热导率 k (a) ,电导率 s (b) , Seebeck 系数 a (c) 和功率因子 a 2 s 随温度变化图。
图 4 为实施例制备得到的 FeNb1-xTixSb 试样的 zT 值随温度变化图。
以下结合实施例对本发明作进一步详细阐述。
实施例 1
将原料按化学剂量比 FeNb0.8Ti0.2Sb 计算称量后,置于 Ar 气保护的铜管中,采用高频熔炼方法反复熔炼 3 次获得铸锭,然后采用机械球磨方法粉碎铸锭获得亚微米级小颗粒,接着采用放电等离子体烧结方法在 850 ° C 、 65MPa 条件下烧结 10min ,获得最终的试样。
采用 RigakuD/MAX-2550PC 型 X 射线多晶衍射仪( XRD )对本实施例制得的试样进行物相分析,如图 1 所示,并确认为 FeNbSb 基结构,即立方结构( F43m ),空间群号为 216 号。
根据采用 Netzsch LFA-457 型激光脉冲热分析仪测量的热扩散系数、采用 Netzsch DSC-404 型差分比热仪测量的比热以及材料的密度计算得到热导率 k 。本实施例制得的试样的热导率在 1100K 时为 k = 4.5 W·m-1K-1
采用 Linses LSR-3 设备测得材料在 1100K 时的热电势系数a = 204μV/K ,电导率 s = 10.7×104S/m 。
根据上述测量值按 zT = ( a 2 s T/ k ) 计算,本实施例制得的试样 的 zT 值在 1100 K 时约为 1.1 。
采用 DSCQ1000 设备分别在氮气和空气氛围下对试样进行了热重分析,检测结果如图 2 所示,升温速率 10K/min ,温度范围 300K-1200K 。从 300K 到 1000K ,试样试样在氮气和空气氛围下均保持重量稳定,这表明所制备的试样高温稳定性很好。 1000K 以上,试样在氮气氛围中仍然保持稳定,但是在空气氛围下,重量增大,这是由于表面氧化引起的。
实施例 2
将原料按化学剂量比 FeNb0.76Ti0.24Sb 计算称量后,置于 Ar 气保护的铜管中,采用高频熔炼方法反复熔炼 3 次获得铸锭,然后采用机械球磨方法粉碎铸锭获得亚微米级小颗粒,接着采用放电等离子体烧结方法在 850 ° C 、 65MPa 条件下烧结 10min ,获得最终的试样。
本实施例制得的试样的热导率在 1100K 时为 k = 4.6W·m-1K-1
采用 Linses LSR-3 设备测得材料在 1100K 时的热电势系数 a = 198μV/K ,电导率 s = 11.3×104S/m 。
根据上述测量值按 zT = ( a 2 s T/ k ) 计算,本实施例制得的试样 的 zT 值在 1100 K 时约为 1.06 。
实施例 3
将原料按化学剂量比 FeNb0.84Ti0.16Sb 计算称量后,置于 Ar 气保护的铜管中,采用高频熔炼方法反复熔炼 3 次获得铸锭,然后采用机械球磨方法粉碎铸锭获得亚微米级小颗粒,接着采用放电等离子体烧结方法在 850 ° C 、 65MPa 条件下烧结 10min ,获得最终的试样。
本实施例制得的试样的热导率在 1100K 时为 k = 4.8W·m-1K-1
采用 Linses LSR-3 设备测得材料在 1100K 时的热电势系数 a = 219μV/K ,电导率 s = 8.6×104S/m 。
根据上述测量值按 zT = ( a 2 s T/ k ) 计算,本实施例制得的试样 的 zT 值在 1100 K 时约为 0.96 。
实施例 4
将原料按化学剂量比 FeNb0.88Ti0.12Sb 计算称量后,置于 Ar 气保护的铜管中,采用高频熔炼方法反复熔炼 3 次获得铸锭,然后采用机械球磨方法粉碎铸锭获得亚微米级小颗粒,接着采用放电等离子体烧结方法在 850 ° C 、 65MPa 条件下烧结 10min ,获得最终的试样。
本实施例制得的试样的热导率在 1100K 时为 k = 5.1W·m-1K-1
采用 Linses LSR-3 设备测得材料在 1100K 时的热电势系数 a = 222μV/K ,电导率 s = 6.7×104S/m 。
根据上述测量值按 zT = ( a 2 s T/ k ) 计算,本实施例制得的试样 的 zT 值在 1100 K 时约为 0.72 。
实施例 5
将原料按化学剂量比 FeNb0.92Ti0.08Sb 计算称量后,置于 Ar 气保护的铜管中,采用高频熔炼方法反复熔炼 3 次获得铸锭,然后采用机械球磨方法粉碎铸锭获得亚微米级小颗粒,接着采用放电等离子体烧结方法在 850 ° C 、 65MPa 条件下烧结 10min ,获得最终的试样。
本实施例制得的试样的热导率在 1100K 时为 k = 5.8W·m-1K-1
采用 Linses LSR-3 设备测得材料在 1100K 时的热电势系数 a = 246μV/K ,电导率 s = 5.3×104S/m 。
根据上述测量值按 zT = ( a 2 s T/ k ) 计算,本实施例制得的试样 的 zT 值在 1100 K 时约为 0.61 。
实施例 6
将原料按化学剂量比 FeNb0.94Ti0.06Sb 计算称量后,置于 Ar 气保护的铜管中,采用高频熔炼方法反复熔炼 3 次获得铸锭,然后采用机械球磨方法粉碎铸锭获得亚微米级小颗粒,接着采用放电等离子体烧结方法在 850 ° C 、 65MPa 条件下烧结 10min ,获得最终的试样。
本实施例制得的试样的热导率在 1000K 时为 k = 6.5W·m-1K-1
采用 Linses LSR-3 设备测得材料在 1100K 时的热电势系数 a = 263μV/K ,电导率 s = 5.1×104S/m 。
根据上述测量值按 zT = ( a 2 s T/ k ) 计算,本实施例制得的试样 的 zT 值在 1000 K 时约为 0.54 。
热电性能分析:
将实施例 1-6 制备得到的试样分别在不同温度进行热电性能检测,图 3 为 FeNb1-xTixSb 试样的变温热电性能图。从图 3(a)-3(d) 中可以看到试样的热导率和 Seebeck 系数随 x 的增大持续降低,电导率则随 x 的增大而增大。按照 zT = ( a 2 s T/ k ) 计算可得试样最终的 zT 值,发现所有样品的 zT 值均随温度上升而增大 ( 图 4 所示 ) ,作为最优选的试样 x=0.2 在 1100K 时拥有最高的 zT =1.1 。分析发现,该试样拥有最高 zT 的原因在于其在 1100K 时有着最低的热导率 ( 图 3a) 以及最高的功率因子 ( 图 3d) 。
本发明制备的 P 型 FeNbTiSb 热电材料,其材料成分所含的元素在地壳中的储量丰富,因此,生产成本相对低廉。
本发明中 P 型 FeNbTiSb 热电材料的高温稳定性好、制备工艺简单、生产周期短,生产效率高。

Claims (7)

  1. 一种高优值的P型FeNbTiSb热电材料,其特征在于,原料组成为FeNb1-xTixSb,其中,x = 0.06~0.24。
  2. 根据权利要求1所述的P型FeNbTiSb热电材料,其特征在于,x = 0.2~0.24。
  3. 根据权利要求2所述的P型FeNbTiSb热电材料,其特征在于,x = 0.2。
  4. 一种根据权利要求1~3任一权利要求所述的P型FeNbTiSb热电材料的制备方法,其特征在于,步骤如下:
    (1)按组成为FeNb1-xTixSb的化学剂量比称取原料铁、铌、钛和锑,氩气保护下,经熔炼得到铸锭;
    (2)将步骤(1)得到的铸锭粉碎成颗粒,再经烧结得到所述的P型FeNbTiSb热电材料。
  5. 根据权利要求4所述的制备方法,其特征在于,步骤(1)中,原料经悬浮熔炼法熔炼3次后得到铸锭。
  6. 根据权利要求4所述的制备方法,其特征在于,步骤(2)中,铸锭粉碎成颗粒的粒度直径为200nm~10.0μm。
  7. 根据权利要求4所述的制备方法,其特征在于,步骤(2)中,经放电等离子烧结技术,在850oC、65MPa下烧结10min,得到所述的P型FeNbTiSb热电材料。
PCT/CN2014/078513 2014-05-27 2014-05-27 一种高优值的P型FeNbTiSb热电材料及其制备方法 WO2015180034A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/900,132 US10446732B2 (en) 2014-05-27 2014-05-27 NbFeSb-based half-heusler thermoelectric materials and methods of making
PCT/CN2014/078513 WO2015180034A1 (zh) 2014-05-27 2014-05-27 一种高优值的P型FeNbTiSb热电材料及其制备方法
JP2016541776A JP6250172B2 (ja) 2014-05-27 2014-05-27 高性能指数のP型FeNbTiSb熱電材料およびその調製方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/078513 WO2015180034A1 (zh) 2014-05-27 2014-05-27 一种高优值的P型FeNbTiSb热电材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2015180034A1 true WO2015180034A1 (zh) 2015-12-03

Family

ID=54697820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078513 WO2015180034A1 (zh) 2014-05-27 2014-05-27 一种高优值的P型FeNbTiSb热电材料及其制备方法

Country Status (3)

Country Link
US (1) US10446732B2 (zh)
JP (1) JP6250172B2 (zh)
WO (1) WO2015180034A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114890792A (zh) * 2022-05-31 2022-08-12 先导薄膜材料(广东)有限公司 一种高热电性能p型碲化铋基热电材料及其制备方法和应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130019918A1 (en) 2011-07-18 2013-01-24 The Regents Of The University Of Michigan Thermoelectric devices, systems and methods
CN106537621B (zh) * 2014-03-25 2018-12-07 美特瑞克斯实业公司 热电设备和系统
DE102018117553B4 (de) 2018-07-20 2024-05-02 Vacuumschmelze Gmbh & Co. Kg Legierung, gesinterter Gegenstand, thermoelektrisches Modul und Verfahren zum Herstellen eines gesinterten Gegenstands
DE102019106830B4 (de) 2019-03-18 2021-09-23 Vacuumschmelze Gmbh & Co. Kg Verfahren zum Herstellen eines Teils aus einer Halb-Heusler-Legierung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1888105A (zh) * 2006-06-07 2007-01-03 中国科学院上海硅酸盐研究所 一种填充方钴矿基热电复合材料及其制备方法
WO2008067815A2 (en) * 2006-12-04 2008-06-12 Aarhus Universitet Use of thermoelectric materials for low temperature thermoelectric purposes
CN102386321A (zh) * 2011-10-19 2012-03-21 东华大学 一种纳米热电粉体材料的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4804638B2 (ja) * 2001-03-21 2011-11-02 株式会社Ihi クラスレート化合物と高効率熱電材料およびその製造方法と高効率熱電材料を用いた熱電モジュール
JP4374578B2 (ja) * 2004-12-03 2009-12-02 株式会社豊田中央研究所 熱電材料及びその製造方法
JP2010153365A (ja) * 2008-11-19 2010-07-08 Semiconductor Energy Lab Co Ltd 発光素子、発光装置、電子機器及び照明装置
US10008653B2 (en) * 2014-03-24 2018-06-26 University Of Houston System NbFeSb based half-heusler thermoelectric materials and methods of fabrication and use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1888105A (zh) * 2006-06-07 2007-01-03 中国科学院上海硅酸盐研究所 一种填充方钴矿基热电复合材料及其制备方法
WO2008067815A2 (en) * 2006-12-04 2008-06-12 Aarhus Universitet Use of thermoelectric materials for low temperature thermoelectric purposes
CN102386321A (zh) * 2011-10-19 2012-03-21 东华大学 一种纳米热电粉体材料的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114890792A (zh) * 2022-05-31 2022-08-12 先导薄膜材料(广东)有限公司 一种高热电性能p型碲化铋基热电材料及其制备方法和应用
CN114890792B (zh) * 2022-05-31 2023-07-28 先导薄膜材料(广东)有限公司 一种高热电性能p型碲化铋基热电材料及其制备方法和应用

Also Published As

Publication number Publication date
JP2017500748A (ja) 2017-01-05
US10446732B2 (en) 2019-10-15
JP6250172B2 (ja) 2017-12-20
US20160141480A1 (en) 2016-05-19

Similar Documents

Publication Publication Date Title
Zhu et al. Realizing record high performance in n-type Bi 2 Te 3-based thermoelectric materials
WO2015180034A1 (zh) 一种高优值的P型FeNbTiSb热电材料及其制备方法
WO2016127572A1 (zh) 高优值的P型FeNbHfSb热电材料及其制备方法
AU2021107532A4 (en) n-type bismuth telluride-based thermoelectric material with modulation structure and preparation method thereof
JP2016526302A (ja) 可逆的相転移を有する高性能p型熱電材料及びその製造方法
JP7217547B2 (ja) 熱電性能が高いn型Mg3Sb2ベース材料を迅速に製造する方法
Wang et al. Band modulation and strain fluctuation for realizing high average zT in GeTe
CN103864026B (zh) Cu-In-Zn-Te四元p-型热电半导体及其制备工艺
CN107195767B (zh) 一种五元n型热电材料及其制备方法
Hasan et al. Enhanced Thermoelectric Properties of Ti2FeNiSb2 Double Half‐Heusler Compound by Sn Doping
WO2019214158A1 (zh) 基于晶体拓扑实现粉末合金烧结相变的五元系n型热电材料与制备方法
CN106145062A (zh) 一种快速制备碲化锑热电材料的方法
CN103247752B (zh) Ge‑Pb‑Te‑Se复合热电材料及其制备方法
KR20150044794A (ko) 열전 재료 및 그 제조 방법
CN105702847A (zh) 一种提高BiTeSe基N型半导体热电材料性能的方法
CN105633267B (zh) 一种Cu2‑xS/CNT复合热电材料及其制备方法
Qin et al. Thermoelectric transport properties of PbS and its contrasting electronic band structures
Sifi et al. Comparison between the thermoelectric properties of new materials: The alloy of iron, vanadium, tungsten, and aluminum (Fe2V0. 8W0. 2Al) against an oxide such as NaCO2O4
Gupta et al. A review on thermoelectric cooler
CN101857929A (zh) 一种多孔结构p型锌锑基热电材料及其制备方法
CN104124332B (zh) 一种高优值的P型FeNbTiSb热电材料及其制备方法
CN108511587B (zh) 一种铜过量的P-型Cu3.9Ga4.2Te8基中温热电材料及其制备工艺
CN105800569A (zh) n-型CuIn3Se5基中高温热电半导体及其非平衡制备工艺
WO2006082926A1 (ja) タリウム化合物熱電変換材料とその製造方法
CN110407581A (zh) 铜硫基热电化合物及其制备方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016541776

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14900132

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14892950

Country of ref document: EP

Kind code of ref document: A1