WO2015178500A1 - 全芳香族液晶ポリエステル樹脂、およびその樹脂組成物の射出成形体 - Google Patents

全芳香族液晶ポリエステル樹脂、およびその樹脂組成物の射出成形体 Download PDF

Info

Publication number
WO2015178500A1
WO2015178500A1 PCT/JP2015/065325 JP2015065325W WO2015178500A1 WO 2015178500 A1 WO2015178500 A1 WO 2015178500A1 JP 2015065325 W JP2015065325 W JP 2015065325W WO 2015178500 A1 WO2015178500 A1 WO 2015178500A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical formula
mol
composition
aromatic
wholly aromatic
Prior art date
Application number
PCT/JP2015/065325
Other languages
English (en)
French (fr)
Inventor
希望 秋山
亮人 川村
正寿 安藤
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to JP2016521172A priority Critical patent/JPWO2015178500A1/ja
Publication of WO2015178500A1 publication Critical patent/WO2015178500A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds

Definitions

  • the wholly aromatic liquid crystal polyester resin is used as an injection molding material for structures of various electronic components.
  • the progress of thinning due to the functional integration and downsizing of these electronic components is not known.
  • heat resistance corresponding to surface mounting (SMT) solder heat resistance
  • the present inventors comply with ISO11357-3, ASTM D3418, It is considered that the melting point is 320 ° C. or higher.
  • the present invention is a wholly aromatic liquid crystal polyester resin suitable for thin-walled electronic components, and a thin-walled structure of 0.03 mm to 0.15 mm obtained by injection molding of the present resin composition in response to these high demands in recent years.
  • the present invention relates to an electronic component having a part.
  • a wholly aromatic liquid crystal polyester resin composition containing various inorganic fillers is excellent in surface mount (SMT) heat resistance and thin-wall moldability, and is used as an injection molding material for various electronic components.
  • SMT surface mount
  • One of the means for solving this problem would be to study the constituent monomers of wholly aromatic liquid crystal polyester. That is, it is divided into the categories of aromatic hydroxycarboxylic acid, aromatic diol, and aromatic dicarboxylic acid, and examination of “selection of monomer species” and “relationship between amounts of monomers” is performed.
  • Patent Document 1 does not contain a monomer having a dihydroxybiphenyl (chemical formula (3)) structure, which will be described later, and Patent Document 2 discloses a monomer composition and a composition ratio that are common to the present application.
  • the purpose of adding dihydroxynaphthalene is different from that of the present application, and is a wholly aromatic polyester composed of a specific monomer that solves the above-mentioned problem, at 300 ° C.
  • Patent Document 3 uses a liquid crystal polyester resin composition, which can be used for electronic components for surface mounting such as connectors, and has excellent thin moldability, and uses a 0.1 mm thick mold. Although it is disclosed that injection molding of the connector is possible, the configuration of the liquid crystal polyester resin is different.
  • the present invention is suitable for injection molding materials such as electronic parts having a plurality of thin parts of 0.03 mm to 0.15 mm having heat resistance corresponding to surface mounting (SMT), including 2,7-dihydroxynaphthalene.
  • SMT surface mounting
  • An object is to provide a wholly aromatic liquid crystal polyester and a wholly aromatic liquid crystal polyester resin composition containing the same.
  • the first aspect of the present invention is an aromatic hydroxycarboxylic acid, an aromatic diol and an aromatic dicarboxylic acid (including derivatives thereof), and a wholly aromatic liquid crystal polyester obtained by polycondensing 100 mol% in total.
  • the structural unit derived from the group hydroxycarboxylic acid consists of the chemical formula (1),
  • the structural unit derived from the aromatic diol consists of chemical formula (2), chemical formula (3) and chemical formula (4),
  • the structural unit derived from aromatic dicarboxylic acid consists of chemical formula (5), And 20 mol% ⁇ the composition of chemical formula (1) ⁇ 70 mol%; 15 mol% ⁇ [chemical formula (2) composition + chemical formula (3) composition + chemical formula (4) composition] ⁇ 40 mol%; However, [chemical formula (2) composition + chemical formula (3) composition] (mol%) ⁇ chemical formula (4) composition (mol%);
  • the composition of each repeating unit of the chemical formulas (2), (3) and (4) is> 0 mol%; 15 mol% ⁇ chemical formula (5) composition ⁇ 40 mol%, And the melting point of the wholly aromatic liquid crystalline polyester resin is 320 ° C. or higher.
  • the second aspect of the present invention relates to an injection molded article having a wall thickness of 0.03 to 0.15 mm, which is obtained by injection molding the resin composition containing the wholly aromatic polyester described in the first aspect of the present invention.
  • the third aspect of the present invention relates to an electronic component using the injection molded article according to the second aspect of the present invention.
  • a fourth aspect of the present invention is a method for producing a wholly aromatic liquid crystal polyester in which 100 mol% of polyhydroxy aromatic polyester, aromatic diol and aromatic dicarboxylic acid are combined.
  • the aromatic hydroxycarboxylic acid is of formula (6),
  • the aromatic diol consists of all of chemical formula (7), chemical formula (8), and chemical formula (9),
  • the present invention relates to a method for producing an aromatic liquid crystal polyester.
  • the method further comprises a step of producing a wholly aromatic polyester by solid polycondensation and has a melting point of 320 ° C. or higher.
  • the present invention relates to a method for producing a liquid crystal polyester.
  • the resin composition comprising the wholly aromatic polyester according to the present invention obtains an injection-molded article excellent in heat resistance corresponding to surface mounting (SMT) and thin formability having a thin part of 0.03 mm to 0.15 mm. It is a resin composition made of wholly aromatic polyester and can be used as an injection molding material for electronic parts.
  • the effect of the present invention is that the melt viscosity of the liquid crystal polyester resin having the resin composition according to the present invention remains unchanged or slightly increased even in the process of lowering the temperature from a molten state of 380 ° C. to a temperature of about (melting point ⁇ 30 ° C.). Regardless of the temperature drop during the mold cavity filling process, the flowability is maintained in a wide range of molding temperatures, and the thin wall portion of 0.03 mm to 0.15 mm, preferably 0.03 mm to 0.1 mm. It becomes possible to fill the resin. In the present application, this is sometimes referred to as “solidification rate (or thickening) suppression effect”.
  • FIG. 1 is a plan view and a side view showing an outline of a test piece.
  • the wholly aromatic polyester according to the present invention is obtained by polycondensing an aromatic hydroxycarboxylic acid, an aromatic diol, and an aromatic dicarboxylic acid (including these derivatives. The same shall apply hereinafter) and a total of 100 mol%. .
  • the structural unit derived from the aromatic hydroxycarboxylic acid in the wholly aromatic polyester according to the present invention is the chemical formula (1), and this is obtained by using, for example, p-hydroxybenzoic acid (chemical formula (6)). Can do.
  • this structural unit (chemical formula (1)) is 20 mol% to 70 mol% (including boundary values, the same shall apply hereinafter). Preferably, it is 30 mol% to 65 mol%, more preferably 40 mol% to 65 mol%.
  • the heat resistance may be insufficient, and when it exceeds the range, a high molding temperature is required and the injection molding stability is poor.
  • the viscosity change is large with respect to the temperature drop, and the filling property of the molten resin in the thin wall portion of the injection molded product may be deteriorated.
  • the structural units represented by the chemical formulas (2), (3), and (4) are combined in an amount of 15 mol% to 40 mol%, preferably 15 to 25 mol%. .
  • the viscosity change is large with respect to the temperature drop, and the filling property of the thin wall portion of the injection molded product may be deteriorated.
  • the melting point may become less than 320 degreeC melting
  • the total number of moles of the structural unit represented by the chemical formula (2) and the chemical formula (3) is equal to or greater than the number of moles of the structural unit represented by the chemical formula (4). . If it is less than the boundary value, the heat resistance may decrease.
  • the structural unit derived from the aromatic dicarboxylic acid in the wholly aromatic polyester according to the present invention is represented by the chemical formula (5), and is obtained by using, for example, terephthalic acid (chemical formula (10)) having a carboxyl group in the para position. Can do.
  • the structural unit represented by the chemical formula (5) is 15 mol% to 40 mol%. Preferably, it is 15 mol% to 25 mol%. When it is less than this range, the viscosity change is large with respect to the temperature drop, and the fillability of the thin-walled part of the injection molded product may be lowered.
  • the melting point of the wholly aromatic polyester according to the present invention is preferably 320 ° C. or higher, and this melting point conforms to ISO11357-3 and ASTM D3418.
  • a differential scanning calorimeter (DSC) manufactured by Seiko Denshi Kogyo Co., Ltd. can be used.
  • the temperature was increased from room temperature to 390 ° C. at a temperature increase rate of 20 ° C./min to completely melt the polymer, then the temperature was decreased to 50 ° C. at a temperature decrease rate of 10 ° C./min, and further increased by 20 ° C./min.
  • the peak of the endothermic peak obtained when the temperature is raised to 420 ° C. at the speed is defined as the melting point.
  • the wholly aromatic polyester according to the present invention is one in the structural units derived from both the aromatic hydroxycarboxylic acid and the aromatic dicarboxylic acid.
  • the present inventors have achieved the heat resistance of the molded body and the high fluidity of the melt by forming crystals or mesogens derived from aromatic hydroxycarboxylic acid and aromatic dicarboxylic acid-derived moieties (moiety). It is considered that both the effects of relaxation of the viscosity change with respect to the temperature drop caused by the degree of freedom of molecular motion caused by the aromatic diol-derived portion are efficiently and well balanced.
  • the method for producing the wholly aromatic liquid crystal polyester according to the present invention a known method for producing a liquid crystal polyester resin can be adopted, and a production method by only melt polymerization, or production by two-stage polymerization of melt polymerization and solid phase polymerization. The method can be used.
  • p-hydroxybenzoic acid (chemical formula (6)), hydroquinone (chemical formula (7)), biphenol (chemical formula (8)), 2 , 7-dihydroxynaphthalene (Chemical Formula (9)) and terephthalic acid (Chemical Formula (10)) are combined in a predetermined amount to 100 mol%, and 1.05 to 1.15 with respect to all hydroxyl groups in these compounds. It is preferred to carry out melt polymerization in the presence of a molar equivalent of acetic anhydride under reflux of acetic acid.
  • the prepolymer obtained by melt polymerization is cooled and solidified and then pulverized into powder or flakes.
  • a method of heat-treating the prepolymer resin in a temperature range of 200 to 350 ° C. for 1 to 30 hours under an inert atmosphere such as nitrogen is preferably selected.
  • the solid phase polymerization may be performed with stirring, or may be performed in a standing state without stirring.
  • a catalyst may be used or may not be used.
  • the catalyst to be used those conventionally known as polyester polycondensation catalysts can be used, such as magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, and antimony trioxide. Examples thereof include metal salt catalysts and organic compound catalysts such as N-methylimidazole.
  • the polymerization reaction apparatus in melt polymerization is not particularly limited, but a reaction apparatus used for reaction of a general high viscosity fluid is preferably used.
  • reaction apparatuses include, for example, a stirring tank type polymerization reaction apparatus having a stirring apparatus having stirring blades of various shapes, such as a vertical type, a multistage type, a spiral band type, a helical shaft type, etc.
  • a kneader, a roll mill, a Banbury mixer, and the like which are generally used for resin kneading.
  • the wholly aromatic polyester according to the present invention When the wholly aromatic polyester according to the present invention is used as a material for injection molding, 10 to 40 parts by weight of milled glass fiber, talc, mica, glass flakes, clay is generally used with respect to 100 parts by weight of the wholly aromatic polyester.
  • other fillers, colorants, dispersants, plasticizers, antioxidants, flame retardants, and the like may be added.
  • so-called aromatic polyfunctional monomers used for the synthesis of liquid crystal polyesters can be used within a range not impairing the effects of the present invention.
  • substituting a part of p-hydroxybenzoic acid with 6-hydroxy-2-naphthoic acid has an effect of allowing the molding processing temperature to be lowered while maintaining fluidity.
  • thermotropic liquid crystal polyester A production example of liquid crystal polyester (LCP) is shown below.
  • Example 1 Production of thermotropic liquid crystal polyester A
  • p-hydroxybenzoic acid HBA, chemical formula (6)
  • BP 4,4′-dihydroxybiphenyl
  • HQ hydroquinone
  • TPA terephthalic acid
  • TPA terephthalic acid
  • the temperature of the polymerization tank in the acetic acid distillation state was raised at 0.5 ° C./min.
  • the reactor temperature reached 305 ° C.
  • the polymer was taken out from the outlet at the bottom of the reactor and solidified by cooling.
  • the obtained polymer was pulverized by a pulverizer into a size that passed through a sieve having an aperture of 2.0 mm to obtain a prepolymer.
  • 950 g of the prepolymer obtained above is charged into a solid-state polymerization apparatus, the temperature of the heater is increased from room temperature to 150 ° C. over 1 hour at a rotational speed of 5 rpm while flowing nitrogen, and then up to 250 ° C.
  • thermotropic liquid crystal polyester (A) the structural unit derived from the aromatic hydroxycarboxylic acid consists of the chemical formula (1); 60 mol%, and the structural unit derived from the aromatic diol has the chemical formula (2); 6 mol%.
  • thermotropic liquid crystal polyester B p-hydroxybenzoic acid (HBA, chemical formula (6)) 1325.97 g (9.60 mol), 4,4′-dihydroxybiphenyl (BP, chemical formula (7)) 268.14 g (1.44 mol), hydroquinone ( HQ, chemical formula (8)) 123.32 g (1.12 mol), 2,7-dihydroxynaphthalene (2,7-DON, chemical formula (9)) 103.17 g (0.64 mol), terephthalic acid (TPA, Chemical formula (10)) 531.62 g (3.2 mol), 0.30 g of potassium acetate as a catalyst and 0.30 g of magnesium acetate were charged, and in the same manner as thermotropic liquid crystal polyester A, the powdered thermotropic liquid crystal polyester ( B) was obtained.
  • HBA p-hydroxybenzoic acid
  • BP 4,4′-dihydroxybiphenyl
  • HQ hydroquinone
  • HQ HQ
  • HQ 2,7-
  • thermotropic liquid crystal polyester (B) the structural unit derived from the aromatic hydroxycarboxylic acid is composed of the chemical formula (1); 60 mol%, and the structural unit derived from the aromatic diol is the chemical formula (2); 9 mol%.
  • Fillers (1) to (3) described later were added to 100 parts by weight of the thermotropic liquid crystal polyester (B) obtained as described above to obtain a thermotropic liquid crystal polyester (B) composition. Then, the following tests (1) to (4) were performed using the composition. The results are shown in Table 1.
  • thermotropic liquid crystal polyester C
  • thermotropic liquid crystal polyester The structural unit derived from aromatic hydroxycarboxylic acid consists of chemical formula (1); 60 mol%, the structural unit derived from aromatic diol consists of chemical formula (2); 20 mol%, and the structural unit derived from aromatic dicarboxylic acid is chemical formula (5) It was composed of 20 mol% in total of 15 mol% and 5 mol% of IPA, and the melting point was 355 ° C. Fillers (1) to (3) described later were added to 100 parts by weight of the thermotropic liquid crystal polyester (C) obtained as described above to obtain a thermotropic liquid crystal polyester (C) composition. Then, the following tests (1) to (4) were performed using the composition. The results are shown in Table 1.
  • melt viscosity was measured using a capillary rheometer (2010 manufactured by Intesco Corporation) with a capillary having a diameter of 1.00 mm, a length of 40 mm and an inflow angle of 90 °, and a shear rate of 100 sec- 1, apparent viscosity was measured while heating at a constant rate from 300 ° C. to + 4 ° C./min. Similarly, the apparent viscosity was measured while cooling from 380 ° C. at a rate of ⁇ 4 ° C./min at a constant rate, and the difference in the temperature increase starting temperature from the temperature rise was defined as the supercooling temperature. For the test, a resin composition dried in advance in an air oven at 150 ° C. for 4 hours was used.
  • thermotropic liquid crystal polyester was measured with a differential scanning calorimeter (DSC) manufactured by Seiko Denshi Kogyo Co., Ltd. At this time, the temperature was raised from room temperature to 390 ° C. at a rate of temperature increase of 20 ° C./min to completely melt the polymer, then the temperature was decreased to 50 ° C. at a rate of 10 ° C./min, and further 420 ° C. at a rate of 20 ° C./min. The peak of the endothermic peak obtained when the temperature was raised to ° C. was taken as the melting point.
  • DSC differential scanning calorimeter
  • the mold has a cavity of 2.0 mm width x 0.1 mm thickness on one side of the gate, and the more the resin that is injected with a constant stroke, the better the fluidity, the more cavity injection amount, the thinner the molded product
  • the length of the part ( flow length) increases.
  • An outline of a plan view and a side view of the test piece is shown in FIG.
  • liquidity was confirmed with the metal mold
  • the resin composition comprising the wholly aromatic polyester according to the present invention is excellent in surface mount (SMT) heat resistance and thin moldability, and an injection molded article excellent in thin workability having a thin part of 0.03 mm to 0.15 mm. Therefore, it is applicable to optical parts such as camera module parts, optical pickup lens holders for CDs and DVDs, electronic parts, and the like.
  • SMT surface mount

Abstract

本発明は、表面実装(SMT)耐熱性と薄肉成形性に優れ、0.03mm~0.15mmの薄肉部を有 する電子部品等に使用しうる射出成形体に用いられる全芳香族ポリエステル樹脂を提供することを課題 とし、p-ヒドロキシ安息香酸で代表される化学式(1)、ヒドロキノン、p-ジヒドロキシビフェニ ル、または2,7-ジヒドロキシナフタレンで代表されるそれぞれ化学式(2)、(3)または(4) 、テレフタル酸で代表される化学式(5)をそれぞれ構成単位とし、かつ、組成をモル%単位表示で、 20≦化学式(1)の組成≦70、15≦化学式(2)+化学式(3)+化学式(4)の組成≦40、 ただし、[化学式(2)+化学式(3)]≧化学式(4)、15≦化学式(5)≦40、であり、かつ 、320℃以上の融点を有する、全芳香族液晶ポリエステルによって実現される。

Description

全芳香族液晶ポリエステル樹脂、およびその樹脂組成物の射出成形体
 全芳香族液晶ポリエステル樹脂は、各種電子部品の構造体の射出成形材料として用いられる。近年、これら電子部品の機能集約化や小型化の進行による、薄肉化の進行は留まるところを知らない。また、その一方で、生産効率を維持するものとして、表面実装(SMT)対応の耐熱性(所謂、ハンダ耐熱性といわれるもので、本発明者らは、ISO11357−3、ASTM D3418に準拠した、融点が320℃以上であることが目安になると考えている。)も、当然なものとして、要求される。
 本発明は、近年の、これら高度な要求に対応する、薄肉化電子部品に適した全芳香族液晶ポリエステル樹脂、および本樹脂組成物の射出成形によって得られる0.03mm~0.15mmの薄肉構造部を有する電子部品に関する。
 各種無機充填剤を含む全芳香族液晶ポリエステル樹脂組成物は、表面実装(SMT)耐熱性と薄肉成形性に優れ、各種電子部品の射出成形材料として用いられている。
 しかし、近年のように、各種電子部品が、0.03mm~0.15mmの薄肉部を含むようになると、全芳香族液晶ポリエステル樹脂組成物と雖も、キャビティ内を流動・充填していく過程での、金型壁を通した温度降下が原因と思われる、所謂、ショートショット(キャビティ内の未充填部分の発生)問題が発生している。
 この問題の解決手段の一つは、全芳香族液晶ポリエステルの構成モノマーの検討であろう。すなわち、芳香族ヒドロキシカルボン酸、芳香族ジオール、および芳香族ジカルボン酸のカテゴリーに分け、それぞれの「モノマー種の選択」および「モノマー間配合量関係」の検討である。
 本発明者らは、2,7−ジヒドロキシナフタレンの、効果的な使用を検討した。2,7−ジヒドロキシナフタレンを全芳香族液晶ポリエステル樹脂モノマーとして使用することは、すでに、特許文献1および特許文献2に記載されている。しかしながら、特許文献1では、以降に説明するジヒドロキシビフェニル(化学式(3))構造のモノマーを含有せず、特許文献2では、本願と共通するモノマー組成及び組成比を開示するが、2,7−ジヒドロキシナフタレンを添加する目的が本願と異なる、300℃以下において、糸形成性液晶熔融体を構成する全芳香族ポリエステルの製造であって、上記課題を解決する特定のモノマーから構成された全芳香族液晶ポリエステル樹脂に関する使用方法については何ら開示されていない。
 さらに、特許文献3には、コネクター等の表面実装用電子部品に使用可能な、薄肉成形性に優れた成形品を製造できる、液晶ポリエステル樹脂組成物で、0.1mm肉厚の金型を用いてコネクターの射出成形が可能の旨、開示するが、液晶ポリエステル樹脂の構成が異なる。
特開昭60−38426号公報 特開昭60−104123号公報 特開2010−138228号公報
 本発明は、2,7−ジヒドロキシナフタレンを含む、表面実装(SMT)に対応した耐熱性を有する複数の0.03mm~0.15mmの薄肉部を有する電子部品等の射出成形材料に適応した、全芳香族液晶ポリエステル、これを含む全芳香族液晶ポリエステル樹脂組成物を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意検討した結果、特定の「芳香族ヒドロキシカルボン酸」、「芳香族ジオール(2,7−ジヒドロキシナフタレンを含む。)」、「芳香族ジカルボン酸」を選択し、かつ、これらを特定のモル比構成範囲で重縮合反応を実施して全芳香族液晶ポリエステルを得て、これを含む全芳香族ポリエステル樹脂組成物を射出成形すれば、表面実装(SMT)対応の耐熱性を有しながら、0.03mm~0.15mm、の薄肉部を有する電子部品等の射出成形体を得ることができることを見出し、本発明を完成するに至った。
 本発明の第一は、芳香族ヒドロキシカルボン酸、芳香族ジオールおよび芳香族ジカルボン酸(これらの誘導体を含む。)、合わせて100モル%を重縮合してからなる全芳香族液晶ポリエステルにおいて、芳香族ヒドロキシカルボン酸由来の構成単位が化学式(1)からなり、
Figure JPOXMLDOC01-appb-C000011
 芳香族ジオール由来の構成単位が化学式(2)、化学式(3)および化学式(4)からなり、
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 芳香族ジカルボン酸由来の構成単位が化学式(5)からなり、
Figure JPOXMLDOC01-appb-C000015
 かつ、20モル%≦化学式(1)の組成≦70モル%;
 15モル%≦[化学式(2)組成+化学式(3)組成+化学式(4)組成]≦40モル%;
 ただし[化学式(2)組成+化学式(3)組成](モル%)≧化学式(4)組成(モル%);
 ここで、化学式(2)、(3)および(4)の各繰り返し単位の組成は、>0モル%であり;
 15モル%≦化学式(5)組成≦40モル%、
であり、かつ、前記全芳香族液晶ポリエステル樹脂の融点が320℃以上である、全芳香族液晶ポリエステルに関する。
 本発明の第二は、本発明の第一に記載の全芳香族ポリエステルを含む樹脂組成物を射出成形してなる、0.03~0.15mmの肉厚部を有する射出成形体に関する。
 本発明の第三は、本発明の第二に記載の射出成形体を用いた電子部品に関する。
 本発明の第四は、芳香族ヒドロキシカルボン酸、芳香族ジオールおよび芳香族ジカルボン酸、合わせて100モル%を重縮合する全芳香族液晶ポリエステルの製造方法において、
 芳香族ヒドロキシカルボン酸が化学式(6)であり、
Figure JPOXMLDOC01-appb-C000016
 芳香族ジオールが、化学式(7)、化学式(8)、および化学式(9)の全てからなり、
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 芳香族ジカルボン酸が化学式(10)であり、
Figure JPOXMLDOC01-appb-C000020
 かつ、その配合比が、20モル%≦化学式(6)の組成≦70モル%;
 15モル%≦[化学式(7)組成+化学式(8)組成+化学式(9)組成]≦40モル%、ただし[化学式(7)組成+化学式(8)組成](モル%)≧化学式(9)組成(モル%)で、化学式(7)、(8)および(9)の各成分の組成は>0モル%であり;
 15モル%≦化学式(10)組成≦40モル%であり、
 かつ、(6)、(7)、(8)、(9)中の全水酸基に対し、1.05~1,15モル当量の無水酢酸を存在させて酢酸還流下に溶融重合を行う、全芳香族液晶ポリエステルの製造方法に関する。
 本発明の第五は、本発明の第四に記載の全芳香族ポリエステルの製造方法において、さらに、固体重縮合による全芳香族ポリエステルの製造工程を含む、320℃以上の融点を有する全芳香族液晶ポリエステルの製造方法に関する。
 本発明に係る全芳香族ポリエステルからなる樹脂組成物は、表面実装(SMT)に対応する耐熱性と、0.03mm~0.15mmの薄肉部を有する薄肉成形性に優れる射出成形体を得ることができる全芳香族ポリエステルからなる樹脂組成物であり、電子部品等の射出成形材料として極めて有用である。
 本発明の効果は、本願発明にかかる樹脂組成を有する液晶ポリエステル樹脂の溶融粘度が、溶融状態の380℃から(融点−30℃)の温度前後まで降温する過程においても不変もしくは微増である特性に依存しており、金型キャビティ充填過程の温度低下に関わらず、広範な成形温度域で流動性が維持されて、0.03mm~0.15mm、好ましくは0.03mm~0.1mmの薄肉部への樹脂充填が可能になるのである。本願においては、これを「固化速度(または増粘)抑制効果」と言うことがある。
 図1は、試験片の概略を示す平面図および側面図である。
 本発明に係る全芳香族ポリエステルは、芳香族ヒドロキシカルボン酸、芳香族ジオール、および、芳香族ジカルボン酸(これらの誘導体を含む。以下、同じ。)、合わせて100モル%を重縮合してなる。
 本発明に係る全芳香族ポリエステル中の芳香族ヒドロキシカルボン酸に由来する構成単位は化学式(1)であり、これは、例えば、p−ヒドロキシ安息香酸(化学式(6))を用いることで得ることができる。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 本発明に係る全芳香族ポリエステル中では、この構成単位(化学式(1))を、20モル%~70モル%(境界値を含む、以下同じ。)とする。好ましくは、30モル%~65モル%、さらに好ましくは、40モル%~65モル%である。この範囲未満の場合は、耐熱性が不足することがあり、範囲を超える場合は、高い成形温度を要し、射出成形安定性に劣る。また、温度降下に対して粘度変化が大きく、射出成形品の薄肉部の溶融樹脂の充填性が悪化することがある。
 本発明に係る全芳香族ポリエステル中の芳香族ジオールに由来する構成単位は3種あり、化学式(2)、化学式(3)、化学式(4)で表される。これらは、それぞれ、例えば、ヒドロキノン(化学式(7))、p−ジヒドロキシビフェニル(化学式(8))、2,7−ジヒドロキシナフタレン(化学式(9))を用いることで得ることができる。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
 本発明に係る全芳香族ポリエステル中では、これら、化学式(2)、(3)、(4)で表す構成単位を、合わせて15モル%~40モル%、好ましくは15~25モル%とする。この範囲未満の場合は、温度降下に対して粘度変化が大きく、射出成形品の薄肉部の充填性が悪化することがある。前記範囲を超える場合は、その融点が、SMT対応耐熱性の目安である融点320℃未満となることがある。
 また、本発明に係る全芳香族ポリエステル中では、化学式(2)と化学式(3)で表される構成単位の総モル数を、化学式(4)で表される構成単位のモル数以上とする。境界値未満の場合は、耐熱性が低下するおそれがある。
 本発明に係る全芳香族ポリエステル中の芳香族ジカルボン酸に由来する構成単位は化学式(5)であり、例えば、カルボキシル基をパラ位に有するテレフタル酸(化学式(10))を用いることで得ることができる。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
 本発明に係る全芳香族ポリエステル中では、化学式(5)で表す構成単位を、15モル%~40モル%とする。好ましくは、15モル%~25モル%である。この範囲未満の場合は、温度降下に対して粘度変化が大きく、射出成形品の薄肉部の充填性が低下することがある。
 また、本発明に係る全芳香族ポリエステルの融点は、320℃以上が好ましく、この融点は、ISO11357−3、ASTM D3418に準拠する。測定方法は、たとえば、セイコー電子工業(株)製の示差走査熱量計(DSC)を用いることが出来る。このとき、昇温速度20℃/分で室温から390℃まで昇温してポリマーを完全に融解させたあと、降温速度10℃/分で50℃まで降温し、更に20℃/分の昇温速度で420℃まで昇温するときに得られる吸熱ピークの頂点を融点とする。
 以上、個々の構成単位について述べたが、分子構造全体を俯瞰した場合、本発明に係る全芳香族ポリエステルは、芳香族ヒドロキシカルボン酸、および芳香族ジカルボン酸の両者由来の構成単位中に一つの芳香族環を有し剛直性の強い連鎖を生じさせる構造を割り当てて、芳香族ジオール由来の構成単位中のみに、自由回転可能な炭素−炭素結合、および、剛直性を緩和する2位および7位に置換基を有するナフタレン環を配置している。
 本発明者らは、これらの差別化により、芳香族ヒドロキシカルボン酸、および、芳香族ジカルボン酸由来部分(モイエティ)に起因する結晶あるいはメソゲンの形成によって成形体の耐熱性および溶融体の高流動性、芳香族ジオール由来部分に起因する分子運動の自由度に起因する温度降下に対する粘度変化の緩和、の両効果が効率的に、かつバランスよく発揮されているものと考えている。
 本発明に係る全芳香族液晶ポリエステルの製造方法としては、公知の液晶ポリエステル樹脂の製造方法を採用することができ、溶融重合のみによる製造方法、あるいは溶融重合と固相重合の2段重合による製造方法を用いることができる。
 これらの中でも、本発明に係る全芳香族ポリエステル化合物が効率よく得られる観点から、p−ヒドロキシ安息香酸(化学式(6))、ヒドロキノン(化学式(7))、ビフェノール(化学式(8))、2,7−ジヒドロキシナフタレン(化学式(9))、テレフタル酸(化学式(10))を、所定の配合で、合わせて100モル%として、これら化合物中の全水酸基に対し、1.05~1.15モル当量の無水酢酸を存在させて酢酸還流下に溶融重合を行うことが好ましい。
 なお、添加する無水酢酸のモル当量数が上記範囲を大きく逸脱すると、反応が容易に進行しないことがある。
 溶融重合により得られた重合体についてさらに固相重合を行う場合は、溶融重合により得られたプレポリマーを冷却固化後に粉砕してパウダー状もしくはフレーク状にした後、公知の固相重合方法、例えば、窒素などの不活性雰囲気下において200~350℃の温度範囲で1~30時間プレポリマー樹脂を熱処理するなどの方法が好ましく選択される。固相重合は、攪拌しながら行ってもよく、また攪拌することなく静置した状態で行ってもよい。
 重合反応において触媒は使用してもよいし、また使用しなくてもよい。使用する触媒としては、ポリエステルの重縮合用触媒として従来公知のものを使用することができ、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、酢酸カリウム、三酸化アンチモンなどの金属塩触媒、N−メチルイミダゾールなどの有機化合物触媒等が挙げられる。
 溶融重合における重合反応装置は特に限定されるものではないが、一般の高粘度流体の反応に用いられる反応装置が好ましく使用される。これらの反応装置の例としては、例えば、錨型、多段型、螺旋帯型、螺旋軸型等、あるいはこれらを変形した各種形状の攪拌翼をもつ攪拌装置を有する攪拌槽型重合反応装置、又は、ニーダー、ロールミル、バンバリーミキサー等の、一般に樹脂の混練に使用される混合装置などが挙げられる。
 本発明に係る全芳香族ポリエステルを射出成形用材料として用いる場合は、通例に従い、全芳香族ポリエステル100重量部に対して、10~40重量部のミルドガラス繊維、タルク、マイカ、ガラスフレーク、クレー、セリサイト、炭酸カルシウム、珪酸カルシウム、シリカ、アルミナ、水酸化アルミニウム、水酸化カルシウム、黒鉛、非晶質炭素、チタン酸カリウム、炭素繊維、各種ウィスカー等充填材を溶融混練した樹脂組成物としてから使用する。前記以外に、その他の充填材、着色剤、分散剤、可塑剤、酸化防止剤、難燃剤等を添加してもよい。
 また、本発明においては、本発明の効果を損なわない範囲で、液晶ポリエステルの合成に使用されている、所謂、芳香族多官能性モノマーを使用することができる。特に、p−ヒドロキシ安息香酸の一部を6−ヒドロキシ−2−ナフトエ酸に置換することは、流動性を維持したまま、成形加工温度の低下を可能とする効果がある。
 以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 液晶ポリエステル(LCP)の製造例を以下に示す。
(実施例1 サーモトロピック液晶ポリエステルAの製造)
SUS316を材質とし、ダブルヘリカル攪拌翼を有する内容積6Lの重合槽に、p−ヒドロキシ安息香酸(HBA,化学式(6))1325.97g(9.60モル)、4,4’−ジヒドロキシビフェニル(BP,化学式(7))178.76g(0.96モル)、ヒドロキノン(HQ,化学式(8))140.94g(1.28モル)、2,7−ジヒドロキシナフタレン(2,7−DON,化学式(9))153.76g(0.96モル)、テレフタル酸(TPA,化学式(10))(531.62g(3.2モル)、触媒として酢酸カリウム0.30g、及び、酢酸マグネシウム0.30gを仕込み、重合槽の減圧−窒素注入を3回行って窒素置換を行った後、無水酢酸1764.10g(17.28モル)を更に添加し、攪拌翼の回転速度を70rpmとし、1.5時間かけて150℃まで昇温し、還流状態で2時間アセチル化反応を行った。
 アセチル化終了後、酢酸留出状態にした重合槽を0.5℃/分で昇温して、リアクター温度が305℃なったところで重合物をリアクター下部の抜き出し口から取り出し、冷却固化した。得られた重合物を粉砕機により目開き2.0mmの篩を通過する大きさに粉砕してプレポリマーを得た。
 次に、上記で得られたプレポリマー950gを固相重合装置に充填し、窒素を流通しながら、回転速度5rpmでヒーター温度を室温から150℃まで1時間かけて昇温した後、250℃まで6時間かけて昇温し、250℃で1時間保持した。更に270℃まで5時間、290℃まで5時間、305℃まで4時間かけて昇温し、305℃で1時間保持し、固相重縮合を行った。こうして、粉末状のサーモトロピック液晶ポリエステル(A)約880gを得た。得られたサーモトロピック液晶ポリエステル(A)は、芳香族ヒドロキシカルボン酸由来の構成単位が化学式(1);60モル%からなり、芳香族ジオール由来の構成単位が、化学式(2);6モル%と化学式(3);8モル%および化学式(4);6モル%(化学式(2)~化学式(4)のモル数の合計が20モル%)からなり、芳香族ジカルボン酸由来の構成単位が化学式(5);20モル%からなり、融点は338℃であった。
 前述の通り得られたサーモトロピック液晶ポリエステル(A)100重量部に、後述の充填剤(1)~(3)を添加してサーモトロピック液晶ポリエステル(A)組成物を得た。
 そして、前記組成物を用いて後述の試験(1)~(4)を行った。その結果は、表1に示す。
(実施例2 サーモトロピック液晶ポリエステルBの製造)
 p−ヒドロキシ安息香酸(HBA,化学式(6))1325.97g(9.60モル)、4,4’−ジヒドロキシビフェニル(BP,化学式(7))268.14g(1.44モル)、ヒドロキノン(HQ,化学式(8))123.32g(1.12モル)、2,7−ジヒドロキシナフタレン(2,7−DON,化学式(9))103.17g(0.64モル)、テレフタル酸(TPA,化学式(10))531.62g(3.2モル)、触媒として酢酸カリウム0.30g、及び、酢酸マグネシウム0.30gを仕込み、サーモトロピック液晶ポリエステルAと同様にして粉末状のサーモトロピック液晶ポリエステル(B)を得た。得られたサーモトロピック液晶ポリエステル(B)は、芳香族ヒドロキシカルボン酸由来の構成単位が化学式(1);60モル%からなり、芳香族ジオール由来の構成単位が化学式(2);9モル%と化学式(3);7モル%および化学式(4);4モル%(化学式(2)~化学式(4)の合計モル数が20モル%)からなり、芳香族ジカルボン酸由来の構成単位が化学式(5);20モル%からなり、融点は344℃であった。
 前述の通り得られたサーモトロピック液晶ポリエステル(B)100重量部に、後述の充填剤(1)~(3)を添加してサーモトロピック液晶ポリエステル(B)組成物を得た。
 そして、前記組成物を用いて、後述の試験(1)~(4)を行った。その結果は、表1に示す。
(比較例1 サーモトロピック液晶ポリエステルCの製造)
 p−ヒドロキシ安息香酸(HBA,化学式(6))1325.95g(9.60モル)、4,4’−ジヒドロキシビフェニル(BP,化学式(7))595.87g(3.20モル)、テレフタル酸(TPA,化学式(10))398.71g(2.40モル)、イソフタル酸(IPA)132.90g(0.80モル)、触媒として酢酸カリウム0.16g、及び、酢酸マグネシウム0.48gを仕込み、重合槽の減圧−窒素注入を3回行って窒素置換を行った後、無水酢酸1715.11g(16.80モル)を更に添加し、実施例1と同様にして(取り出し時のリアクター温度は310℃)プレポリマーを得た後、固相重合(終了温度は320℃)を行って、サーモトロピック液晶ポリエステル(C)を得た。得られたサーモトロピック液晶ポリエステルは、
芳香族ヒドロキシカルボン酸由来の構成単位が化学式(1);60モル%からなり、芳香族ジオール由来の構成単位が化学式(2);20モル%からなり、芳香族ジカルボン酸由来の構成単位が化学式(5);15モル%及びIPA5モル%の合計20モル%からなり、融点は355℃であった。
 前述の通り得られたサーモトロピック液晶ポリエステル(C)100重量部に、後述の充填剤(1)~(3)を添加してサーモトロピック液晶ポリエステル(C)組成物を得た。
 そして、前記組成物を用いて、後述の試験(1)~(4)を行った。その結果は、表1に示す。
 本発明に係る実施例および比較例に用いた各種充填剤の特性及び添加量を以下に示す。
(1)タルク:日本タルク(株)社製、「MS−KY」(数平均粒径23μm);14重量部
(2)ガラスファイバー:
日東紡績(株)社製、SS05DE−413SP(数平均繊維長100μm、数平均繊維径6μm);29重量部
(3)カーボンブラック(CB):キャボット(株)社製、「REGAL99I」;1重量部
(試験方法)
(1)溶融粘度の測定
 溶融粘度は、キャピラリーレオメーター(インテスコ(株)社製2010)を用い、キャピラリーとして径1.00mm、長さ40mm、流入角90°のものを用い、せん断速度100sec−1で300℃から+4℃/分の昇温速度で等速加熱をしながら見掛け粘度測定を行った。また、同様に380℃から−4℃/分の速度で等速冷却しながら見掛け粘度を測定し、昇温時との粘度上昇開始温度の差を過冷却温度とした。なお、試験には、予めエアーオーブン中、150℃、4時間乾燥した樹脂組成物を用いた。
(2)融点の測定
 サーモトロピック液晶ポリエステルの融点は、セイコー電子工業(株)製の示差走査熱量計(DSC)により測定した。このとき、昇温速度20℃/分で室温から390℃まで昇温してポリマーを完全に融解させたあと、速度10℃/分で50℃まで降温し、更に20℃/分の速度で420℃まで昇温するときに得られる吸熱ピークの頂点を融点とした。
(3)薄肉流動性の測定
(試験片の成形)
 得られた樹脂組成物のペレットを、射出成形機(Sodick製 LD10EH2)にて、幅2.0mm×長さ40mm×厚み0.10mmの金型を用いて、シリンダー温度を見掛け溶融粘度測定(昇温)時、溶融粘度の値が安定し始める温度に設定し、射出速度133mm/sec、金型温度80℃にて流動長を評価した。金型は、ゲートの片側に2.0mm幅×0.1mm厚みのキャビティを有し、一定ストロークで注入される樹脂は流動性が優れるものほど、当該キャビティ注入量が増加、成形品の薄肉成形部分の長さ(=流動長)が増す。試験片の平面図および側面図の概略を図1に示す。なお、0.1mm厚みのキャビティを有する金型で所定の流動性が確認されたので、それより厚い0.15mmのキャビティの金型においては、それ以上の薄肉流動性が当然に得られる。
 また、流動長は最薄部の長さを測定し、N=20 の平均値とした。
(4)成形品の収縮率測定
 得られた樹脂組成物のペレットを、射出成形機(東芝製 IS−80)を用い、シリンダー温度は薄肉流動性測定時と同じ方法で設定し、一端にゲートを設けた金型で、幅100mm×長さ100mm×厚み1.0mmの角板を成形し、角板の流動方向(MD)および流動方向に直角の方向(TD)の成形収縮率を測定した。測定には測定顕微鏡(Mitutoyo製 MF200)を用いた。
Figure JPOXMLDOC01-appb-T000031
 本発明に係る全芳香族ポリエステルからなる樹脂組成物は、表面実装(SMT)耐熱性と薄肉成形性に優れ、0.03mm~0.15mmの薄肉部を有する薄肉加工性に優れた射出成形体を得ることができるので、カメラモジュール部品、CD,DVDの光ピックアップレンズホルダー等光学部品、電子部品等に適用可能である。

Claims (5)

  1.  芳香族ヒドロキシカルボン酸、芳香族ジオール、および、芳香族ジカルボン酸(これらの誘導体を含む。)、合わせて100モル%を重縮合してからなる全芳香族液晶ポリエステルにおいて、
     芳香族ヒドロキシカルボン酸由来の構成単位が化学式(1)からなり、
    Figure JPOXMLDOC01-appb-C000001
     芳香族ジオール由来の構成単位が化学式(2)、化学式(3)、および、化学式(4)からなり、
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
     芳香族ジカルボン酸由来の構成単位が化学式(5)からなり、
    Figure JPOXMLDOC01-appb-C000005
     かつ、
    20モル%≦化学式(1)の組成≦70モル%、
    15モル%≦[化学式(2)組成+化学式(3)組成+化学式(4)組成]≦40モル%、ただし、[化学式(2)組成+化学式(3)組成](モル%)≧化学式(4)組成(モル%)、ここで、化学式(2)、(3)および(4)の各繰り返し単位の組成は、>0モル%であり、
    15モル%≦化学式(5)組成≦40モル%、
    であり、かつ、
    前記全芳香族液晶ポリエステルの融点が320℃以上である、全芳香族液晶ポリエステル。
  2.  請求項1に記載の全芳香族ポリエステルを含む樹脂組成物を射出成形体してなる、0.03~0.15mmの肉厚部を有する射出成形体。
  3.  請求項2に記載の射出成形体を用いた電子部品。
  4.  芳香族ヒドロキシカルボン酸、芳香族ジオール、および、芳香族ジカルボン酸、合わせて100モル%を重縮合する全芳香族液晶ポリエステルの製造方法において、
     芳香族ヒドロキシカルボン酸が化学式(6)であり、
    Figure JPOXMLDOC01-appb-C000006
     芳香族ジオールとして、化学式(7)、化学式(8)、および化学式(9)のすべてを含み、
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
     芳香族ジカルボン酸が化学式(10)であり、
    Figure JPOXMLDOC01-appb-C000010
    かつ、その配合比が、
    20モル%≦化学式(6)の組成≦70モル%、
    15モル%≦[化学式(7)組成+化学式(8)組成+化学式(9)組成]≦40モル%、ただし、[化学式(7)組成+化学式(8)組成](モル%)≧化学式(9)組成(モル%)で、化学式(7)、(8)および(9)の各成分の組成は>0モル%であり、
    15モル%≦化学式(10)組成≦40モル%、
    であり、かつ、
    (6)、(7)、(8)、(9)中の全水酸基に対し、1.05~1.15モル当量の無水酢酸を存在させて酢酸還流下に溶融重合を行う、全芳香族液晶ポリエステルの製造方法。
  5.  請求項4に記載の全芳香族ポリエステルの製造方法において、さらに、固体重縮合による全芳香族ポリエステルの製造工程を含む、320℃以上の融点を有する全芳香族液晶ポリエステルの製造方法。
PCT/JP2015/065325 2014-05-22 2015-05-21 全芳香族液晶ポリエステル樹脂、およびその樹脂組成物の射出成形体 WO2015178500A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016521172A JPWO2015178500A1 (ja) 2014-05-22 2015-05-21 全芳香族液晶ポリエステル樹脂、およびその樹脂組成物の射出成形体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-106184 2014-05-22
JP2014106184 2014-05-22
JP2014-129373 2014-06-24
JP2014129373 2014-06-24

Publications (1)

Publication Number Publication Date
WO2015178500A1 true WO2015178500A1 (ja) 2015-11-26

Family

ID=54554156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065325 WO2015178500A1 (ja) 2014-05-22 2015-05-21 全芳香族液晶ポリエステル樹脂、およびその樹脂組成物の射出成形体

Country Status (3)

Country Link
JP (1) JPWO2015178500A1 (ja)
TW (1) TW201546112A (ja)
WO (1) WO2015178500A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188959A1 (ja) * 2018-03-27 2019-10-03 住友化学株式会社 芳香族液晶ポリエステル、芳香族液晶ポリエステル組成物及び成形品
CN113024784A (zh) * 2021-02-05 2021-06-25 桂林理工大学 一种低介电热致液晶聚合物及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60104123A (ja) * 1983-10-26 1985-06-08 バスフ アクチェンゲゼルシャフト 全芳香族ポリエステル
JPS62211121A (ja) * 1986-02-15 1987-09-17 バスフ アクチェン ゲゼルシャフト 扁平な半製品を製造する方法
DE3625265A1 (de) * 1986-07-25 1988-02-04 Basf Ag Umhuellte passive keramische bauelemente fuer die elektronik
JPS6334996A (ja) * 1986-07-25 1988-02-15 バスフ アクチェンゲゼルシャフト 超小形電子素子及び厚膜ハイブリッド回路
JPS6357634A (ja) * 1986-08-28 1988-03-12 バスフ アクチェンゲゼルシャフト 全芳香族熱互変性ポリエステル
JPH02153965A (ja) * 1988-09-20 1990-06-13 Basf Ag ポリマー成形材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60104123A (ja) * 1983-10-26 1985-06-08 バスフ アクチェンゲゼルシャフト 全芳香族ポリエステル
JPS62211121A (ja) * 1986-02-15 1987-09-17 バスフ アクチェン ゲゼルシャフト 扁平な半製品を製造する方法
DE3625265A1 (de) * 1986-07-25 1988-02-04 Basf Ag Umhuellte passive keramische bauelemente fuer die elektronik
JPS6334996A (ja) * 1986-07-25 1988-02-15 バスフ アクチェンゲゼルシャフト 超小形電子素子及び厚膜ハイブリッド回路
JPS6357634A (ja) * 1986-08-28 1988-03-12 バスフ アクチェンゲゼルシャフト 全芳香族熱互変性ポリエステル
JPH02153965A (ja) * 1988-09-20 1990-06-13 Basf Ag ポリマー成形材料

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188959A1 (ja) * 2018-03-27 2019-10-03 住友化学株式会社 芳香族液晶ポリエステル、芳香族液晶ポリエステル組成物及び成形品
US20210024687A1 (en) * 2018-03-27 2021-01-28 Sumitomo Chemical Company, Limited Aromatic liquid crystal polyester, aromatic liquid crystal polyester composition, and molded article
JPWO2019188959A1 (ja) * 2018-03-27 2021-03-11 住友化学株式会社 芳香族液晶ポリエステル、芳香族液晶ポリエステル組成物及び成形品
JP7267257B2 (ja) 2018-03-27 2023-05-01 住友化学株式会社 芳香族液晶ポリエステル、芳香族液晶ポリエステル組成物及び成形品
CN113024784A (zh) * 2021-02-05 2021-06-25 桂林理工大学 一种低介电热致液晶聚合物及其制备方法

Also Published As

Publication number Publication date
TW201546112A (zh) 2015-12-16
JPWO2015178500A1 (ja) 2017-04-20

Similar Documents

Publication Publication Date Title
JP6411702B1 (ja) 全芳香族液晶ポリエステル樹脂
KR101831543B1 (ko) 전방향족 액정 폴리에스테르 수지 조성물 및 그 사출 성형품을 구성 부재로서 포함하는 카메라 모듈 부품
KR101591542B1 (ko) 카메라 모듈용 액정 폴리에스테르 수지 조성물
KR101591541B1 (ko) 카메라 모듈용 액정 폴리에스테르 수지 조성물
CN101001913B (zh) 液晶聚酯树脂组合物
JP5695389B2 (ja) 液晶ポリエステル樹脂組成物及びカメラモジュール部品
JP4625340B2 (ja) 液晶ポリエステル樹脂およびその製造方法
JP6470295B2 (ja) 全芳香族液晶ポリエステル樹脂
JP6258705B2 (ja) 流動性が向上した全芳香族液晶ポリエステル樹脂コンパウンド
JP5951167B2 (ja) カメラモジュール用液晶ポリエステル樹脂組成物
JP6920924B2 (ja) 液晶ポリエステル樹脂
JP5504923B2 (ja) 液晶ポリエステル組成物の製造方法及びコネクター
TWI535781B (zh) A liquid crystal polyester resin composition, a molded body, and an LED reflector
WO2017135365A1 (ja) 全芳香族液晶ポリエステル樹脂およびその製造方法
JP5951168B2 (ja) カメラモジュール用液晶ポリエステル樹脂組成物
CN108368329B (zh) 液晶聚酯组合物和成形体
KR101813426B1 (ko) 액정 폴리에스테르아미드 수지 조성물, 및 그 사출 성형체를 구성 부재로서 포함하는 카메라 모듈 부품
WO2015178500A1 (ja) 全芳香族液晶ポリエステル樹脂、およびその樹脂組成物の射出成形体
JP2014506952A (ja) 全芳香族液晶ポリエステル樹脂の製造方法、該製造方法によって製造された樹脂、及び該樹脂を含むコンパウンド
TW201843020A (zh) 液晶聚酯組成物的製造方法及液晶聚酯組成物
JP5281751B2 (ja) 液晶性ポリマー組成物及びその製造方法、並びに、これを用いた成形品及び平面状コネクター
JP5085863B2 (ja) 液晶ポリマー組成物
JP2010065179A (ja) 液晶ポリエステル樹脂組成物及びそれを用いてなる成形体
WO2021149723A1 (ja) 樹脂組成物および該樹脂組成物からなる樹脂成形品
JP2008150570A (ja) 全芳香族ポリエステルの製造方法および全芳香族ポリエステル組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796909

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016521172

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, EPO FORM 1205A DATED 14.02.2017

122 Ep: pct application non-entry in european phase

Ref document number: 15796909

Country of ref document: EP

Kind code of ref document: A1