WO2015178339A1 - ガラス基板、ガラス基板の製造方法、およびブラックマトリクス基板 - Google Patents

ガラス基板、ガラス基板の製造方法、およびブラックマトリクス基板 Download PDF

Info

Publication number
WO2015178339A1
WO2015178339A1 PCT/JP2015/064163 JP2015064163W WO2015178339A1 WO 2015178339 A1 WO2015178339 A1 WO 2015178339A1 JP 2015064163 W JP2015064163 W JP 2015064163W WO 2015178339 A1 WO2015178339 A1 WO 2015178339A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
value
glass
cleaning
film
Prior art date
Application number
PCT/JP2015/064163
Other languages
English (en)
French (fr)
Inventor
小林 大介
敦義 竹中
高橋 秀幸
佳孝 前柳
智章 石川
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201580026417.8A priority Critical patent/CN106458734A/zh
Priority to JP2016521089A priority patent/JP6662288B2/ja
Priority to KR1020167032140A priority patent/KR102297566B1/ko
Publication of WO2015178339A1 publication Critical patent/WO2015178339A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • C03C15/02Surface treatment of glass, not in the form of fibres or filaments, by etching for making a smooth surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a glass substrate, a glass substrate manufacturing method, and a black matrix substrate.
  • a glass substrate used in an FPD such as a liquid crystal display device (LCD) is manufactured by, for example, forming a glass ribbon from a molten glass by a float method or a fusion method, and cutting out the glass ribbon.
  • a highly hydrophilic layer containing excessive OH groups hereinafter referred to as OH-rich hydrophilic layer
  • OH-rich hydrophilic layer a highly hydrophilic layer containing excessive OH groups
  • an abrasive (slurry) containing cerium oxide particles as abrasive grains is used for polishing such a glass substrate. Further, after polishing, residues such as abrasive grains adhering to the surface of the glass substrate are cleaned and removed with a cleaning liquid (see, for example, Patent Document 1).
  • An acidic cleaning liquid containing an organic acid such as organic phosphonic acid is effective for removing residues such as abrasives containing abrasive grains of cerium oxide particles.
  • a black matrix film for color filter (hereinafter referred to as BM) is formed on the surface using a resin composition containing a black pigment such as carbon black.
  • BM black matrix film for color filter
  • the present invention has been made in order to solve the above-described problems.
  • the resin-based BM film (hereinafter also referred to as a resin BM film) formed on the surface has high adhesion, and the resin BM film is peeled off.
  • the purpose is to provide a difficult glass substrate.
  • the adhesion of the resin BM film formed on the surface of the glass substrate after cleaning is suppressed to prevent the resin BM film from peeling off.
  • An object of the present invention is to provide a glass substrate manufacturing method that can be used.
  • the glass substrate of the present invention is a glass substrate made of silicate glass containing aluminum, and the atomic concentration of aluminum in the glass substrate (hereinafter referred to as Al concentration) and silicon measured by X-ray photoelectron spectroscopy.
  • Al concentration the atomic concentration of aluminum in the glass substrate
  • Si concentration the atomic concentration
  • the ⁇ Al / Si value is preferably 0.19 or less. Moreover, it is preferable that the arithmetic mean surface roughness of the surface of the said glass substrate is 0.2 nm or less.
  • the silicate glass containing aluminum is preferably an aluminoborosilicate glass having a composition containing SiO 2 , Al 2 O 3 , B 2 O 3 , and an alkaline earth metal oxide, The contained silicate glass is preferably an aluminoborosilicate glass that does not substantially contain an alkali metal component.
  • the method for producing a glass substrate of the present invention is a method for producing the glass substrate of the present invention, wherein a glass substrate polished with an abrasive containing abrasive grains is washed with an aqueous cleaning solution having a pH of greater than 2.7. It is characterized by that.
  • the abrasive grains are preferably cerium oxide particles.
  • the black matrix substrate of the present invention is characterized in that a BM film is formed on the glass substrate of the present invention.
  • the adhesiveness of the resin BM film formed on the surface is good, and peeling of the resin BM film is prevented.
  • a glass substrate having good adhesion of the resin BM film formed on the surface and hardly causing the resin BM film to peel off can be obtained.
  • the glass substrate which concerns on embodiment of this invention is a glass substrate which consists of silicate glass containing aluminum, and it is similarly X-ray photoelectron spectroscopy from the Al / Si value inside a glass substrate measured by X-ray photoelectron spectroscopy.
  • the ⁇ Al / Si value which is a value obtained by subtracting the Al / Si value of the surface of the glass substrate, measured by the method is 0.25 or less.
  • the ⁇ Al / Si value is preferably closer to 0 (zero). Specifically, the ⁇ Al / Si value is preferably 0.19 or less, and more preferably 0.15 or less.
  • the glass substrate of the embodiment is a glass substrate for FPD such as an LCD, for example.
  • the glass constituting the glass substrate is not limited in composition as long as it is made of silicate glass containing an aluminum component, but SiO 2 , Al 2 O 3 , B 2 O 3 , and alkaline earth metal oxides
  • An aluminoborosilicate glass having a composition containing is preferable, and so-called alkali-free aluminoborosilicate glass that does not substantially contain an alkali metal component in the glass composition is more preferable.
  • that it does not contain an alkali metal component substantially means that content of the alkali metal oxide in a glass composition is 1 mass% or less in total, Preferably it is 0.1 mass% or less.
  • the glass substrate according to the embodiment of the present invention has a strain point of 630 ° C. or higher, preferably 650 ° C. or higher, and a composition expressed in mass percentage on an oxide basis.
  • An alkali-free glass containing is preferred.
  • the Al concentration and Si concentration inside and on the surface of the glass substrate are values measured by X-ray photoelectron spectroscopy.
  • the depth from the surface of the point where the Al concentration and the Si concentration in the glass substrate are measured is determined as follows. That is, while forming a recess hole (crater) on a glass substrate by using a C 60 ion sputtering to measure the Al concentration and Si concentration at the bottom of the concave hole of varying depth, the distribution in the depth direction of each atom concentration Ask for.
  • the depth at which the distribution in the depth direction of the Al concentration and the Si concentration is constant is obtained, and the value of the ratio between the Al concentration and the Si concentration measured at the depth is defined as the Al / Si value inside the glass substrate.
  • the ⁇ Al / Si value which is a value obtained by subtracting the Al / Si value of the surface of the glass substrate from this value, is obtained.
  • the degree of decrease in the Al / Si value on the surface of the glass substrate relative to the Al / Si value inside the glass substrate is a predetermined value (0.25) or less. Since it is suppressed, the adhesiveness of the resin BM film formed on the surface of the glass substrate is good, and the resin BM film is hardly peeled off.
  • the ⁇ Al / Si value indicating how much the Al / Si value on the surface of the glass substrate is lower than the Al / Si value inside the glass substrate where the Al component does not escape is the OH-rich hydrophilic layer. Indicates the degree of formation. That is, the lower the ⁇ Al / Si value, the smaller the deficiency of the Al component on the surface of the glass substrate, and the lower the hydrophilicity attributed to the OH groups on the surface of the glass substrate.
  • the ⁇ Al / Si value which is a value obtained by subtracting the Al / Si value on the surface of the glass substrate from the Al / Si value inside the glass substrate, is 0.25 or less, the OH on the surface of the glass substrate.
  • the hydrophilicity attributed to the group is low. Therefore, when the resin BM film is formed on the glass substrate, the intrusion of the developer into the interface between the glass substrate and the resin composition film for BM formation is suppressed, and the adhesion of the resin BM film is improved and the film is peeled off. Is prevented.
  • the glass substrate of the present invention having a ⁇ Al / Si value of 0.25 or less can be obtained by the following method.
  • the glass substrate which concerns on embodiment of this invention is shape
  • the manufacturing method of the glass substrate of embodiment of this invention is demonstrated below as what has a grinding
  • the manufacturing method of the glass substrate of embodiment comprises the grinding
  • the glass substrate of the above-mentioned this invention can be obtained by wash
  • the pH of the aqueous cleaning solution is preferably 3.0 or more, and more preferably 3.5 or more.
  • the glass substrate that is the object to be cleaned is an FPD glass substrate such as an LCD, and is polished with an abrasive containing abrasive grains.
  • the glass constituting the glass substrate is preferably an aluminoborosilicate glass having a composition containing oxides of SiO 2 , Al 2 O 3 , B 2 O 3 , and an alkaline earth metal, and the glass composition is alkali. More preferred is an aluminoborosilicate glass that does not substantially contain a metal component.
  • the surface of such a glass substrate is polished with a polishing agent (slurry) containing abrasive grains using, for example, a polishing pad.
  • the abrasive grains contained in the abrasive are not particularly limited, and examples thereof include silica particles, alumina particles, cerium oxide particles, titania particles, zirconia particles, manganese oxide particles, and the like. Cerium particles are preferred.
  • the average particle size of the abrasive grains is preferably in the range of 0.8 to 1.0 ⁇ m, for example.
  • the arithmetic average surface roughness Ra (JIS B0601-2013) of the surface of the glass substrate is preferably 0.2 nm or less.
  • Examples of the aqueous cleaning liquid having a pH higher than 2.7 used in the embodiment of the present invention include the following acidic cleaning liquid containing an organic acid and alkaline cleaning liquid.
  • the pH of the aqueous cleaning liquid is preferably less than 11, and more preferably less than 9. From the above, the pH of the aqueous cleaning liquid is more preferably in the range of 3.5 or more and less than 9.
  • organic acid contained in the acidic cleaning liquid examples include, but are not limited to, organic carboxylic acids such as ascorbic acid and citric acid, and organic phosphonic acids.
  • organic carboxylic acids such as ascorbic acid and citric acid
  • organic phosphonic acids organic acids
  • inorganic acids for example, sulfuric acid, phosphoric acid, nitric acid, hydrofluoric acid, hydrochloric acid, etc.
  • inorganic acids can be added to the cleaning liquid, and inorganic acids can be used alone.
  • inorganic acid in order to suppress the fluctuation
  • a compound such as an organic carboxylic acid or organic phosphonic acid having a chelating effect may be included in the cleaning liquid from the viewpoint of detergency.
  • examples of the organic carboxylic acid having a chelating effect include a dicarboxylic acid chelating agent, a tricarboxylic acid chelating agent, a gluconic acid chelating agent, a nitrilotriacetic acid chelating agent, and an iminosuccinic acid chelating agent.
  • the organic phosphonic acid refers to an organic compound having a structure in which a phosphonic acid group represented by the formula: —P ( ⁇ O) (OH) 2 is bonded to a carbon atom.
  • the number of phosphonic acid groups represented by the above formula per molecule of organic phosphonic acid is preferably 2 or more, more preferably 2 to 8, and particularly preferably 2 to 4.
  • organic phosphonic acid a compound having a structure in which a hydrogen atom bonded to a carbon atom of hydrocarbons which may have a substituent is substituted with a phosphonic acid group, and a nitrogen atom of ammonia or amines are bonded.
  • a compound having a structure in which a hydrogen atom is substituted with a methylenephosphonic acid group represented by —CH 2 —P ( ⁇ O) (OH) 2 is preferable.
  • the organic phosphonic acid is methyldiphosphonic acid, 1-hydroxyethane-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), hexamethylenediaminetetra (methylenephosphonic acid).
  • Propylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid), triethylenetetraminehexa (methylenephosphonic acid), tris (2-aminoethyl) aminehexa (methylenephosphonic acid), trans-1,2-cyclohexane
  • Examples thereof include diamine tetra (methylene phosphonic acid), glycol ether diamine tetra (methylene phosphonic acid), and tetraethylenepentamine hepta (methylene phosphonic acid).
  • the alkaline cleaning liquid contains a base, and can contain a chelating agent and a surfactant in addition to the base.
  • the chelating agent may be included in the cleaning liquid from the viewpoint of cleaning properties.
  • it is better not to contain the chelating agent in the cleaning liquid from the viewpoint of the adhesion of the resin BM film.
  • Examples of the base contained in the alkaline cleaning liquid include alkali metal compounds such as alkali metal hydroxides and alkali metal carbonates, amines, and quaternary ammonium hydroxide.
  • alkali metal hydroxides such as potassium hydroxide and sodium hydroxide are preferable.
  • chelating agents examples include ethylenediaminetetraacetic acid chelating agents, gluconic acid chelating agents, nitrilotriacetic acid chelating agents, and iminosuccinic acid chelating agents.
  • an ethylenediaminetetraacetic acid chelating agent is preferable.
  • the surfactant a nonionic surfactant is preferable.
  • an acidic detergent stock solution is diluted with water so that the pH is higher than 2.7 (acid cleaning solution), or an alkaline detergent stock solution is diluted with water (alkaline).
  • the surface of the glass substrate after polishing is cleaned using a cleaning solution. It is preferable to wash by a single wafer method.
  • the cleaning method is not particularly limited as long as the cleaning liquid is in contact with the surface of the glass substrate for cleaning.
  • As the cleaning method for example, scrub cleaning, shower cleaning (jet cleaning), dip (immersion) cleaning, and the like can be used.
  • the temperature of the cleaning liquid is not particularly limited and is used at room temperature (15 ° C.) to 95 ° C.
  • the drying method include a method of blowing warm air, a method of blowing compressed air, and the like.
  • the water system sprayed from the cleaning nozzle 4 on the upper and lower surfaces of the glass substrate 3 that is continuously transported in the cleaning chamber 2 in the horizontal direction by a mechanism such as a transport roll 1.
  • a method of scrubbing (rubbing) the upper and lower surfaces of the glass substrate 3 with the rotating brushes 6 disposed on the upper and lower surfaces of the glass substrate 3 while spraying the cleaning liquid 5 can be employed.
  • the cleaning unit composed of the cleaning nozzle 4 for spraying the aqueous cleaning liquid 5 and the rotating brush 6 may be provided in only one stage, but may be provided in a plurality of stages. In the cleaning method shown in FIG. 1, the cleaning unit has two stages.
  • the aqueous cleaning liquid 5 sprayed in each stage has the same composition from either an acidic cleaning liquid or an alkaline cleaning liquid from the viewpoint of workability.
  • the pH of the cleaning liquid is in the above range, it is possible to perform cleaning using different aqueous cleaning liquids 5 at each stage.
  • the rotating brush 6 for cleaning a plurality of cylindrical brushes having an outer diameter of 70 to 100 mm made of PVA (polyvinyl alcohol) foam or the like are used. These rotating brushes 6 are arranged so that the rotation axis of the rotating brush 6 is perpendicular to the surface to be cleaned of the glass substrate 3, here the upper and lower surfaces, and the tip of the rotating brush 6 is covered by the glass substrate 3. Arrange it so that it is in contact with the surface to be cleaned or spaced from the surface to be cleaned by less than 2 mm.
  • the rotation speed of the rotary brush 6 is preferably 100 to 500 rpm.
  • aqueous cleaning liquid 5 a solution obtained by diluting the above-described acidic cleaning agent stock solution or alkaline cleaning agent stock solution with water to a desired pH is used, and the flow rate (injection amount) of the diluted cleaning solution, that is, the aqueous cleaning solution 5 is used. ) Is preferably 15 to 40 L / min. The scrub time is preferably 1.5 seconds or longer.
  • the glass substrate polished with the abrasive containing cerium oxide particles is washed with an aqueous cleaning solution having a pH of greater than 2.7 in the cleaning step.
  • the ⁇ Al / Si value obtained by subtracting the Al / Si value on the surface of the glass substrate from the internal Al / Si value is adjusted to 0.25 or less.
  • the formation of the OH-rich hydrophilic layer on the surface of the glass substrate is suppressed.
  • the developer enters the interface between the surface of the glass substrate and the resin composition film for BM formation.
  • the adhesion of the resin BM film is improved. Therefore, it is possible to obtain a glass substrate in which the adhesion of the resin BM film is good and film peeling is prevented.
  • Examples 1 to 3, Comparative Example 1 The surface of the glass substrate was polished as shown below.
  • a glass substrate for LCD As the glass substrate, a glass substrate for LCD (Asahi Glass Co., Ltd., trade name: AN100) made of aluminoborosilicate glass was used. Then, the surface of the glass substrate was polished with a polishing pad containing a cerium oxide particle having an average particle size of 0.8 to 1.0 ⁇ m (made by Showa Denko KK, trade name: SHOROX A10). Polished using. Then, the glass substrate whose surface was polished was cleaned using the cleaning method shown in FIG.
  • Example 1 an alkaline detergent stock solution (manufactured by Parker Corporation, trade name: PK-LCG28) diluted with water so as to have a pH of 8.9 was used as an aqueous cleaning solution.
  • Example 2 and Example 3 what diluted the acidic cleaning agent stock solution with water so that pH might be set to 5.3 (Example 2) and 3.9 (Example 3), respectively, is an aqueous cleaning solution.
  • the acidic detergent stock solution is PK-LCG492A (trade name of acidic detergent stock solution manufactured by Parker Corporation) with the concentration of organic phosphonic acid in the solution being 1 ⁇ 4.
  • PK-LCG492A trade name of acidic detergent stock solution manufactured by Parker Corporation
  • Comparative Example 1 an acidic detergent stock solution (manufactured by Parker Corporation, trade name: PK-LCG492A) diluted with water so as to have a pH of 2.7 was used as an aqueous cleaning solution.
  • the adhesion of the resin BM film was measured and evaluated by the following method. Further, the Al / Si value (also referred to as surface Al / Si value) on the surface of the glass substrate, the Al / Si value inside the glass substrate (also referred to as internal Al / Si value), and the ⁇ Al / Si value were determined.
  • this BM-forming resin composition was applied (spin coated) for 10 seconds at 200 rpm using a spin coater (manufactured by Mikasa Co., Ltd., apparatus name: MS-A100) on the surface of the cleaned glass substrate.
  • a spin coater manufactured by Mikasa Co., Ltd., apparatus name: MS-A100
  • the coating film was formed by heating and drying at 90 ° C. for 60 seconds.
  • the photomask had four types of pattern shapes L1 to L4 shown below, and a total of 110 types of patterns in which the line width was changed by 1 ⁇ m for each type.
  • L1 .
  • 25 linear patterns in one block 2835 ⁇ m ⁇ 2000 ⁇ m
  • a pattern spacing of 100 ⁇ m the line width is variable in the range of 1 to 25 ⁇ m
  • L2 .
  • 30 linear patterns in one block (2952.6 ⁇ m ⁇ 2000 ⁇ m) with a pattern spacing of 50 ⁇ m (the line width is variable in the range of 1 to 30 ⁇ m) L3 .
  • the glass substrate after cleaning with pure water was observed with a laser microscope (manufactured by Keyence Corporation, apparatus name: VK-9510), and the line width of the mask in which the pattern of the resin BM film remained on the glass substrate (hereinafter referred to as residual resolution).
  • the four types of pattern shapes L1 to L4 were examined. And the average of the remaining resolution about each of four types of pattern shapes was calculated
  • the depth profile of the Al concentration and Si concentration was determined by XPS using C 60 ion sputtering.
  • the same XPS measurement apparatus and analysis software as those used for the measurement of the surface Al / Si value were used.
  • the measurement conditions were a path energy of 117.4 eV, an energy step of 0.5 eV / step, monitor peaks of Si (2p) and Al (2p), and a detection angle of 75 °.
  • the sputtering interval was set to 5 minutes, and each time the sputtering was performed for 5 minutes, the Al concentration and the Si concentration at the bottom of the formed crater were measured.
  • Table 1 shows the residual resolution, surface Al / Si value, internal Al / Si value, and ⁇ Al / Si value thus measured for the glass substrates obtained in Examples 1 to 3 and Comparative Example 1.
  • FIG. 3 shows the relationship between the pH of the aqueous cleaning solution and the ⁇ Al / Si value
  • FIG. 4 shows the relationship between the ⁇ Al / Si value and the remaining resolution.
  • FIG. 3 shows that there is a negative correlation between the pH of the aqueous cleaning liquid and the ⁇ Al / Si value, and the ⁇ Al / Si value tends to decrease as the pH of the aqueous cleaning liquid increases.
  • FIG. 4 shows that there is a positive correlation between the ⁇ Al / Si value and the remaining resolution, and that the remaining resolution tends to decrease as the ⁇ Al / Si value decreases.
  • the smaller the remaining resolution the higher the adhesiveness of the resin BM film formed on the glass substrate after cleaning. Therefore, the smaller the ⁇ Al / Si value, the higher the adhesiveness of the resin BM film. I understand.
  • the adhesion of the resin BM film formed on the surface is good, and peeling of the resin BM film is prevented. Therefore, the glass substrate of the present invention can be effectively applied to a glass substrate used for FPD such as LCD. Moreover, according to the manufacturing method of the glass substrate of this invention, the glass substrate suitable as a glass substrate for FPD in this way can be obtained efficiently.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Surface Treatment Of Glass (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)
  • Glass Compositions (AREA)

Abstract

 アルミニウムを含むケイ酸ガラスからなるガラス基板であり、X線光電子分光法により測定された、前記ガラス基板の内部におけるアルミニウムの原子濃度とケイ素の原子濃度との比の値から、前記ガラス基板の表面におけるアルミニウムの原子濃度とケイ素の原子濃度との比の値を引いた値が、0.25以下であるガラス基板である。

Description

ガラス基板、ガラス基板の製造方法、およびブラックマトリクス基板
 本発明は、ガラス基板、ガラス基板の製造方法およびブラックマトリクス基板に関する。
 液晶表示装置(LCD)等のFPD(Flat Panel Display)に用いられるガラス基板は、例えば、フロート法やフュージョン法により溶融ガラスからガラスリボンに成形され、ガラスリボンから切り出されて製造される。このようなガラス基板の表面には、OH基を過剰に含む親水性の高い層(以下、OHリッチ親水層という。)が形成されることがある。
 特に溶融ガラスから板状に成形されたガラスを、自転および公転する研磨具で研磨する場合に顕著である。研磨工程では表面の微小な凹凸やうねりを除去することによって、FPD用ガラス基板に要求される平坦度を満足する所定の厚さ(例えば、0.1~1.1mm)の薄板状に形成している。
 このようなガラス基板の研磨には、例えば、砥粒として酸化セリウム粒子を含有する研磨剤(スラリー)が使用されている。また、研磨後は、ガラス基板の表面に付着している砥粒等の残留物を、洗浄液により洗浄し除去している(例えば、特許文献1参照)。
 そして、このような酸化セリウム粒子の砥粒を含む研磨剤等の残留物を除去するために、有機ホスホン酸のような有機酸を含む酸性の洗浄液が有効である。
 しかしながら、LCD用等のアルミノホウケイ酸ガラスからなるガラス基板を酸性の洗浄液で洗浄した場合、リーチング(leaching、浸出)作用により、ガラス基板の表面(表層)においてアルミニウムイオン等のガラス成分が抜け出すことがある。その結果、ガラス基板の表面には、OHリッチ親水層が形成されやすくなる。
 以上のように表面にOHリッチ親水層が形成されたガラス基板では、その表面上に、カーボンブラックのような黒色顔料を含有する樹脂組成物を用いてカラーフィルター用のブラックマトリクス膜(以下、BM膜ともいう。)を形成する工程で、OHリッチ親水層と樹脂系のBM膜との界面に現像液が浸入し、OHリッチ親水層からBM膜が剥れやすいという問題があった。
特開2009-215093号公報
 本発明は、上記問題を解決するためになされたもので、表面に形成される樹脂系のBM膜(以下、樹脂BM膜ともいう。)の密着性が高く、樹脂BM膜の剥れが生じにくいガラス基板の提供を目的としている。
 また、本発明は、研磨後のガラス基板の表面を洗浄するにあたり、洗浄後のガラス基板の表面に形成される樹脂BM膜の密着性低下を抑制して、樹脂BM膜の剥れを防止することが可能なガラス基板の製造方法を提供することを目的としている。
 本発明のガラス基板は、アルミニウムを含むケイ酸ガラスからなるガラス基板であり、X線光電子分光法により測定された、前記ガラス基板の内部におけるアルミニウムの原子濃度(以下、Al濃度という。)とケイ素の原子濃度(以下、Si濃度という。)との比の値(以下、Al/Si値という。)から、前記ガラス基板の表面におけるAl/Si値を引いた値(以下、ΔAl/Si値という。)が、0.25以下であることを特徴とする。
 本発明のガラス基板において、前記ΔAl/Si値は0.19以下が好ましい。また、前記ガラス基板の表面の算術平均表面粗さは0.2nm以下であることが好ましい。
 また、前記アルミニウムを含むケイ酸ガラスが、SiO、Al、B、およびアルカリ土類金属の酸化物を含む組成を有するアルミノホウケイ酸ガラスであることが好ましく、前記アルミニウムを含むケイ酸ガラスは、アルカリ金属成分を実質的に含有しないアルミノホウケイ酸ガラスであることが好ましい。
 本発明のガラス基板の製造方法は、前記本発明のガラス基板を製造する方法であり、砥粒を含有する研磨剤により研磨されたガラス基板を、pHが2.7より大きい水系洗浄液により洗浄することを特徴とする。本発明のガラス基板の製造方法において、前記砥粒は酸化セリウム粒子であることが好ましい。
 本発明のブラックマトリクス基板は、本発明のガラス基板上にBM膜が形成されてなることを特徴とする。
 本発明のガラス基板およびブラックマトリクス基板によれば、表面に形成される樹脂BM膜の密着性が良好であり、樹脂BM膜の剥れが防止される。
 また、本発明のガラス基板の製造方法によれば、表面に形成される樹脂BM膜の密着性が良好であり、樹脂BM膜の剥れが生じにくいガラス基板を得ることができる。
本発明のガラス基板を得るための、洗浄方法の一実施形態を示す図である。 実施例1で得られたガラス基板におけるAl濃度およびSi濃度と、測定の際のスパッタ時間との関係を表すグラフである。 実施例1~3および比較例1における洗浄液のpHの値と、洗浄後のガラス基板のΔAl/Si値との関係を表すグラフである。 実施例1~3および比較例1で得られたガラス基板のΔAl/Si値と、樹脂BM膜の残し解像度との関係を表すグラフである。
 以下、本発明の実施形態について説明する。本発明はこの実施形態に限定されるものではなく、本発明の趣旨に合致する限り、他の実施形態も本発明の範疇に属し得る。
<ガラス基板>
 本発明の実施形態に係るガラス基板は、アルミニウムを含むケイ酸ガラスからなるガラス基板であり、X線光電子分光法により測定された、ガラス基板の内部のAl/Si値から、同じくX線光電子分光法により測定された、ガラス基板の表面のAl/Si値を差し引いた値であるΔAl/Si値が、0.25以下のものである。ΔAl/Si値は、0(ゼロ)に近いほど好ましい。具体的には、ΔAl/Si値は0.19以下が好ましく、0.15以下がより好ましい。
 実施形態のガラス基板は、例えば、LCDのようなFPD用のガラス基板である。このガラス基板を構成するガラスは、アルミニウム成分を含むケイ酸ガラスからなるものであれば、組成は限定されないが、SiO、Al、B、およびアルカリ土類金属の酸化物を含む組成を有するアルミノホウケイ酸ガラスが好ましく、ガラス組成にアルカリ金属成分を実質的に含有しない、いわゆる無アルカリのアルミノホウケイ酸ガラスがより好ましい。なお、アルカリ金属成分を実質的に含有しないとは、ガラス組成中におけるアルカリ金属酸化物の含有量が合計で1質量%以下、好ましくは0.1質量%以下であることをいう。
 例えば、本発明の実施形態に係るガラス基板は、歪点が630℃以上、好ましくは650℃以上で、組成が、酸化物基準の質量百分率表示で、
  SiO:54~73
  Al:10~23
  B:0 ~12
  MgO:0~12
  CaO:0~15
  SrO:0~16
  BaO:0~15
  MgO+CaO+SrO+BaO:8~26
を含有する無アルカリガラスが好ましい。
 ガラス基板の内部および表面におけるAl濃度およびSi濃度は、X線光電子分光法により測定された値とする。ここで、ガラス基板の内部のAl濃度およびSi濃度を測定する点の表面からの深さは、以下に示すようにして決定した深さとすることが好ましい。
 すなわち、C60イオンスパッタリングを用いてガラス基板に凹穴(クレータ)を形成しながら、いろいろな深さの凹穴の底部でAl濃度およびSi濃度を測定し、各原子濃度の深さ方向の分布を求める。そして、Al濃度およびSi濃度の深さ方向の分布が一定になる深さを求め、その深さで測定したAl濃度とSi濃度との比の値を、ガラス基板の内部のAl/Si値とし、この値からガラス基板の表面のAl/Si値を差し引いた値であるΔAl/Si値を求める。
 このように、本発明の実施形態のガラス基板においては、ガラス基板の内部のAl/Si値に対するガラス基板の表面のAl/Si値の低下の度合いが、所定の値(0.25)以下に抑えられているので、ガラス基板の表面に形成される樹脂BM膜の密着性が良好であり、樹脂BM膜の剥れが生じにくい。
 前記したように、ガラス基板の研磨後の洗浄において、ガラス基板の表面(表層)のAl成分の抜け出し量が多いほど、ガラス基板の表面にOHリッチ親水層が形成される。そして、ガラス基板の表面のAl/Si値が、前記したAl成分の抜け出しのないガラス基板の内部のAl/Si値に比べて、どの程度低いかを示すΔAl/Si値は、OHリッチ親水層の形成の度合いを示す。すなわち、ΔAl/Si値が低いほど、ガラス基板の表面におけるAl成分の欠乏が少ないことを意味し、ガラス基板の表面のOH基に起因する親水性が低いことを示している。
 具体的には、ガラス基板の内部のAl/Si値からガラス基板の表面のAl/Si値を差し引いた値であるΔAl/Si値が0.25以下の場合には、ガラス基板の表面のOH基に起因する親水性が低い。そのため、ガラス基板上に樹脂BM膜を形成する際に、ガラス基板とBM形成用樹脂組成物膜との界面への現像液の浸入が抑えられ、樹脂BM膜の密着性が向上し膜剥れが防止される。
 このように、ΔAl/Si値が0.25以下である本発明のガラス基板は、以下の方法で得ることができる。
<ガラス基板の製造方法>
 本発明の実施形態に係るガラス基板は、フロート法やフュージョン法により溶融ガラスから板状のガラスリボンに成形され、ガラスリボンから所定の大きさに切り出されて製造される。また、必要に応じて板状に成形されたガラスを研磨する。
 本発明の実施形態のガラス基板の製造方法は、研磨工程を有するものとして以下に説明する。実施形態のガラス基板の製造方法は、ガラス基板を砥粒を含有する研磨剤により研磨する研磨工程と、研磨されたガラス基板を洗浄する洗浄工程とを備える。そして、砥粒を含有する研磨剤により研磨されたガラス基板を、pHが2.7より大きい水系洗浄液により洗浄することにより、前記した本発明のガラス基板を得ることができる。水系洗浄液のpHは、3.0以上が好ましく、3.5以上がより好ましい。
 洗浄対象物であるガラス基板は、LCDのようなFPD用のガラス基板であり、砥粒を含有する研磨剤で研磨されたものである。
 ガラス基板を構成するガラスは、前記したように、SiO、Al、B、およびアルカリ土類金属の酸化物を含む組成を有するアルミノホウケイ酸ガラスが好ましく、ガラス組成にアルカリ金属成分を実質的に含有しないアルミノホウケイ酸ガラスがより好ましい。
 洗浄前の研磨では、このようなガラス基板の表面を、例えば、研磨パッドを使用し、砥粒を含む研磨剤(スラリー)により研磨する。研磨剤に含有される砥粒は特には限定されず、シリカ粒子、アルミナ粒子、酸化セリウム粒子、チタニア粒子、ジルコニア粒子および酸化マンガン粒子等の粒子が挙げられるが、研磨効率の点で、特に酸化セリウム粒子が好ましい。砥粒の平均粒径は、例えば0.8~1.0μmの範囲が好ましい。このような研磨工程を経ることにより、ガラス基板の表面の算術平均表面粗さRa(JIS B0601-2013)は、0.2nm以下となることが好ましい。
 本発明の実施形態に使用される、pHが2.7より大きい水系洗浄液としては、以下に示す有機酸を含む酸性の洗浄液およびアルカリ性の洗浄液を挙げることができる。ガラス基板の表面の平坦性を確保するために、水系洗浄液のpHは11未満が好ましく、9未満がより好ましい。以上から、水系洗浄液のpHは、3.5以上9未満の範囲がより好ましい。
(酸性の洗浄液)
 酸性の洗浄液に含有される有機酸としては、例えば、アスコルビン酸、クエン酸のような有機カルボン酸や、有機ホスホン酸等が挙げられるが、これらに限定されない。洗浄液には、これらの有機酸とともに、無機酸(例えば、硫酸、リン酸、硝酸、フッ酸、塩酸など)を加えることができ、無機酸を単独で使用することも可能である。また、前記無機酸を使用した場合、pHの変動を抑制するために、無機酸とともにこれらの酸の塩を加えることも可能である。
 キレート効果を有する有機カルボン酸や有機ホスホン酸などの化合物は、洗浄性の観点から、洗浄液中に含んでもよい。一方、ガラスからのAl成分の抜け出しを促進する可能性があるため、樹脂BM膜の密着性の観点から、これらの化合物は洗浄液中に含有しない方がよい。
 ここで、キレート効果を有する有機カルボン酸としては、ジカルボン酸系キレート剤、トリカルボン酸系キレート剤、グルコン酸系キレート剤、ニトリロ三酢酸系キレート剤、イミノコハク酸系キレート剤等を挙げることができる。
 有機ホスホン酸とは、式:-P(=O)(OH)で表わされるホスホン酸基が、炭素原子に結合した構造を有する有機化合物をいう。有機ホスホン酸1分子あたりの上記式で表わされるホスホン酸基の数は、2以上が好ましく、2~8がより好ましく、2~4が特に好ましい。
 有機ホスホン酸としては、置換基を有してもよい炭化水素類の炭素原子に結合した水素原子を、ホスホン酸基に置換した構造を有する化合物、および、アンモニアやアミン類の窒素原子に結合した水素原子を、-CH-P(=O)(OH)で表わされるメチレンホスホン酸基に置換した構造を有する化合物が好ましい。
 具体的には、有機ホスホン酸は、メチルジホスホン酸、1-ヒドロキシエタン-1,1-ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ヘキサメチレンジアミンテトラ(メチレンホスホン酸)、プロピレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、トリエチレンテトラミンヘキサ(メチレンホスホン酸)、トリス(2-アミノエチル)アミンヘキサ(メチレンホスホン酸)、トランス-1、2-シクロヘキサンジアミンテトラ(メチレンホスホン酸)、グリコールエーテルジアミンテトラ(メチレンホスホン酸)、およびテトラエチレンペンタミンヘプタ(メチレンホスホン酸)等を挙げることができる。
(アルカリ性の洗浄液)
 アルカリ性の洗浄液は、塩基を含有し、塩基以外にキレート剤や界面活性剤を含有することができる。キレート剤は、洗浄性の観点から、洗浄液中に含んでもよい。一方、ガラスからのAl成分の抜け出しを促進する可能性があるため、樹脂BM膜の密着性の観点から、キレート剤は洗浄液中に含有しない方がよい。
 アルカリ性の洗浄液に含有される塩基としては、アルカリ金属水酸化物やアルカリ金属炭酸塩などのアルカリ金属化合物、アミン類、水酸化第4級アンモニウムなどが挙げられる。塩基としては、水酸化カリウムや水酸化ナトリウム等のアルカリ金属水酸化物が好ましい。
 キレート剤としては、エチレンジアミン四酢酸系キレート剤、グルコン酸系キレート剤、ニトリロ三酢酸系キレート剤、イミノコハク酸系キレート剤などを挙げることができる。特に、エチレンジアミン四酢酸系キレート剤が好ましい。
 界面活性剤としては、ノニオン性界面活性剤が好ましい。
(洗浄工程)
 洗浄工程においては、酸性の洗浄剤原液を水で希釈し、pHが2.7より大きくなるようにした希釈液(酸性の洗浄液)、またはアルカリ性の洗浄剤原液を水で希釈した希釈液(アルカリ性の洗浄液)を使用して、研磨後のガラス基板の表面を洗浄する。枚葉方式で洗浄することが好ましい。洗浄液をガラス基板の表面に直接接触させて洗浄する方法であれは、洗浄方法は特には限定されない。洗浄方法は、例えば、スクラブ洗浄、シャワー洗浄(噴射洗浄)、ディップ(浸漬)洗浄等を用いることができる。洗浄液の温度は特には限定されることはなく、室温(15℃)~95℃で使用される。95℃を超える場合には、洗浄液中の水が沸騰するおそれがあり、洗浄操作上不便であり好ましくない。洗浄後、乾燥を行ってもよい。乾燥方法としては、温風を吹き付ける方法や、圧縮した空気を吹き付ける方法等が挙げられる。
 洗浄工程では、例えば、図1に示すように、搬送ロール1等の機構により洗浄室2内を水平方向に連続的に搬送されるガラス基板3の上下両面に、洗浄ノズル4から噴射された水系洗浄液5を吹き付けながら、ガラス基板3の上下両面側に配置された回転ブラシ6でガラス基板3の上下両面をスクラブする(擦る)方法を採ることができる。水系洗浄液5を噴射する洗浄ノズル4と回転ブラシ6とからなる洗浄部は、1段だけとしてもよいが、複数段設けてもよい。なお、図1に示される洗浄方法においては、洗浄部は2段である。洗浄を複数段で行う場合、すなわち、洗浄部を複数段設ける場合、各段で噴射する水系洗浄液5は、作業性の観点から、酸性の洗浄液またはアルカリ性の洗浄液のどちらか一方で同じ組成のものを用いることが好ましいが、洗浄液のpHが前記範囲であれば、各段で異なる水系洗浄液5を用いて洗浄することも可能である。
 ここで、洗浄用の回転ブラシ6としては、PVA(ポリビニルアルコール)発泡体製などで、外径70~100mmの円柱形状のものを複数個使用する。そして、これらの回転ブラシ6を、回転ブラシ6の回転軸がガラス基板3の被洗浄面、ここでは上下両面に対して垂直になるように、かつ回転ブラシ6の先端部がガラス基板3の被洗浄面と接触する、または被洗浄面と2mm未満の間隔を空けるように配置する。回転ブラシ6の回転速度は、100~500rpmとすることが好ましい。
 水系洗浄液5としては、前記した酸性の洗浄剤原液またはアルカリ性の洗浄剤原液を所望のpHになるように水で希釈したものを使用し、希釈された洗浄液、つまり水系洗浄液5の流量(噴射量)は、15~40L/minとすることが好ましい。また、スクラブ時間は1.5秒以上とすることが好ましい。
 実施形態のガラス基板の製造方法において、酸化セリウム粒子を含有する研磨剤で研磨されたガラス基板は、前記洗浄工程で、pHが2.7より大きい水系洗浄液により洗浄されることで、ガラス基板の内部のAl/Si値からガラス基板の表面のAl/Si値を差し引いたΔAl/Si値が0.25以下に調整される。こうして、ガラス基板の表面において、OHリッチ親水層の形成が抑制される結果、樹脂BM膜の形成工程で、ガラス基板の表面とBM形成用樹脂組成物膜との界面への現像液の浸入が抑えられ、樹脂BM膜の密着性が向上する。したがって、樹脂BM膜の密着性が良好で膜剥れが防止されたガラス基板を得ることができる。
 以下、本発明の実施例について具体的に説明するが、本発明はこれらの実施例に限定されるものではない。以下の例において、特に断らない限り、「%」は質量%を意味し、「部」は質量部を意味する
(実施例1~3、比較例1)
 ガラス基板の表面を、以下に示すようにして研磨した。ガラス基板としては、アルミノホウケイ酸ガラスからなるLCD用ガラス基板(旭硝子社製、商品名:AN100)を使用した。そして、このガラス基板の表面を、研磨パッドを用い、平均粒径0.8~1.0μmの酸化セリウム粒子を含むスラリー状の研磨剤(昭和電工(株)製、商品名:SHOROX A10)を使用して研磨した。
 そして、表面を研磨されたガラス基板を、図1に示す洗浄方法を使用して洗浄した。
 実施例1では、アルカリ性の洗浄剤原液(パーカーコーポレーション社製、商品名:PK-LCG28)をpHが8.9になるように水で希釈したものを、水系洗浄液として用いた。
 また、実施例2および実施例3では、酸性の洗浄剤原液をpHがそれぞれ5.3(実施例2)および3.9(実施例3)になるように水で希釈したものを、水系洗浄液として用いた。なお、酸性の洗浄剤原液は、PK-LCG492A(パーカーコーポレーション社製の酸性の洗浄剤原液の商品名)を、液中の有機ホスホン酸濃度を1/4にしたものである。
 さらに、比較例1では、酸性の洗浄剤原液(パーカーコーポレーション社製、商品名:PK-LCG492A)を、pHが2.7になるように水で希釈したものを、水系洗浄液として用いた。
 そして、実施例1~3および比較例1のそれぞれにおいて、研磨後のガラス基板の表面に、水系洗浄液を1分間に25Lの流量(以下、洗浄液流量ともいう。)で吹き付けながら、回転するPVA製の回転ブラシでガラス基板をスクラブ洗浄した。なお、水系洗浄液の温度は25℃とした。また、洗浄工程におけるスクラブ時間は、それぞれ3~5秒間であった。
 こうして洗浄されたガラス基板の表面について、以下に示す方法で、樹脂BM膜の密着性を測定し評価した。また、ガラス基板の表面のAl/Si値(表面Al/Si値ともいう)、ガラス基板の内部のAl/Si値(内部Al/Si値ともいう)、およびΔAl/Si値を求めた。
<樹脂BM膜の密着性の評価>
 まず、以下に示す各成分を以下の組成で配合し、均一に混合して、固形分濃度15%の感光性BM形成用樹脂組成物を調製した。
[BM形成用樹脂組成物の組成]
 ・バインダ樹脂(日本化薬社製、商品名:ZCR1569H):28.4部
 ・光活性剤(光重合開始剤)
(チバ・スペシャルティ・ケミカル社製、商品名:イルガキュアOXE02):6.1部
 ・コロイダルシリカ微粒子(日産化学社製、商品名:PMAST):20.3部
 ・カーボンブラック:32.5部
 ・界面活性剤(ビックケミー・ジャパン社製、商品名:BYK306):0.3部
 ・架橋剤(日本化薬社製、商品名:UX5002D):6.1部
     (日本化薬社製、商品名:NC3000H):3.0部
 ・シランカップリング剤(信越化学社製、商品名:KBM403):3.0部
 ・リン酸化合物(リン酸とモノメタクリロイルオキシエチルフォスフェート、ジメタクリロイルオキシエチルフォスフェートの2:1(質量比)混合物):0.3部
 次いで、このBM形成用樹脂組成物を、洗浄後のガラス基板の表面に、スピンコート装置(ミカサ社製、装置名:MS-A100)を使用し、200rpmで10秒間塗布(スピンコート)した後、ホットプレート(アズワン社製、装置名:HI-1000)を使用し、90℃で60秒間加熱・乾燥して塗膜を形成した。その後、露光装置(大日本科研製、装置名:MA-1200)を使用し、フォトマスクを介して露光(照度:30mW/cm、露光量:30mJ/cm、露光GAP:50μm)した後、現像装置(アクテス社製、装置名:ADE-3000S)を使用し、0.045%KOH水溶液を用いて15秒間現像した。続いて、純水洗浄することにより、ガラス基板の表面に樹脂BM膜のパターンを形成した。
 フォトマスクは、以下に示すL1~L4の4種類のパターン形状を有し、かつ各種類ごとに線幅を1μmずつ変化させた計110種類のパターンとした。
 L1………パターン間隔100μmで1ブロック(2835μm×2000μm)に25本の線状パターン(線幅は1~25μmの範囲で可変)
 L2………パターン間隔50μmで1ブロック(2952.6μm×2000μm)に30本の線状パターン(線幅は1~30μmの範囲で可変)
 L3………パターン間隔200μmで1ブロック(2682.5μm×2000μm)に25本の線状パターン(線幅は1~25μmの範囲で可変)
 L4………パターン間隔200μmで1ブロック(2682.5μm×2000μm)に25本の短い線状パターン(線幅は1~25μmの範囲で可変)
 純水洗浄後のガラス基板をレーザー顕微鏡(キーエンス社製、装置名:VK-9510)により観測し、ガラス基板上に樹脂BM膜のパターンが残るマスクの線幅(以下、残し解像度という。)を、L1~L4の4種類のパターン形状それぞれについて調べた。そして、4種類のパターン形状それぞれについての残し解像度の平均を求めた。結果を、表1に示す。なお、残し解像度の値が小さいほど、洗浄後のガラス基板上に形成された樹脂BM膜の密着性が高いことを示している。
<表面Al/Si値の測定>
 洗浄後のガラス基板の表面におけるAl濃度およびSi濃度を、X線光電子分光法(以下、XPSと示す。)を用いて測定し、Al/Si値(原子濃度比)を求めた。
 測定には、アルバック・ファイ社製のPHI5500を使用し、Si(2p)およびAl(2p)のピークを用い、パスエネルギー117.4eV、エネルギーステップ0.5eV/step、検出角(試料表面と検出器とのなす角度)15°の条件で測定を行った。スペクトルの解析には、解析ソフトMultiPakを使用した。スペクトルのバックグラウンドの引き方には、Shirley法を適用した。得られた結果を、表1に示す。
<内部Al/Si値の測定>
 表面Al/Si値の測定に用いたガラス基板について、Al濃度およびSi濃度の深さ方向分布を、C60イオンスパッタリングを用いたXPSにより測定した。XPS測定装置および解析ソフトは、表面Al/Si値の測定と同じものを使用した。測定条件は、パスエネルギーを117.4eV、エネルギーステップを0.5eV/step、モニターピークをSi(2p)およびAl(2p)、検出角を75°とした。そして、スパッタ間隔を5分間とし、5分間スパッタを行うごとに、形成されたクレータ底部のAl濃度およびSi濃度を測定した。このような測定を、Al濃度およびSi濃度が一定になるまで実施した。こうして得られた、実施例1のガラス基板におけるAl濃度およびSi濃度の深さ方向分布を、図2に示す。このグラフから、スパッタ時間が40分間で、Al濃度およびSi濃度が一定になると判断した。
 なお、Siウェハ上の熱酸化膜(SiO膜)におけるC60イオンスパッタリングのスパッタ速度を測定したところ、1.4nm/minであったので、ガラス基板に対しても類似のスパッタ速度であると推測される。したがって、スパッタ時間40分に相当する深さである56nm以上で、ガラス基板の内部のAl濃度およびSi濃度は一定になると考えられる。
 また、実施例1~3および比較例1は同一組成のガラス基板であるので、実施例2、実施例3および比較例1の内部Al/Si値も、実施例1と同一とみなせる。
 実施例1~3および比較例1で得られたガラス基板について、こうして測定された残し解像度、表面Al/Si値、内部Al/Si値、およびΔAl/Si値を、表1にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000001
 次に、表1の測定結果を基に、水系洗浄液のpHとΔAl/Si値との関係、およびΔAl/Si値と残し解像度との関係をそれぞれ調べた。水系洗浄液のpHとΔAl/Si値との関係を図3に、ΔAl/Si値と残し解像度との関係を図4にそれぞれ示す。
 図3から、水系洗浄液のpHとΔAl/Si値には負の相関関係があり、水系洗浄液のpHが上昇するに伴い、ΔAl/Si値は低下する傾向にあることがわかる。
 また、図4から、ΔAl/Si値と残し解像度には正の相関関係があり、ΔAl/Si値の低下に伴い、残し解像度も小さくなる傾向が認められる。そして、前記したように、残し解像度が小さいほど、洗浄後のガラス基板上に形成された樹脂BM膜の密着性が高いので、ΔAl/Si値が小さいほど、樹脂BM膜の密着性が高いことがわかる。
 以上より、比較例1に比べて高いpHを有する水系洗浄液を使用した実施例1~3では、ΔAl/Si値を0.25以下に下げることができ、それにより樹脂BM膜の密着性を向上させることができることがわかった。
 本発明のガラス基板によれば、表面に形成される樹脂BM膜の密着性が良好であり、樹脂BM膜の剥れが防止される。したがって、本発明のガラス基板は、LCDのようなFPD用に使用されるガラス基板に有効に適用することができる。
 また本発明のガラス基板の製造方法によれば、このようにFPD用ガラス基板として好適するガラス基板を、効率的に得ることができる。
 1…搬送ロール、2…洗浄室、3…ガラス基板、4…洗浄ノズル、5…水系洗浄液、6…回転ブラシ。

Claims (8)

  1.  アルミニウムを含むケイ酸ガラスからなるガラス基板であり、
     X線光電子分光法により測定された、前記ガラス基板の内部におけるアルミニウムの原子濃度とケイ素の原子濃度との比の値から、前記ガラス基板の表面におけるアルミニウムの原子濃度とケイ素の原子濃度との比の値を引いた値(ΔAl/Si値)が、0.25以下であることを特徴とするガラス基板。
  2.  前記ΔAl/Si値が0.19以下である、請求項1に記載のガラス基板。
  3.  前記ガラス基板の表面の算術平均表面粗さは0.2nm以下である、請求項1または2に記載のガラス基板。
  4.  前記アルミニウムを含むケイ酸ガラスが、SiO、Al、B、およびアルカリ土類金属の酸化物を含む組成を有するアルミノホウケイ酸ガラスである、請求項1~3のいずれか1項に記載のガラス基板。
  5.  前記アルミニウムを含むケイ酸ガラスが、アルカリ金属成分を実質的に含有しないアルミノホウケイ酸ガラスである、請求項1~4のいずれか1項に記載のガラス基板。
  6.  請求項1~5のいずれか1項に記載のガラス基板を製造する方法であり、
     砥粒を含有する研磨剤により研磨されたガラス基板を、pHが2.7より大きい水系洗浄液により洗浄することを特徴とするガラス基板の製造方法。
  7.  前記砥粒が酸化セリウム粒子である、請求項6に記載のガラス基板の製造方法。
  8.  請求項1~5のいずれか1項に記載のガラス基板上に、ブラックマトリクス膜が形成されてなることを特徴とするブラックマトリクス基板。
PCT/JP2015/064163 2014-05-20 2015-05-18 ガラス基板、ガラス基板の製造方法、およびブラックマトリクス基板 WO2015178339A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580026417.8A CN106458734A (zh) 2014-05-20 2015-05-18 玻璃基板、玻璃基板的制造方法和黑矩阵基板
JP2016521089A JP6662288B2 (ja) 2014-05-20 2015-05-18 ガラス基板、ガラス基板の製造方法、およびブラックマトリクス基板
KR1020167032140A KR102297566B1 (ko) 2014-05-20 2015-05-18 유리 기판, 유리 기판의 제조 방법 및 블랙 매트릭스 기판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014104626 2014-05-20
JP2014-104626 2014-05-20

Publications (1)

Publication Number Publication Date
WO2015178339A1 true WO2015178339A1 (ja) 2015-11-26

Family

ID=54554009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064163 WO2015178339A1 (ja) 2014-05-20 2015-05-18 ガラス基板、ガラス基板の製造方法、およびブラックマトリクス基板

Country Status (5)

Country Link
JP (1) JP6662288B2 (ja)
KR (1) KR102297566B1 (ja)
CN (1) CN106458734A (ja)
TW (1) TWI670243B (ja)
WO (1) WO2015178339A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210147290A1 (en) * 2018-09-18 2021-05-20 AGC Inc. Glass substrate, black matrix substrate, and display panel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201601034D0 (en) 2016-01-20 2016-03-02 Johnson Matthey Plc Conductive paste,electrode and solar cell
CN109103127B (zh) * 2018-08-08 2021-04-30 安徽宏实自动化装备有限公司 枚叶水平输送式之晶圆去膜清洗装置及其清洗方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005144452A (ja) * 2004-12-02 2005-06-09 Hoya Corp 多成分系ガラス基板の製造方法
JP2006137631A (ja) * 2004-11-11 2006-06-01 Nippon Electric Glass Co Ltd ガラス基板及びその製造方法
JP2013173672A (ja) * 2008-01-21 2013-09-05 Nippon Electric Glass Co Ltd ガラス基板

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1277775C (zh) * 2001-06-04 2006-10-04 日本板硝子株式会社 玻璃基板的制造方法及玻璃基板、以及具有此玻璃基板的有机场致发光元件
CN1898168B (zh) * 2003-12-26 2012-08-01 旭硝子株式会社 无碱玻璃、其制造方法及液晶显示板
JP4831096B2 (ja) 2008-03-07 2011-12-07 旭硝子株式会社 ガラス基板用洗浄剤及びガラス基板の製造方法
JP5177087B2 (ja) * 2009-07-09 2013-04-03 旭硝子株式会社 情報記録媒体用ガラス基板及びその製造方法、磁気記録媒体
JP5029792B2 (ja) * 2011-01-07 2012-09-19 旭硝子株式会社 情報記録媒体用ガラス基板製造方法
JP2013043795A (ja) * 2011-08-23 2013-03-04 Nippon Electric Glass Co Ltd 強化ガラス及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137631A (ja) * 2004-11-11 2006-06-01 Nippon Electric Glass Co Ltd ガラス基板及びその製造方法
JP2005144452A (ja) * 2004-12-02 2005-06-09 Hoya Corp 多成分系ガラス基板の製造方法
JP2013173672A (ja) * 2008-01-21 2013-09-05 Nippon Electric Glass Co Ltd ガラス基板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210147290A1 (en) * 2018-09-18 2021-05-20 AGC Inc. Glass substrate, black matrix substrate, and display panel

Also Published As

Publication number Publication date
JPWO2015178339A1 (ja) 2017-04-20
CN106458734A (zh) 2017-02-22
TWI670243B (zh) 2019-09-01
KR20170010358A (ko) 2017-01-31
JP6662288B2 (ja) 2020-03-11
TW201602035A (zh) 2016-01-16
KR102297566B1 (ko) 2021-09-02

Similar Documents

Publication Publication Date Title
WO2014080917A1 (ja) ガラス基板の洗浄方法
US6406923B1 (en) Process for reclaiming wafer substrates
JP5251861B2 (ja) 合成石英ガラス基板の製造方法
JP5283247B2 (ja) ガラス基板用研磨液組成物
JP2004059419A (ja) ガラス基材の製造方法及びその製造方法で得られたガラス基材
TWI781999B (zh) 洗淨液組成物及電子元件的製造方法
JP4667848B2 (ja) ガラス基板用研磨液組成物
TWI719076B (zh) 玻璃基板及玻璃板捆包體
WO2015178339A1 (ja) ガラス基板、ガラス基板の製造方法、およびブラックマトリクス基板
JP6904234B2 (ja) マスクブランク用基板およびマスクブランク
JP2006324006A (ja) 情報記録媒体用ガラス基板の製造方法及び情報記録媒体用ガラス基板
JP6949522B2 (ja) マスクブランク用基板の製造方法、マスクブランクの製造方法及び転写用マスクの製造方法
KR101323818B1 (ko) 포지티브형 레지스터 처리액 조성물 및 현상액
JP5906823B2 (ja) 磁気記録媒体用ガラス基板の製造方法
JP3575349B2 (ja) アルミノシリケートガラス基板の洗浄液及び洗浄方法
JP2012027976A (ja) 磁気記録媒体用ガラス基板の製造方法
JP3665731B2 (ja) 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法
JP2015100880A (ja) ガラス基板の製造方法
JP5152357B2 (ja) 磁気記録媒体用ガラス基板の製造方法
JP5687939B2 (ja) マスクブランクス用ガラス基板の製造方法、マスクブランクスの製造方法、転写マスクの製造方法、及び半導体装置の製造方法
KR101350714B1 (ko) 마스크 블랭크용 기판의 연마 방법과 마스크 블랭크용 기판과 마스크 블랭크
JP2010080477A (ja) 微細パターン基材の洗浄方法
JP5700015B2 (ja) 磁気記録媒体用ガラス基板
TW202140393A (zh) 玻璃板及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796744

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016521089

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167032140

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15796744

Country of ref document: EP

Kind code of ref document: A1