WO2015177863A1 - 電動機の制御装置 - Google Patents

電動機の制御装置 Download PDF

Info

Publication number
WO2015177863A1
WO2015177863A1 PCT/JP2014/063341 JP2014063341W WO2015177863A1 WO 2015177863 A1 WO2015177863 A1 WO 2015177863A1 JP 2014063341 W JP2014063341 W JP 2014063341W WO 2015177863 A1 WO2015177863 A1 WO 2015177863A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching
loss
power
electric motor
switching element
Prior art date
Application number
PCT/JP2014/063341
Other languages
English (en)
French (fr)
Inventor
智久 正田
泰文 小川
良雅 西島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112014006685.0T priority Critical patent/DE112014006685T5/de
Priority to CN201480079092.5A priority patent/CN106464171B/zh
Priority to JP2016520842A priority patent/JP6113357B2/ja
Priority to PCT/JP2014/063341 priority patent/WO2015177863A1/ja
Priority to US15/109,473 priority patent/US9680407B2/en
Publication of WO2015177863A1 publication Critical patent/WO2015177863A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/32Arrangements for controlling wound field motors, e.g. motors with exciter coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control

Definitions

  • the present invention relates to an electric motor control device, and more particularly to an electric motor control device that changes a driving method of an electric power conversion device in accordance with an operation state of the electric motor.
  • FIG. 13 is a diagram showing the relationship between the phase voltage command and the switching signal at the time of three-phase modulation driving and two-phase modulation driving.
  • the phase voltage is (C)
  • the upper switching signal is (D)
  • the phase voltage is (E)
  • the upper switching signal is (F).
  • the period of the triangular wave (carrier frequency) is the same period.
  • the three-phase modulation drive always performs a switching operation
  • the two-phase modulation drive has a switching signal that is always on (or always off), and the switching operation is small. I understand that. Since the switching element has a start-up loss, an on-loss, and a start-stop loss in the switching operation, the fact that the switching operation is small means that the loss generated by the power conversion from the DC power to the AC power is small.
  • Patent Document 1 detects the temperature of an inverter, switches PWM control as a driving method of the inverter from three-phase modulation to two-phase modulation according to the detected temperature, and further changes the frequency of the carrier signal.
  • Technology is disclosed.
  • the conventional device disclosed in Patent Document 1 requires a temperature sensor for detecting the temperature of the inverter, which increases the cost. Further, there is a problem that changing the carrier signal may increase the electromagnetic noise due to the switching operation and cause noise.
  • An object of the present invention is to provide an electric motor control device capable of reducing the temperature rise of a switching element and generating a driving force in accordance with a driver's operation.
  • the motor control device comprises a DC power supply for supplying DC power and a switching element, and the switching operation of the switching element by PWM control converts the DC power from the DC power supply to AC power to the motor.
  • the motor control device includes a power conversion device that supplies electric power, and a control unit that controls driving of the power conversion device, wherein the control unit calculates and outputs the electrical angle ⁇ and the rotational speed Nm of the motor.
  • a driving method of the power conversion device is set using an angle processing means, an electrical angle ⁇ and a rotational speed Nm from the rotation angle processing means, and the loss and switching loss integrated value of each switching element of the power conversion device are set.
  • the driving method setting and element loss calculating means to be calculated, and the driving method setting and element loss calculating means Carrier frequency selection means for selecting a carrier frequency of a carrier signal set on the basis of the driven method and element loss, the driving method setting and element loss calculation means, the carrier frequency selection means, the rotation angle processing means, and A switching signal generating means for generating a switching signal for operating the switching element based on information from the command voltage and outputting the switching signal to the power converter, wherein the electric motor has a predetermined rotational speed or less.
  • the increase in cost and generation of noise are suppressed, and the motor is caused by the switching operation of the switching element even when the motor is below a predetermined rotation speed (for example, in a non-rotatable or extremely low rotation state). It is possible to obtain an electric motor control device that can reduce the power loss and suppress the temperature rise of the switching element and generate the driving force according to the operation of the driver.
  • FIG. 1 It is a figure which shows the whole structure of the control apparatus of the electric motor containing the power converter device in Embodiment 1 of this invention. It is a functional block diagram for demonstrating the structure and function of a control unit in Embodiment 1 of this invention. It is a flowchart which shows the control of the whole apparatus in Embodiment 1 of this invention, and the flow of a calculation. It is a flowchart which shows the flow of a calculation of the process performed by the rotation angle process means 15 in Embodiment 1 of this invention. It is a flowchart which shows the flow of the calculation of the process performed by the drive method setting and element loss calculation means in Embodiment 1 of this invention.
  • Embodiment 3 is a map showing a relationship between an electrical angle ⁇ and switching signal switching during two-phase modulation driving in Embodiment 1 of the present invention. It is a timing chart which shows the operation
  • FIG. 1 is a diagram showing an overall configuration of a motor control device including a power conversion device according to Embodiment 1 of the present invention.
  • reference numeral 1 denotes a motor control unit (hereinafter referred to as MCU) which is a control unit for controlling a driving method of the power converter according to the present invention
  • 2 is a battery for supplying DC power
  • 30 is parallel to the battery 2.
  • 4 is an electric motor that generates a driving force by the AC power from the inverter 30 and rotationally drives the motor 4. It is connected to a vehicle wheel (not shown) via a power transmission mechanism (not shown).
  • Reference numeral 5 denotes a rotation angle sensor that outputs a signal according to the rotation of the electric motor.
  • the inverter 30 includes a smoothing capacitor 31 that smoothes a DC voltage from the battery 2 and a voltage sensor 32 that detects a voltage input to the inverter 30.
  • U-phase upper switching element 3Q1, U-phase lower switching element 3Q2, V are operated as switching elements that operate in response to a switching signal from MCU1 and convert DC power from battery 2 into AC power supplied to electric motor 4.
  • a phase upper switching element 3Q3, a V phase lower switching element 3Q4, a W phase upper switching element 3Q5, and a W phase lower switching element 3Q6 are provided.
  • the switching elements 3Q1 to 3Q6 include U-phase upper diode element 3D1, U-phase lower diode element 3D2, V-phase upper diode element 3D3, V-phase lower diode element 3D4, W-phase upper diode element 3D5, W in reverse parallel.
  • a phase lower diode element 3D6 is connected.
  • one end of three coils of the U phase, V phase, and W phase of the electric motor 4 is connected to a neutral point, and the other end is connected to an intermediate point of the switching elements of each phase.
  • an accelerator opening signal Ac1 and a brake depression signal Br1 indicating the operation of the driver are input to a vehicle control unit (hereinafter referred to as VEH-CU) 100, and a command torque Trrq is output.
  • the command current calculation means 11 receives a command torque Trrq calculated by the VEH-CU 100 and an electrical angle ⁇ output from a rotation angle processing means 15 described later, performs d-axis and q-axis conversion, and performs a d-axis command current. I_d and q-axis command current I_q are output.
  • the command voltage calculation means 12 includes d-axis command current I_d, q-axis command current I_q, and current sensors 33, 34, and 35 (see FIG. 1) that detect currents flowing in the U phase, V phase, and W phase of the motor 4.
  • the command voltage is calculated using the current whose output is converted into two phases by the three-phase ⁇ two-phase conversion means 18 described later.
  • the two-phase-> three-phase conversion means 13 inputs the command voltage calculated by the command voltage calculation means 12, the drive method setting described later, and the drive method information calculated by the element loss calculation means 16, and outputs the U phase, V The phase voltage of the phase and the W phase is calculated.
  • the switching signal generation unit 14 is configured to calculate each switching element of the inverter 30 from the phase voltage of each phase calculated by the two-phase ⁇ three-phase conversion unit 13 and information on the carrier frequency calculated by the carrier frequency selection unit 17 described later. 3Q1 to 3Q6 switching signals are generated. The generated switching signal is sent to the inverter 30, and AC power is supplied to the electric motor 4.
  • the rotation angle processing means 15 calculates the electrical angle ⁇ and the rotation speed Nm of the electric motor 4 from the output signal of the rotation angle sensor 5 provided in the electric motor 4.
  • the drive method setting and element loss calculation means 16 determines the drive method of the inverter 30 from the electrical angle ⁇ and the rotation speed Nm from the rotation angle processing means 15 and detects a current flowing through each phase of the motor. , 34, 35 (see FIG. 1), the switching loss, the switching loss integrated value, and the always-on element change flag F1 of the corresponding elements of the switching elements 3Q1 to 3Q6 of the inverter 30 are calculated.
  • the always-on element change flag F1 will be described in detail in the description of FIG.
  • the carrier frequency selection means 17 calculates the carrier frequency based on the drive method setting and the drive method set by the element loss calculation means 16.
  • the three-phase ⁇ two-phase conversion means 18 converts the output of the current sensors 33, 34, and 35 that detect the current flowing in each phase of the electric motor 4 into a two-phase current and inputs it to the command voltage calculation means 12. Is for.
  • FIG. 3 is a flowchart showing a flow of control and calculation of the entire apparatus according to Embodiment 1 of the present invention.
  • the drive determination of the electric motor 4 is performed in step S11. This determination is a determination as to whether or not there is a drive instruction to the electric motor 4, and is determined based on information resulting from the starting operation such as the depression of the brake or the depression amount of the accelerator pedal. If NO in step S11, the calculation is not performed and the process returns. If YES in step S11, the process proceeds to step S12, and the rotation angle processing means 15 is executed. Details of the rotation angle processing means 15 will be described later with reference to FIG. Next, in step S13, the driving method setting and element loss calculating means 16 are executed.
  • step S14 the carrier frequency setting unit 17 is executed. This will be described in detail with reference to FIG.
  • step S15 the switching signal generating unit 14 is executed. The details of the switching signal generation means 14 will be described with reference to FIG.
  • FIG. 4 is a flowchart showing a calculation flow of the rotation angle processing means 15 executed in step S12 of FIG.
  • step S101 it is determined whether or not input from the rotation angle sensor 5 is possible. If there is an input from the rotation angle sensor 5, the determination in step S101 is Yes and the process proceeds to step S102, and if there is no input, the process proceeds to S109. If it progresses to step S102, the rotation direction of the electric motor 4 will be determined next. This determination is made based on, for example, information on a shift position of a vehicle (not shown) or information on an acceleration sensor.
  • step S102 When the rotation direction determination of the electric motor 4 is completed in step S102, the process proceeds to step S103, and the electrical angle ⁇ is calculated according to the rotation direction determination result in step S102.
  • the electrical angle ⁇ is calculated by adding a predetermined value (for example, 0.5 degrees) for each input of the rotation angle sensor 5 when the determination in step S102 is forward rotation, and when the determination in step S102 is reverse rotation, the rotation angle sensor 5 is added. A predetermined value is subtracted for each input.
  • a predetermined value for example, 0.5 degrees
  • step S104 the calculated electrical angle ⁇ is determined.
  • step S104 it is determined whether or not the electrical angle ⁇ is within the rotation angle range. If the rotation angle is 360 degrees per cycle and the electrical angle ⁇ calculated in step S103 is within the range of 0 (zero) to 360 degrees, step S104 is Yes and the process proceeds to step S105, where the electrical angle ⁇ is If it is 0 (zero) or 360, the process proceeds to step S107.
  • step S107 when the electrical angle ⁇ is 0 (zero), it is 360 (360), and when it is 360, the process proceeds to step S105.
  • step S105 the previous value of the rotational speed Nm is determined.
  • step S106 the rotation speed Nm is calculated, and the process returns.
  • step S108 the rotation speed Nm is set to a predetermined fixed value, and the process returns.
  • the predetermined fixed value is set to a minute value (for example, ⁇ 0.1 rpm) that is not 0 (zero) according to the rotation direction determined in step S102.
  • Step S110 the measurement timer t_c is determined.
  • This measurement timer is a timer for measuring the input interval of the rotation angle sensor 5.
  • the input interval of the rotation angle sensor 5 is measured using the previous input time of the rotation angle sensor 5.
  • the predetermined time used for the determination in step S110 is set to a time (for example, 200 msec) in which the rotation stop of the electric motor 4 can be determined.
  • step S110 When the determination in step S110 is Yes, there is no input from the rotation angle sensor 5, but it is impossible to determine that the motor 4 has stopped rotating. Therefore, the process proceeds to step S111, and the rotation speed Nm is held at the previous value and the process returns. On the other hand, when the determination in step S110 is No, there is no input from the rotation angle sensor 5 and the rotation of the electric motor 4 is stopped. Therefore, the process proceeds to step S112, and the rotation speed Nm is set to 0 (zero). At the same time, the measurement timer t_c is set to 0 (zero) and the process returns.
  • FIG. 5 is a flowchart showing the flow of the driving method setting and element loss calculation means 16 executed in step S13 of FIG.
  • the driving method setting and element loss calculation means 16 first reads the rotational speed Nm in step S201, proceeds to step S202, and compares it with a predetermined value ⁇ .
  • the predetermined value ⁇ is set to a rotation speed that does not require two-phase modulation driving, for example, 50 rpm.
  • the process proceeds to step S216, and an accumulated power loss ( ⁇ E_Loss1, ⁇ E_Loss2), an always-on element change flag F1, and a switching execution flag F3, which will be described later, are cleared, and the process proceeds to step S217.
  • step S202 the process proceeds to step S203 to determine whether or not the rotational speed Nm is zero.
  • step S203 the process proceeds to step S204, and next, the integrated value of element loss is determined.
  • step S204 the initial loss calculation is performed, so the process proceeds to step S205 to perform a loss calculation element search.
  • the loss calculation element search performed in step S205 will be described in detail later with reference to FIG.
  • step S206 a current value (hereinafter referred to as a motor phase current) flowing through each phase of the electric motor 4 detected by the current sensors 33, 34, and 35 is read, and the process proceeds to step S207.
  • step S207 the loss of each element is calculated based on the element searched in step S205 and the phase current value read in step S206.
  • the loss of the switching element used in the inverter 30 can be obtained from the motor phase current, and has a relationship as shown in FIG. 6, for example. Therefore, if a switching element through which a large current flows can be specified, the switching loss can be calculated.
  • step S207 the first switching loss E_Loss1, that is, the loss of the switching element having a large loss that is always on, and the second switching loss E_Loss2, that is, the loss of the element having the largest loss among the elements performing the switching operation are calculated.
  • step S208 the driving method is set to two-phase modulation, and the process returns.
  • step S214 the motor phase current is read in the same manner as in step S206, and in step S215, the first switching loss E_Loss1 and the second switching loss E_Loss2 are calculated using the relationship shown in FIG. 6, and the process proceeds to step S209.
  • step S204 the determination in step S204 is No, that is, when the initial element loss has been calculated, or after the calculation in step S215
  • the process proceeds to step S209, and the set carrier frequency fc is read. Since the setting of the carrier frequency fc will be described with reference to FIG. 8, it is omitted here.
  • step S210 calculates an integrated value of the first switching loss E_Loss1 and the second switching loss E_Loss2. Since the integrated value ⁇ E_Loss1 of the first switching loss is a loss of the always-on element, it is obtained from the energization time of the first switching loss E_Loss1 calculated in step S207, and the energization time is the control cycle (for example, 10 ⁇ sec) of FIG. ) To calculate the integrated value ⁇ E_Loss1.
  • the calculation formula is as follows.
  • step S210 When the loss integrated value ⁇ E_Loss1 of the first switching element and the loss integrated value ⁇ E_Loss2 of the second switching element are calculated in step S210, the process proceeds to step S211 to determine whether one of the calculated loss integrated values is greater than the predetermined value ⁇ . I do.
  • This predetermined value ⁇ is set based on the current flowing at the maximum torque of the electric motor 4.
  • step S211 the process proceeds to step S212, the process returns with the always-on element change flag F1 set to 1, and in the case of No determination, since the integrated loss value has not yet reached the predetermined value ⁇ , the process returns. .
  • FIG. 7 is a flowchart showing a calculation flow of processing executed in the loss calculation element search in S205 of FIG.
  • the electrical angle ⁇ is read in step S301, and the process proceeds to step S302. If the electrical angle ⁇ is in the range of ⁇ 1 to ⁇ 2 in step S302, the determination is Yes and the process proceeds to step S303. Advances to step S306. When the process proceeds to step S303, it is next determined whether or not the electrical angle ⁇ is equal to or smaller than ⁇ 2 / 2. If step S303 is Yes, the process proceeds to step S304, and the switching elements 3Q4 and 3Q5 become loss calculation elements.
  • the calculated element information I_m is set to 1.
  • step S303 the process proceeds to step S305, where the switching elements 3Q4 and 3Q1 become loss calculation elements, and the calculation element information I_m is set to 2 and the process returns.
  • step S306 it is determined whether the electrical angle ⁇ is in the range from ⁇ 2 to ⁇ 3. If the determination is No, the process proceeds to step S310. If the determination is Yes, the process proceeds to step S307. In S307, it is determined whether the electrical angle ⁇ is equal to or smaller than ⁇ 3 / 2. If YES in step S307, the process proceeds to step S308, the calculated element information I_m becomes 3, and the calculated elements are determined to be 3Q1 and 3Q4. If step S307 is NO and the process proceeds to step S309, the calculated element information I_m is 4 At the same time, the calculation elements are determined as 3Q1 and 3Q6 and returned. Subsequently, the calculation element information I_m is updated and the calculation element is determined sequentially in accordance with the electrical angle ⁇ .
  • FIG. 8 is a flowchart showing the calculation flow of the carrier frequency selection means 17 executed in S14 of FIG.
  • the carrier frequency selection means 17 first determines the driving method (see FIG. 5) in step S401. If the two-phase modulation is set in step S401, the determination is Yes and the process proceeds to step S402. If the determination is No, that is, if the three-phase modulation is set, the process proceeds to step S404, and the carrier frequency fc is set to the predetermined value ⁇ . Set to and returned.
  • the predetermined value ⁇ is a carrier frequency fc at the time of normal three-phase modulation driving, and is obtained in advance through experiments or the like, and is set to 7 kHz, for example.
  • step S403 the carrier frequency fc is set from the relationship between the element loss and the carrier frequency fc.
  • the relationship between the element loss and the carrier frequency fc is as shown in FIG. 9, and the carrier frequency fc corresponding to the element loss E_Loss1 is set and returned.
  • FIG. 10 is a flowchart showing a calculation flow of the switching signal generation means 14 executed in S15 of FIG.
  • the switching signal generation means 14 first reads the electrical angle ⁇ , the always-on element change flag F1, the calculated element information I_m, and the carrier frequency fc in step S501, and proceeds to step S502.
  • the always-on element change flag F1 is determined. If the always-on element change flag F1 is zero in step S502, the determination is Yes and the process proceeds to step S503. If the constant element change flag F1 is 1, the determination is No and the process proceeds to step S505.
  • step S503 Yes, the process proceeds to step S504, where a switching signal corresponding to the selected driving method is generated and returned.
  • the determination in step S503 is No, the generation switching signal described later is switched, and the generation switching signal is not changed.
  • step S502 If the determination in step S502 is No and the process proceeds to step S505, the map data map ( ⁇ ) is read according to the calculated element information I_m. This map data is used for changing the switching signal set in step S507, which will be described later, and is set by mapping the relationship as shown in FIG. 11 according to the electrical angle ⁇ .
  • step S506 the element switching determination F2 is determined.
  • the process proceeds to step S507, the generated switching signal is switched with reference to the map map ( ⁇ ) read in step S505, and the process proceeds to step S508 to set the element switching determination F2 to 1.
  • the process proceeds to step S509.
  • step S509 since the switching signal is changed in steps S507 and S510, the always-on element change flag F1 is set to zero and the process returns.
  • FIG. 11 shows an example in which the relationship between the electrical angle ⁇ and the switching signal switching during the two-phase modulation driving is mapped.
  • the integrated element loss values ( ⁇ E_Loss1, ⁇ E_Loss2) have a predetermined value ⁇ . It shows an example of switching signal switching when exceeding.
  • FIG. 12 is a timing chart showing operation waveforms of respective parts in the motor control apparatus according to Embodiment 1 of the present invention configured as described above.
  • the brake information (B) is cleared at time T1
  • the command torque (C) becomes a predetermined creep torque value, and then the electrical angle ⁇
  • the calculated element information I_m (E) is updated. Since the motor rotation speed (F) cannot be calculated unless the electrical angle ⁇ (D) is updated more than twice, the motor rotation speed (F) is selected immediately after the command torque (C) is output.
  • U-phase, V-phase, and W-phase voltage commands (G) are output according to the electrical angle ⁇ (D). Further, since the driving method by the two-phase modulation is selected, the carrier frequency fc is set to a high frequency, and the switching signal (H) is generated by comparison with the phase voltage command (G) of each phase, and each switching element 3Q1 ⁇ 3Q6 starts the switching operation, and the driving force is generated in the electric motor 4.
  • the switching loss (E_Loss1, E_Loss2) of the corresponding element depends on the calculated element information.
  • the electric motor 4 is driven at a motor rotational speed (F) lower than the predetermined value ⁇ , so that the element loss is sequentially calculated according to the electrical angle ⁇ (D), and the element loss integrated value (I ) ( ⁇ E_Loss1, ⁇ E_Loss2) increases.
  • the always-on element change flag F1 (J) is set to 1, and each switching element The switching signal (H) to 3Q1 to 3Q6 is switched using the relationship between the electrical angle ⁇ (D) and FIG.
  • the element switching determination F2 is set to 1
  • the switching execution flag F3 is set to 1
  • the element switching is performed, so the always-on element change flag F1 is reset to zero.
  • the element loss integrated value ⁇ E_Loss1
  • the element loss integrated value ⁇ E_Loss2
  • the always-on element change flag F1 is set to 1 again, and this time the switching signals of the switching elements 3Q1 to 3Q6 (H) is switched to the normal two-phase modulation drive switching signal (H).
  • the element switching determination F2 is reset to zero and the always-on element change flag F1 is reset to zero.
  • one of the two-phase modulation driving and the three-phase modulation driving is selected as the motor driving method according to the operation (rotation) state of the motor.
  • the control unit is configured based on the setting of the driving method and the calculation result in the element loss calculation means when the motor is not more than a predetermined rotation speed.
  • the power converter is driven by the two-phase modulation drive, and the loss of the first switching element and the second switching element having a large switching loss of the power converter is calculated, and the first switching element or the second switching element is calculated.
  • the switching signal from the switching signal generator is switched according to a preset map. Since to switch the switching operation of Sui'ingu element, it is possible to obtain the following excellent effects. (1) A temperature sensor for detecting the temperature of the power conversion device is not required, and an increase in cost can be suppressed. (2) Since the switching element switching operation is switched when the loss integrated value of the switching element exceeds a predetermined value at the time of two-phase modulation driving when the electric motor cannot rotate or in a very low rotation state, the temperature rise of the switching element can be suppressed. It is possible to obtain a control device for an electric motor that can suppress a decrease in power supplied to the electric motor due to an increase in temperature of the element and can generate a driving force according to the operation of the driver.
  • the present invention is useful as a control device for an electric motor mounted on an electric vehicle such as a hybrid vehicle or an electric vehicle.
  • 1 MCU motor control unit
  • 2 battery 4 electric motor
  • 5 rotation angle sensor 11 command current calculation means
  • 12 command voltage calculation means 13 2 phase to 3 phase conversion means
  • 14 switching signal generating means 15 rotation angle processing means
  • 16 Drive method setting and element loss calculation means 17 carrier frequency selection means
  • 18 3 phase to 2 phase conversion means 30 power converter, 31 smoothing capacitor, 32 voltage sensor, 33, 34, 35 Current sensor, 3Q1-3Q6 switching element, 100 Vehicle control unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

電動機(4)が所定の回転速度以下の場合は、駆動方法の設定および素子損失算出手段(16)での演算に基づき、2相変調駆動で電力変換装置(30)を駆動する。スイッチング損失が大きい第1のスイッチング素子と、第2のスイッチング素子の損失積算値が所定値を超えた場合は、スイッチング信号生成手段(14)からのスイッチング信号を切り換えて、スイッイング素子のスイッチング動作を切替える電動機の制御装置。

Description

電動機の制御装置
 この発明は電動機の制御装置に関し、特に電動機の動作状態に応じて電力変換装置の駆動方法を変更するようにした電動機の制御装置に関するものである。
 近年、二酸化炭素排出量低減や燃費向上を目的として、電動機と内燃機関を搭載した車両、いわゆるハイブリッド車両や、電動機のみを搭載し電動機の駆動力で走行する電気自動車が普及している。これらの電動機を搭載した車両においては、電動機のほか、直流電力を出力する蓄電装置、蓄電装置からの直流電力を交流電力に変換して電動機に電力を供給する電力変換装置(インバータ)などを搭載している。
電動機に電力を供給する電力変換装置は、例えばIGBTなどのスイッチング素子を用いたPWM制御によるスイッチング動作によって直流電力を交流電力へ変換している。
 ここで、このような電動機の制御装置に用いられる電力変換装置の3相変調駆動と2相変調駆動について説明する。
 図13は3相変調駆動と2相変調駆動時における相電圧指令とスイッチング信号の関係を示す図である。
図13に示すような線間電圧(A)、モータ電流(B)を生成する場合、3相変調による駆動方法では、相電圧は(C)、上側スイッチング信号は(D)のようになり、2相変調による駆動方法では、相電圧は(E)、上側スイッチング信号は(F)のようになる。
なお三角波の周期(キャリア周波数)は同周期にしている。
 図13からわかるように、3相変調駆動では常時スイッチング動作を行っているのに対して、2相変調駆動では常時オン(または常時オフ)となるスイッチング信号が存在すること、またスイッチング動作が少ないことがわかる。
 スイッチング素子はスイッチング動作において、起動時損失、オン損失と起動停止時損失が存在するので、スイッチング動作が少ないということは直流電力から交流電力への電力変換で発生する損失が少ないということになる。
 しかし、この直流電力から交流電力への電力変換は高周波かつ大電力でのスイッチング動作となるため、スイッチング動作により発生する損失(スイッチング損失)によってスイッチング素子が発熱し、スイッチング素子の温度が上昇する。そしてスイッチング素子の上限温度に達するとスイッチング素子の破壊を回避するために電動機への供給電力を下げる、つまり、スイッチング回数を下げることになって、運転者の動作に応じた駆動力を発生するための所望の電力を電動機に供給することが困難となる。
 このようなスイッチング素子の温度上昇に起因する供給電力の低下、つまり電動機の出力低下を防止する手段として、特許文献1に記載の技術がある。
特開2011-109803号公報
 この特許文献1に示されるものは、インバータの温度を検出し、その検出温度に応じてインバータの駆動方法であるPWM制御を3相変調から2相変調に切り替え、さらにキャリア信号の周波数を変更する技術が開示されている。しかしながら、特許文献1に示される従来装置においては、インバータの温度を検出するための温度センサが必要となりコストアップとなる。また、キャリア信号を変更することでスイッチング動作による電磁音が大きくなり騒音となる可能性がある、等の問題点を有するものであった。
 この発明は、上記のような問題点を解決するためになされたもので、コストアップおよび騒音の発生を抑制すると共に、電動機が所定回転以下の状態においてもスイッチング素子のスイッチング動作に起因する損失を低減してスイッチング素子の温度上昇を抑制し、運転者の操作に応じた駆動力を発生することのできる電動機の制御装置を提供することを目的とする。
 この発明に係る電動機の制御装置は、直流電力を供給する直流電源、スイッチング素子によって構成されPWM制御によるスイッチング素子のスイッチング動作によって、前記直流電源からの直流電力を交流電力に変換して電動機に電力を供給する電力変換装置、および前記電力変換装置の駆動を制御する制御ユニットを備えた電動機の制御装置であって、前記制御ユニットは、電動機の電気角θと回転速度Nmを演算し出力する回転角度処理手段と、前記回転角度処理手段からの電気角θと回転速度Nmを用いて前記電力変換装置の駆動方法を設定すると共に、前記電力変換装置の各スイッチング素子の損失とスイッチング損失積算値を演算する駆動方法設定および素子損失算出手段と、前記駆動方法設定および素子損失算出手段で演算された駆動方法と素子損失に基づいて設定されるキャリア信号のキャリア周波数を選択するキャリア周波数選択手段と、前記駆動方法設定および素子損失算出手段と前記キャリア周波数選択手段と前記回転角度処理手段、および指令電圧からの情報とに基づいて前記スイッチング素子を動作させるスイッチング信号を生成し、前記電力変換装置に前記スイッチング信号を出力するスイッチング信号生成手段とを備え、前記電動機が所定の回転速度以下の場合は、前記制御ユニットの演算結果に基づき、2相変調駆動で前記電力変換装置を駆動すると共に、スイッチング損失が大きい第1のスイッチング素子と、第2のスイッチング素子の損失を算出し、前記第1のスイッチング素子または前記第2のスイッチング素子の損失積算値が所定値を超えた場合は、予め設定されたマップに従って前記スイッチング信号生成手段からのスイッチング信号を切り換えて、前記スイッイング素子の前記スイッチング動作を切替えるように構成したものである。
 この発明の電動機の制御装置によれば、コストアップおよび騒音の発生を抑制すると共に、電動機が所定の回転数以下(例えば、回転不可または極低回転状態)においてもスイッチング素子のスイッチング動作に起因する電力損失を低減してスイッチング素子の温度上昇を抑制し、運転者の操作に応じた駆動力を発生することのできる電動機の制御装置を得ることができる。
 上述した、またその他の、この発明の目的、特徴、効果は、以下の実施の形態における詳細な説明および図面の記載からより明らかとなるであろう。
この発明の実施の形態1における電力変換装置を含む電動機の制御装置の全体構成を示す図である。 この発明の実施の形態1における制御ユニットの構成、機能を説明するための機能ブロック図である。 この発明の実施の形態1における装置全体の制御、演算の流れを示すフローチャートである。 この発明の実施の形態1における回転角度処理手段15で実行される処理の演算の流れを示すフローチャートである。 この発明の実施の形態1における駆動方法設定と素子損失算出手段で実行される処理の演算の流れを示すフローチャートである。 スイッチング素子の損失と電動機のモータ相電流との関係を示す図である。 図5のステップS205の損失算出素子検索で実行される処理の演算の流れを示すフローチャートである。 この発明の実施の形態1におけるキャリア周波数選択手段で実行される処理の演算の流れを示すフローチャートである。 この発明の実施の形態1における素子損失とキャリア周波数の関係の一例を示す図である。 この発明の実施の形態1におけるスイッチング信号生成手段で実行される処理の演算の流れを示すフローチャートである。 この発明の実施の形態1における電気角θと2相変調駆動時のスイッチング信号切り替えの関係を示すマップである。 この発明の実施の形態1の電動機の制御装置における各部の動作波形を示すタイミングチャートである。 一般的な3相変調駆動と2相変調駆動における相電圧指令とスイッチング信号の関係を示す図である。
 以下、この発明の電動機の制御装置の実施の形態につき、図面を参照して説明する。
実施の形態1.
 図1はこの発明の実施の形態1における電力変換装置を含む電動機の制御装置の全体構成を示す図である。図1において、1はこの発明に係わる電力変換装置の駆動方法などを制御する制御ユニットであるモータコントロールユニット(以下MCUと称す。)、2は直流電力を供給するバッテリ、30はバッテリ2に並列に設けられバッテリ2からの直流電力を交流電力に変換する電力変換装置(以下インバータとも称す。)、4はインバータ30からの交流電力によって駆動力を発生し回転駆動する電動機であり、電動機4は図示しない動力伝達機構を介して図示しない車両の車輪に接続されている。また5は電動機の回転に応じて信号を出力する回転角度センサである。
 インバータ30は、バッテリ2からの直流電圧を平滑化する平滑コンデンサ31と、インバータ30に入力される電圧を検出する電圧センサ32を備えている。また、MCU1からのスイッチング信号に応じて動作し、バッテリ2からの直流電力を電動機4へ供給する交流電力に変換するスイッチング素子として、U相上側スイッチング素子3Q1、U相下側スイッチング素子3Q2、V相上側スイッチング素子3Q3、V相下側スイッチング素子3Q4、W相上側スイッチング素子3Q5、W相下側スイッチング素子3Q6が設けられている。
 各スイッチング素子3Q1~3Q6には、逆並列にU相上側ダイオード素子3D1、U相下側ダイオード素子3D2、V相上側ダイオード素子3D3、V相下側ダイオード素子3D4、W相上側ダイオード素子3D5、W相下側ダイオード素子3D6が接続されている。また、電動機4のU相、V相、W相の3つのコイルの一端が中性点に接続されており、もう一端は各相のスイッチング素子の中間点に接続されている。
 次にMCU1の具体的な構成、機能の詳細について図2の機能ブロック図を参照して説明する。
図2において、まず運転者の動作を示すアクセル開度信号Ac1とブレーキ踏込信号Br1は、車両コントロールユニット(以下VEH-CUと称す。)100に入力され、指令トルクTrrqが出力される。
 指令電流演算手段11は、VEH-CU100で演算された指令トルクTrrqと、後述する回転角度処理手段15から出力される電気角θが入力され、d軸、q軸変換を行い、d軸指令電流I_dとq軸指令電流I_qを出力する。
 指令電圧演算手段12は、d軸指令電流I_dとq軸指令電流I_qと、電動機4のU相、V相、W相に流れる電流を検出する電流センサ33、34、35(図1参照)の出力を後述する3相⇒2相変換手段18によって2相に変換した電流を用いて、指令電圧を演算する。
 2相⇒3相変換手段13は、指令電圧演算手段12で演算された指令電圧と後述する駆動方法設定と素子損失算出手段16で演算される駆動方法の情報を入力して、U相、V相、W相の相電圧を演算する。
 スイッチング信号生成手段14は、2相⇒3相変換手段13にて演算された各相の相電圧と、後述するキャリア周波数選択手段17で演算されたキャリア周波数の情報から、インバータ30の各スイッチング素子3Q1~3Q6のスイッチング信号を生成する。生成されたスイッチング信号はインバータ30に送られて、電動機4に交流電力が供給される。
 回転角度処理手段15は、電動機4に設けられた回転角度センサ5の出力信号から、電動機4の電気角θと回転速度Nmを演算する。
 駆動方法設定と素子損失算出手段16は、回転角度処理手段15からの電気角θと回転速度Nmから、インバータ30の駆動方法を決定するとともに、電動機の各相に流れる電流を検出する電流センサ33、34、35(図1参照)からの電流情報を用いて、インバータ30の各スイッチング素子3Q1から3Q6の該当素子のスイッチング損失と、スイッチング損失積算値と常時オン素子変更フラグF1を演算する。この常時オン素子変更フラグF1については、後述する図5の説明において詳細説明を行う。
 キャリア周波数選択手段17は駆動方法設定と素子損失算出手段16で設定された駆動方法に基づいて、キャリア周波数を演算する。
 3相⇒2相変換手段18は、電動機4の各相に流れる電流を検出する電流センサ33、34、35の出力を2相の電流に変換演算をして、指令電圧演算手段12に入力するためのものである。
 図3は、本発明の実施の形態1における装置全体の制御、演算の流れを示すフローチャートである。図3において、まずステップS11で電動機4の駆動判定を行う。この判定は電動機4への駆動指示有無の判定であり、例えばブレーキの踏み込みやアクセルペダルの踏み込み量など発進動作に起因する情報に基づいて判定を行う。
ステップS11でNo判定の時は演算を行わずリターンされる。ステップS11でYes判定の場合はステップS12に進み、回転角度処理手段15を実行する。この回転角度処理手段15の詳細は後述する図4にて説明を行う。次にステップS13に進むと、駆動方法設定と素子損失算出手段16を実行する。この駆動方法設定と素子損失算出手段16の詳細については後述する図5にて説明を行う。次にステップS14に進むと、キャリア周波数設定手段17を実行する、これについては図8にて詳細説明を行う。そしてステップS15でスイッチング信号生成手段14を実行する。このスイッチング信号生成手段14については図10にて詳細を説明する。
 次に前述した回転角度処理手段15、駆動方法設定と素子損失産出手段16、キャリア周波数選択手段17、スイッチング信号生成手段14について、図4から図11を用いて説明する。
 図4は図3のステップS12で実行される回転角度処理手段15の演算の流れを示すフローチャートである。図4において、まずステップS101では回転角度センサ5からの入力可否を判定する。回転角度センサ5からの入力がある場合は、ステップS101はYes判定となってステップS102に進み、入力がない場合はS109に進む。ステップS102に進むと、次は電動機4の回転方向を判定する。この判定は例えば、図示しない車両のシフトポジションや加速度センサの情報などを基に判定している。ステップS102で電動機4の回転方向判定が終了すると、ステップS103に進み、ステップS102の回転方向判定結果に応じて電気角θを算出する。この電気角θの算出はステップS102の判定が正回転時は回転角度センサ5の入力ごとに所定値(例えば0.5度)を加算、またステップS102の判定が逆回転時は回転角度センサ5の入力ごとに所定値を減算するようにしている。
 そしてステップS104に進むと、算出した電気角θの判定を行う。まずステップS104では電気角θが回転角度範囲か否かの判定を行う。回転角度は1周期360度であり、ステップS103で算出した電気角θが0(ゼロ)から360度の範囲内であれば、ステップS104はYes判定となってステップS105に進み、電気角θが0(ゼロ)または360であれば、ステップS107に進む。ステップS107に進むと、電気角θが0(ゼロ)の時は360、360の時は0(ゼロ)にして、ステップS105に進む。
 ステップS105に進むと、次は電動機4の回転速度Nmの判定を行う。まずステップS105では回転速度Nmの前回値の判定を行う。ステップS105の判定がYes判定の時は、ステップS106に進み、回転速度Nmを算出してリターンする。一方ステップS105でNo判定の時はステップS108に進んで、回転速度Nmを所定の固定値にしてリターンする。この所定の固定値はステップS102で判定する回転方向に応じて0(ゼロ)ではない微小な値(例えば、±0.1rpm)を設定している。
 次に、ステップS101でNo判定となりステップS109に進んだ場合は、回転角度センサ5の入力がないので電気角θを前回値保持して、ステップS110に進む。ステップS110に進むと次は計測タイマt_cの判定を行う。この計測タイマは回転角度センサ5の入力間隔を計測するタイマで、回転角度センサ5の入力があると前回の回転角度センサ5の入力時間を用いて回転角度センサ5の入力間隔を計測するようにしている。また、ステップS110の判定に用いる所定時間は、電動機4の回転停止を判定可能な時間(例えば、200msec)を設定している。ステップS110でYes判定の時は、回転角度センサ5の入力はないが、電動機4を回転停止と判定不可であるため、ステップS111に進み、回転速度Nmを前回値に保持してリターンする。
 一方、ステップS110でNo判定の時は、回転角度センサ5の入力がない、かつ電動機4の回転が停止している事になるので、ステップS112に進み、回転速度Nmを0(ゼロ)にすると共に計測タイマt_cを0(ゼロ)にしてリターンする。
 図5は図3のステップS13で実行される駆動方法設定と素子損失算出手段16の流れを示すフローチャートである。
図5において、駆動方法設定と素子損失算出手段16では、まずステップS201で回転速度Nmを読み込み、ステップS202に進んで、所定値αとの比較を行う。この所定値αは2相変調駆動を行う必要がない回転速度、例えば、50rpmに設定されている。
ステップS202でNo判定の場合は、ステップS216に進み、後述する積算電力損失(ΣE_Loss1、ΣE_Loss2)及び、常時オン素子変更フラグF1、および切り替え実施フラグF3をクリアして、ステップS217に進み、駆動方法を3相変調に設定してリターンされる。
一方、ステップS202でYes判定の場合は、ステップS203に進み、回転速度Nmがゼロか否かの判定を行う。ステップS203でYes判定の場合はステップS204に進み、次は素子損失の積算値の判定を行う。
 ステップS204でYes判定の時は、初回損失計算となるので、ステップS205に進んで損失算出素子検索を行う。ステップS205で行う損失算出素子検索については、後述する図7で詳細に説明するので、ここでは割愛する。ステップS206に進むと電流センサ33、34、35にて検出される電動機4の各相を流れる電流値(以下、モータ相電流と称す)を読み込んで、ステップS207に進む。
 ステップS207に進むと、ステップS205で検索した素子と、ステップS206で読み込んだ相電流値をもとに各素子の損失を算出する。インバータ30に用いられるスイッチング素子の損失は、モータ相電流から求めることができ、例えば図6に示すような関係がある。従って、大きな電流が流れるスイッチング素子を特定できれば、スイッチング損失が計算できる。
 ステップS207では第一のスイッチング損失E_Loss1つまり、常時オンとなる損失の大きなスイッチング素子の損失と、第二のスイッチング損失E_Loss2、つまりスイッチング動作を行う素子のうち、最も損失が多い素子の損失を算出し、ステップS208に進んで、駆動方法を2相変調に設定してリターンされる。
 次にステップS203でNo判定の場合は、電動機4が極低回転状態であるので、ステップS213に進み損失算出素子検索を行う。この損失算出素子検索に関しては後述する。ステップS214に進むと、S206と同様にモータ相電流を読み込んでステップS215で図6の関係を用いて、第一のスイッチング損失E_Loss1と第二のスイッチング損失E_Loss2を算出し、ステップS209に進む。
 ステップS204がNo判定、つまり初回素子損失が計算済みの時、もしくはステップS215の演算終了後はステップS209に進んで、設定しているキャリア周波数fcを読み込む。キャリア周波数fcの設定に関しては図8にて説明するのでここでは割愛する。
 ステップS209でキャリア周波数fcを読み込むと、ステップS210に進んで第一のスイッチング損失E_Loss1と第二のスイッチング損失E_Loss2の積算値を演算する。
第一のスイッチング損失の積算値ΣE_Loss1は常時オン素子の損失であるので、ステップS207で算出した第一のスイッチング損失E_Loss1の通電時間で求まり、通電時間は図5のフローチャートの制御周期(例えば、10μsec)を用いて積算値ΣE_Loss1を算出する。その計算式は下記となる。
 ΣE_Loss1(n)=ΣE_Loss1(n-1)+(E_Loss1×制御周期)・・・・(式1)
 第二のスイッチング損失の積算値ΣE_Loss2はスイッチング動作しているため、制御周期間のスイッチング回数を求める必要があり、そのスイッチング回数は制御周期とキャリア周波数fcから求めることができるので、第二のスイッチング損失の積算値ΣE_Loss2は下記式から求めることができる。
 ΣE_Loss2(n)=ΣE_Loss2(n-1)+(E_Loss2×(制御周期/キャリア周波数fc)・・・・(式2)
 また、後述する素子切り替え判定F2が未成立中は、第一、第二のスイッチング損失の積算値の計算は下記となる。
 ΣE_Loss1(n)=ΣE_Loss1(n-1)-(E_Loss1×制御周期-(E_Loss1×(制御周期/キャリア周波数fc))・・・・(式3)
 ΣE_Loss2(n)=ΣE_Loss2(n-1)+(E_Loss2×制御周期)・・・・(式4)
 また、素子切り替え判定F2が成立中は下記式にて、第一、第二のスイッチング損失の積算値を計算する。
 ΣE_Loss1(n)=ΣE_Loss1(n-1)+(E_Loss1×制御周期)・・・・(式5)
 ΣE_Loss2(n)=ΣE_Loss2(n-1)-(E_Loss2×制御周期-(E_Loss2×(制御周期/キャリア周波数fc))・・・・(式6)
 ステップS210で第一のスイッチング素子の損失積算値ΣE_Loss1と第二のスイッチング素子の損失積算値ΣE_Loss2を算出すると、ステップS211に進み、算出した損失積算値のどちらかが所定値βより大きいかの判定を行う。この所定値βは電動機4の最大トルクで流れる電流に基づいて設定される。
 ステップS211でYes判定の場合は、ステップS212に進み、常時オン素子変更フラグF1を1にしてリターンし、No判定の場合は、まだ損失積算値が所定値βに達していないので、リターンされる。
 図7は、図5のS205の損失算出素子検索で実行される処理の演算の流れを示すフローチャートである。
 図7において、まずステップS301で電気角θを読み込んで、ステップS302に進み、ステップS302で電気角θがθ1からθ2の範囲にいれば、Yes判定となってステップS303に進み、No判定の場合はステップS306に進む。
ステップS303に進むと次は電気角θがθ2/2以下か否かの判定を行い、ステップS303がYes判定であれば、ステップS304に進み、スイッチング素子3Q4と3Q5が損失算出素子となって、算出素子情報I_mを1にする。ステップS303がNo判定の場合はステップS305に進み、スイッチング素子3Q4と3Q1が損失算出素子となって、算出素子情報I_mを2にしてリターンされる。
ここで、電気角範囲の判定に用いるθ1からθ7は電気角1周期(360度)応じて設定しており、θ1=0度から始まり60度刻みでθ6まで設定し、θ7=359度に設定している。
 ステップS302でNo判定の場合は、ステップS306に進み次は電気角θがθ2からθ3までの範囲内かの判定を行い、No判定時はステップS310へ、Yes判定時はステップS307に進み、ステップS307に進むと、電気角θがθ3/2以下かの判定を行う。
ステップS307でYes判定時はステップS308に進み、算出素子情報I_mが3になるとともに、算出素子が3Q1と3Q4と決定され、ステップS307がNo判定でステップS309に進むと、算出素子情報I_mが4になるとともに、算出素子が3Q1と3Q6と決定され、リターンされる。
以下順次、電気角θに応じて、算出素子情報I_mが更新されると共に算出素子が決定される。
 図8は、図3のS14で実行されるキャリア周波数選択手段17の演算の流れを示すフローチャートである。
図8において、キャリア周波数選択手段17では、まずステップS401において駆動方法の判定(図5参照)を行う。ステップS401で2相変調が設定されていれば、Yes判定となってステップS402に進み、No判定、つまり3相変調が設定されている場合はステップS404に進んで、キャリア周波数fcを所定値γに設定してリターンされる。
ここで所定値γは通常の3相変調駆動時のキャリア周波数fcであり、あらかじめ実験等にて求められており、例えば、7kHzに設定される。
 ステップS402に進んだ場合は、素子損失E_Loss1を読み込んで、ステップS403に進む。ステップS403に進むと、素子損失とキャリア周波数fcとの関係からキャリア周波数fcを設定する。素子損失とキャリア周波数fcの関係は図9に示すような関係となり、素子損失E_Loss1に応じたキャリア周波数fcが設定され、リターンされる。
 図10は、図3のS15にて実行されるスイッチング信号生成手段14の演算の流れを示すフローチャートである。
図10において、スイッチング信号生成手段14では、まずステップS501で、電気角θ、常時オン素子変更フラグF1、算出素子情報I_m、キャリア周波数fcを読み込んで、ステップS502に進む。ステップS502に進むと、常時オン素子変更フラグF1の判定を行う。ステップS502において常時オン素子変更フラグF1がゼロの場合は、Yes判定となってステップS503に進み、常時素子変更フラグF1が1の時は、No判定となってステップS505に進む。
 ステップS502においては、駆動方法が3相変調または2相変調によらず常時オン素子変更フラグF1が未成立(F1=0)の場合は、ステップS503に進み、次は素子切り替え判定F2の判定を行う。
この素子切り替え判定F2は後述するステップS508または511で設定される判定であり、常時素子オン変更フラグF1が未成立(F1=0)時は成立しない。
ステップS503がYes判定時はステップS504に進み、選択された駆動方法に応じたスイッチング信号を生成してリターンされる。
一方ステップS503でNo判定の時は、後述する生成スイッチング信号を切り替えており、その生成スイッチング信号を変更しないのでリターンされる。
 ステップS502でNo判定となり、ステップS505に進んだ場合は、算出素子情報I_mに応じてマップデータmap(θ)を読み込む。このマップデータは後述するステップS507で設定するスイッチング信号変更に用いるもので、電気角θに応じて図11のような関係をマップ化して設定している。
 次にステップS506に進むと、素子切り替え判定F2の判定を行う。ステップS506にてYes判定の場合はステップS507に進んで、ステップS505で読み込んだマップmap(θ)を参照して、生成スイッチング信号を切り替えて、ステップS508に進んで素子切り替え判定F2を1に設定してステップS509に進む。
一方、ステップS506でNo判定の場合は、すでに常時オン素子変更フラグF1が成立(F1=0)かつ、生成スイッチング信号を切り替え済み、であるので、ステップS510に進み、通常のスイッチング信号に切り替えてステップS511に進み、ステップS511では素子切り替え判定F2をゼロに設定してステップS509に進む。
ステップS509に進むと、ステップS507、ステップS510でスイッチング信号を変更しているので、常時オン素子変更フラグF1をゼロにしてリターンされる。
 図11は、電気角θと2相変調駆動時のスイッチング信号切り替えの関係をマップ化した一例を示すもので、2相変調駆動時において、素子損失積算値(ΣE_Loss1、ΣE_Loss2)が所定値βを超えた場合のスイッチング信号切り替えの一例を示すものである。
 図12は、以上のように構成されたこの発明の実施の形態1の電動機の制御装置における各部の動作波形を示すタイミングチャートである。
図12において、時刻T1でブレーキ情報(B)がクリア、つまり運転者がブレーキを離すと発進動作の開始を判定して、指令トルク(C)が所定のクリープトルク値となり、次に電気角θ(D)に応じて、算出素子情報I_m(E)が更新される。モータ回転速度(F)は電気角θ(D)が2回以上更新されないとモータ回転速度(F)が算出不可であるので、指令トルク(C)出力直後は、2相変調による駆動方法が選択されるとともに、電気角θ(D)に応じてU相、V相、W相の各相電圧指令(G)が出力される。また、2相変調による駆動方法が選択されるのでキャリア周波数fcが高周波に設定され、各相の相電圧指令(G)との比較により、スイッチング信号(H)が各々生成され、各スイッチング素子3Q1~3Q6がスイッチング動作を開始して、電動機4に駆動力が発生する。
 そして、電動機4のモータ回転速度(F)が所定値αより低い、かつ素子損失積算値(I)がゼロであるので、算出素子情報に応じて、該当素子のスイッチング損失(E_Loss1、E_Loss2)が演算され、素子損失積算値(I)の演算が開始される。この時刻T1では、常時オン素子変更フラグF1と素子切り替え判定F2はともに不成立状態(F1=0、F2=0)である。
 次に時刻T2までは、電動機4は所定値αより低いモータ回転速度(F)で駆動しているので、順次電気角θ(D)に応じて素子損失が演算され、素子損失積算値(I)(ΣE_Loss1、ΣE_Loss2)が増加していく。
 時刻T2になると、電気角θ(D)の更新が停止、つまり電動機4は回転不可状態となるので、算出素子情報I_m(E)は一定値となり、またモータ回転速度(F)がゼロとなるが、素子損失積算値(I)は演算を継続する。
 そして時刻T3になると、素子損失積算値(I)の、第一の素子損失積算値ΣE_Loss1が所定値βを超えるので、常時オン素子変更フラグF1(J)が1にセットされて、各スイッチング素子3Q1~3Q6へのスイッチング信号(H)を、電気角θ(D)と図11の関係を用いて切り替える。
 そしてスイッチング信号(H)を切り替えると、素子切り替え判定F2が1にセットされるとともに、切り替え実施フラグF3が1にセットされ、素子切り替えを行ったので、常時オン素子変更フラグF1をゼロにリセットする。スイッチング信号(H)の切り替えを行うと、素子損失積算値(ΣE_Loss1)は徐々に低下していき、逆に素子損失積算値(ΣE_Loss2)は増加していく。
 そして、時刻T4になると、次は素子損失積算値(ΣE_Loss2)が所定値βを超えるので、常時オン素子変更フラグF1が再度、1にセットされて、今度は各スイッチング素子3Q1~3Q6のスイッチング信号(H)を通常時の2相変調駆動のスイッチング信号(H)に切り替える。スイッチング素子3Q1~3Q6のスイッチング動作の切り替えが終了すると、素子切り替え判定F2がゼロにリセットされるとともに、常時オン素子変更フラグF1をゼロにリセットする。
 以上のようにこの発明の実施の形態1の電動機の制御装置によれば、電動機の動作(回転)状態に応じて電動機の駆動方法を2相変調駆動および3相変調駆動の一方を選択するように駆動される電力変換装置とその制御ユニットを備えた電動機の制御装置において、制御ユニットは、電動機が所定の回転速度以下の場合は、駆動方法の設定および素子損失算出手段での演算結果に基づき、2相変調駆動で電力変換装置を駆動すると共に、電力変換装置のスイッチング損失が大きい第1のスイッチング素子と、第2のスイッチング素子の損失を算出し、第1のスイッチング素子または第2のスイッチング素子の損失積算値が所定値を超えた場合は、予め設定されたマップに従ってスイッチング信号生成手段からのスイッチング信号を切り換えて、スイッイング素子のスイッチング動作を切替えるようにしたので、以下のような優れた効果を得ることができる。
 (1)電力変換装置の温度を検出するための温度センサを必要とせず、コストアップを抑制できる。
 (2)電動機が回転不可または極低回転状態における2相変調駆動時にスイッチング素子の損失積算値が所定値を超えるとスイッチング素子のスイッチング動作を切り替えることでスイッチング素子の温度上昇を抑制できるので、スイッチング素子の温度上昇に伴う電動機への供給電力の低下を抑制でき、運転者の操作に応じた駆動力を発生することのできる電動機の制御装置を得ることができる。
 この発明は、ハイブリッド車両や電気自動車等の電動車両に搭載される電動機の制御装置として有益なものである。
 1 MCU(モータコントロールユニット)、2 バッテリ、
4 電動機、5 回転角度センサ、11 指令電流演算手段、
12 指令電圧演算手段、13 2相⇒3相変換手段、 
14 スイッチング信号生成手段、15 回転角度処理手段、
16 駆動方法設定と素子損失算出手段、
17 キャリア周波数選択手段、18 3相⇒2相変換手段、
30 電力変換装置、31 平滑コンデンサ、32 電圧センサ、
33、34、35 電流センサ、3Q1~3Q6 スイッチング素子、
100 車両コントロールユニット。

Claims (3)

  1.  直流電力を供給する直流電源、スイッチング素子によって構成されPWM制御によるスイッチング素子のスイッチング動作によって、前記直流電源からの直流電力を交流電力に変換して電動機に電力を供給する電力変換装置、および前記電力変換装置の駆動を制御する制御ユニットを備えた電動機の制御装置であって、
    前記制御ユニットは、
     電動機の電気角θと回転速度Nmを演算し出力する回転角度処理手段と、
    前記回転角度処理手段からの電気角θと回転速度Nmを用いて前記電力変換装置の駆動方法を設定すると共に、前記電力変換装置の各スイッチング素子の損失とスイッチング損失積算値を演算する駆動方法設定および素子損失算出手段と、
    前記駆動方法設定および素子損失算出手段で演算された駆動方法と素子損失に基づいて設定されるキャリア信号のキャリア周波数を選択するキャリア周波数選択手段と、
    前記駆動方法設定および素子損失算出手段と前記キャリア周波数選択手段と前記回転角度処理手段、および指令電圧からの情報とに基づいて前記スイッチング素子を動作させるスイッチング信号を生成し、前記電力変換装置に前記スイッチング信号を出力するスイッチング信号生成手段とを備え、
    前記電動機が所定の回転速度以下の場合は、前記制御ユニットの演算結果に基づき、2相変調駆動で前記電力変換装置を駆動すると共に、スイッチング損失が大きい第1のスイッチング素子と、第2のスイッチング素子の損失を算出し、前記第1のスイッチング素子または前記第2のスイッチング素子の損失積算値が所定値を超えた場合は、予め設定されたマップに従って前記スイッチング信号生成手段からのスイッチング信号を切り換えて、前記スイッイング素子の前記スイッチング動作を切替えるようにしたことを特徴とする電動機の制御装置。
  2.  前記損失積算値の所定値は、最大トルク時に流れる電流に基づいて設定することを特徴とする請求項1に記載の電動機の制御装置。
  3.  2相変調駆動時のキャリア周波数は、前記第1のスイッチング素子の損失に基づいて設定することを特徴とする請求項1に記載の電動機の制御装置。
PCT/JP2014/063341 2014-05-20 2014-05-20 電動機の制御装置 WO2015177863A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112014006685.0T DE112014006685T5 (de) 2014-05-20 2014-05-20 Elektromotorsteuervorrichtung
CN201480079092.5A CN106464171B (zh) 2014-05-20 2014-05-20 电动机控制装置
JP2016520842A JP6113357B2 (ja) 2014-05-20 2014-05-20 電動機の制御装置
PCT/JP2014/063341 WO2015177863A1 (ja) 2014-05-20 2014-05-20 電動機の制御装置
US15/109,473 US9680407B2 (en) 2014-05-20 2014-05-20 Electric motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/063341 WO2015177863A1 (ja) 2014-05-20 2014-05-20 電動機の制御装置

Publications (1)

Publication Number Publication Date
WO2015177863A1 true WO2015177863A1 (ja) 2015-11-26

Family

ID=54553561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063341 WO2015177863A1 (ja) 2014-05-20 2014-05-20 電動機の制御装置

Country Status (5)

Country Link
US (1) US9680407B2 (ja)
JP (1) JP6113357B2 (ja)
CN (1) CN106464171B (ja)
DE (1) DE112014006685T5 (ja)
WO (1) WO2015177863A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6183333B2 (ja) * 2014-11-07 2017-08-23 トヨタ自動車株式会社 ハイブリッド自動車
JP6217667B2 (ja) * 2015-02-19 2017-10-25 株式会社豊田自動織機 電動圧縮機
JP6282331B1 (ja) * 2016-10-31 2018-02-21 三菱電機株式会社 電力変換装置
JP6963495B2 (ja) * 2017-12-22 2021-11-10 サンデンホールディングス株式会社 電力変換装置
JP6937708B2 (ja) * 2018-02-21 2021-09-22 日立Astemo株式会社 モータ制御装置およびそれを用いる電動車両システム
JP7198028B2 (ja) * 2018-10-01 2022-12-28 ローム株式会社 ドライバ装置
KR20210027663A (ko) * 2019-08-30 2021-03-11 현대자동차주식회사 모터 구동 시스템을 이용한 배터리 승온 시스템 및 방법
CN117458949B (zh) * 2023-12-21 2024-03-22 浩智科技电驱(桐城)有限公司 电机控制系统及其控制方法、控制装置及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006174659A (ja) * 2004-12-17 2006-06-29 Equos Research Co Ltd モータ制御装置
JP2009106106A (ja) * 2007-10-24 2009-05-14 Nissan Motor Co Ltd 電動機の制御装置
JP2011109803A (ja) * 2009-11-17 2011-06-02 Toyota Motor Corp 電動機の制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4866216B2 (ja) * 2006-11-22 2012-02-01 株式会社日立製作所 電力変換装置
CN101282093B (zh) * 2007-04-04 2011-09-14 三垦力达电气(江阴)有限公司 用于串联式多电平逆变器的pwm控制方法
JP5309232B2 (ja) * 2012-02-01 2013-10-09 ファナック株式会社 変調方式の選択部を有するモータ駆動用のpwm整流器
JP2013208009A (ja) * 2012-03-29 2013-10-07 Brother Ind Ltd モータ制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006174659A (ja) * 2004-12-17 2006-06-29 Equos Research Co Ltd モータ制御装置
JP2009106106A (ja) * 2007-10-24 2009-05-14 Nissan Motor Co Ltd 電動機の制御装置
JP2011109803A (ja) * 2009-11-17 2011-06-02 Toyota Motor Corp 電動機の制御装置

Also Published As

Publication number Publication date
US9680407B2 (en) 2017-06-13
CN106464171A (zh) 2017-02-22
JPWO2015177863A1 (ja) 2017-04-20
DE112014006685T5 (de) 2017-02-09
JP6113357B2 (ja) 2017-04-12
US20160329856A1 (en) 2016-11-10
CN106464171B (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
JP6113357B2 (ja) 電動機の制御装置
KR101021256B1 (ko) 전동기구동제어시스템 및 그 제어방법
US8174221B2 (en) Motor control apparatus and control apparatus for hybrid electric vehicles
JP6248596B2 (ja) ハイブリッド車両のモータ制御装置
JP5781875B2 (ja) 回転電機制御システム
JP4715576B2 (ja) 電動駆動制御装置及び電動駆動制御方法
JP5311950B2 (ja) 回転電機制御システム
US9590551B2 (en) Control apparatus for AC motor
US20140152214A1 (en) Vehicle and method for controlling vehicle
US9007009B2 (en) Control apparatus for AC motor
US9419554B2 (en) Control device of AC motor
JP2016189698A (ja) 車両用回転電機の制御装置、及び制御方法
JP2011091962A (ja) 電流センサの異常判定装置および異常判定方法
JP2011109803A (ja) 電動機の制御装置
JP2012095390A (ja) モータ制御システム
JP2004072954A (ja) モーター制御装置および方法
JP4735045B2 (ja) 電動機制御装置
JP4984331B2 (ja) 電気自動車の制御装置
JP2010115075A (ja) 車両用発電機制御装置
JP2010022162A (ja) 交流モータの制御装置
JP2008154398A (ja) 車両用モータ制御装置および車両用モータ制御方法
US9276517B2 (en) Control device of AC motor
JP2018182858A (ja) 駆動装置
JP5751059B2 (ja) 駆動装置および電動車両
JP2010124662A (ja) モータ駆動システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892455

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016520842

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15109473

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014006685

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14892455

Country of ref document: EP

Kind code of ref document: A1