WO2015174362A1 - 方向性電磁鋼板の製造方法 - Google Patents
方向性電磁鋼板の製造方法 Download PDFInfo
- Publication number
- WO2015174362A1 WO2015174362A1 PCT/JP2015/063445 JP2015063445W WO2015174362A1 WO 2015174362 A1 WO2015174362 A1 WO 2015174362A1 JP 2015063445 W JP2015063445 W JP 2015063445W WO 2015174362 A1 WO2015174362 A1 WO 2015174362A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- annealing
- steel sheet
- temperature
- decarburization
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D3/00—Diffusion processes for extraction of non-metals; Furnaces therefor
- C21D3/02—Extraction of non-metals
- C21D3/04—Decarburising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1222—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1233—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1255—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1261—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1266—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1272—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1277—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
- C21D8/1283—Application of a separating or insulating coating
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14766—Fe-Si based alloys
- H01F1/14775—Fe-Si based alloys in the form of sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/16—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2201/00—Treatment for obtaining particular effects
- C21D2201/05—Grain orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/02—Cores, Yokes, or armatures made from sheets
Definitions
- the present invention relates to a method for producing a grain-oriented electrical steel sheet suitable for use in a transformer core material or the like.
- Electrical steel sheets are soft magnetic materials that are widely used as iron core materials for transformers and motors.
- oriented magnetic steel sheets are highly integrated in the ⁇ 110 ⁇ ⁇ 001> orientation whose crystal orientation is called the Goss orientation. Therefore, it is mainly used as a core material for large transformers. Therefore, the main development subject of the conventional grain-oriented electrical steel sheet is to reduce the loss caused when the steel sheet is excited, that is, the iron loss in order to reduce the no-load loss (energy loss) of the transformer.
- an oxide film mainly composed of oxides of Si and Fe is formed on the steel sheet surface (hereinafter, this oxide film is also referred to as “subscale”).
- this oxide film is also referred to as “subscale”.
- an annealing separator mainly composed of MgO is applied to the surface of the steel sheet on which the subscale is formed and finish annealing is performed, the subscale and MgO react to form a forsterite (Mg 2 SiO 4 ) layer, It plays a role as an insulation coating when the product plates are used in a stacked manner.
- Patent Document 2 discloses excessive formation of firelite in the initial oxidation by rapid heating in a non-oxidizing atmosphere in which the oxygen potential P H2O / P H2 is 0.2 or less.
- a technique for suppressing the above is disclosed.
- a dense oxide layer is formed on the steel sheet surface by rapid heating in a non-oxidizing atmosphere, there is a problem that the decarburization reaction in the subsequent decarburization annealing is hindered. If C is not sufficiently removed by decarburization annealing and remains in the product plate, the magnetic properties of the product plate deteriorate over time, so-called magnetic aging occurs. Therefore, Patent Document 3 proposes a technique for suppressing the formation of a dense oxide layer and ensuring decarburization properties by setting the oxygen potential P H2O / P H2 to a wet hydrogen atmosphere of 0.41 or more. Yes.
- Patent Document 3 in which rapid heating is performed in an oxidizing atmosphere is contrary to the technique disclosed in Patent Document 2 in which heating is performed in a non-oxidizing atmosphere in order to form a forsterite film. Therefore, in the prior art, there is a problem that it is difficult to achieve both decarburization and stable formation of a forsterite film over the entire length of the coil.
- forsterite coating improves iron loss by applying tension to steel sheets, and suppresses the flow of eddy currents between laminated steel sheets when directional electromagnetic steel sheets are stacked for use in iron cores, etc.
- the forsterite film if the forsterite film is not sufficiently formed, the film peels off from the surface of the steel sheet when the steel sheet undergoes deformation such as bending, resulting in a decrease in insulation.
- the present invention has been made in view of the above-described problems of the prior art, and its purpose is to ensure sufficient decarburization even when rapid heating is performed in the heating process of decarburization annealing, and
- the purpose of the present invention is to propose a method for producing a grain-oriented electrical steel sheet in which the iron loss characteristics and the resistance to peeling of the forsterite coating are excellent over the entire length of the coil by stabilizing the formation of the forsterite coating in finish annealing.
- the inventors have made extensive studies focusing on the heating pattern of the heating process in the decarburization annealing in order to solve the above problems.
- the temperature rise rate at a high temperature exceeding 700 ° C. in the heating process of decarburization annealing to an appropriate range, the formation of excessive firelite on the steel sheet surface layer is suppressed, and a healthy oxide layer is formed. It has been found that it can be formed, and decarburization can be sufficiently secured, and the present invention has been developed.
- the present invention contains C: 0.002 to 0.10 mass%, Si: 2.5 to 6.0 mass%, Mn: 0.01 to 0.8 mass%, and Al: 0.010 to 0.050 mass% and N: 0.003 to 0.020 mass%, or S: 0.005 to 0.03 mass% and / or Se: 0.002 to 0.03 mass%, or Al: 0.010 to Contains 0.050 mass%, N: 0.003 to 0.020 mass%, S: 0.005 to 0.03 mass% and / or Se: 0.002 to 0.03 mass%, the balance being Fe and inevitable impurities
- a slab having a composition comprising: hot rolling, hot-rolled sheet annealing, cold rolling at least once with intermediate or intermediate annealing, decarburization annealing, and sub-scaling on the steel sheet surface
- an annealing separator mainly composed of MgO is applied to the surface of the steel sheet and finish annea
- T1 is any temperature between 820 ° C. and T2 is set to any temperature between 820 ° C. and 900 ° C.
- the temperature rising rate R1 between 500 and T1 is 80 ° C./s or more
- T1 A method for producing a grain-oriented electrical steel sheet, characterized by heating at a rate of temperature rise R2 between T2 and T2 of 15 ° C./s or less is proposed.
- the grain-oriented electrical steel sheet manufacturing method of the present invention is characterized in that the oxygen potential P H2O / P H2 of the atmosphere up to the soaking temperature T2 of the decarburization annealing is in the range of 0.30 to 0.55. To do.
- the manufacturing method of the grain-oriented electrical steel sheet according to the present invention has a soaking temperature of T2 to 900 ° C after reaching the soaking temperature T2 of the decarburization annealing and cooling to 800 ° C or less. It is characterized in that the time during which the oxygen potential P H2O / P H2 of the atmosphere is 0.10 or less is provided for 5 seconds or more.
- the grain-oriented electrical steel sheet manufacturing method of the present invention is characterized in that the oxygen basis weight on the steel sheet surface after the decarburization annealing is 0.35 to 0.85 g / m 2 per side.
- the slab used in the method for producing a grain-oriented electrical steel sheet according to the present invention has Cr: 0.01 to 0.50 mass%, Cu: 0.01 to 0.50 mass%, P: 0.005 to 0.50 mass%, Ni: 0.01 to 1.50 mass%, Sb: 0.005 to 0.50 mass%, Sn: 0.005 to 0.50 mass%, Mo: 0.005 to 0.00.
- the method for producing a grain-oriented electrical steel sheet according to the present invention is characterized in that in any step after the cold rolling, a magnetic domain refinement process is performed on the steel sheet surface.
- the present invention it is possible to stably provide a grain-oriented electrical steel sheet that is excellent in iron loss characteristics and peeling resistance of a forsterite film over the entire length of the coil.
- 6 is a graph showing the influence of the temperature T1 and the heating rate R2 up to a temperature T1 to 850 ° C. on the peel resistance of the forsterite film.
- Oxygen potential P H2O / P H2 atmosphere during decarburization annealing heating is a graph showing the effect on peeling resistance of decarburizing and forsterite film. It is a graph which shows the influence which the oxygen basis weight after decarburization annealing has on the iron loss W17 / 50 and the peeling resistance of a forsterite film.
- the reason why the Goss orientation in the primary recrystallization texture of the steel sheet increases by rapidly heating the decarburization annealing process is that the ⁇ 111 ⁇ plane orientation takes precedence when recrystallization proceeds at a low temperature. This is because, when recrystallization is performed at a high temperature, recrystallization such as Goss orientation that facilitates recrystallization following the ⁇ 111 ⁇ plane orientation is also promoted. Therefore, in order to suppress recrystallization at a low temperature, it is desirable to heat to a high temperature in the shortest possible time, that is, rapid heating.
- the test piece after finish annealing thus obtained was measured for iron loss W 17/50 at a magnetic flux density of 1.7 T and an excitation frequency of 50 Hz in accordance with JIS C2550.
- Decarburization annealing was performed to perform a uniform heat treatment. Next, for one of the test pieces subjected to the same decarburization annealing, the carbon concentration in the steel sheet after decarburization annealing was identified using the combustion-infrared absorption method, and the other test pieces were examined. Applied an annealing separator mainly composed of MgO on the surface of the steel sheet after decarburization annealing, and then caused secondary recrystallization, and then subjected to finish annealing that was maintained at 1150 ° C. for 6 hours for purification.
- the iron loss W 17/50 at a magnetic flux density of 1.7 T and an excitation frequency of 50 Hz is measured according to JIS C2550, and the peel resistance of the forsterite film is evaluated.
- the peel resistance test when a test piece sheared to a width of 30 mm is wound in the longitudinal direction on a plurality of cylindrical rods having different diameters in units of 10 mm from 10 to 100 mm ⁇ , the film peels off. The minimum diameter (peeling diameter) that did not occur was evaluated.
- the film peeling occurred when the film peeled off or when white stripes were generated on the surface of the test piece due to the film breakage.
- the decarburization was evaluated as good when the C concentration after decarburization annealing was 0.0025 mass% (25 massppm) or less, and the peel resistance was evaluated as favorable when the peel diameter was 30 mm ⁇ or less.
- FIG. 2 shows the effects of temperature T1 and heating rate R2 on decarburization and peel resistance of the coating.
- FIG. 2 shows that decarburization failure occurs when the temperature T1 exceeds 800 ° C., and even when the temperature T1 is in the range of 700 to 800 ° C., the peel resistance deteriorates when the heating rate R2 exceeds 15 ° C./s.
- the heating rate R1 for rapid heating by decarburization annealing is set to 80 ° C./s or more, and the temperature T1 for stopping rapid heating is set to 700 ° C. or more and 800 ° C. or less.
- the heating rate R2 from the temperature T1 to the soaking temperature T2 is 15 ° C./s or less, so that the decarburization property and the peeling resistance of the coating can be secured while having good iron loss characteristics. .
- the inventors investigated and examined the influence of the atmosphere during decarburization annealing on decarburization and peel resistance of the forsterite coating. This is because, as described above, the atmosphere during heating in the decarburization annealing has a great influence on the decarburization property and the formation of the forsterite film. As shown in the above experimental results, by reducing the heating rate during the rapid heating of decarburization annealing, it is possible to achieve both decarburization and formation of a forsterite film having excellent peel resistance. However, it is considered that a forsterite film having further excellent decarburization and peeling resistance can be formed by combining with a more suitable atmosphere during heating.
- the rolling direction is the length direction, and the width is 100 mm ⁇
- Many test pieces having a length of 300 mm were cut out.
- Decarburization annealing was performed to perform a uniform heat treatment. Next, for one of the test pieces subjected to the same decarburization annealing, the carbon concentration in the steel sheet after decarburization annealing was identified using the combustion-infrared absorption method, and the other test pieces were examined. Applied an annealing separator mainly composed of MgO on the surface of the steel sheet after decarburization annealing, and then caused secondary recrystallization, and then subjected to finish annealing that was maintained at 1150 ° C. for 6 hours for purification. About the test piece after finish annealing obtained in this way, the peel resistance of the forsterite film was evaluated in the same manner as in Experiment 2.
- FIG. 3 shows the influence of the oxygen potential P H2O / P H2 of the atmosphere during heating on the C concentration after decarburization annealing and the peel resistance of the forsterite coating. From FIG. 3, by controlling the oxygen potential P H2O / P H2 of the atmosphere at the temperature T2 or lower to be in the range of 0.30 to 0.55, it is possible to obtain good decarburization and peeling resistance. Recognize.
- the inventors examined a method for further reducing the iron loss in the method of the present invention in which the heating rate is lowered during the rapid heating of the decarburization annealing.
- the oxidation of the atmosphere in the heating process of decarburization annealing is lowered, the formation of the initial oxide layer formed in the heating process is delayed, so the steel plate's iron and oxidation properties in the high temperature soaking stage of decarburization annealing are delayed.
- the reaction of the atmosphere easily proceeds, and the amount of oxygen per unit area after decarburization annealing increases.
- Decarburization annealing was performed to perform a uniform heat treatment. Subsequently, one piece was extracted for each condition from the test piece after decarburization annealing, and the carbon concentration after decarburization annealing was identified by the above method. Also, using the same test piece, the oxygen concentration of the steel sheet after decarburization annealing was identified by the melting-infrared absorption method, and it was assumed that all the oxygen was evenly distributed on the surface layers of both sides of the steel sheet. The amount of oxygen per unit area was calculated.
- the remaining test piece was purified by applying an annealing separator mainly composed of MgO to the surface of the steel sheet after decarburization annealing, causing secondary recrystallization, and maintaining at 1150 ° C. for 6 hours. Finish annealing was performed.
- the iron loss W 17/50 was measured in the same manner as in Experiment 1, and the peel resistance of the forsterite film was evaluated in the same manner as in Experiment 2.
- the said iron loss value measured 10 sheets per condition, and calculated
- FIG. 4 shows the influence of the oxygen basis weight per one side of the steel sheet after decarburization annealing on the iron loss W 17/50 and the peel resistance of the forsterite coating.
- the oxygen basis weight is less than 0.35 g / m 2 , the absolute amount of silica in the subscale formed by decarburization annealing is too small, and the amount of forsterite film formed by finish annealing is insufficient. It is thought that it is from.
- the present invention is based on the above novel findings.
- C 0.002 to 0.10 mass%
- C is a component useful for the generation of Goss orientation crystal grains, and in order to effectively express such an action, it needs to contain 0.002 mass% or more.
- C is in the range of 0.002 to 0.10 mass%.
- it is in the range of 0.01 to 0.08 mass%.
- Si 2.5-6.0 mass%
- Si is an element necessary for increasing the specific resistance of steel and reducing iron loss. However, if the amount is less than 2.5 mass%, the above effect is not sufficient. On the other hand, if it exceeds 6.0 mass%, the workability of the steel is low. Deteriorates and it becomes difficult to roll. Therefore, Si is set in the range of 2.5 to 6.0 mass%. Preferably, it is in the range of 2.9 to 5.0 mass%.
- Mn 0.01 to 0.8 mass%
- Mn is an element necessary for improving the hot workability. However, if it is less than 0.01 mass%, the above effect cannot be sufficiently obtained. On the other hand, if it exceeds 0.8 mass%, the secondary recrystallization is performed. The magnetic flux density is reduced. Therefore, Mn is in the range of 0.01 to 0.8 mass%. Preferably, it is in the range of 0.05 to 0.5 mass%.
- the steel material used in the present invention further contains, as an inhibitor forming component, Al: 0.010 to 0.050 mass% and N: 0.003 to 0.020 mass%, or S: 0.005 to 0.03 mass% and / or Se: 0.002 to 0.03 mass%, Al: 0.010 to 0.050 mass%, N: 0.003 to 0.020 mass%, S: 0.005 to 0.00. It is necessary to contain 03 mass% and / or Se: 0.002 to 0.03 mass%. When the content is less than the above lower limit, the inhibitor effect is not sufficiently obtained.On the other hand, when the content exceeds the upper limit, the solid solution temperature becomes high and remains in the solid solution even when the slab is reheated. Deteriorate.
- the steel material used in the present invention is further made to have Cr: 0.01 to 0.50 mass%, Cu: 0.01 to 0.50 mass%, and P: 0 for the purpose of reducing iron loss.
- Cr 0.01 to 0.50 mass%
- Cu 0.01 to 0.50 mass%
- P 0 for the purpose of reducing iron loss.
- Ni 0.010 to 1.50 mass%
- Sb 0.005 to 0.50 mass %
- Sn 0.005 to 0.50 mass%
- Mo 0.005 to 0.100 mass%
- B 0.0002 to 0.0025 mass%
- Nb 0.0010 to 0.010 mass%
- V 0.00.
- One or more selected from 001 to 0.010 mass% may be contained.
- the balance other than the above components is Fe and unavoidable impurities, but the content of components other than the above is not rejected as long as the effects of the present invention are not impaired.
- the steel material (slab) used in the present invention is manufactured by continuously casting a steel having the above component composition by a generally known refining process, followed by a continuous casting method or an ingot-bundling rolling method. Is preferred.
- the slab is reheated to a predetermined temperature and hot-rolled by a normal method, and the reheat temperature is set to about 1400 ° C. to dissolve the inhibitor component.
- the steel sheet after hot rolling (hot rolled sheet) is subjected to hot rolled sheet annealing in order to obtain good magnetic properties.
- the annealing temperature is preferably in the range of 800 to 1150 ° C. If it is less than 800 degreeC, the band structure
- the steel sheet after the above-described hot-rolled sheet annealing is made into a cold-rolled sheet having a final thickness by one or more cold rollings sandwiching intermediate annealing.
- the annealing temperature when the intermediate annealing is performed is preferably in the range of 900 to 1200 ° C. If it is less than 900 ° C., the recrystallized grains become finer, the Goss orientation nuclei in the primary recrystallized structure are reduced, and the magnetic properties are deteriorated. On the other hand, when it exceeds 1200 ° C., the grain size becomes too coarse as in the case of hot-rolled sheet annealing, so that it becomes difficult to obtain a primary recrystallized structure of sized particles.
- the final cold rolling to be rolled to the final plate thickness employs warm rolling performed by raising the steel plate temperature during rolling to 100 to 300 ° C, or aging in the range of 100 to 300 ° C during the cold rolling. Applying the treatment once or a plurality of times is effective in improving the primary recrystallization texture and improving the magnetic properties of the product plate.
- the cold rolled sheet rolled to the final sheet thickness is then subjected to the most important decarburization annealing in the present invention.
- the soaking temperature T2 for this decarburization annealing is preferably in the range of 820 to 900 ° C. from the viewpoint of ensuring decarburization.
- the heating rate R1 from 500 ° C. to the temperature T1 needs to be 80 ° C./s or more. Preferably it is 100 degrees C / s or more.
- the heating rate is less than 80 ° C./s, a sufficient amount of Goss orientation nuclei in the primary recrystallization texture after decarburization annealing is not generated, and the iron loss reduction effect due to the refinement of secondary recrystallized grains is sufficiently achieved. I can't get it.
- the method of rapid heating is not particularly limited as long as the above heating rate is obtained. For example, a method by induction heating or a method by current heating in which a current is supplied to a steel sheet to heat the steel sheet is a viewpoint of controllability. Is preferable.
- the temperature T1 at which rapid heating is stopped is any temperature between 700 and 800 ° C. If the temperature T1 is lower than 700 ° C, the effect of rapid heating cannot be sufficiently obtained. On the other hand, if the temperature T1 is higher than 800 ° C, poor decarburization tends to occur. Preferably, the temperature is between 700 and 760 ° C.
- the heating rate R2 from the temperature T1 to the soaking temperature T2 for decarburization annealing needs to be 15 ° C./s or less.
- the heating rate R2 may be 15 ° C./s or less.
- decarburization annealing takes a long time and is economically disadvantageous. More preferably, it is in the range of 5 to 12 ° C./s.
- the atmosphere during decarburization annealing is a wet hydrogen atmosphere from the viewpoint of decarburization and formation of an oxide layer on the steel sheet surface layer.
- the oxygen potential P H2O / P H2 of the atmosphere may be in the range of 0.2 to 0.6 as long as the decarburization property is ensured.
- the viewpoint of obtaining a good film peeling resistance therefore, the range of 0.30 to 0.55 is preferable. More preferably, it is in the range of 0.25 to 0.40.
- the oxygen basis weight per side after decarburization annealing should be 0.85 g / m 2 or less from the viewpoint of forming a dense oxide layer and preventing nitrogen from entering into the steel during finish annealing.
- the lower limit is preferably 0.35 g / m 2 .
- a more preferable oxygen basis weight per side after decarburization annealing is in the range of 0.40 to 0.60 g / m 2 .
- the soaking temperature T2 After reaching the soaking temperature T2, it is preferable to perform soaking for about 130 seconds at the temperature T2 to complete the decarburization. However, the soaking time may be changed for the purpose of adjusting the oxygen basis weight described above.
- the oxygen potential of the atmosphere during the soaking is preferably about the same as the atmosphere at the temperature T2 or lower, but may be changed for the purpose of adjusting the oxygen basis weight.
- the surface layer of the oxide film formed during the decarburization annealing is reduced to form silica SiO 2, and from the viewpoint of promoting the formation of the forsterite film in the finish annealing, the soaking process of the decarburization annealing is performed. Thereafter, it is preferable to provide reduction annealing for 5 seconds or more at a temperature of T2 or higher and 900 ° C. or lower with the oxygen potential P H2O / PH 2 of the atmosphere being a reduction region of 0.10 or lower.
- the oxygen potential P H2O / P H2 in the atmosphere of reduction annealing is more preferably 0.08 or less.
- the steel sheet after the decarburization annealing is then applied with an annealing separator mainly composed of MgO and dried, and then subjected to finish annealing to develop a secondary recrystallized structure and form a forsterite film.
- an annealing separator mainly composed of MgO and dried and then subjected to finish annealing to develop a secondary recrystallized structure and form a forsterite film.
- the finish annealing is desirably performed at 800 ° C. or higher in order to cause secondary recrystallization.
- a preferred holding temperature for secondary recrystallization is in the range of 850-950 ° C. If emphasis is placed on the punching workability and the forsterite film is not formed, it is sufficient that the secondary recrystallization is completed, so that the finish annealing can be finished as it is. Further, in order to form a forsterite film and perform a purification treatment, it is preferable to raise the temperature to about 1200 ° C. after the completion of secondary recrystallization.
- the said insulating film is a tension
- a method of applying a tension-imparting film via a binder or a method of applying an inorganic substance on a steel sheet surface by physical vapor deposition or chemical vapor deposition is adopted. A film having excellent properties and a remarkable effect of reducing iron loss can be obtained.
- a magnetic domain fragmentation treatment As a method of subdividing the magnetic domain, a linear groove or strain region is formed on the final product plate by roller processing or the like, or an electron beam, laser, plasma jet, etc. is irradiated to form a linear shape.
- the method of introducing the thermal strain region or the impact strain region, or the method of forming grooves in the surface of the cold-rolled plate rolled to the final plate thickness by etching or the like in the subsequent steps can be used.
- a sample is taken from the steel sheet after decarburization annealing, and the carbon concentration after decarburization annealing is identified by combustion-infrared absorption method, and oxygen per one side after decarburization annealing is determined by melting-infrared absorption method. The basis weight was identified.
- Table 1 shows the heating conditions in the decarburization annealing, the oxygen basis weight per side after decarburization annealing, the carbon concentration after decarburization annealing, the iron loss W 17/50 of the steel plate after finish annealing, and the forsterite coating
- the evaluation results of peel resistance are shown.
- the iron loss W 17/50 is an average value of the measured values of all test pieces collected at the coil tip, middle and tail ends , and the peel resistance is the worst value. From Table 1, in the steel sheet in which the heating conditions for decarburization annealing are compatible with the present invention, both excellent iron loss and peel resistance are obtained, and the oxygen basis weight is within the preferred range of the present invention. It can be seen that even better iron loss is obtained.
- the iron loss W 17/50 shown in Table 2 is an average value of the measured values of all the test pieces collected at the coil tip, middle and tail ends , and the peel resistance is the worst value. From Table 2, it can be seen that better iron loss characteristics and peel resistance can be obtained by performing reduction annealing under appropriate conditions after decarburization annealing.
- test pieces for 5 hours for purification treatment. gave.
- 10 pieces of test pieces each having a width of 100 mm and a length of 300 mm with the rolling direction as the length direction from the front end, the middle, and the tail end of each coil after the above finish annealing toward the plate width direction. Cut out, the iron loss W 17/50 at a magnetic flux density of 1.7 T and an excitation frequency of 50 Hz was measured according to JIS C2550, and the average value of all the test pieces was obtained.
- Table 3 the above iron loss measurement results are also shown. From Table 3, it can be seen that a grain-oriented electrical steel sheet having excellent iron loss characteristics is obtained by using a steel material having a component composition suitable for the present invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Dispersion Chemistry (AREA)
- Power Engineering (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
一方、鋼板を脱炭反応が進行する高温まで急速加熱することは、低温での脱炭を阻害するとともに、鋼板表層にシリカとファイアライトからなる緻密な酸化層が形成するのを妨げることとなり、その結果、仕上焼鈍におけるフォルステライト被膜の形成が不安定となる。
そこで、発明者らは、以下に説明する種々実験を重ねた結果、Goss方位が十分に形成される温度まで急速加熱した後に、加熱速度を落として脱炭焼鈍の均熱温度まで加熱することで、脱炭性の確保と、健全なフォルステライト被膜に必要な酸化層の形成を同時に両立させることが可能であることを見出した。
まず、発明者らは、脱炭焼鈍の加熱過程を急速加熱することによって、良好な鉄損特性が得られる条件について検討するため、以下の実験を行った。
C:0.07mass%、Si:3.0mass%、Mn:0.06mass%、Al:0.024mass%、N:0.0085mass%、S:0.02mass%およびSe:0.025mass%を含有する鋼素材(スラブ)を1400℃に再加熱した後、熱間圧延して板厚2.2mmの熱延板とし、1100℃×60秒の熱延板焼鈍を施した後、冷間圧延して板厚1.5mmとし、1120℃×80秒の中間焼鈍を施し、冷間圧延して最終板厚0.23mmの冷延板とし、この冷延板から、圧延方向を長さ方向とする、幅100mm×長さ300mmの試験片を多数切り出した。
次いで、上記試験片を酸素ポテンシャルPH2O/PH2=0.40の湿水素雰囲気中で、室温から650~770℃間の種々の温度T1まで、加熱速度R1を種々に変化して加熱した後、上記温度T1から850℃の均熱温度T2までの加熱速度を10℃/sとして加熱し、その後、同一雰囲気中で850℃×120秒の均熱処理する脱炭焼鈍を施した。
次いで、上記脱炭焼鈍後の試験片表面にMgOを主体とする焼鈍分離剤を塗布した後、二次再結晶を起こさせた後、1150℃で6時間保持して純化する仕上焼鈍を施した。
斯くして得た仕上焼鈍後の試験片について、JIS C2550に準拠して磁束密度1.7T、励磁周波数50Hzにおける鉄損W17/50を測定した。
次に、加熱途中で加熱速度を低減させた場合の脱炭性とフォルステライト被膜の耐剥離性のバランスについて検討するため、以下の実験を行った。
実験1で得た板厚0.23mmの試験片を用いて、酸素ポテンシャルPH2O/PH2=0.40の湿水素雰囲気中で、500℃から加熱速度R1を200℃/sとして種々の温度T1(ただし、700℃<T1<850℃)まで加熱した後、該温度T1から850℃の均熱温度T2までを種々の加熱速度R2で加熱し、その後、同一雰囲気中で850℃×120秒の均熱処理する脱炭焼鈍を施した。
次いで、上記脱炭焼鈍を同一条件で施した試験片のうちの1枚については、燃焼-赤外線吸収法を用いて脱炭焼鈍後の鋼板中の炭素濃度を同定し、それ以外の試験片については、脱炭焼鈍後の鋼板表面にMgOを主体とする焼鈍分離剤を塗布した後、二次再結晶を起こさせた後、1150℃で6時間保持して純化する仕上焼鈍を施した。
斯くして得た仕上焼鈍後の試験片について、JIS C2550に準拠して磁束密度1.7T、励磁周波数50Hzにおける鉄損W17/50を測定するとともに、フォルステライト被膜の耐剥離性を評価するための試験に供した。この耐剥離性試験では、耐剥離性を、10~100mmφまでの10mm単位で直径が異なる複数の円柱状の棒に、30mm幅に剪断した試験片を長手方向に巻き付けたときに、被膜剥離が生じなかった最小の直径(剥離径)で評価した。ここで、被膜剥離の発生は、被膜が剥がれ落ちたり、被膜破壊によって白色の筋が試験片表面に発生したりしたときとした。なお、脱炭性は、脱炭焼鈍後のC濃度が0.0025mass%(25massppm)以下を良好、耐剥離性は、剥離径が30mmφ以下を良好と評価した。
C:0.08mass%、Si:3.3mass%、Mn:0.07mass%、Al:0.026mass%、N:0.0085mass%、S:0.025mass%およびSe:0.03mass%を含有するスラブを1400℃に再加熱した後、熱間圧延して板厚2.2mmの熱延板とし、1100℃×60秒の熱延板焼鈍を施し、冷間圧延して板厚1.5mmとし、1120℃で80秒間の中間焼鈍を施した後、冷間圧延して最終板厚0.23mmの冷延板とし、この冷延板から、圧延方向を長さ方向とする、幅100mm×長さ300mmの試験片を多数切り出した。
次いで、上記試験片を、種々の酸素ポテンシャルPH2O/PH2に調整した湿水素雰囲気中で、500℃から温度T1(=720℃)までを加熱速度R1(=180℃/s)で加熱した後、上記温度T1から850℃の均熱温度T2までの加熱速度を8℃/sとして加熱し、その後、PH2O/PH2=0.41に調整した湿水素雰囲気中で850℃×120秒の均熱処理する脱炭焼鈍を施した。
次いで、上記脱炭焼鈍を同一条件で施した試験片のうちの1枚については、燃焼-赤外線吸収法を用いて脱炭焼鈍後の鋼板中の炭素濃度を同定し、それ以外の試験片については、脱炭焼鈍後の鋼板表面にMgOを主体とする焼鈍分離剤を塗布した後、二次再結晶を起こさせた後、1150℃で6時間保持して純化する仕上焼鈍を施した。
斯くして得た仕上焼鈍後の試験片について、実験2と同様にしてフォルステライト被膜の耐剥離性を評価した。
脱炭焼鈍の加熱過程における雰囲気の酸化性を低くした場合には、加熱過程で形成される初期酸化層の形成が遅れるため、脱炭焼鈍の高温均熱段階での鋼板の地鉄と酸化性雰囲気の反応が進行しやすくなり脱炭焼鈍後の酸素目付量が増大する。一方、加熱過程の酸化性を高くした場合には、加熱途中に緻密な酸化層が形成されるが、この緻密な酸化層は脱炭を阻害するため、脱炭焼鈍の均熱温度に達してからの地鉄の酸化は抑制されて、脱炭焼鈍後の酸素目付量は減少する。
C:0.07mass%、Si:3.4mass%、Mn:0.07mass%、Al:0.025mass%、N:0.0085mass%、S:0.025mass%およびSe:0.03mass%を含有するスラブを1400℃に再加熱した後、熱間圧延して板厚2.2mmの熱延板とし、1100℃×60秒の熱延板焼鈍を施した後、冷間圧延して板厚1.5mmとし、1120℃×80秒の中間焼鈍を施し、冷間圧延して最終板厚0.23mmの冷延板とし、この冷延板から、圧延方向を長さ方向とする、幅100mm×長さ300mmの試験片を多数切り出した。
次いで、上記試験片を、種々の酸素ポテンシャルPH2O/PH2に調整した湿水素雰囲気中で、500℃から温度T1(=710℃)までを加熱速度R1(=200℃/s)で加熱した後、上記温度T1から850℃の均熱温度T2までの加熱速度を8℃/sとして加熱し、その後、PH2O/PH2=0.41に調整した湿水素雰囲気中で850℃×120秒の均熱処理する脱炭焼鈍を施した。
次いで、上記脱炭焼鈍後の試験片から、各条件につき1枚を抜き出し、上記の方法で脱炭焼鈍後の炭素濃度を同定した。また、同じ試験片を用いて、融解-赤外線吸収法により脱炭焼鈍後の鋼板の酸素濃度を同定し、全酸素が鋼板両面の表層にそれぞれ均等に分布しているものと仮定して、片面あたりの酸素目付け量を算出した。
一方、残された試験片については、脱炭焼鈍後の鋼板表面にMgOを主体とする焼鈍分離剤を塗布した後、二次再結晶を起こさせた後、1150℃で6時間保持して純化する仕上焼鈍を施した。
斯くして得た仕上焼鈍後の試験片について、実験1と同様にして鉄損W17/50を測定するとともに、実験2と同様にしてフォルステライト被膜の耐剥離性を評価した。なお、上記鉄損値は、1条件当たり10枚測定し、その平均値を求めた。
本発明は上記の新規な知見に基づくものである。
C:0.002~0.10mass%
Cは、Goss方位結晶粒の発生に有用な成分であり、かかる作用を有効に発現させるためには、0.002mass%以上の含有を必要とする。一方、0.10mass%を超えると、脱炭焼鈍で脱炭不良を起こし、製品板が磁気時効を起こす原因となる。よって、Cは0.002~0.10mass%の範囲とする。好ましくは0.01~0.08mass%の範囲である。
Siは、鋼の比抵抗を高め、鉄損を低減させるのに必要な元素であるが、2.5mass%未満では上記効果が十分ではなく、一方、6.0mass%を超えると鋼の加工性が劣化し、圧延することが困難となる。よってSiは2.5~6.0mass%の範囲とする。好ましくは2.9~5.0mass%の範囲である。
Mnは、熱間加工性を改善するために必要な元素であるが、0.01mass%未満では、上記効果は十分に得られず、一方、0.8mass%を超えると、二次再結晶後の磁束密度が低下するようになる。よって、Mnは0.01~0.8mass%の範囲とする。好ましくは0.05~0.5mass%の範囲である。
本発明に用いる鋼素材(スラブ)は、上記成分組成を有する鋼を、通常公知の精錬プロセスで溶製した後、連続鋳造法または造塊-分塊圧延法で、連続鋳造法で製造するのが好ましい。
この脱炭焼鈍の均熱温度T2は、脱炭性を確保する観点から820~900℃の範囲とすることが好ましい。
なお、急速加熱する方法については、上記の加熱速度が得られれば、特に制限はないが、例えば、誘導加熱による方法や、鋼板に電流を流して加熱する通電加熱による方法などが制御性の観点からは好ましい。
なお、打抜加工性を重視し、フォルステライト被膜を形成させない場合には、二次再結晶が完了すれば十分であるので、そのまま仕上焼鈍を終了することも可能である。また、フォルステライト被膜を形成させ、純化処理を施すためには、二次再結晶完了後、1200℃程度まで昇温することが好ましい。
次いで、上記冷延コイルを種々の加熱条件で840℃まで加熱し、PH2O/PH2=0.40の湿水素雰囲気中で840℃×130秒の均熱処理を行う脱炭焼鈍を施した。この際、脱炭焼鈍後の鋼板からサンプルを採取し、燃焼-赤外線吸収法により、脱炭焼鈍後の炭素濃度を同定するとともに、融解-赤外線吸収法により、脱炭焼鈍後の片面あたりの酸素目付量を同定した。
次いで、上記脱炭焼鈍後の鋼板表面にMgOを主体とする焼鈍分離剤を塗布・乾燥した後、二次再結晶を完了させた後、1150℃で5時間保持して純化処理する仕上焼鈍を施した。
次いで、上記仕上焼鈍後の各コイルの長手方向先端、中間および尾端から、圧延方向を長さ方向とする、幅100mm×長さ300mmの試験片を、板幅方向に向かって各10枚ずつ切り出し、JIS C2550に準じて磁束密度1.7T、励磁周波数50Hzにおける鉄損W17/50を測定するとともに、幅30mmの試験片を直径の異なる種々の丸棒に長手方向に巻き付け、鋼板表層のフォルステライト被膜に剥離が発生しない最大径を測定し、耐剥離性(曲げ剥離性)を評価した。
次いで、上記冷延コイルをPH2O/PH2=0.39の湿水素雰囲気中で500℃から温度T1(=710℃)までの加熱速度を150℃/sとして加熱し、710℃から均熱温度T2(=840℃)までを10℃/sで加熱した。その後、PH2O/PH2=0.40の湿水素雰囲気中で、840℃×100秒間の均熱処理を行う脱炭焼鈍を施し、さらに、温度および雰囲気の酸素ポテンシャルを、表2に示したように種々に変えた還元焼鈍を施した。
次いで、上記脱炭焼鈍後の鋼板表面にMgOを主体とする焼鈍分離剤を塗布・乾燥した後、二次再結晶を完了させた後、1150℃で5時間保持して純化処理する仕上焼鈍を施した。
次いで、上記仕上焼鈍後の各コイルの長手方向先端、中間および尾端から、圧延方向を長さ方向とする、幅100mm×長さ300mmの試験片を、板幅方向に向かって各10枚ずつ切り出し、JIS C2550に準じて磁束密度1.7T、励磁周波数50Hzにおける鉄損W17/50を測定するとともに、試験片を直径の異なる種々の丸棒に長手方向に巻き付け、鋼板表層のフォルステライト被膜に剥離が発生しない最大径を測定し、耐剥離性(曲げ剥離性)を評価した。
次いで、上記冷延コイルをPH2O/PH2=0.38の湿水素雰囲気中で500℃から温度T1(=710℃)までの加熱速度を170℃/sとして加熱し、710℃から温度T2(=840℃)までを10℃/sで加熱し、その後、PH2O/PH2=0.40の湿水素雰囲気中で、840℃×120秒の均熱処理する脱炭焼鈍を施した。
次いで、上記脱炭焼鈍後の鋼板表面にMgOを主体とする焼鈍分離剤を塗布・乾燥した後、二次再結晶を完了させた後、1150℃で5時間保持して純化処理する仕上焼鈍を施した。
次いで、上記仕上焼鈍後の各コイルの長手方向先端、中間および尾端から、圧延方向を長さ方向とする、幅100mm×長さ300mmの試験片を、板幅方向に向かって各10枚ずつ切り出し、JIS C2550に準じて磁束密度1.7T、励磁周波数50Hzにおける鉄損W17/50を測定し、全試験片の平均値を求めた。
Claims (6)
- C:0.002~0.10mass%、Si:2.5~6.0mass%、Mn:0.01~0.8mass%を含有し、さらに、Al:0.010~0.050mass%およびN:0.003~0.020mass%、あるいは、S:0.005~0.03mass%および/またはSe:0.002~0.03mass%、あるいは、Al:0.010~0.050mass%、N:0.003~0.020mass%、S:0.005~0.03mass%および/またはSe:0.002~0.03mass%を含有し、
残部がFeおよび不可避的不純物からなる成分組成を有するスラブを熱間圧延し、熱延板焼鈍し、1回または中間焼鈍を挟む2回以上の冷間圧延し、脱炭焼鈍して鋼板表面にサブスケールを形成した後、該鋼板表面にMgOを主体とする焼鈍分離剤を塗布し、仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
上記脱炭焼鈍の加熱過程における700~800℃間のいずれかの温度をT1、820~900℃間のいずれかの温度に設定された均熱温度をT2としたとき、500~T1間の昇温速度R1を80℃/s以上、T1~T2間の昇温速度R2を15℃/s以下として加熱することを特徴とする方向性電磁鋼板の製造方法。 - 上記脱炭焼鈍の均熱温度T2に至るまでの雰囲気の酸素ポテンシャルPH2O/PH2を0.30~0.55の範囲とすることを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
- 上記脱炭焼鈍の均熱温度T2に到達してから800℃以下に冷却されるまでの間に、均熱温度T2以上900℃以下でかつ雰囲気の酸素ポテンシャルPH2O/PH2が0.10以下である時間を5秒以上設けることを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。
- 上記脱炭焼鈍後の鋼板表面の酸素目付量を片面あたり0.35~0.85g/m2とすることを特徴とする請求項1~3のいずれか1項に記載の方向性電磁鋼板の製造方法。
- 上記スラブは、上記成分組成に加えてさらに、Cr:0.01~0.50mass%、Cu:0.01~0.50mass%、P:0.005~0.50mass%、Ni:0.01~1.50mass%、Sb:0.005~0.50mass%、Sn:0.005~0.50mass%、Mo:0.005~0.100mass%、B:0.0002~0.0025mass%、Nb:0.0010~0.0100mass%およびV:0.001~0.01mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1~4のいずれか1項に記載の方向性電磁鋼板の製造方法。
- 上記冷間圧延以降のいずれかの工程において、鋼板表面に磁区細分化処理を施すことを特徴とする請求項1~5のいずれか1項に記載の方向性電磁鋼板の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020167030086A KR20160138253A (ko) | 2014-05-12 | 2015-05-11 | 방향성 전기 강판의 제조 방법 |
JP2015552311A JP6103281B2 (ja) | 2014-05-12 | 2015-05-11 | 方向性電磁鋼板の製造方法 |
EP15792135.4A EP3144399B1 (en) | 2014-05-12 | 2015-05-11 | Method for producing grain-oriented electrical steel sheet |
BR112016026571-8A BR112016026571B1 (pt) | 2014-05-12 | 2015-05-11 | Método para produção de chapa de aço elétrica orientada a grão |
CN201580024474.2A CN106460085B (zh) | 2014-05-12 | 2015-05-11 | 取向性电磁钢板的制造方法 |
US15/311,026 US10294544B2 (en) | 2014-05-12 | 2015-05-11 | Method for producing grain-oriented electrical steel sheet |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-098308 | 2014-05-12 | ||
JP2014098308 | 2014-05-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015174362A1 true WO2015174362A1 (ja) | 2015-11-19 |
Family
ID=54479901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/063445 WO2015174362A1 (ja) | 2014-05-12 | 2015-05-11 | 方向性電磁鋼板の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10294544B2 (ja) |
EP (1) | EP3144399B1 (ja) |
JP (1) | JP6103281B2 (ja) |
KR (1) | KR20160138253A (ja) |
CN (1) | CN106460085B (ja) |
BR (1) | BR112016026571B1 (ja) |
WO (1) | WO2015174362A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3561103A4 (en) * | 2016-12-22 | 2019-11-20 | Posco | ORIENTED GRAIN STEEL MAGNETIC SHEET AND METHOD OF MANUFACTURING THE SAME |
JP2021138984A (ja) * | 2020-03-03 | 2021-09-16 | Jfeスチール株式会社 | 方向性電磁鋼板の製造方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10294543B2 (en) | 2014-05-12 | 2019-05-21 | Jfe Steel Corporation | Method for producing grain-oriented electrical steel sheet |
KR102080169B1 (ko) * | 2017-12-26 | 2020-02-21 | 주식회사 포스코 | 방향성 전기강판 및 방향성 전기강판의 제조 방법 |
KR102164329B1 (ko) * | 2018-12-19 | 2020-10-12 | 주식회사 포스코 | 방향성의 전기강판 및 그 제조 방법 |
US11634787B2 (en) | 2019-01-08 | 2023-04-25 | Nippon Steel Corporation | Grain-oriented electrical steel sheet, annealing separator, and method for manufacturing grain-oriented electrical steel sheet |
EP3913078A4 (en) * | 2019-01-16 | 2022-10-12 | Nippon Steel Corporation | PROCESS FOR PRODUCTION OF UNIDIRECTIONAL ELECTROMAGNETIC STEEL SHEET |
DE102019203463A1 (de) * | 2019-03-14 | 2020-09-17 | Robert Bosch Gmbh | Verfahren zum Herstellen eines innendruckbeaufschlagten Bauteils |
WO2021156960A1 (ja) * | 2020-02-05 | 2021-08-12 | 日本製鉄株式会社 | 方向性電磁鋼板 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000144249A (ja) * | 1998-11-10 | 2000-05-26 | Kawasaki Steel Corp | 被膜特性および磁気特性に優れる方向性けい素鋼板の製造方法 |
JP2008001977A (ja) * | 2006-05-24 | 2008-01-10 | Nippon Steel Corp | 方向性電磁鋼板の製造方法 |
WO2010029921A1 (ja) * | 2008-09-10 | 2010-03-18 | 新日本製鐵株式会社 | 方向性電磁鋼板の製造方法 |
WO2013058239A1 (ja) * | 2011-10-20 | 2013-04-25 | Jfeスチール株式会社 | 方向性電磁鋼板およびその製造方法 |
JP2013189712A (ja) * | 2006-05-24 | 2013-09-26 | Nippon Steel & Sumitomo Metal Corp | 磁束密度の高い方向性電磁鋼板の製造方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2579717B2 (ja) | 1992-07-13 | 1997-02-12 | 新日本製鐵株式会社 | 磁束密度と皮膜密着性が優れた方向性電磁鋼板の脱炭焼鈍方法 |
JPH06172862A (ja) | 1992-12-03 | 1994-06-21 | Nippon Steel Corp | 高磁束密度一方向性電磁鋼板の製造方法 |
JP2983128B2 (ja) | 1993-08-24 | 1999-11-29 | 新日本製鐵株式会社 | 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法 |
JP2679928B2 (ja) | 1993-01-12 | 1997-11-19 | 新日本製鐵株式会社 | 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法 |
JP2653638B2 (ja) | 1994-04-05 | 1997-09-17 | 新日本製鐵株式会社 | 鉄損の低い方向性電磁鋼板の製造方法 |
JP3220362B2 (ja) | 1995-09-07 | 2001-10-22 | 川崎製鉄株式会社 | 方向性けい素鋼板の製造方法 |
JP3392669B2 (ja) | 1996-11-22 | 2003-03-31 | 新日本製鐵株式会社 | 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法 |
EP0987343B1 (en) | 1998-09-18 | 2003-12-17 | JFE Steel Corporation | Grain-oriented silicon steel sheet and process for production thereof |
JP2002348613A (ja) | 2001-05-24 | 2002-12-04 | Nippon Steel Corp | 脱炭焼鈍を必要としない打ち抜き性の優れた一方向性電磁鋼板の製造方法 |
JP4823719B2 (ja) | 2006-03-07 | 2011-11-24 | 新日本製鐵株式会社 | 磁気特性が極めて優れた方向性電磁鋼板の製造方法 |
JP5068579B2 (ja) | 2006-05-24 | 2012-11-07 | 新日本製鐵株式会社 | 高磁束密度方向性電磁鋼板の製造方法 |
JP5780013B2 (ja) | 2011-06-28 | 2015-09-16 | Jfeスチール株式会社 | 無方向性電磁鋼板の製造方法 |
JP5434999B2 (ja) | 2011-09-16 | 2014-03-05 | Jfeスチール株式会社 | 鉄損特性に優れる方向性電磁鋼板の製造方法 |
JP5892327B2 (ja) | 2012-03-15 | 2016-03-23 | Jfeスチール株式会社 | 無方向性電磁鋼板の製造方法 |
RU2600463C1 (ru) * | 2012-09-27 | 2016-10-20 | ДжФЕ СТИЛ КОРПОРЕЙШН | Способ изготовления листа из текстурированной электротехнической стали |
JP5871137B2 (ja) | 2012-12-12 | 2016-03-01 | Jfeスチール株式会社 | 方向性電磁鋼板 |
-
2015
- 2015-05-11 EP EP15792135.4A patent/EP3144399B1/en active Active
- 2015-05-11 US US15/311,026 patent/US10294544B2/en active Active
- 2015-05-11 BR BR112016026571-8A patent/BR112016026571B1/pt active IP Right Grant
- 2015-05-11 WO PCT/JP2015/063445 patent/WO2015174362A1/ja active Application Filing
- 2015-05-11 CN CN201580024474.2A patent/CN106460085B/zh active Active
- 2015-05-11 JP JP2015552311A patent/JP6103281B2/ja active Active
- 2015-05-11 KR KR1020167030086A patent/KR20160138253A/ko not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000144249A (ja) * | 1998-11-10 | 2000-05-26 | Kawasaki Steel Corp | 被膜特性および磁気特性に優れる方向性けい素鋼板の製造方法 |
JP2008001977A (ja) * | 2006-05-24 | 2008-01-10 | Nippon Steel Corp | 方向性電磁鋼板の製造方法 |
JP2013189712A (ja) * | 2006-05-24 | 2013-09-26 | Nippon Steel & Sumitomo Metal Corp | 磁束密度の高い方向性電磁鋼板の製造方法 |
WO2010029921A1 (ja) * | 2008-09-10 | 2010-03-18 | 新日本製鐵株式会社 | 方向性電磁鋼板の製造方法 |
WO2013058239A1 (ja) * | 2011-10-20 | 2013-04-25 | Jfeスチール株式会社 | 方向性電磁鋼板およびその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3144399A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3561103A4 (en) * | 2016-12-22 | 2019-11-20 | Posco | ORIENTED GRAIN STEEL MAGNETIC SHEET AND METHOD OF MANUFACTURING THE SAME |
JP2020508391A (ja) * | 2016-12-22 | 2020-03-19 | ポスコPosco | 方向性電磁鋼板およびその製造方法 |
JP7068312B2 (ja) | 2016-12-22 | 2022-05-16 | ポスコ | 方向性電磁鋼板およびその製造方法 |
JP2021138984A (ja) * | 2020-03-03 | 2021-09-16 | Jfeスチール株式会社 | 方向性電磁鋼板の製造方法 |
JP7338511B2 (ja) | 2020-03-03 | 2023-09-05 | Jfeスチール株式会社 | 方向性電磁鋼板の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015174362A1 (ja) | 2017-04-20 |
KR20160138253A (ko) | 2016-12-02 |
BR112016026571B1 (pt) | 2021-03-30 |
BR112016026571A2 (pt) | 2017-08-15 |
US20170081740A1 (en) | 2017-03-23 |
EP3144399A4 (en) | 2017-05-10 |
CN106460085A (zh) | 2017-02-22 |
EP3144399A1 (en) | 2017-03-22 |
EP3144399B1 (en) | 2019-09-04 |
JP6103281B2 (ja) | 2017-03-29 |
CN106460085B (zh) | 2019-07-02 |
US10294544B2 (en) | 2019-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6057108B2 (ja) | 方向性電磁鋼板の製造方法 | |
JP6103281B2 (ja) | 方向性電磁鋼板の製造方法 | |
EP2878687B1 (en) | Method for producing grain-oriented electrical steel sheet | |
EP2957644B1 (en) | Method for producing grain-oriented electrical steel sheet | |
KR102071321B1 (ko) | 방향성 전자 강판과 그의 제조 방법 | |
JP5737483B2 (ja) | 方向性電磁鋼板の製造方法 | |
JP6191826B2 (ja) | 磁気特性に優れる方向性電磁鋼板の製造方法 | |
WO2016067636A1 (ja) | 方向性電磁鋼板の製造方法 | |
JP6112050B2 (ja) | 方向性電磁鋼板の製造方法 | |
JP2015200002A (ja) | 方向性電磁鋼板の製造方法 | |
JP6004183B2 (ja) | 方向性電磁鋼板の製造方法 | |
JP6206633B2 (ja) | 方向性電磁鋼板の製造方法 | |
JP6143010B2 (ja) | 鉄損特性に優れる方向性電磁鋼板の製造方法 | |
JP5846390B2 (ja) | 方向性電磁鋼板の製造方法 | |
JP5310510B2 (ja) | 方向性電磁鋼板の製造方法 | |
JP2018087366A (ja) | 方向性電磁鋼板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015552311 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15792135 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2015792135 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015792135 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20167030086 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15311026 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016026571 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112016026571 Country of ref document: BR Kind code of ref document: A2 Effective date: 20161111 |