WO2015174308A1 - 光学反射フィルム、その製造方法およびそれを用いる光学反射体 - Google Patents

光学反射フィルム、その製造方法およびそれを用いる光学反射体 Download PDF

Info

Publication number
WO2015174308A1
WO2015174308A1 PCT/JP2015/063148 JP2015063148W WO2015174308A1 WO 2015174308 A1 WO2015174308 A1 WO 2015174308A1 JP 2015063148 W JP2015063148 W JP 2015063148W WO 2015174308 A1 WO2015174308 A1 WO 2015174308A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
index layer
titanium oxide
high refractive
layer
Prior art date
Application number
PCT/JP2015/063148
Other languages
English (en)
French (fr)
Inventor
晃純 木村
彰宏 浅野
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016519219A priority Critical patent/JPWO2015174308A1/ja
Publication of WO2015174308A1 publication Critical patent/WO2015174308A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Definitions

  • the present invention relates to an optical reflective film, a method for producing the same, and an optical reflector using the same. More specifically, the present invention relates to an optical reflective film having a higher color tone fluctuation suppressing effect and a method for producing the same.
  • the infrared shielding film there is a method in which a laminated film in which a high refractive index layer and a low refractive index layer are alternately laminated is produced by a vapor deposition method such as vapor deposition or sputtering.
  • a vapor deposition method such as vapor deposition or sputtering.
  • the vapor deposition method has problems such as high manufacturing cost, difficulty in increasing the area, and limitation to heat-resistant materials.
  • the optical reflection film formed of the coating liquid containing metal oxide fine particles may change color (change the color tone) when exposed to sunlight for a long time.
  • metal oxide fine particles mainly titanium oxide
  • a phosphoric acid group is coordinated to the surface of titanium oxide particles to form titanium oxide.
  • JP-A-2006-124267 a phosphoric acid group is coordinated to the surface of titanium oxide particles to form titanium oxide.
  • JP-A-2006-124267 There has been proposed a technique of forming a composite particle of a phosphoric acid compound and manufacturing a film using a coating agent containing the composite particle and a resin.
  • JP-A-2006-124267 coloring by light irradiation can be suppressed by applying composite particles of titanium oxide and a phosphoric acid compound together with a resin to produce an optical reflection film.
  • the present inventors have a problem that even with the technique of Japanese Patent Application Laid-Open No. 2006-124267, the color tone of the optical reflection film fluctuates when exposed to strong sunlight for a long time. I found it.
  • the optical reflective film may be cracked when exposed to sunlight for a long time, a technique capable of improving durability is required.
  • an object of the present invention is made in view of the above circumstances, and is to provide a novel technique capable of suppressing color tone fluctuation of an optical reflection film even when exposed to strong sunlight for a long time.
  • Another object of the present invention is to provide a novel technique capable of improving the durability of the optical reflection film.
  • the present inventors have intensively studied in view of the above problems.
  • the above problem is solved by adopting a configuration in which the high refractive index layer includes a resin, titanium oxide, and a specific compound.
  • the present invention has been completed.
  • the above object is an optical reflective film including at least one unit in which a low refractive index layer and a high refractive index layer are laminated on a base material, wherein the high refractive index layer includes a resin, titanium oxide, and the like. And a compound having a phosphonic acid group or a phosphoric acid group.
  • the inventors of the present invention have intensively studied to solve the above problems. As a result, the present inventors have found that the high refractive index layer containing a resin and titanium oxide further improves the effect of suppressing color tone variation by containing a specific compound.
  • An optical reflective film comprising at least one unit obtained by laminating a low refractive index layer and a high refractive index layer on a substrate, wherein the high refractive index layer comprises a resin, titanium oxide, phosphonic acid group or phosphorus
  • An optical reflective film comprising a compound having an acid group; 2.
  • the phosphonic acid group or the compound having a phosphoric acid group is selected from the group consisting of phosphoric acid, phytic acid, and phosphonobutanetricarboxylic acid.
  • the compound having a phosphonic acid group or a phosphoric acid group is contained in an amount of 0.1 to 15% by mass with respect to the titanium oxide. Or 2.
  • the titanium oxide is silica-modified. ⁇ 3.
  • the titanium oxide includes rutile-type titanium oxide.
  • a method for producing an optical reflective film comprising at least one unit in which a low refractive index layer and a high refractive index layer are laminated on a substrate, Applying an application liquid prepared by adding a resin, titanium oxide, and a compound having a phosphonic acid group or a phosphoric acid group; 7). Above 1. ⁇ 5.
  • the optical reflective film according to the present invention has a structure in which a low refractive index layer and a high refractive index layer are laminated.
  • a composite particle of titanium oxide (titanium dioxide particles) and a phosphoric acid compound is applied together with a resin using the technique of Japanese Patent Application Laid-Open No. 2006-124267, an optical reflective film can be produced. It has been found that there is a problem that the color tone of the optical reflection film fluctuates when exposed to sunlight for a long time.
  • the present inventors have conducted the following studies for the purpose of suppressing color tone fluctuation of the optical reflection film.
  • the inventors of the present invention first focused on coloring due to decomposition of the resin contained in the high refractive index layer as one of the causes of the change in the color tone of the optical reflection film.
  • Japanese Patent Application Laid-Open No. 2006-124267 when a composite particle obtained by coordinating a phosphoric acid compound on a titanium oxide (titanium dioxide particle) surface and a resin were applied together and coated on a film, no color was observed. However, this is presumed to be due to the effect of suppressing discoloration of the resin itself. That is, when an optical reflective film having a high refractive index layer containing titanium oxide and a resin is exposed to sunlight, the resin is decomposed and discolored by the photocatalytic action of titanium oxide.
  • the present inventors have further investigated the cause of fluctuations in the color tone of the optical reflection film even with the technique of the above-mentioned Japanese Patent Application Laid-Open No. 2006-124267.
  • Japanese Patent Application Laid-Open No. 2006-124267 it is considered that blue coloration of titanium oxide can be somewhat suppressed by using composite particles in which a phosphate compound is coordinated on the surface of titanium oxide.
  • the present inventors have found that when the optical reflection film is exposed to strong sunlight for a long time, the optical reflection film according to the technique of Japanese Patent Application Laid-Open No. 2006-124267 is colored. It was thought that such a coloration (blueening) of titanium oxide became more prominent when exposed to light for a long time, and as a result, the color tone of the film was changed.
  • the anti-coloring effect of the titanium oxide can be explained by the following mechanism.
  • the present invention by adding a compound having a phosphonic acid group or a phosphoric acid group, the reduced portion of titanium oxide is oxidized (that is, returned to the original structure of titanium oxide), and bluening is not caused. Presumed to be suppressed.
  • a condensed phosphate such as sodium pyrophosphate, that is, a salt compound (ionic compound) as a phosphate compound to be coordinated with titanium oxide.
  • the counter ions for example, sodium ions
  • the oxidation reaction that is, the reaction for returning the blue-colored titanium oxide to the original titanium oxide structure. It is presumed that the coloration inhibiting effect of titanium oxide cannot be sufficiently obtained.
  • the compound having a phosphonic acid group or a phosphoric acid group in the present invention is considered to have a high effect of suppressing the bluening of titanium oxide because it does not inhibit the oxidation reaction as described above.
  • the optical reflective film of the present invention is also excellent in terms of durability. This is presumably because, as described above, the addition of the compound having a phosphonic acid group or a phosphoric acid group suppresses decomposition of the resin and coloring of the titanium oxide caused by the photocatalytic action of titanium oxide. .
  • the durability is improved by suppressing the decomposition of the resin, but the relationship between the suppression of coloring of titanium oxide and the effect of improving the durability will be outlined.
  • the state in which titanium oxide is blue (colored) is a state in which light in the near-infrared region is absorbed (complementary color relationship).
  • the high refractive index layer containing titanium oxide accumulates heat and becomes high temperature, and as a result, the resin deteriorates.
  • the resin deteriorates.
  • a high refractive index does not become high temperature, and deterioration of the resin can be effectively suppressed. Conceivable.
  • a compound having a counter ion for example, a metal ion such as sodium ion
  • cracking due to internal stress of the high refractive index layer is likely to occur. According to the present invention, it is presumed that durability is improved as a result of the reduction of such internal stress.
  • the optical reflective film of the present invention by containing a compound having a phosphonic acid group or a phosphoric acid group together with titanium oxide in the high refractive index layer, color tone fluctuation is suppressed even when exposed to strong sunlight for a long time. Moreover, the optical reflective film of this invention is excellent also in durability by taking the said structure.
  • the optical reflective film of the present invention can suppress the variation of the color tone by the above mechanism and further exhibits the effect of excellent durability.
  • the mechanism for exerting the action effect by the configuration of the present invention described above is speculation, and the present invention is not limited by the above speculation.
  • X to Y indicating a range means “X or more and Y or less”. Unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
  • the optical reflective film according to the present invention includes at least one unit in which a low refractive index layer and a high refractive index layer are laminated on a substrate.
  • the terms “high refractive index layer” and “low refractive index layer” refer to the refractive index layer having a higher refractive index when the refractive index difference between two adjacent layers is compared. This means that the lower refractive index layer is the lower refractive index layer. Therefore, the terms “high refractive index layer” and “low refractive index layer” are the same when each refractive index layer constituting the optical reflective film is focused on two adjacent refractive index layers. All forms other than those having a refractive index are included.
  • a portion where a plurality of units each including a low refractive index layer and a high refractive index layer are stacked may be simply referred to as an “optical reflection layer” or “reflection layer”.
  • the optical reflection film preferably includes a base material and an optical reflection layer in this order, and the optical reflection layer is preferably disposed on a surface on which light is incident. Furthermore, the optical reflection layer may be disposed adjacent to the base material, or another layer may be interposed between the base material and the optical reflection layer.
  • the optical reflective film of the present invention is characterized in that the high refractive index layer constituting the optical reflective layer contains a resin, titanium oxide, and a compound having a phosphonic acid group or a phosphoric acid group.
  • the high refractive index layer constituting the optical reflective layer contains a resin, titanium oxide, and a compound having a phosphonic acid group or a phosphoric acid group.
  • O OH
  • O OH
  • OP ⁇ O
  • coloration inhibiting compound a compound containing a phosphate group (—OP ( ⁇ O) (OH) 2 )
  • the phosphonic acid group and the phosphoric acid group are substantially the same as those in which a part of the hydroxy group is in the form of a salt (eg, —O ⁇ Na + , —O ⁇ K + , —O ⁇ NH 4 + ).
  • a salt eg, —O ⁇ Na + , —O ⁇ K + , —O ⁇ NH 4 + .
  • examples of counter ions that can be contained include alkali metals (for example, Na, K, etc.), alkaline earth metals (for example, Ca, etc.), beryllium. , A cation derived from magnesium or aluminum, a quaternary ammonium cation, and the like.
  • the coloring suppression compound contained in the high refractive index layer excludes those that are ionic compounds derived from the substituent.
  • the high refractive index layer is “substantially free” from a part of the phosphonic acid group or the hydroxy group of the phosphoric acid group being in the form of a salt. It means that it is present at 0.1% by mass or less based on the total solid content of the rate layer.
  • the content of phosphonate and phosphate with respect to the total solid content of the high refractive index layer is preferably as small as possible, preferably less than 0.1% by mass, and more preferably less than 0.05% by mass.
  • the lower limit is not particularly limited, and it is preferably as small as possible (that is, 0% by weight). However, from the viewpoint of the production process, it is more than 0% by weight and preferably 0.001% by weight or more.
  • a high refractive index layer does not contain the salt compound (ionic compound) originating in a phosphonic acid group or a phosphoric acid group. That is, in the present invention, the amount of the ionic compound in the high refractive index layer can be determined based on the particle size by a method (STEM-EDX) combining scanning transmission electron microscope and energy dispersive X-ray spectroscopic analysis. it can. For example, the composition distribution measurement between particles using STEM-EDX is specifically performed by the following procedure.
  • a cross-section flake of the optical reflection layer is prepared by an ultramicrotome, collected on a microgrid, and used as a sample.
  • the thickness of the ultrathin section is preferably 100 nm or less, and in the present invention, an ultrathin section having a thickness of 80 nm is prepared.
  • Measurement is performed using a transmission electron microscope (JEM2010F manufactured by JEOL) and an energy dispersive X-ray spectroscopic analyzer (a PIONEER detector and a VANTAGE digital microanalysis system manufactured by NORAN).
  • the accelerating voltage of the transmission electron microscope is preferably 200 kV, and the magnification can be adjusted as appropriate. In this invention, it measures by 50,000 times.
  • the resolution of the element map can be adjusted as appropriate, but is set to 256 ⁇ 256 pixels or more.
  • the measurement time is integrated until the X-ray peak of the minor component element reaches 200 counts or more.
  • the elemental composition in the high refractive index layer can be calculated using the X-ray intensity and the sensitivity coefficient previously obtained from the standard sample.
  • the high refractive index layer is substantially free of the phosphoric acid compound in the form of a salt, and is contained in the high refractive index layer by including the phosphonic acid group or the compound containing the phosphoric acid group. Since it is possible to suppress bluening of titanium oxide, discoloration of the resin, and further reduce haze, the optical reflection film according to the present invention suppresses color tone fluctuations even when exposed to strong sunlight for a long time. . Furthermore, the deterioration of the resin contained in the high refractive index layer is also effectively suppressed by including the coloring suppression compound.
  • the coloring suppression compound contained in the high refractive index layer contains at least one phosphonic acid group (—P ( ⁇ O) (OH) 2 ) or phosphoric acid group (—O—P ( ⁇ O) (OH) 2 ).
  • these substituents may be one in one compound or two or more.
  • both of these substituents may be contained in one compound.
  • the upper limit of the number of these substituents is not particularly limited, but is substantially about 10 in one compound.
  • the compound used as the compound having the substituent includes at least a phosphonic acid group (—P ( ⁇ O) (OH) 2 ) or a phosphoric acid group (—OP ( ⁇ O) (OH) 2 ),
  • Other structures are not particularly limited, but are preferably a hydrogen atom, a hydroxyl group, an aliphatic group having 1 to 20 carbon atoms, or an aromatic organic group having 6 to 20 carbon atoms.
  • the aliphatic organic group may be cyclic, linear or branched.
  • the valence of the organic group varies depending on the number of phosphonic acid groups or phosphoric acid groups contained in the compound. For example, when two phosphonic acid groups are included, the organic group is divalent.
  • the coloring suppression compound has a molecular weight including a phosphonic acid group or a phosphoric acid group (that is, an overall molecular weight) of preferably 80 to 1200, more preferably 90 to 800, and 95 to 700. And particularly preferred.
  • the high refractive index layer is preferably formed by coating. However, when the molecular weight of the coloring suppression compound is within the above range, the high refractive index layer is easily dispersed (or dissolved) in various solvents. . As a result, aggregation in the coating solution is suppressed, a more uniform coating solution can be prepared, and the optical characteristics of the high refractive index layer can be improved.
  • the molecular weight of the said coloring suppression compound can be measured by mass spectrometry by an electron ionization method.
  • phosphoric acid aliphatic phosphonic acid compounds having an aliphatic organic group having a carbon number of 1 ⁇ 20
  • an aromatic phosphonic acid compound R 2 ⁇ - Phosphonic acid compounds such as P ( ⁇ O) (OH) 2 ⁇ n
  • R 2 is an aromatic organic group having 6 to 20 carbon atoms with a valence of n, and n represents an integer of 1 to 10)
  • An aliphatic phosphate compound having an organic group having 1 to 20 carbon atoms R 3 ⁇ —O—P ( ⁇ O) (OH) 2 ⁇ p
  • R 3 has 1 to 20 is an aliphatic organic group, and p represents an integer of 1 to 10
  • an aromatic phosphorylated compound having an organic group of 6 to 20 carbon carbon number of 1 ⁇ 20
  • R 4 is an aliphatic organic group having 6 to 20 carbon atoms is a valence of q, q is an integer from 1 to 10
  • a phosphoric acid compound such as
  • the coloring suppression compound includes phosphoric acid (compound of the following chemical formula 1; molecular weight 98), phytic acid (compound of the following chemical formula 2; 660), phosphonobutanetricarboxylic acid (abbreviated as “PBTC”).
  • PBTC phosphonobutanetricarboxylic acid
  • the compound having a phosphonic acid group or a phosphoric acid group is preferably selected from the group consisting of phosphoric acid, phytic acid, and phosphonobutanetricarboxylic acid.
  • the content of the coloring suppression compound in the high refractive index layer is not particularly limited as long as the effect of the present invention is exhibited, but is 0.1 to 30% by mass with respect to the total solid content of the high refractive index layer. It is preferably 0.2 to 20% by mass, more preferably 0.3 to 15% by mass. If it is 0.1 mass% or more, the effect as a coloring suppression compound can fully be exhibited, and it is economically advantageous. On the other hand, by setting the content to 30% by mass or less, a uniform coating solution can be prepared at the time of preparing the high refractive index layer coating solution, and as a result, the optical characteristics and color tone of the high refractive index layer are extremely good.
  • the content of the coloring suppression compound is not particularly limited as long as the effect of the present invention is exhibited, but is preferably 0.01 to 30% by mass with respect to the total amount of titanium oxide contained in the high refractive index layer. 0.1 to 20% by mass is more preferable, and 0.1 to 15% by mass is even more preferable.
  • the effect as a coloring suppression compound can fully be exhibited as it is 0.01 mass% or more with respect to the whole quantity of a titanium oxide.
  • the amount to 30% by mass or less since the coloring of the resin contained in the titanium oxide and the high refractive index layer can be suppressed without adding an excessive amount of the coloring suppression compound, the haze is effectively reduced. It is suppressed.
  • the optical characteristics and color tone of the high refractive index layer are extremely good.
  • titanium oxide coated with a silicon-containing hydrated oxide is used as the titanium oxide particles, coloring suppression with respect to the amount of titanium oxide excluding the coated silicon-containing hydrated oxide is used.
  • the content of the compound is preferably in the above range.
  • the content of the coloring suppression compound is preferably 3 to 15% by mass with respect to the total amount of titanium oxide contained in the high refractive index layer. 9 to 15% by mass is more preferable.
  • the content of the coloring suppression compound is preferably 0.01 to 10% by mass with respect to the total amount of titanium oxide contained in the high refractive index layer. More preferably, the content is 0.01 to 9% by mass.
  • the coloring suppression compound according to the present invention does not substantially contain a phosphonic acid group and a part of the hydroxy group in the phosphoric acid group in the form of a salt. Therefore, in the high refractive index layer, the counter ion (alkali metal or the like) that can be included when the coloring suppression compound is in the form of a salt is very small relative to titanium oxide. Specifically, these counter ions are preferably less than 0.01% by mass and more preferably less than 0.001% by mass with respect to the total amount of titanium oxide. By setting it to less than 0.01% by mass, the haze of the optical reflection layer can be effectively reduced.
  • the high refractive index layer contains a resin as a binder together with the compound having the phosphonic acid group or the phosphoric acid group.
  • the low refractive index layer preferably contains a resin.
  • the resin contained in the high refractive index layer and the low refractive index layer will be described.
  • the resin contained in the high refractive index layer may be the same as or different from the resin contained in the low refractive index layer.
  • the resin used in the high refractive index layer and the low refractive index layer is not particularly limited, and specific examples include water-soluble resins, silicone resins, olefin resins, vinyl chloride resins, and fluorine-containing polymers. .
  • resin which comprises a high refractive index layer and a low refractive index layer it is preferable to use water-soluble resin.
  • the solvent of the water-soluble polymer is water, there is an advantage that it does not cause corrosion, dissolution, or penetration into the base material described later.
  • the water-soluble resin has high flexibility, the durability of the optical reflection layer at the time of bending is improved, which is preferable.
  • the water-soluble resin suitably used in the optical reflection film of the present invention will be described.
  • the water-soluble resin used in the high-refractive index layer and the low-refractive index layer is not particularly limited, but synthetic water-soluble resins such as polyvinyl alcohols and polyvinyl pyrrolidones; natural such as gelatin and thickening polysaccharides Examples include water-soluble resins.
  • synthetic water-soluble resins such as polyvinyl alcohols and polyvinyl pyrrolidones; natural such as gelatin and thickening polysaccharides
  • water-soluble resins it is preferable to use polyvinyl alcohols from the viewpoint of low oxygen permeability and suppressing the photocatalytic action of titanium oxide contained in the high refractive index layer.
  • Polyvinyl alcohols include, in addition to ordinary polyvinyl alcohol obtained by hydrolysis of polyvinyl acetate, cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol having an anionic group such as a carboxyl group, nonionic group Also included are modified polyvinyl alcohols such as nonionic modified polyvinyl alcohol having a silyl group and silyl modified polyvinyl alcohol having a silyl group.
  • Polyvinyl alcohol obtained by hydrolysis of polyvinyl acetate preferably has an average degree of polymerization of 200 or more, more preferably 1,000 or more, and an average degree of polymerization of 1,500 to 5,000. Those having a molecular weight of 2,000 to 5,000 are particularly preferred. This is because when the polymerization degree of polyvinyl alcohol is 200 or more, the coating film does not crack, and when it is 5,000 or less, the coating solution is stabilized. In addition, that the coating solution is stable means that the coating solution is stabilized over time. The same applies hereinafter.
  • the saponification degree is preferably 70 to 100%, more preferably 80 to 99.5% in view of solubility in water.
  • Examples of the cation-modified polyvinyl alcohol include primary to tertiary amino groups and quaternary ammonium groups in the main chain or side chain of the polyvinyl alcohol as described in, for example, JP-A-61-110483. It is obtained by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
  • Examples of the ethylenically unsaturated monomer having a cationic group include trimethyl- (2-acrylamido-2,2-dimethylethyl) ammonium chloride and trimethyl- (3-acrylamido-3,3-dimethylpropyl) ammonium chloride.
  • the ratio of the cation-modified group-containing monomer in the cation-modified polyvinyl alcohol is 0.1 to 10 mol%, preferably 0.2 to 5 mol%, relative to vinyl acetate.
  • Anion-modified polyvinyl alcohol is described in, for example, polyvinyl alcohol having an anionic group as described in JP-A-1-206088, JP-A-61-237681 and JP-A-63-307979.
  • examples thereof include a copolymer of vinyl alcohol and a vinyl compound having a water-soluble group, and a modified polyvinyl alcohol having a water-soluble group as described in JP-A-7-285265.
  • Nonionic modified polyvinyl alcohol includes, for example, a polyvinyl alcohol derivative in which a polyalkylene oxide group is added to a part of vinyl alcohol as described in JP-A-7-9758, and JP-A-8-25795.
  • Block copolymer of vinyl compound having a hydrophobic group and vinyl alcohol, silanol-modified polyvinyl alcohol having silanol group, reactive group modification having reactive group such as acetoacetyl group, carbonyl group, carboxyl group Polyvinyl alcohol etc. are mentioned.
  • polyvinyl alcohols may be used alone or in combination of two or more such as the degree of polymerization and the type of modification.
  • polyvinyl alcohols commercially available products or synthetic products may be used. Examples of commercially available products include, for example, PVA-102, PVA-103, PVA-105, PVA-110, PVA-117, PVA-120, PVA-124, PVA-135, PVA-203, PVA-205, PVA -210, PVA-217, PVA-220, PVA-224, PVA-235, etc.
  • the content of polyvinyl alcohol in the refractive index layer is preferably from 3 to 70% by mass, more preferably from 5 to 60% by mass, still more preferably from 10 to 50% by mass, particularly preferably based on the total solid content of the refractive index layer. Is 15 to 45% by mass.
  • the refractive index layer preferably uses a curing agent.
  • the binder resin When polyvinyl alcohol is used as the binder resin, the effect can be exhibited particularly.
  • the curing agent that can be used together with polyvinyl alcohol is not particularly limited as long as it causes a curing reaction with polyvinyl alcohol, but boric acid and salts thereof are preferable.
  • Boric acid or a salt thereof refers to an oxygen acid having a boron atom as a central atom and a salt thereof, specifically, orthoboric acid, diboric acid, metaboric acid, tetraboric acid, pentaboric acid, and octaboron. Examples include acids and their salts.
  • the boric acid and borate as the curing agent may be used as a single aqueous solution or as a mixture of two or more.
  • a hydrogen bond network is formed with inorganic oxide particles such as titanium oxide particles and OH groups of polyvinyl alcohol, resulting in a low refractive index layer and a low refractive index layer. It is considered that interlayer mixing with the refractive index layer is suppressed, and preferable infrared shielding characteristics are achieved.
  • the film surface temperature of the coating film is once cooled to about 15 ° C., and then the set surface coating process is used to dry the film surface. Can express an effect more preferably.
  • the curing agent in addition to the boric acid and its salts, known ones can be used, and in general, a compound having a group capable of reacting with polyvinyl alcohol or a reaction between different groups possessed by polyvinyl alcohol. It is a compound that promotes and is appropriately selected and used.
  • the curing agent include, for example, epoxy curing agents (diglycidyl ethyl ether, ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-diglycidyl cyclohexane, N, N-diglycidyl- 4-glycidyloxyaniline, sorbitol polyglycidyl ether, glycerol polyglycidyl ether, etc.), aldehyde curing agents (formaldehyde, glioxal, etc.), active halogen curing agents (2,4-dichloro-4-hydroxy-1,3,5) , -S-triazine, etc.), active vinyl compounds (1,3,5-trisacryloyl-hexahydro-s-triazine, bisvinylsulfonylmethyl ether, etc.), aluminum alum and the like.
  • epoxy curing agents diglycidyl ethyl
  • the total amount of the curing agent used is preferably 10 to 600 mg, more preferably 20 to 500 mg, per 1 g of polyvinyl alcohol (the total amount when polyvinyl alcohol is used).
  • the high refractive index layer according to the present invention and the low refractive index layer described later preferably contain a surfactant from the viewpoint of coatability.
  • An anionic surfactant, a nonionic surfactant, an amphoteric surfactant, and the like can be used as the surfactant used for adjusting the surface tension at the time of coating, but an amphoteric surfactant is more preferable.
  • amphoteric surfactants preferably used in the present invention include admisulfobetaine type, carboxybetaine type, sulfobetaine type, and imidazolium type. Specific examples of the amphoteric surfactant preferably used in the present invention are shown below.
  • the sulfobetaine type is preferable from the viewpoint of coating unevenness, and examples of the product include LSB-R, LSB (manufactured by Kawaken Fine Chemical Co., Ltd.), and Amphitol 20HD (manufactured by Kao Corporation).
  • the content of the surfactant in the high refractive index layer according to the present invention is preferably 0.001 to 1% by mass, and preferably 0.005 to 0.50% by mass with respect to the total solid content of the high refractive index layer. % Is more preferable.
  • Examples of the high refractive index layer according to the present invention or the low refractive index layer described later include ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, and JP-A-62-261476. Discoloration described in JP-A-57-74192, JP-A-57-87989, JP-A-60-72785, JP-A-61-146591, JP-A-1-95091, JP-A-3-13376, etc.
  • an antistatic agent may contain various known additives such as a matting agent.
  • the high refractive index layer contains titanium oxide particles.
  • the high refractive index layer containing titanium oxide particles is transparent and can express a higher refractive index.
  • titanium oxide means titanium dioxide (TiO 2 ).
  • Titanium oxide particles include those having a crystal structure such as a rutile type (tetragonal type), anatase type, brookite type, etc., but the rutile type shows a particularly high refractive index.
  • rutile-type titanium oxide particles have lower photocatalytic activity compared to anatase-type and brookite-type titanium oxide particles, so that the weather resistance of the high-refractive index layer and the adjacent low-refractive index layer is increased, and further, There is an advantage that the rate is also high. Therefore, it is preferable that a titanium oxide contains a rutile type titanium oxide.
  • rutile-type titanium oxide is more prominently bluish by ultraviolet irradiation than other crystal structures, but according to the present invention, such rutile-type titanium oxide is also effectively suppressed from bluing. can do.
  • the size of the titanium oxide particles contained in the high refractive index layer is not particularly limited, but can be determined from the volume average particle size or the primary average particle size.
  • the volume average particle diameter of the titanium oxide particles used in the high refractive index layer is preferably 100 nm or less, more preferably 1 to 100 nm, and further preferably 3 to 50 nm.
  • the primary average particle diameter of the titanium oxide particles used in the high refractive index layer is preferably 100 nm or less, more preferably 1 to 100 nm, and even more preferably 3 to 50 nm.
  • a primary average particle diameter of 1 nm or more and 100 nm or less is preferable from the viewpoint of low haze and excellent visible light transmittance.
  • a volume average particle diameter or primary average particle diameter of 100 nm or less is preferable from the viewpoint of low haze and excellent visible light transmittance.
  • the present inventors have found that titanium oxide particles tend to be markedly blue due to ultraviolet irradiation when the particle size is reduced. Therefore, it is desirable that the volume average particle size is large for the purpose of suppressing bluening, but according to the present invention, even when using titanium oxide having a very small particle size as described above, Bluing can be effectively suppressed.
  • the volume average particle size referred to in this specification is a method of observing the particles themselves using a laser diffraction scattering method, a dynamic light scattering method, or an electron microscope, or particles appearing on the cross section or surface of the refractive index layer.
  • the particle diameter of 1,000 arbitrary particles is measured by a method of observing an image with an electron microscope, and particles having particle diameters of d1, d2,.
  • Ni: In a group of nk particles, when the volume per particle is vi, the volume average particle diameter mv ⁇ (vi ⁇ di) ⁇ / ⁇ (vi) ⁇
  • the average particle size weighted by the volume to be calculated is calculated.
  • the primary average particle diameter can be measured from an electron micrograph taken with a transmission electron microscope (TEM) or the like. You may measure by the particle size distribution meter etc. which utilize a dynamic light scattering method, a static light scattering method, etc.
  • TEM transmission electron microscope
  • the primary average particle diameter of the particles is observed with an electron microscope on the particles themselves or the cross section or surface of the refractive index layer, and the particle diameter of 1000 arbitrary particles is measured. It is obtained as its simple average value (number average).
  • the particle diameter of each particle is represented by a diameter assuming a circle equal to the projected area.
  • titanium oxide particles it is preferable to use particles obtained by modifying the surface of an aqueous titanium oxide sol so as to be dispersible in an organic solvent or the like.
  • any conventionally known method can be used.
  • JP-A-63-17221, JP-A-7-819, JP-A-9-165218 Reference may be made to the matters described in Kaihei 11-43327, JP-A 63-17221, JP-A 7-819, JP-A 9-165218, JP 11-43327, and the like. it can.
  • titanium oxide—physical properties and applied technology Kiyono Manabu, p. 255-258 (2000), Gihodo Publishing Co., Ltd., or paragraph number “0011” of WO2007 / 039953. ”To“ 0023 ”can be referred to for the method of the step (2).
  • titanium dioxide hydrate is treated with at least one basic compound selected from the group consisting of alkali metal hydroxides or alkaline earth metal hydroxides.
  • the titanium dioxide dispersion obtained comprises a step (2) of treating with a carboxylic acid group-containing compound and an inorganic acid.
  • JP-A-2000-053421 comprising alkyl silicate as a dispersion stabilizer, and silicon in the alkyl silicate is changed to SiO 2.
  • a titanium oxide sol having a weight ratio (SiO 2 / TiO 2 ) of 0.7 to 10 of the amount converted to TiO 2 and the amount converted to TiO 2 in titanium oxide), JP 2000-063119 A (TiO 2 -ZrO 2 -SnO 2 composite colloidal particles as the core, and the surface thereof coated with the composite oxide colloidal particles of WO 3 -SnO 2 -SiO 2 ) can be referred to .
  • a form of core-shell particles in which titanium oxide particles are coated with a silicon-containing hydrated oxide is preferable.
  • coating means a state in which a silicon-containing hydrated oxide is attached to at least a part of the surface of the titanium oxide particles.
  • sica-attached titanium dioxide or “ Also referred to as “silica-coated titanium oxide”. That is, the surface of the titanium oxide particles may be completely covered with the silicon-containing hydrated oxide, or a part of the surface of the titanium oxide particles may be covered with the silicon-containing hydrated oxide.
  • the refractive index of the coated titanium oxide particles is controlled by the coating amount of the silicon-containing hydrated oxide, it is preferable that a part of the surface of the titanium oxide particles is coated with the silicon-containing hydrated oxide. .
  • the high refractive index layer is obtained by the interaction between the silicon-containing hydrated oxide of the shell layer and the resin (preferably polyvinyl alcohol) constituting the high refractive index layer. There is an effect of suppressing interlayer mixing between the low refractive index layer and the low refractive index layer.
  • the titanium oxide of the titanium oxide particles coated with the silicon-containing hydrated oxide may be a rutile type, an anatase type, or a brookite type.
  • the titanium oxide particles coated with a silicon-containing hydrated oxide are more preferably rutile-type titanium oxide particles coated with a silicon-containing hydrated oxide. This is because the rutile type titanium oxide particles have lower photocatalytic activity than the anatase type titanium oxide particles, so that the weather resistance of the high refractive index layer and the adjacent low refractive index layer is increased, and the refractive index is further increased. Because.
  • the “silicon-containing hydrated oxide” may be any of a hydrate of an inorganic silicon compound, a hydrolyzate and / or a condensate of an organosilicon compound, and in order to reduce photocatalytic activity, silanol It is more preferable to have a group. Therefore, in the present invention, the high refractive index metal oxide fine particles are preferably those in which titanium oxide is silica-modified. That is, the high refractive index metal oxide fine particles are preferably silica-modified (silanol-modified) titanium oxide particles in which the titanium oxide particles are silica-modified.
  • the high refractive index layer preferably contains a water-soluble resin such as polyvinyl alcohol, silica-modified (silanol-modified) titanium oxide particles, and a compound having a phosphonic acid group or a phosphoric acid group.
  • a water-soluble resin such as polyvinyl alcohol, silica-modified (silanol-modified) titanium oxide particles, and a compound having a phosphonic acid group or a phosphoric acid group.
  • the present inventors have found that when silica-modified titanium oxide particles are used, blue coloration easily occurs due to ultraviolet irradiation. Therefore, for the purpose of suppressing bluening, it can be said that the titanium oxide particles are preferably not coated with a silicon-containing hydrated oxide. According to the present invention, the silica-modified titanium oxide particles as described above are used. Even if it is a case where blue is used, blueening can be suppressed effectively. And since the silica modified titanium oxide particle has low photocatalytic activity, an optical reflective film excellent in durability can be obtained. Therefore, in the present invention, it is preferable to use silica-modified titanium oxide particles as the titanium oxide particles in order to achieve both the effect of improving the durability and suppressing the color tone fluctuation.
  • the coating amount of the silicon-containing hydrated oxide is 3 to 30% by mass, preferably 3 to 10% by mass, more preferably 3 to 8% by mass with respect to the total amount of titanium oxide as the core.
  • the coating amount is 30% by mass or less, the desired refractive index of the high refractive index layer can be obtained.
  • the coating amount is 3% by mass or more, not only can the particles be stably formed, but also the surface of the titanium oxide is suppressed from being in physical contact with the resin contained in the high refractive index layer. The deterioration of the resin can be suppressed.
  • titanium oxide particles with a silicon-containing hydrated oxide it can be produced by a conventionally known method.
  • JP-A-10-158015 Si / Al hydration to rutile titanium oxide) Oxide treatment
  • a method of producing a titanium oxide sol in which a hydrous oxide of silicon and / or aluminum is deposited on the surface of titanium oxide after peptization in the alkali region of the titanate cake JP 2000-204301 A (A sol in which a rutile-type titanium oxide is coated with a complex oxide of Si and Zr and / or Al.
  • JP 2007-246351 Oxidation obtained by peptizing hydrous titanium oxide
  • titanium to hydrosol
  • R 1 n SiX 4-n wherein R 1 as stabilizer C 1 -C 8 alkyl group, glycidyloxy substituted C 1 -C Alkyl or C 2 -C 8 alkenyl group, X is an alkoxy group, n is 1 or 2.
  • the core-shell particle according to the present invention may be one in which the entire surface of the titanium oxide particle as the core is coated with a silicon-containing hydrated oxide, and a part of the surface of the titanium oxide particle as the core is covered with a silicon-containing water. What coated with the sum oxide may be used.
  • the size of the titanium oxide particles coated with the silicon-containing hydrated oxide is not particularly limited, but is in the same range as the volume average particle size and primary average particle size of the titanium oxide particles. And preferred. That is, the volume average particle diameter of the silica-modified (silanol-modified) titanium oxide particles contained in the high refractive index layer is preferably 100 nm or less, more preferably 1 to 100 nm, and further preferably 3 to 50 nm.
  • the primary average particle diameter of the titanium oxide particles used in the high refractive index layer is preferably 100 nm or less, more preferably 1 to 100 nm, and even more preferably 3 to 50 nm.
  • the volume average particle size or primary average particle size is that of the titanium oxide particles (not coated with the silicon-containing hydrated oxide). Volume average particle diameter or primary average particle diameter is indicated respectively.
  • the titanium oxide particles used in the present invention are preferably monodispersed.
  • the monodispersion here means that the monodispersity obtained by the following formula is 40% or less. This monodispersity is more preferably 30% or less, and particularly preferably 0.1 to 20%.
  • the content of titanium oxide particles in the high refractive index layer is not particularly limited, but is preferably 15 to 85% by mass and more preferably 20 to 80% by mass with respect to the total solid content of the high refractive index layer. 30 to 80% by mass is even more preferable. By setting it as the said range, it can be set as a favorable optical reflection characteristic.
  • the high refractive index layer includes zirconia, tin oxide, zinc oxide, alumina, colloidal.
  • Inorganic oxide particles high refractive index metal oxide fine particles
  • the inorganic oxide particles contained in addition to the titanium oxide particles preferably contain zirconia.
  • the high refractive index metal oxide fine particles other than the titanium oxide may be used alone or in combination of two or more kinds in order to adjust the refractive index.
  • the size of the high refractive index metal oxide fine particles other than titanium oxide is not particularly limited, but the volume average particle size is preferably 1 to 100 nm or less, more preferably 3 to 50 nm.
  • the primary average particle diameter is preferably 1 to 100 nm or less, and more preferably 3 to 50 nm.
  • the content of the high refractive index metal oxide fine particles in the high refractive index layer is not particularly limited, but the sum of the content of titanium oxide particles and the content of high refractive index metal oxide fine particles is the high refractive index. It is preferably adjusted to 15 to 85% by mass with respect to the total solid content of the layer, more preferably 20 to 80% by mass, and even more preferably 30 to 80% by mass.
  • the low refractive index layer preferably contains metal oxide particles.
  • Silica sicon dioxide
  • specific examples include synthetic amorphous silica, colloidal silica, zinc oxide, alumina, colloidal alumina, and the like.
  • colloidal silica sol particularly acidic colloidal silica sol is more preferably used, and colloidal silica dispersed in an organic solvent is particularly preferably used.
  • hollow fine particles having pores inside the particles may be used as the metal oxide fine particles of the low refractive index layer, and hollow fine particles of silica (silicon dioxide) are particularly preferable.
  • well-known inorganic oxide particles other than a silica can also be used.
  • the inorganic oxide particles contained in the low refractive index layer may be used singly or in combination of two or more.
  • the inorganic oxide particles (preferably silicon dioxide) contained in the low refractive index layer preferably have an average particle diameter (number average; diameter) of 3 to 100 nm.
  • the average particle diameter of primary particles of silicon dioxide dispersed in the form of primary particles is more preferably 3 to 50 nm, and further preferably 1 to 40 nm. It is particularly preferably 3 to 20 nm, and most preferably 4 to 10 nm.
  • grains it is preferable from a viewpoint with few hazes and excellent visible light transmittance
  • the particle size of the inorganic oxide particles of the low refractive index layer can be determined by the volume average particle size in addition to the primary average particle size.
  • the colloidal silica used in the present invention is obtained by heating and aging a silica sol obtained by metathesis with an acid of sodium silicate or the like and passing through an ion exchange resin layer.
  • a silica sol obtained by metathesis JP-A-60-219083, JP-A-60-218904, JP-A-61-20792, JP-A-61-188183, JP-A-63-17807, JP-A-4-93284 JP-A-5-278324, JP-A-6-92011, JP-A-6-183134, JP-A-6-297830, JP-A-7-81214, JP-A-7-101142 , JP-A-7-179029, JP-A-7-137431, and International Publication No. 94/26530. Than is.
  • colloidal silica may be a synthetic product or a commercially available product.
  • examples of commercially available products include the Snowtex series (Snowtex OS, OXS, S, OS, 20, 30, 40, O, N, C, etc.) sold by Nissan Chemical Industries.
  • the surface of the colloidal silica may be cation-modified, or may be treated with Al, Ca, Mg, Ba or the like.
  • hollow particles can also be used as the inorganic oxide particles of the low refractive index layer.
  • the average particle pore size is preferably 3 to 70 nm, more preferably 5 to 50 nm, and even more preferably 5 to 45 nm.
  • the average particle pore size of the hollow fine particles is an average value of the inner diameters of the hollow fine particles. If the average particle pore diameter of the hollow fine particles is within the above range, the refractive index of the low refractive index layer is sufficiently lowered.
  • the average particle diameter is 50 or more at random, which can be observed as an ellipse in a circular, elliptical or substantially circular shape by electron microscope observation, and obtains the pore diameter of each particle. Is obtained.
  • the average particle hole diameter means the minimum distance among the distances between the two parallel lines that surround the outer edge of the hole diameter that can be observed as a circle, an ellipse, or a substantially circle or ellipse.
  • the content of the inorganic oxide particles in the low refractive index layer is preferably 20 to 90% by mass, more preferably 30 to 85% by mass, based on the total solid content of the low refractive index layer. More preferably, it is ⁇ 80 mass%. When it is 20% by mass or more, a desired refractive index is obtained, and when it is 90% by mass or less, the coatability is good, which is preferable.
  • the inorganic oxide particles of the low refractive index layer may be contained in at least one of the plurality of low refractive index layers.
  • the optical reflective film according to the present invention includes a base material for supporting the high refractive index layer and the low refractive index layer.
  • a base material for supporting the high refractive index layer and the low refractive index layer.
  • various resin films can be used as the substrate of the optical reflection film.
  • Polyolefin film polyethylene, polypropylene, etc.
  • polyester film polyethylene terephthalate (PET), polyethylene naphthalate, etc.
  • PET polyethylene terephthalate
  • polyvinyl chloride cellulose acetate Etc.
  • a polyester film is preferable.
  • polyester film but it does not specifically limit as a polyester film (henceforth polyester)
  • the main constituent dicarboxylic acid components include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenylethanedicarboxylic acid, Examples thereof include cyclohexane dicarboxylic acid, diphenyl dicarboxylic acid, diphenyl thioether dicarboxylic acid, diphenyl ketone dicarboxylic acid, and phenylindane dicarboxylic acid.
  • diol component examples include ethylene glycol, propylene glycol, tetramethylene glycol, cyclohexanedimethanol, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyethoxyphenyl) propane, bis ( 4-Hydroxyphenyl) sulfone, bisphenol fluorene hydroxyethyl ether, diethylene glycol, neopentyl glycol, hydroquinone, cyclohexanediol and the like.
  • polyesters having these as main components from the viewpoints of transparency, mechanical strength, dimensional stability, etc., dicarboxylic acid components such as terephthalic acid, 2,6-naphthalenedicarboxylic acid, diol components such as ethylene glycol and 1 Polyester having 1,4-cyclohexanedimethanol as the main constituent is preferred.
  • polyesters mainly composed of polyethylene terephthalate and polyethylene naphthalate, copolymerized polyesters composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and mixtures of two or more of these polyesters are mainly used. Polyester as a constituent component is preferable.
  • the thickness of the substrate used in the present invention is preferably 10 to 300 ⁇ m, particularly 20 to 150 ⁇ m.
  • two substrates may be stacked, and in this case, the type may be the same or different.
  • the base material preferably has a visible light region transmittance of 85% or more shown in JIS R3106-1998, and particularly preferably 90% or more. It is advantageous in that the transmittance in the visible light region shown in JIS R3106-1998 is 50% or more (upper limit: 100%) when the base material is more than the above transmittance. Yes, it is preferable.
  • the base material using the resin or the like may be an unstretched film or a stretched film.
  • a stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression.
  • the base material can be manufactured by a conventionally known general method.
  • an unstretched substrate that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching.
  • the unstretched base material is subjected to a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular-type simultaneous biaxial stretching, or the flow direction of the base material (vertical axis), or A stretched substrate can be produced by stretching in the direction perpendicular to the flow direction of the substrate (horizontal axis).
  • the draw ratio in this case can be appropriately selected according to the resin as the raw material of the base material, but is preferably 2 to 10 times in each of the vertical axis direction and the horizontal axis direction.
  • the base material may be subjected to relaxation treatment or offline heat treatment in terms of dimensional stability.
  • the relaxation treatment is performed in a process from the heat setting in the stretching process of the polyester film to the winding in the transversely stretched tenter or after exiting the tenter.
  • the relaxation treatment is preferably performed at a treatment temperature of 80 to 200 ° C., more preferably a treatment temperature of 100 to 180 ° C.
  • the relaxation rate is preferably in the range of 0.1 to 10% in both the longitudinal direction and the width direction, and more preferably, the relaxation rate is 2 to 6%.
  • the relaxed base material is subjected to the following off-line heat treatment to improve heat resistance and to improve dimensional stability.
  • the substrate is coated with the undercoat layer coating solution inline on one side or both sides during the film forming process.
  • the undercoating during the film forming process is referred to as in-line undercoating.
  • the resin used for the undercoat layer coating solution polyester resin, acrylic-modified polyester resin, polyurethane resin, acrylic resin, vinyl resin, vinylidene chloride resin, polyethyleneimine vinylidene resin, polyethyleneimine resin, polyvinyl alcohol resin (polyvinyl alcohol), Examples thereof include modified polyvinyl alcohol resin (modified polyvinyl alcohol) and gelatin, and any of them can be preferably used.
  • a conventionally well-known additive can also be added to these undercoat layers.
  • the undercoat layer can be coated by a known method such as roll coating, gravure coating, knife coating, dip coating or spray coating.
  • the coating amount of the undercoat layer is preferably about 0.01 to 2 g / m 2 (dry state).
  • the method for producing an optical reflective film of the present invention can be used by any method as long as at least one unit composed of the high refractive index layer and the low refractive index layer can be formed on the substrate. Can be.
  • a unit composed of a high refractive index layer and a low refractive index layer is laminated on a substrate.
  • a high refractive index layer and a low refractive index layer are alternately applied and dried to form a laminate.
  • Specific examples include the following: (1) A high refractive index layer coating solution is applied onto a substrate and dried to form a high refractive index layer, and then a low refractive index layer coating solution is applied and dried.
  • the method (4) which is a simpler manufacturing process, is preferable. That is, it is preferable that the method for producing an optical reflective film of the present invention includes lamin
  • the high refractive index layer coating solution contains the resin, titanium oxide, and a compound having a phosphonic acid group or a phosphoric acid group. Therefore, according to the second aspect of the present invention, a method for producing an optical reflective film is provided, and the method for producing an optical reflective film is a unit in which a low refractive index layer and a high refractive index layer are laminated on a substrate.
  • a coating solution prepared by adding a resin, titanium oxide, and a compound having a phosphonic acid group or a phosphoric acid group (the above-described color-suppressing compound). Including that.
  • a uniform coating solution can be prepared without agglomeration of these materials. it can.
  • the resulting high refractive index layer has reduced haze and can suppress color tone fluctuations of the optical reflective film even when exposed to strong sunlight.
  • Examples of the coating method include a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, a curtain coating method, or US Pat. Nos. 2,761,419 and 2,761,791.
  • a slide bead coating method using an hopper, an extrusion coating method, or the like is preferably used.
  • the solvent for preparing the high refractive index layer coating solution and the low refractive index layer coating solution is not particularly limited, but water, an organic solvent, or a mixed solvent thereof is preferable.
  • a compound having a phosphonic acid group or a phosphoric acid group is added to the coating solution in order to suppress color tone fluctuations.
  • the compound since the compound has a phosphonic acid group or a phosphoric acid group, the compound is easily added to an aqueous solvent. Can be distributed.
  • the aqueous solvent does not require a large-scale production facility, so that it is preferable in terms of productivity and also in terms of environmental conservation.
  • the organic solvent examples include alcohols such as methanol and ethanol, esters such as ethyl acetate, butyl acetate and propylene glycol monomethyl ether acetate, ethers such as diethyl ether and propylene glycol monomethyl ether, and amides such as dimethylformamide. , Ketones such as acetone and methyl ethyl ketone. These organic solvents may be used alone or in combination of two or more. From the viewpoint of environment and simplicity of operation, the solvent of the coating solution is preferably an aqueous solvent, more preferably water or a mixed solvent of water and methanol, ethanol, or ethyl acetate, and water is particularly preferable.
  • alcohols such as methanol and ethanol
  • esters such as ethyl acetate, butyl acetate and propylene glycol monomethyl ether acetate
  • ethers such as diethyl ether and propylene glycol monomethyl ether
  • the content of water in the mixed solvent is preferably 80 to 99.9% by mass, based on 100% by mass of the entire mixed solvent, and 85 to 99%. More preferably, it is 5 mass%.
  • volume fluctuation due to solvent volatilization can be reduced, handling is improved, and by setting it to 99.9% by mass or less, homogeneity at the time of liquid addition is increased and stable. This is because the obtained liquid properties can be obtained.
  • the concentration of the resin in the coating solution for the high refractive index layer (when using a plurality of types of resins, the total concentration) is preferably 0.5 to 10% by mass.
  • the concentration of the inorganic oxide particles (including titanium oxide particles) in the high refractive index layer coating solution is preferably 1 to 50% by mass.
  • the concentration of the compound having a phosphonic acid group or phosphoric acid group (coloring suppression compound) in the high refractive index layer coating solution is preferably 0.01 to 10% by mass.
  • the concentration of the resin in the low refractive index layer coating solution is preferably 0.5 to 10% by mass.
  • the concentration of the inorganic oxide particles in the low refractive index layer coating solution is preferably 1 to 50% by mass.
  • the method for preparing the high refractive index layer coating solution and the low refractive index layer coating solution is not particularly limited.
  • inorganic oxide particles including titanium oxide particles, polyvinyl alcohol, a chelate compound having a higher refractive index than polyvinyl alcohol
  • examples include a method of adding other additives that are added as necessary and stirring and mixing.
  • the order of addition of the respective components is not particularly limited, and the respective components may be sequentially added and mixed while stirring, or may be added and mixed at one time while stirring.
  • the saponification degrees of polyvinyl alcohol used in the high refractive index layer coating solution and the low refractive index layer coating solution are different. Due to the different saponification degrees, mixing of layers can be suppressed in each step of coating and drying. Although this mechanism is not yet clear, it is thought that mixing is suppressed by the difference in surface tension derived from the difference in saponification degree.
  • the difference in the degree of saponification of the polyvinyl alcohol used in the high refractive index layer coating solution and the low refractive index layer coating solution is preferably 3 mol% or more, more preferably 8 mol% or more.
  • the difference between the saponification degree of the high refractive index layer and the saponification degree of the low refractive index layer is preferably 3 mol% or more, and more preferably 8 mol% or more.
  • the upper limit of the difference between the saponification degree of the high refractive index layer and the saponification degree of the low refractive index layer is preferably as high as possible in view of the effect of suppressing / preventing interlayer mixing between the high refractive index layer and the low refractive index layer. Although not limited, it is preferably 20 mol% or less, and more preferably 15 mol% or less.
  • each refractive index layer contains a plurality of polyvinyl alcohols (different in saponification degree and polymerization degree)
  • the highest content of polyvinyl alcohol in the refractive index layer Compare alcohol.
  • the phrase “polyvinyl alcohol having the highest content in the refractive index layer” is used, the degree of polymerization is calculated assuming that the polyvinyl alcohol having a saponification degree difference of 3 mol% or less is the same polyvinyl alcohol.
  • polyvinyl alcohol having a saponification degree of 90 mol%, a saponification degree of 91 mol%, and a saponification degree of 93 mol% is contained in the same layer by 10 mass%, 40 mass%, and 50 mass%, respectively.
  • These three polyvinyl alcohols are the same polyvinyl alcohol, and the mixture of these three is polyvinyl alcohol (A) or (B).
  • the “polyvinyl alcohol having a saponification degree difference of 3 mol% or less” is not more than 3 mol% when attention is paid to any polyvinyl alcohol.
  • any polyvinyl alcohol for example, 90, 91, 92, 94 mol%
  • the vinyl alcohol since all the polyvinyl alcohols are within 3 mol% when focusing on 91 mol% vinyl alcohol, the same polyvinyl alcohol is obtained.
  • polyvinyl alcohol having a saponification degree different by 3 mol% or more When polyvinyl alcohol having a saponification degree different by 3 mol% or more is contained in the same layer, it is regarded as a mixture of different polyvinyl alcohols, and the polymerization degree and the saponification degree are respectively calculated.
  • PVA203 5% by mass
  • PVA117 25% by mass
  • PVA217 10% by mass
  • PVA220 10% by mass
  • PVA224 10% by mass
  • PVA235 20% by mass
  • PVA245 20% by mass
  • a large amount of PVA is a mixture of PVA 217 to 245 (the difference in the degree of saponification of PVA 217 to 245 is within 3 mol%, which is the same polyvinyl alcohol), and this mixture becomes polyvinyl alcohol (A) or (B).
  • the temperature of the high refractive index layer coating solution and the low refractive index layer coating solution during simultaneous multilayer coating is preferably a temperature range of 25 to 60 ° C., and a temperature range of 30 to 45 ° C. Is more preferable.
  • a temperature range of 25 to 60 ° C. is preferable, and a temperature range of 30 to 45 ° C. is more preferable.
  • the viscosity of the high refractive index layer coating solution and the low refractive index layer coating solution during simultaneous multilayer coating is not particularly limited.
  • the preferable temperature range of the coating liquid is preferably 5 to 160 mPa ⁇ s, more preferably 60 to 140 mPa ⁇ s.
  • the preferable temperature range of the coating solution is preferably 5 to 1200 mPa ⁇ s, more preferably 25 to 500 mPa ⁇ s. If it is the range of such a viscosity, simultaneous multilayer coating can be performed efficiently.
  • the viscosity at 15 ° C. of the coating solution is preferably 100 mPa ⁇ s or more, more preferably 100 to 30,000 mPa ⁇ s, and further preferably 2,500 to 30,000 mPa ⁇ s.
  • the conditions for the coating and drying method are not particularly limited.
  • first, either one of the high refractive index layer coating solution and the low refractive index layer coating solution heated to 30 to 60 ° C. is used.
  • the other coating solution is coated on this layer and dried to form a laminated film precursor (unit).
  • the number of units necessary for expressing the desired shielding performance is successively applied and dried by the above method to obtain a laminated film precursor.
  • drying it is preferable to dry the formed coating film at 30 ° C. or higher.
  • drying is preferably performed in the range of a wet bulb temperature of 5 to 50 ° C.
  • a film surface temperature of 5 to 100 ° C. preferably 10 to 50 ° C.
  • hot air of 40 to 60 ° C. is blown for 1 to 5 seconds. dry.
  • warm air drying, infrared drying, and microwave drying are used.
  • drying in a multi-stage process is preferable to drying in a single process, and it is more preferable to set the temperature of the constant rate drying section ⁇ the temperature of the rate-decreasing drying section.
  • the temperature range of the constant rate drying section is preferably 30 to 60 ° C.
  • the temperature range of the decreasing rate drying section is preferably 50 to 100 ° C.
  • the conditions for the coating and drying method for simultaneous multilayer coating are as follows: the high refractive index layer coating solution and the low refractive index layer coating solution are heated to 30 to 60 ° C., and the high refractive index layer coating is performed on the substrate.
  • the temperature of the formed coating film is preferably cooled (set) preferably to 1 to 15 ° C. and then dried at 10 ° C. or higher. More preferable drying conditions are a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 10 to 50 ° C. For example, it is dried by blowing warm air of 40 to 80 ° C. for 1 to 5 seconds.
  • coating it is preferable to carry out by a horizontal set system from a viewpoint of the uniformity improvement of the formed coating film.
  • the set means that the viscosity of the coating composition is increased by means such as lowering the temperature by applying cold air or the like to the coating film, the fluidity of the substances in each layer and in each layer is reduced, or the gel It means the process of converting.
  • a state in which the cold air is applied to the coating film from the surface and the finger is pressed against the surface of the coating film is defined as a set completion state.
  • the time (setting time) from the time of application until the setting is completed by applying cold air is preferably within 5 minutes, and more preferably within 2 minutes. Further, the lower limit time is not particularly limited, but it is preferable to take 45 seconds or more. If the set time is too short, mixing of the components in the layer may be insufficient. On the other hand, if the set time is too long, the interlayer diffusion of the inorganic oxide particles proceeds, and the refractive index difference between the high refractive index layer and the low refractive index layer may be insufficient. If the intermediate layer between the high-refractive index layer and the low-refractive index layer is highly elastic, the setting step may not be provided.
  • the set time is adjusted by adjusting the concentration of polyvinyl alcohol and inorganic oxide particles, or adding other components such as various known gelling agents such as gelatin, pectin, agar, carrageenan and gellan gum. Can be adjusted.
  • the temperature of the cold air is preferably 0 to 25 ° C, more preferably 5 to 10 ° C.
  • the time for which the coating film is exposed to cold air is preferably 10 to 360 seconds, more preferably 10 to 300 seconds, and further preferably 10 to 120 seconds, although it depends on the transport speed of the coating film.
  • the coating thickness of the high refractive index layer coating solution and the low refractive index layer coating solution may be applied so as to have a preferable dry thickness as described above.
  • the optical reflective film of the present invention includes at least one unit in which a high refractive index layer and a low refractive index layer are laminated.
  • it has a multilayer optical interference film in which a high refractive index layer and a low refractive index layer are alternately laminated on one side or both sides of a substrate.
  • the range of the total number of high refractive index layers and low refractive index layers per side of the substrate is preferably 100 layers or less, more preferably 45 layers or less.
  • the lower limit of the range of the total number of high refractive index layers and low refractive index layers per side of the substrate is not particularly limited, but is preferably 5 layers or more.
  • the preferred range of the total number of high refractive index layers and low refractive index layers is applicable even when laminated on only one side of the substrate, and when laminated simultaneously on both sides of the substrate. Is also applicable.
  • the total number of high refractive index layers and low refractive index layers on one surface of the substrate and the other surface may be the same or different.
  • the lowermost layer (layer in contact with the substrate) and the outermost layer may be either a high refractive index layer or a low refractive index layer.
  • the difference in refractive index between at least two adjacent layers is preferably 0.3 or more, more preferably 0.35 or more, and most preferably 0. .4 or more.
  • the upper limit is not particularly limited, but is usually 1.4 or less.
  • This refractive index difference and the required number of layers can be calculated using commercially available optical design software. For example, in order to obtain a near-infrared reflectance of 90% or more, if the difference in refractive index is smaller than 0.1, it is necessary to laminate 200 layers or more, which not only lowers productivity but also causes scattering at the lamination interface. Larger, less transparent, and very difficult to manufacture without failure.
  • the refractive index difference between the high refractive index layer and the low refractive index layer is within the range of the preferred refractive index difference. Is preferred. However, for example, when the outermost layer is formed as a layer for protecting the film or when the lowermost layer is formed as an adhesion improving layer with the substrate, the above-mentioned preferable refraction is performed with respect to the outermost layer and the lowermost layer. A configuration outside the range of the rate difference may be used.
  • the reflection at the adjacent layer interface depends on the refractive index ratio between the layers, so that the higher the refractive index ratio, the higher the reflectance.
  • n is the refractive index
  • d is the physical film thickness of the layer
  • n ⁇ d is the optical film thickness.
  • the refractive index and film thickness of each layer are controlled to control the reflection of visible light and near infrared light. That is, the reflectance in a specific wavelength region can be increased by the refractive index of each layer, the film thickness of each layer, and the way of stacking each layer.
  • the optical reflection film of the present invention can be made into a visible light reflection film or a near infrared reflection film by changing a specific wavelength region for increasing the reflectance. That is, if the specific wavelength region for increasing the reflectance is set to the visible light region, the visible light reflecting film is obtained, and if the specific wavelength region is set to the near infrared region, the near infrared reflecting film is obtained. Moreover, if the specific wavelength area
  • the optical reflective film of the present invention may be a (near) infrared reflective (shield) film.
  • the transmittance at 550 nm in the visible light region shown in JIS R3106-1998 is 50% or more. Is preferably 70% or more, more preferably 75% or more. Further, the transmittance at 1200 nm is preferably 35% or less, more preferably 25% or less, and further preferably 20% or less. It is preferable to design the optical film thickness and unit so as to be in such a suitable range. In addition, it is preferable that the region having a wavelength of 900 nm to 1400 nm has a region with a reflectance exceeding 50%.
  • the infrared region of the incident spectrum of direct sunlight is related to the increase in indoor temperature, and by blocking this, the increase in indoor temperature can be suppressed.
  • the cumulative energy ratio from the shortest infrared wavelength (760 nm) to the longest wavelength 3200 nm based on the weight coefficient described in Japanese Industrial Standards JIS R3106-1998 the infrared from the wavelength 760 nm to the longest wavelength 3200 nm
  • the cumulative energy from 760 nm to each wavelength when the total energy of the entire region is 100
  • the total energy from 760 to 1300 nm occupies about 75% of the entire infrared region. Therefore, shielding the wavelength region up to 1300 nm is efficient in energy saving effect by heat ray shielding.
  • the reflectance in the near-infrared light region (760 to 1300 nm) is about 80% or more at the maximum peak value
  • a decrease in the sensible temperature is obtained by sensory evaluation. For example, there was a clear difference when the temperature at the window facing the southeast method in the morning of August shielded the reflectance in the near infrared light range to about 80% at the maximum peak value.
  • the reflectance does not reach 60% when the number of stacked layers is 4. However, when there are 6 layers, a reflectance of about 80% can be obtained.
  • the refractive index of the low refractive index layer is preferably 1.10 to 1.60, more preferably 1.30 to 1.50.
  • the high refractive index layer preferably has a refractive index of 1.70 to 2.50, more preferably 1.80 to 1.90.
  • the thickness per layer (excluding the lowermost layer and the outermost layer) of the refractive index layer is preferably 20 to 1000 nm, more preferably 50 to 500 nm, and more preferably 50 to 350 nm. It is more preferable.
  • the total thickness of the optical reflecting film of the present invention is preferably 12 ⁇ m to 315 ⁇ m, more preferably 15 ⁇ m to 200 ⁇ m, and still more preferably 20 ⁇ m to 100 ⁇ m.
  • the optical reflection film includes at least one unit in which a high refractive index layer and a low refractive index layer are laminated on a base material.
  • the unit may be formed only on one side of the substrate, or may be formed on both sides. Since the reflectance of a specific wavelength improves, it is preferable that this unit is formed on both surfaces of a base material.
  • the optical reflective film is a conductive layer, an antistatic layer, a gas barrier layer, an easy-adhesion layer (adhesion layer) for the purpose of adding further functions under the base material or on the outermost surface layer opposite to the base material.
  • One or more functional layers such as layers may be included.
  • the stacking order of the above-mentioned various functional layers in the reflective film is not particularly limited.
  • an optical reflection layer and an adhesive layer including at least one unit in which the high refractive index layer and the low refractive index layer are laminated on the substrate surface
  • a preferred example is a form in which a hard coat layer is coated on the base material surface on the side opposite to the side on which these layers are laminated.
  • the order may be an adhesive layer, a base material, an optical reflection layer, and a hard coat layer, and may further have another functional layer, a base material, or an infrared absorber.
  • the optical reflection film of this invention on the outdoor side of a window glass (outside sticking)
  • it will laminate
  • the hard coat layer is coated on the surface of the base material on the side opposite to the coated side.
  • the order may be an adhesive layer, a base material, an optical reflection layer, and a hard coat layer, and may further have another functional layer base material or an infrared absorber. .
  • optical reflective film can be applied to a wide range of fields. That is, according to the third aspect of the present invention, there is provided an optical reflector in which the optical reflective film is provided on at least one surface of the substrate.
  • film for window pasting such as heat ray reflecting film that gives heat ray reflection effect, film for agricultural greenhouses, etc. Etc., mainly for the purpose of improving the weather resistance.
  • the substrate include, for example, glass, polycarbonate resin, polysulfone resin, acrylic resin, polyolefin resin, polyether resin, polyester resin, polyamide resin, polysulfide resin, unsaturated polyester resin, epoxy resin, melamine resin, and phenol.
  • examples thereof include resins, diallyl phthalate resins, polyimide resins, urethane resins, polyvinyl acetate resins, polyvinyl alcohol resins, styrene resins, vinyl chloride resins, metal plates, and ceramics.
  • the type of resin may be any of a thermoplastic resin, a thermosetting resin, and an ionizing radiation curable resin, and two or more of these may be used in combination.
  • the substrate can be produced by a known method such as extrusion molding, calendar molding, injection molding, hollow molding, compression molding or the like.
  • the thickness of the substrate is not particularly limited, but is usually 0.1 mm to 5 cm.
  • the adhesive layer or the adhesive layer that bonds the optical reflecting film and the substrate is disposed on the sunlight (heat ray) incident surface side. Further, it is preferable to sandwich the optical reflection film between the window glass and the substrate because it can be sealed from surrounding gas such as moisture and has excellent durability. Even if the infrared shielding film according to the present invention is installed outdoors or outside a car (for external application), it is preferable because of environmental durability.
  • the adhesive layer or adhesive layer that bonds the optical reflective film and the substrate is preferably installed so that the optical reflective film is on the sunlight (heat ray) incident surface side when bonded to a window glass or the like. Further, when the optical reflection film is sandwiched between the window glass and the base material, it can be sealed from ambient gas such as moisture, which is preferable for durability. Even if the optical reflective film of the present invention is installed outdoors or on the outside of a vehicle (for external application), it is preferable because of environmental durability.
  • an adhesive mainly composed of a photocurable or thermosetting resin can be used.
  • the adhesive preferably has durability against ultraviolet rays, and is preferably an acrylic adhesive or a silicone adhesive. Furthermore, an acrylic adhesive is preferable from the viewpoint of adhesive properties and cost. In particular, since the peel strength can be easily controlled, a solvent system is preferable among the solvent system and the emulsion system in the acrylic adhesive. When a solution polymerization polymer is used as the acrylic solvent-based pressure-sensitive adhesive, known monomers can be used as the monomer.
  • a polyvinyl butyral resin or an ethylene-vinyl acetate copolymer resin used as an intermediate layer of laminated glass may be used.
  • plastic polyvinyl butyral manufactured by Sekisui Chemical Co., Ltd., Mitsubishi Monsanto Co., Ltd.
  • ethylene-vinyl acetate copolymer manufactured by DuPont, Takeda Pharmaceutical Co., Ltd., duramin
  • modified ethylene-vinyl acetate copolymer [Mersen G manufactured by Tosoh Corporation].
  • Insulation performance and solar heat shielding performance of optical reflective film or infrared shield are generally JIS R 3209 (1998) (multi-layer glass), JIS R 3106 (1998) (transmittance / reflectance / radiation of sheet glass) Rate / solar heat acquisition rate test method), JIS R 3107 (1998) (calculation method of thermal resistance of plate glass and heat transmissivity in architecture).
  • Measure solar transmittance, solar reflectance, emissivity, and visible light transmittance (1) Using a spectrophotometer with a wavelength (300 to 2500 nm), measure the spectral transmittance and spectral reflectance of various single glass plates. The emissivity is measured using a spectrophotometer having a wavelength of 5.5 to 50 ⁇ m. In addition, a predetermined value is used for the emissivity of float plate glass, polished plate glass, mold plate glass, and heat ray absorbing plate glass. (2) The solar transmittance, solar reflectance, solar absorption rate, and corrected emissivity are calculated according to JIS R 3106 (1998) by calculating the solar transmittance, solar reflectance, solar absorption rate, and vertical emissivity.
  • the corrected emissivity is obtained by multiplying the vertical emissivity by the coefficient shown in JIS R 3107 (1998).
  • the heat insulation and solar heat shielding properties are calculated by (1) calculating the thermal resistance of the multilayer glass according to JIS R 3209 (1998) using the measured thickness value and the corrected emissivity. However, when the hollow layer exceeds 2 mm, the gas thermal conductance of the hollow layer is determined according to JIS R 3107 (1998).
  • the heat insulation is obtained by adding a heat transfer resistance to the heat resistance of the double-glazed glass and calculating the heat flow resistance.
  • the solar heat shielding property is calculated by calculating the solar heat acquisition rate according to JIS R 3106 (1998) and subtracting it from 1.
  • Production Example 1 Production of High Refractive Index Layer Coating Liquid 1 First, a titanium oxide sol dispersion containing rutile titanium oxide was prepared.
  • a dispersion of silica-modified titanium oxide particles (rutile type) was prepared as follows.
  • the titanium sulfate aqueous solution was thermally hydrolyzed by a known method to obtain titanium oxide hydrate.
  • the obtained titanium oxide hydrate was suspended in water to obtain 10 L of an aqueous suspension of titanium oxide hydrate (TiO 2 concentration: 100 g / L).
  • 30 L of an aqueous sodium hydroxide solution (concentration 10 mol / L) was added with stirring, the temperature was raised to 90 ° C., and the mixture was aged for 5 hours.
  • the obtained solution was neutralized with hydrochloric acid, filtered and washed with water to obtain a base-treated titanium compound.
  • the base-treated titanium compound was suspended in pure water and stirred so that the TiO 2 concentration was 20 g / L. Under stirring, it was added citric acid in an amount of 0.4 mol% with respect to TiO 2 weight. The temperature was raised to 95 ° C., concentrated hydrochloric acid was added so that the hydrochloric acid concentration was 30 g / L, and the solution temperature was maintained, followed by stirring for 3 hours.
  • the pH and zeta potential of the obtained mixed liquid were measured, the pH at 25 ° C. was 1.4, and the zeta potential was +40 mV.
  • the particle size was measured by Zetasizer Nano (manufactured by Malvern), the volume average particle size was 35 nm and the monodispersity was 16%. Also, the titanium oxide sol solution was dried at 105 ° C. for 3 hours to obtain a particle powder, and X-ray diffraction measurement was performed using JDX-3530 type manufactured by JEOL Datum Co., Ltd. to confirm that the particles were rutile type particles. did.
  • the refractive index of the high refractive index layer coating solution 1 was 1.82.
  • the measuring method of a refractive index is as follows (hereinafter the same).
  • Production Examples 2 to 4 Preparation of High Refractive Index Layer Coating Solutions 2 to 4
  • the concentration of the phosphoric acid aqueous solution was 1.3% by mass (at this time, the phosphoric acid mass ratio to titanium oxide was 3% by mass). ) 3.8% by mass (at this time, the phosphoric acid mass ratio to titanium oxide is 9% by mass), 6.3% by mass (at this time, the phosphoric acid mass ratio to titanium oxide is 15% by mass)
  • the high refractive index layer coating liquids 2 to 4 were prepared in the same manner as in Production Example 1 except that the phosphoric acid addition amount was changed to the mass ratio described in Table 1 below with respect to the addition amount of phosphoric acid. Produced.
  • the refractive indexes of the coating solutions 2 to 4 for the high refractive index layer were all 1.82.
  • “addition amount of coloring suppression compound” indicates a ratio (mass%) of the coloring suppression compound to titanium oxide.
  • Production Examples 5 to 8 Preparation of coating solutions 5 to 8 having a high refractive index layer
  • an aqueous solution of phytic acid compound of the above chemical formula 2 having the same concentration
  • An aqueous solution of 2-phosphonobutane-1,2,4-tricarboxylic acid PBTC; compound of the above chemical formula 3
  • An aqueous solution of nitrotris (methylenephosphonic acid) ATMP; a compound of the above chemical formula 4
  • lauryl phosphate of the above chemical formula 5
  • High refractive index layer coating solutions 5 to 8 were prepared in the same manner as in Production Example 2 except that each of the compounds was used.
  • the refractive indexes of the coating solutions 5 to 8 for the high refractive index layer were all 1.82.
  • Production Example 9 Production of High Refractive Index Layer Coating Liquid 9
  • a dispersion of 20% by mass of silica-modified titanium oxide particles a dispersion of 20% by mass of titanium oxide particles (rutile type) (ie, A high refractive index layer coating solution 9 was produced in the same manner as in Production Example 2 except that the surface of titanium oxide was not subjected to silica modification treatment.
  • the refractive index of the coating solution 9 for high refractive index layer was 1.82.
  • Production Example 10 Production of High Refractive Index Layer Coating Liquid 10 First, a titanium oxide sol dispersion containing anatase-type titanium oxide was prepared.
  • a dispersion of silica-modified titanium oxide particles (anaters type) was prepared as follows.
  • anatase-type titanium oxide sol (CSB-M: Sakai Chemicals, volume average particle diameter: 7 nm) was diluted to 20% by mass.
  • the refractive index of the high refractive index layer coating solution 10 was 1.82.
  • Production Example 11 Production of High Refractive Index Layer Coating Liquid 11 A high refractive index layer coating liquid 11 was produced in the same manner as in Production Example 1 except that the phosphoric acid aqueous solution was not added. The refractive index of the coating solution 11 for the high refractive index layer was 1.82.
  • Production Examples 12 to 16 Preparation of coating solutions 12 to 16 having a high refractive index layer
  • Production Example 2 instead of 1.3 mass% phosphoric acid aqueous solution, malonic acid aqueous solution, sodium dihydrogen phosphate aqueous solution, phosphorus High refractive index layer coating solutions 12 to 16 were prepared in the same manner as in Production Example 2, except that an ammonium dihydrogen acid aqueous solution, a sodium pyrophosphate aqueous solution, and a nitric acid aqueous solution were used.
  • the refractive indexes of the coating solutions 12 to 16 for the high refractive index layer were all 1.82.
  • Production Example 17 Production of Low Refractive Index Layer Coating Solution 1 10% by mass of acidic colloidal silica aqueous solution (Snowtex OXS, average primary particle size: 4 to 6 nm, manufactured by Nissan Chemical Industries, Ltd.) 430 parts by mass, 3% by mass 85 parts by weight of an aqueous boric acid solution, 182 parts by weight of pure water, and a 4% by weight aqueous solution of polyvinyl alcohol as a water-soluble polymer (PVA-235, degree of polymerization: 3500, degree of saponification: 88 mol%, manufactured by Kuraray Co., Ltd.) 300
  • a low refractive index layer coating solution 1 was prepared by adding and mixing parts by mass and 3.0 parts by mass of a 5% by mass surfactant solution (Amphithal HD, manufactured by Kao Corporation) at 45 ° C. in this order.
  • the refractive index of the coating solution 1 for the low refractive index layer was 1.48.
  • Example 1 Using a slide hopper coating apparatus capable of coating 15 layers, the high refractive index layer coating solution 1 produced in Production Example 1 and the low refractive index layer coating solution 1 produced in Production Example 17 are kept at 40 ° C. Then, it laminated
  • the polyethylene terephthalate film Toyobo A4300, double-sided easily bonding layer, length 200m x width 210mm
  • the film thickness during drying is adjusted so that the lowermost layer is 1510 nm, the outermost layer is 100 nm, the lower refractive index layers other than the lowermost layer and the uppermost layer are 150 nm, and the high refractive index layers are 150 nm. did.
  • Example 2 except that the coating liquid used for forming the high refractive index layer was changed to the high refractive index layer coating liquids 2 to 16 shown in Table 1, respectively, in the same manner as in Example 1, the optical reflective film 2 to 10 and comparative optical reflection films 1 to 6 were produced, respectively.
  • Each of the high refractive index layer samples prepared above was attached to blue glass having a thickness of 3 mm via an adhesive layer. This sample was exposed to xenon light with an intensity of 100 W / m 2 for 2000 hours using a xenon weather meter (manufactured by Suga Test Instruments Co., Ltd .; emitting light very close to sunlight) at 30 ° C. and 60% RH.
  • the color difference ( ⁇ E) was calculated from the difference in transmitted light before and after.
  • the transmitted light of the sample before and after exposure was evaluated by the transmittance in the 200 to 2000 nm region of a spectrophotometer U-4000 type (using an integrating sphere, manufactured by Hitachi, Ltd.). The results are shown in Table 1. A smaller value of ⁇ E means that the degree of coloring due to exposure to xenon light is smaller.
  • haze was measured with a haze meter (NDH2000, manufactured by Nippon Denshoku Industries Co., Ltd.).
  • the light source of the haze meter was a 5V9W halogen sphere, and a silicon photocell (with a relative visibility filter) was used as the light receiving part.
  • the haze was measured at 23 ° C. and 55% RH.
  • the bending test was performed by an IPC bending test according to IPC standard TM-650. This is sandwiched between the fixed plate and the movable plate so that the surface of the laminated film is convex, and the movable plate is repeatedly moved.
  • the R of the film was set to 10 mm, the stroke was set to 60 mm, and the number of repetitions was 30.
  • the evaluation criteria are as follows.
  • A No streaks, cracks, or peeling visible on the surface.
  • O No cracks or peeling on the surface, some streaks visible.
  • Cracks or peeling visible on the surface.
  • X Clear cracks or peeling visible on the surface.
  • the optical reflective films of Examples 1 to 3, 5 and 6 are particularly excellent in terms of haze and durability, and it is understood that phosphoric acid, phytic acid and PBTC are particularly preferable as additives. . Furthermore, when Examples 2, 5 and 6 are compared, particularly good results have been obtained in the color difference evaluation of the single layer and the reflective layer. Among these, phosphoric acid seems to be particularly suitable as an additive. It is.
  • malonic acid added in Comparative Example 2 can contribute to the oxidation-reduction reaction of blue titanium oxide
  • malonic acid itself is decomposed by ultraviolet irradiation to generate carbon dioxide and the like, resulting in a color tone. It is thought that a change or a decrease in durability occurred.
  • Example 2 Further, paying attention to the titanium oxide species constituting the high refractive index layer, comparing Example 2 and Example 9, the titanium oxide modified with silica is all in terms of color difference, haze, and durability. Excellent results were obtained. Therefore, it can be said that the above characteristics can be further improved by using a specific compound (a compound having a phosphonic acid group or a phosphoric acid group) according to the present invention and subjecting titanium oxide to a silica modification treatment. Furthermore, the comparison between Example 2 and Example 10 shows that when rutile titanium oxide is used as titanium oxide, it is preferable in terms of color difference, haze, and durability.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Catalysts (AREA)
  • Optical Filters (AREA)

Abstract

【課題】強い太陽光に長時間曝されても光学反射フィルムの色調変動を抑制することができる新規な技術を提供する。 【解決手段】基材上に、低屈折率層と高屈折率層とを積層したユニットを少なくとも1つ含む光学反射フィルムであって、前記高屈折率層が、樹脂と、酸化チタンと、ホスホン酸基またはリン酸基を有する化合物とを含む、光学反射フィルム。

Description

光学反射フィルム、その製造方法およびそれを用いる光学反射体
 本発明は、光学反射フィルム、その製造方法およびそれを用いる光学反射体に関する。より詳細には、本発明は、より色調変動抑制効果の高い光学反射フィルムおよびその製造方法に関する。
 近年、省エネルギー対策への関心が高まり、建築用ガラスや車両用ガラスにおいて、室内あるいは車内に入る太陽輻射エネルギーを遮蔽し、温度上昇、冷房負荷を低減する目的で、赤外線の遮蔽性を有する断熱ガラスが採用されている。一方、屈折率の異なる層を積層して形成した赤外遮蔽フィルムは従来より知られており、この赤外遮蔽フィルムをガラスに貼付することにより、太陽光の中、熱線の透過を遮断する方法が、より簡便な方法として注目されている。
 赤外遮蔽フィルムとしては、高屈折率層と低屈折率層とを交互に積層させた積層膜を蒸着法、スパッタ、などの気相成膜法で作製する方法がある。しかしながら、気相成膜法は製造コストが高く、大面積化が困難であり、耐熱性素材に限定される等の課題がある。
 したがって、赤外遮蔽フィルムの製造の際には、製造コストが安く、大面積化が可能であり、基材の選択幅が広いといった観点から液相成膜法(ウェット)を用いるほうが有利である。液相製膜法を用いた技術として、たとえば、米国特許出願公開第2013/107355号公報(国際公開第2012/014607号に該当)には、水溶性高分子および金属酸化物微粒子の混合物を含む塗布液を、湿式塗布方式により塗布して積層することにより製造される光学フィルム(近赤外反射フィルム)が開示されている。
 しかしながら、上記のように、金属酸化物微粒子(主として酸化チタン)を含む塗布液により形成された光学反射フィルムは、太陽光に長時間曝されると、変色する(色調が変動する)ことがあるという問題点があった。かような問題点に対し、種々の検討が行われており、その中の一つとして、特開2006-124267号公報では、リン酸基を酸化チタン粒子表面に配位結合させて酸化チタンとリン酸化合物の複合粒子を形成し、当該複合粒子と樹脂とを含む塗工剤を用いてフィルムを製造する技術が提案されている。
 特開2006-124267号公報の技術によれば、酸化チタンとリン酸化合物の複合粒子を樹脂と共に塗布して光学反射フィルムを製造することにより、光照射による着色を抑制することができる。しかしながら、本発明者らは、特開2006-124267号公報の技術を以ってしても、強い太陽光に長時間曝されると、光学反射フィルムの色調が変動するという問題があることを見出した。
 また、光学反射フィルムは、長時間太陽光に曝されるとクラック等が生じることがあるため、耐久性を向上させることができる技術が求められている。
 したがって、本発明の目的は、上記事情を鑑みてなされたものであり、強い太陽光に長時間曝されても光学反射フィルムの色調変動を抑制することができる新規な技術を提供することにある。また、本発明の他の目的は、光学反射フィルムの耐久性を向上させることができる新規な技術を提供することにある。
 本発明者らは、上記課題に鑑み鋭意検討を行った。その結果、低屈折率層および高屈折率層を積層したユニットを含む光学反射フィルムにおいて、高屈折率層に樹脂と、酸化チタンと特定の化合物とを含む構成を採ることにより、上記課題が解決されることを見出し、本発明を完成させるに至った。
 すなわち、上記目的は、基材上に、低屈折率層と高屈折率層とを積層したユニットを少なくとも1つ含む光学反射フィルムであって、前記高屈折率層が、樹脂と、酸化チタンと、ホスホン酸基またはリン酸基を有する化合物とを含む、光学反射フィルムによって達成される。
 本発明者等は上記課題を解決すべく、鋭意研究を積み重ねた。その結果、樹脂および酸化チタンを含む高屈折率層において、さらに特定の化合物を含むことにより、色調変動の抑制効果が向上することを見出し、本発明を完成させた。
 すなわち、本発明の上記目的は、以下の構成により達成される。
 1.基材上に、低屈折率層と高屈折率層とを積層したユニットを少なくとも1つ含む光学反射フィルムであって、前記高屈折率層が、樹脂と、酸化チタンと、ホスホン酸基またはリン酸基を有する化合物とを含む、光学反射フィルム;
 2.前記ホスホン酸基またはリン酸基を有する化合物が、リン酸、フィチン酸、ホスホノブタントリカルボン酸からなる群から選択される、上記1.に記載の光学反射フィルム;
 3.前記ホスホン酸基またはリン酸基を有する化合物が、前記酸化チタンに対して、0.1~15質量%含まれる上記1.または2.に記載の光学反射フィルム;
 4.前記酸化チタンは、シリカ変性されてなる、上記1.~3.のいずれかに記載の光学反射フィルム;
 5.前記酸化チタンは、ルチル型酸化チタンを含む、上記1.~4.のいずれかに記載の光学反射フィルム;
 6.基材上に低屈折率層と高屈折率層とを積層したユニットを少なくとも1つ含む光学反射フィルムの製造方法であって、
 樹脂と、酸化チタンと、ホスホン酸基またはリン酸基を有する化合物とを添加して調製した塗布液を塗布することを含む、光学反射フィルムの製造方法;
 7.上記1.~5.のいずれかに記載の光学反射フィルム、または上記6.に記載の方法により製造された光学反射フィルムが、基体の少なくとも一方の面に設けられてなる光学反射体。
 本発明に係る光学反射フィルムは、低屈折率層と高屈折率層とが積層された構造を有する。ここで、上述のように、特開2006-124267号公報の技術を用いて酸化チタン(二酸化チタン粒子)とリン酸化合物の複合粒子を樹脂と共に塗布して光学反射フィルムを作製しても、強い太陽光に長時間曝されると、光学反射フィルムの色調が変動するという問題があることが判明した。
 そこで、本発明者らは、光学反射フィルムの色調変動を抑制する目的で、以下の検討を行った。
 本発明者らは、まず、光学反射フィルムの色調が変動する原因の一つとして、高屈折率層に含まれる樹脂の分解に起因する着色に着目した。特開2006-124267号公報では、酸化チタン(二酸化チタン粒子)表面にリン酸化合物を配位させてなる複合粒子と樹脂とを共に塗布してフィルムにコーティングした場合、着色が見られなかったことが開示されているが、これは、樹脂自体の変色が抑制されている効果によるものと推測した。すなわち、酸化チタンと樹脂とを含む高屈折率層を有する光学反射フィルムは、太陽光に曝されると、酸化チタンの光触媒作用により樹脂が分解・変色するが、特開2006-124267号公報の技術によれば、酸化チタンの表面にリン酸化合物が配位するため、酸化チタン表面と樹脂との接触が抑制され、その結果、樹脂自体の着色は抑制されていると考えられる。
 そこで、本発明者らは、上記特開2006-124267号公報の技術を以ってしてもなお、光学反射フィルムの色調が変動する原因についてさらに検討し、その原因として、高屈折率層に含まれる酸化チタン自体の着色に着目した。すなわち、酸化チタン(特にルチル型酸化チタン)は、紫外線に曝されることにより、酸化チタン自身が青色化するが、これを抑制する技術について検討を行った。
 特開2006-124267号公報によれば、酸化チタンの表面にリン酸化合物を配位させた複合粒子を用いることにより、酸化チタンの青色化も多少は抑制されうると考えられる。しかし、本発明者らは、光学反射フィルムが強い太陽光に長時間曝されると、特開2006-124267号公報の技術による光学反射フィルムが着色してしまうことから、光学反射フィルムが強い太陽光に長時間曝されることにより、このような酸化チタンの着色(青色化)がより顕著となり、結果としてフィルムの色調変動が生じているのではないかと考えた。そこで、酸化チタンの光触媒作用に起因する樹脂の分解・変色だけでなく、酸化チタンの着色もまた抑制するため、種々の添加剤を検討したところ、驚くべきことに、ホスホン酸基またはリン酸基を有する化合物を高屈折率層に添加することにより、樹脂の分解・変色、酸化チタンの着色、ひいては光学反射フィルムの色調変動が極めて効果的に抑制されることを見出した。
 上記酸化チタンの着色防止効果は、以下のメカニズムによって説明できる。まず、酸化チタンの表面に紫外線が照射されると、還元反応により酸素原子が脱離して酸化チタンが青色化する。これに対し、本発明では、ホスホン酸基またはリン酸基を有する化合物を添加することで、酸化チタンの還元された部分が酸化され(すなわち、元の酸化チタンの構造に戻り)、青色化が抑制されていると推測される。ここで、特開2006-124267号公報に開示された複合粒子は、酸化チタンに配位させるリン酸化合物として、ピロリン酸ソーダ等の縮合リン酸塩、すなわち塩化合物(イオン性化合物)を添加している。そうすると、リン酸塩を構成するカウンターイオン(たとえば、ナトリウムイオン)が、上記酸化反応(すなわち、青色化してしまった酸化チタンを元の酸化チタンの構造に戻す反応)を阻害してしまい、その結果、酸化チタンの着色抑制効果を十分に得ることができないと推測される。一方、本発明におけるホスホン酸基またはリン酸基を有する化合物は、上記のような酸化反応の阻害が生じないため、酸化チタンの青色化を抑制する効果が高いと考えられる。
 さらに、本発明者らは、光学反射フィルムの色調が変動する原因を検討する過程で、特開2006-124267号公報に開示された複合粒子を用いた場合、得られる光学反射フィルムが白濁しやすいこともまた見出した。より詳細には、酸化チタン粒子表面にリン酸化合物が配位した複合粒子および樹脂を含む溶液を塗工してフィルムを作製すると、その乾燥過程において、特にフィルムの白濁が顕著となることが判明した。これは、上述したように、複合粒子を調製する際、縮合リン酸塩等の塩化合物(イオン性化合物)を添加しているため、複合粒子に含まれるカウンターイオンにより樹脂が塩析する結果、フィルムに白濁が生じると推測される。これに対し、本発明では、上述のように、ホスホン酸基またはリン酸基を有する化合物(イオン性化合物でない化合物)を添加するため、当該化合物によって酸化チタンの着色が効果的に抑制されると共に、上記カウンターイオンによる樹脂の塩析に起因する白濁もまた抑制される。
 また、本発明の光学反射フィルムは、耐久性の点でも優れる。これは、上述のように、ホスホン酸基またはリン酸基を有する化合物の添加により、酸化チタンの光触媒作用に起因する樹脂の分解および酸化チタンの着色が抑制されているためであると推測される。ここで、樹脂の分解抑制により耐久性が向上することは言うまでもないが、酸化チタンの着色抑制と耐久性の向上効果との関係について概説する。酸化チタンが青色化(着色)している状態とは、すなわち近赤外領域の光を吸収している状態である(補色の関係)。このような状態では、酸化チタンを含む高屈折率層が蓄熱して高温となってしまい、その結果、樹脂が劣化してしまう。しかしながら、本発明では、上記のように、酸化チタンの青色化が抑制されているため、このような高屈折率が高温になることがなく、樹脂の劣化を効果的に抑制することができると考えられる。加えて、特開2006-124267号公報のように、カウンターイオン(例えば、ナトリウムイオン等の金属イオン)を有する化合物を用いた場合、高屈折率層の内部応力に起因する割れが生じやすいが、本発明によれば、このような内部応力が低減される結果、耐久性が向上していると推測される。
 したがって、本発明の光学反射フィルムでは、酸化チタンと共にホスホン酸基またはリン酸基を有する化合物を高屈折率層中に含むことにより、強い太陽光に長時間曝されても色調変動が抑制される。また、本発明の光学反射フィルムは、上記構成を採ることにより、耐久性にも優れる。
 このように、本発明の光学反射フィルムは、上記のメカニズムにより、色調の変動を抑制することができ、さらに、耐久性に優れるという効果を発揮すると考えられる。なお、上述した本発明の構成による作用効巣の発揮のメカニズムは推測であり、本発明は、上記推測によって限定されない。
 以下、本発明の光学反射フィルムの構成要素について、詳細に説明する。
 また、本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%の条件で測定する。
 〔光学反射フィルム〕
 本発明に係る光学反射フィルムは、基材上に、低屈折率層と高屈折率層とを積層したユニットを少なくとも1つ含む。なお、本明細書において、「高屈折率層」および「低屈折率層」なる用語は、隣接した2層の屈折率差を比較した場合に、屈折率が高い方の屈折率層を高屈折率層とし、低い方の屈折率層を低屈折率層とすることを意味する。したがって、「高屈折率層」および「低屈折率層」なる用語は、光学反射フィルムを構成する各屈折率層において、隣接する2つの屈折率層に着目した場合に、各屈折率層が同じ屈折率を有する形態以外のあらゆる形態を含むものである。また、本明細書中、低屈折率層および高屈折率層を区別しない場合は、両者を含む概念として「屈折率層」と称する。さらに、本明細書中、低屈折率層と高屈折率層とを積層したユニットが複数積層された部分を単に「光学反射層」または「反射層」と称することがある。
 光学反射フィルムは、基材、光学反射層をこの順に有し、光学反射層は、光が入射する面に配置されると好ましい。さらに、光学反射層は、基材と隣接して配置されてもよいし、基材と光学反射層との間に他の層が介在していてもよい。
 本発明の光学反射フィルムは、光学反射層を構成する高屈折率層が、樹脂と、酸化チタンと、ホスホン酸基またはリン酸基を有する化合物とを含むことを特徴の一つとしている。以下では、まず、高屈折率層に含まれる各成分について詳述する。
 (ホスホン酸基またはリン酸基を有する化合物)
 本発明に係る光学反射フィルムにおいて、高屈折率層は、酸化チタンの青色化(着色)や、共に高屈折率層中に含まれる樹脂の変色を抑制するため、ホスホン酸基(-P(=O)(OH))またはリン酸基(-OP(=O)(OH))を含む化合物(以下、単に「着色抑制化合物」とも称することがある)を含む。ここで、上記ホスホン酸基およびリン酸基は、ヒドロキシ基の一部が塩の形態となったもの(たとえば、-ONa、-O、-ONH )を実質的に含まない。ここで、上記置換基を含む化合物が塩の形態となった際に、含まれうるカウンターイオンとしては、アルカリ金属(たとえば、Na,K等)、アルカリ土類金属(たとえば、Ca等)、ベリリウム、マグネシウム、またはアルミニウムに由来するカチオン、第四級アンモニウムカチオン等が挙げられる。すなわち、本発明において高屈折率層に含まれる上記着色抑制化合物は、上記置換基に由来するイオン性化合物であるものを除く。上記において、高屈折率層がホスホン酸基またはリン酸基のヒドロキシ基の一部が塩の形態となったものを「実質的に含まない」とは、ホスホン酸塩およびリン酸塩が高屈折率層の全固形分に対して0.1質量%以下で存在することを意味する。さらに、高屈折率層の全固形分に対するホスホン酸塩およびリン酸塩の含有量は、少ないほど好ましく、0.1質量%未満であると好ましく、0.05質量%未満であるとより好ましい。一方、その下限値は特に限定されず、少ないほど(即ち、0重量%)好ましいが、製造工程の観点から、0重量%超であり、0.001重量%以上であることが好ましい。
 なお、高屈折率層がホスホン酸基またはリン酸基に由来する塩化合物(イオン性化合物)を実質的に含まないことは、高屈折率層について、下記の分析を行うことにより確認される。すなわち、本発明においては、粒子サイズに基づき、走査透過型電子顕微鏡とエネルギー分散型X線分光分析を組み合わせた方法(STEM-EDX)により、高屈折率層中のイオン性化合物量を求めることができる。STEM-EDXを用いた粒子間の組成分布測定は、例えば、具体的には、以下の手順で行う。
 まず、光学反射層の断面薄片をウルトラミクロトームにより作成し、マイクログリッド上に採取し、試料とする。超薄切片の厚さは100nm以下が好適であり、本発明では厚さ80nmの超薄切片を作成する。
 透過型電子顕微鏡(日本電子製JEM2010F)およびエネルギー分散型X線分光分析装置(NORAN社製PIONEER型検出器及びVANTAGEデジタルマイクロアナリシスシステム)を用いて計測する。透過型電子顕微鏡の加速電圧は200kVが好ましく、倍率は適宜調整することができる。本発明では、5万倍にて測定される。電子顕微鏡の軸調整後、走査透過モードにて観察を行い、酸化チタンを含有する高屈折率層を確認した後、ソフトウエア(NORAN社製VISTA)を用いて検出したい元素について元素マップを取得する。元素マップの分解能は適宜調整出来るが、256×256pixel以上とする。測定時間は少量成分元素のX線ピークが200counts以上となるまで積算する。
 X線強度および予め標準試料から求めた感度係数を用いて、高屈折率層中の元素組成を算出することができる。
 このように、高屈折率層が、塩の形態であるリン酸化合物を実質的に含まず、かつ、ホスホン酸基またはリン酸基を含む化合物を含むことにより、高屈折率層中に含まれる酸化チタンの青色化、樹脂の変色を抑制し、さらにはヘイズを低減させることができるため、本発明に係る光学反射フィルムは、強い太陽光に長時間曝されても、色調変動が抑制される。さらに、上記着色抑制化合物を含むことにより、高屈折率層に含まれる樹脂の劣化もまた効果的に抑制される。
 高屈折率層に含まれる上記着色抑制化合物は、少なくとも、ホスホン酸基(-P(=O)(OH))またはリン酸基(-O-P(=O)(OH))を一つ含む。なお、これら置換基は、一つの化合物中、一つであってもよいし、二つ以上含まれていてもよい。さらに、これら置換基の両方が一つの化合物に含まれていてもよい。一方、これらの置換基の数の上限は特に限定されるものではないが、実質的には一つの化合物中に10個程度である。
 上記置換基を有する化合物として用いられる化合物は、少なくともホスホン酸基(-P(=O)(OH))またはリン酸基(-OP(=O)(OH))を含んでいれば、それ以外の構造は特に制限されないが、水素原子、ヒドロキシル基、炭素原子数1~20の脂肪族または炭素原子数6~20の芳香族の有機基であると好ましい。ここで、脂肪族の有機基は、環状、直鎖状または分岐鎖状のいずれであってもよい。なお、このとき、化合物に含まれるホスホン酸基またはリン酸基の数に依存して、上記有機基の価数は変化する。たとえば、ホスホン酸基を二つ含む場合、上記有機基は二価となる。
 また、上記着色抑制化合物は、ホスホン酸基またはリン酸基を含めた分子量(すなわち、全体の分子量)が、80~1200であると好ましく、90~800であるとより好ましく、95~700であると特に好ましい。高屈折率層は、以下で詳述するように、塗布により形成することが好ましいが、上記着色抑制化合物の分子量を上記範囲内とすることにより、種々の溶媒に分散(または溶解)しやすくなる。その結果、塗布液中の凝集が抑制され、より均一な塗布液を調製することができ、高屈折率層の光学特性を向上させることができる。なお、上記着色抑制化合物の分子量は、電子イオン化法による質量分析により測定することができる。
 上記着色抑制化合物としては、リン酸;炭素原子数1~20の脂肪族有機基を有する脂肪族ホスホン酸化合物(R{-P(=O)(OH);Rは価数がmである炭素原子数1~20の脂肪族有機基であり、mは1~10の整数を表す)、炭素原子数6~20の有機基を有する芳香族ホスホン酸化合物(R{-P(=O)(OH);Rは価数がnである炭素原子数6~20の芳香族有機基であり、nは1~10の整数を表す)等のホスホン酸化合物;炭素原子数1~20の有機基を有する脂肪族リン酸化合物(R{-O-P(=O)(OH);Rは価数がpである炭素原子数1~20の脂肪族有機基であり、pは1~10の整数を表す)、炭素原子数6~20の有機基を有する芳香族リン酸化合物(R{-O-P(=O)(OH);Rは価数がqである炭素原子数6~20の脂肪族有機基であり、qは1~10の整数を表す)等のリン酸化合物であると好ましい。
 なかでも、上記着色抑制化合物は、リン酸(下記化学式1の化合物;分子量98)、フィチン酸(下記化学式2の化合物;660)、ホスホノブタントリカルボン酸(「PBTC」とも略記する、下記化学式3の化合物;分子量270)、ニトロトリス(メチレンホスホン酸)(「ATMP」とも略記する、下記化学式4の化合物;分子量299)およびラウリルリン酸(下記化学式5の化合物;分子量266)からなる群から選択されると好ましい。
Figure JPOXMLDOC01-appb-C000001
 上記着色抑制化合物の中でも、特に色調変動の抑制効果が高く、かつ、光学反射フィルムの耐久性を向上させるという観点からは、リン酸、フィチン酸、PBTCが特に好ましい。すなわち、ホスホン酸基またはリン酸基を有する化合物(着色抑制化合物)は、リン酸、フィチン酸、ホスホノブタントリカルボン酸からなる群から選択されると好ましい。
 高屈折率層中における上記着色抑制化合物の含有量は、本発明の効果が発揮される限り特に制限されないが、高屈折率層の全固形分に対して、0.1~30質量%であると好ましく、0.2~20質量%であるとより好ましく、0.3~15質量%であると特に好ましい。0.1質量%以上であれば、着色抑制化合物としての効果を十分に発揮することができ、かつ経済的に有利である。一方で、30質量%以下とすることにより、高屈折率層塗布液の調製時、均一な塗布液を調製することができる結果、高屈折率層の光学特性や色調が極めて良好となる。
 さらに、着色抑制化合物の含有量は、本発明の効果が発揮される限り特に制限されないが、高屈折率層に含まれる酸化チタンの全量に対して、0.01~30質量%であると好ましく、0.1~20質量%であるとより好ましく、0.1~15質量%であるとさらにより好ましい。このように、酸化チタンの全量に対して0.01質量%以上であると、着色抑制化合物としての効果を十分に発揮することができる。一方で、30質量%以下とすることにより、過剰量の着色抑制化合物を添加することなく、酸化チタンおよび高屈折率層に含まれる樹脂の着色を抑制することができるため、ヘイズが効果的に抑制される。その結果、高屈折率層の光学特性や色調が極めて良好となる。また、過剰量の着色抑制化合物を用いる必要がないという点で、経済的に有利である。なお、後述のように、酸化チタン粒子として、含ケイ素の水和酸化物で被覆された酸化チタンを用いる場合は、被覆された含ケイ素の水和酸化物を除いた酸化チタンの量に対する着色抑制化合物の含有量が上記範囲内であると好ましい。
 特に、光学反射層の色差(ΔE)を小さくするという観点からは、着色抑制化合物の含有量が、高屈折率層に含まれる酸化チタンの全量に対して、3~15質量%であると好ましく、9~15質量%であるとより好ましい。また、光学反射層のヘイズを低減するという観点からは、着色抑制化合物の含有量が、高屈折率層に含まれる酸化チタンの全量に対して、0.01~10質量%であると好ましく、0.01~9質量%であるとより好ましい。
 上述したように、本発明に係る着色抑制化合物は、ホスホン酸基およびリン酸基中のヒドロキシ基の一部が塩の形態となったものを実質的に含まない。よって、高屈折率層中において、仮に着色抑制化合物が塩の形態となった際に含みうるカウンターイオン(アルカリ金属等)は、酸化チタンに対して非常に少量である。具体的には、これらカウンターイオンは、酸化チタンの全量に対して、0.01質量%未満であると好ましく、0.001質量%未満であるとより好ましい。0.01質量%未満とすることで、光学反射層のヘイズを効果的に低減することができる。
 (樹脂)
 本発明の光学反射フィルムにおいて、高屈折率層は、上記ホスホン酸基またはリン酸基を有する化合物と共に、バインダーとしての樹脂を含む。また、低屈折率層においても、樹脂を含むと好ましい。以下、高屈折率層および低屈折率層に含まれる樹脂について説明する。なお、高屈折率層に含まれる樹脂は、低屈折率層に含まれる樹脂と同じであっても、互いに異なるものであってもよい。
 高屈折率層および低屈折率層で用いられる樹脂としては、特に制限はないが、具体的には水溶性樹脂、シリコーン系樹脂、オレフィン系樹脂、塩化ビニル系樹脂、含フッ素ポリマーなどが挙げられる。なかでも、高屈折率層及び低屈折率層を構成する樹脂としては、水溶性樹脂を用いることが好ましい。また、水溶性高分子の溶剤は水であるから、後述の基材に対して腐食、溶解、浸透を起こさないという利点もある。さらに、水溶性樹脂は、柔軟性が高いため、屈曲時の光学反射層の耐久性が向上するため好ましい。以下、本発明の光学反射フィルムにおいて好適に用いられる水溶性樹脂について説明する。
 本発明において、高屈折率層および低屈折率層で用いられる水溶性樹脂としては、特に制限されないが、ポリビニルアルコール類、ポリビニルピロリドン類などの合成水溶性樹脂;ゼラチン、増粘多糖類などの天然水溶性樹脂などが挙げられる。これらの中でも、酸素透過性が低く、高屈折率層中に含まれる酸化チタンの光触媒作用を抑制するという観点から、ポリビニルアルコール類を用いると好ましい。
 ポリビニルアルコール類には、ポリ酢酸ビニルを加水分解して得られる通常のポリビニルアルコールの他に、カチオン変性したカチオン変性ポリビニルアルコール、カルボキシル基のようなアニオン性基を有するアニオン変性ポリビニルアルコール、ノニオン性基を有するノニオン変性ポリビニルアルコール、シリル基を有するシリル変性ポリビニルアルコール等の変性ポリビニルアルコールも含まれる。
 ポリ酢酸ビニルを加水分解して得られるポリビニルアルコールは、平均重合度が200以上のものが好ましく用いられ、さらに、1,000以上のものが好ましく、平均重合度が1,500~5,000のものがより好ましく、2,000~5,000のものが特に好ましく用いられる。ポリビニルアルコールの重合度が200以上であると塗布膜のひび割れがなく、5,000以下であると塗布液が安定するからである。なお、塗布液が安定するとは塗布液が経時的に安定することを意味する。以下、同様である。
 また、ケン化度は、70~100%のものが好ましく、80~99.5%のものが水への溶解性の点でより好ましい。
 カチオン変性ポリビニルアルコールとしては、例えば、特開昭61-10483号公報に記載されているような、第一~三級アミノ基や第四級アンモニウム基を上記ポリビニルアルコールの主鎖または側鎖中に有するポリビニルアルコールであり、カチオン性基を有するエチレン性不飽和単量体と酢酸ビニルとの共重合体をケン化することにより得られる。
 カチオン性基を有するエチレン性不飽和単量体としては、例えば、トリメチル-(2-アクリルアミド-2,2-ジメチルエチル)アンモニウムクロライド、トリメチル-(3-アクリルアミド-3,3-ジメチルプロピル)アンモニウムクロライド、N-ビニルイミダゾール、N-ビニル-2-メチルイミダゾール、N-(3-ジメチルアミノプロピル)メタクリルアミド、ヒドロキシルエチルトリメチルアンモニウムクロライド、トリメチル-(2-メタクリルアミドプロピル)アンモニウムクロライド、N-(1,1-ジメチル-3-ジメチルアミノプロピル)アクリルアミド等が挙げられる。カチオン変性ポリビニルアルコールのカチオン変性基含有単量体の比率は、酢酸ビニルに対して0.1~10モル%、好ましくは0.2~5モル%である。
 アニオン変性ポリビニルアルコールは、例えば、特開平1-206088号公報に記載されているようなアニオン性基を有するポリビニルアルコール、特開昭61-237681号公報および同63-307979号公報に記載されているような、ビニルアルコールと水溶性基を有するビニル化合物との共重合体および特開平7-285265号公報に記載されているような水溶性基を有する変性ポリビニルアルコールが挙げられる。
 また、ノニオン変性ポリビニルアルコールとしては、例えば、特開平7-9758号公報に記載されているようなポリアルキレンオキサイド基をビニルアルコールの一部に付加したポリビニルアルコール誘導体、特開平8-25795号公報に記載されている疎水性基を有するビニル化合物とビニルアルコールとのブロック共重合体、シラノール基を有するシラノール変性ポリビニルアルコール、アセトアセチル基やカルボニル基、カルボキシル基などの反応性基を有する反応性基変性ポリビニルアルコール等が挙げられる。
 これらポリビニルアルコール類は、単独でも、または重合度や変性の種類違いなどの2種以上を併用してもよい。また、ポリビニルアルコール類は、市販品を用いてもよいし合成品を用いてもよい。市販品の例としては、例えば、PVA-102、PVA-103、PVA-105、PVA-110、PVA-117、PVA-120、PVA-124、PVA-135、PVA-203、PVA-205、PVA-210、PVA-217、PVA-220、PVA-224、PVA-235等のポバール(登録商標、株式会社クラレ製)、エクセバール(登録商標、株式会社クラレ製)、ニチゴーGポリマー(登録商標、日本合成化学工業株式会社製)等が挙げられる。
 屈折率層におけるポリビニルアルコールの含有量は、屈折率層の全固形分に対して、好ましくは3~70質量%、より好ましくは5~60質量%、さらに好ましくは10~50質量%、特に好ましくは15~45質量%である。
 (硬化剤)
 本発明においては、屈折率層は、硬化剤を用いることが好ましい。バインダー樹脂としてポリビニルアルコールを用いた場合、その効果は特に発揮されうる。
 ポリビニルアルコールと共に用いることのできる硬化剤としては、ポリビニルアルコールと硬化反応を起こすものであれば特に制限はないが、ホウ酸及びその塩が好ましい。ホウ酸またはその塩とは、硼素原子を中心原子とする酸素酸およびその塩のことをいい、具体的には、オルトホウ酸、二ホウ酸、メタホウ酸、四ホウ酸、五ホウ酸および八ホウ酸およびそれらの塩が挙げられる。硬化剤としてのホウ酸およびホウ酸塩は、単独の水溶液でも、また、2種以上を混合して使用しても良い。本発明において、ホウ酸および/またはその塩を用いた場合には、酸化チタン粒子等の無機酸化物粒子とポリビニルアルコールのOH基と水素結合ネットワークを形成し、その結果として高屈折率層と低屈折率層との層間混合が抑制され、好ましい赤外遮蔽特性が達成されると考えられる。特に、高屈折率層と低屈折率層の多層重層をコーターで塗布後、一旦塗膜の膜面温度を15℃程度に冷やした後、膜面を乾燥させるセット系塗布プロセスを用いた場合には、より好ましく効果を発現することができる。
 硬化剤としては、上記ホウ酸及びその塩以外にも、公知のものを使用することができ、一般的にはポリビニルアルコールと反応し得る基を有する化合物あるいはポリビニルアルコールが有する異なる基同士の反応を促進するような化合物であり、適宜選択して用いられる。硬化剤の具体例としては、例えば、エポキシ系硬化剤(ジグリシジルエチルエーテル、エチレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ジグリシジルシクロヘキサン、N,N-ジグリシジル-4-グリシジルオキシアニリン、ソルビトールポリグリシジルエーテル、グリセロールポリグリシジルエーテル等)、アルデヒド系硬化剤(ホルムアルデヒド、グリオキザール等)、活性ハロゲン系硬化剤(2,4-ジクロロ-4-ヒドロキシ-1,3,5,-s-トリアジン等)、活性ビニル系化合物(1,3,5-トリスアクリロイル-ヘキサヒドロ-s-トリアジン、ビスビニルスルホニルメチルエーテル等)、アルミニウム明礬等が挙げられる。
 上記硬化剤の総使用量は、ポリビニルアルコール(複数のポリビニルアルコールを用いる場合には、その合計量)1g当たり10~600mgが好ましく、20~500mgがより好ましい。
 (界面活性剤)
 本発明に係る高屈折率層および後述する低屈折率層には、塗布性の観点から界面活性剤を含有することが好ましい。
 塗布時の表面張力調整のため用いられる界面活性剤としてアニオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤などを用いることができるが、両性界面活性剤がより好ましい。
 本発明に好ましく用いられる両性界面活性剤としては、アドミスルホベタイン型、カルボキシベタイン型、スルホベタイン型、イミダゾリウム型などがある。本発明に好ましく用いられる両性界面活性剤の具体例を以下に示す。本発明ではスルホベタイン型が塗布ムラの観点から好ましく、製品としてはLSB-R、LSB(川研ファインケミカル株式会社製)、アンヒトール20HD(花王株式会社製)等が挙げられる。
 本発明に係る高屈折率層における界面活性剤の含有量は、高屈折率層の全固形分に対して、0.001~1質量%であることが好ましく、0.005~0.50質量%であることがより好ましい。
 (その他の添加剤)
 本発明に係る高屈折率層または後述する低屈折率層には、例えば、特開昭57-74193号公報、同57-87988号公報及び同62-261476号公報に記載の紫外線吸収剤、特開昭57-74192号公報、同57-87989号公報、同60-72785号公報、同61-146591号公報、特開平1-95091号公報および同3-13376号公報等に記載されている退色防止剤、特開昭59-42993号公報、同59-52689号公報、同62-280069号公報、同61-242871号公報および特開平4-219266号公報等に記載されている蛍光増白剤、硫酸、リン酸、酢酸、クエン酸、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等のpH調整剤、消泡剤、ジエチレングリコール等の潤滑剤、防腐剤、帯電防止剤、マット剤等の公知の各種添加剤を含有していてもよい。
 (高屈折率層に使用される酸化チタン粒子)
 本発明の光学反射フィルムにおいて、高屈折率層は、酸化チタン粒子を含有する。このように、酸化チタン粒子を含む高屈折率層は、透明でより高い屈折率を発現することができる。なお、本発明において、酸化チタンとは二酸化チタン(TiO)を意味する。
 酸化チタン粒子としては、ルチル型(正方晶形)、アナタース型、ブルッカイト型等の結晶構造を有するものがあるが、ルチル型は特に高い屈折率を示す。また、ルチル型の酸化チタン粒子は、アナタース型やブルッカイト型の酸化チタン粒子と比較して光触媒活性が低いことから、高屈折率層や隣接した低屈折率層の耐候性が高くなり、さらに屈折率も高くなるという利点がある。したがって、酸化チタンは、ルチル型酸化チタンを含有することが好ましい。一方で、ルチル型酸化チタンは、他の結晶構造のものよりも、紫外線照射による青色化が顕著となるが、本発明によれば、かようなルチル型酸化チタンの青色化も効果的に抑制することができる。
 高屈折率層に含まれる酸化チタン粒子の大きさは、特に制限されるものではないが、体積平均粒径または一次平均粒径により求めることができる。高屈折率層で用いられる酸化チタン粒子の体積平均粒径は、100nm以下であると好ましく、1~100nmであるとより好ましく、3~50nmであるとさらに好ましい。また、高屈折率層で用いられる酸化チタン粒子の一次平均粒径は、100nm以下であることが好ましく、1~100nmであることがより好ましく、3~50nmであることがさらに好ましい。一次平均粒径が1nm以上100nm以下であれば、ヘイズが少なく可視光透過性に優れる観点で好ましい。体積平均粒径または一次平均粒径が100nm以下であれば、ヘイズが少なく可視光透過性に優れる観点で好ましい。
 一方で、本発明者らは、酸化チタン粒子は、その粒径が小さくなると、紫外線照射による青色化が顕著となる傾向があることを見出した。したがって、青色化を抑制するという目的からはその体積平均粒径は大きいことが望ましいが、本発明によれば、上記のような粒径の非常に小さな酸化チタンを用いた場合であっても、効果的に青色化を抑制することができる。
 なお、本明細書でいう体積平均粒径とは、粒子そのものをレーザー回折散乱法、動的光散乱法、あるいは電子顕微鏡を用いて観察する方法や、屈折率層の断面や表面に現れた粒子像を電子顕微鏡で観察する方法により、1,000個の任意の粒子の粒径を測定し、それぞれd1、d2・・・di・・・dkの粒径を持つ粒子がそれぞれn1、n2・・・ni・・・nk個存在する粒子の集団において、粒子1個当りの体積をviとした場合に、体積平均粒径mv={Σ(vi・di)}/{Σ(vi)}で表される体積で重み付けされた平均粒径を算出する。
 また、本明細書において一次平均粒径は、透過型電子顕微鏡(TEM)等による電子顕微鏡写真から計測することができる。動的光散乱法や静的光散乱法等を利用する粒度分布計等によって計測してもよい。
 透過型電子顕微鏡から求める場合、粒子の一次平均粒径は、粒子そのものあるいは屈折率層の断面や表面に現れた粒子を電子顕微鏡で観察し、1000個の任意の粒子の粒径を測定し、その単純平均値(個数平均)として求められる。ここで個々の粒子の粒径は、その投影面積に等しい円を仮定したときの直径で表したものである。
 また、酸化チタン粒子としては、水系の酸化チタンゾルの表面を変性して有機溶剤等に分散可能な状態にしたものを用いることが好ましい。
 水系の酸化チタンゾルの調製方法としては、従来公知のいずれの方法も用いることができ、例えば、特開昭63-17221号公報、特開平7-819号公報、特開平9-165218号公報、特開平11-43327号公報、特開昭63-17221号公報、特開平7-819号公報、特開平9-165218号公報、特開平11-43327号公報等に記載された事項を参照することができる。
 また、酸化チタン粒子のその他の製造方法については、例えば、「酸化チタン-物性と応用技術」清野学 p255~258(2000年)技報堂出版株式会社、またはWO2007/039953号明細書の段落番号「0011」~「0023」に記載の工程(2)の方法を参考にすることができる。
 上記工程(2)による製造方法とは、二酸化チタン水和物をアルカリ金属の水酸物またはアルカリ土類金属の水酸化物からなる群から選択される、少なくとも1種の塩基性化合物で処理する工程(1)の後に、得られた二酸化チタン分散物を、カルボン酸基含有化合物および無機酸で処理する工程(2)からなる。
 さらに、酸化チタン粒子を含めた無機酸化物粒子のその他の製造方法としては、特開2000-053421号公報(分散安定化剤としてアルキルシリケートを配合してなり、該アルキルシリケート中のケイ素をSiOに換算した量と酸化チタン中のチタンをTiOに換算した量との重量比(SiO/TiO)が0.7~10である酸化チタンゾル)、特開2000-063119号公報(TiO-ZrO-SnOの複合体コロイド粒子を核としてその表面を、WO-SnO-SiOの複合酸化物コロイド粒子で被覆したゾル)等に記載された事項を参照にすることができる。
 さらに、酸化チタン粒子が含ケイ素の水和酸化物で被覆されたコアシェル粒子の形態が好ましい。ここで、「被覆」とは、酸化チタン粒子の表面の少なくとも一部に、含ケイ素の水和酸化物が付着されている状態を意味し、本明細書では、「シリカ付着二酸化チタン」または「シリカ被覆酸化チタン」とも称する。すなわち、酸化チタン粒子の表面が、完全に含ケイ素の水和酸化物で被覆されていてもよく、酸化チタン粒子の表面の一部が含ケイ素の水和酸化物で被覆されていてもよい。被覆された酸化チタン粒子の屈折率が含ケイ素の水和酸化物の被覆量により制御される観点から、酸化チタン粒子の表面の一部が含ケイ素の水和酸化物で被覆されることが好ましい。上記コアシェル粒子を高屈折率層に含有させることで、シェル層の含ケイ素の水和酸化物と、高屈折率層を構成する樹脂(好ましくはポリビニルアルコール)との相互作用により、高屈折率層と低屈折率層との層間混合が抑制される効果を奏する。
 含ケイ素の水和酸化物で被覆された酸化チタン粒子の酸化チタンはルチル型であってもアナタース型であってもブルッカイト型であってもよい。含ケイ素の水和酸化物で被覆された酸化チタン粒子は、含ケイ素の水和酸化物で被覆されたルチル型の酸化チタン粒子がより好ましい。これは、ルチル型の酸化チタン粒子が、アナタース型の酸化チタン粒子より光触媒活性が低いため、高屈折率層や隣接した低屈折率層の耐候性が高くなり、さらに屈折率が高くなるという理由からである。本明細書における「含ケイ素の水和酸化物」とは、無機ケイ素化合物の水和物、有機ケイ素化合物の加水分解物および/または縮合物のいずれでもよいが、光触媒活性を低減するため、シラノール基を有することがより好ましい。よって、本発明において、高屈折率金属酸化物微粒子としては、酸化チタンが、シリカ変性されてなるものであると好ましい。すなわち、高屈折率金属酸化物微粒子としては、酸化チタン粒子がシリカ変性されたシリカ変性(シラノール変性)酸化チタン粒子であることが好ましい。すなわち、本発明において、高屈折率層は、ポリビニルアルコール等の水溶性樹脂と、シリカ変性(シラノール変性)酸化チタン粒子と、ホスホン酸基またはリン酸基を有する化合物とを含むと好ましい。
 一方、本発明者らは、シリカ変性酸化チタン粒子を用いると、紫外線照射による青色化が起こりやすいことを見出した。したがって、青色化を抑制するという目的からは、酸化チタン粒子は含ケイ素の水和酸化物で被覆されていないものが好ましいと言えるが、本発明によれば、上記のようなシリカ変性酸化チタン粒子を用いた場合であっても、効果的に青色化を抑制することができる。そして、シリカ変性酸化チタン粒子は、その光触媒活性が低いことから、耐久性においても優れた光学反射フィルムを得ることができる。したがって、耐久性の向上と色調変動の抑制という効果を両立させるという目的では、本発明において、酸化チタン粒子としてシリカ変性酸化チタン粒子を用いると好ましい。
 含ケイ素の水和酸化物の被覆量は、コアとなる酸化チタン全量に対して、3~30質量%、好ましくは3~10質量%、より好ましくは3~8質量%である。被覆量が30質量%以下であると、高屈折率層の所望の屈折率化が得られる。一方、被覆量が3質量%以上であると粒子を安定に形成することができるだけでなく、酸化チタンの表面が、高屈折率層に含まれる樹脂と物理的に接触することが抑制されるため、樹脂の劣化を抑制することができる。
 酸化チタン粒子を含ケイ素の水和酸化物で被覆する方法としては、従来公知の方法により製造することができ、例えば、特開平10-158015号公報(ルチル型酸化チタンへのSi/Al水和酸化物処理;チタン酸ケーキのアルカリ領域での解膠後酸化チタンの表面にケイ素および/又はアルミニウムの含水酸化物を析出させて表面処理する酸化チタンゾルの製造方法)、特開2000-204301号公報(ルチル型酸化チタンにSiとZrおよび/またはAlの酸化物との複合酸化物を被覆したゾル。水熱処理。)、特開2007-246351号公報(含水酸化チタンを解膠して得られる酸化チタンのヒドロゾルへ、安定剤として式R SiX4-n(式中RはC-Cアルキル基、グリシジルオキシ置換C-Cアルキル基またはC-Cアルケニル基、Xはアルコキシ基、nは1または2である。)のオルガノアルコキシシランまたは酸化チタンに対して錯化作用を有する化合物を添加、アルカリ領域でケイ酸ナトリウムまたはシリカゾルの溶液へ添加・pH調整・熟成することにより、ケイ素の含水酸化物で被覆された酸化チタンヒドロゾルを製造する方法)等に記載された事項を参照にすることができる。
 本発明に係るコアシェル粒子は、コアである酸化チタン粒子の表面全体を含ケイ素の水和酸化物で被覆したものでもよく、また、コアである酸化チタン粒子の表面の一部を含ケイ素の水和酸化物で被覆したものでもよい。
 このとき、上記含ケイ素の水和酸化物で被覆された酸化チタン粒子の大きさは、特に制限はないが、上記酸化チタン粒子の体積平均粒径および一次平均粒径と同様の範囲内にあると好ましい。すなわち、高屈折率層に含まれるシリカ変性(シラノール変性)酸化チタン粒子の体積平均粒径は、100nm以下であると好ましく、1~100nmであるとより好ましく、3~50nmであるとさらに好ましい。また、高屈折率層で用いられる酸化チタン粒子の一次平均粒径は、100nm以下であることが好ましく、1~100nmであることがより好ましく、3~50nmであることがさらに好ましい。ここで、上記含ケイ素の水和酸化物で被覆された酸化チタン粒子の場合、上記体積平均粒径または一次平均粒径は(含ケイ素の水和酸化物で被覆されていない)酸化チタン粒子の体積平均粒径または一次平均粒径を、それぞれ指す。
 さらに、本発明で用いられる酸化チタン粒子は、単分散であることが好ましい。ここでいう単分散とは、下記式で求められる単分散度が40%以下であることをいう。この単分散度は、さらに好ましくは30%以下であり、特に好ましくは0.1~20%である。
Figure JPOXMLDOC01-appb-M000002
 高屈折率層における酸化チタン粒子の含有量としては、特に制限されないが、高屈折率層の全固形分に対して、15~85質量%であると好ましく、20~80質量%であるとより好ましく、30~80質量%であるとさらにより好ましい。上記範囲とすることで、光学反射特性の良好なものとできる。
 (高屈折率層に使用される無機酸化物粒子)
 本発明に係る光学反射フィルムにおいて、さらに、屈折率の高い高屈折率層を形成するために、高屈折率層には、酸化チタン粒子以外にも、ジルコニア、酸化スズ、酸化亜鉛、アルミナ、コロイダルアルミナ、酸化ニオブ、酸化ユーロピウム、ジルコン等の無機酸化物粒子(高屈折率金属酸化物微粒子)を含有していてもよい。これらのうち、酸化チタン粒子以外に含まれる無機酸化物粒子としては、ジルコニアを含有することが好ましい。なお、上記酸化チタン以外の高屈折率金属酸化物微粒子は、屈折率を調整するために、1種であっても2種以上を併用してもよい。なお、上記酸化チタン以外の高屈折率金属酸化物微粒子の大きさは、特に制限されないが、体積平均粒径が1~100nm以下であると好ましく、3~50nmであるとより好ましい。一次平均粒径が1~100nm以下であると好ましく、3~50nmであるとより好ましい。また、高屈折率層における上記高屈折率金属酸化物微粒子の含有量としては、特に制限されないが、酸化チタン粒子の含有量と高屈折率金属酸化物微粒子の含有量の和が、高屈折率層の全固形分に対して、15~85質量%となるように調整されると好ましく、20~80質量%であるとより好ましく、30~80質量%であるとさらにより好ましい。
 (低屈折率層中の金属酸化物粒子)
 本発明の光学反射フィルムにおいて、低屈折率層は、金属酸化物粒子を含むと好ましい。当該金属酸化物粒子としては、シリカ(二酸化ケイ素)を用いることが好ましく、具体的な例としては、合成非晶質シリカ、コロイダルシリカ、酸化亜鉛、アルミナ、コロイダルアルミナ等が挙げられる。これらのうち、コロイダルシリカゾル、特に酸性のコロイダルシリカゾルを用いることがより好ましく、有機溶媒に分散させたコロイダルシリカを用いることが特に好ましい。また、屈折率をより低減させるために、低屈折率層の金属酸化物微粒子として、粒子の内部に空孔を有する中空微粒子を用いてもよく、特にシリカ(二酸化ケイ素)の中空微粒子が好ましい。また、シリカ以外の公知の無機酸化物粒子も使用することができる。屈折率を調整するために、低屈折率層に含まれる無機酸化物粒子としては、1種単独で用いてもよいし、2種以上を併用してもよい。
 低屈折率層に含まれる無機酸化物粒子(好ましくは二酸化ケイ素)は、その平均粒径(個数平均;直径)が3~100nmであることが好ましい。一次粒子の状態で分散された二酸化ケイ素の一次粒子の平均粒径(塗布前の分散液状態での粒径)は、3~50nmであるのがより好ましく、1~40nmであるのがさらに好ましく、3~20nmであるのが特に好ましく、4~10nmであるのがもっとも好ましい。また、二次粒子の平均粒径としては、30nm以下であることが、ヘイズが少なく可視光透過性に優れる観点で好ましい。
 また、低屈折率層の無機酸化物粒子の粒径は、一次平均粒径の他に、体積平均粒径により求めることもできる。
 本発明で用いられるコロイダルシリカは、珪酸ナトリウムの酸等による複分解やイオン交換樹脂層を通過させて得られるシリカゾルを加熱熟成して得られるものであり、例えば、特開昭57-14091号公報、特開昭60-219083号公報、特開昭60-219084号公報、特開昭61-20792号公報、特開昭61-188183号公報、特開昭63-17807号公報、特開平4-93284号公報、特開平5-278324号公報、特開平6-92011号公報、特開平6-183134号公報、特開平6-297830号公報、特開平7-81214号公報、特開平7-101142号公報、特開平7-179029号公報、特開平7-137431号公報、および国際公開第94/26530号などに記載されているものである。
 このようなコロイダルシリカは合成品を用いてもよいし、市販品を用いてもよい。市販品としては、日産化学工業(株)から販売されているスノーテックスシリーズ(スノーテックスOS、OXS、S、OS、20、30、40、O、N、C等)が挙げられる。
 コロイダルシリカは、その表面をカチオン変性されたものであってもよく、また、Al、Ca、MgまたはBa等で処理された物であってもよい。
 また、低屈折率層の無機酸化物粒子としては、上述のように、中空粒子を用いることもできる。中空微粒子を用いる場合には、平均粒子空孔径が、3~70nmであると好ましく、5~50nmであるとより好ましく、5~45nmであるとさらに好ましい。なお、中空微粒子の平均粒子空孔径とは、中空微粒子の内径の平均値である。中空微粒子の平均粒子空孔径は、上記範囲であれば、十分に低屈折率層の屈折率が低屈折率化される。平均粒子空孔径は、電子顕微鏡観察で、円形、楕円形または実質的に円形は楕円形として観察できる空孔径を、ランダムに50個以上観察し、各粒子の空孔径を求め、その数平均値を求めることにより得られる。なお、平均粒子空孔径は、円形、楕円形または実質的に円形もしくは楕円形として観察できる空孔径の外縁を、2本の平行線で挟んだ距離のうち、最小の距離を意味する。
 低屈折率層における無機酸化物粒子の含有量は、低屈折率層の全固形分に対して、20~90質量%であることが好ましく、30~85質量%であることがより好ましく、40~80質量%であることがさらに好ましい。20質量%以上であると、所望の屈折率が得られ90質量%以下であると塗布性が良好となり好ましい。
 上記低屈折率層の無機酸化物粒子は、複数存在する低屈折率層の少なくとも1層に含まれていればよい。
 (基材)
 本発明に係る光学反射フィルムは、上記高屈折率層および低屈折率層を支持するための基材を含む。光学反射フィルムの基材としては、種々の樹脂フィルムを用いることができ、ポリオレフィンフィルム(ポリエチレン、ポリプロピレン等)、ポリエステルフィルム(ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート等)、ポリ塩化ビニル、3酢酸セルロース等を用いることができ、好ましくはポリエステルフィルムである。ポリエステルフィルム(以降ポリエステルと称す)としては、特に限定されるものではないが、ジカルボン酸成分とジオール成分を主要な構成成分とするフィルム形成性を有するポリエステルであることが好ましい。
 主要な構成成分のジカルボン酸成分としては、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルエタンジカルボン酸、シクロヘキサンジカルボン酸、ジフェニルジカルボン酸、ジフェニルチオエーテルジカルボン酸、ジフェニルケトンジカルボン酸、フェニルインダンジカルボン酸などを挙げることができる。また、ジオール成分としては、エチレングリコール、プロピレングリコール、テトラメチレングリコール、シクロヘキサンジメタノール、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシエトキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン、ビスフェノールフルオレンジヒドロキシエチルエーテル、ジエチレングリコール、ネオペンチルグリコール、ハイドロキノン、シクロヘキサンジオールなどを挙げることができる。これらを主要な構成成分とするポリエステルの中でも透明性、機械的強度、寸法安定性などの点から、ジカルボン酸成分として、テレフタル酸や2,6-ナフタレンジカルボン酸、ジオール成分として、エチレングリコールや1,4-シクロヘキサンジメタノールを主要な構成成分とするポリエステルが好ましい。中でも、ポリエチレンテレフタレートやポリエチレンナフタレートを主要な構成成分とするポリエステルや、テレフタル酸と2,6-ナフタレンジカルボン酸とエチレングリコールからなる共重合ポリエステル、およびこれらのポリエステルの2種以上の混合物を主要な構成成分とするポリエステルが好ましい。
 本発明に用いられる基材の厚みは、10~300μm、特に20~150μmであることが好ましい。また、基材は、2枚重ねたものであっても良く、この場合、その種類が同じでも異なってもよい。
 基材は、JIS R3106-1998で示される可視光領域の透過率が85%以上であることが好ましく、特に90%以上であることが好ましい。基材が上記透過率以上であることにより、赤外遮蔽フィルムとしたときのJIS R3106-1998で示される可視光領域の透過率を50%以上(上限:100%)にするという点で有利であり、好ましい。
 また、上記樹脂等を用いた基材は、未延伸フィルムでもよく、延伸フィルムでもよい。強度向上、熱膨張抑制の点から延伸フィルムが好ましい。
 基材は、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の基材を製造することができる。また、未延伸の基材を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸などの公知の方法により、基材の流れ(縦軸)方向、または基材の流れ方向と直角(横軸)方向に延伸することにより延伸基材を製造することができる。この場合の延伸倍率は、基材の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向および横軸方向にそれぞれ2~10倍が好ましい。
 また、基材は、寸法安定性の点で弛緩処理、オフライン熱処理を行ってもよい。弛緩処理は前記ポリエステルフィルムの延伸製膜工程中の熱固定した後、横延伸のテンター内、またはテンターを出た後の巻き取りまでの工程で行われるのが好ましい。弛緩処理は処理温度が80~200℃で行われることが好ましく、より好ましくは処理温度が100~180℃である。また長手方向、幅手方向ともに、弛緩率が0.1~10%の範囲で行われることが好ましく、より好ましくは弛緩率が2~6%で処理されることである。弛緩処理された基材は、下記のオフライン熱処理を施すことにより耐熱性が向上し、さらに、寸法安定性が良好になる。
 基材は、製膜過程で片面または両面にインラインで下引層塗布液を塗布することが好ましい。なお、製膜工程中での下引塗布をインライン下引という。下引層塗布液に使用する樹脂としては、ポリエステル樹脂、アクリル変性ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、ビニル樹脂、塩化ビニリデン樹脂、ポリエチレンイミンビニリデン樹脂、ポリエチレンイミン樹脂、ポリビニルアルコール樹脂(ポリビニルアルコール)、変性ポリビニルアルコール樹脂(変性ポリビニルアルコール)およびゼラチン等が挙げられ、いずれも好ましく用いることができる。これらの下引層には、従来公知の添加剤を加えることもできる。そして、上記の下引層は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法によりコーティングすることができる。上記の下引層の塗布量としては、0.01~2g/m(乾燥状態)程度が好ましい。
 〔光学反射フィルムの製造方法〕
 本発明の光学反射フィルムの製造方法は、基材上に、上記高屈折率層と低屈折率層とから構成されるユニットを少なくとも1つ形成することができるものであれば、いかなる方法でも用いられうる。
 本発明の光学反射フィルムの製造方法では、基材上に高屈折率層と低屈折率層とから構成されるユニットを積層して形成される。
 具体的には高屈折率層と低屈折率層とを交互に塗布、乾燥して積層体を形成することが好ましい。具体的には以下の形態が挙げられる;(1)基材上に、高屈折率層塗布液を塗布し乾燥して高屈折率層を形成した後、低屈折率層塗布液を塗布し乾燥して低屈折率層を形成し、赤外遮蔽フィルムを形成する方法;(2)基材上に、低屈折率層塗布液を塗布し乾燥して低屈折率層を形成した後、高屈折率層塗布液を塗布し乾燥して高屈折率層を形成し、赤外遮蔽フィルムを形成する方法;(3)基材上に、高屈折率層塗布液と、低屈折率層塗布液とを交互に逐次重層塗布した後乾燥して、高屈折率層、および低屈折率層を含む赤外遮蔽フィルムを形成する方法;(4)基材上に、高屈折率層塗布液と、低屈折率層塗布液とを同時重層塗布し、乾燥して、高屈折率層、および低屈折率層を含む赤外遮蔽フィルムを形成する方法;などが挙げられる。なかでも、より簡便な製造プロセスとなる上記(4)の方法が好ましい。すなわち、本発明の光学反射フィルムの製造方法は、水系同時重層塗布法により前記高屈折率層と前記低屈折率層とを積層することを含むことが好ましい。
 本発明においては、高屈折率層を形成するため、高屈折率層塗布液が、上記樹脂と、酸化チタンと、ホスホン酸基またはリン酸基を有する化合物とを含む。したがって、本発明の第二の形態によれば、光学反射フィルムの製造方法が提供され、当該光学反射フィルムの製造方法は、基材上に低屈折率層と高屈折率層とを積層したユニットを少なくとも1つ含む光学反射フィルムの製造方法であって、樹脂と、酸化チタンと、ホスホン酸基またはリン酸基を有する化合物(上記着色抑制化合物)とを添加して調製した塗布液を塗布することを含む。このように、ホスホン酸基またはリン酸基を有する化合物を酸化チタンと共に添加して高屈折率層塗布液を調製することにより、これら材料が凝集することなく、均一な塗布液を作製することができる。その結果、得られる高屈折率層は、ヘイズが低減され、強い太陽光に曝されても、光学反射フィルムの色調変動を抑制することができる。
 塗布方式としては、例えば、ロールコーティング法、ロッドバーコーティング法、エアナイフコーティング法、スプレーコーティング法、カーテン塗布方法、あるいは米国特許第2,761,419号、同第2,761,791号公報に記載のホッパーを使用するスライドビード塗布方法、エクストルージョンコート法等が好ましく用いられる。
 高屈折率層塗布液および低屈折率層塗布液を調製するための溶媒は、特に制限されないが、水、有機溶媒、またはその混合溶媒が好ましい。本発明においては、樹脂バインダーとしてポリビニルアルコールを主として用いることが好ましいが、このように、ポリビニルアルコールを用いることにより、水系溶媒による塗布が可能となる。さらに、本発明では、色調変動の抑制のため、ホスホン酸基またはリン酸基を有する化合物を塗布液に添加するが、当該化合物は、ホスホン酸基またはリン酸基を有するために水系溶媒に容易に分散可能である。水系溶媒は、有機溶媒を用いる場合と比較して、大規模な生産設備を必要とすることがないため、生産性の点で好ましく、また環境保全の点でも好ましい。
 前記有機溶媒としては、例えば、メタノール、エタノールなどのアルコール類、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、ジエチルエーテル、プロピレングリコールモノメチルエーテルなどのエーテル類、ジメチルホルムアミドなどのアミド類、アセトン、メチルエチルケトンなどのケトン類などが挙げられる。これら有機溶媒は、単独でもまたは2種以上混合して用いてもよい。環境面、操作の簡便性などから、塗布液の溶媒としては、水系溶媒が好ましく、水、または水とメタノール、エタノール、もしくは酢酸エチルとの混合溶媒がより好ましく、水が特に好ましい。
 水と少量の有機溶媒との混合溶媒を用いる際、当該混合溶媒中の水の含有量は、混合溶媒全体を100質量%として、80~99.9質量%であることが好ましく、85~99.5質量%であることがより好ましい。ここで、80質量%以上にすることで、溶媒の揮発による体積変動が低減でき、ハンドリングが向上し、また、99.9質量%以下にすることで、液添加時の均質性が増し、安定した液物性を得ることができるからである。
 高屈折率層塗布液中の樹脂の濃度(複数種類の樹脂を用いる場合は、その合計濃度)は、0.5~10質量%であることが好ましい。また、高屈折率層塗布液中の無機酸化物粒子(酸化チタン粒子を含む)の濃度は、1~50質量%であることが好ましい。さらに、高屈折率層塗布液中のホスホン酸基またはリン酸基を有する化合物(着色抑制化合物)の濃度は、0.01~10質量%であることが好ましい。
 低屈折率層塗布液中の樹脂の濃度は、0.5~10質量%であることが好ましい。また、低屈折率層塗布液中の無機酸化物粒子の濃度は、1~50質量%であることが好ましい。
 高屈折率層塗布液および低屈折率層塗布液の調製方法は、特に制限されず、例えば、酸化チタン粒子を含む無機酸化物粒子、ポリビニルアルコール、ポリビニルアルコールよりも屈折率の高いキレート化合物、さらに必要に応じて添加されるその他の添加剤を添加し、攪拌混合する方法が挙げられる。この際、各成分の添加順も特に制限されず、攪拌しながら各成分を順次添加し混合してもよいし、攪拌しながら一度に添加し混合してもよい。
 また、本発明において、同時多層塗布を行う場合は高屈折率層塗布液および低屈折率層塗布液に用いるポリビニルアルコールの鹸化度が異なる事が好ましい。鹸化度が異なることによって塗布、乾燥工程の各工程において層の混合を抑制する事ができる。この仕組みはいまだ明らかではないが、鹸化度差に由来する表面張力差によって混合が抑制されていると考えられる。本発明においては高屈折率層塗布液と低屈折率層塗布液に用いるポリビニルアルコールの鹸化度の差は3モル%以上が好ましく、より好ましくは8モル%以上が好ましい。すなわち、高屈折率層の鹸化度と低屈折率層の鹸化度との差が3モル%以上であることが好ましく、8モル%以上であることがより好ましい。高屈折率層の鹸化度と低屈折率層の鹸化度との差の上限は、高屈折率層と低屈折率層との層間混合の抑制/防止効果を考慮すると、高いほど好ましいため、特に制限されないが、20モル%以下であることが好ましく、15モル%以下であることがより好ましい。
 各屈折率層中で鹸化度の相違を比較する際、各屈折率層が(鹸化度および重合度が異なる)複数のポリビニルアルコールを含む場合には、屈折率層中で最も含有量の高いポリビニルアルコールを比較する。ここで、「屈折率層中で最も含有量が高いポリビニルアルコール」という際には、鹸化度の差が3モル%以内のポリビニルアルコールは同一のポリビニルアルコールであるとし、重合度を算出する。具体的には、鹸化度が90モル%、鹸化度が91モル%、鹸化度が93モル%のポリビニルアルコールが同一層内にそれぞれ10質量%、40質量%、50質量%含まれる場合には、これら3つのポリビニルアルコールは同一のポリビニルアルコールとし、これら3つの混合物をポリビニルアルコール(A)または(B)とするが、このポリビニルアルコール(A)/(B)の鹸化度は、(90×0.1+91×0.4+93×0.5)/1=91.9モル%となる。また、上記「鹸化度の差が3モル%以内のポリビニルアルコール」とは、いずれかのポリビニルアルコールに着目した場合に3モル%以内であれば足り、例えば、90、91、92、94モル%のビニルアルコールを含む場合には、91モル%のビニルアルコールに着目した場合にいずれのポリビニルアルコールも3モル%以内なので、同一のポリビニルアルコールとなる。
 同一層内に鹸化度が3モル%以上異なるポリビニルアルコールが含まれる場合、異なるポリビニルアルコールの混合物とみなし、それぞれに重合度と鹸化度を算出する。
 例えば、PVA203:5質量%、PVA117:25質量%、PVA217:10質量%、PVA220:10質量%、PVA224:10質量%、PVA235:20質量%、PVA245:20質量%が含まれる場合、最も含有量の多いPVAはPVA217~245の混合物であり(PVA217~245の鹸化度の差は3モル%以内なので同一のポリビニルアルコールである)、この混合物がポリビニルアルコール(A)または(B)となる。そして、PVA217~245の混合物(ポリビニルアルコール(A)/(B))においては、重合度は、(1700×0.1+2000×0.1+2400×0.1+3500×0.2+4500×0.2)/0.7=3200であり、鹸化度は、88%となる。
 同時重層塗布を行う際の高屈折率層塗布液および低屈折率層塗布液の温度は、スライドビード塗布方式を用いる場合は、25~60℃の温度範囲が好ましく、30~45℃の温度範囲がより好ましい。また、カーテン塗布方式を用いる場合は、25~60℃の温度範囲が好ましく、30~45℃の温度範囲がより好ましい。
 同時重層塗布を行う際の高屈折率層塗布液と低屈折率層塗布液の粘度は、特に制限されない。しかしながら、スライドビード塗布方式を用いる場合には、上記の塗布液の好ましい温度の範囲において、5~160mPa・sの範囲が好ましく、さらに好ましくは60~140mPa・sの範囲である。また、カーテン塗布方式を用いる場合には、上記の塗布液の好ましい温度の範囲において、5~1200mPa・sの範囲が好ましく、さらに好ましくは25~500mPa・sの範囲である。このような粘度の範囲であれば、効率よく同時重層塗布を行うことができる。
 また、塗布液の15℃における粘度としては、100mPa・s以上が好ましく、100~30,000mPa・sがより好ましく、さらに好ましくは2,500~30,000mPa・sである。
 塗布および乾燥方法の条件は、特に制限されないが、例えば、逐次塗布法の場合は、まず、30~60℃に加温した高屈折率層塗布液および低屈折率層塗布液のいずれか一方を基材上に塗布、乾燥して層を形成した後、もう一方の塗布液をこの層上に塗布、乾燥して積層膜前駆体(ユニット)を形成する。次に、所望の遮蔽性能を発現するために必要なユニット数を、前記方法にて逐次塗布、乾燥して積層させて積層膜前駆体を得る。乾燥する際は、形成した塗膜を、30℃以上で乾燥することが好ましい。例えば、湿球温度5~50℃、膜面温度5~100℃(好ましくは10~50℃)の範囲で乾燥するのが好ましく、例えば、40~60℃の温風を1~5秒吹き付けて乾燥する。乾燥方法としては、温風乾燥、赤外乾燥、マイクロ波乾燥が用いられる。また単一プロセスでの乾燥よりも多段プロセスの乾燥が好ましく、恒率乾燥部の温度<減率乾燥部の温度にするのがより好ましい。この場合の恒率乾燥部の温度範囲は30~60℃、減率乾燥部の温度範囲は50~100℃にするのが好ましい。
 また、同時重層塗布を行う場合の塗布および乾燥方法の条件は、高屈折率層塗布液および低屈折率層塗布液を30~60℃に加温して、基材上に高屈折率層塗布液および低屈折率層塗布液の同時重層塗布を行った後、形成した塗膜の温度を好ましくは1~15℃にいったん冷却し(セット)、その後10℃以上で乾燥することが好ましい。より好ましい乾燥条件は、湿球温度5~50℃、膜面温度10~50℃の範囲の条件である。例えば、40~80℃の温風を1~5秒吹き付けて乾燥する。また、塗布直後の冷却方式としては、形成された塗膜の均一性向上の観点から、水平セット方式で行うことが好ましい。
 ここで、前記セットとは、冷風等を塗膜に当てて温度を下げるなどの手段により、塗膜組成物の粘度を高め、各層間および各層内の物質の流動性を低下させたり、またゲル化する工程のことを意味する。冷風を塗布膜に表面から当てて、塗布膜の表面に指を押し付けたときに指に何もつかなくなった状態を、セット完了の状態と定義する。
 塗布した時点から、冷風を当ててセットが完了するまでの時間(セット時間)は、5分以内であることが好ましく、2分以内であることがより好ましい。また、下限の時間は特に制限されないが、45秒以上の時間をとることが好ましい。セット時間が短すぎると、層中の成分の混合が不十分となる虞がある。一方、セット時間が長すぎると、無機酸化物粒子の層間拡散が進み、高屈折率層と低屈折率層との屈折率差が不十分となるおそれがある。なお、高屈折率層と低屈折率層との間の中間層の高弾性化が素早く起こるのであれば、セットさせる工程は設けなくてもよい。
 セット時間の調整は、ポリビニルアルコールの濃度や無機酸化物粒子の濃度を調整したり、ゼラチン、ペクチン、寒天、カラギ-ナン、ゲランガム等の各種公知のゲル化剤など、他の成分を添加することにより調整することができる。
 冷風の温度は、0~25℃であることが好ましく、5~10℃であることがより好ましい。また、塗膜が冷風に晒される時間は、塗膜の搬送速度にもよるが、好ましくは10~360秒、より好ましくは10~300秒、さらに好ましくは10~120秒である。
 高屈折率層塗布液および低屈折率層塗布液の塗布厚は、上記で示したような好ましい乾燥時の厚みとなるように塗布すればよい。
 〔膜設計〕
 本発明の光学反射フィルムは、高屈折率層と低屈折率層とを積層したユニットを少なくとも1つ含む。好適には基材の片面上または両面上に、高屈折率層と低屈折率層が交互に積層して形成された多層の光学干渉膜を有する。生産性の観点から、基材の片面あたりの好ましい高屈折率層および低屈折率層の総層数の範囲は、100層以下、より好ましくは45層以下である。基材の片面あたりの好ましい高屈折率層および低屈折率層の総層数の範囲の下限は特に限定されるものではないが、5層以上であることが好ましい。なお、前記の好ましい高屈折率層および低屈折率層の総層数の範囲は、基材の片面にのみ積層される場合においても適応可能であり、基材の両面に同時に積層される場合においても適応可能である。基材の両面に積層される場合において、基材一の面と他の面との高屈折率層および低屈折率層の総層数は、同じであってもよく、異なっていてもよい。また、本発明の光学反射フィルムにおいて、最下層(基材と接触する層)および最表層は、高屈折率層および低屈折率層のいずれであってもよい。
 一般に、光学反射フィルムにおいては、高屈折率層と低屈折率層との屈折率の差を大きく設計することが、少ない層数で所望の光線に対する反射率を高くすることができるという観点から好ましい。本発明においては、少なくとも隣接した2層(高屈折率層および低屈折率層)の屈折率差が0.3以上であることが好ましく、より好ましくは0.35以上であり、もっとも好ましくは0.4以上である。また、上限には特に制限はないが通常1.4以下である。
 この屈折率差と、必要な層数とについては、市販の光学設計ソフトを用いて計算することができる。例えば、近赤外線反射率90%以上を得るためには、屈折率差が0.1より小さいと200層以上の積層が必要になり、生産性が低下するだけでなく、積層界面での散乱が大きくなり、透明性が低下し、故障なく製造することも非常に困難になる場合がある。
 光学反射フィルムにおいて高屈折率層および低屈折率層を交互に積層する場合には、高屈折率層と低屈折率層との屈折率差が、上記好適な屈折率差の範囲内にあることが好ましい。ただし、例えば、最表層はフィルムを保護するための層として形成される場合または最下層が基板との接着性改良層として形成される場合などにおいて、最表層や最下層に関しては、上記好適な屈折率差の範囲外の構成であってもよい。
 隣接した層界面(高屈折率層と低屈折率層との界面)での反射は、層間の屈折率比に依存するのでこの屈折率比が大きいほど、反射率が高まる。また、単層膜でみたとき層表面における反射光と、層底部における反射光の光路差を、n・d=波長/4、で表される関係にすると位相差により反射光を強めあうよう制御出来、反射率を上げることができる。ここで、nは屈折率、またdは層の物理膜厚、n・dは光学膜厚である。この光路差を利用することで、反射を制御出来る。この関係を利用して、各層の屈折率と膜厚を制御して、可視光や、近赤外光の反射を制御する。即ち、各層の屈折率、各層の膜厚、各層の積層のさせ方で、特定波長領域の反射率をアップさせることができる。
 本発明の光学反射フィルムは反射率をアップさせる特定波長領域を変えることにより、可視光反射フィルムや近赤外線反射フィルムとすることができる。即ち、反射率をアップさせる特定波長領域を可視光領域に設定すれば可視光線反射フィルムとなり、近赤外領域に設定すれば近赤外線反射フィルムとなる。また、反射率をアップさせる特定波長領域を紫外光領域に設定すれば、紫外線反射フィルムとなる。本発明の光学反射フィルムを遮熱フィルムに用いる場合は、(近)赤外反射(遮蔽)フィルムとすればよい。赤外反射フィルムの場合、高分子フィルムに互いに屈折率が異なる膜を積層させた多層膜を形成し、JIS R3106-1998で示される可視光領域の550nmでの透過率が50%以上であることが好ましく、70%以上であることがより好ましく、75%以上であることがさらに好ましい。また、1200nmでの透過率が35%以下であることが好ましく、25%以下であることがより好ましく、20%以下であることがさらに好ましい。かような好適な範囲となるように光学膜厚とユニットを設計することが好ましい。また、波長900nm~1400nmの領域に反射率50%を超える領域を有することが好ましい。
 太陽直達光の入射スペクトルのうち赤外域が室内温度上昇に関係し、これを遮蔽することで室内温度の上昇を抑えることができる。日本工業規格JIS R3106-1998に記載された重価係数をもとに赤外の最短波長(760nm)から最長波長3200nmまでの累積エネルギー比率をみてみると、波長760nmから最長波長3200nmまでの赤外全域の総エネルギーを100としたときの、760nmから各波長までの累積エネルギーをみると、760から1300nmのエネルギー合計が赤外域全体の約75%を占めている。従って、1300nmまでの波長領域を遮蔽することが熱線遮蔽による省エネルギー効果の効率がよい。
 この近赤外光域(760~1300nm)の反射率を最大ピーク値で約80%以上にすると体感温度の低下が官能評価により得られる。たとえば8月の午前中の南東方法を向く窓際での体感温度が近赤外光域の反射率を最大ピーク値で約80%にまで遮蔽したとき明確な差がでた。
 このような機能を発現するのに必要となる多層膜構造を光学シミュレーション(FTG Software Associates Film DESIGN Version 2.23.3700)で求めた結果、1.9以上、望ましくは2.0以上の高屈折率層を利用し、6層以上積層した場合に優れた特性が得られることがわかっている。例えば、高屈折率層と低屈折率層(屈折率=1.35)を交互に8層積層したモデルのシミュレーション結果をみると、高屈折率層の屈折率が1.8では反射率が70%にも達しないが、1.9になると約80%の反射率が得られる。また、高屈折率層(屈折率=2.2)と低屈折率層(屈折率=1.35)を交互に積層したモデルでは、積層数が4では反射率が60%にも達していないが、6層になると約80%の反射率が得られる。
 低屈折率層は、屈折率が1.10~1.60であることが好ましく、より好ましくは1.30~1.50である。高屈折率層は、屈折率が1.70~2.50であることが好ましく、より好ましくは1.80~1.90である。
 屈折率層の1層(最下層、最表層を除く)あたりの厚み(乾燥後の厚み)は、20~1000nmであることが好ましく、50~500nmであることがより好ましく、50~350nmであることがより好ましい。
 本発明の光学反射フィルムの全体の厚みは、好ましくは12μm~315μm、より好ましくは15μm~200μm、さらに好ましくは20μm~100μmである。
 〔光学反射フィルムの層構成〕
 光学反射フィルムは、基材上に高屈折率層と低屈折率層とを積層したユニットを少なくとも1つ含む。該ユニットは、基材の片面にのみ形成されていてもよいし、両面に形成されていてもよい。特定波長の反射率が向上することから、該ユニットが基材の両面に形成されてなることが好ましい。
 光学反射フィルムは、基材の下または基材と反対側の最表面層の上に、さらなる機能の付加を目的として、導電性層、帯電防止層、ガスバリア層、易接着層(接着層)、防汚層、消臭層、流滴層、易滑層、ハードコート層、耐摩耗性層、反射防止層、電磁波シールド層、紫外線吸収層、赤外線吸収層、印刷層、蛍光発光層、ホログラム層、剥離層、粘着層、接着層、上記高屈折率層および低屈折率層以外の赤外線カット層(金属層、液晶層)、着色層(可視光線吸収層)、合わせガラスに利用される中間膜層などの機能層の1つ以上を有していてもよい。
 反射フィルムにおける上述の各種の機能層の積層順は、特に制限されない。
 例えば、窓ガラスの室内側に光学反射フィルムを貼る(内貼り)仕様では、基材表面に、上記高屈折率層および低屈折率層を積層したユニットを少なくとも1つ含む光学反射層、粘着層の順に積層し、さらにこれらの層が積層されている側とは逆の側の基材表面にハードコート層を塗設する形態が好ましい一例として挙げられる。また、粘着層、基材、光学反射層、ハードコート層の順であってもよく、さらに他の機能層、基材、または赤外吸収剤などを有していてもよい。また、窓ガラスの室外側に本発明の光学反射フィルムを貼る(外貼り)仕様でも好ましい一例を挙げると、基材表面に光学反射層、粘着層の順に積層し、さらにこれらの層が積層されている側とは逆の側の基材表面にハードコート層が塗設する構成である。内貼りの場合と同様に、粘着層、基材、光学反射層、ハードコート層の順であってもよく、さらに他の機能層基材、または赤外吸収剤などを有していてもよい。
 〔光学反射フィルムの応用:光学反射体〕
 本発明の光学反射フィルムは、幅広い分野に応用することができる。すなわち、本発明の第三の形態によれば、上記光学反射フィルムが基体の少なくとも一方の面に設けられた、光学反射体が提供される。例えば、建物の屋外の窓や自動車窓等長期間太陽光に晒らされる設備(基体)に貼り合せ、熱線反射効果を付与する熱線反射フィルム等の窓貼用フィルム、農業用ビニールハウス用フィルム等として、主として耐候性を高める目的で用いられる。特に、本発明に係る光学反射フィルムが直接もしくは接着剤を介してガラスもしくはガラス代替樹脂等の基体に貼合されている部材には好適である。
 基体の具体的な例としては、例えば、ガラス、ポリカーボネート樹脂、ポリスルホン樹脂、アクリル樹脂、ポリオレフィン樹脂、ポリエーテル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリスルフィド樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、メラミン樹脂、フェノール樹脂、ジアリルフタレート樹脂、ポリイミド樹脂、ウレタン樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、スチレン樹脂、塩化ビニル樹脂、金属板、セラミック等が挙げられる。樹脂の種類は、熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂のいずれでも良く、これらを2種以上組み合わせて用いても良い。基体は、押出成形、カレンダー成形、射出成形、中空成形、圧縮成形等、公知の方法で製造することができる。基体の厚みは特に制限されないが、通常0.1mm~5cmである。
 光学反射フィルムと基体とを貼り合わせる接着層または粘着層は、光学反射フィルムを日光(熱線)入射面側に設置することが好ましい。また、光学反射フィルムを、窓ガラスと基体との間に挟持すると、水分等の周囲のガスから封止でき耐久性に優れるため好ましい。本発明に係る赤外遮蔽フィルムを屋外や車の外側(外貼り用)に設置しても環境耐久性があって好ましい。
 光学反射フィルムと基体とを貼り合わせる接着層または粘着層は、窓ガラスなどに貼り合わせたとき、光学反射フィルムが日光(熱線)入射面側にあるように設置することが好ましい。また光学反射フィルムを窓ガラスと基材との間に挟持すると、水分等周囲ガスから封止でき耐久性に好ましい。本発明の光学反射フィルムを屋外や車の外側(外貼り用)に設置しても環境耐久性があって好ましい。
 本発明に適用可能な接着剤としては、光硬化性もしくは熱硬化性の樹脂を主成分とする接着剤を用いることができる。
 接着剤は紫外線に対して耐久性を有するものが好ましく、アクリル系粘着剤またはシリコーン系粘着剤が好ましい。更に粘着特性やコストの観点から、アクリル系粘着剤が好ましい。特に剥離強さの制御が容易なことから、アクリル系粘着剤において、溶剤系およびエマルジョン系の中で溶剤系が好ましい。アクリル溶剤系粘着剤として溶液重合ポリマーを使用する場合、そのモノマーとしては公知のものを使用できる。
 また、合わせガラスの中間層として用いられるポリビニルブチラール系樹脂、あるいはエチレン-酢酸ビニル共重合体系樹脂を用いてもよい。具体的には可塑性ポリビニルブチラール〔積水化学工業社製、三菱モンサント社製等〕、エチレン-酢酸ビニル共重合体〔デュポン社製、武田薬品工業社製、デュラミン〕、変性エチレン-酢酸ビニル共重合体〔東ソー社製、メルセンG〕等である。なお、接着層には紫外線吸収剤、抗酸化剤、帯電防止剤、熱安定剤、滑剤、充填剤、着色、接着調整剤等を適宜添加配合してもよい。
 光学反射フィルムまたは赤外遮蔽体の断熱性能、日射熱遮へい性能は、一般的にJIS R 3209(1998)(複層ガラス)、JIS R 3106(1998)(板ガラス類の透過率・反射率・放射率・日射熱取得率の試験方法)、JIS R 3107(1998)(板ガラス類の熱抵抗および建築における熱貫流率の算定方法)に準拠した方法により求めることができる。
 日射透過率、日射反射率、放射率、可視光透過率の測定は、(1)波長(300~2500nm)の分光測光器を用い、各種単板ガラスの分光透過率、分光反射率を測定する。また、波長5.5~50μmの分光測定器を用いて放射率を測定する。なお、フロート板ガラス、磨き板ガラス、型板ガラス、熱線吸収板ガラスの放射率は既定値を用いる。(2)日射透過率、日射反射率、日射吸収率、修正放射率の算出は、JIS R 3106(1998)に従い、日射透過率、日射反射率、日射吸収率、垂直放射率を算出する。修正放射率に関しては、JIS R 3107(1998)に示されている係数を、垂直放射率に乗ずることにより求める。断熱性、日射熱遮へい性の算出は、(1)厚さの測定値、修正放射率を用いJIS R 3209(1998)に従って複層ガラスの熱抵抗を算出する。ただし中空層が2mmを超える場合はJIS R 3107(1998)に従って中空層の気体熱コンダクタンスを求める。(2)断熱性は、複層ガラスの熱抵抗に熱伝達抵抗を加えて熱貫流抵抗で求める。(3)日射熱遮蔽性はJIS R 3106(1998)により日射熱取得率を求め、1から差し引いて算出する。
 以下、実施例により本発明を具体的に説明するが、本発明はこれにより限定されるものではない。なお、実施例において「部」または「%」の表示を用いるが、特に断りがない限り「質量部」または「質量%」を表す。また、特記しない限り、各操作は、室温(25℃)で行われる。
 製造例1:高屈折率層塗布液1の作製
 はじめに、ルチル型酸化チタンを含有する酸化チタンゾル分散液を調製した。
 (シリカ変性酸化チタン粒子(ルチル型)の分散液の調製)
 シリカ変性酸化チタン粒子(ルチル型)の分散液は、以下のように調製した。
 硫酸チタン水溶液を公知の方法により熱加水分解して、酸化チタン水和物を得た。得られた酸化チタン水和物を水に懸濁させて、酸化チタン水和物の水性懸濁液(TiO濃度:100g/L)10Lを得た。これに、水酸化ナトリウム水溶液(濃度10mol/L)30Lを撹拌下で添加し、90℃に昇温して、5時間熟成した。得られた溶液を塩酸で中和し、濾過、水洗することで、塩基処理チタン化合物を得た。
 次に、塩基処理チタン化合物をTiO濃度20g/Lになるよう純水に懸濁させて撹拌した。撹拌下、TiO量に対し0.4mol%の量のクエン酸を添加した。95℃まで昇温し、濃塩酸を塩酸濃度が30g/Lとなるように加え、液温を維持して3時間撹拌した。ここで、得られた混合液のpH及びゼータ電位を測定したところ、25℃におけるpHは1.4、ゼータ電位は+40mVであった。また、ゼータサイザーナノ(マルバーン社製)により粒径測定を行ったところ、体積平均粒子径は35nm、単分散度は16%であった。また、酸化チタンゾル液を105℃で3時間乾燥させて粒子紛体を得て、日本電子データム株式会社製、JDX-3530型を用いてX線回折の測定を行い、ルチル型粒子であることを確認した。
 上記ルチル型酸化チタン粒子を含む20.0質量%の酸化チタンゾル水系分散液1kgに純水1kgを添加して、10.0質量%の酸化チタンゾル水系分散液を調製した。
 上記10.0質量%の酸化チタンゾル水系分散液の0.5kgに、純水2kgを加えた後、90℃に加熱した。その後、SiO濃度が2.0質量%のケイ酸水溶液0.1kgを徐々に添加した。得られた分散液をオートクレーブ中、175℃で18時間加熱処理を行い、限外濾過を用いて脱塩、さらに濃縮することで、SiOで被覆されたルチル型構造を有する酸化チタンを含む、20質量%のシリカ変性酸化チタン粒子の分散液(ゾル水分散液)を得た。このとき、シリカの被覆量は酸化チタン粒子に対して4質量%であった。また、ゼータサイザーナノ(マルバーン社製)によりシリカ変性酸化チタン粒子(ルチル型)の粒径測定を行ったところ、体積平均粒子径は35nm、単分散度は16%であった。
 (高屈折率層塗布液1の調製)
 上記のようにして得られた20質量%のシリカ変性酸化チタン粒子(ルチル型)の分散液440質量部に対して、0.21質量%のリン酸水溶液200質量部(このとき、酸化チタンに対するリン酸質量比は0.5質量%となる)、10質量%のポリビニルアルコール溶液(PVA103、重合度300、鹸化度99mol%、株式会社クラレ製)135質量部、4質量%のポリビニルアルコールの溶液(PVA-124、重合度2400、鹸化度88mol%、株式会社クラレ製)300質量部、および5質量%の界面活性剤の溶液(アンヒトールHD、花王株式会社製)3.0質量部を45℃で順に添加し、高屈折率層塗布液1を調製した。高屈折率層塗布液1の屈折率は1.82であった。なお、屈折率の測定方法は下記の通りである(以下同様)。
 (各層の単膜屈折率の測定)
 屈折率を測定するため、基材上に上記高屈折率層塗布液1を単層で塗布したサンプルを作製し、このサンプルを10cm×10cmに裁断した後、下記の方法に従って屈折率を求めた。日立製の分光光度計 U-4100(固体試料測定システム)を用いて、各サンプルの測定面とは反対側の面(裏面)を粗面化処理した後、黒色のスプレーで光吸収処理を行って裏面での光の反射を防止して、5度正反射の条件にて可視光領域(400nm~700nm)の反射率の測定を行い、結果より屈折率を求めた。
 製造例2~4:高屈折率層塗布液2~4の作製
 製造例1において、リン酸水溶液の濃度を1.3質量%(このとき、酸化チタンに対するリン酸質量比は3質量%となる)、3.8質量%(このとき、酸化チタンに対するリン酸質量比は9質量%となる)、6.3質量%(このとき、酸化チタンに対するリン酸質量比は15質量%となる)にそれぞれ変更し、リン酸の添加量について、酸化チタン粒子に対する質量比を下記表1中に記載の質量比に変更した以外は、製造例1と同様にして高屈折率層塗布液2~4を作製した。高屈折率層用塗布液2~4の屈折率はいずれも1.82であった。なお、表1中、「着色抑制化合物添加量」は、酸化チタンに対する着色抑制化合物の割合(質量%)を示す。
 製造例5~8:高屈折率層塗布液5~8の作製
 製造例2において、1.3質量%のリン酸水溶液の代わりに、同濃度のフィチン酸(上記化学式2の化合物)の水溶液、2-ホスホノブタン-1,2,4-トリカルボン酸(PBTC;上記化学式3の化合物)の水溶液、ニトロトリス(メチレンホスホン酸)(ATMP;上記化学式4の化合物)の水溶液およびラウリルリン酸(上記化学式5の化合物)の水溶液をそれぞれ用いたこと以外は、製造例2と同様にして、高屈折率層塗布液5~8を作製した。高屈折率層用塗布液5~8の屈折率はいずれも1.82であった。
 製造例9:高屈折率層塗布液9の作製
 製造例2において、20質量%のシリカ変性酸化チタン粒子の分散液の代わりに、20質量%の酸化チタン粒子(ルチル型)の分散液(すなわち、酸化チタン表面にシリカ変性処理をしていないもの)を添加したこと以外は、製造例2と同様にして、高屈折率層塗布液9を作製した。高屈折率層用塗布液9の屈折率は1.82であった。
 製造例10:高屈折率層塗布液10の作製
 はじめに、アナタース型酸化チタンを含有する酸化チタンゾル分散液を調製した。
 (シリカ変性酸化チタン粒子(アナタース型)の分散液の調製)
 シリカ変性酸化チタン粒子(アナタース型)の分散液は、以下のように調製した。
 まず、アナタース型酸化チタンゾル(CSB-M:堺化学製 体積平均粒子径 7nm)を20質量%まで希釈した。
 上記アナタース型酸化チタン粒子を含む20.0質量%の酸化チタンゾル水系分散液1kgに純水1kgを添加して、10.0質量%の酸化チタンゾル水系分散液を調製した。
 上記10.0質量%の酸化チタンゾル水系分散液の0.5kgに、純水2kgを加えた後、90℃に加熱した。その後、SiO濃度が2.0質量%のケイ酸水溶液0.1kgを徐々に添加した。得られた分散液をオートクレーブ中、175℃で18時間加熱処理を行い、限外濾過を用いて脱塩、さらに濃縮することで、SiOで被覆されたルチル型構造を有する酸化チタンを含む、20質量%のシリカ変性酸化チタン粒子の分散液(ゾル水分散液)を得た。このとき、シリカの被覆量は酸化チタン粒子に対して4質量%であった。また、ゼータサイザーナノ(マルバーン社製)によりシリカ変性酸化チタン粒子(アナタース型)の粒径測定を行ったところ、体積平均粒子径は7nm、単分散度は16%であった。
 (高屈折率層塗布液10の調製)
 上記のようにして得られた20質量%のシリカ変性酸化チタン粒子(アナタース型)の分散液440質量部に対して、1.3質量%のリン酸水溶液200質量部(このとき、酸化チタンに対するリン酸質量比は3質量%となる)、10質量%のポリビニルアルコール溶液(PVA103、重合度300、鹸化度99mol%、株式会社クラレ製)135質量部、4質量%のポリビニルアルコールの溶液(PVA-124、重合度2400、鹸化度88mol%、株式会社クラレ製)300質量部、および5質量%の界面活性剤の溶液(アンヒトールHD、花王株式会社製)3.0質量部を45℃で順に添加し、高屈折率層塗布液10を調製した。高屈折率層塗布液10の屈折率は1.82であった。
 製造例11:高屈折率層塗布液11の作製
 製造例1において、リン酸水溶液を添加しなかったこと以外は、製造例1と同様にして、高屈折率層塗布液11を作製した。高屈折率層用塗布液11の屈折率は1.82であった。
 製造例12~16:高屈折率層塗布液12~16の作製
 製造例2において、1.3質量%のリン酸水溶液の代わりに、同じ濃度のマロン酸水溶液、リン酸二水素ナトリウム水溶液、リン酸二水素アンモニウム水溶液、ピロリン酸ナトリウム水溶液、硝酸水溶液をそれぞれ用いたこと以外は、製造例2と同様にして、高屈折率層塗布液12~16を作製した。高屈折率層用塗布液12~16の屈折率はいずれも1.82であった。
 製造例17:低屈折率層塗布液1の作製
 10質量%の酸性コロイダルシリカの水溶液(スノーテックスOXS、平均一次粒径:4~6nm、日産化学工業株式会社製)430質量部、3質量%のホウ酸水溶液85質量部、純水182質量部、水溶性高分子であるポリビニルアルコールの4質量%水溶液(PVA-235、重合度:3500、鹸化度:88モル%、株式会社クラレ製)300質量部と、5質量%の界面活性剤の溶液(アンヒトールHD、花王株式会社製)3.0質量部とを45℃でこの順に添加、混合し、低屈折率層塗布液1を調製した。低屈折率層用塗布液1の屈折率は1.48であった。
 実施例1
 15層重層塗布可能なスライドホッパー塗布装置を用いて、製造例1で作製された高屈折率層塗布液1および製造例17で作製された低屈折率層塗布液1を、40℃に保温しながら、厚さ50μmのポリエチレンテレフタレートフィルム(東洋紡製A4300、両面易接着層、長さ200m×幅210mm)上に積層した。このとき、最下層は低屈折率層、最上層は高屈折率層とし、それ以外は高屈折率層と低屈折率層とがそれぞれ交互になるように同時重層塗布を行った。この際、乾燥時の膜厚は、最下層が1510nm、最表層が100nm、最下層および最表層以外の低屈折率層の各層が150nm、および高屈折率層の各層が150nmになるように調整した。
 塗布直後、5℃の冷風を吹き付けて増粘させた。増粘後、80℃の温風を吹き付けて乾燥させて、計15層からなる光学反射フィルム1を作製した。
 実施例2~10および比較例1~6
 実施例1において、高屈折率層を形成するために用いる塗布液を、それぞれ表1に示される高屈折率層塗布液2~16に変更した以外は、実施例1と同様にして光学反射フィルム2~10および比較光学反射フィルム1~6を、それぞれ、作製した。
 〔評価〕
 上記実施例および比較例でそれぞれ得られた光学反射フィルム1~10および比較光学反射フィルム1~6について、下記方法に従って、高屈折率層(単層)および反射層の色差(ΔE)、ヘイズ(%)ならびに耐久性を測定した。結果を下記表1に示す。
 (色差評価:単層評価)
 上記実施例および比較例で作製した光学反射フィルム中の高屈折率層を、基材上に単層で塗布した高屈折率層サンプルをそれぞれ作製し、以下の評価を行った。このとき、単層の厚さ(乾燥時)は3μmとした。
 厚さ3mmの青色ガラスに、上記で作製した高屈折率層サンプルのそれぞれを、粘着剤層を介して貼り付けた。このサンプルを30℃60%RHの条件でキセノンウェザーメーター(スガ試験機社製;太陽光に極めて近似した光を発する)を用いて100W/mの強度のキセノン光に2000時間曝露し、曝露前後での透過光の差異から色差(ΔE)を計算した。なお、曝露前後のサンプルの透過光は、分光光度計U-4000型(積分球使用、日立製作所社製)の200~2000nm領域における透過率によって評価した。それぞれの結果を表1に示す。このΔEの値が小さいほど、キセノン光曝露による着色の程度が小さいことを意味する。
 (色差評価:反射層評価)
 上記(色素評価:単層評価)における高屈折率層サンプルを、実施例および比較例で作製した光学反射フィルムに変更してそれぞれ評価を行った。評価方法・条件等は上記と同様である。
 (ヘイズの測定)
 上記実施例および比較例でそれぞれ得られた光学反射フィルム1~9および比較光学反射フィルム1~6について、ヘイズメーター(日本電色工業社製、NDH2000)によりヘイズを測定した。なお、ヘイズメーターの光源は、5V9Wのハロゲン球とし、受光部は、シリコンフォトセル(比視感度フィルター付き)を使用した。また、ヘイズの測定は、23℃で55%RHの条件下にて行った。
 (耐久性評価)
 屈曲試験は、IPC規格TM-650に従ったIPC屈曲試験にて行った。これは、固定板と可動板との間に積層膜の面が凸になるように曲げた状態で挟み、可動板を繰り返し移動するものである。フィルムのRは10mm、ストロークは60mmに設定し、繰り返し回数を30回として行った。評価基準は以下の通りである。
 ◎:表面にスジ、割れ、剥がれが見えない
 〇:表面に割れ、剥がれがなく、一部にスジが見える
 △:表面に割れ、剥がれが見える
 ×:表面に明らかな割れ、剥がれが見える。
Figure JPOXMLDOC01-appb-T000003
 上記表1から、種々の酸(酸化剤)を添加剤として用いた結果、実施例および比較例との対比から明らかなように、ホスホン酸基またはリン酸基を有する化合物を添加剤としたとき、色差、ヘイズ、耐久性の点で優れた光学反射フィルムが得られることが示された。
 なかでも、実施例1~3、5および6の光学反射フィルムは、ヘイズおよび耐久性の面で特に優れていることから、添加剤としては特にリン酸、フィチン酸、PBTCが特に好ましいことが分かる。さらに、実施例2、5および6を比較すると、単層および反射層の色差評価においても特に良好な結果が得られていることから、上記の中でも特にリン酸が添加剤として好適であろうと思われる。
 一方、特開2006-124267号公報で用いられたピロリン酸誘導体(ナトリウム塩)や、リン酸基の一部がナトリウムに置換した化合物を用いた場合(比較例3~5)は、ヘイズが不良となったが、これは、上述の通りリン酸基のカウンターイオンに起因するものと考えられる。また、比較例1と、比較例2および6との比較により、マロン酸や硝酸を添加すると、光学反射フィルムの色差またはヘイズをかえって悪化させてしまうことも示された。かような結果は、添加した酸自体の分解に加え、これらの酸が樹脂と反応してしまうことによるものと推測される。たとえば、比較例2において添加されたマロン酸は、青色化した酸化チタンの酸化-還元反応に寄与しうるものの、紫外線照射により、マロン酸自身が分解されて二酸化炭素等を生じた結果、色調の変化や、耐久性の低下が生じたものと考えられる。
 また、高屈折率層を構成する酸化チタン種に注目し、実施例2と実施例9とを比較すると、シリカ変性をおこなった酸化チタンの方が、色差、ヘイズ、耐久性の点でいずれも優れる結果が得られた。したがって、本発明に係る特定の化合物(ホスホン酸基またはリン酸基を有する化合物)を用いると共に、酸化チタンにシリカ変性処理を施すことにより、さらに上記特性を向上させることができると言える。さらに、実施例2と実施例10との対比により、酸化チタンとして、ルチル型酸化チタンを用いたとき、色差、ヘイズ、および耐久性の点で好ましいことが示された。
 さらに、本出願は、2014年5月12日に出願された日本特許出願番号2014-098825号に基づいており、その開示内容は、参照され、全体として、組み入れられている。

Claims (7)

  1.  基材上に、低屈折率層と高屈折率層とを積層したユニットを少なくとも1つ含む光学反射フィルムであって、
     前記高屈折率層が、樹脂と、酸化チタンと、ホスホン酸基またはリン酸基を有する化合物とを含む、光学反射フィルム。
  2.  前記ホスホン酸基またはリン酸基を有する化合物が、リン酸、フィチン酸、ホスホノブタントリカルボン酸からなる群から選択される、請求項1に記載の光学反射フィルム。
  3.  前記ホスホン酸基またはリン酸基を有する化合物が、前記酸化チタンに対して、0.1~15質量%含まれる請求項1または2に記載の光学反射フィルム。
  4.  前記酸化チタンは、シリカ変性されてなる、請求項1~3のいずれか1項に記載の光学反射フィルム。
  5.  前記酸化チタンは、ルチル型酸化チタンを含む、請求項1~4のいずれか1項に記載の光学反射フィルム。
  6.  基材上に低屈折率層と高屈折率層とを積層したユニットを少なくとも1つ含む光学反射フィルムの製造方法であって、
     樹脂と、酸化チタンと、ホスホン酸基またはリン酸基を有する化合物とを添加して調製した塗布液を塗布することを含む、光学反射フィルムの製造方法。
  7.  請求項1~5のいずれか1項に記載の光学反射フィルム、または請求項6に記載の方法により製造された光学反射フィルムが、基体の少なくとも一方の面に設けられてなる光学反射体。
PCT/JP2015/063148 2014-05-12 2015-05-01 光学反射フィルム、その製造方法およびそれを用いる光学反射体 WO2015174308A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016519219A JPWO2015174308A1 (ja) 2014-05-12 2015-05-01 光学反射フィルム、その製造方法およびそれを用いる光学反射体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014098825 2014-05-12
JP2014-098825 2014-05-12

Publications (1)

Publication Number Publication Date
WO2015174308A1 true WO2015174308A1 (ja) 2015-11-19

Family

ID=54479849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063148 WO2015174308A1 (ja) 2014-05-12 2015-05-01 光学反射フィルム、その製造方法およびそれを用いる光学反射体

Country Status (2)

Country Link
JP (1) JPWO2015174308A1 (ja)
WO (1) WO2015174308A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113801594A (zh) * 2020-06-15 2021-12-17 宁波激智创新材料研究院有限公司 一种辐射降温薄膜胶带及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005165253A (ja) * 2003-11-12 2005-06-23 Sony Corp 光学膜用塗料、およびそれを用いた光学多層膜と反射スクリーン
JP2013007817A (ja) * 2011-06-23 2013-01-10 Konica Minolta Holdings Inc 光学反射フィルム及びそれを用いた光学反射体
WO2014010562A1 (ja) * 2012-07-13 2014-01-16 コニカミノルタ株式会社 赤外遮蔽フィルム
WO2014024873A1 (ja) * 2012-08-06 2014-02-13 コニカミノルタ株式会社 光反射フィルムおよびこれを用いた光反射体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005165253A (ja) * 2003-11-12 2005-06-23 Sony Corp 光学膜用塗料、およびそれを用いた光学多層膜と反射スクリーン
JP2013007817A (ja) * 2011-06-23 2013-01-10 Konica Minolta Holdings Inc 光学反射フィルム及びそれを用いた光学反射体
WO2014010562A1 (ja) * 2012-07-13 2014-01-16 コニカミノルタ株式会社 赤外遮蔽フィルム
WO2014024873A1 (ja) * 2012-08-06 2014-02-13 コニカミノルタ株式会社 光反射フィルムおよびこれを用いた光反射体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113801594A (zh) * 2020-06-15 2021-12-17 宁波激智创新材料研究院有限公司 一种辐射降温薄膜胶带及其制备方法
CN113801594B (zh) * 2020-06-15 2023-01-24 宁波激智创新材料研究院有限公司 一种辐射降温薄膜胶带及其制备方法

Also Published As

Publication number Publication date
JPWO2015174308A1 (ja) 2017-04-20

Similar Documents

Publication Publication Date Title
JP6083386B2 (ja) 光学積層フィルム、赤外遮蔽フィルムおよび赤外遮蔽体
JP6115675B2 (ja) 光学反射フィルム及びそれを用いた光学反射体
JP5939257B2 (ja) 近赤外遮蔽フィルムおよび近赤外遮蔽体
WO2014069507A1 (ja) 光学反射フィルム、赤外遮蔽フィルムおよびその製造方法
JPWO2013172415A1 (ja) 多層積層膜の製造方法
JP6264376B2 (ja) 積層反射フィルムおよびその製造方法、並びにこれを含む赤外遮蔽体
WO2016152458A1 (ja) 光学フィルム及び光学フィルムの製造方法
WO2016076333A1 (ja) 光学反射フィルムの製造方法
JP6176256B2 (ja) 光学反射フィルムおよびそれを用いた光学反射体
WO2015174308A1 (ja) 光学反射フィルム、その製造方法およびそれを用いる光学反射体
JP6406248B2 (ja) 赤外遮蔽フィルムの製造方法
JP2014089347A (ja) 赤外遮蔽フィルムおよびその製造方法
WO2014185386A1 (ja) 赤外遮蔽フィルムの製造方法
WO2014185385A1 (ja) 赤外遮蔽フィルムの製造方法
WO2014148366A1 (ja) 光線反射フィルムおよびその製造方法
JPWO2015104895A1 (ja) 光学反射フィルムの製造方法
JP2017026864A (ja) 光学反射フィルム
WO2014069506A1 (ja) 光学反射フィルム、赤外遮蔽フィルムおよび赤外遮蔽体
JP2016001238A (ja) 光学反射フィルムの製造方法
JP2016018117A (ja) 光学反射フィルム
JP6225916B2 (ja) 光学積層フィルム、赤外遮蔽フィルムおよび赤外遮蔽体
JP2015215413A (ja) 紫外線遮蔽フィルム
JP2016057537A (ja) 光学反射フィルム、その製造方法およびそれを用いる光学反射体
JP2016215518A (ja) 遮熱フィルム
JP2016212326A (ja) 光学反射フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15792239

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016519219

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15792239

Country of ref document: EP

Kind code of ref document: A1