WO2015174153A1 - コバルト化合物、薄膜形成用原料及び薄膜の製造方法 - Google Patents

コバルト化合物、薄膜形成用原料及び薄膜の製造方法 Download PDF

Info

Publication number
WO2015174153A1
WO2015174153A1 PCT/JP2015/060131 JP2015060131W WO2015174153A1 WO 2015174153 A1 WO2015174153 A1 WO 2015174153A1 JP 2015060131 W JP2015060131 W JP 2015060131W WO 2015174153 A1 WO2015174153 A1 WO 2015174153A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
cobalt
raw material
cobalt compound
forming
Prior art date
Application number
PCT/JP2015/060131
Other languages
English (en)
French (fr)
Inventor
智晴 吉野
正揮 遠津
桜井 淳
雅子 畑▲瀬▼
広幸 内生蔵
章浩 西田
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to US15/306,807 priority Critical patent/US20170050998A1/en
Priority to EP15792769.0A priority patent/EP3144313A4/en
Priority to KR1020167030824A priority patent/KR102376087B1/ko
Publication of WO2015174153A1 publication Critical patent/WO2015174153A1/ja
Priority to IL248518A priority patent/IL248518A0/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/06Cobalt compounds
    • C07F15/065Cobalt compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/06Cobalt compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD

Definitions

  • the present invention relates to a cobalt compound, a raw material for forming a thin film, and a method for producing a thin film, which are used for an electrode film, a resistance film, an adhesive film, a magnetic tape, a carbide tool member, and the like.
  • Cobalt-containing thin films are used for electrode films, resistance films, adhesive films, magnetic tapes, carbide tool members, and the like.
  • the method for producing this thin film includes flame deposition method; sputtering method; ion plating method; MOD method such as coating pyrolysis method and sol-gel method (Metal-Organic-Decomposition method); ALD method (Atomic Layer Decomposition: There are vapor phase thin film formation methods such as atomic layer deposition method) and CVD method (Chemical Vapor Decomposition). Among them, the vapor-phase thin film formation method has many advantages such as excellent composition controllability and step coverage, suitable for mass production, and capable of hybrid integration. Is the law.
  • a cobalt compound having an organic ligand is used as a precursor for supplying cobalt atoms to the thin film, which is contained in the thin film forming raw material.
  • Patent Documents 1 and 2 report a cobalt compound having a tertiary aminoalkoxide as a ligand.
  • Patent Document 3 reports a cobalt compound having a primary aminoalkoxide as a ligand.
  • the precursor used as a thin film forming raw material has a low melting point and can be transported in a liquid state, and can be decomposed at a low temperature.
  • the vapor pressure is required to be large and easy to vaporize.
  • the cobalt compounds of Patent Documents 1 to 3 do not sufficiently satisfy these requirements.
  • the present invention has been made in order to solve the above problems, and has a low melting point, can be transported in a liquid state, can be decomposed at a low temperature, and has a high vapor pressure and is easily vaporized. It aims at providing the raw material for thin film formation using the same.
  • an object of this invention is to provide the manufacturing method of the thin film which can manufacture a good quality cobalt containing thin film with sufficient productivity.
  • the present invention provides the following general formula (I):
  • this invention is a raw material for thin film formation containing said cobalt compound. Furthermore, the present invention provides a step of obtaining a vapor containing a cobalt compound by vaporizing the raw material for forming a thin film, and bringing the vapor into contact with a substrate to decompose and / or chemically react the cobalt compound. And a step of forming a thin film on the substrate.
  • the present invention it is possible to provide a cobalt compound that can be transported in a liquid state with a low melting point, can be decomposed at a low temperature, has a high vapor pressure, and is easily vaporized, and a raw material for forming a thin film using the same. Moreover, according to this invention, the manufacturing method of the thin film which can manufacture a good quality cobalt containing thin film with sufficient productivity can be provided.
  • the cobalt compound of the present invention is represented by the following general formula (I).
  • R 1 to R 3 each independently represents a linear or branched alkyl group having 1 to 5 carbon atoms.
  • the linear or branched alkyl group having 1 to 5 carbon atoms represented by R 1 to R 3 is not particularly limited, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and an isobutyl group. Secondary butyl group, tertiary butyl group, pentyl group, amyl group, isoamyl group and the like.
  • the cobalt compound represented by the general formula (I) may have an optically active site.
  • R-form or S-form or a mixture of R-form and S-form in any ratio.
  • the cobalt compound is a mixture of an R form and an S form, it is preferable to use a racemate from the viewpoint of manufacturing cost.
  • a cobalt compound having the structure as described above can be transported in a liquid state with a low melting point, can be decomposed at a low temperature, and has a high vapor pressure and can be easily vaporized.
  • the cobalt compound may form a ring structure in which a nitrogen atom in the ligand is coordinated to a cobalt atom.
  • the cobalt compound represented by the said general formula (I) is the concept containing the cobalt compound represented by the following general formula (II).
  • R 1 to R 3 each independently represents a linear or branched alkyl group having 1 to 5 carbon atoms.
  • the cobalt compound has a low melting point even in a liquid state or a solid state at room temperature and normal pressure, and can be decomposed at a low temperature.
  • R 1 is a methyl group or an ethyl group
  • a cobalt compound is a straight-chain or branched-chain alkyl group of R 2 and R 3 are C 1-5 each independently
  • R 1 I is an isopropyl group, an isobutyl group, a secondary butyl group or a tertiary butyl group
  • R 2 and R 3 are each independently a linear or branched alkyl group having 1 to 5 carbon atoms
  • R 2 and cobalt compounds sum of carbon atoms of R 3 is 3 or more, has a characteristic that is particularly low melting point.
  • R 1 is a methyl group, an ethyl group, an isopropyl group, an isobutyl group or a secondary butyl group
  • R 2 and R 3 are each independently a straight chain having 1 to 3 carbon atoms or A cobalt compound which is a branched alkyl group and the sum of carbon atoms of R 2 and R 3 is 3 or 4
  • R 1 is a tertiary butyl group
  • R 2 and R 3 are each independently carbon
  • a cobalt compound which is a linear or branched alkyl group of 1 to 4 and the sum of the carbon atoms of R 2 and R 3 is 4 or 5 has a particularly low melting point and is more easily decomposed at a low temperature.
  • the cobalt compound as a group has a characteristic that it is more easily decomposed at a low temperature.
  • the cobalt compound when a film formation method by the MOD method is used, the cobalt compound preferably has excellent properties such as solubility in a solvent to be used, but if it is a cobalt compound having the above structure, It also has such characteristics.
  • a cobalt compound particularly suitable for the MOD method can be easily obtained by appropriately selecting R 1 to R 3 in the general formula (I) according to the type of solvent used, the thin film formation reaction, and the like.
  • cobalt compound of the present invention examples include the following compound No. 1-No. 30.
  • the cobalt compound of the present invention is not limited by the following exemplary compounds.
  • “Me” represents a methyl group
  • “Et” represents an ethyl group
  • “iPr” represents an isopropyl group
  • “iBu” represents an isobutyl group
  • “sBu” represents secondary butyl.
  • tBu represents a tertiary butyl group.
  • the method for producing the cobalt compound of the present invention is not particularly limited, and can be produced by applying a known reaction.
  • the cobalt compound of the present invention can be produced by applying a well-known method for synthesizing an alkoxide compound using an amino alcohol.
  • an inorganic salt such as cobalt halide, nitrate, or a hydrate thereof, and an amino alcohol compound that gives a predetermined ligand are mixed with sodium, sodium hydride, sodium amide, sodium hydroxide, sodium methylate, ammonia.
  • a method of reacting in the presence of a base such as an amine; inorganic salts such as cobalt halides and nitrates or hydrates thereof, and sodium alkoxides, lithium alkoxides, potassium alkoxides and the like of alcohol compounds that give a predetermined ligand A method of reacting with an alkali metal alkoxide; a method of reacting an alkoxide compound of a low molecular alcohol such as cobalt methoxide, ethoxide, isopropoxide, butoxide and the like with an alcohol compound giving a predetermined ligand; cobalt halide , Glass A method of reacting an inorganic salt such as a salt with a derivative that gives a reactive intermediate to obtain a reactive intermediate and then reacting the reactive intermediate with an alcohol compound that gives a predetermined ligand, etc. Can be mentioned.
  • the reactive intermediate include amide compounds of cobalt such as bis (dialkylamino) cobalt and bis (bis
  • the cobalt compound having the above-described characteristics can be transported in a liquid state with a low melting point, can be decomposed at a low temperature, and has a high vapor pressure and is easily vaporized. It is suitable as a thin film forming raw material for supplying cobalt to the thin film formed by the forming method.
  • the raw material for forming a thin film of the present invention contains the cobalt compound of the present invention represented by the above general formula (I) as a precursor.
  • the components of the thin film forming raw material of the present invention vary depending on the type of thin film to be produced.
  • the thin film forming raw material of the present invention is represented by the above general formula (I). Only the cobalt compound represented is contained as a precursor and does not contain metal compounds and metalloid compounds other than cobalt compounds.
  • the raw material for forming a thin film of the present invention is other than cobalt in addition to the cobalt compound represented by the general formula (I). And / or a compound containing a metalloid (hereinafter referred to as “another precursor”).
  • the content of the other precursor is preferably 0.01 to 10 mol with respect to 1 mol of the cobalt compound represented by the general formula (I). Mol, more preferably 0.1 to 5 mol.
  • the raw material for thin film formation of this invention may further contain the organic solvent and / or a nucleophilic reagent so that it may mention later.
  • the raw material for forming a thin film of the present invention is used in this forming method because the physical properties of the cobalt compound of the present invention, which is a precursor, are suitable for a vapor phase thin film forming method, particularly a CVD method or an ALD method. It is particularly useful as a raw material (hereinafter, referred to as “gas phase thin film forming raw material”).
  • the form is appropriately selected according to the method such as the transport and supply method of the vapor phase thin film forming method used.
  • the vapor phase thin film forming raw material is vaporized by heating and / or depressurizing in the raw material container, and the base is installed together with a carrier gas such as argon, nitrogen or helium used as necessary.
  • a gas transport method for supplying the gas into the film forming chamber; the vapor phase thin film forming raw material is transported to the vaporization chamber in a liquid state, and vaporized by heating and / or decompressing in the vaporization chamber, and the substrate is installed.
  • a vapor phase thin film forming raw material that can be vaporized by heating and / or decompressing is used.
  • a vapor phase thin film forming raw material that is in a liquid state under normal temperature and normal pressure is used. Therefore, in the case of the liquid transport method, if the cobalt compound is in a liquid state at room temperature and normal pressure, the liquid cobalt compound can be used as a raw material for forming a vapor phase thin film, but the cobalt compound is in a solid state at room temperature and normal pressure. If there is, a cobalt compound dissolved in an organic solvent is used as a raw material for forming a vapor phase thin film.
  • a method of individually vaporizing and supplying each component (hereinafter referred to as “single source method”) and a mixed raw material in which each component is mixed in advance with a desired composition are used.
  • a vaporization and supply method (hereinafter referred to as “cocktail sauce method”).
  • cocktail sauce method a mixture of the cobalt compound of the present invention and another precursor, or a mixed solution obtained by adding an organic solvent to these mixtures is used as a raw material for forming a vapor phase thin film.
  • the organic solvent used in the raw material for forming a thin film of the present invention is not particularly limited, and a general organic solvent known in the technical field can be used.
  • organic solvents include acetates such as ethyl acetate, butyl acetate and methoxyethyl acetate; ethers such as tetrahydrofuran, tetrahydropyran, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, dibutyl ether and dioxane; Ketones, ketones such as methyl isobutyl ketone, ethyl butyl ketone, dipropyl ketone, diisobutyl ketone, methyl amyl ketone, cyclohexanone, methylcyclohexanone; hexane, cyclohexane, methylcyclohexane, dimethylcyclohexane, ethylcycl
  • the total amount of the cobalt compound of the present invention and other precursors in the organic solvent is preferably 0.01 to 2.0 mol / liter, more preferably 0. .05 to 1.0 mol / liter.
  • precursors used for the thin film forming raw material of the present invention are not particularly limited, and general precursors well known in the technical field can be used.
  • examples of other precursors include one or more organic coordination compounds such as alcohol compounds, glycol compounds, ⁇ -diketone compounds, cyclopentadiene compounds, organic amine compounds, ketoimine compounds, silicon and metals (provided that And compounds with the exception of cobalt).
  • the metal species is not particularly limited, for example, magnesium, calcium, strontium, barium, radium, scandium, yttrium, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, iron, osmium, Ruthenium, rhodium, iridium, nickel, palladium, platinum, copper, silver, gold, zinc, cadmium, aluminum, gallium, indium, germanium, tin, lead, antimony, bismuth, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, Examples include europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, and ytterbium.
  • alcohol compounds that give other precursor organic ligands include, but are not limited to, methanol, ethanol, propanol, isopropyl alcohol, butanol, secondary butyl alcohol, isobutyl alcohol, tertiary butyl alcohol, pentyl alcohol.
  • Alkyl alcohols such as isopentyl alcohol and tertiary pentyl alcohol; 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, 2- (2-methoxyethoxy) ethanol, 2-methoxy-1-methylethanol, 2-methoxy-1,1-dimethylethanol, 2-ethoxy-1,1-dimethylethanol, 2-isopropoxy-1,1-dimethylethanol, 2-butoxy-1,1-dimethylethanol, 2- (2- Meto Ether alcohols such as (ciethoxy) -1,1-dimethylethanol, 2-propoxy-1,1-diethylethanol, 2-s-butoxy-1,1-diethylethanol, 3-methoxy-1,1-dimethylpropanol; 1-dimethylamino-2-propanol, 1-ethylmethylamino-2-propanol, 1-diethylamino-2-propanol, 1-dimethylamino-2-methylamino-2-methyl-2-propanol, 1-
  • glycol compounds that give other precursor organic ligands include, but are not limited to, for example, 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 2,4-hexanediol, 2,2-dimethyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 1,3-butanediol, 2,4-butanediol, 2,2-diethyl-1,3- Butanediol, 2-ethyl-2-butyl-1,3-propanediol, 2,4-pentanediol, 2-methyl-1,3-propanediol, 2-methyl-2,4-pentanediol, 2,4 -Hexanediol, 2,4-dimethyl-2,4-pentanediol and the like.
  • the ⁇ -diketone compound that gives other precursor organic ligands is not particularly limited, and examples thereof include acetylacetone, hexane-2,4-dione, 5-methylhexane-2,4-dione, and heptane-2,4.
  • Alkyl substituted ⁇ -diketones such as -dione, 2-methylheptane-3,5-dione, 2,6-dimethylheptane-3,5-dione; 1,1,1-trifluoropentane-2,4-dione 1,1,1-trifluoro-5,5-dimethylhexane-2,4-dione, 1,1,1,5,5,5-hexafluoropentane-2,4-dione, 1,3-dione Fluorine-substituted alkyl ⁇ -diketones such as perfluorohexylpropane-1,3-dione; 1,1,5,5-tetramethyl-1-methoxyhexane-2,4-dione, 2,2,6,6- Ether-substituted ⁇ -diketones such as tramethyl-1-methoxyheptane-3,5-dione, 2,2,6,6-tetramethyl-1- (2-methoxyethoxy
  • examples include cyclopentadiene, isobutylcyclopentadiene, tertiary butylcyclopentadiene, dimethylcyclopentadiene, and tetramethylcyclopentadiene.
  • examples include amine, diethylamine, dipropylamine, diisopropylamine, ethylmethylamine, propylmethylamine, isopropylmethylamine, ethylenediamine, N, N-dimethylethylenediamine, and the like.
  • the ketimine compound that gives the organic ligand of another precursor is not particularly limited, and examples thereof include a reaction product of the above-mentioned ⁇ -diketone compound and an organic amine compound.
  • ketoimine compounds obtained by reacting acetylacetone with N, N-dimethylethylenediamine in the presence of hydrogen chloride can be used.
  • the other precursors have similar thermal and / or oxidative decomposition behavior to the cobalt compound of the present invention.
  • the other precursors when using the cocktail sauce method, it is preferable that the other precursors have similar thermal and / or oxidative decomposition behavior to the cobalt compound of the present invention and do not undergo alteration due to chemical reaction during mixing.
  • precursors having titanium, zirconium or hafnium as a metal species are represented by the following general formulas (III-1) to (III-5).
  • M 1 represents titanium, zirconium or hafnium, and R a and R b may each independently be substituted with a halogen atom
  • R a and R b may each independently be substituted with a halogen atom
  • R c represents an alkyl group having 1 to 8 carbon atoms
  • R d represents an alkylene group having 2 to 18 carbon atoms which may be branched.
  • R e and R f each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R g , R h , R k and R j each independently represent a hydrogen atom or 1 to 3 carbon atoms.
  • 4 represents an alkyl group
  • p represents an integer of 0 to 4
  • q represents 0 or 2
  • r represents an integer of 0 to 3
  • s represents an integer of 0 to 4
  • t
  • those having 1 to 20 carbon atoms which may be substituted with a halogen atom represented by R a and R b and may contain an oxygen atom in the chain examples include methyl, ethyl, propyl, isopropyl, butyl, secondary butyl, tertiary butyl, isobutyl, amyl, isoamyl, secondary amyl, tertiary amyl, hexyl, cyclohexyl, 1-methylcyclohexyl, Heptyl, 3-heptyl, isoheptyl, tertiary heptyl, n-octyl, isooctyl, tertiary octyl, 2-ethylhexyl, trifluoromethyl, perfluorohexyl, 2-methoxyethyl, 2-ethoxyethyl,
  • Examples of the alkyl group having 1 to 8 carbon atoms represented by R c include methyl, ethyl, propyl, isopropyl, butyl, secondary butyl, tertiary butyl, isobutyl, amyl, isoamyl, secondary amyl, Examples include tertiary amyl, hexyl, 1-ethylpentyl, cyclohexyl, 1-methylcyclohexyl, heptyl, isoheptyl, tertiary heptyl, n-octyl, isooctyl, tertiary octyl, 2-ethylhexyl and the like.
  • the alkylene group having 2 to 18 carbon atoms which may be branched and represented by R d is a group given by glycol, and examples of the glycol include 1,2-ethanediol, 1,2- Propanediol, 1,3-propanediol, 1,3-butanediol, 2,4-hexanediol, 2,2-dimethyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 2,2-diethyl-1,3-butanediol, 2-ethyl-2-butyl-1,3-propanediol, 2,4-pentanediol, 2-methyl-1,3-propanediol, 1-methyl- Examples include 2,4-pentanediol.
  • Examples of the alkyl group having 1 to 3 carbon atoms represented by R e and R f include methyl, ethyl, propyl, and 2-propyl.
  • Examples of the alkyl group having 1 to 4 carbon atoms represented by R g , R h , R j and R k include methyl, ethyl, propyl, isopropyl, butyl, secondary butyl, tertiary butyl and isobutyl. Can be mentioned.
  • precursors having titanium as a metal species include tetrakis (ethoxy) titanium, tetrakis (2-propoxy) titanium, tetrakis (butoxy) titanium, tetrakis (secondary butoxy) titanium, tetrakis (isobutoxy) titanium, tetrakis ( Tetrakisalkoxytitaniums such as tertiary butoxy) titanium, tetrakis (tertiary amyl) titanium, tetrakis (1-methoxy-2-methyl-2-propoxy) titanium; tetrakis (pentane-2,4-dionato) titanium, Tetrakis ⁇ -diketonatotitaniums such as (2,6-dimethylheptane-3,5-dionato) titanium, tetrakis (2,2,6,6-tetramethylheptane-3,5-dionato) titanium; bis ( Toxi) bis (pentane-2,4-
  • precursors having rare earth elements as metal species are represented by the following general formulas (IV-1) to (IV-3).
  • M 2 represents a rare earth atom
  • R a and R b may each independently be substituted with a halogen atom
  • an oxygen atom in the chain Represents an alkyl group having 1 to 20 carbon atoms
  • R c represents an alkyl group having 1 to 8 carbon atoms
  • R e and R f each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R g and R j each independently represents an alkyl group having 1 to 4 carbon atoms
  • p ′ represents an integer of 0 to 3
  • r ′ represents an integer of 0 to 2.
  • examples of the rare earth atom represented by M 2 include scandium, yttrium, lanthanum, cerium, praseodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium , Erbium, thulium, ytterbium and lutetium.
  • examples of the group represented by R a , R b , R c , R e , R f , R g, and R j include the groups exemplified for the precursor having the above-described titanium or the like as a metal species.
  • the raw material for forming a thin film of the present invention may contain a nucleophilic reagent as needed to impart the stability of the cobalt compound of the present invention and other precursors.
  • the nucleophilic reagent is not particularly limited.
  • ethylene glycol ethers such as glyme, diglyme, triglyme and tetraglyme; 18-crown-6, dicyclohexyl-18-crown-6, 24-crown-8, dicyclohexyl Crown ethers such as -24-crown-8 and dibenzo-24-crown-8; ethylenediamine, N, N′-tetramethylethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, 1,1, Polyamines such as 4,7,7-pentamethyldiethylenetriamine, 1,1,4,7,10,10-hexamethyltriethylenetetramine and triethoxytriethyleneamine; cyclic
  • the raw material for forming a thin film of the present invention contains as little impurities metal elements as possible other than the above components, impurities halogen such as impurity chlorine, and impurities organic.
  • the impurity metal element content is preferably 100 ppb or less for each element, more preferably 10 ppb or less, and the total amount is preferably 1 ppm or less, more preferably 100 ppb or less.
  • the impurity halogen content is preferably 100 ppm or less, more preferably 10 ppm or less, and still more preferably 1 ppm or less.
  • the total amount of impurity organic components is preferably 500 ppm or less, more preferably 50 ppm or less, and still more preferably 10 ppm or less.
  • moisture in the raw material for forming a thin film causes generation of particles in the raw material for forming a thin film and generation of particles during formation of the thin film. Therefore, for the precursor, the organic solvent, and the nucleophilic reagent, For reduction, it is better to remove moisture as much as possible before use.
  • the moisture content of each of the precursor, the organic solvent, and the nucleophilic reagent is preferably 10 ppm or less, and more preferably 1 ppm or less.
  • the thin film forming raw material of the present invention preferably contains no particles as much as possible in order to reduce or prevent particle contamination of the formed thin film.
  • the number of particles larger than 0.3 ⁇ m is preferably 100 or less in 1 mL of the liquid phase, and larger than 0.2 ⁇ m.
  • the number of particles is more preferably 1000 or less in 1 mL of the liquid phase, and the number of particles larger than 0.2 ⁇ m is further preferably 100 or less in 1 mL of the liquid phase.
  • the method for producing a thin film of the present invention is performed using the raw material for forming a thin film of the present invention.
  • the method for producing the thin film of the present invention performed using the raw material for forming a thin film of the present invention is not particularly limited, and a MOD method such as a coating pyrolysis method or a sol-gel method; a vapor phase thin film formation such as an ALD method or a CVD method.
  • the method etc. can be used.
  • a vapor phase thin film forming method having many advantages such as excellent composition controllability and step coverage, suitable for mass production, and capable of hybrid integration is preferable.
  • the method for producing a thin film of the present invention performed by using a vapor phase thin film forming method includes a step of obtaining a vapor containing a cobalt compound by vaporizing the raw material for forming a thin film of the present invention, and bringing the vapor into contact with a substrate.
  • formation of a thin film is generally performed in a film forming chamber in which a substrate is installed.
  • the thin film forming raw material may be supplied into the film formation chamber in which the substrate is installed, using the gas transport method, the liquid transport method, the single source method, or the cocktail source method as described above.
  • a source gas vaporized raw material for forming a thin film
  • a thermal CVD method in which a source gas and a reactive gas are reacted using only heat to form a thin film
  • plasma using heat and plasma examples include a CVD method; a photo-CVD method using heat and light; a photo-plasma CVD method using heat, light, and plasma; an ALD method in which the deposition reaction of CVD is divided into elementary processes and deposition is performed stepwise at the molecular level.
  • oxidizing gas such as oxygen, ozone, nitrogen dioxide, nitric oxide, water vapor, hydrogen peroxide, formic acid, acetic acid, acetic anhydride; hydrogen etc.
  • reducing gas such as oxygen, ozone, nitrogen dioxide, nitric oxide, water vapor, hydrogen peroxide, formic acid, acetic acid, acetic anhydride; hydrogen etc.
  • an organic amine compound such as monoalkylamine, dialkylamine, trialkylamine, or alkylenediamine, hydrazine, ammonia, or the like may be used as the reactive gas.
  • Reactive gas can be used 1 type or in combination of 2 or more types.
  • the film formation conditions in the film formation chamber are not particularly limited, and may be set as appropriate according to the type of apparatus used and raw materials.
  • the thin film production apparatus is not particularly limited, and a vapor thin film forming apparatus such as a chemical vapor deposition apparatus well known in the art can be used.
  • Examples of thin film manufacturing apparatuses include a vapor phase thin film forming apparatus capable of bubbling and supplying a thin film forming raw material, a vapor phase thin film forming apparatus having a vaporization chamber for vaporizing the thin film forming raw material, and performing plasma treatment.
  • Possible vapor-phase thin film forming apparatuses are included. These apparatuses are not limited to a single wafer type apparatus, and can be an apparatus capable of simultaneously processing a large number of sheets using a batch furnace.
  • the film formation conditions include reaction temperature (substrate temperature), reaction pressure, deposition rate, and the like.
  • the reaction temperature is preferably 100 ° C. or more, more preferably 100 ° C. to 400 ° C., which is the temperature at which the cobalt compound of the present invention sufficiently reacts.
  • the reaction pressure is preferably atmospheric pressure to 10 Pa in the case of thermal CVD or photo CVD, and preferably 2000 Pa to 10 Pa in the case of using plasma.
  • the deposition rate can be controlled by the raw material supply conditions (vaporization temperature, vaporization pressure), reaction temperature, and reaction pressure. If the deposition rate is too high, the properties of the obtained thin film may be deteriorated, and if it is too low, there may be a problem in productivity. Therefore, the deposition rate is preferably 0.01 to 5000 nm / min, and more preferably 0.1 to 1000 nm / min. In the case of the ALD method, the number of cycles may be controlled so that a desired film thickness is obtained.
  • the precursor thin film is formed using the thin film forming raw material of the present invention. Specifically, by vaporizing the raw material for forming a thin film of the present invention, a vapor containing a cobalt compound is obtained, and then the vapor is brought into contact with a substrate to decompose and / or chemically react the cobalt compound. A precursor thin film is formed on the substrate (precursor thin film forming step). At this time, heat may be applied by heating the substrate or heating the deposition chamber.
  • the substrate temperature is preferably room temperature to 500 ° C, more preferably 150 to 350 ° C.
  • the pressure in the film forming chamber is preferably 1 to 10,000 Pa, and more preferably 10 to 1000 Pa.
  • the precursor thin film to be formed is a thin film formed by decomposition and / or reaction of a part of the cobalt compound, and has a composition different from that of the target cobalt oxide thin film.
  • unreacted source gas and by-product gas are exhausted from the film forming chamber (exhaust process).
  • the evacuation method include a method of purging the film formation chamber with an inert gas such as nitrogen, helium, and argon, a method of evacuating the film formation chamber by reducing the pressure, and a method combining these.
  • the degree of pressure reduction is preferably 0.01 to 300 Pa, more preferably 0.01 to 100 Pa.
  • a reactive gas is supplied into the film forming chamber, and a cobalt oxide thin film is formed from the precursor thin film by the action of the reactive gas or the reactive gas and heat (cobalt oxide thin film forming step).
  • the heating temperature is preferably room temperature to 500 ° C, more preferably 150 to 350 ° C.
  • the cobalt compound of the present invention has good reactivity with reactive gases typified by hydrogen, oxygen and ozone, and can efficiently form a cobalt oxide thin film and a cobalt thin film.
  • a series of processes including a precursor thin film forming process, an exhaust process, and a cobalt oxide thin film forming process is defined as one cycle, and this cycle is defined as a necessary film. It may be repeated a plurality of times until a thick cobalt oxide thin film is obtained. In this case, it is preferable to perform the next cycle after exhausting unreacted source gas, reactive gas, and by-product gas from the film formation chamber after performing one cycle, in the same manner as the exhaust process.
  • energy such as plasma, light, or voltage may be applied.
  • the timing of applying energy is not particularly limited, and can be performed, for example, during each step or during each step.
  • annealing treatment may be performed in an inert atmosphere, an oxidizing atmosphere, or a reducing atmosphere. Silicidation may be performed.
  • a reflow process may be provided when step filling is necessary.
  • the temperature in this case is usually 200 to 1000 ° C., preferably 250 to 500 ° C.
  • the thin film produced by the method for producing a thin film of the present invention using the raw material for forming a thin film of the present invention can be obtained by appropriately selecting other precursors, reactive gases, production conditions, etc.
  • a desired type of thin film such as ceramics or glass can be obtained.
  • it is possible to manufacture thin films such as metallic cobalt, cobalt-based oxides, cobalt-based nitrides, and cobalt-based alloys such as Co—Cr, Co—Fe, and Co—Ni.
  • Applications of these thin films include resistance films, adhesive films, carbide tools, magnetic films, magnets, and IC lead frames.
  • Example 1 Compound No. 7
  • a 200 mL four-necked flask was charged with 10.8 g (0.079 mol) of cobalt (II) chloride and 55.1 g of tetrahydrofuran, and stirred at room temperature.
  • a solution obtained by diluting 25.6 g (0.167 mol) of sodium alkoxide prepared by using 1- (ethyl (methyl) amino) butan-2-ol with 48.6 g of tetrahydrofuran was cooled under ice cooling. It was dripped. After completion of the dropwise addition, the mixture was stirred at room temperature for 21 hours, and 69.7 g of toluene was added and stirred, followed by filtration.
  • the solvent was removed from the obtained filtrate, and the residue was distilled at a bath temperature of 205 ° C., a pressure of 40 Pa, and a tower top temperature of 155 ° C. to obtain a target product (compound No. 7) that was a dark purple viscous liquid.
  • the yield was 8.23 g and the yield was 34%.
  • Example 2 Compound No. 12
  • a 100 mL three-necked flask was charged with 1.13 g (8.27 mmol) of cobalt (II) chloride and 15.3 g of tetrahydrofuran, and stirred at room temperature.
  • a solution prepared by diluting 2.90 g (17.3 mmol) of a sodium alkoxide prepared by using 1- (ethyl (methyl) amino) -3-methylbutan-2-ol with 18.0 g of tetrahydrofuran was added to ice. It was dripped under cooling. After completion of the dropwise addition, the mixture was stirred at room temperature for 21 hours and filtered.
  • the solvent was removed from the obtained filtrate, and the residue was distilled at a bath temperature of 145 ° C., a pressure of 25 Pa, and a tower top temperature of 107 ° C. to obtain a target product (compound No. 12) which is a dark purple viscous liquid.
  • the yield was 0.42 g, and the yield was 14%.
  • Example 3 Compound No. 14
  • a 100 mL three-necked flask is charged with 1.00 g (2.63 mmol) of bis (bis (trimethylsilyl) amino) cobalt (II) and 10 g of toluene, and 1-diethylamino) -3-methylbutan-2-ol 0 .83 g (5.26 mmol) was added dropwise at room temperature. After completion of dropping, the mixture was stirred at room temperature for 20 hours. The solvent and by-product silazane compound were removed under reduced pressure at a bath temperature of 110 ° C. to obtain the desired product (compound No. 14) as a dark purple viscous liquid. The yield was 0.75 g and the yield was 74%.
  • Example 4 Compound No. 17
  • a 100 mL three-necked flask was charged with 1.00 g (2.63 mmol) of bis (bis (trimethylsilyl) amino) cobalt (II) and 10 g of toluene, and 1- (ethyl (methyl) amino) -4-methyl was added therein.
  • Pentan-2-ol 0.87 g (5.26 mmol) was added dropwise at room temperature. After completion of dropping, the mixture was stirred at room temperature for 20 hours.
  • the solvent and the by-product silazane compound were removed under reduced pressure at a bath temperature of 110 ° C. to obtain the desired product (compound No. 17) as a dark purple viscous liquid.
  • the yield was 0.80 g and the yield was 81%.
  • Example 5 Compound No. 22
  • a 200 mL three-necked flask was charged with 3.95 g (30.4 mmol) of cobalt (II) chloride and 29.1 g of tetrahydrofuran, and stirred at room temperature.
  • a solution obtained by diluting 10.7 g (59.3 mmol) of sodium alkoxide prepared by using 1- (ethyl (methyl) amino) -3-methylpentan-2-ol with 28.9 g of tetrahydrofuran was added. The solution was added dropwise under ice cooling. After completion of the dropwise addition, the mixture was stirred at room temperature for 18 hours and filtered.
  • the solvent was removed from the obtained filtrate, and the residue was distilled at a bath temperature of 165 ° C., a pressure of 65 Pa, and a tower top temperature of 147 ° C. to obtain the desired product (Compound No. 22) as a purple viscous liquid.
  • the yield was 1.42 g, and the yield was 13%.
  • Example 6 Compound No. 27
  • a 100 mL three-necked flask was charged with 2.90 g (0.022 mol) of cobalt (II) chloride and 17.6 g of tetrahydrofuran, and stirred at room temperature.
  • 7.97 g (0.044 mol) of sodium alkoxide prepared by using 1- (ethyl (methyl) amino) -3,3-dimethylbutan-2-ol was diluted with 15.6 g of tetrahydrofuran.
  • the solution was added dropwise under ice cooling. After completion of the dropwise addition, the mixture was stirred at room temperature for 20 hours and filtered.
  • Example 7 Compound No. 29
  • a 200 mL three-necked flask was charged with 5.95 g (45.8 mmol) of cobalt (II) chloride and 26.8 g of tetrahydrofuran, and stirred at room temperature.
  • a solution obtained by diluting 17.2 g (88.3 mmol) of sodium alkoxide prepared by using 1- (diethylamino) -3,3-dimethylbutan-2-ol with 22.9 g of tetrahydrofuran was ice-cooled. It was dripped under. After completion of the dropwise addition, the mixture was stirred at room temperature for 16 hours and filtered.
  • the solvent was removed from the obtained filtrate, and the residue was distilled at a bath temperature of 150 ° C., a pressure of 40 Pa, and a tower top temperature of 115 ° C. to obtain the desired product (Compound No. 29) as a red-violet viscous liquid.
  • the yield was 7.59 g, and the yield was 43%.
  • Comparative Examples 1 and 2 As Comparative Example 1, the following Comparative Compound No. 1 and Comparative Example 2 as Comparative Example 2 below. 2 were each prepared according to known methods.
  • the state (whether it is a solid state or a liquid state) in normal temperature (30 degreeC) is observed visually, and about the thing of a solid state, it is minute.
  • the melting point was measured using a melting point measuring device.
  • the thermal stability of a cobalt compound was evaluated by measuring the temperature (thermal decomposition generation temperature) which a thermal decomposition generate
  • the cobalt compound of Comparative Example 1 had a melting point of 80 ° C.
  • the cobalt compound of Comparative Example 2 had a melting point of 100 ° C. or higher
  • the cobalt compounds of Examples 1 to 7 All had lower melting points than the cobalt compounds of Comparative Example 1 and Comparative Example 2.
  • the cobalt compounds of Examples 1 to 5 and 7 were found to be liquid under normal temperature and pressure conditions. Since the raw material for forming a thin film that is liquid at room temperature and normal pressure or has a low melting point can be easily transported, the cobalt compounds of Examples 1 to 7 can be said to be raw materials for forming a thin film that can improve productivity.
  • the cobalt compound of Comparative Example 2 needs to be heated at 300 ° C. for thermal decomposition, whereas the cobalt compounds of Examples 1 to 7 are about 20 to 30% more than the cobalt compound of Comparative Example 2. It was also confirmed that it can be decomposed at a low temperature. Among them, it was found that the cobalt compounds of Examples 2 and 7 can be decomposed at a particularly low temperature of 230 ° C. Further, it can be said that the cobalt compounds of Examples 1 to 7 are raw materials for forming a thin film exhibiting a high vapor pressure because the temperature when the weight of the sample is reduced by 50% is low.
  • Example 8 Production of cobalt oxide thin film by thermal CVD method
  • a cobalt oxide thin film was formed on a Cu substrate and a SiO 2 substrate by the thermal CVD method in the CVD apparatus shown in FIG. 1 under the following conditions.
  • Raw material container temperature 70 ° C
  • Raw material container pressure 100 Pa Reaction temperature (substrate temperature): 300 ° C
  • Reactive gas None
  • Carrier gas Argon gas
  • the vaporized raw material for forming a thin film was supplied to the film formation chamber, and was deposited for 8000 seconds at a pressure of 100 Pa in the film formation chamber.
  • the film thickness measurement by X-ray reflectivity method and the thin film structure and thin film composition by X-ray photoelectron spectroscopy were confirmed.
  • the film thickness obtained per unit time was 0.2 to 1.0 nm / min, and all the obtained thin films were cobalt oxide thin films.
  • a cobalt compound having a low melting point which can be transported in a liquid state, can be decomposed at a low temperature, has a high vapor pressure and is easily vaporized, and a thin film formation using the same Raw materials can be provided.
  • the manufacturing method of the thin film which can manufacture a good quality cobalt containing thin film with sufficient productivity can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 本発明のコバルト化合物は、下記一般式(I)で表される。一般式(I)中、R1~R3は、各々独立に炭素数1~5の直鎖又は分岐鎖のアルキル基を表す。また、本発明の薄膜形成用原料は、上記一般式(I)で表されるコバルト化合物を含有する。本発明によれば、融点が低く液体の状態で輸送ができ、低温で分解させることができ、しかも蒸気圧が大きく気化させ易いコバルト化合物及びそれを用いた薄膜形成用原料を提供することができる。

Description

コバルト化合物、薄膜形成用原料及び薄膜の製造方法
 本発明は、電極膜、抵抗膜、接着膜、磁気テープ、超硬工具部材などに使用される、コバルト化合物、薄膜形成用原料及び薄膜の製造方法に関する。
 コバルトを含有する薄膜は、電極膜、抵抗膜、接着膜、磁気テープ、超硬工具部材などに使用されている。この薄膜の製造法としては、火炎堆積法;スパッタリング法;イオンプレーティング法;塗布熱分解法やゾルゲル法などのMOD法(Metal Organic Decomposition:金属有機化合物分解法);ALD法(Atomic Layer Decomposition:原子層蒸着法)やCVD法(Chemical Vapor Decomposition:化学気相成長法)などの気相薄膜形成法などがある。その中でも気相薄膜形成法は、組成制御性及び段差被覆性に優れている点、量産化に適している点、ハイブリッド集積が可能である点などの多くの長所を有することから、最適な製造法である。
 MOD法や気相薄膜形成法においては、薄膜形成用原料に含有される、薄膜にコバルト原子を供給するプレカーサとして、有機配位子を有するコバルト化合物が使用されている。
 例えば、特許文献1及び2には、第3級アミノアルコキシドを配位子としたコバルト化合物が報告されている。また、特許文献3には、第1級アミノアルコキシドを配位子としたコバルト化合物が報告されている。
韓国登録特許第10-0675983号公報 米国特許出願公開第2010/0181566号明細書 国際公開第2007/147020号公報
 薄膜の各種製造法の中でも特に気相薄膜形成法においては、薄膜形成用原料に用いられるプレカーサには、融点が低く液体の状態で輸送が可能であること、低温で分解させることが可能であること、及び蒸気圧が大きく気化させ易いことが要求される。しかしながら、特許文献1~3のコバルト化合物は、これらの要求を十分に満足するものではなかった。
 本発明は、上記のような問題を解決するためになされたものであり、融点が低く液体の状態で輸送ができ、低温で分解させることができ、しかも蒸気圧が大きく気化させ易いコバルト化合物及びそれを用いた薄膜形成用原料を提供することを目的とする。
 また、本発明は、良質なコバルト含有薄膜を生産性良く製造することができる薄膜の製造方法を提供することを目的とする。
 本発明者らは、鋭意検討を重ねた結果、特定の構造を有するアミノアルコールを配位子としたコバルト化合物が、上記の問題を解決し得ることを知見し、本発明に到達した。
 すなわち、本発明は、下記一般式(I):
Figure JPOXMLDOC01-appb-C000002
 (式中、R1~R3は、各々独立に炭素数1~5の直鎖又は分岐鎖のアルキル基を表す)で表されるコバルト化合物である。
 また、本発明は、上記のコバルト化合物を含有する薄膜形成用原料である。
 さらに、本発明は、上記の薄膜形成用原料を気化させることにより、コバルト化合物を含有する蒸気を得る工程と、前記蒸気を基体と接触させることにより、前記コバルト化合物を分解及び/又は化学反応させて前記基体上に薄膜を形成する工程とを含む薄膜の製造方法である。
 本発明によれば、融点が低く液体の状態で輸送ができ、低温で分解させることができ、しかも蒸気圧が大きく気化させ易いコバルト化合物及びそれを用いた薄膜形成用原料を提供することができる。
 また、本発明によれば、良質なコバルト含有薄膜を生産性良く製造することができる薄膜の製造方法を提供することができる。
実施例8で使用した、本発明の薄膜の製造方法に用いられるCVD装置の概略図である。
 以下、本発明のコバルト化合物、薄膜形成用原料及び薄膜の製造方法の好ましい実施形態について詳細に説明する。
 本発明のコバルト化合物は、下記一般式(I)で表される。
Figure JPOXMLDOC01-appb-C000003
 一般式(I)中、R1~R3は、各々独立に炭素数1~5の直鎖又は分岐鎖のアルキル基を表す。R1~R3で表される炭素数1~5の直鎖又は分岐鎖のアルキル基としては、特に限定されないが、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、第2級ブチル基、第3級ブチル基、ペンチル基、アミル基、イソアミル基などが挙げられる。また、一般式(I)で表されるコバルト化合物は、光学活性部位を有する場合があるが、その場合はR体若しくはS体のいずれか、又はR体とS体との任意の割合の混合物であることができる。特に、コバルト化合物がR体とS体との混合物である場合、製造コストの観点から、ラセミ体を用いることが好ましい。
 上記のような構造を有するコバルト化合物であれば、融点が低く液体の状態で輸送ができ、低温で分解させることができ、しかも蒸気圧が大きく気化させ易くすることができる。
 また、コバルト化合物は、下記一般式(II)に表すように、配位子中の窒素原子がコバルト原子に配位して環構造を形成していてもよい。なお、本明細書において、上記一般式(I)で表されるコバルト化合物は、下記一般式(II)で表されるコバルト化合物を含む概念である。
Figure JPOXMLDOC01-appb-C000004
 一般式(II)中、R1~R3は、各々独立に炭素数1~5の直鎖又は分岐鎖のアルキル基を表す。
 コバルト化合物を気化させて成膜する気相薄膜形成法を用いる場合、コバルト化合物は、常温常圧下において液体状態であるか又は固体状態であっても融点が低く、低温で分解させることができ、且つ蒸気圧が大きいという特性を有することが望ましいが、上記のような構造を有するコバルト化合物であれば、このような特性を一般に有する。特に、一般式(I)において、R1がメチル基又はエチル基であり、R2及びR3が各々独立に炭素数1~5の直鎖又は分岐鎖のアルキル基であるコバルト化合物;R1がイソプロピル基、イソブチル基、第2級ブチル基又は第3級ブチル基であり、R2及びR3が各々独立に炭素数1~5の直鎖又は分岐鎖のアルキル基であり、且つR2及びR3の炭素原子数の和が3以上であるコバルト化合物は、融点が特に低いという特性を有する。また、一般式(I)において、R1がメチル基、エチル基、イソプロピル基、イソブチル基又は第2級ブチル基であり、R2及びR3が各々独立に炭素数1~3の直鎖又は分岐鎖のアルキル基であり、且つR2及びR3の炭素原子数の和が3又は4であるコバルト化合物;R1が第3級ブチル基であり、R2及びR3が各々独立に炭素数1~4の直鎖又は分岐鎖のアルキル基であり、且つR2とR3の炭素原子数の和が4又は5であるコバルト化合物は、融点が特に低く、且つ低温でより分解し易いという特性を有する。さらに、R1がイソプロピル基であり、R2がメチル基であり、R3がエチル基であるコバルト化合物;R1が第3ブチル基であり、R2がエチル基であり、R3がエチル基であるコバルト化合物は、低温でより分解し易いという特性を有する。
 他方、MOD法による成膜方法を用いる場合、コバルト化合物は、使用される溶媒に対する溶解性などに優れているという特性を有することが好ましいが、上記のような構造を有するコバルト化合物であれば、このような特性も有する。MOD法に特に適したコバルト化合物は、使用される溶媒の種類、薄膜形成反応などに応じて、一般式(I)のR1~R3を適宜選択することによって容易に得ることができる。
 本発明のコバルト化合物の具体例としては、下記化合物No.1~No.30が挙げられる。ただし、本発明のコバルト化合物は、以下の例示化合物により何ら限定されるものではない。なお、下記化学式において、「Me」はメチル基を表し、「Et」はエチル基を表し、「iPr」はイソプロピル基を表し、「iBu」はイソブチル基を表し、「sBu」は第2級ブチル基を表し、「tBu」は第3級ブチル基を表す。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 本発明のコバルト化合物の製造方法は、特に限定されず、周知の反応を応用して製造することができる。具体的には、本発明のコバルト化合物は、アミノアルコールを用いた周知のアルコキシド化合物の合成方法を応用することによって製造することができる。例えば、コバルトのハロゲン化物、硝酸塩などの無機塩又はその水和物と、所定の配位子を与えるアミノアルコール化合物とを、ナトリウム、水素化ナトリウム、ナトリウムアミド、水酸化ナトリウム、ナトリウムメチラート、アンモニア、アミンなどの塩基の存在下で反応させる方法;コバルトのハロゲン化物、硝酸塩などの無機塩又はその水和物と、所定の配位子を与えるアルコール化合物のナトリウムアルコキシド、リチウムアルコキシド、カリウムアルコキシドなどのアルカリ金属アルコキシドとを反応させる方法;コバルトのメトキシド、エトキシド、イソプロポキシド、ブトキシドなどの低分子アルコールのアルコキシド化合物と、所定の配位子を与えるアルコール化合物とを交換反応させる方法;コバルトのハロゲン化物、硝酸塩などの無機塩と、反応性中間体を与える誘導体とを反応させて反応性中間体を得た後、この反応性中間体と所定の配位子を与えるアルコール化合物とを反応させる方法などが挙げられる。ここで、上記の反応性中間体としては、ビス(ジアルキルアミノ)コバルト、ビス(ビス(トリメチルシリル)アミノ)コバルトなどのコバルトのアミド化合物が挙げられる。
 上記のような特徴を有するコバルト化合物は、融点が低く液体の状態で輸送ができ、低温で分解させることができ、しかも蒸気圧が大きく気化させ易いため、薄膜の各種製造方法、特に気相薄膜形成法によって形成される薄膜にコバルトを供給する薄膜形成用原料として適している。
 本発明の薄膜形成用原料は、上記一般式(I)で表される本発明のコバルト化合物をプレカーサとして含有する。ここで、本発明の薄膜形成用原料の成分は、作製する薄膜の種類によって異なり、金属としてコバルトのみを含む薄膜を形成する場合、本発明の薄膜形成用原料は、上記一般式(I)で表されるコバルト化合物のみをプレカーサとして含有し、コバルト化合物以外の金属化合物及び半金属化合物を含有しない。一方、金属としてコバルト及びコバルト以外の金属及び/又は半金属を含む薄膜を形成する場合、本発明の薄膜形成用原料は、上記一般式(I)で表されるコバルト化合物に加えて、コバルト以外の金属を含む化合物及び/又は半金属を含む化合物(以下、「他のプレカーサ」という)を含有する。
 本発明の薄膜形成用原料が他のプレカーサを含有する場合、他のプレカーサの含有量は、上記一般式(I)で表されるコバルト化合物1モルに対して、好ましくは0.01モル~10モル、より好ましくは0.1~5モルである。
 また、本発明の薄膜形成用原料は、後述するように、有機溶剤及び/又は求核性試薬を更に含有してもよい。
 本発明の薄膜形成用原料は、上記説明のとおり、プレカーサである本発明のコバルト化合物の物性が、気相薄膜形成法、特にCVD法やALD法に適しているので、この形成法に用いられる原料(以下、「気相薄膜形成用原料」という)として特に有用である。
 本発明の薄膜形成用原料が気相薄膜形成用原料である場合、その形態は使用される気相薄膜形成法の輸送供給方法などの手法に応じて適宜選択される。
 上記の輸送供給方法としては、気相薄膜形成用原料を原料容器中で加熱及び/又は減圧することによって気化させ、必要に応じて用いられるアルゴン、窒素、ヘリウムなどのキャリアガスと共に、基体が設置された成膜チャンバー内へと供給する気体輸送法;気相薄膜形成用原料を液体の状態で気化室まで輸送し、気化室で加熱及び/又は減圧することによって気化させて、基体が設置された成膜チャンバー内へと供給する液体輸送法がある。
 気体輸送法の場合、加熱及び/又は減圧することによって気化させることができる気相薄膜形成用原料が用いられる。一方、液体輸送法の場合、常温常圧下において液体状態である気相薄膜形成用原料が用いられる。したがって、液体輸送法の場合、常温常圧下においてコバルト化合物が液体状であるなら、液体状のコバルト化合物を気相薄膜形成用原料として用いることができるが、常温常圧下においてコバルト化合物が固体状であるなら、有機溶剤に溶解したコバルト化合物を気相薄膜形成用原料として用いる。
 また、多成分系の気相薄膜形成法においては、各成分を個別に気化、供給する方法(以下、「シングルソース法」という。)と、各成分を予め所望の組成で混合した混合原料を気化、供給する方法(以下、「カクテルソース法」という。)がある。カクテルソース法の場合、本発明のコバルト化合物と他のプレカーサとの混合物、又はこれらの混合物に有機溶剤を加えた混合溶液が気相薄膜形成用原料として用いられる。
 本発明の薄膜形成用原料に用いられる有機溶剤としては、特に限定されず、当該技術分野において周知の一般的な有機溶剤を用いることができる。有機溶剤の例としては、酢酸エチル、酢酸ブチル、酢酸メトキシエチルなどの酢酸エステル類;テトラヒドロフラン、テトラヒドロピラン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジブチルエーテル、ジオキサンなどのエーテル類;メチルブチルケトン、メチルイソブチルケトン、エチルブチルケトン、ジプロピルケトン、ジイソブチルケトン、メチルアミルケトン、シクロヘキサノン、メチルシクロヘキサノンなどのケトン類;ヘキサン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、エチルシクロヘキサン、ヘプタン、オクタン、トルエン、キシレンなどの炭化水素類;1-シアノプロパン、1-シアノブタン、1-シアノヘキサン、シアノシクロヘキサン、シアノベンゼン、1,3-ジシアノプロパン、1,4-ジシアノブタン、1,6-ジシアノヘキサン、1,4-ジシアノシクロヘキサン、1,4-ジシアノベンゼンなどのシアノ基を有する炭化水素類;ピリジン、ルチジンなどが挙げられる。これらは、溶質の溶解性、使用温度と沸点及び引火点との関係などに応じて、単独又は二種類以上の混合溶媒として用いられる。
 本発明の薄膜形成用原料が有機溶剤を含有する場合、有機溶剤中の本発明のコバルト化合物及び他のプレカーサの合計量は、好ましくは0.01~2.0モル/リットル、より好ましくは0.05~1.0モル/リットルである。
 本発明の薄膜形成用原料に用いられる他のプレカーサとしては、特に限定されず、当該技術分野において周知の一般的なプレカーサを用いることができる。他のプレカーサの例としては、アルコール化合物、グリコール化合物、β-ジケトン化合物、シクロペンタジエン化合物、有機アミン化合物、ケトイミン化合物などの一種類又は二種類以上の有機配位化合物と、珪素や金属(但し、コバルトを除く)との化合物が挙げられる。金属種としては、特に限定されないが、例えば、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウム、スカンジウム、イットリウム、チタニウム、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、鉄、オスミウム、ルテニウム、ロジウム、イリジウム、ニッケル、パラジウム、白金、銅、銀、金、亜鉛、カドミウム、アルミニウム、ガリウム、インジウム、ゲルマニウム、スズ、鉛、アンチモン、ビスマス、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウムなどが挙げられる。
 他のプレカーサの有機配位子を与えるアルコール化合物としては、特に限定されないが、例えば、メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノール、第2級ブチルアルコール、イソブチルアルコール、第3級ブチルアルコール、ペンチルアルコール、イソペンチルアルコール、第3級ペンチルアルコールなどのアルキルアルコール類;2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール、2-(2-メトキシエトキシ)エタノール、2-メトキシ-1-メチルエタノール、2-メトキシ-1,1-ジメチルエタノール、2-エトキシ-1,1-ジメチルエタノール、2-イソプロポキシ-1,1-ジメチルエタノール、2-ブトキシ-1,1-ジメチルエタノール、2-(2-メトキシエトキシ)-1,1-ジメチルエタノール、2-プロポキシ-1,1-ジエチルエタノール、2-s-ブトキシ-1,1-ジエチルエタノール、3-メトキシ-1,1-ジメチルプロパノールなどのエーテルアルコール類;1-ジメチルアミノ-2-プロパノール、1-エチルメチルアミノ-2-プロパノール、1-ジエチルアミノ-2-プロパノール、1-ジメチルアミノ-2-メチル-2-プロパノール、1-エチルメチルアミノ-2-メチル-2-プロパノール、1-ジエチルアミノ-2-メチル-2-プロパノール、1-ジメチルアミノ-2-ブタノール、1-エチルメチルアミノ-2-ブタノール、1-ジエチルアミノ-2-ブタノール、1-ジメチルアミノ-2-メチル-2-ブタノール、1-エチルメチルアミノ-2-メチル-2-ブタノール、1-ジエチルアミノ-2-メチル-2-ブタノールなどのアミノアルコール類などが挙げられる。
 他のプレカーサの有機配位子を与えるグリコール化合物としては、特に限定されないが、例えば、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、2,4-ヘキサンジオール、2,2-ジメチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、1,3-ブタンジオール、2,4-ブタンジオール、2,2-ジエチル-1,3-ブタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、2,4-ペンタンジオール、2-メチル-1,3-プロパンジオール、2-メチル-2,4-ペンタンジオール、2,4-ヘキサンジオール、2,4-ジメチル-2,4-ペンタンジオール等が挙げられる。
 他のプレカーサの有機配位子を与えるβ-ジケトン化合物としては、特に限定されないが、例えば、アセチルアセトン、ヘキサン-2,4-ジオン、5-メチルヘキサン-2,4-ジオン、ヘプタン-2,4-ジオン、2-メチルヘプタン-3,5-ジオン、2,6-ジメチルヘプタン-3,5-ジオンなどのアルキル置換β-ジケトン類;1,1,1-トリフルオロペンタン-2,4-ジオン、1,1,1-トリフルオロ-5,5-ジメチルヘキサン-2,4-ジオン、1,1,1,5,5,5-ヘキサフルオロペンタン-2,4-ジオン、1,3-ジパーフルオロヘキシルプロパン-1,3-ジオンなどのフッ素置換アルキルβ-ジケトン類;1,1,5,5-テトラメチル-1-メトキシヘキサン-2,4-ジオン、2,2,6,6-テトラメチル-1-メトキシヘプタン-3,5-ジオン、2,2,6,6-テトラメチル-1-(2-メトキシエトキシ)ヘプタン-3,5-ジオンなどのエーテル置換β-ジケトン類などが挙げられる。
 他のプレカーサの有機配位子を与えるシクロペンタジエン化合物としては、特に限定されないが、例えば、シクロペンタジエン、メチルシクロペンタジエン、エチルシクロペンタジエン、プロピルシクロペンタジエン、イソプロピルシクロペンタジエン、ブチルシクロペンタジエン、第2級ブチルシクロペンタジエン、イソブチルシクロペンタジエン、第3級ブチルシクロペンタジエン、ジメチルシクロペンタジエン、テトラメチルシクロペンタジエンなどが挙げられる。
 他のプレカーサの有機配位子を与える有機アミン化合物としては、特に限定されないが、例えば、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、第2級ブチルアミン、第3級ブチルアミン、イソブチルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジイソプロピルアミン、エチルメチルアミン、プロピルメチルアミン、イソプロピルメチルアミン、エチレンジアミン、N,N-ジメチルエチレンジアミン等が挙げられる。
 他のプレカーサの有機配位子を与えるケトイミン化合物としては、特に限定されないが、例えば、上述のβ-ジケトン化合物と有機アミン化合物との反応物が挙げられる。具体的には、アセチルアセトンとN,N-ジメチルエチレンジアミンとを塩化水素存在下で反応させることで得られるケトイミン化合物などを用いることができる。
 シングルソース法を用いる場合、他のプレカーサは、本発明のコバルト化合物と熱及び/又は酸化分解の挙動が類似していることが好ましい。また、カクテルソース法を用いる場合、他のプレカーサは、本発明のコバルト化合物と熱及び/又は酸化分解の挙動が類似していることに加え、混合時に化学反応による変質を起こさないことが好ましい。
 他のプレカーサの中でも、チタニウム、ジルコニウム又はハフニウムを金属種として有するプレカーサは、下記の一般式(III-1)~(III-5)で表される。
Figure JPOXMLDOC01-appb-C000011
 上記一般式(III-1)~(III-5)中、M1は、チタニウム、ジルコニウム又はハフニウムを表し、Ra及びRbは、各々独立に、ハロゲン原子で置換されてもよく、鎖中に酸素原子を含んでもよい炭素数1~20のアルキル基を表し、Rcは炭素数1~8のアルキル基を表し、Rdは炭素数2~18の分岐してもよいアルキレン基を表し、Re及びRfは、各々独立に、水素原子又は炭素数1~3のアルキル基を表し、Rg、Rh、Rk及びRjは、各々独立に、水素原子又は炭素数1~4のアルキル基を表し、pは0~4の整数を表し、qは0又は2を表し、rは0~3の整数を表し、sは0~4の整数を表し、tは1~4の整数を表す。
 上記一般式(III-1)~(III-5)において、Ra及びRbで表される、ハロゲン原子で置換されてもよく、鎖中に酸素原子を含んでもよい炭素数1~20のアルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、第2級ブチル、第3級ブチル、イソブチル、アミル、イソアミル、第2級アミル、第3級アミル、ヘキシル、シクロヘキシル、1-メチルシクロヘキシル、ヘプチル、3-ヘプチル、イソヘプチル、第3級ヘプチル、n-オクチル、イソオクチル、第3級オクチル、2-エチルヘキシル、トリフルオロメチル、パーフルオロヘキシル、2-メトキシエチル、2-エトキシエチル、2-ブトキシエチル、2-(2-メトキシエトキシ)エチル、1-メトキシ-1,1-ジメチルメチル、2-メトキシ-1,1-ジメチルエチル、2-エトキシ-1,1-ジメチルエチル、2-イソプロポキシ-1,1-ジメチルエチル、2-ブトキシ-1,1-ジメチルエチル、2-(2-メトキシエトキシ)-1,1-ジメチルエチルなどが挙げられる。
 また、Rcで表される炭素数1~8のアルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、第2級ブチル、第3級ブチル、イソブチル、アミル、イソアミル、第2級アミル、第3級アミル、ヘキシル、1-エチルペンチル、シクロヘキシル、1-メチルシクロヘキシル、ヘプチル、イソヘプチル、第3級ヘプチル、n-オクチル、イソオクチル、第3級オクチル、2-エチルヘキシルなどが挙げられる。
 また、Rdで表される炭素数2~18の分岐してもよいアルキレン基とは、グリコールにより与えられる基であり、該グリコールとしては、例えば、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、2,4-ヘキサンジオール、2,2-ジメチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2,2-ジエチル-1,3-ブタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、2,4-ペンタンジオール、2-メチル-1,3-プロパンジオール、1-メチル-2,4-ペンタンジオールなどが挙げられる。
 また、Re及びRfで表される炭素数1~3のアルキル基としては、メチル、エチル、プロピル、2-プロピルが挙げられる。
 また、Rg、Rh、Rj及びRkで表される炭素数1~4のアルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、第2級ブチル、第3級ブチル、イソブチルが挙げられる。
 チタニウムを金属種として有するプレカーサの具体例としては、テトラキス(エトキシ)チタニウム、テトラキス(2-プロポキシ)チタニウム、テトラキス(ブトキシ)チタニウム、テトラキス(第2級ブトキシ)チタニウム、テトラキス(イソブトキシ)チタニウム、テトラキス(第3級ブトキシ)チタニウム、テトラキス(第3級アミル)チタニウム、テトラキス(1-メトキシ-2-メチル-2-プロポキシ)チタニウムなどのテトラキスアルコキシチタニウム類;テトラキス(ペンタン-2,4-ジオナト)チタニウム、(2,6-ジメチルヘプタン-3,5-ジオナト)チタニウム、テトラキス(2,2,6,6-テトラメチルヘプタン-3,5-ジオナト)チタニウムなどのテトラキスβ-ジケトナトチタニウム類;ビス(メトキシ)ビス(ペンタン-2,4-ジオナト)チタニウム、ビス(エトキシ)ビス(ペンタン-2,4-ジオナト)チタニウム、ビス(第3級ブトキシ)ビス(ペンタン-2,4-ジオナト)チタニウム、ビス(メトキシ)ビス(2,6-ジメチルヘプタン-3,5-ジオナト)チタニウム、ビス(エトキシ)ビス(2,6-ジメチルヘプタン-3,5-ジオナト)チタニウム、ビス(2-プロポキシ)ビス(2,6-ジメチルヘプタン-3,5-ジオナト)チタニウム、ビス(第3級ブトキシ)ビス(2,6-ジメチルヘプタン-3,5-ジオナト)チタニウム、ビス(第3級アミロキシ)ビス(2,6-ジメチルヘプタン-3,5-ジオナト)チタニウム、ビス(メトキシ)ビス(2,2,6,6-テトラメチルヘプタン-3,5-ジオナト)チタニウム、ビス(エトキシ)ビス(2,2,6,6-テトラメチルヘプタン-3,5-ジオナト)チタニウム、ビス(2-プロポキシ)ビス(2,6,6,6-テトラメチルヘプタン-3,5-ジオナト)チタニウム、ビス(第3級ブトキシ)ビス(2,2,6,6-テトラメチルヘプタン-3,5-ジオナト)チタニウム、ビス(第3級アミロキシ)ビス(2,2,6,6-テトラメチルヘプタン-3,5-ジオナト)チタニウムなどのビス(アルコキシ)ビス(βジケトナト)チタニウム類;(2-メチルペンタンジオキシ)ビス(2,2,6,6-テトラメチルヘプタン-3,5-ジオナト)チタニウム、(2-メチルペンタンジオキシ)ビス(2,6-ジメチルヘプタン-3,5-ジオナト)チタニウムなどのグリコキシビス(βジケトナト)チタニウム類;(メチルシクロペンタジエニル)トリス(ジメチルアミノ)チタニウム、(エチルシクロペンタジエニル)トリス(ジメチルアミノ)チタニウム、(シクロペンタジエニル)トリス(ジメチルアミノ)チタニウム、(メチルシクロペンタジエニル)トリス(エチルメチルアミノ)チタニウム、(エチルシクロペンタジエニル)トリス(エチルメチルアミノ)チタニウム、(シクロペンタジエニル)トリス(エチルメチルアミノ)チタニウム、(メチルシクロペンタジエニル)トリス(ジエチルアミノ)チタニウム、(エチルシクロペンタジエニル)トリス(ジエチルアミノ)チタニウム、(シクロペンタジエニル)トリス(ジエチルアミノ)チタニウムなどの(シクロペンタジエニル)トリス(ジアルキルアミノ)チタニウム類;(シクロペンタジエニル)トリス(メトキシ)チタニウム、(メチルシクロペンタジエニル)トリス(メトキシ)チタニウム、(エチルシクロペンタジエニル)トリス(メトキシ)チタニウム、(プロチルシクロペンタジエニル)トリス(メトキシ)チタニウム、(イソプロピルシクロペンタジエニル)トリス(メトキシ)チタニウム、(ブチルシクロペンタジエニル)トリス(メトキシ)チタニウム、(イソブチルシクロペンタジエニル)トリス(メトキシ)チタニウム、第3級ブチルシクロペンタジエニル)トリス(メトキシ)チタニウムなどの(シクロペンタジエニル)トリス(アルコキシ)チタニウム類などが挙げられる。ジルコニウム又はハフニウムを金属種として有するプレカーサの具体例としては、上記チタニウムを含むプレカーサとして例示した化合物におけるチタニウムを、ジルコニウム又はハフニウムに置き換えた化合物が挙げられる。
 また、他のプレカーサの中でも、希土類元素を金属種として有するプレカーサは、下記の一般式(IV-1)~(IV-3)で表される。
Figure JPOXMLDOC01-appb-C000012
 上記一般式(IV-1)~(IV-3)中、M2は、希土類原子を表し、Ra及びRbは、各々独立に、ハロゲン原子で置換されてもよく、鎖中に酸素原子を含んでもよい炭素数1~20のアルキル基を表し、Rcは炭素数1~8のアルキル基を表し、Re及びRfは、各々独立に、水素原子又は炭素数1~3のアルキル基を表し、Rg及びRjは、各々独立に、炭素数1~4のアルキル基を表し、p'は0~3の整数を表し、r'は0~2の整数を表す。
 上記一般式(IV-1)~(IV-3)において、M2で表される希土類原子としては、スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムが挙げられる。
 また、Ra、Rb、Rc、Re、Rf、Rg及びRjで表される基としては、前記のチタニウムなどを金属種として有するプレカーサで例示した基が挙げられる。
 本発明の薄膜形成用原料は、必要に応じて、本発明のコバルト化合物及び他のプレカーサの安定性を付与するため、求核性試薬を含有してもよい。求核性試薬としては、特に限定されないが、例えば、グライム、ジグライム、トリグライム、テトラグライムなどのエチレングリコールエーテル類;18-クラウン-6、ジシクロヘキシル-18-クラウン-6、24-クラウン-8、ジシクロヘキシル-24-クラウン-8、ジベンゾ-24-クラウン-8などのクラウンエーテル類;エチレンジアミン、N,N'-テトラメチルエチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、1,1,4,7,7-ペンタメチルジエチレントリアミン、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン、トリエトキシトリエチレンアミンなどのポリアミン類;サイクラム、サイクレンなどの環状ポリアミン類;ピリジン、ピロリジン、ピペリジン、モルホリン、N-メチルピロリジン、N-メチルピペリジン、N-メチルモルホリン、テトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサン、オキサゾール、チアゾール、オキサチオランなどの複素環化合物類;アセト酢酸メチル、アセト酢酸エチル、アセト酢酸-2-メトキシエチルなどのβ-ケトエステル類;アセチルアセトン、2,4-ヘキサンジオン、2,4-ヘプタンジオン、3,5-ヘプタンジオンなどのβ-ジケトン類が挙げられる。
 求核性試薬の使用量は、プレカーサ1モルに対して、通常0.1モル~10モル、好ましくは1~4モルの範囲で使用される。
 本発明の薄膜形成用原料は、上記の成分以外の不純物金属元素分、不純物塩素などの不純物ハロゲン分、及び不純物有機分を極力含有しないことが望ましい。不純物金属元素分は、元素毎では100ppb以下が好ましく、10ppb以下がより好ましく、総量では1ppm以下が好ましく、100ppb以下がより好ましい。特に、本発明の薄膜形成用原料を用いてLSIのゲート絶縁膜、ゲート膜、バリア層などを形成する場合、得られる薄膜の電気的特性に影響のあるアルカリ金属元素、アルカリ土類金属元素及び同属元素の含有量を少なくすることが必要である。不純物ハロゲン分は、100ppm以下が好ましく、10ppm以下がより好ましく、1ppm以下が更に好ましい。不純物有機分は、総量で500ppm以下が好ましく、50ppm以下がより好ましく、10ppm以下が更に好ましい。
 また、薄膜形成用原料中の水分は、薄膜形成用原料中でのパーティクル発生や、薄膜形成中におけるパーティクル発生の原因となるので、プレカーサ、有機溶剤及び求核性試薬については、それぞれの水分の低減のために、使用の際に予め出来る限り水分を取り除いた方がよい。プレカーサ、有機溶剤及び求核性試薬それぞれの水分量は、10ppm以下が好ましく、1ppm以下が更に好ましい。
 また、本発明の薄膜形成用原料は、形成される薄膜のパーティクル汚染を低減又は防止するために、パーティクルを極力含有しないことが好ましい。具体的には、液相での光散乱式液中粒子検出器によるパーティクル測定において、0.3μmより大きい粒子の数が液相1mL中に100個以下であることが好ましく、0.2μmより大きい粒子の数が液相1mL中に1000個以下であることがより好ましく、0.2μmより大きい粒子の数が液相1mL中に100個以下であることが更に好ましい。
 本発明の薄膜の製造方法は、本発明の薄膜形成用原料を用いて行われる。本発明の薄膜形成用原料を用いて行われる本発明の薄膜の製造方法としては、特に限定されず、塗布熱分解法やゾルゲル法などのMOD法;ALD法やCVD法などの気相薄膜形成法などを用いることができる。その中でも、組成制御性及び段差被覆性に優れている点、量産化に適している点、ハイブリッド集積が可能である点などの多くの長所を有する気相薄膜形成法が好ましい。
 気相薄膜形成法を用いて行われる本発明の薄膜の製造方法は、本発明の薄膜形成用原料を気化させることにより、コバルト化合物を含有する蒸気を得る工程と、前記蒸気を基体と接触させることにより、前記コバルト化合物を分解及び/又は化学反応させて前記基体上に薄膜を形成する工程とを含む。ここで、薄膜の形成は、一般に、基体が設置された成膜チャンバー内にて行われる。また、コバルト化合物を含有する蒸気と共に反応性ガスを必要に応じて成膜チャンバー内に供給することによって薄膜を形成してもよい。さらに、薄膜形成用原料は、上記で説明したような、気体輸送法、液体輸送法、シングルソース法、カクテルソース法を用いて、基体が設置された成膜チャンバー内へと供給すればよい。
 気相薄膜形成法としては、原料ガス(気化させた薄膜形成用原料)又は原料ガスと反応性ガスとを熱のみを用いて反応させて薄膜を形成する熱CVD法;熱及びプラズマを用いるプラズマCVD法;熱及び光を用いる光CVD法;熱、光及びプラズマを使用する光プラズマCVD法;CVDの堆積反応を素過程に分け、分子レベルで段階的に堆積を行うALD法が挙げられる。
 必要に応じて用いられる反応性ガスとしては、特に限定されないが、例えば、酸素、オゾン、二酸化窒素、一酸化窒素、水蒸気、過酸化水素、ギ酸、酢酸、無水酢酸などの酸化性ガス;水素などの還元性ガスが挙げられる。また、窒化物を含む薄膜を形成する場合、反応性ガスとして、モノアルキルアミン、ジアルキルアミン、トリアルキルアミン、アルキレンジアミンなどの有機アミン化合物、ヒドラジン、アンモニアなどを用いればよい。反応性ガスは、1種類又は2種類以上を組み合わせて用いることができる。
 成膜チャンバー内での成膜条件としては、特に限定されず、使用する装置及び原料の種類に応じて適宜設定すればよい。薄膜の製造装置としては、特に限定されず、当該技術分野において周知の化学気相成長法用装置などの気相薄膜形成装置を用いることができる。薄膜の製造装置の例としては、薄膜形成用原料をバブリング供給することが可能な気相薄膜形成装置、薄膜形成用原料を気化させる気化室を有する気相薄膜形成装置、プラズマ処理を行うことが可能な気相薄膜形成装置などが挙げられる。これらの装置は、枚葉式装置に限定されず、バッチ炉を用いた多数枚同時処理可能な装置であることができる。
 成膜条件としては、一般に、反応温度(基体温度)、反応圧力、堆積速度などが挙げられる。
 反応温度としては、本発明のコバルト化合物などが充分に反応する温度である100℃以上が好ましく、100℃~400℃がより好ましい。
 反応圧力としては、熱CVDや光CVDの場合、大気圧~10Paが好ましく、プラズマを使用する場合は、2000Pa~10Paが好ましい。
 堆積速度は、原料の供給条件(気化温度、気化圧力)、反応温度、反応圧力によって制御することができる。堆積速度は、大きすぎると、得られる薄膜の特性が悪化する場合があり、小さすぎると、生産性に問題を生じる場合がある。そのため、堆積速度は、0.01~5000nm/分が好ましく、0.1~1000nm/分がより好ましい。また、ALD法の場合は、所望の膜厚が得られるようにサイクルの回数で制御すればよい。
 例えば、ALD法を用いて酸化コバルト薄膜を形成する場合、本発明の薄膜形成用原料を用いて前駆体薄膜を形成する。具体的には、本発明の薄膜形成用原料を気化させることにより、コバルト化合物を含有する蒸気を得た後、この蒸気を基体と接触させることにより、コバルト化合物を分解及び/又は化学反応させて基体上に前駆体薄膜を形成する(前駆体薄膜形成工程)。このとき、基体を加熱するか又は成膜チャンバーを加熱して熱を加えてもよい。基体温度は、室温~500℃が好ましく、150~350℃がより好ましい。また、成膜チャンバー内の圧力は1~10000Paが好ましく、10~1000Paがより好ましい。形成される前駆体薄膜は、コバルト化合物の一部が分解及び/又は反応して生成した薄膜であり、目的の酸化コバルト薄膜とは異なる組成を有する。
 次に、成膜チャンバーから未反応の原料ガスや副生したガスを排気する(排気工程)。未反応の原料ガスや副生したガスは、成膜チャンバー内から完全に排気されるのが理想的であるが、必ずしも完全に排気される必要はない。排気方法としては、窒素、ヘリウム、アルゴンなどの不活性ガスにより成膜チャンバー内をパージする方法、成膜チャンバー内を減圧することで排気する方法、これらを組み合わせた方法などが挙げられる。減圧する場合、減圧度は、0.01~300Paが好ましく、0.01~100Paがより好ましい。
 次に、成膜チャンバー内に反応性ガスを供給し、反応性ガス又は反応性ガス及び熱の作用により、前駆体薄膜から酸化コバルト薄膜を形成する(酸化コバルト薄膜形成工程)。このとき、加熱温度は、室温~500℃が好ましく、150~350℃がより好ましい。本発明のコバルト化合物は、水素、酸素及びオゾンに代表される反応性ガスとの反応性が良好であり、酸化コバルト薄膜やコバルト薄膜を効率良く形成することができる。
 酸化コバルト薄膜の製造において、上記のようにALD法を採用した場合、前駆体薄膜形成工程、排気工程、及び酸化コバルト薄膜形成工程からなる一連の工程を1サイクルとし、このサイクルを、必要な膜厚の酸化コバルト薄膜が得られるまで複数回繰り返してもよい。この場合、1サイクル行った後、上記排気工程と同様にして、成膜チャンバーから未反応の原料ガス、反応性ガス及び副生したガスを排気してから、次のサイクルを行うことが好ましい。
 また、ALD法を用いた酸化コバルト薄膜の製造方法では、プラズマ、光、電圧などのエネルギーを印加してもよい。エネルギーを印加するタイミングは、特には限定されず、例えば、各工程の間又は各工程中に行うことができる。
 また、本発明の薄膜の製造方法では、薄膜を形成した後、より良好な電気特性を得るために、不活性雰囲気下、酸化性雰囲気下又は還元性雰囲気下でアニール処理を行ってもよく、シリサイド化してもよい。また、段差埋め込みが必要な場合には、リフロー工程を設けてもよい。この場合の温度は、通常200~1000℃であり、250~500℃が好ましい。
 本発明の薄膜形成用原料を用いた本発明の薄膜の製造方法によって製造される薄膜は、他のプレカーサ、反応性ガス及び製造条件などを適宜選択することにより、メタル、酸化物セラミックス、窒化物セラミックス、ガラスなどの所望の種類の薄膜とすることができる。具体的には、金属コバルト、コバルト系酸化物、コバルト系窒化物や、Co-Cr、Co-Fe、Co-Niのようなコバルト系合金などの薄膜を製造することができる。これらの薄膜の用途としては、抵抗膜、接着膜、超硬工具、磁性膜、磁石及びICリードフレームなどが挙げられる。
 以下、実施例及び比較例を用いて本発明を更に詳細に説明する。しかしながら、本発明は、以下の実施例などに限定されるものではない。
 (実施例1:化合物No.7)
 200mLの4つ口フラスコに、塩化コバルト(II)10.8g(0.079mol)、及びテトラヒドロフラン55.1gを仕込み、室温下で撹拌した。その中に、1-(エチル(メチル)アミノ)ブタン-2-オールを用いて調製して得たナトリウムアルコキシド25.6g(0.167mol)をテトラヒドロフラン48.6gで希釈した溶液を氷冷下で滴下した。滴下終了後、混合液を室温下で21時間撹拌し、トルエン69.7gを加えて撹拌した後、ろ過を行った。得られたろ液から溶媒を除去し、残渣をバス温度205℃、圧力40Pa、塔頂温度155℃で蒸留して、暗紫色粘性液体である目的物(化合物No.7)を得た。収量は8.23g、収率は34%であった。
 得られた目的物(化合物No.7)について元素分析(金属分析:ICP-AES、塩素分析:TOX)を行った。その結果を下記に示す。
 コバルト:19.1質量%(理論値18.5質量%)
 C:51.3質量%、H:10.3質量%、N:8.5質量%(理論値C:52.7質量%、H:10.1質量%、N:8.8質量%)
 塩素:10ppm未満
 (実施例2:化合物No.12)
 100mLの3つ口フラスコに、塩化コバルト(II)1.13g(8.27mmol)、及びテトラヒドロフラン15.3gを仕込み、室温下で撹拌した。その中に、1-(エチル(メチル)アミノ)-3-メチルブタン-2-オールを用いて調製して得たナトリウムアルコキシド2.90g(17.3mmol)をテトラヒドロフラン18.0gで希釈した溶液を氷冷下で滴下した。滴下終了後、混合液を室温下で21時間撹拌し、ろ過を行った。得られたろ液から溶媒を除去し、残渣をバス温度145℃、圧力25Pa、塔頂温度107℃で蒸留して、濃紫色粘性液体である目的物(化合物No.12)を得た。収量は0.42g、収率は14%であった。
 得られた目的物(化合物No.12)について元素分析(金属分析:ICP-AES、塩素分析:TOX)を行った。その結果を下記に示す。
 コバルト:17.4質量%(理論値16.7質量%)
 C:55.9質量%、H:10.9質量%、N:7.8質量%(理論値C:55.3質量%、H:10.4質量%、N:8.1質量%)
 塩素:10ppm未満
 (実施例3:化合物No.14)
 100mLの3つ口フラスコに、ビス(ビス(トリメチルシリル)アミノ)コバルト(II)1.00g(2.63mmol)及びトルエン10gを仕込み、その中に1-ジエチルアミノ)-3-メチルブタン-2-オール0.83g(5.26mmol)を室温下で滴下した。滴下終了後、混合液を室温下で20時間撹拌した。バス温度110℃、減圧下で溶媒及び副生成物であるシラザン化合物を除去して濃紫色粘性液体である目的物(化合物No.14)を得た。収量は0.75g、収率は74%であった。
 得られた目的物(化合物No.14)について元素分析(金属分析:ICP-AES)を行った。その結果を下記に示す。
 コバルト:16.2質量%(理論値15.7質量%)
 C:57.5質量%、H:10.4質量%、N:7.9質量%(理論値C:57.6質量%、H:10.7質量%、N:7.5質量%)
 (実施例4:化合物No.17)
 100mLの3つ口フラスコに、ビス(ビス(トリメチルシリル)アミノ)コバルト(II)1.00g(2.63mmol)及びトルエン10gを仕込み、その中に1-(エチル(メチル)アミノ)-4-メチルペンタン-2-オール0.87g(5.26mmol)を室温下で滴下した。滴下終了後、混合液を室温下で20時間撹拌した。バス温度110℃、減圧下で溶媒及び副生成物であるシラザン化合物を除去して濃紫色粘性液体である目的物(化合物No.17)を得た。収量は0.80g、収率は81%であった。
 得られた目的物(化合物No.17)について元素分析(金属分析:ICP-AES)を行った。その結果を下記に示す。
 コバルト:15.4質量%(理論値15.7質量%)
 C:57.9質量%、H:10.6質量%、N:7.1質量%(理論値C:57.6質量%、H:10.7質量%、N:7.5質量%)
 (実施例5:化合物No.22)
 200mLの3つ口フラスコに、塩化コバルト(II)3.95g(30.4mmol)、及びテトラヒドロフラン29.1gを仕込み、室温下で撹拌した。その中に、1-(エチル(メチル)アミノ)-3-メチルペンタン-2-オールを用いて調製して得たナトリウムアルコキシド10.7g(59.3mmol)をテトラヒドロフラン28.9gで希釈した溶液を氷冷下で滴下した。滴下終了後、混合液を室温下で18時間撹拌し、ろ過を行った。得られたろ液から溶媒を除去し、残渣をバス温度165℃、圧力65Pa、塔頂温度147℃で蒸留して、紫色粘性液体である目的物(化合物No.22)を得た。収量は1.42g、収率は13%であった。
 得られた目的物(化合物No.22)について元素分析(金属分析:ICP-AES、塩素分析:TOX)を行った。その結果を下記に示す。
 コバルト:15.2質量%(理論値15.7質量%)
 C:58.0質量%、H:10.8質量%、N:7.6質量%(理論値C:57.6質量%、H:10.7質量%、N:7.5質量%)
 塩素:10ppm未満
 (実施例6:化合物No.27)
 100mLの3つ口フラスコに、塩化コバルト(II)2.90g(0.022mol)、及びテトラヒドロフラン17.6gを仕込み、室温下で撹拌した。その中に、1-(エチル(メチル)アミノ)-3,3-ジメチルブタン-2-オールを用いて調製して得たナトリウムアルコキシド7.97g(0.044mol)をテトラヒドロフラン15.6gで希釈した溶液を氷冷下で滴下した。滴下終了後、混合液を室温下で20時間撹拌し、ろ過を行った。得られたろ液から溶媒を除去し、残渣をバス温度135℃、圧力17Paの条件下で蒸留して、暗赤色固体(融点69℃)である目的物(化合物No.27)を得た。収量は3.39g、収率は41%であった。
 得られた目的物(化合物No.27)について元素分析(金属分析:ICP-AES、塩素分析:TOX)を行った。その結果を下記に示す。
 コバルト:15.9質量%(理論値15.7質量%)
 C:57.9質量%、H:10.4質量%、N:7.6質量%(理論値C:57.6質量%、H:10.7質量%、N:7.5質量%)
 塩素:10ppm未満
 (実施例7:化合物No.29)
 200mLの3つ口フラスコに、塩化コバルト(II)5.95g(45.8mmol)、及びテトラヒドロフラン26.8gを仕込み、室温下で撹拌した。その中に、1-(ジエチルアミノ)-3,3-ジメチルブタン-2-オールを用いて調製して得たナトリウムアルコキシド17.2g(88.3mmol)をテトラヒドロフラン22.9gで希釈した溶液を氷冷下で滴下した。滴下終了後、混合液を室温下で16時間撹拌し、ろ過を行った。得られたろ液から溶媒を除去し、残渣をバス温度150℃、圧力40Pa、塔頂温度115℃で蒸留して、赤紫色粘性液体である目的物(化合物No.29)を得た。収量は7.59g、収率は43%であった。
 得られた目的物(化合物No.29)について元素分析(金属分析:ICP-AES、塩素分析:TOX)を行った。その結果を下記に示す。
 コバルト:14.4質量%(理論値14.6質量%)
 C:59.7質量%、H:10.7質量%、N:7.3質量%(理論値C:59.5質量%、H:11.0質量%、N:6.9質量%)
 塩素:10ppm未満
 (比較例1及び2)
 比較例1として下記の比較化合物No.1、比較例2として下記の比較化合物No.2を、周知の方法に準じてそれぞれ製造した。
Figure JPOXMLDOC01-appb-C000013
 上記の実施例及び比較例で得られたコバルト化合物について、常温(30℃)における状態(固体状態であるか又は液体状態であるか)を目視にて観察し、固体状態のものについては、微小融点測定装置を用いて融点を測定した。
 また、上記の実施例及び比較例で得られたコバルト化合物について、DSC測定装置を用いて熱分解が発生する温度(熱分解発生温度)を測定することにより、コバルト化合物の熱安定性を評価した。
 また、上記の実施例及び比較例で得られたコバルト化合物について、常圧及び減圧下でTG-DTAを行い、サンプルの重量が50%減少した際の温度を測定した。
<常圧TG-DTAの測定条件>
 Ar流量:100mL/分
 昇温速度:10℃/分
 サンプル量:約10mg
<減圧TG-DTAの測定条件>
 圧力:10Torr
 Ar流量:50mL/分
 昇温速度:10℃/分
 サンプル量:約10mg
 上記の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000014
 表1の結果に示されているように、比較例1のコバルト化合物は融点80℃、比較例2のコバルト化合物は融点が100℃以上であったのに対し、実施例1~7のコバルト化合物は全て比較例1及び比較例2のコバルト化合物よりも融点が低かった。その中でも、実施例1~5及び7のコバルト化合物は、常温常圧条件下で液体であることがわかった。常温常圧状態で液体、又は融点が低い薄膜形成用原料は輸送が容易であることから、実施例1~7のコバルト化合物は、生産性を向上させることができる薄膜形成用原料と言える。
 また、比較例2のコバルト化合物は、熱分解させるために300℃の加熱が必要であるのに対し、実施例1~7のコバルト化合物は、比較例2のコバルト化合物よりも20~30%程度も低い温度で分解させることができることを確認した。その中でも、実施例2及び7のコバルト化合物は、230℃という特に低い温度で分解させることができることがわかった。
 さらに、実施例1~7のコバルト化合物は、サンプルの重量が50%減少した際の温度が低いため、高い蒸気圧を示す薄膜形成用原料であると言える。
 (実施例8:熱CVD法による酸化コバルト薄膜の製造)
 実施例1~7のコバルト化合物を薄膜形成用原料として用い、図1に示すCVD装置において、熱CVD法により、下記の条件にてCu基板及びSiO2基板上に酸化コバルト薄膜を形成した。
 <条件>
 原料容器温度:70℃
 原料容器内圧力:100Pa
 反応温度(基体温度):300℃
 反応性ガス:なし
 キャリアガス:アルゴンガス
 <工程>
 気化させた薄膜形成用原料の蒸気を成膜チャンバーに供給し、成膜チャンバー内の圧力100Paで8000秒間堆積させた。
 得られた薄膜について、X線反射率法による膜厚測定、X線光電子分光法による薄膜構造及び薄膜組成の確認を行った。その結果、単位時間当たりに得られる膜厚は、0.2~1.0nm/分であり、得られた薄膜は全て酸化コバルト薄膜であった。
 以上の結果からわかるように、本発明によれば、融点が低く液体の状態で輸送ができ、低温で分解させることができ、しかも蒸気圧が大きく気化させ易いコバルト化合物及びそれを用いた薄膜形成用原料を提供することができる。
 また、本発明によれば、良質なコバルト含有薄膜を生産性良く製造することができる薄膜の製造方法を提供することができる。
 なお、本国際出願は、2014年5月14日に出願した日本国特許出願第2014-100607号に基づく優先権を主張するものであり、これらの日本国特許出願の全内容を本国際出願に援用する。

Claims (3)

  1.  下記一般式(I):
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1~R3は、各々独立に炭素数1~5の直鎖又は分岐鎖のアルキル基を表す)で表されるコバルト化合物。
  2.  請求項1に記載のコバルト化合物を含有する薄膜形成用原料。
  3.  請求項2に記載の薄膜形成用原料を気化させることにより、コバルト化合物を含有する蒸気を得る工程と、
     前記蒸気を基体と接触させることにより、前記コバルト化合物を分解及び/又は化学反応させて前記基体上に薄膜を形成する工程と
    を含む薄膜の製造方法。
PCT/JP2015/060131 2014-05-14 2015-03-31 コバルト化合物、薄膜形成用原料及び薄膜の製造方法 WO2015174153A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/306,807 US20170050998A1 (en) 2014-05-14 2015-03-31 Cobalt compound, thin film-forming raw material, and method for producing thin film
EP15792769.0A EP3144313A4 (en) 2014-05-14 2015-03-31 Cobalt compound, raw material for forming thin film, and method for producing thin film
KR1020167030824A KR102376087B1 (ko) 2014-05-14 2015-03-31 코발트 화합물, 박막 형성용 원료 및 박막의 제조 방법
IL248518A IL248518A0 (en) 2014-05-14 2016-10-26 Cobalt compound, raw material forming a thin layer and method for producing a thin layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-100607 2014-05-14
JP2014100607A JP6249875B2 (ja) 2014-05-14 2014-05-14 コバルト化合物、薄膜形成用原料及び薄膜の製造方法

Publications (1)

Publication Number Publication Date
WO2015174153A1 true WO2015174153A1 (ja) 2015-11-19

Family

ID=54479698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060131 WO2015174153A1 (ja) 2014-05-14 2015-03-31 コバルト化合物、薄膜形成用原料及び薄膜の製造方法

Country Status (7)

Country Link
US (1) US20170050998A1 (ja)
EP (1) EP3144313A4 (ja)
JP (1) JP6249875B2 (ja)
KR (1) KR102376087B1 (ja)
IL (1) IL248518A0 (ja)
TW (1) TWI652275B (ja)
WO (1) WO2015174153A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111032663A (zh) * 2017-08-30 2020-04-17 株式会社Adeka 金属醇盐化合物、薄膜形成用原料及薄膜的制造方法
TWI848976B (zh) * 2018-10-04 2024-07-21 日商Adeka股份有限公司 原子層堆積法用薄膜形成用原料、薄膜形成用原料、薄膜之製造方法及化合物
IL283981B1 (en) * 2018-12-17 2024-10-01 Adeka Corp Raw material for creating a thin layer using an atomic layer deposition method, a method for the production of a thin layer and an alkoxide compound

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216614A (ja) * 2012-04-09 2013-10-24 Adeka Corp コバルトアルコキシド化合物、薄膜形成用原料及び薄膜の製造方法
US20130330473A1 (en) * 2012-06-11 2013-12-12 Wayne State University Atomic Layer Deposition of Transition Metal Thin Films Using Boranes as the Reducing Agent
WO2014077089A1 (ja) * 2012-11-13 2014-05-22 株式会社Adeka 金属アルコキシド化合物、薄膜形成用原料、薄膜の製造方法及びアルコール化合物

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085175A1 (ja) * 2004-02-18 2005-09-15 Adeka Corporation アルコキシド化合物、薄膜形成用原料及び薄膜の製造方法
KR100593265B1 (ko) 2004-09-02 2006-06-26 한국기계연구원 플라즈마 아크방전을 이용한 나노분말 제조공정
JP4632765B2 (ja) * 2004-10-21 2011-02-16 株式会社Adeka アルコキシド化合物、薄膜形成用原料及び薄膜の製造方法
JP4795006B2 (ja) 2005-11-29 2011-10-19 アイシン・エィ・ダブリュ株式会社 ブレーキ用油圧サーボ、及びそれを備えた自動変速機
KR100675983B1 (ko) * 2006-03-06 2007-01-30 한국화학연구원 신규의 코발트 아미노알콕사이드 화합물 및 그 제조 방법
US8871628B2 (en) * 2009-01-21 2014-10-28 Veeco Ald Inc. Electrode structure, device comprising the same and method for forming electrode structure
JP5690684B2 (ja) * 2011-08-02 2015-03-25 株式会社Adeka アルコキシド化合物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216614A (ja) * 2012-04-09 2013-10-24 Adeka Corp コバルトアルコキシド化合物、薄膜形成用原料及び薄膜の製造方法
US20130330473A1 (en) * 2012-06-11 2013-12-12 Wayne State University Atomic Layer Deposition of Transition Metal Thin Films Using Boranes as the Reducing Agent
WO2014077089A1 (ja) * 2012-11-13 2014-05-22 株式会社Adeka 金属アルコキシド化合物、薄膜形成用原料、薄膜の製造方法及びアルコール化合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3144313A4 *

Also Published As

Publication number Publication date
EP3144313A1 (en) 2017-03-22
TWI652275B (zh) 2019-03-01
IL248518A0 (en) 2016-12-29
JP2015218116A (ja) 2015-12-07
TW201604200A (zh) 2016-02-01
KR102376087B1 (ko) 2022-03-17
KR20170007277A (ko) 2017-01-18
US20170050998A1 (en) 2017-02-23
EP3144313A4 (en) 2017-12-06
JP6249875B2 (ja) 2017-12-20

Similar Documents

Publication Publication Date Title
JP6465699B2 (ja) ジアザジエニル化合物、薄膜形成用原料、薄膜の製造方法及びジアザジエン化合物
JP6184030B2 (ja) アルミニウム化合物、薄膜形成用原料及び薄膜の製造方法
WO2019203035A1 (ja) 原子層堆積法用薄膜形成用原料及び薄膜の製造方法
TWI713747B (zh) 釩化合物、薄膜形成用原料及薄膜之製造方法
JPWO2019044448A1 (ja) 金属アルコキシド化合物、薄膜形成用原料及び薄膜の製造方法
WO2013018413A1 (ja) アルコキシド化合物及び薄膜形成用原料
KR20220088907A (ko) 신규 화합물, 그 화합물을 함유하는 박막 형성용 원료 및 박막의 제조 방법
JP6278827B2 (ja) 銅化合物、薄膜形成用原料及び薄膜の製造方法
JP6249875B2 (ja) コバルト化合物、薄膜形成用原料及び薄膜の製造方法
JP7418349B2 (ja) 原子層堆積法用薄膜形成原料、薄膜の製造方法及びアルコキシド化合物
JP5912911B2 (ja) アルミニウム化合物を用いたald法による薄膜の製造方法
WO2021200218A1 (ja) 原子層堆積法用薄膜形成用原料及び薄膜の製造方法
JPWO2018235530A1 (ja) 金属アルコキシド化合物、薄膜形成用原料及び薄膜の製造方法
WO2013105310A1 (ja) アルミニウム化合物、薄膜形成用原料及び薄膜の製造方法
JP2013216614A (ja) コバルトアルコキシド化合物、薄膜形成用原料及び薄膜の製造方法
WO2020170853A1 (ja) 原子層堆積法用窒化ガリウム含有薄膜形成用原料及び窒化ガリウム含有薄膜の製造方法
JP2018035072A (ja) ジアザジエニル化合物、薄膜形成用原料及び薄膜の製造方法
WO2020203783A1 (ja) 薄膜形成用原料、薄膜の製造方法及び新規なスカンジウム化合物
JP7573514B2 (ja) 薄膜形成用原料、薄膜の製造方法及び新規なスカンジウム化合物
WO2023276716A1 (ja) 薄膜形成用原料、薄膜及び薄膜の製造方法
JP2022161040A (ja) 原子層堆積法のための薄膜形成原料及びそれを用いた亜鉛含有薄膜の製造方法
KR20240064026A (ko) 박막 형성용 원료, 박막의 제조 방법, 박막 및 몰리브덴 화합물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15792769

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 248518

Country of ref document: IL

Ref document number: 15306807

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167030824

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015792769

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015792769

Country of ref document: EP