WO2015173995A1 - Soi基板の評価方法 - Google Patents

Soi基板の評価方法 Download PDF

Info

Publication number
WO2015173995A1
WO2015173995A1 PCT/JP2015/000943 JP2015000943W WO2015173995A1 WO 2015173995 A1 WO2015173995 A1 WO 2015173995A1 JP 2015000943 W JP2015000943 W JP 2015000943W WO 2015173995 A1 WO2015173995 A1 WO 2015173995A1
Authority
WO
WIPO (PCT)
Prior art keywords
soi substrate
interface state
state density
resistance
evaluated
Prior art date
Application number
PCT/JP2015/000943
Other languages
English (en)
French (fr)
Inventor
大槻 剛
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to US15/305,989 priority Critical patent/US9780006B2/en
Priority to KR1020167030635A priority patent/KR102185647B1/ko
Priority to SG11201608834SA priority patent/SG11201608834SA/en
Priority to CN201580024451.1A priority patent/CN106415806B/zh
Priority to EP15793091.8A priority patent/EP3144965B1/en
Publication of WO2015173995A1 publication Critical patent/WO2015173995A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI

Definitions

  • the present invention relates to an SOI (Silicon On Insulator) substrate manufactured by bonding a silicon single crystal wafer, and more particularly to evaluation of an SOI substrate used for manufacturing a device for high frequency.
  • SOI Silicon On Insulator
  • RF Radio Frequency
  • the crosstalk is an undesired propagation of an electric signal between devices, for example, an electric signal is propagated through a capacitor between device wirings or a wafer.
  • the wafer resistivity of the device forming portion cannot be extremely increased.
  • an intermediate layer such as a polysilicon layer or a nitride oxide is introduced at the interface between the BOX layer and the base wafer, so that an inversion layer is not formed, and good high frequency characteristics are obtained.
  • a technique capable of obtaining an SOI wafer is known (for example, Patent Documents 1 and 2 and Non-Patent Document 1).
  • Patent Document 3 a method of preventing deterioration of high frequency characteristics by using a silicon wafer having a plane orientation different from that of the silicon wafer to be an SOI layer as a base wafer has been introduced (for example, Patent Document 3).
  • the technology as described above is essential for obtaining good high frequency characteristics.
  • the substrate resistance can be spread and measured by resistance measurement or other methods, but there is no method for directly measuring and evaluating the characteristics of the trap layer (functional layer) immediately below the BOX layer. For this reason, there is a problem that there is only a method for evaluating high frequency characteristics by measuring leakage power after manufacturing an actual device.
  • the present invention has been made in view of the above-described problems.
  • a method for evaluating high frequency characteristics when a high frequency is applied to an SOI substrate to be evaluated A device is formed in advance on an SOI substrate for measurement, the relationship between the interface state density of the SOI substrate for measurement and leakage power at the time of applying a high frequency, or the interface state density is converted into resistance, and the converted resistance And a process of obtaining a relationship between the leakage power and Measuring an interface state density of the SOI substrate to be evaluated to obtain an interface state density, or obtaining a resistance converted based on the interface state density; From the measured interface state density of the evaluation target SOI substrate, the leakage power of the evaluation target SOI substrate is evaluated or measured based on the relationship between the interface state density and the leakage power determined in advance. A step of evaluating leakage power of the evaluation target SOI substrate based on the relationship between the resistance and leakage power obtained in advance from the resistance converted from the interface state density of the evaluation target SOI substrate.
  • a characteristic SOI substrate evaluation method is
  • the SOI substrate is suitable for a high-frequency device without producing an actual device.
  • First embodiment In the first embodiment, first, using a measurement SOI substrate, a step of obtaining in advance a relationship between the interface state density and the leakage power when applying a high frequency is performed.
  • As an SOI substrate for measurement the generation of carriers is suppressed at the interface between the SOI layer 1 as shown in FIG. 1, the BOX layer 2 that is a silicon oxide film, the base wafer 4, and the BOX layer 2 and the base wafer 4.
  • the same SOI substrate 5 for evaluation having the trap layer 3 to be prepared is prepared.
  • the interface state density of the measurement SOI substrate 5 is measured to obtain the interface state density.
  • the interface state density can be measured by a pseudo MOSFET method using a mercury electrode described in Non-Patent Documents 2 and 3.
  • the interface state density can be measured by the CV method described in Non-Patent Document 2 after removing the SOI layer with an alkaline solution.
  • a device is formed on a measurement SOI substrate, a high frequency is applied, and leakage power at that time is measured. Using the interface state density of the SOI substrate 5 and the leakage power when applying a high frequency, measured in this way, the correlation between the two is obtained in advance.
  • an SOI substrate to be evaluated is prepared.
  • the SOI substrate to be evaluated is also an SOI substrate 5 having an SOI layer 1, a BOX layer 2, a trap layer 3 and a base wafer 4 as shown in FIG.
  • the interface state density of the SOI substrate 5 to be evaluated is measured to obtain the interface state density.
  • the interface state density can be measured by the pseudo MOSFET method using a mercury electrode or the CV method as described above.
  • a step of evaluating leakage power of the evaluation target SOI substrate is performed.
  • the evaluation SOI is calculated from the measured interface state density of the evaluation SOI substrate based on the relationship obtained in advance with respect to the relationship between the interface state density of the measurement SOI substrate and the leakage power.
  • the leakage power of the substrate can be predicted and evaluated.
  • the step of first obtaining the relationship between the resistance and leakage power converted based on the measurement result of the interface state density of the SOI substrate for measurement is performed in advance.
  • the interface state density can be converted to resistance by the following method. From the relationship of Equation 1, the SSL (Subthreshold Slope) value can be obtained from the interface state density.
  • SSL is defined as a change in voltage (V g ) when the current (I d ) increases by an order of magnitude as shown in FIG.
  • C OX represents the BOX layer capacitance
  • C Si represents the SOI layer capacitance.
  • This SSL is defined as a resistance RD (corresponding to V / I of the resistance component of Formula 2) obtained from the interface state density, and is converted into a normal resistance from this resistance RD.
  • the conversion factor at this time can be obtained from the result of the high frequency measurement (Equations 2 and 3).
  • represents resistivity
  • R SP represents spreading resistance.
  • a device is formed on a measurement SOI substrate, a high frequency is applied, and leakage power at that time is measured.
  • the correlation between the two is obtained in advance by using the resistance converted based on the measurement result of the interface state density and the leakage power at the time of applying the high frequency obtained by the measurement.
  • the step of evaluating the leakage power of the evaluation target SOI substrate is performed based on the relationship between the resistance and the leakage power obtained in advance. At this time, the interface state density of the SOI substrate to be evaluated is measured, and the obtained interface state density is converted into resistance in the same manner as described above.
  • the leakage of the SOI substrate to be evaluated is determined based on the relationship between the resistance of the SOI substrate for measurement and the leakage power obtained in advance from the resistance converted from the interface state density of the evaluation SOI substrate. Electric power can be predicted and evaluated.
  • the leakage power of the SOI substrate can be evaluated without actually manufacturing a device on the evaluation SOI substrate.
  • the interface state density is converted into resistance, it is possible to indicate the substrate characteristics by one standard of resistance.
  • a silicon single crystal wafer having a diameter of 200 mm doped with boron having a resistivity of 1000 ⁇ ⁇ cm was used as a base wafer, and a polycrystalline layer was grown to 3 ⁇ m on this base wafer using trichlorosilane as a source gas at 1150 ° C. for a growth time of 3 minutes. . Thereafter, a polycrystalline layer was grown to 0.5 ⁇ m using monosilane as a raw material at 570 ° C. and a growth time of 90 minutes to form a trap layer.
  • a silicon wafer having a diameter of 200 mm doped with boron having a resistivity of 1000 ⁇ ⁇ cm is bonded to a bond wafer having a BOX layer formed by forming a 1000 nm oxide film in a Pyro atmosphere at 1150 ° C. for 6 hours. Bonding heat treatment was performed. Thereafter, the SOI layer was made 160 nm by thinning by polishing, and an SOI substrate was manufactured. In the same manner, a plurality of SOI substrates were manufactured.
  • the interface state density of a plurality of SOI substrates with different interface state densities was measured by a pseudo MOSFET method using mercury electrodes described in Non-Patent Documents 2 and 3.
  • the SOI layer of the SOI substrate was removed by alkaline etching, and then Al was vapor deposited to a thickness of 2 ⁇ m. Further, photolithography was performed to form CPW (Coplanar Waveguides).
  • CPW Coplanar Waveguides
  • the high frequency was applied to the SOI substrate for a measurement which formed the device, and the leakage power between Al electrodes with respect to input power was measured.
  • the frequency of the applied high frequency was measured in the range of 1 ⁇ 10 8 to 1 ⁇ 10 11 Hz. From the data on the frequency dependence of leakage power, 1 GHz (1 ⁇ 10 9 Hz), which is considered to reflect the difference in the board as a representative value of leakage power, was adopted, and the relationship of FIG. 3 was obtained.
  • the SOI layer capacitance Csi having a thickness of 160 nm is 6.53 ⁇ 10 ⁇ 8 F
  • the BOX layer capacitance Cox having a thickness of 1000 nm is 7.195 ⁇ 10 ⁇ 8 F.
  • the coefficient when converting SSL into resistance was set to 10,000 in this case, and SSL was converted into resistance.
  • the converted resistance was determined based on the interface state density between the BOX layer and the base wafer measured when 1 GHz was applied. Then, the relationship between the converted resistance and leakage power was obtained and shown in FIG.
  • the interface state density of the SOI substrate to be evaluated was measured by a pseudo MOSFET method. Based on the measured interface state density, the leakage current when a high frequency is applied to the SOI substrate to be evaluated can be evaluated based on the relationship between the interface state density of FIG. did it.
  • the converted resistance was obtained in the same manner as described above. From the converted resistance, it was possible to evaluate the leakage current when a high frequency was applied to the SOI substrate to be evaluated based on the relationship between the resistance of FIG. 4 and the leakage power obtained in advance.
  • the leakage power due to the difference in the presence or absence of the trap layer as shown in FIG. Without forming a device, the difference was predicted from the interface state density of the evaluation SOI substrate or the resistance converted from the interface state density, and the evaluation could be performed accurately. As a result, accurate evaluation can be performed in a simple way.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

 本発明は、予め測定用のSOI基板にデバイスを形成し、該測定用のSOI基板の界面準位密度と高周波印加時の漏れ電力との関係、または界面準位密度を抵抗に換算し、該換算した抵抗と漏れ電力との関係を求めておく工程と、評価対象のSOI基板の界面準位密度を測定して界面準位密度を求める、または該界面準位密度に基づき換算される抵抗を求める工程と、測定した評価対象のSOI基板の界面準位密度から、予め求めた界面準位密度と漏れ電力の関係に基づき、評価対象のSOI基板の漏れ電力を評価する、または測定した評価対象のSOI基板の界面準位密度より換算される抵抗から、予め求めた抵抗と漏れ電力の関係に基づき、評価対象のSOI基板の漏れ電力を評価する工程とを有することを特徴とするSOI基板の評価方法である。これにより、実際に高周波特性を測定することなく、出来るだけ簡単な方法によって高周波向けに適した基板を評価できる。

Description

SOI基板の評価方法
 本発明は、シリコン単結晶ウェーハを貼り合わせて作製するSOI(Silicon On Insulator)基板に関し、より詳しくは、高周波用デバイス作製などに使用される、SOI基板の評価に関するものである。
 携帯端末やワイヤレス通信の急速な普及により、通信インターフェースを主目的としたRF(Radio Frequency;高周波)デバイスが注目されており、今後も発展すると考えられている。近年の携帯端末やパーソナルコンピュータでは低消費電力デバイスの採用が進んでおり、このような場合、SOI基板を使用すると、リーク電流の低減による消費電力の低下のメリットがある。更に、SoC(System on a Chip)などにより、RFデバイスを組み込むことも考えられているが、RFトランジスタの特性上でも、SOIウェーハを用いることで、デバイス間のクロストークを減少させるメリットがある。
 ここで、クロストークとは、デバイス間の望まれざる電気信号の伝播のことであり、例えばデバイスの配線間のキャパシタや、あるいはウェーハを通して、電気信号が伝播される。ウェーハの抵抗率が高くなればなるほどクロストークは少なくなるが、実際にはデバイス形成部のウェーハ抵抗率を極端に高くすることは出来ない。
 しかし、SOI基板を使用すると、SOI層とベースウェーハの間に埋め込み酸化膜層(BOX層)が存在するため、クロストークを低減することが出来る。また、BOX層の下地となるベースウェーハにはデバイスが作製されないために、デバイス作製上の制限を受けずに高抵抗率のベースウェーハを使用することが可能であり、これによって高周波特性を向上させることが可能である。
 しかし、高抵抗率のベースウェーハを用いた場合、SOI層に作製されたソース・ドレインやその他電子回路の配置によっては、BOX層に電界が印加され、BOX層とベースウェーハとの界面に反転層が生じるケースがある。このような場合、高周波特性に悪影響を及ぼすので、高抵抗率ウェーハを使用したにもかかわらず、所望の高周波特性が得られなくなる。なお一般的に高抵抗率とは、1000Ω・cm以上の基板が用いられることが多い。
 その対策として、界面準位密度(以下、Ditともいう)を高くして、キャリアを界面準位にトラップさせて反転層による高周波特性の劣化を防止することが考えられる。
 このような技術として、例えば、BOX層とベースウェーハの界面にポリシリコン層や窒化酸化物のような中間層(トラップ層)を導入して、反転層が形成されないようにして、良好な高周波特性のSOIウェーハを得ることができる技術が知られている(例えば特許文献1,2、非特許文献1)。
 また、SOI層となるシリコンウェーハとは異なる面方位をもつシリコンウェーハをベースウェーハとして使用し、高周波特性の劣化を防止する方法なども紹介されている(例えば特許文献3)。
 前述のような技術は良好な高周波特性を得るためには必須の技術である。その技術を評価する際、例えば、基板抵抗は広がり抵抗測定やその他の方法で測定することが出来るが、BOX層直下のトラップ層(機能層)の特性を直接測定して評価する方法はない。そのため実際のデバイスを作製してから、漏れ電力などを測定して、高周波特性を評価する方法しかないという問題があった。
特表2007-507093号公報 特表2007-507100号公報 特開2009-231376号公報
D. Lederer et. al., "Effective resistivity of fully-processed SOI substrates" Solid-State Electronics., 49, 491 (2005). SEMICONDUCTOR MATERIAL AND DEVICE CHARACTERZATION, D. K. Schroder, JOHN WILEY & SONS, INC., PUBLICATION 2006 H.J.Hovel, "Si film electrical characterization in SOI substrates by the HgFET technique", Solid-State Electron, 47, 1311 (2003)
 本発明は前述のような問題に鑑みてなされたもので、実際にデバイスを形成して高周波特性を測定することなく、出来るだけ簡単な方法によって高周波デバイス向けに適したSOI基板を評価する方法を提供することを目的とする。
 上記目的を達成するために、本発明によれば、評価対象のSOI基板に高周波を印加したときの高周波特性を評価する方法であって、
 予め測定用のSOI基板にデバイスを形成し、該測定用のSOI基板の界面準位密度と高周波印加時の漏れ電力との関係、または前記界面準位密度を抵抗に換算し、該換算した抵抗と前記漏れ電力との関係を求めておく工程と、
 前記評価対象のSOI基板の界面準位密度を測定して界面準位密度を求める、または該界面準位密度に基づき換算される抵抗を求める工程と、
 前記測定した前記評価対象のSOI基板の前記界面準位密度から、前記予め求めた界面準位密度と漏れ電力の関係に基づき、前記評価対象のSOI基板の漏れ電力を評価する、または前記測定した前記評価対象のSOI基板の前記界面準位密度より換算される抵抗から、前記予め求めた抵抗と漏れ電力の関係に基づき、前記評価対象のSOI基板の漏れ電力を評価する工程とを有することを特徴とするSOI基板の評価方法を提供する。
 このような方法であれば、実際にデバイスを形成してから高周波特性を測定するのではなく、SOI基板の段階で簡単に高周波デバイス向けに適したSOI基板を評価することができる。
 以上説明したように、本発明により、実際のデバイスを作製することなく、高周波用デバイスに適したSOI基板であるか否かを簡単に評価することが出来る。また、ウェーハ仕様として一般的な抵抗に換算することで、抵抗を指標とした簡単な数値で規定することも可能になる。
本発明に係る測定用および評価用のSOI基板の一例を示した概略図である。 SOI基板においてBOX層直下のトラップ層の有無を比較した一例である。 本発明で予め求める、測定用のSOI基板の界面準位密度と高周波印加時の漏れ電力との関係の一例を示した図である。 本発明で予め求める、界面準位密度を抵抗に換算し、該換算した抵抗と漏れ電力との関係の一例を示した図である。 本発明に係る疑似MOSFETによる界面準位密度算出の一例を示した図である。
 以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
(第1の実施態様)
 第1の実施態様では、最初に測定用のSOI基板を用いて、界面準位密度と高周波印加時の漏れ電力との関係を予め求めておく工程を行う。
 測定用のSOI基板としては、図1に示すようなSOI層1と、シリコン酸化膜であるBOX層2と、ベースウェーハ4と、BOX層2とベースウェーハ4との界面でキャリアの発生を抑制するトラップ層3とを有する評価用のSOI基板5と同じものを用意する。
 そして、測定用のSOI基板5の界面準位密度を測定し、界面準位密度を求める。なお、界面準位密度の測定には非特許文献2および3に記載の水銀電極を使用した疑似MOSFET法で行うことができる。あるいは、アルカリ液によりSOI層を除去したのちに、非特許文献2に記載のCV法によって、界面準位密度の測定をすることができる。
 また、測定用のSOI基板上にデバイスを形成し、高周波を印加し、そのときの漏れ電力を測定する。
 このようにして測定された、SOI基板5の界面準位密度と、高周波印加時の漏れ電力とを用いて、両者の間の相関関係を予め求めておく。
 次に評価対象のSOI基板の界面準位密度を測定して界面準位密度を求める工程を行う。
 まず、評価対象となるSOI基板を用意する。評価対象となるSOI基板も図1に示すようなSOI層1と、BOX層2と、トラップ層3、及び、ベースウェーハ4とを有するSOI基板5である。この評価対象SOI基板5の界面準位密度を測定し、界面準位密度を求める。なお、界面準位密度の測定には、前述したように水銀電極を使用した疑似MOSFET法、あるいはCV法によって測定することができる。
 次に、評価対象のSOI基板の漏れ電力を評価する工程を行う。
 前述したように、測定用のSOI基板の界面準位密度と漏れ電力との関係を予め求めておいた関係に基づいて、測定した評価用のSOI基板の界面準位密度から、評価用のSOI基板の漏れ電力を予想して評価することができる。
 このように、本発明によれば、評価用のSOI基板に実際にデバイスを作製することなく、SOI基板の漏れ電力すなわち、高周波特性を評価をすることができる。
(第2の実施態様)
 第2の実施態様では、最初に測定用のSOI基板の界面準位密度の測定結果に基づいて換算した抵抗と漏れ電力との関係を求めておく工程を予め行う。
 界面準位密度を抵抗に換算するには、以下のような方法で行うことができる。
 数式1の関係から、界面準位密度からSSL(Subthreshold Slope)の値を求めることができる。このとき、SSLは図5に示すような電流(I)が一桁増加する際の電圧(V)の変化と定義されている。なお、COXはBOX層容量、CSiはSOI層容量を示す。
 このSSLを界面準位密度から求めた抵抗RD(数式2の抵抗成分のV/Iに相当)として定義し、この抵抗RDから、通常の抵抗に換算する。このときの換算係数は、高周波測定の結果から求めておくことができる(数式2、3)。なお、ρは抵抗率、RSPは広がり抵抗を示す。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 また、測定用のSOI基板上にデバイスを形成し、高周波を印加し、そのときの漏れ電力を測定する。
 このようにして界面準位密度の測定結果に基づいて換算した抵抗と、測定により求められた高周波印加時の漏れ電力とを用いて、両者の間の相関関係を予め求めておく。
 測定した評価対象のSOI基板の界面準位密度より換算される抵抗から、予め求めた抵抗と漏れ電力の関係に基づき、評価対象のSOI基板の漏れ電力を評価する工程を行う。
 この際、評価対象のSOI基板の界面準位密度を測定して、得られた界面準位密度から、前述したのと同様にして、抵抗に換算する。
 このようにして、評価用のSOI基板の界面準位密度から換算される抵抗から、予め求めておいた測定用のSOI基板の抵抗と漏れ電力の関係に基づいて、評価対象のSOI基板の漏れ電力を予想して評価することができる。
 このように、本発明によれば、評価用のSOI基板に実際にデバイスを作製することなく、SOI基板の漏れ電力を評価をすることができる。また、界面準位密度を抵抗に換算するため、基板特性を抵抗というひとつの基準で示すことも可能になる。
 以下、本発明の実施例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
 抵抗率1000Ω・cmのボロンをドープした直径200mmのシリコン単結晶ウェーハをベースウェーハとして、このベースウェーハに対してトリクロロシランを原料ガスとして1150℃、成長時間3分間で多結晶層を3μm成長させた。この後、モノシランを原料として570℃、成長時間90分で多結晶層を0.5μm成長させ、トラップ層とした。
 このウェーハに対して、抵抗率1000Ω・cmのボロンをドープした直径200mmのシリコンウェーハにPyro雰囲気で1150℃、6時間の処理で1000nmの酸化膜を形成し、BOX層としたボンドウェーハを貼り合わせ、結合熱処理を行った。その後、研磨により薄膜化することでSOI層は160nmとなるようにし、SOI基板を作製した。同様にして複数のSOI基板を作製した。
 これらのSOI基板について、450℃、1%水素添加の窒素雰囲気でアニール時間を5分から30分の間で変化させて、BOX層とベースウェーハの界面準位密度を変化させた、複数のSOI基板を作製した。
 この界面準位密度を変えた複数のSOI基板の界面準位密度を、非特許文献2、3に記載の水銀電極を使用した疑似MOSFET法により測定した。
 次に、漏れ電力を測定するために、SOI基板のSOI層をアルカリエッチングにて除去したのちに、これにAlを2μmの厚さで蒸着した。さらにフォトリソグラフィーを行い、CPW(Coplanar Waveguides)を形成した。
 漏れ電力を測定するデバイスは、測定用のSOI基板に150μm×50μmのAl電極を電極間の間隔が100μmとなるように形成したものとした。
 そして、デバイスを形成した測定用のSOI基板に高周波を印加し、入力電力に対するAl電極間の漏れ電力を測定した。印加した高周波の周波数は1×10から1×1011Hzの範囲で測定を行った。漏れ電力の周波数依存性のデータから、漏れ電力の代表値として基板の違いが良く反映されると思われる1GHz(1×10Hz)を採用し、図3の関係を求めた。
 また、前述のようにして測定し、求められた界面準位密度に基づいて換算される抵抗を求めた。
 このときに、厚さ160nmのSOI層容量Csiは6.53×10-8F、厚さ1000nmのBOX層容量Coxは7.195×10-8Fとなる。数1から、界面準位密度が1×1012cm-2eV-1のときSSLは、0.15、界面準位密度が1×1011cm-2eV-1のときは、SSLは0.015、界面準位密度が1×1010cm-2eV-1のときはSSLは0.0015と求められた。
 さらに、高周波特性との関係からSSLを抵抗に換算する際の係数を今回のケースで10000として、SSLを抵抗に換算した。このようにして、1GHzを印加したときに測定したBOX層とベースウェーハの界面準位密度に基づいて、換算される抵抗を求めた。そして前記換算された抵抗と漏れ電力との間の関係を求め、図4に示した。
 その後、評価対象のSOI基板を前述したのと同様にして作製した。評価対象のSOI基板に対して、その界面準位密度を疑似MOSFET法にて測定した。該測定した界面準位密度から、予め求めておいた図3の界面準位密度と漏れ電力との関係に基づいて評価対象のSOI基板に高周波を印加したときの漏れ電流の評価を行うことができた。
 また、前記測定された評価用のSOI基板の界面準位密度に基づいて、前述したのと同様にして、換算される抵抗を求めた。該換算した抵抗から、予め求めておいた図4の抵抗と漏れ電力との関係に基づいて評価対象のSOI基板に高周波を印加したときの漏れ電流の評価を行うことができた。
 以上のように、予め界面準位密度と漏れ電力の関係、または抵抗と漏れ電力の関係を求めたので、この関係を用いて、図2に示すようなトラップ層の有無の違いによる漏れ電力の違いなどをデバイスを形成することなく、評価用のSOI基板の界面準位密度または界面準位密度から換算される抵抗から予想し、正確に評価を行うことができた。その結果、正確な評価を簡単な方法でできるようになった。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (1)

  1.  評価対象のSOI基板に高周波を印加したときの高周波特性を評価する方法であって、
     予め測定用のSOI基板にデバイスを形成し、該測定用のSOI基板の界面準位密度と高周波印加時の漏れ電力との関係、または前記界面準位密度を抵抗に換算し、該換算した抵抗と前記漏れ電力との関係を求めておく工程と、
     前記評価対象のSOI基板の界面準位密度を測定して界面準位密度を求める、または該界面準位密度に基づき換算される抵抗を求める工程と、
     前記測定した前記評価対象のSOI基板の前記界面準位密度から、前記予め求めた界面準位密度と漏れ電力の関係に基づき、前記評価対象のSOI基板の漏れ電力を評価する、または前記測定した前記評価対象のSOI基板の前記界面準位密度より換算される抵抗から、前記予め求めた抵抗と漏れ電力の関係に基づき、前記評価対象のSOI基板の漏れ電力を評価する工程とを有することを特徴とするSOI基板の評価方法。
PCT/JP2015/000943 2014-05-14 2015-02-25 Soi基板の評価方法 WO2015173995A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/305,989 US9780006B2 (en) 2014-05-14 2015-02-25 Method for evaluating SOI substrate
KR1020167030635A KR102185647B1 (ko) 2014-05-14 2015-02-25 Soi 기판의 평가 방법
SG11201608834SA SG11201608834SA (en) 2014-05-14 2015-02-25 Method for evaluating soi substrate
CN201580024451.1A CN106415806B (zh) 2014-05-14 2015-02-25 Soi基板的评估方法
EP15793091.8A EP3144965B1 (en) 2014-05-14 2015-02-25 Method for evaluating soi substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-100758 2014-05-14
JP2014100758A JP6102823B2 (ja) 2014-05-14 2014-05-14 Soi基板の評価方法

Publications (1)

Publication Number Publication Date
WO2015173995A1 true WO2015173995A1 (ja) 2015-11-19

Family

ID=54479553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000943 WO2015173995A1 (ja) 2014-05-14 2015-02-25 Soi基板の評価方法

Country Status (8)

Country Link
US (1) US9780006B2 (ja)
EP (1) EP3144965B1 (ja)
JP (1) JP6102823B2 (ja)
KR (1) KR102185647B1 (ja)
CN (1) CN106415806B (ja)
SG (1) SG11201608834SA (ja)
TW (1) TWI609189B (ja)
WO (1) WO2015173995A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102341157B1 (ko) * 2017-02-10 2021-12-21 글로벌웨이퍼스 씨오., 엘티디. 반도체 구조들을 평가하기 위한 방법들

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013100A (ja) * 2004-06-25 2006-01-12 Shin Etsu Handotai Co Ltd Soiウエーハの評価方法
JP2008033946A (ja) * 2007-08-23 2008-02-14 Advantest Corp 管理方法、管理装置、及びデバイス製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233946A (ja) * 1988-07-23 1990-02-05 Nec Corp 半導体装置
JP2001060676A (ja) * 1999-08-20 2001-03-06 Mitsubishi Materials Silicon Corp 界面準位密度の算出方法
JP4492783B2 (ja) 2001-09-12 2010-06-30 日本電気株式会社 半導体装置及びその製造方法
FR2860341B1 (fr) 2003-09-26 2005-12-30 Soitec Silicon On Insulator Procede de fabrication de structure multicouche a pertes diminuees
WO2005031842A2 (en) 2003-09-26 2005-04-07 Universite Catholique De Louvain Method of manufacturing a multilayer semiconductor structure with reduced ohmic losses
US20080054920A1 (en) * 2004-06-25 2008-03-06 Shin-Etsu Handotai Co., Ltd. Method For Evaluating Soi Wafer
CN101506810B (zh) * 2005-10-24 2013-06-05 卡德思设计规划公司 集成电路的时序、噪声和功率分析
JP2007324194A (ja) * 2006-05-30 2007-12-13 Shin Etsu Handotai Co Ltd Soiウエーハの評価方法
JP2009231376A (ja) 2008-03-19 2009-10-08 Shin Etsu Handotai Co Ltd Soiウェーハ及び半導体デバイスならびにsoiウェーハの製造方法
JP5532680B2 (ja) * 2009-05-27 2014-06-25 信越半導体株式会社 Soiウェーハの製造方法およびsoiウェーハ
CN101702627B (zh) * 2009-10-29 2012-10-03 华东师范大学 一种基于绝缘体上硅工艺的cmos射频开关

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013100A (ja) * 2004-06-25 2006-01-12 Shin Etsu Handotai Co Ltd Soiウエーハの評価方法
JP2008033946A (ja) * 2007-08-23 2008-02-14 Advantest Corp 管理方法、管理装置、及びデバイス製造方法

Also Published As

Publication number Publication date
KR102185647B1 (ko) 2020-12-02
KR20170003554A (ko) 2017-01-09
CN106415806A (zh) 2017-02-15
EP3144965B1 (en) 2020-11-25
US9780006B2 (en) 2017-10-03
EP3144965A1 (en) 2017-03-22
TWI609189B (zh) 2017-12-21
JP2015220257A (ja) 2015-12-07
JP6102823B2 (ja) 2017-03-29
SG11201608834SA (en) 2016-11-29
US20170047258A1 (en) 2017-02-16
CN106415806B (zh) 2019-06-04
EP3144965A4 (en) 2018-01-10
TW201543049A (zh) 2015-11-16

Similar Documents

Publication Publication Date Title
KR101379885B1 (ko) 반도체 온 절연체형 기판을 위한 베이스 기판의 제조 방법
WO2009116227A1 (ja) Soiウェーハ及び半導体デバイスならびにsoiウェーハの製造方法
JP2007507093A (ja) 抵抗損を低減させた積層型半導体構造の製造方法
JP2007535162A (ja) 半導体デバイスおよびかかるデバイスを製造する方法
JP2008103598A (ja) 半導体ウエーハの評価方法
Lotfi et al. LDMOS-transistors on semi-insulating silicon-on-polycrystalline-silicon carbide substrates for improved RF and thermal properties
JP5673170B2 (ja) 貼り合わせ基板、貼り合わせ基板の製造方法、半導体デバイス、及び半導体デバイスの製造方法
CN106684012B (zh) SiO2中电荷与SiO2/Si界面态的分离测试方法
JP6174756B2 (ja) Soi基板の製造方法
CN103633140A (zh) 两步式浅沟槽隔离(sti)工艺
JP6102823B2 (ja) Soi基板の評価方法
US20200185503A1 (en) Semiconductor device, manufacture thereof, and a radiation measurement method
Neve et al. Effect of temperature on advanced Si-based substrates performance for RF passive integration
CN100481361C (zh) 评估半导体器件的方法
Moriyama et al. Fabrication of bonded GeOI substrates with thin Al2O3/SiO2 buried oxide layers
JP6070487B2 (ja) Soiウェーハの製造方法、soiウェーハ、及び半導体デバイス
TW201807757A (zh) 改善熱和rf性能之具有底部填充氮化鋁的氮化鎵電晶體
JP2006324527A (ja) 半導体装置およびその製造方法
US9373691B2 (en) Transistor with bonded gate dielectric
JP5367325B2 (ja) 半導体装置の製造方法
Kao et al. Impact of Oxide Charges on The Minority Carrier Response in MOS (p) Devices With Al2O3/SiO2 Gate Stacks under Strong Inversion Condition
Suwa et al. Ultra-Low Temperature Flattening Technique of Silicon Surface Using Xe/H2 Plasma
Kawachi et al. P‐194L: Late‐News Poster: High‐Frequency Performance of Sub‐Micrometer Channel‐Length Si TFTs Fabricated on Large Grain Poly‐Si Films
JP2014107374A (ja) 半導体試料の電気的評価方法および評価装置
CN101975889A (zh) 提取电容器的栅极串联电阻值或者泄露电阻值的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15793091

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15305989

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167030635

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015793091

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015793091

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE