WO2015173963A1 - 作業機械の圧油エネルギ回生装置 - Google Patents

作業機械の圧油エネルギ回生装置 Download PDF

Info

Publication number
WO2015173963A1
WO2015173963A1 PCT/JP2014/063121 JP2014063121W WO2015173963A1 WO 2015173963 A1 WO2015173963 A1 WO 2015173963A1 JP 2014063121 W JP2014063121 W JP 2014063121W WO 2015173963 A1 WO2015173963 A1 WO 2015173963A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
flow rate
hydraulic pump
pressure oil
signal
Prior art date
Application number
PCT/JP2014/063121
Other languages
English (en)
French (fr)
Inventor
聖二 土方
石川 広二
大木 孝利
井村 進也
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to US15/120,545 priority Critical patent/US10280593B2/en
Priority to CN201480075231.7A priority patent/CN106030123B/zh
Priority to KR1020167021472A priority patent/KR101815411B1/ko
Priority to JP2016519078A priority patent/JP6152473B2/ja
Priority to EP14892002.8A priority patent/EP3147519B1/en
Priority to PCT/JP2014/063121 priority patent/WO2015173963A1/ja
Publication of WO2015173963A1 publication Critical patent/WO2015173963A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2095Control of electric, electro-mechanical or mechanical equipment not otherwise provided for, e.g. ventilators, electro-driven fans
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • E02F9/2242Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/024Systems essentially incorporating special features for controlling the speed or actuating force of an output member by means of differential connection of the servomotor lines, e.g. regenerative circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/087Control strategy, e.g. with block diagram
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • B60Y2200/412Excavators
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20523Internal combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/255Flow control functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/61Secondary circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6316Electronic controllers using input signals representing a pressure the pressure being a pilot pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6652Control of the pressure source, e.g. control of the swash plate angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6654Flow rate control

Definitions

  • the present invention relates to a pressure oil energy regeneration device of a working machine, and more particularly to a pressure oil energy regeneration device of a working machine provided with a hydraulic actuator such as a hydraulic shovel.
  • the present invention has been made based on the above-described matters, and an object thereof is to provide a pressure oil energy regeneration device of a working machine capable of efficiently using return pressure oil from a hydraulic actuator.
  • a first hydraulic actuator a regenerative hydraulic motor driven by return oil discharged from the first hydraulic actuator, and the regenerative hydraulic motor mechanically.
  • the first hydraulic pump connected, the second hydraulic pump discharging hydraulic oil for driving the first hydraulic actuator and / or the second hydraulic actuator, and the hydraulic pressure discharged by the first hydraulic pump are the second hydraulic pressure A joining line for joining pressure oil discharged by a pump, a first regulator capable of adjusting the flow rate of pressure oil from the first hydraulic pump flowing through the joining line, and a discharge of the second hydraulic pump A second regulator capable of adjusting the flow rate, and a target displacement command of the second hydraulic pump are input, and are discharged from the first hydraulic pump and the second hydraulic pump according to the target displacement command.
  • a pressure oil energy regeneration device for a working machine, comprising: a control device that calculates a flow rate of oil and outputs a control command to the first regulator and the second regulator according to the calculated flow rate.
  • the apparatus calculates a required pump flow rate in accordance with the input target volume command of the second hydraulic pump, and the flow rate of pressure oil from the first hydraulic pump flowing through the merging pipeline is equal to or less than the required pump flow rate.
  • calculating a first operation unit that outputs a control command to the first regulator, and subtracting the flow rate of pressure oil from the first hydraulic pump flowing through the merging conduit from the required pump flow rate It is assumed that a second operation unit that outputs a control command to the second regulator so as to obtain the calculated target pump flow rate.
  • a motor mechanically coupled to the first hydraulic pump and the hydraulic motor for regeneration, and a third regulator capable of adjusting the rotational speed of the motor.
  • An operation device for operating the first hydraulic actuator; and an operation amount detector for detecting an operation amount of the operation device, wherein the control device controls the first operation actuator detected by the operation amount detector.
  • the first hydraulic pump which takes in an operation amount, calculates a recovery power to be input to the hydraulic motor for regeneration from return oil discharged from the first hydraulic actuator according to the operation amount, and circulates the merging pipeline Calculate the required assist power required to supply the flow rate of the pressure oil from the target, set the target assist power so as not to exceed the recovery power and the required assist power, and Characterized by comprising a third arithmetic unit for outputting a control command to the said on so that second regulator third regulator.
  • the return oil from the first hydraulic actuator is branched off from a branch portion provided in a pipe line connecting the first hydraulic actuator and the regeneration hydraulic motor.
  • a discharge circuit for discharging to a tank, a switching valve provided in the discharge circuit and switching communication / disconnection of the discharge circuit, an operating device for operating the first hydraulic actuator, and an operation amount of the operating device A control amount detection unit for detecting a control amount of the operation device detected by the control amount detector, and outputting a shutoff command to the switching valve according to the control amount. It is characterized in that 4 arithmetic units are provided.
  • a branch portion provided in a pipe line connecting the first hydraulic actuator and the regenerative hydraulic motor is branched to return oil from the first hydraulic actuator.
  • the apparatus further comprises a discharge circuit for discharging to a tank, and a flow rate adjusting means provided in the discharge circuit for adjusting the flow rate of the discharge circuit, wherein the control device does not exceed the maximum power of the motor.
  • a fifth operation unit is provided, which outputs a control command to the flow rate adjusting means so as to distribute the power discharged from the first hydraulic actuator to the discharge circuit.
  • the return oil from the first hydraulic actuator is branched off from a branch portion provided in a pipeline connecting the first hydraulic actuator and the regeneration hydraulic motor.
  • the apparatus further comprises a discharge circuit for discharging to a tank, and a flow rate adjusting means provided in the discharge circuit for adjusting the flow rate of the discharge circuit, wherein the control device is configured to recover the maximum power of the motor and the request.
  • a sixth operation unit is provided for outputting a control command to the flow rate adjusting means so as to distribute the power discharged from the first hydraulic actuator to the discharge circuit so as not to exceed the total value with the assist power.
  • a branch portion provided in a pipeline connecting the first hydraulic actuator and the regeneration hydraulic motor, and the discharge circuit, the flow rate of the discharge circuit being provided.
  • the control device diverts the power discharged from the first hydraulic actuator to the discharge circuit so as not to exceed the maximum flow that can be input to the regeneration hydraulic motor.
  • it is characterized in that it comprises a seventh operation unit for outputting a control command to the flow rate adjusting means.
  • a part of pressure oil from the first hydraulic pump provided in the discharge pipe branched from the merging pipe and in communication with the tank, and provided in the discharge pipe.
  • a bleed valve capable of bleeding off the entire tank, wherein the first regulator is an electromagnetic proportional valve capable of adjusting an opening area of the bleed valve.
  • the eighth invention is the first invention, wherein the first hydraulic pump is a variable displacement hydraulic pump, and the control device is configured to be capable of controlling the displacement of the variable displacement hydraulic pump. It features.
  • the second hydraulic pump is a variable displacement hydraulic pump
  • the control device is configured to be capable of controlling the displacement of the variable displacement hydraulic pump. It features.
  • the hydraulic pump mechanically connected to the regenerative hydraulic motor can be directly driven by the recovered energy, no loss occurs when energy is temporarily stored. As a result, energy conversion loss can be reduced and energy can be efficiently used.
  • FIG. 1 is a schematic view of a drive control system showing a first embodiment of a pressure oil energy regeneration device for a working machine of the present invention. It is a block diagram of a controller which constitutes a 1st embodiment of a pressure oil energy regeneration device of a working machine of the present invention. It is a characteristic view explaining the contents of the 2nd function generator of the controller which constitutes the 1st embodiment of the pressure oil energy regeneration device of the operating machine of the present invention.
  • FIG. 1 is a perspective view showing a hydraulic shovel provided with a first embodiment of a pressure oil energy regeneration device for a working machine according to the present invention
  • FIG. 2 is a first embodiment of a pressure oil energy regeneration device for a working machine according to the present invention
  • FIG. 7 is a schematic view of a drive control system showing the form of FIG.
  • the hydraulic shovel 1 includes an articulated work apparatus 1A having a boom 1a, an arm 1b and a bucket 1c, and a vehicle body 1B having an upper swing body 1d and a lower traveling body 1e.
  • the boom 1a is rotatably supported by the upper swing body 1d, and is driven by a boom cylinder (hydraulic cylinder) 3a that is a first hydraulic actuator.
  • the upper revolving superstructure 1d is provided rotatably on the lower traveling vehicle 1e.
  • the arm 1 b is rotatably supported by the boom 1 a and driven by an arm cylinder (hydraulic cylinder) 3 b.
  • the bucket 1c is rotatably supported by the arm 1b and driven by a bucket cylinder (hydraulic cylinder) 3c.
  • the lower traveling body 1e is driven by the left and right traveling motors 3d and 3e.
  • the driving of the boom cylinder 3a, the arm cylinder 3b and the bucket cylinder 3c is controlled by an operating device 4, 24 (see FIG. 2) which is installed in the cab (cab) of the upper swing body 1d and outputs an oil pressure signal. .
  • the drive control system shown in FIG. 2 includes a power regeneration device 70, control devices 4 and 24, a control valve 5 comprising a plurality of spool type direction switching valves, a check valve 6, an electromagnetic switching valve 7, and a switching valve 8. , An inverter 9A as a third regulator, a chopper 9B, and a storage device 9C, and a controller 100 as a control device.
  • the hydraulic pressure source device includes a variable displacement hydraulic pump 10 as a second hydraulic pump, a pilot hydraulic pump 11 for supplying pilot pressure oil, and a tank 12.
  • the hydraulic pump 10 and the pilot hydraulic pump 11 are driven by an engine 50 connected by a drive shaft.
  • the hydraulic pump 10 has a regulator 10A as a second regulator, and the regulator 10A controls the swash plate tilting angle of the hydraulic pump 10 according to a command from the controller 100 described later, thereby the discharge flow rate of the hydraulic pump 10 Adjust the
  • the hydraulic fluid from the hydraulic pump 10 is supplied to the boom cylinder 3a to the travel motor 3d to the auxiliary fluid passage 31 as a combined pipeline connected via a check valve 6 to be described later and each actuator
  • a control valve 5 consisting of a plurality of spool type directional control valves for controlling the direction and flow rate of pressure oil and a pressure sensor 40 for detecting the discharge pressure of the hydraulic pump 10 are provided.
  • the control valve 5 switches the spool position of each direction switching valve by the supply of pilot pressure oil to the pilot pressure receiving portion, supplies the pressure oil from the hydraulic pump 10 to each hydraulic actuator, and drives the arm 1b etc. doing.
  • the pressure sensor 40 outputs the detected discharge pressure of the hydraulic pump 10 to the controller 100 described later.
  • each direction switching valve of the control valve 5 is switched by the operation of the operation lever or the like of the operation device 4 or 24.
  • the operation devices 4 and 24 are configured such that the pilot primary pressure oil supplied from the pilot oil pump 11 via the pilot primary side oil passage (not shown) by the operation of the operation lever, etc. It is supplied to the pressure receiver.
  • the operating device 4 operates the boom cylinder 3a which is the first hydraulic actuator
  • the operating device 24 is a combination of devices which operate actuators other than the boom cylinder 3a which is the second hydraulic actuator. It shows by.
  • a pilot valve 4A is provided inside the operation device 4, and the operation device 4 is connected via a pilot pipe to a pressure receiving portion of a spool type direction switching valve that controls the drive of the boom cylinder 3a of the control valve 5.
  • the pilot valve 4 ⁇ / b> A outputs an oil pressure signal to the pilot pressure receiving portion of the control valve 5 according to the tilt direction and the operation amount of the operation lever of the operation device 4.
  • the spool type direction switching valve that controls the drive of the boom cylinder 3a is switched in position according to the hydraulic pressure signal input from the operating device, and controls the flow of pressure oil discharged from the hydraulic pump 10 according to the switched position. Thus, the drive of the boom cylinder 3a is controlled.
  • a pressure sensor 41 as an operation amount detector is attached to a pilot pipe through which an oil pressure signal (boom lowering operation signal Pd) for driving the boom cylinder 3a passes so that the boom 1a operates in the lowering direction. There is.
  • the pressure sensor 41 outputs the detected boom lowering operation signal Pd to the controller 100 described later.
  • the operation device 24 is internally provided with a pilot valve 24A, and is connected via a pilot pipe to a pressure receiving portion of a spool-type direction switching valve that controls the drive of actuators other than the boom cylinder 3a of the control valve 5.
  • the pilot valve 24 ⁇ / b> A outputs an oil pressure signal to the pilot pressure receiving portion of the control valve 5 in accordance with the tilt direction and the operation amount of the control lever of the control device 24.
  • the position of the spool type direction switching valve that controls the drive of the corresponding actuator is switched according to the hydraulic pressure signal input from the operating device, and the flow of hydraulic fluid discharged from the hydraulic pump 10 is controlled according to the switched position Control the drive of the corresponding actuator.
  • Pressure sensors 42 and 43 for detecting respective pilot pressures are provided in the two systems of pilot pipes connecting the pilot valve 24A of the controller 24 and the pressure receiving portion of the control valve 5.
  • the pressure sensors 42 and 43 output the detected operation amount signal of the operating device 24 to the controller 100 described later.
  • the power regeneration device 70 which is a regeneration device, will be described.
  • the power regeneration device 70 includes a bottom side oil passage 32, a regeneration circuit 33, a switching valve 7, an electromagnetic switching valve 8, an inverter 9A, a chopper 9B, a storage device 9c, and a hydraulic motor as a regenerative hydraulic motor. 13, an electric motor 14, an auxiliary hydraulic pump 15, and a controller 100.
  • the bottom side oil passage 32 is an oil passage through which oil (return oil) returning to the tank 12 flows when the boom cylinder 3a is shortened, one end side is connected to the bottom side oil chamber 3a1 of the boom cylinder 3a, and the other end side is controlled It is connected to the connection port of the valve 5.
  • the pressure sensor 44 for detecting the pressure of the bottom oil chamber 3a1 of the boom cylinder 3a and the return oil from the bottom oil chamber 3a1 of the boom cylinder 3a are sent to the tank 12 via the control valve 5 in the bottom oil passage 32.
  • a switching valve 7 is provided to switch whether to discharge or not.
  • the pressure sensor 44 outputs the detected pressure of the bottom side oil chamber 3a1 to the controller 100 described later.
  • the switching valve 7 has a spring 7b at one end and a pilot pressure receiving portion 7a at the other end, and switches the spool position according to the presence or absence of supply of pilot pressure oil to the pilot pressure receiving portion 7a. Communication / shutoff of return oil flowing from the bottom side oil chamber 3a1 to the control valve 5 is controlled. Pilot pressure oil is supplied to the pilot pressure receiving unit 7 a from the pilot hydraulic pump 11 via an electromagnetic switching valve 8 described later.
  • the pressure oil output from the pilot hydraulic pump 11 is input to the input port of the electromagnetic switching valve 8.
  • a command signal output from the controller 100 is input to the operation unit of the electromagnetic switching valve 8. In accordance with the command signal, control is performed to supply / shutoff the pilot pressure oil supplied from the pilot hydraulic pump 11 to the pilot operation unit 7 a of the switching valve 7.
  • One end of the regenerative circuit 33 is connected between the switching valve 7 of the bottom side oil passage 32 and the bottom side oil chamber 3a1 of the boom cylinder 3a, and the other end is connected to the inlet of the hydraulic motor 13. As a result, the return oil from the bottom side oil chamber 3a1 is led to the tank 12 via the hydraulic motor 13.
  • a hydraulic motor 13 as a regenerative hydraulic motor is mechanically connected to the auxiliary hydraulic pump 15.
  • the auxiliary hydraulic pump 15 is rotated by the driving force of the hydraulic motor 13.
  • auxiliary oil passage 31 One end of the auxiliary oil passage 31 is connected to the discharge port of the auxiliary hydraulic pump 15 as the first hydraulic pump, and the other end is connected to the oil passage 30.
  • the auxiliary oil passage 31 is provided with a check valve 6 which permits the inflow of pressure oil from the auxiliary hydraulic pump 15 to the oil passage 30 and prohibits the inflow of pressure oil from the oil passage 30 to the auxiliary hydraulic pump 15 side. There is.
  • the auxiliary hydraulic pump 15 has a regulator 15A as a first regulator, and the regulator 15A controls the swash plate tilt angle of the auxiliary hydraulic pump 15 in accordance with a command from the controller 100 described later. Adjust the discharge flow rate of
  • the hydraulic motor 13 is further mechanically connected to the motor 14, and generates electric power by the driving force of the hydraulic motor 13.
  • the motor 14 is electrically connected to an inverter 9A for controlling the number of revolutions, a chopper 9B for boosting, and a storage device 9C for storing the generated electric energy.
  • the controller 100 receives an estimated pump flow rate signal of the hydraulic pump 10 calculated by the vehicle body controller 200, which is a host controller.
  • the controller 100 detects the discharge pressure of the hydraulic pump 10 detected by the pressure sensor 40, the downward pilot pressure signal Pd of the pilot valve 4A of the operating device 4 detected by the pressure sensor 41, and the operating device detected by the pressure sensors 42 and 43.
  • the pilot pressure signal of the 24 pilot valves 24A, the pressure signal of the bottom side oil chamber 3a1 of the boom cylinder 3a detected by the pressure sensor 44, and the estimated pump flow signal from the vehicle body controller 200 are input, and these input values
  • the control command is output to the electromagnetic switching valve 8, the inverter 9A, the hydraulic pump regulator 10A, and the auxiliary hydraulic pump regulator 15A.
  • the electromagnetic switching valve 8 is switched by a command signal from the controller 100, and the pressure oil from the pilot oil pump 11 is sent to the switching valve 7.
  • the inverter 9A is controlled to a desired rotational speed by a signal from the controller 100, and the auxiliary hydraulic pump 15 and the hydraulic pump 10 are controlled to a desired displacement by a signal from the controller 100.
  • the controller 100 includes a discharge pressure signal of the hydraulic pump 10 detected by the pressure sensor 40, a pressure signal of the bottom side oil chamber 3a1 of the boom cylinder 3a detected by the pressure sensor 44, and a pilot detected by the pressure sensor 41.
  • the down side pilot pressure signal Pd of the valve 4A and the estimated pump flow rate signal from the vehicle body controller 200 are input.
  • the controller 100 switches the switching command to the solenoid switching valve 8 and the rotation speed command to the inverter 9A.
  • the capacity command is output to the regulator 15A of the pump 15, and the capacity command is output to the regulator 10A of the hydraulic pump 10.
  • the switching valve 7 switches to the shutoff position, and the return oil from the bottom side oil chamber 3a1 of the boom cylinder 3a flows to the regeneration circuit 33 because the oil passage to the control valve 5 is shut off. And then discharged into the tank 12.
  • the auxiliary hydraulic pump 15 is rotated by the driving force of the hydraulic motor 13.
  • the pressure oil discharged from the auxiliary hydraulic pump 15 merges with the pressure oil discharged from the hydraulic pump 10 via the auxiliary oil passage 31 and the check valve 6.
  • the controller 100 outputs a capacity command to the regulator 15A of the auxiliary hydraulic pump 15 so as to assist the power of the hydraulic pump 10.
  • the controller 100 outputs a displacement command to the regulator 10A so as to reduce the displacement of the hydraulic pump 10 by the flow rate of the pressure oil supplied from the auxiliary hydraulic pump 15.
  • the energy of the pressure oil discharged from the boom cylinder 3 a is recovered by the hydraulic motor 13 and assists the power of the hydraulic pump 10 as a driving force of the auxiliary hydraulic pump 15. Further, the extra power is stored in the storage device 9C via the motor 14. As a result, effective use of energy and reduction of fuel consumption are achieved.
  • FIG. 3 is a block diagram of a controller constituting a first embodiment of a hydraulic energy recovery system for a working machine according to the present invention
  • FIG. 4 is a first embodiment of a hydraulic energy recovery system for a working machine according to the present invention It is a characteristic view explaining the control contents of the controller which constitutes.
  • the same reference numerals as those shown in FIG. 1 and FIG. 2 denote the same parts, so the detailed description thereof will be omitted.
  • the controller 100 shown in FIG. 3 includes a first function generator 101, a second function generator 102, a first subtraction operator 103, a first multiplication operator 104, a second multiplication operator 105, and a first function.
  • a fourth output converter 113, and a minimum flow rate signal commander 114 includes a minimum flow rate signal commander 114.
  • the first function generator 101 receives, as a lever operation signal 141, the downward pilot pressure Pd of the pilot valve 4A of the controller 4 detected by the pressure sensor 41.
  • a switching start point for the lever operation signal 141 is stored in advance in a table.
  • the first function generator 101 outputs an OFF signal to the first output converter 106 when the lever operation signal 141 is below the switching start point, and an ON signal when the switching start point is exceeded.
  • the first output conversion unit 106 converts an input signal into a control signal of the electromagnetic switching valve 8 and outputs the control signal to the electromagnetic switching valve 8 as an electromagnetic valve command 208.
  • the electromagnetic switching valve 8 operates and the switching valve 7 is switched, and the oil in the bottom side oil chamber 3a1 of the boom cylinder 3a flows into the regeneration circuit 33 side.
  • the second function generator 102 inputs the lower pilot pressure Pd as one lever operation signal 141 to one input end, and uses the pressure in the bottom oil chamber 3a1 of the boom cylinder 3a detected by the pressure sensor 44 as the pressure signal 144. Input at the input end of. Based on these input signals, the target bottom flow rate of the boom cylinder 3a is calculated.
  • FIG. 4 is a characteristic diagram for explaining the contents of the second function generator of the controller constituting the first embodiment of the hydraulic energy regenerating apparatus for a working machine of the present invention.
  • the vertical axis indicates the amount of operation of the lever operation signal 141, and the vertical axis indicates the target bottom flow rate (the target flow rate of return oil flowing out from the bottom side oil chamber 3a1 of the boom cylinder 3a).
  • a solid basic characteristic line a is set to obtain characteristics equivalent to return oil control by the conventional control valve 5.
  • a characteristic line b indicated by the upper broken line and a characteristic line c indicated by the lower broken line indicate a case where the characteristic line a is corrected by the pressure signal 144 of the bottom side oil chamber 3a1.
  • the second function generator calculates the basic target bottom flow rate according to the lever operation signal 141, and corrects the basic target bottom flow rate according to the change of the pressure signal 144 of the bottom side oil chamber 3a1. The final target bottom flow rate is calculated.
  • the second function generator 102 outputs the final target bottom flow rate signal 102 A to the second output converter 107 and the first multiplication operator 104.
  • the second output conversion unit 107 converts the input final target bottom flow rate signal 102A into a target motor rotational speed, and outputs it to the inverter 9A as a rotational speed command signal 209A.
  • the rotational speed of the motor 14 corresponding to the displacement of the hydraulic motor 13 is controlled.
  • the rotation speed command signal 209A is input to the second division computing unit 110.
  • the first subtraction operation unit 103 receives the estimated pump flow rate signal 120 input from the vehicle body controller 200 and the minimum flow rate signal from the minimum flow rate signal command unit 114, and calculates the deviation thereof as the required pump flow rate signal 103A.
  • the signal is output to the second multiplication operator 105 and the second subtraction operator 112.
  • the estimated pump flow rate signal 120 is an estimated value of the discharge flow rate of the hydraulic pump 10.
  • the first multiplication operator 104 receives the final target bottom flow rate signal 102A from the second function generator 102 and the pressure signal 144 of the bottom side oil chamber 3a1, calculates its multiplication value as the recovery power signal 104A, and the minimum It is output to the value selection operation unit 108.
  • the second multiplication operator 105 inputs the discharge pressure of the hydraulic pump 10 detected by the pressure sensor 40 as one pressure signal 140 at one input end, and the demand pump flow signal 103A calculated by the first subtraction operator 103 is the other.
  • the multiplication value is calculated as the required pump power signal 105A and output to the minimum value selection calculation unit 108.
  • the minimum value selection operation unit 108 receives the recovered power signal 104A from the first multiplication operator 104 and the required pump power signal 105A from the second multiplication operator 105, and the smaller one of the auxiliary hydraulic pump 15 It is selected and calculated as the target assist power signal 108 A, and is output to the first division operator 109.
  • the recovery power signal 104A and the demand pump power signal 105A by the minimum value selection operation unit 108, the recovery power can be maximized as an auxiliary hydraulic pressure without exceeding the demand pump power signal 105A. It becomes possible to supply the pump.
  • the second division computing unit 110 receives the target assist flow rate signal 109A from the first division computing unit 109 and the rotation number command signal 209A from the second output conversion unit 107, and outputs the target assist flow rate signal 109A as a rotation number command signal.
  • a value divided by 209 A is calculated as a target displacement signal 110 A of the auxiliary hydraulic pump 15 and is output to the third output converter 111.
  • the third output conversion unit 111 converts the input target capacitance signal 110A into, for example, a tilt angle, and outputs it to the regulator 15A as a capacitance command signal 215A. As a result, the displacement of the auxiliary hydraulic pump 15 is controlled.
  • the second subtraction operator 112 includes a required pump flow signal 103A from the first subtraction operator 103, a target assist flow signal 109A from the first division operator 109, and a minimum flow signal from the minimum flow signal command unit 114.
  • the second subtraction operator 112 calculates the estimated pump flow signal 120 input from the vehicle body controller 200 by adding the required pump flow signal 103A and the minimum flow signal, and this estimated pump flow signal 120 and the target assist flow signal A deviation from 109 A is calculated as a target pump flow rate signal 112 A, and is output to the fourth output conversion unit 113.
  • the fourth output conversion unit 113 converts the input target pump flow rate signal 112A into, for example, a tilt angle, and outputs it to the regulator 10A as a capacity command signal 210A. By this, the displacement of the hydraulic pump 10 is controlled.
  • FIGS. 2 and 3 the operation by the control logic of the first embodiment of the hydraulic energy regenerating apparatus for a working machine of the present invention described above will be described using FIGS. 2 and 3.
  • a pilot pressure Pd is generated from the pilot valve 4A, detected by the pressure sensor 41, and input to the controller 100 as a lever control signal 141.
  • the discharge pressure of the hydraulic pump 10 is detected by the pressure sensor 40 and is input to the controller 100 as a pressure signal 140.
  • the pressure of the bottom side oil chamber 3a1 of the boom cylinder 3a is detected by the pressure sensor 44 and is input to the controller 100 as a pressure signal 144.
  • the lever operation signal 141 is input to the first function generator 101 and the second function generator 102.
  • the first function generator 101 outputs an ON signal when the lever operation signal 141 exceeds the switching start point, and an ON signal is output to the electromagnetic switching valve 8 via the first output converter 106.
  • the pressure oil from the pilot hydraulic pump 11 is input to the pilot operation unit 7 a of the switching valve 7 via the electromagnetic switching valve 8.
  • the switching operation is performed in the direction in which the bottom side oil passage 32 is shut off (the closing side of the switching valve 7), and the return oil from the bottom side oil chamber 3a1 of the boom cylinder 3a is transferred to the tank 12 via the control valve 5.
  • the oil passage flowing into the hydraulic motor 13 is blocked and flows into the regenerative circuit 33 flowing into the hydraulic motor 13.
  • lever operation signal 141 and the pressure signal 144 of the bottom side oil chamber 3a1 are inputted to the second function generator 102 in the controller 100, and the second function generator 102 is operated by the lever operation signal 141 and the pressure of the bottom side oil chamber 3a1.
  • a final target bottom flow signal 102A in response to the signal 144 is calculated.
  • the final target bottom flow rate signal 102A is converted into the target motor rotational speed in the second output conversion unit 107, and is output to the inverter 9A as the rotational speed command signal 209A.
  • the number of revolutions of the motor 14 is controlled to a desired number of revolutions.
  • the flow rate of the return oil discharged from the bottom side oil chamber 3a1 of the boom cylinder 3a is adjusted, and a smooth cylinder operation according to the lever operation of the operating device 4 can be realized.
  • the estimated pump flow rate signal 120 input from the vehicle body controller 200 to the controller 100 is input to the first subtraction operation unit 103 together with the minimum flow rate signal from the minimum flow rate signal command unit 114, and the first subtraction operation unit 103 A demand pump flow signal 103A is calculated.
  • the final target bottom flow rate signal 102A calculated by the second function generator 102 and the pressure signal 144 of the bottom side oil chamber 3a1 are input to the first multiplication operator 104, and the first multiplication operator 104 receives the recovery power signal 104A. calculate. Further, the demand pump flow signal 103A calculated by the first subtraction operator 103 and the pressure signal 140 of the hydraulic pump 10 are input to the second multiplication operator 105, and the second multiplication operator 105 receives the demand pump power signal 105A. calculate.
  • the recovery power signal 104A and the demand pump power signal 105A are input to the minimum value selection operation unit 108.
  • the minimum value selection calculation unit 108 outputs the smaller one of the two inputs as the target assist power signal 108A. This is to calculate the power (energy amount) that can be preferentially used for the auxiliary hydraulic pump 15 within the range not exceeding the demand pump power signal 105A with respect to the recovery power signal 104A. As a result, the loss to be converted into electrical energy is minimized, and efficient regeneration operation is performed.
  • the target assist power signal 108A calculated by the minimum value selection calculation unit 108 and the pressure signal 140 of the discharge pressure of the hydraulic pump 10 are input to the first division operator 109, and the first division operator 109 receives the target assist flow signal 109A.
  • the target assist flow rate signal 109A calculated by the first division operator 109 and the rotation number command signal 209A calculated by the second output conversion unit 107 are input to the second division operator 110, and the second division operator 110
  • the target capacitance signal 110A is calculated.
  • the target capacitance signal 110A is converted into, for example, a tilt angle in the third output conversion unit 111, and is output to the regulator 15A as a capacitance command signal 215A.
  • the auxiliary hydraulic pump 15 is controlled to supply the hydraulic pump 10 with a large flow rate as much as possible without exceeding the demand pump power signal 105A. As a result, recovery power can be used efficiently.
  • the required pump flow signal 103A calculated by the first subtraction operator 103, the target assist flow signal 109A calculated by the first division operator 109, and the minimum flow signal from the minimum flow signal command unit 114 are second subtraction operators
  • the second subtraction operator 112 calculates the target pump flow signal 112A.
  • the target pump flow rate signal 112A is converted into, for example, a tilt angle in the fourth output conversion unit 113, and is output to the regulator 10A as a displacement command signal 210A.
  • the hydraulic pump 10 can reduce its volume by the flow rate supplied from the auxiliary hydraulic pump 15, the output of the hydraulic pump 10 can be reduced. Further, the flow rate of the pressure oil supplied to the control valve 5 is the same as in the case where there is no supply from the auxiliary hydraulic pump 15 or in the case where there is a supply, so good operability according to the operation lever of the operation device 25 is ensured it can.
  • the energy obtained by recovering the auxiliary hydraulic pump 15 which is a hydraulic pump mechanically connected to the hydraulic motor 13 for regeneration is used. Since it can be driven directly, no loss occurs once energy is stored. As a result, energy conversion loss can be reduced and energy can be efficiently used.
  • control is performed to reduce the displacement of the hydraulic pump 10 by the amount supplied from the auxiliary hydraulic pump 15.
  • the flow rate of the hydraulic oil supplied to the control valve 5 does not change. This can ensure good operability.
  • FIG. 5 is a schematic view of a drive control system showing a second embodiment of a pressure oil energy regeneration device for a working machine according to the present invention
  • FIG. 6 is a second embodiment of a pressure oil energy regeneration device for a working machine according to the present invention. It is a block diagram of the controller which comprises a form.
  • the same reference numerals as those shown in FIG. 1 to FIG. 4 denote the same parts, so the detailed description thereof will be omitted.
  • the second embodiment of the pressure oil energy regeneration device for a working machine according to the present invention shown in FIG. 5 and FIG. 6 is constituted of a hydraulic source, a working machine and the like substantially the same as the first embodiment.
  • the following configuration is different.
  • the electromagnetic switching valve 8 is a proportional solenoid valve 60 and the switching valve 7 is a control valve 61, and the hydraulic motor 13 is replaced with a variable displacement hydraulic motor 62 to vary the motor capacity.
  • the regulator 62A is provided.
  • the motor regulator 62A changes the capacity of the variable displacement hydraulic motor 62 according to a command from the controller 100.
  • the controller 100 includes a flow rate limit calculation unit 130, a power limit calculation unit 131, a third division calculation unit 133, a third function generator 134, a fifth output conversion unit 135, a constant rotation number command unit 136, and a fourth division calculation.
  • the point which provided the unit 137 and the 6th output conversion part 138 differs from a 1st embodiment.
  • the return oil from the bottom side oil chamber 3a1 of the boom cylinder 3a can be divided by the control valve 62, and the motor 14 is rotated at a fixed number of revolutions to make the capacity of the variable displacement hydraulic motor 62
  • the regenerative flow rate is controlled by control.
  • a control valve 61 is provided in the bottom side oil passage 32 instead of the switching valve 7.
  • the control valve 61 diverts and controls the flow rate of the return oil from the bottom side oil chamber 3a1 of the boom cylinder 3a and discharged to the tank 12 via the control valve 5.
  • the control valve 61 has a spring 61b at one end and a pilot pressure receiving portion 61a at the other end.
  • the spool of the control valve 61 moves in accordance with the pressure of the pilot pressure oil input to the pilot pressure receiving portion 61a, so the opening area through which the pressure oil passes is controlled, and when the pressure of the pilot pressure oil is a certain value or more Completely shut.
  • the pilot pressure oil is supplied to the pilot pressure receiving unit 61 a from the pilot hydraulic pump 11 via an electromagnetic proportional pressure reducing valve 60 described later.
  • the pressure oil output from the pilot hydraulic pump 11 is input to the input port of the electromagnetic proportional pressure reducing valve 60 in the present embodiment.
  • a command signal output from the controller 100 is input to the operation portion of the electromagnetic proportional pressure reducing valve 60.
  • the spool position of the electromagnetic proportional pressure reducing valve 60 is adjusted according to the command signal, whereby the pressure of the pilot pressure oil supplied from the pilot hydraulic pump 11 to the pilot pressure receiving portion 61 a of the control valve 61 is appropriately adjusted.
  • the controller 100 outputs a control command to the solenoid proportional pressure reducing valve 60 so as to adjust the opening area of the control valve 61 so that the target discharge flow rate to be branched to the control valve 61 calculated inside the controller.
  • the target area signal 134A from the third function generator 134 is output to the fifth output conversion unit 135, and the fifth output conversion unit 135 performs electromagnetic proportional pressure reduction on the input target opening area signal 135A.
  • the control command of the valve 60 is converted and output to the solenoid proportional pressure reducing valve 60 as the solenoid valve command signal 260A.
  • the opening degree of the control valve 61 is controlled, and the flow rate of the return oil discharged from the bottom side oil chamber 3a1 of the boom cylinder 3a to the tank 12 via the control valve 5 can be controlled.
  • the target capacitance signal 137A from the fourth division operator 137 is output to the sixth output conversion unit 138, and the sixth output conversion unit 138 converts the input target capacitance signal 137A into, for example, a tilt angle, and a capacitance command It outputs to the regulator 62A as the signal 262A.
  • the displacement of the variable displacement hydraulic motor 62 is controlled.
  • the controller 100 in the present embodiment omits the first function generator 101 and the first output conversion unit 106 in the first embodiment, and adds the flow restriction operation unit 130 and the power restriction to the remaining operation units.
  • the arithmetic unit 131, the third division operator 133, the third function generator 134, the fifth output conversion unit 135, the constant rotation speed command unit 136, the fourth division operator 137, and the sixth output conversion unit 138 are provided. .
  • the flow rate limit calculating unit 130 inputs the final target bottom flow rate signal 102A calculated by the second function generator 102 as shown in FIG. 6, and limits the flow rate limited by the upper limit of the maximum recovery flow rate of the variable displacement hydraulic pump 62.
  • the signal 130A is output. Since the hydraulic motor generally has a maximum flow rate determined, the characteristics are set according to the specifications of the device.
  • the limited flow rate signal 130A is output to the first multiplication operator 104.
  • the first multiplication operator 104 receives the restricted flow signal 130A from the flow restriction operation unit 130 and the pressure signal 144 of the bottom side oil chamber 3a1, calculates its multiplication value as the recovery power signal 104A, and the power restriction operation unit Output to 131.
  • the power limit calculation unit 131 receives the recovered power signal 104A calculated by the first multiplication operator 104, and outputs a limited recovered power signal 131A limited by the upper limit of the maximum power of the motor 14. Also with regard to the motor 14, since the maximum power is generally determined, the characteristics are set in accordance with the specifications of the device.
  • the limited recovery power signal 131A is output to the third division computing unit 132 and the minimum value selection computing unit 108.
  • the third division computing unit 132 receives the limit recovery power signal 131A from the power limit computation unit 131 and the pressure signal 144 of the bottom side oil chamber 3a1, and divides the limit recovery power signal 131A by the pressure signal 144 into a target value. It is calculated as the recovery flow rate signal 132A, and is output to the third subtraction operator 133 and the fourth division operator 137.
  • the third subtraction operator 133 inputs the final target bottom flow rate signal 102A from the second function generator 102 and the target recovery flow rate signal 132A from the third division operator 132, and distributes the deviation to the control valve 61. It is calculated as the target discharge flow rate signal 133A to be output, and is output to the third function generator 134.
  • the third function generator 134 inputs the pressure of the bottom side oil chamber 3a1 of the boom cylinder 3a detected by the pressure sensor 44 into one input end as a pressure signal 144, and the control valve 61 from the third subtraction operation unit 133 A target discharge flow rate signal 133A to be branched is input to the other input end.
  • the target opening area of the control valve 61 is calculated based on the equation of the orifice from these input signals, and the target opening area signal 134A is output to the fifth output conversion unit 135.
  • the fifth output conversion unit 135 converts the input target opening area signal 134A into a control command for the electromagnetic proportional pressure reducing valve 60, and outputs the control command to the electromagnetic proportional pressure reducing valve 60 as an electromagnetic valve command signal 260A.
  • the opening degree of the control valve 61 is controlled, and the flow rate to be diverted to the control valve 61 is controlled.
  • the constant rotation speed command unit 136 outputs a rotation speed command signal of the motor to the second output conversion unit 107 in order to rotate the rotation speed of the motor 14 at a constant rotation speed of the maximum rotation speed.
  • the second output conversion unit 107 converts the input rotation number command signal into a target motor rotation number and outputs it as a rotation number command signal 209A to the inverter 9A.
  • the constant rotation speed command unit 136 also outputs the rotation speed command signal of the motor to the other end of the second division operator 110 and the other end of the fourth division operator 137.
  • the second division computing unit 110 receives the target assist flow rate signal 109A from the first division computing unit 109 and the rotation speed command signal of the motor from the constant rotation speed command unit 136, and outputs the target assist flow rate signal 109A to the rotation of the motor.
  • a value divided by the number command signal is calculated as a target displacement signal 110A of the auxiliary hydraulic pump 15, and is output to the third output converter 111.
  • the fourth division computing unit 137 receives the target recovery flow rate signal 132A from the third division computing unit 132 and the rotation speed command signal of the motor from the constant rotation speed command unit 136, and outputs the target recovery flow rate signal 132A to the rotation of the motor.
  • a value divided by the number command signal is calculated as the target displacement signal 137A of the variable displacement hydraulic motor 62, and is output to the sixth output conversion unit 138.
  • the sixth output conversion unit 138 converts the input target capacitance signal 137A into, for example, a tilt angle, and outputs it to the regulator 62A as a capacitance command signal 262A. As a result, the displacement of the variable displacement hydraulic motor 62 is controlled.
  • the final target bottom flow rate signal 102A output from the second function generator 102 shown in FIG. 6 is limited by the flow rate control unit 130 to the limit flow rate signal 130A of the maximum flow rate of the variable displacement hydraulic motor 62.
  • the variable displacement hydraulic motor 62 is restricted so that the flow rate exceeding the specification does not flow, and the damage of the variable displacement hydraulic motor 62 can be prevented.
  • the limited final target bottom flow rate signal 102A is input to the first multiplication operator 104 together with the pressure signal 144 of the bottom side oil chamber 3a1, and the recovery power signal 104A is calculated.
  • the calculated recovery power signal 104A is limited by the power limit calculation unit 131 to the limited recovery power signal 131A limited by the upper limit of the maximum power of the motor 14. By this, it is possible to prevent excessive energy from being input to the motor shaft, and to avoid equipment breakage or overspeed.
  • the limited recovery power signal 131A output from the power limit calculation unit 131 is input to the third division computing unit 132 together with the pressure signal 144 of the bottom side oil chamber 3a1, and the target recovery flow rate signal 132A is calculated.
  • the target recovery flow rate 132A is input to the third subtraction calculator 133 together with the final target bottom flow rate signal 102A, and the target discharge flow rate signal 133A to be diverted to the control valve 61 to achieve the desired boom cylinder speed desired by the operator.
  • the target discharge flow rate signal 133A is input to the third function generator 134 together with the pressure signal 144 of the bottom side oil chamber 3a1, and the target opening area of the control valve 61 is calculated.
  • the signal of the target opening area is output to the solenoid valve 60 as the solenoid valve command signal 260A via the fifth output conversion unit 135.
  • the target recovery flow rate signal 132A output from the third division computing unit 132 is input to the fourth division computing unit 137 together with the motor revolution number command signal from the constant revolution number command unit 136, and the variable displacement type The target displacement of the hydraulic motor 62 is calculated.
  • the signal of the target capacitance is output to the regulator 62A as a capacitance command signal 262A via the sixth output conversion unit 138.
  • variable displacement hydraulic motor 62 receives a flow of hydraulic oil at a flow rate limited and power limited according to the specifications of the device connected to the rotary shaft. As a result, since excessive power is not input, it is possible to prevent damage to the device or occurrence of overspeed.
  • variable displacement hydraulic motor 62 for regeneration has a flow restriction and a power restriction according to the specifications of the device. Since the flow rate of the working oil flows in, excessive power is not input. As a result, it is possible to prevent the breakage of the device or the occurrence of overspeed, and the reliability is improved.
  • FIG. 7 is a block diagram of a controller constituting a third embodiment of the hydraulic energy recovery system for a working machine of the present invention
  • FIG. 8 is a third embodiment of a hydraulic energy recovery system for a working machine according to the present invention It is a characteristic view explaining the contents of the variable power limit operation part of the controller which constitutes.
  • the same reference numerals as those shown in FIGS. 1 to 6 denote the same parts, so the detailed description thereof will be omitted.
  • the third embodiment of the pressure oil energy regeneration device for a working machine according to the present invention shown in FIG. 7 and FIG. 8 is constituted by the same hydraulic source and working machine as the second embodiment, but the control The logic configuration is different.
  • the present embodiment is different from the second embodiment in that a variable power limit calculation unit 140 is provided instead of the power limit calculation unit 131 in the second embodiment.
  • the inflow flow rate of the hydraulic oil to the variable displacement hydraulic motor 62 is limited only by the maximum power of the motor 14, but in the present embodiment, the maximum power of the motor 14 is maximum. And it is limited by the sum total of the demand pump power of the auxiliary hydraulic pump 15. This raises the upper limit of the power limit, so that the energy to be recovered can be further increased, and the fuel consumption reduction effect is improved.
  • variable power limit calculation unit 140 receives the recovered power signal 104A calculated by the first multiplication operator 104 and the demand pump power signal 105A calculated by the second multiplication operator 105, A limited recovery power signal 140A corresponding to the upper limit of the maximum power of the motor 14 and the required power of the auxiliary hydraulic pump 15 is output.
  • the limited recovery power signal 140A is output to the third division calculator 132 and the minimum value selection calculator 108.
  • variable power limit calculation unit 140 The details of the calculation of the variable power limit calculation unit 140 will be described with reference to FIG.
  • the horizontal axis represents the target recovery power that is the recovery power signal 104A calculated by the first multiplication operator 104
  • the vertical axis represents the limited recovery power calculated by the variable power limit calculation unit 140.
  • a solid characteristic line x defines the upper limit limit line parallel to the horizontal axis with the maximum power of the motor 14. At this time, the required pump power signal 105A input from the second multiplication operator 105 is zero.
  • variable power limit calculation unit 140 increases the upper limit limit line of the characteristic line x moves upward in the y direction by an amount corresponding to the increase. In other words, the variable power limit calculation unit 140 increases the upper limit of the limited recovery power by the input of the required pump power.
  • the auxiliary hydraulic pump 15 is used to transfer the energy exceeding the power of the motor 14 to the variable displacement hydraulic motor 62. By being used, the motor 14 can be prevented from entering power exceeding specifications.
  • the upper limit of the target recovery power is increased, the recovery power is increased, and the fuel consumption reduction effect is enhanced. As a result, it is possible to prevent the breakage of the device or the occurrence of overspeed, and the reliability is improved.
  • FIG. 9 is a schematic view of a drive control system showing a fourth embodiment of a pressure oil energy regeneration device for a working machine according to the present invention
  • FIG. 10 is a fourth embodiment of a pressure oil energy regeneration device for a working machine according to the present invention. It is a block diagram of the controller which comprises a form.
  • the controller which comprises a form.
  • the fourth embodiment of the pressure oil energy regenerating apparatus for a working machine according to the present invention shown in FIGS. 9 and 10 comprises an oil pressure source, a working machine and the like substantially the same as the first embodiment.
  • the following configuration is different.
  • the flow control of the pressure oil of the auxiliary hydraulic pump 15 supplied to the oil passage 30 of the hydraulic pump 10 is not a displacement control of the auxiliary hydraulic pump 15 but a discharge circuit connected to the auxiliary oil passage 31.
  • This embodiment differs in that the opening area of the bleed valve 16 provided in the discharge oil passage 34 is adjusted. Therefore, there is a difference in that the auxiliary hydraulic pump 15 is configured by a fixed displacement hydraulic pump.
  • the controller 100 differs from the first embodiment in that a fourth function generator 122, a fourth subtraction operator 123, an aperture area calculator 124 and a seventh output converter 125 are provided.
  • a discharge oil passage 34 communicating with the tank 12 is connected to a portion of the auxiliary oil passage 31 between the auxiliary hydraulic pump 15 and the check valve 6.
  • the discharge oil passage 34 is provided with a bleed valve 16 for controlling the flow rate of oil discharged from the auxiliary oil passage 31 to the tank 12.
  • the bleed valve 16 has a spring 16b at one end and a pilot pressure receiving portion 16a at the other end. Since the spool of the bleed valve 16 moves in accordance with the pressure of the pilot pressure oil input to the pilot pressure receiving portion 16a, the opening area through which the pressure oil passes is controlled, and when the pressure of the pilot pressure oil is a certain value or more Completely shut. As a result, the flow rate of the oil flowing through the discharge oil passage 34 discharged from the auxiliary oil passage 31 to the tank 12 can be controlled.
  • the pilot pressure oil is supplied to the pilot pressure receiving unit 16 a from the pilot hydraulic pump 11 via an electromagnetic proportional pressure reducing valve 17 described later.
  • the pressure oil output from the pilot hydraulic pump 11 is input to the input port of the electromagnetic proportional pressure reducing valve 17 in the present embodiment.
  • a command signal output from the controller 100 is input to the operation portion of the electromagnetic proportional pressure reducing valve 17.
  • the spool position of the electromagnetic proportional pressure reducing valve 17 is adjusted according to the command signal, whereby the pressure of the pilot pressure oil supplied from the pilot hydraulic pump 11 to the pilot pressure receiving portion 16 a of the bleed valve 16 is appropriately adjusted.
  • the controller 100 causes the electromagnetic proportional pressure reducing valve 17 to flow the difference between the discharge flow rate of the auxiliary hydraulic pump 15 and the target assist flow rate to the tank 12 via the bleed valve 16 so as to achieve the target assist flow rate calculated inside the controller.
  • the control command is output to adjust the opening area of the bleed valve 16.
  • the controller 100 controls the electromagnetic switching valve 8 to switch the switching command, to the inverter 9A controls the rotational speed command, and controls the bleed valve 16
  • the control command is output to the valve 17 and the displacement command is output to the regulator 10A of the hydraulic pump 10.
  • the switching valve 7 switches to the shutoff position, and the return oil from the bottom side oil chamber 3a1 of the boom cylinder 3a flows to the regeneration circuit 33 because the oil passage to the control valve 5 is shut off. And then discharged into the tank 12.
  • the auxiliary hydraulic pump 15 is rotated by the driving force of the hydraulic motor 13.
  • the pressure oil discharged from the auxiliary hydraulic pump 15 merges with the pressure oil discharged from the hydraulic pump 10 through the auxiliary oil passage 31 and the check valve 6, and operates to assist the power of the hydraulic pump 10.
  • the controller 100 outputs a control command to the electromagnetic proportional pressure reducing valve 17 and controls the opening area of the bleed valve 16 to adjust the pressure oil flow rate from the auxiliary hydraulic pump 15 joining the hydraulic pump 10. As a result, the combined flow rate to the hydraulic pump 10 is controlled to a desired flow rate. Further, the controller 100 outputs a displacement command to the regulator 10A so as to reduce the displacement of the hydraulic pump 10 by the flow rate of the pressure oil supplied from the auxiliary hydraulic pump 15.
  • the energy of the pressure oil discharged from the boom cylinder 3 a is recovered by the hydraulic motor 13 and assists the power of the hydraulic pump 10 as a driving force of the auxiliary hydraulic pump 15. Further, the extra power is stored in the storage device 9C via the motor 14. As a result, effective use of energy and reduction of fuel consumption are achieved. Further, since the adjustment of the combined flow rate is performed by adjusting the opening area of the bleed valve 16, the auxiliary hydraulic pump 15 may be a fixed displacement hydraulic pump. As a result, the configuration of the power regeneration device 70 is simplified.
  • the target capacity signal 110A calculated by dividing the target assist flow signal 109A by the final target bottom flow signal 102A is output from the third output conversion unit 111 to the regulator 15A.
  • the target opening area signal 124A from the opening area calculation unit 124 is output to the seventh output conversion unit 125, and the seventh output conversion unit 125 outputs the input target opening area signal 124A to the electromagnetic proportional pressure reducing valve 17
  • the control command is converted into a control command and output to the electromagnetic proportional pressure reducing valve 17 as a solenoid valve command 217.
  • the opening degree of the bleed valve 16 is controlled, and the flow rate of the auxiliary hydraulic pump 15 discharged to the tank 12 side is controlled.
  • the combined flow rate of the hydraulic fluid discharged from the auxiliary hydraulic pump 15 to the hydraulic pump 10 is controlled to a desired flow rate.
  • the controller 100 in the present embodiment omits the second division operator 110 and the third output conversion unit 111 in the first embodiment, and adds to the remaining operators, the fourth function generator 122 and the fourth function generator 122.
  • a fourth subtraction operation unit 123, an opening area operation unit 124, and a seventh output conversion unit 125 are provided.
  • the fourth function generator 122 receives the final target bottom flow rate signal 102A calculated by the second function generator 102 as shown in FIG. 10, and the discharge flow rate signal 122A of the auxiliary hydraulic pump 15 based on the final bottom flow rate signal 102A. Calculate The discharge flow rate signal 122A is output to the fourth subtraction operator 123.
  • the fourth subtraction operator 123 receives the discharge flow rate signal 122A of the auxiliary hydraulic pump 15 from the fourth function generator 122 and the target assist flow signal 109A from the first division operator 109, and the deviation thereof is used as a target bleed.
  • the flow rate signal 123A is calculated and output to one input end of the opening area calculation unit 123.
  • the opening area calculation unit 124 inputs the target bleed flow rate signal 123A from the fourth subtraction operator 123 to one input end, and uses the discharge pressure of the hydraulic pump 10 detected by the pressure sensor 40 as the pressure signal 140 to the other input end. Enter in The target opening area of the bleed valve 16 is calculated based on the equation of the orifice from these input signals, and the target opening area signal 124 A is output to the seventh output converter 125.
  • the target opening area A 0 of the bleed valve 16 is calculated by the following equation (3).
  • a 0 Q 0 / C ⁇ P P ⁇ (3)
  • Q 0 is a target bleed flow rate
  • P P is a hydraulic pump pressure
  • C is a flow rate coefficient.
  • the seventh output converter 125 converts the input target opening area signal 124 A into a control command for the electromagnetic proportional pressure reducing valve 17, and outputs the control command as the electromagnetic valve command 217 to the electromagnetic proportional pressure reducing valve 17.
  • the opening degree of the bleed valve 16 is controlled, and the flow rate of the auxiliary hydraulic pump 15 discharged to the tank 12 side is controlled.
  • the final target bottom flow rate signal 102A calculated by the second function generator 102 is input to the fourth function generator 122, and the fourth function generator 122 outputs the discharge flow rate signal 122A of the auxiliary hydraulic pump 15 calculate.
  • the discharge flow rate signal 122A calculated by the fourth function generator 122 and the target assist flow rate signal 109A calculated by the first division operator 109 are input to the fourth subtraction operator 123, and the fourth subtraction operator 123 A target bleed flow rate signal 123A is calculated.
  • the target bleed flow rate signal 123A is input to the opening area calculation unit 124.
  • the opening area calculation unit 124 calculates the opening area signal 124 A of the bleed valve 16 from the input target bleed flow rate signal 123 A and the pressure signal 140 of the hydraulic pump 10 and outputs the signal to the seventh output conversion unit 125.
  • the seventh output converter 125 outputs a control command to the electromagnetic proportional pressure reducing valve 17 such that the opening area calculated by the bleed valve 16 is obtained.
  • the excess flow rate of the pressure oil discharged from the auxiliary hydraulic pump 15 is discharged to the tank 12 via the bleed valve 16.
  • the combined flow rate of the pressure oil of the hydraulic pump 10 and the pressure oil of the auxiliary hydraulic pump 15 is adjusted to a desired flow rate.
  • the flow rate adjustment of the pressure oil from the auxiliary hydraulic pump 15 assisting the power of the hydraulic pump 10 Adjust the opening area.
  • the configuration of the power regeneration device 70 is simplified, and the production cost can be reduced and the maintainability can be improved.
  • the present invention is not limited to the embodiments described above, but includes various modifications.
  • the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

 排出された戻り油により駆動する回生用油圧モータと、回生用油圧モータと機械的に連結された第1油圧ポンプと、第1油圧アクチュエータ及び/または第2油圧アクチュエータを駆動する圧油を吐出する第2油圧ポンプと、第2油圧ポンプが吐出した圧油を合流させる合流管路と、第2油圧ポンプの吐出流量を調整可能とする第2調整器と、合流管路を流通する第1油圧ポンプからの圧油の流量を調整可能とする第1調整器とを備えた作業機械の圧油エネルギ回生装置において、制御装置は、入力された第2油圧ポンプの目標容量指令に応じて要求ポンプ流量を算出し、第1油圧ポンプからの圧油の流量が要求ポンプ流量以下になるように第1調整器へ制御指令を出力する第1演算部と、要求ポンプ流量から第1油圧ポンプからの圧油の流量を減算して算出し、この算出した目標ポンプ流量になるように第2調整器へ制御指令を出力する第2演算部とを備えた。

Description

作業機械の圧油エネルギ回生装置
 本発明は、作業機械の圧油エネルギ回生装置に係り、さらに詳しくは、油圧ショベル等の油圧アクチュエータを備えた作業機械の圧油エネルギ回生装置に関する。
 作業機械において、場積をとらず限られたスペースに配設できるようにし回収したエネルギの利用用途を広げることができる圧油のエネルギ回収装置及び圧油のエネルギ回収・再生装置を提供することを課題として、油圧アクチュエータからの戻り圧油により駆動する油圧ポンプモータと、油圧ポンプモータの駆動力で発電する電動モータと、電動モータの発電した電力を貯蓄するバッテリとを備えたものがある(例えば、特許文献1参照)。
特開2000-136806号公報
 上述した従来技術によれば、圧油のエネルギをバッテリに電気エネルギとして貯蓄するので、アキュムレータ等で圧油のエネルギを貯蓄する場合に比べて、大きな場積を必要としないという利点がある。
 しかし、従来技術の作業機械の場合、圧油のエネルギを一度電気エネルギに変換してバッテリに蓄えるため、回収時と利用時の損失が大きくなり、エネルギを有効に利用できないという課題がある。
 すなわち、油圧アクチュエータの戻り油のエネルギをバッテリに蓄える際には、油圧ポンプモータの損失、電動モータの損失、バッテリの充放電損失が発生するので、これらの損失の合計分を減したエネルギがバッテリに蓄えられる。また、バッテリに蓄えられたエネルギを利用する際にも、バッテリ、電動モータ、油圧ポンプモータの損失が発生する。このため、従来技術を適用した作業機械においては、回収から利用までの間の損失を考慮すると、回収利用可能なエネルギの約半分を損失として失う場合もあると考えられる。
 本発明は、上述の事柄に基づいてなされたもので、その目的は、油圧アクチュエータからの戻り圧油を効率的に利用できる作業機械の圧油エネルギ回生装置を提供するものである。
 上記の目的を達成するために、第1の発明は、第1油圧アクチュエータと、前記第1油圧アクチュエータから排出された戻り油により駆動する回生用油圧モータと、前記回生用油圧モータと機械的に連結された第1油圧ポンプと、前記第1油圧アクチュエータ及び/または第2油圧アクチュエータを駆動する圧油を吐出する第2油圧ポンプと、前記第1油圧ポンプが吐出した圧油を前記第2油圧ポンプが吐出した圧油に合流させる合流管路と、前記合流管路を流通する前記第1油圧ポンプからの圧油の流量を調整可能とする第1調整器と、前記第2油圧ポンプの吐出流量を調整可能とする第2調整器と、前記第2油圧ポンプの目標容量指令が入力され、前記目標容量指令に応じて前記第1油圧ポンプと前記第2油圧ポンプとから吐出される圧油の流量をそれぞれ算出し、算出した流量に応じて前記第1調整器と前記第2調整器とに制御指令を出力する制御装置とを備えた作業機械の圧油エネルギ回生装置において、前記制御装置は、入力された前記第2油圧ポンプの目標容量指令に応じて要求ポンプ流量を算出し、前記合流管路を流通する前記第1油圧ポンプからの圧油の流量が前記要求ポンプ流量以下になるように前記第1調整器へ制御指令を出力する第1演算部と、前記要求ポンプ流量から前記合流管路を流通する前記第1油圧ポンプからの圧油の流量を減算して算出し、この算出した目標ポンプ流量になるように前記第2調整器へ制御指令を出力する第2演算部とを備えたものとする。
 また、第2の発明は、第1の発明において、前記第1油圧ポンプ及び前記回生用油圧モータと機械的に連結された電動機と、前記電動機の回転数を調整可能とする第3調整器と、前記第1油圧アクチュエータを操作するための操作装置と、前記操作装置の操作量を検出する操作量検出器とを更に備え、前記制御装置は、前記操作量検出器が検出した前記操作装置の操作量を取り込み、前記操作量に応じて前記第1油圧アクチュエータから排出された戻り油により前記回生用油圧モータに入力される回収動力を算出し、前記合流管路を流通する前記第1油圧ポンプからの圧油の流量を供給するのに必要な要求アシスト動力を算出し、前記回収動力と前記要求アシスト動力を超えないように目標アシスト動力を設定し、前記目標アシスト動力となるように前記第2調整器と前記第3調整器へ制御指令を出力する第3演算部を備えたことを特徴とする。
 さらに、第3の発明は、第1の発明において、前記第1油圧アクチュエータと前記回生用油圧モータとを接続する管路に設けた分岐部から分岐して前記第1油圧アクチュエータからの戻り油をタンクに排出するための排出回路と、前記排出回路に設けられ、前記排出回路の連通/遮断を切替える切換弁と、前記第1油圧アクチュエータを操作するための操作装置と、前記操作装置の操作量を検出する操作量検出器とを更に備え、前記制御装置は、前記操作量検出器が検出した前記操作装置の操作量を取り込み、前記操作量に応じて前記切換弁に遮断指令を出力する第4演算部を備えたことを特徴とする。
 また、第4の発明は、第2の発明において、前記第1油圧アクチュエータと前記回生用油圧モータとを接続する管路に設けた分岐部から分岐して前記第1油圧アクチュエータからの戻り油をタンクに排出するための排出回路と、前記排出回路に設けられ、前記排出回路の流量を調整する流量調整手段とを更に備え、前記制御装置は、前記回収動力が前記電動機の最大動力を上回らないように、前記第1油圧アクチュエータから排出される動力を前記排出回路に分配するように前記流量調整手段に制御指令を出力する第5演算部を備えたことを特徴とする。
 更に、第5の発明は、第2の発明において、前記第1油圧アクチュエータと前記回生用油圧モータとを接続する管路に設けた分岐部から分岐して前記第1油圧アクチュエータからの戻り油をタンクに排出するための排出回路と、前記排出回路に設けられ、前記排出回路の流量を調整する流量調整手段とを更に備え、前記制御装置は、前記回収動力が前記電動機の最大動力と前記要求アシスト動力との合計値を上回らないように、前記第1油圧アクチュエータから排出される動力を前記排出回路に分配するように前記流量調整手段に制御指令を出力する第6演算部を備えたことを特徴とする。
 また、第6の発明は、第1の発明において、前記第1油圧アクチュエータと前記回生用油圧モータとを接続する管路に設けた分岐部と、前記排出回路に設けられ、前記排出回路の流量を調整する流量調整手段とを更に備え、前記制御装置は、前記回生用油圧モータに入力可能な最大流量を上回らないように、前記第1油圧アクチュエータから排出される動力を前記排出回路に分流するように前記流量調整手段に制御指令を出力する第7演算部を備えたことを特徴とする。
 更に、第7の発明は、第1の発明において、前記合流管路から分岐しタンクと連通する排出管路と、前記排出管路に設けられ前記第1油圧ポンプからの圧油の一部又は全部をタンクにブリードオフ可能とするブリード弁とを備え、前記第1調整器は、前記ブリード弁の開口面積を調整可能とする電磁比例弁であることを特徴とする。
 また、第8の発明は、第1の発明において、前記第1油圧ポンプは可変容量型油圧ポンプであって、前記制御装置は、前記可変容量型油圧ポンプの容量を制御可能に構成したことを特徴とする。
 更に、第9の発明は、第1の発明において、前記第2油圧ポンプは可変容量型油圧ポンプであって、前記制御装置は、前記可変容量型油圧ポンプの容量を制御可能に構成したことを特徴とする。
 本発明によれば、回生用油圧モータに機械的に連結された油圧ポンプを回収したエネルギで直接駆動することができるので、エネルギを一旦蓄える際の損失が発生しない。この結果、エネルギ変換損失を減少できるので効率良くエネルギを利用することが可能になる。
本発明の作業機械の圧油エネルギ回生装置の第1の実施の形態を備えた油圧ショベルを示す斜視図である。 本発明の作業機械の圧油エネルギ回生装置の第1の実施の形態を示す駆動制御システムの概略図である。 本発明の作業機械の圧油エネルギ回生装置の第1の実施の形態を構成するコントローラのブロック図である。 本発明の作業機械の圧油エネルギ回生装置の第1の実施の形態を構成するコントローラの第2関数発生器の内容を説明する特性図である。 本発明の作業機械の圧油エネルギ回生装置の第2の実施の形態を示す駆動制御システムの概略図である。 本発明の作業機械の圧油エネルギ回生装置の第2の実施の形態を構成するコントローラのブロック図である。 本発明の作業機械の圧油エネルギ回生装置の第3の実施の形態を構成するコントローラのブロック図である。 本発明の作業機械の圧油エネルギ回生装置の第3の実施の形態を構成するコントローラの可変動力制限演算部の内容を説明する特性図である。 本発明の作業機械の圧油エネルギ回生装置の第4の実施の形態を示す駆動制御システムの概略図である。 本発明の作業機械の圧油エネルギ回生装置の第4の実施の形態を構成するコントローラのブロック図である。
 以下、本発明の作業機械の圧油エネルギ回生装置の実施の形態を図面を用いて説明する。
 図1は本発明の作業機械の圧油エネルギ回生装置の第1の実施の形態を備えた油圧ショベルを示す斜視図、図2は本発明の作業機械の圧油エネルギ回生装置の第1の実施の形態を示す駆動制御システムの概略図である。 
 図1において、油圧ショベル1は、ブーム1a、アーム1b及びバケット1cを有する多関節型の作業装置1Aと、上部旋回体1d及び下部走行体1eを有する車体1Bとを備えている。ブーム1aは、上部旋回体1dに回動可能に支持されていて、第1油圧アクチュエータであるブームシリンダ(油圧シリンダ)3aにより駆動される。上部旋回体1dは下部走行体1e上に旋回可能に設けられている。
 アーム1bは、ブーム1aに回動可能に支持されていて、アームシリンダ(油圧シリンダ)3bにより駆動される。バケット1cは、アーム1bに回動可能に支持されていて、バケットシリンダ(油圧シリンダ)3cにより駆動される。下部走行体1eは、左右の走行モータ3d,3eにより駆動される。ブームシリンダ3a、アームシリンダ3b、及びバケットシリンダ3cの駆動は、上部旋回体1dの運転室(キャブ)内に設置され油圧信号を出力する操作装置4、24(図2参照)によって制御されている。
 図2に示す駆動制御システムは、動力回生装置70と、操作装置4,24と、複数のスプール型方向切換弁からなる制御弁5と、チェック弁6と、電磁切換弁7と、切換弁8と、第3調整器としてのインバータ9Aと、チョッパ9Bと、蓄電装置9Cとを備えており、制御装置としてコントローラ100を備えている。
 油圧源装置としては、第2油圧ポンプとしての可変容量型の油圧ポンプ10とパイロット圧油を供給するパイロット油圧ポンプ11とタンク12とを備えている。油圧ポンプ10とパイロット油圧ポンプ11とは駆動軸で連結されたエンジン50によって駆動される。油圧ポンプ10は第2調整器としてのレギュレータ10Aを有していて、レギュレータ10Aは後述するコントローラ100からの指令により油圧ポンプ10の斜板傾転角を制御することで、油圧ポンプ10の吐出流量を調整する。
 油圧ポンプ10からの圧油をブームシリンダ3a~走行モータ3dへ供給する油路30には、後述するチェック弁6を介して連結される合流管路としての補助油路31と各アクチュエータへ供給する圧油の方向と流量を制御する複数のスプール型方向切換弁からなる制御弁5と油圧ポンプ10の吐出圧を検出する圧力センサ40とが設けられている。制御弁5は、そのパイロット受圧部へのパイロット圧油の供給により、各方向切換弁のスプール位置を切り換えて、油圧ポンプ10からの圧油を各油圧アクチュエータに供給して、アーム1b等を駆動している。圧力センサ40は検出した油圧ポンプ10の吐出圧を後述するコントローラ100に出力する。
 制御弁5の各方向切換弁のスプール位置は、操作装置4,24の操作レバー等の操作によって切り換えされる。操作装置4,24は、操作レバー等の操作により、パイロット油ポンプ11から図示しないパイロット一次側油路を介して供給されるパイロット一次圧油を、パイロット二次側油路を通して制御弁5のパイロット受圧部に供給している。ここで、操作装置4は第1油圧アクチュエータであるブームシリンダ3aを操作するものであり、操作装置24は第2油圧アクチュエータであるブームシリンダ3a以外のアクチュエータを操作するものを1つにまとめた形で示している。
 操作装置4は、内部にパイロット弁4Aが設けられていて、制御弁5のブームシリンダ3aの駆動を制御するスプール型方向切換弁の受圧部にパイロット配管を介して接続されている。パイロット弁4Aは、操作装置4の操作レバーの傾倒方向と操作量に応じて制御弁5のパイロット受圧部に油圧信号を出力する。ブームシリンダ3aの駆動を制御するスプール型方向切換弁は、操作装置から入力される油圧信号に応じて位置を切り換えられ、油圧ポンプ10から吐出される圧油の流れをその切換位置に応じて制御することでブームシリンダ3aの駆動を制御する。ここで、ブーム1aが下げ方向に動作するようにブームシリンダ3aを駆動するための油圧信号(ブーム下げ操作信号Pd)が通過するパイロット配管には操作量検出器としての圧力センサ41が取り付けられている。圧力センサ41は検出したブーム下げ操作信号Pdを後述するコントローラ100に出力する。
 操作装置24は、内部にパイロット弁24Aが設けられていて、制御弁5のブームシリンダ3a以外のアクチュエータの駆動を制御するスプール型方向切換弁の受圧部にパイロット配管を介して接続されている。パイロット弁24Aは、操作装置24の操作レバーの傾倒方向と操作量に応じて制御弁5のパイロット受圧部に油圧信号を出力する。該当するアクチュエータの駆動を制御するスプール型方向切換弁は、操作装置から入力される油圧信号に応じて位置を切り換えられ、油圧ポンプ10から吐出される圧油の流れをその切換位置に応じて制御することで該当するアクチュエータの駆動を制御する。
 操作装置24のパイロット弁24Aと制御弁5の受圧部とを接続する2系統のパイロット配管には、それぞれのパイロット圧力を検出する圧力センサ42、43が設けられている。圧力センサ42,43は検出した操作装置24の操作量信号を後述するコントローラ100に出力する。
 次に、回生装置である動力回生装置70について説明する。動力回生装置70は、ボトム側油路32と、回生回路33と、切換弁7と、電磁切換弁8と、インバータ9Aと、チョッパ9Bと、蓄電装置9cと、回生用油圧モータとしての油圧モータ13と、電動機14と、補助油圧ポンプ15と、コントローラ100とを備えている。
 ボトム側油路32は、ブームシリンダ3aの縮短時にタンク12に戻る油(戻り油)が流通する油路であり、一端側がブームシリンダ3aのボトム側油室3a1に接続されていて他端側が制御弁5の接続ポートに接続されている。ボトム側油路32には、ブームシリンダ3aのボトム側油室3a1の圧力を検出する圧力センサ44と、ブームシリンダ3aのボトム側油室3a1からの戻り油を制御弁5を介してタンク12に排出するか否かを切替える切換弁7が設けられている。圧力センサ44は検出したボトム側油室3a1の圧力を後述するコントローラ100に出力する。
 切換弁7は、一端側にばね7bを、他端側にパイロット受圧部7aを有し、そのパイロット受圧部7aへのパイロット圧油の供給の有無により、スプール位置を切り換えて、ブームシリンダ3aのボトム側油室3a1から制御弁5へ流入する戻り油の連通/遮断を制御している。パイロット受圧部7aには、パイロット油圧ポンプ11から後述する電磁切換弁8を介してパイロット圧油が供給される。
 電磁切換弁8の入力ポートには、パイロット油圧ポンプ11から出力される圧油が入力されている。一方、電磁切換弁8の操作部には、コントローラ100から出力される指令信号が入力されている。この指令信号に応じて、パイロット油圧ポンプ11から供給されたパイロット圧油の切換弁7のパイロット操作部7aへの供給/遮断を制御する。
 回生回路33は、その一端をボトム側油路32の切換弁7とブームシリンダ3aのボトム側油室3a1との間に接続し、その他端を油圧モータ13の入口に接続している。このことにより、当該油圧モータ13を介してボトム側油室3a1からの戻り油をタンク12に導いている。
 回生用油圧モータとしての油圧モータ13は、補助油圧ポンプ15と機械的に連結されている。油圧モータ13の駆動力によって補助油圧ポンプ15は回転する。
 第1油圧ポンプとしての補助油圧ポンプ15の吐出口には、補助油路31の一端側が接続されていて、他端側は油路30に接続されている。補助油路31には、補助油圧ポンプ15から油路30への圧油の流入を許容し、油路30から補助油圧ポンプ15側への圧油の流入を禁止するチェック弁6が設けられている。
 補助油圧ポンプ15は第1調整器としてのレギュレータ15Aを有していて、レギュレータ15Aは後述するコントローラ100からの指令により補助油圧ポンプ15の斜板傾転角を制御することで、補助油圧ポンプ15の吐出流量を調整する。
 油圧モータ13は、さらに電動機14と機械的に連結されていて、油圧モータ13の駆動力により発電を行う。電動機14には、回転数を制御するためのインバータ9A、昇圧するためのチョッパ9B、発電した電気エネルギを蓄えるための蓄電装置9Cが電気的に接続されている。
 コントローラ100には、上述した各圧力センサからの信号の他に、上位コントローラである車体制御コントローラ200によって演算された油圧ポンプ10の推定ポンプ流量信号が入力されている。
 コントローラ100は、圧力センサ40が検出した油圧ポンプ10の吐出圧力と、圧力センサ41が検出した操作装置4のパイロット弁4Aの下げ側パイロット圧信号Pdと、圧力センサ42、43が検出した操作装置24のパイロット弁24Aのパイロット圧信号と、圧力センサ44が検出したブームシリンダ3aのボトム側油室3a1の圧力信号と、車体制御コントローラ200からの推定ポンプ流量信号とを入力し、これらの入力値に応じた演算を行い、電磁切換弁8、インバータ9A、油圧ポンプ用レギュレータ10A、及び補助油圧ポンプ用レギュレータ15Aへ制御指令を出力する。
 電磁切換弁8はコントローラ100からの指令信号により切り換えられ、切換弁7にパイロット油ポンプ11からの圧油を送る。インバータ9Aはコントローラ100からの信号により所望の回転数に制御され、補助油圧ポンプ15及び油圧ポンプ10はコントローラ100からの信号により所望の容量に制御される。
 次に、上述した本発明の作業機械の圧油エネルギ回生装置の第1の実施の形態の動作の概要を説明する。 
 まず、図2に示す操作装置4の操作レバーをブーム下げ方向に操作すると、パイロット弁4Aからパイロット圧Pdが制御弁5のパイロット受圧部に伝えられ、制御弁5のブームシリンダ3aの駆動を制御するスプール型方向切換弁が切換操作される。これにより、油圧ポンプ10からの圧油が制御弁5を介してブームシリンダ3aのロッド側油室3a2に流入する。この結果、ブームシリンダ3aのピストンロッドは縮小動作する。これに伴い、ブームシリンダ3aのボトム側油室3a1から排出される戻り油は、ボトム側油路32と連通状態の切換弁7と制御弁5とを通ってタンク12に導かれる。
 このとき、コントローラ100には、圧力センサ40が検出した油圧ポンプ10の吐出圧信号と、圧力センサ44が検出したブームシリンダ3aのボトム側油室3a1の圧力信号と、圧力センサ41が検出したパイロット弁4Aの下げ側パイロット圧信号Pdと、車体制御コントローラ200からの推定ポンプ流量信号とが入力されている。
 このような状態において、オペレータが操作装置4の操作レバーをブーム下げ方向に、規定値以上に操作すると、コントローラ100は、電磁切換弁8へ切換指令を、インバータ9Aへ回転数指令を、補助油圧ポンプ15のレギュレータ15Aへ容量指令を、油圧ポンプ10のレギュレータ10Aへ容量指令をそれぞれ出力する。
 この結果、切換弁7が遮断位置に切換り、ブームシリンダ3aのボトム側油室3a1からの戻り油は、制御弁5への油路が遮断されるため、回生回路33に流れ、油圧モータ13を駆動してその後タンク12に排出される。
 油圧モータ13の駆動力により補助油圧ポンプ15は回転する。補助油圧ポンプ15の吐出した圧油は、補助油路31とチェック弁6とを介して油圧ポンプ10の吐出した圧油と合流する。コントローラ100は、油圧ポンプ10の動力をアシストするように補助油圧ポンプ15のレギュレータ15Aへ容量指令を出力する。コントローラ100は、補助油圧ポンプ15から供給された圧油の流量分、油圧ポンプ10の容量を低減するようにレギュレータ10Aへ容量指令を出力する。
 油圧モータ13に入力された油圧エネルギの内、補助油圧ポンプ15で消費しきれなかった余剰エネルギは、電動機14を駆動し発電することで費やされる。電動機14の発電した電気エネルギは蓄電装置9Cに蓄えられる。
 本実施の形態においては、ブームシリンダ3aから排出された圧油のエネルギは、油圧モータ13によって回収し、補助油圧ポンプ15の駆動力として油圧ポンプ10の動力をアシストする。また、余分な動力は、電動機14を介して蓄電装置9Cに蓄える。このことにより、エネルギの有効用と燃費の低減とを図っている。
 次に、コントローラ100の制御の概要について図3及び図4を用いて説明する。図3は本発明の作業機械の圧油エネルギ回生装置の第1の実施の形態を構成するコントローラのブロック図、図4は本発明の作業機械の圧油エネルギ回生装置の第1の実施の形態を構成するコントローラの制御内容を説明する特性図である。図3及び図4において、図1及び図2に示す符号と同符号のものは同一部分であるので、その詳細な説明は省略する。
 図3に示すコントローラ100は、第1関数発生器101と、第2関数発生器102と、第1減算演算器103と、第1乗算演算器104と、第2乗算演算器105と、第1出力変換部106と、第2出力変換部107と、最小値選択演算部108と、第1除算演算器109と、第2除算演算器110と、第3出力変換部111と、第2減算演算器112と、第4出力変換部113と、最少流量信号指令部114とを備えている。
 第1関数発生器101は、図3に示すように、圧力センサ41で検出した操作装置4のパイロット弁4Aの下げ側パイロット圧Pdをレバー操作信号141として入力する。第1関数発生器101には、レバー操作信号141に対する切換開始点が予めテーブルに記憶されている。
 第1関数発生器101は、レバー操作信号141が切換開始点以下の場合にはOFF信号を、切換開始点超過の場合にはON信号を、第1出力変換部106に出力する。第1出力変換部106は、入力信号を電磁切換弁8の制御信号に変換し、電磁弁指令208として電磁切換弁8に出力する。このことにより、電磁切換弁8が動作し、切換弁7が切換えられ、ブームシリンダ3aのボトム側油室3a1の油は、回生回路33側に流入する。
 第2関数発生器102は、下げ側パイロット圧Pdをレバー操作信号141として一の入力端に入力し、圧力センサ44で検出したブームシリンダ3aのボトム側油室3a1の圧力を圧力信号144として他の入力端に入力する。これらの入力信号を基にブームシリンダ3aの目標ボトム流量を算出する。
 第2関数発生器102の演算の詳細を図4を用いて説明する。図4は本発明の作業機械の圧油エネルギ回生装置の第1の実施の形態を構成するコントローラの第2関数発生器の内容を説明する特性図である。 
 図4において、縦軸はレバー操作信号141の操作量を示し、縦軸は目標ボトム流量(ブームシリンダ3aのボトム側油室3a1から流出する戻り油の目標流量)を示している。図4において、実線の基本特性線aは、従来の制御弁5による戻り油制御と同等の特性を得るために設定されている。上側の破線で示す特性線bと下側の破線で示す特性線cは、ボトム側油室3a1の圧力信号144によって特性線aを補正した場合を示している。
 具体的には、ボトム側油室3a1の圧力信号144が増加すると、基本特性線aの傾きが増加して特性線bの方向に補正されて、連続的に特性が変化する。逆に、圧力信号144が減少すると、基本特性線aの傾きが減少して特性線cの方向に補正されて、連続的に特性が変化する。このように、第2関数発生器は、レバー操作信号141に応じて基本となる目標ボトム流量を算出し、ボトム側油室3a1の圧力信号144の変化に応じて基本となる目標ボトム流量を補正して、最終目標ボトム流量を算出している。
 図3に戻り、第2関数発生器102は、最終目標ボトム流量信号102Aを第2出力変換部107と第1乗算演算器104とへ出力する。第2出力変換部107は、入力された最終目標ボトム流量信号102Aを目標電動機回転数に変換し回転数指令信号209Aとしてインバータ9Aに出力する。このことにより、油圧モータ13の押しのけ容量に該当する電動機14の回転数が制御される。また、回転数指令信号209Aは、第2除算演算器110へ入力される。
 第1減算演算器103は、車体制御コントローラ200から入力された推定ポンプ流量信号120と最少流量信号指令部114からの最少流量信号とを入力し、その偏差を要求ポンプ流量信号103Aとして算出し、第2乗算演算器105と第2減算演算器112とへ出力する。ここで、推定ポンプ流量信号120は、油圧ポンプ10の吐出流量の推定値である。
 第1乗算演算器104は、第2関数発生器102からの最終目標ボトム流量信号102Aとボトム側油室3a1の圧力信号144とを入力し、その乗算値を回収動力信号104Aとして算出し、最小値選択演算部108へ出力する。
 第2乗算演算器105は、圧力センサ40が検出した油圧ポンプ10の吐出圧を圧力信号140として一の入力端に入力し、第1減算演算器103が算出した要求ポンプ流量信号103Aを他の入力端に入力し、その乗算値を要求ポンプ動力信号105Aとして算出し、最小値選択演算部108へ出力する。
 最小値選択演算部108は、第1乗算演算器104からの回収動力信号104Aと、第2乗算演算器105からの要求ポンプ動力信号105Aとを入力し、いずれか小さい方を補助油圧ポンプ15の目標アシスト動力信号108Aとして選択算出し、第1除算演算器109へ出力する。
 ここで、機器の効率を考えた場合、回収した動力を電動機14によって電気エネルギに変換し蓄電装置9Cに蓄え再利用するよりも、なるべく補助油圧ポンプ15で用いた方が損失を少なくできるので効率が良い。このため、最小値選択演算部108で回収動力信号104Aと要求ポンプ動力信号105Aとのいずれか小さい方を選択することにより、要求ポンプ動力信号105Aを超えない範囲で、回収動力を最大限補助油圧ポンプに供給することが可能になる。
 第1除算演算器109は、最小値選択演算部108からの目標アシスト動力信号108Aと油圧ポンプ10の吐出圧の圧力信号140とを入力し、目標アシスト動力信号108Aを圧力信号140で除算した値を目標アシスト流量信号109Aとして算出し、第2除算演算器110と第2減算演算器112とへ出力する。
 第2除算演算器110は、第1除算演算器109からの目標アシスト流量信号109Aと第2出力変換部107からの回転数指令信号209Aとを入力し、目標アシスト流量信号109Aを回転数指令信号209Aで除算した値を補助油圧ポンプ15の目標容量信号110Aとして算出し、第3出力変換部111へ出力する。
 第3出力変換部111は、入力された目標容量信号110Aを例えば傾転角に変換し容量指令信号215Aとしてレギュレータ15Aに出力する。このことにより、補助油圧ポンプ15の容量が制御される。
 第2減算演算器112は、第1減算演算器103からの要求ポンプ流量信号103Aと、第1除算演算器109からの目標アシスト流量信号109Aと、最少流量信号指令部114からの最少流量信号とを入力する。第2減算演算器112は、要求ポンプ流量信号103Aと最少流量信号とを加算して車体制御コントローラ200から入力された推定ポンプ流量信号120を算出し、この推定ポンプ流量信号120と目標アシスト流量信号109Aとの偏差を目標ポンプ流量信号112Aとして算出し、第4出力変換部113へ出力する。
 第4出力変換部113は、入力された目標ポンプ流量信号112Aを例えば傾転角に変換し容量指令信号210Aとしてレギュレータ10Aに出力する。このことにより、油圧ポンプ10の容量が制御される。
 次に、上述した本発明の作業機械の圧油エネルギ回生装置の第1の実施の形態の制御ロジックによる動作を図2及び図3を用いて説明する。 
 操作装置4の操作レバーをブーム下げ方向に操作すると、パイロット弁4Aからパイロット圧Pdが生成され、圧力センサ41により検出され、コントローラ100にレバー操作信号141として入力される。このとき、油圧ポンプ10の吐出圧は圧力センサ40により検出され圧力信号140としてコントローラ100に入力される。また、ブームシリンダ3aのボトム側油室3a1の圧力は圧力センサ44により検出され圧力信号144としてコントローラ100に入力される。
 コントローラ100において、レバー操作信号141は、第1関数発生器101と第2関数発生器102とに入力される。第1関数発生器101は、レバー操作信号141が切換開始点超過の場合にON信号を出力し、第1出力変換部106を介して電磁切換弁8にON信号が出力される。これにより、パイロット油圧ポンプ11からの圧油は電磁切換弁8を介して切換弁7のパイロット操作部7aに入力される。この結果、ボトム側油路32が遮断する方向(切換弁7の閉止側)に切換動作が行われ、ブームシリンダ3aのボトム側油室3a1からの戻り油は、制御弁5を介してタンク12へ流入する油路がブロックされ、油圧モータ13流入する回生回路33に流入する。
 さらに、レバー操作信号141とボトム側油室3a1の圧力信号144はコントローラ100において第2関数発生器102に入力され、第2関数発生器102は、レバー操作信号141とボトム側油室3a1の圧力信号144とに応じた最終目標ボトム流量信号102Aを算出する。最終目標ボトム流量信号102Aは、第2出力変換部107において目標電動機回転数に変換され、回転数指令信号209Aとしてインバータ9Aに出力される。
 このことにより、電動機14の回転数は所望の回転数に制御される。この結果、ブームシリンダ3aのボトム側油室3a1から排出される戻り油の流量が調整され、操作装置4のレバー操作に応じたスムーズなシリンダ動作が実現できる。
 一方、車体制御コントローラ200からコントローラ100に入力される推定ポンプ流量信号120は、最少流量信号指令部114からの最少流量信号とともに、第1減算演算器103に入力され、第1減算演算器103は要求ポンプ流量信号103Aを算出する。
 第2関数発生器102で算出された最終目標ボトム流量信号102Aとボトム側油室3a1の圧力信号144とは第1乗算演算器104に入力され、第1乗算演算器104は回収動力信号104Aを算出する。また、第1減算演算器103で算出された要求ポンプ流量信号103Aと油圧ポンプ10の圧力信号140とは第2乗算演算器105に入力され、第2乗算演算器105は要求ポンプ動力信号105Aを算出する。回収動力信号104Aと要求ポンプ動力信号105Aとは最小値選択演算部108に入力する。
 最小値選択演算部108は、2入力の内の小さい方を目標アシスト動力信号108Aとして出力する。これは、回収動力信号104Aに対して、要求ポンプ動力信号105Aを超えない範囲で優先的に補助油圧ポンプ15に用いることができる動力(エネルギ量)を算出するものである。このことにより、電気エネルギに変換する損失を最小限に抑え、効率の良い回生動作が行われる。
 最小値選択演算部108で算出された目標アシスト動力信号108Aと油圧ポンプ10の吐出圧の圧力信号140とは第1除算演算器109に入力され、第1除算演算器109は目標アシスト流量信号109Aを算出する。
 第1除算演算器109で算出された目標アシスト流量信号109Aと第2出力変換部107で算出された回転数指令信号209Aとは第2除算演算器110に入力され、第2除算演算器110は、目標容量信号110Aを算出する。目標容量信号110Aは、第3出力変換部111において例えば傾転角に変換され、容量指令信号215Aとしてレギュレータ15Aに出力される。
 このことにより、補助油圧ポンプ15は、要求ポンプ動力信号105Aを超えない範囲で、なるべく多量の流量を油圧ポンプ10に供給する制御が為される。この結果効率よく回収動力を利用できる。
 第1減算演算器103で算出された要求ポンプ流量信号103Aと第1除算演算器109で算出された目標アシスト流量信号109Aと最少流量信号指令部114からの最少流量信号とは第2減算演算器112に入力され、第2減算演算器112は、目標ポンプ流量信号112Aを算出する。目標ポンプ流量信号112Aは、第4出力変換部113において例えば傾転角に変換され、容量指令信号210Aとしてレギュレータ10Aに出力される。
 このことにより、油圧ポンプ10は補助油圧ポンプ15から供給された流量分、容量を低減できるので、油圧ポンプ10の出力を低減できる。また、制御弁5に供給される圧油の流量は、補助油圧ポンプ15からの供給がない場合と、ある場合とで変わらないので、操作装置25の操作レバーに応じた良好な操作性が確保できる。
 上述した本発明の作業機械の圧油エネルギ回生装置の第1の実施の形態によれば、回生用の油圧モータ13に機械的に連結された油圧ポンプである補助油圧ポンプ15を回収したエネルギで直接駆動することができるので、エネルギを一旦蓄える際の損失が発生しない。この結果、エネルギ変換損失を減少できるので効率良くエネルギを利用することが可能になる。
 また、上述した本発明の作業機械の圧油エネルギ回生装置の第1の実施の形態によれば、補助油圧ポンプ15から供給された分だけ、油圧ポンプ10の容量を低減するように制御するので、制御弁5に供給される圧油の流量は変動しない。このことにより、良好な操作性が確保できる。
 以下、本発明の作業機械の圧油エネルギ回生装置の第2の実施の形態を図面を用いて説明する。図5は本発明の作業機械の圧油エネルギ回生装置の第2の実施の形態を示す駆動制御システムの概略図、図6は本発明の作業機械の圧油エネルギ回生装置の第2の実施の形態を構成するコントローラのブロック図である。図5及び図6において、図1乃至図4に示す符号と同符号のものは同一部分であるので、その詳細な説明は省略する。
 図5及び図6に示す本発明の作業機械の圧油エネルギ回生装置の第2の実施の形態は、大略第1の実施の形態と同様の油圧源と作業機等とで構成されるが、以下の構成が異なる。本実施の形態においては、電磁切換弁8を電磁比例弁60とし、切換弁7を制御弁61に変更した点と、油圧モータ13を可変容量型油圧モータ62に替え、モータ容量を可変するモータレギュレータ62Aを設けた点が異なる。モータレギュレータ62Aは、コントローラ100からの指令により可変容量型油圧モータ62の容量を変化させる。また、コントローラ100は、流量制限演算部130と動力制限演算部131と第3除算演算器133と第3関数発生器134と第5出力変換部135と一定回転数指令部136と第4除算演算器137と第6出力変換部138とを設けた点が第1の実施の形態と異なる。
 本実施の形態においては、ブームシリンダ3aのボトム側油室3a1からの戻り油を制御弁62で分流可能にすると共に、電動機14を一定の回転数で回し、可変容量型油圧モータ62の容量を制御することで回生流量を制御している。このことにより、電動機14の最大動力または油圧モータ62の最大回収流量を上回るエネルギ/流量がブームシリンダ3aから排出された場合であっても、機器の破損を防ぐことができると共に、ブームの操作性を確保できる。図5において、第1の実施の形態と異なる部位について説明する。
 ボトム側油路32には切換弁7に替えて、制御弁61が設けられている。制御弁61は、ブームシリンダ3aのボトム側油室3a1からの戻り油の内、制御弁5を介してタンク12に排出する流量を分流制御する。
 制御弁61は、一端側にばね61bを、他端側にパイロット受圧部61aを有している。制御弁61のスプールは、パイロット受圧部61aに入力されるパイロット圧油の圧力に応じて移動するので、圧油が通過する開口面積が制御され、パイロット圧油の圧力がある一定値以上のときには完全に閉止する。このことにより、ブームシリンダ3aのボトム側油室3a1からの戻り油の内、制御弁5を介してタンク12に排出する流量を制御できる。パイロット受圧部61aには、パイロット油圧ポンプ11から後述する電磁比例減圧弁60を介してパイロット圧油が供給されている。
 本実施の形態における電磁比例減圧弁60の入力ポートには、パイロット油圧ポンプ11から出力される圧油が入力されている。一方、電磁比例減圧弁60の操作部には、コントローラ100から出力される指令信号御が入力されている。この指令信号に応じて電磁比例減圧弁60のスプール位置が調整され、これにより、パイロット油圧ポンプ11から制御弁61のパイロット受圧部61aに供給されるパイロット圧油の圧力が適宜調整されている。
 コントローラ100は、コントローラ内部で演算した制御弁61に分流すべき目標排出流量になるように、電磁比例減圧弁60に制御指令を出力し、制御弁61の開口面積を調整する。
 次に、本実施の形態におけるコントローラ100の制御の概要について図6を用いて説明する。図6において、第1の実施の形態と異なる部位について説明する。 
 本実施の形態においては、第3関数発生器134からの目標面積信号134Aを第5出力変換部135に出力し、第5出力変換部135は、入力された目標開口面積信号135Aを電磁比例減圧弁60の制御指令に変換し電磁弁指令信号260Aとして電磁比例減圧弁60に出力する。このことにより、制御弁61の開度が制御され、ブームシリンダ3aのボトム側油室3a1からの戻り油の内、制御弁5を介してタンク12に排出する流量を制御できる。また、第4除算演算器137からの目標容量信号137Aを第6出力変換部138に出力し、第6出力変換部138は、入力された目標容量信号137Aを例えば傾転角に変換し容量指令信号262Aとしてレギュレータ62Aに出力する。このことにより、可変容量型油圧モータ62の容量が制御される。
 本実施の形態におけるコントローラ100は、第1の実施の形態における第1関数発生器101と第1出力変換部106とを省略し、残りの演算器に加えて、流量制限演算部130と動力制限演算部131と第3除算演算器133と第3関数発生器134と第5出力変換部135と一定回転数指令部136と第4除算演算器137と第6出力変換部138とを備えている。
 流量制限演算部130は、図6に示すように第2関数発生器102が算出した最終目標ボトム流量信号102Aを入力して、可変容量型油圧ポンプ62の最大回収流量の上限で制限した制限流量信号130Aを出力する。油圧モータは一般的に最大流量が決まっていることから、機器の仕様に合わせた特性が設定される。制限流量信号130Aは、第1乗算演算器104へ出力される。
 第1乗算演算器104は、流量制限演算部130からの制限流量信号130Aとボトム側油室3a1の圧力信号144とを入力し、その乗算値を回収動力信号104Aとして算出し、動力制限演算部131へ出力する。
 動力制限演算部131は、第1乗算演算器104が算出した回収動力信号104Aを入力して、電動機14の最大動力の上限で制限した制限回収動力信号131Aを出力する。電動機14に関しても、一般的に最大動力が決まっていることから、機器の仕様に合わせた特性が設定される。制限回収動力信号131Aは、第3除算演算器132と最小値選択演算部108とへ出力される。流量制限演算部130と動力制限演算部131とで、制限をかけることにより、機器の破損を防止できる。
 第3除算演算器132は、動力制限演算部131からの制限回収動力信号131Aとボトム側油室3a1の圧力信号144とを入力し、制限回収動力信号131Aを圧力信号144で除算した値を目標回収流量信号132Aとして算出し、第3減算演算器133と第4除算演算器137とへ出力する。
 第3減算演算器133は、第2関数発生器102からの最終目標ボトム流量信号102Aと第3除算演算器132からの目標回収流量信号132Aとを入力し、その偏差を制御弁61に分流すべき目標排出流量信号133Aとして算出し、第3関数発生器134へ出力する。
 第3関数発生器134は、圧力センサ44で検出したブームシリンダ3aのボトム側油室3a1の圧力を圧力信号144として一の入力端に入力し、第3減算演算部133からの制御弁61に分流すべき目標排出流量信号133Aを他の入力端に入力する。これらの入力信号からオリフィスの数式に基づいて制御弁61の目標開口面積を算出し、目標開口面積信号134Aを第5出力変換部135へ出力する。
 ここで、制御弁61の目標開口面積Aは以下の式(1)と(2)で算出される。目標排出流量をQt、流量係数をC、ブームシリンダ3aのボトム側油室3a1の圧力をPb、制御弁61の開口面積をA、タンク圧を0MPaとすると、 
 Qt=CA√Pb・・・・・(1)
となり、Aについて解くと 
 A=Q/(C√P)・・・(2)
となる。よって、式(2)より制御弁61の開口面積を算出できる。
 第5出力変換部135は、入力された目標開口面積信号134Aを電磁比例減圧弁60の制御指令に変換し電磁弁指令信号260Aとして電磁比例減圧弁60に出力する。このことにより、制御弁61の開度が制御され、制御弁61に分流すべき流量が制御される。
 一定回転数指令部136は、電動機14の回転数を最大回転数の一定回転数で回すために、電動機の回転数指令信号を第2出力変換部107に出力する。第2出力変換部107は、入力された回転数指令信号を目標電動機回転数に変換し回転数指令信号209Aとしてインバータ9Aに出力する。
 一定回転数指令部136は、電動機の回転数指令信号を第2除算演算器110の他端と第4除算演算器137の他端にも出力する。
 第2除算演算器110は、第1除算演算器109からの目標アシスト流量信号109Aと一定回転数指令部136からの電動機の回転数指令信号とを入力し、目標アシスト流量信号109Aを電動機の回転数指令信号で除算した値を補助油圧ポンプ15の目標容量信号110Aとして算出し、第3出力変換部111へ出力する。
 第4除算演算器137は、第3除算演算器132からの目標回収流量信号132Aと一定回転数指令部136からの電動機の回転数指令信号とを入力し、目標回収流量信号132Aを電動機の回転数指令信号で除算した値を可変容量型油圧モータ62の目標容量信号137Aとして算出し、第6出力変換部138へ出力する。
 第6出力変換部138は、入力された目標容量信号137Aを例えば傾転角に変換し容量指令信号262Aとしてレギュレータ62Aに出力する。このことにより、可変容量型油圧モータ62の容量が制御される。
 次に、上述した本発明の作業機械の圧油エネルギ回生装置の第2の実施の形態の制御ロジックによる動作を図5及び図6を用いて説明する。 
 図6に示す第2関数発生器102から出力された最終目標ボトム流量信号102Aは、流量制限演算部130によって可変容量型油圧モータ62の最大流量の制限流量信号130Aに制限される。このことにより、可変容量型油圧モータ62に仕様以上の流量が流れないように制限され、可変容量型油圧モータ62の破損を防ぐことができる。
 また、この制限された最終目標ボトム流量信号102Aは第1乗算演算器104にボトム側油室3a1の圧力信号144と共に入力され、回収動力信号104Aが算出される。
 算出された回収動力信号104Aは、動力制限演算部131によって電動機14の最大動力の上限で制限した制限回収動力信号131Aに制限される。このことにより、過大なエネルギが電動機軸に入力されることを防ぎ、機器の破損、または過速度を回避することができる。
 動力制限演算部131から出力された制限回収動力信号131Aは、第3除算演算器132にボトム側油室3a1の圧力信号144と共に入力され、目標回収流量信号132Aが算出される。
 さらに、目標回収流量132Aは、最終目標ボトム流量信号102Aと共に第3減算演算器133に入力され、オペレータの望む所望のブームシリンダ速度を実現するために制御弁61に分流すべき目標排出流量信号133Aを算出する。
 目標排出流量信号133Aは、第3関数発生器134にボトム側油室3a1の圧力信号144と共に入力され制御弁61の目標開口面積が算出される。この目標開口面積の信号は、第5出力変換部135を介して電磁弁指令信号260Aとして電磁弁60に出力される。
 このことにより、図5に示すブームシリンダ3aからの排出油は制御弁61にも分流され、可変容量型油圧モータ62で回収できない流量を流し、オペレータの望むブームシリンダ速度を確保することが可能となる。
 図6にもどり、第3除算演算器132から出力された目標回収流量信号132Aは、一定回転数指令部136からの電動機の回転数指令信号と共に第4除算演算器137に入力され、可変容量型油圧モータ62の目標容量が算出される。この目標容量の信号は、第6出力変換部138を介して容量指令信号262Aとしてレギュレータ62Aに出力する。
 このことにより、可変容量型油圧モータ62には、回転軸に連結された機器の仕様によって、流量制限及び動力制限がなされた流量の作動油が流入する。この結果、過大な動力が入力されることがないので、機器の破損、または過速度の発生を防ぐことができる。
 なお、本実施の形態においては、回収動力の流量制限と、動力の制限とを同時に行う場合を例に説明したが、これに限る必要はなく、機器の仕様に合わせて、適宜選択して設計することが望ましい。例えば、電動機のトルクが十分であり、動力制限を行う必要がなければ、流量制限のみを行う制御ロジックを作成しても良い。
 上述した本発明の作業機械の圧油エネルギ回生装置の第2の実施の形態によれば、第1の実施の形態と同様の効果を得ることができる。
 また、上述した本発明の作業機械の圧油エネルギ回生装置の第2の実施の形態によれば、回生用の可変容量型油圧モータ62には、機器の仕様に応じた流量制限及び動力制限がなされた流量の作動油が流入するので、過大な動力が入力されることがない。この結果、機器の破損、または過速度の発生を防ぐことができ、信頼性が向上する。
 以下、本発明の作業機械の圧油エネルギ回生装置の第3の実施の形態を図面を用いて説明する。図7は本発明の作業機械の圧油エネルギ回生装置の第3の実施の形態を構成するコントローラのブロック図、図8は本発明の作業機械の圧油エネルギ回生装置の第3の実施の形態を構成するコントローラの可変動力制限演算部の内容を説明する特性図である。図7及び図8において、図1乃至図6に示す符号と同符号のものは同一部分であるので、その詳細な説明は省略する。
 図7及び図8に示す本発明の作業機械の圧油エネルギ回生装置の第3の実施の形態は、第2の実施の形態と同様の油圧源と作業機等とで構成されるが、制御ロジックの構成が異なる。本実施の形態においては、第2の実施の形態における動力制限演算部131に替えて可変動力制限演算部140を設けた点が第2の実施の形態と異なる。第2の実施の形態においては、電動機14の最大動力だけで、可変容量型油圧モータ62への作動油の流入流量等を制限していたが、本実施の形態においては、電動機14の最大動力と補助油圧ポンプ15の要求ポンプ動力の合計で制限をかけている。このことにより、動力制限の上限が上がるので、回収するエネルギをさらに増加でき、燃費低減効果が向上する。
 図7に示すように、可変動力制限演算部140は、第1乗算演算器104が算出した回収動力信号104Aと、第2乗算演算器105が算出した要求ポンプ動力信号105Aとを入力して、電動機14の最大動力の上限と補助油圧ポンプ15の要求動力とに応じた制限付き回収動力信号140Aを出力する。制限付き回収動力信号140Aは、第3除算演算器132と最小値選択演算部108とへ出力される。
 可変動力制限演算部140の演算の詳細を図8を用いて説明する。図8において、横軸は第1乗算演算器104が算出した回収動力信号104Aである目標回収動力を示し、縦軸は可変動力制限演算部140が算出した制限付き回収動力を示している。図8において、実線の特性線xは、横軸に平行な上限制限線を電動機14の最大動力で規定している。このとき、第2乗算演算器105から入力される要求ポンプ動力信号105Aは0となる。
 可変動力制限演算部140に入力される要求ポンプ動力信号105Aが0から増加した場合、特性線xの上限制限線は、その増加分だけy方向に上方に移動する。換言すると、可変動力制限演算部140は、要求ポンプ動力の入力分だけ、制限付き回収動力の上限を増加させる。
 このことにより、目標回収動力の上限が上がり、回収動力が増加し燃費低減効果が上がると共に、電動機14の動力を超えたエネルギが可変容量型油圧モータ62に入力されても、補助油圧ポンプ15で使われることにより、電動機14には、仕様を超える動力が入ることを防ぐことができる。
 上述した本発明の作業機械の圧油エネルギ回生装置の第3の実施の形態によれば、第1の実施の形態と同様の効果を得ることができる。
 また、上述した本発明の作業機械の圧油エネルギ回生装置の第3の実施の形態によれば、目標回収動力の上限が上がり、回収動力が増加し燃費低減効果が上がる。この結果、機器の破損、または過速度の発生を防ぐことができ、信頼性が向上する。
 以下、本発明の作業機械の圧油エネルギ回生装置の第4の実施の形態を図面を用いて説明する。図9は本発明の作業機械の圧油エネルギ回生装置の第4の実施の形態を示す駆動制御システムの概略図、図10は本発明の作業機械の圧油エネルギ回生装置の第4の実施の形態を構成するコントローラのブロック図である。図9及び図10において、図1乃至図8に示す符号と同符号のものは同一部分であるので、その詳細な説明は省略する。
 図9及び図10に示す本発明の作業機械の圧油エネルギ回生装置の第4の実施の形態は、大略第1の実施の形態と同様の油圧源と作業機等とで構成されるが、以下の構成が異なる。本実施の形態においては、油圧ポンプ10の油路30へ供給する補助油圧ポンプ15の圧油の流量制御を、補助油圧ポンプ15の容量制御ではなく、補助油路31に連結された排出回路としての排出油路34に設けたブリード弁16の開口面積を調整することで行う点が異なる。したがって、補助油圧ポンプ15を固定容量型油圧ポンプで構成する点が異なる。また、コントローラ100は、第4関数発生器122と第4減算演算器123と開口面積演算部124と第7出力変換部125とを設けた点が第1の実施の形態と異なる。
 図9において、第1の実施の形態と異なる部位について説明する。 
 補助油路31における補助油圧ポンプ15とチェック弁6との間の部位にタンク12と連通する排出油路34が連結されている。排出油路34には、補助油路31からタンク12に排出される油の流量を制御するブリード弁16が設けられている。
 ブリード弁16は、一端側にばね16bを、他端側にパイロット受圧部16aを有している。ブリード弁16のスプールは、パイロット受圧部16aに入力されるパイロット圧油の圧力に応じて移動するので、圧油が通過する開口面積が制御され、パイロット圧油の圧力がある一定値以上のときには完全に閉止する。このことにより、補助油路31からタンク12に排出される排出油路34を流れる油の流量を制御できる。パイロット受圧部16aには、パイロット油圧ポンプ11から後述する電磁比例減圧弁17を介してパイロット圧油が供給されている。
 本実施の形態における電磁比例減圧弁17の入力ポートには、パイロット油圧ポンプ11から出力される圧油が入力されている。一方、電磁比例減圧弁17の操作部には、コントローラ100から出力される指令信号が入力されている。この指令信号に応じて電磁比例減圧弁17のスプール位置が調整され、これにより、パイロット油圧ポンプ11からブリード弁16のパイロット受圧部16aに供給されるパイロット圧油の圧力が適宜調整されている。
 コントローラ100は、コントローラ内部で演算した目標アシスト流量になるように、補助油圧ポンプ15の吐出流量と目標アシスト流量の差をブリード弁16を介してタンク12へ流すように、電磁比例減圧弁17に制御指令を出力し、ブリード弁16の開口面積を調整する。
 次に、上述した本発明の作業機械の圧油エネルギ回生装置の第4の実施の形態の動作の概要を説明する。操作装置4の操作レバーをブーム下げ方向で規定値以下に操作した場合の動作は、第1の実施の形態と同様なので省略する。
 オペレータが操作装置4の操作レバーをブーム下げ方向に、規定値以上に操作すると、コントローラ100は、電磁切換弁8へ切換指令を、インバータ9Aへ回転数指令を、ブリード弁16を制御する電磁比例弁17へ制御指令を、油圧ポンプ10のレギュレータ10Aへ容量指令をそれぞれ出力する。
 この結果、切換弁7が遮断位置に切換り、ブームシリンダ3aのボトム側油室3a1からの戻り油は、制御弁5への油路が遮断されるため、回生回路33に流れ、油圧モータ13を駆動してその後タンク12に排出される。
 油圧モータ13の駆動力により補助油圧ポンプ15は回転する。補助油圧ポンプ15の吐出した圧油は、補助油路31とチェック弁6とを介して油圧ポンプ10の吐出した圧油と合流し、油圧ポンプ10の動力をアシストするように動作する。
 コントローラ100は、電磁比例減圧弁17に制御指令を出力し、ブリード弁16の開口面積を制御することで油圧ポンプ10と合流する補助油圧ポンプ15からの圧油流量を調整する。このことにより、油圧ポンプ10への合流流量が所望の流量に制御される。また、コントローラ100は、補助油圧ポンプ15から供給された圧油の流量分、油圧ポンプ10の容量を低減するようにレギュレータ10Aへ容量指令を出力する。
 油圧モータ13に入力された油圧エネルギの内、補助油圧ポンプ15で消費しきれなかった余剰エネルギは、電動機14を駆動し発電することで費やされる。電動機14の発電した電気エネルギは蓄電装置9Cに蓄えられる。
 本実施の形態においては、ブームシリンダ3aから排出された圧油のエネルギは、油圧モータ13によって回収し、補助油圧ポンプ15の駆動力として油圧ポンプ10の動力をアシストする。また、余分な動力は、電動機14を介して蓄電装置9Cに蓄える。このことにより、エネルギの有効用と燃費の低減とを図っている。また、合流流量の調整をブリード弁16の開口面積の調整で行うことから、補助油圧ポンプ15は固定容量型油圧ポンプで良い。この結果、動力回生装置70の構成が単純になる。
 次に、本実施の形態におけるコントローラ100の制御の概要について図10を用いて説明する。図10において、第1の実施の形態と異なる部位について説明する。 
 第1の実施の形態においては、目標アシスト流量信号109Aを最終目標ボトム流量信号102Aで除算して算出した目標容量信号110Aを第3出力変換部111からレギュレータ15Aに出力していたが、本実施の形態においては、開口面積演算部124からの目標開口面積信号124Aを第7出力変換部125に出力し、第7出力変換部125は、入力された目標開口面積信号124Aを電磁比例減圧弁17の制御指令に変換し電磁弁指令217として電磁比例減圧弁17に出力する。このことにより、ブリード弁16の開度が制御され、タンク12側に排出される補助油圧ポンプ15の流量が制御される。この結果、補助油圧ポンプ15から吐出される圧油の油圧ポンプ10への合流流量が所望の流量に制御される。
 本実施の形態におけるコントローラ100は、第1の実施の形態における第2除算演算器110と第3出力変換部111とを省略し、残りの演算器に加えて、第4関数発生器122と第4減算演算器123と開口面積演算部124と第7出力変換部125とを備えている。
 第4関数発生器122は、図10に示すように第2関数発生器102が算出した最終目標ボトム流量信号102Aを入力し、最終ボトム流量信号102Aを基に補助油圧ポンプ15の吐出流量信号122Aを算出する。吐出流量信号122Aは、第4減算演算器123へ出力される。
 第4減算演算器123は、第4関数発生器122からの補助油圧ポンプ15の吐出流量信号122Aと、第1除算演算器109からの目標アシスト流量信号109Aとを入力し、その偏差を目標ブリード流量信号123Aとして算出し、開口面積演算部123の一の入力端へ出力する。
 開口面積演算部124は、第4減算演算器123からの目標ブリード流量信号123Aを一の入力端に入力し、圧力センサ40が検出した油圧ポンプ10の吐出圧を圧力信号140として他の入力端に入力する。これらの入力信号からオリフィスの数式に基づいてブリード弁16の目標開口面積を算出し、目標開口面積信号124Aを第7出力変換部125へ出力する。
 ここで、ブリード弁16の目標開口面積Aは以下の式(3)で算出される。 A=Q/C√P・・・・(3)
ここで、Qは目標ブリード流量、Pは油圧ポンプ圧力、Cは流量係数である。
 第7出力変換部125は、入力された目標開口面積信号124Aを電磁比例減圧弁17の制御指令に変換し電磁弁指令217として電磁比例減圧弁17に出力する。このことにより、ブリード弁16の開度が制御され、タンク12側に排出される補助油圧ポンプ15の流量が制御される。
 次に、上述した本発明の作業機械の圧油エネルギ回生装置の第4の実施の形態の制御ロジックによる動作を図9及び図10を用いて説明する。第1の実施の形態に加えられた演算器に関する部分について説明する。
 コントローラ100において、第2関数発生器102で算出された最終目標ボトム流量信号102Aは、第4関数発生器122に入力され、第4関数発生器122は、補助油圧ポンプ15の吐出流量信号122Aを算出する。
 第4関数発生器122で算出された吐出流量信号122Aと第1除算演算器109で算出された目標アシスト流量信号109Aとは第4減算演算器123に入力され、第4減算演算器123は、目標ブリード流量信号123Aを算出する。目標ブリード流量信号123Aは、開口面積演算部124に入力される。
 開口面積演算部124では、入力された目標ブリード流量信号123Aと油圧ポンプ10の圧力信号140とからブリード弁16の開口面積信号124Aを算出し、第7出力変換部125へ出力する。
 第7出力変換部125は、ブリード弁16が算出した開口面積となるように、電磁比例減圧弁17へ制御指令を出力する。このことにより、補助油圧ポンプ15から吐出された圧油の余剰流量はブリード弁16を介してタンク12に排出される。この結果、油圧ポンプ10の圧油と補助油圧ポンプ15の圧油の合流流量が所望の流量に調整される。
 上述した本発明の作業機械の圧油エネルギ回生装置の第4の実施の形態によれば、第1の実施の形態と同様の効果を得ることができる。
 また、上述した本発明の作業機械の圧油エネルギ回生装置の第4の実施の形態によれば、油圧ポンプ10の動力をアシストする補助油圧ポンプ15からの圧油の流量調整をブリード弁16の開口面積の調整で行う。このことにより、動力回生装置70の構成が単純になり、生産コストの低減と保守性の向上が図れる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
1     油圧ショベル
1a    ブーム
3a    ブームシリンダ
3a1   ボトム側油室
3a2   ロッド側油室
4     操作装置
4A    パイロット弁
5     制御弁
6     チェック弁
7     切換弁
8     電磁切換弁
9A    インバータ
9B    チョッパ
9C    蓄電装置
10    油圧ポンプ
10A   レギュレータ
11    パイロット油圧ポンプ
12    タンク
13    油圧モータ
14    電動機
15    補助油圧ポンプ
15A   レギュレータ
16    ブリード弁
17    電磁比例減圧弁
24    操作装置
24A   パイロット弁
25    チョッパ
30    油路
31    補助油路
32    ボトム側油路
33    回生回路
34    排出油路
40    圧力センサ(油圧ポンプ吐出圧検出手段)
41    圧力センサ(ブーム下げ操作量検出手段)
42    圧力センサ
43    圧力センサ
44    圧力センサ(ボトム側油室圧力検出手段)
50    エンジン
60    電磁比例減圧弁
61    制御弁
62    可変容量型油圧モータ
62A   レギュレータ
70    動力回生装置
100   コントローラ(制御装置)
200   車体制御コントローラ

Claims (9)

  1.  第1油圧アクチュエータと、前記第1油圧アクチュエータから排出された戻り油により駆動する回生用油圧モータと、前記回生用油圧モータと機械的に連結された第1油圧ポンプと、前記第1油圧アクチュエータ及び/または第2油圧アクチュエータを駆動する圧油を吐出する第2油圧ポンプと、前記第1油圧ポンプが吐出した圧油を前記第2油圧ポンプが吐出した圧油に合流させる合流管路と、前記合流管路を流通する前記第1油圧ポンプからの圧油の流量を調整可能とする第1調整器と、前記第2油圧ポンプの吐出流量を調整可能とする第2調整器と、前記第2油圧ポンプの目標容量指令が入力され、前記目標容量指令に応じて前記第1油圧ポンプと前記第2油圧ポンプとから吐出される圧油の流量をそれぞれ算出し、算出した流量に応じて前記第1調整器と前記第2調整器とに制御指令を出力する制御装置とを備えた作業機械の圧油エネルギ回生装置において、
     前記制御装置は、入力された前記第2油圧ポンプの目標容量指令に応じて要求ポンプ流量を算出し、前記合流管路を流通する前記第1油圧ポンプからの圧油の流量が前記要求ポンプ流量以下になるように前記第1調整器へ制御指令を出力する第1演算部と、
     前記要求ポンプ流量から前記合流管路を流通する前記第1油圧ポンプからの圧油の流量を減算して算出し、この算出した目標ポンプ流量になるように前記第2調整器へ制御指令を出力する第2演算部とを備えた
     ことを特徴とする作業機械の圧油エネルギ回生装置。
  2.  請求項1に記載の作業機械の圧油エネルギ回生装置において、
     前記第1油圧ポンプ及び前記回生用油圧モータと機械的に連結された電動機と、前記電動機の回転数を調整可能とする第3調整器と、
     前記第1油圧アクチュエータを操作するための操作装置と、
     前記操作装置の操作量を検出する操作量検出器とを更に備え、
     前記制御装置は、前記操作量検出器が検出した前記操作装置の操作量を取り込み、前記操作量に応じて前記第1油圧アクチュエータから排出された戻り油により前記回生用油圧モータに入力される回収動力を算出し、前記合流管路を流通する前記第1油圧ポンプからの圧油の流量を供給するのに必要な要求アシスト動力を算出し、前記回収動力と前記要求アシスト動力を超えないように目標アシスト動力を設定し、前記目標アシスト動力となるように前記第2調整器と前記第3調整器へ制御指令を出力する第3演算部を備えた
     ことを特徴とする作業機械の圧油エネルギ回生装置。
  3.  請求項1に記載の作業機械の圧油エネルギ回生装置において、
     前記第1油圧アクチュエータと前記回生用油圧モータとを接続する管路に設けた分岐部から分岐して前記第1油圧アクチュエータからの戻り油をタンクに排出するための排出回路と、
     前記排出回路に設けられ、前記排出回路の連通/遮断を切替える切換弁と、
     前記第1油圧アクチュエータを操作するための操作装置と、
     前記操作装置の操作量を検出する操作量検出器とを更に備え、
     前記制御装置は、前記操作量検出器が検出した前記操作装置の操作量を取り込み、前記操作量に応じて前記切換弁に遮断指令を出力する第4演算部を備えた
     ことを特徴とする作業機械の圧油エネルギ回生装置。
  4.  請求項2に記載の作業機械の圧油エネルギ回生装置において、
     前記第1油圧アクチュエータと前記回生用油圧モータとを接続する管路に設けた分岐部から分岐して前記第1油圧アクチュエータからの戻り油をタンクに排出するための排出回路と、
     前記排出回路に設けられ、前記排出回路の流量を調整する流量調整手段とを更に備え、
     前記制御装置は、前記回収動力が前記電動機の最大動力を上回らないように、前記第1油圧アクチュエータから排出される動力を前記排出回路に分配するように前記流量調整手段に制御指令を出力する第5演算部を備えた
     ことを特徴とする作業機械の圧油エネルギ回生装置。
  5.  請求項2に記載の作業機械の圧油エネルギ回生装置において、
     前記第1油圧アクチュエータと前記回生用油圧モータとを接続する管路に設けた分岐部から分岐して前記第1油圧アクチュエータからの戻り油をタンクに排出するための排出回路と、
     前記排出回路に設けられ、前記排出回路の流量を調整する流量調整手段とを更に備え、
     前記制御装置は、前記回収動力が前記電動機の最大動力と前記要求アシスト動力との合計値を上回らないように、前記第1油圧アクチュエータから排出される動力を前記排出回路に分配するように前記流量調整手段に制御指令を出力する第6演算部を備えた
     ことを特徴とする作業機械の圧油エネルギ回生装置。
  6.  請求項1に記載の作業機械の圧油エネルギ回生装置において、
     前記第1油圧アクチュエータと前記回生用油圧モータとを接続する管路に設けた分岐部と、
     前記排出回路に設けられ、前記排出回路の流量を調整する流量調整手段とを更に備え、
     前記制御装置は、前記回生用油圧モータに入力可能な最大流量を上回らないように、前記第1油圧アクチュエータから排出される動力を前記排出回路に分流するように前記流量調整手段に制御指令を出力する第7演算部を備えた
     ことを特徴とする作業機械の圧油エネルギ回生装置。
  7.  請求項1に記載の作業機械の圧油エネルギ回生装置において、
     前記合流管路から分岐しタンクと連通する排出管路と、
     前記排出管路に設けられ前記第1油圧ポンプからの圧油の一部又は全部をタンクにブリードオフ可能とするブリード弁とを備え、
     前記第1調整器は、前記ブリード弁の開口面積を調整可能とする電磁比例弁である
     ことを特徴とする作業機械の圧油エネルギ回生装置。
  8.  請求項1に記載の作業機械の圧油エネルギ回生装置において、
     前記第1油圧ポンプは可変容量型油圧ポンプであって、
     前記制御装置は、前記可変容量型油圧ポンプの容量を制御可能に構成した
     ことを特徴とする作業機械の圧油エネルギ回生装置。
  9.  請求項1に記載の作業機械の圧油エネルギ回生装置において、
     前記第2油圧ポンプは可変容量型油圧ポンプであって、
     前記制御装置は、前記可変容量型油圧ポンプの容量を制御可能に構成した
     ことを特徴とする作業機械の圧油エネルギ回生装置。
PCT/JP2014/063121 2014-05-16 2014-05-16 作業機械の圧油エネルギ回生装置 WO2015173963A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/120,545 US10280593B2 (en) 2014-05-16 2014-05-16 Hydraulic fluid energy regeneration device for work machine
CN201480075231.7A CN106030123B (zh) 2014-05-16 2014-05-16 作业机械的液压油能量再生装置
KR1020167021472A KR101815411B1 (ko) 2014-05-16 2014-05-16 작업 기계의 압유 에너지 회생 장치
JP2016519078A JP6152473B2 (ja) 2014-05-16 2014-05-16 作業機械の圧油エネルギ回生装置
EP14892002.8A EP3147519B1 (en) 2014-05-16 2014-05-16 Hydraulic energy regeneration apparatus for machinery
PCT/JP2014/063121 WO2015173963A1 (ja) 2014-05-16 2014-05-16 作業機械の圧油エネルギ回生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/063121 WO2015173963A1 (ja) 2014-05-16 2014-05-16 作業機械の圧油エネルギ回生装置

Publications (1)

Publication Number Publication Date
WO2015173963A1 true WO2015173963A1 (ja) 2015-11-19

Family

ID=54479529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063121 WO2015173963A1 (ja) 2014-05-16 2014-05-16 作業機械の圧油エネルギ回生装置

Country Status (6)

Country Link
US (1) US10280593B2 (ja)
EP (1) EP3147519B1 (ja)
JP (1) JP6152473B2 (ja)
KR (1) KR101815411B1 (ja)
CN (1) CN106030123B (ja)
WO (1) WO2015173963A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019171547A1 (ja) 2018-03-08 2019-09-12 日立建機株式会社 作業機械

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5687150B2 (ja) * 2011-07-25 2015-03-18 日立建機株式会社 建設機械
BR112017010895A2 (pt) * 2014-11-24 2017-12-26 Xuzhou Heavy Machinery Co Ltd método e sistema para recuperar e utilizar energia de operação de guindaste, e guindaste
CN107208674B (zh) * 2015-09-29 2018-10-30 日立建机株式会社 作业机械的液压油能量回收再生装置
JP2018168977A (ja) * 2017-03-30 2018-11-01 川崎重工業株式会社 油圧システム
JP6845736B2 (ja) * 2017-04-28 2021-03-24 川崎重工業株式会社 液圧駆動システム
US11566839B2 (en) * 2017-08-31 2023-01-31 Energy Internet Corporation Controlled liquefaction and energy management
JP6551490B2 (ja) * 2017-11-02 2019-07-31 ダイキン工業株式会社 油圧装置
CN111315936B (zh) 2017-11-08 2022-10-11 沃尔沃建筑设备公司 用于建筑设备的能量回收系统和方法
EP3724409A4 (en) 2017-12-14 2022-01-12 Volvo Construction Equipment AB HYDRAULIC MACHINE
CN116380458A (zh) * 2018-09-28 2023-07-04 国际计测器株式会社 测试装置
KR102517099B1 (ko) * 2019-03-27 2023-04-04 히다찌 겐끼 가부시키가이샤 작업 기계
DE102019205151A1 (de) * 2019-04-10 2020-10-15 Deere & Company Hydrauliksystem und Fahrzeug
JP7246297B2 (ja) * 2019-12-16 2023-03-27 日立建機株式会社 建設機械
EP3839268A1 (en) * 2019-12-20 2021-06-23 Dana Motion Systems Italia S.R.L. Hydraulic system with an energy recovery circuit
JP7269436B2 (ja) * 2020-03-30 2023-05-08 日立建機株式会社 作業機械
DE102020206197A1 (de) * 2020-05-18 2021-11-18 Robert Bosch Gesellschaft mit beschränkter Haftung Hydrostatischer Antrieb
CN112281975A (zh) * 2020-10-20 2021-01-29 徐州徐工挖掘机械有限公司 一种挖掘机双泵合流控制方法
CN113757193A (zh) * 2021-09-02 2021-12-07 浙江大学 一种电静液储能单元
CN114506799B (zh) * 2022-04-20 2022-07-08 杭叉集团股份有限公司 一种叉车门架联合动作控制方法及控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004116656A (ja) * 2002-09-26 2004-04-15 Komatsu Ltd 圧油エネルギー回収・回生装置
JP2004116603A (ja) * 2002-09-25 2004-04-15 Komatsu Ltd 圧油回収装置
JP2011202457A (ja) * 2010-03-26 2011-10-13 Kyb Co Ltd ハイブリッド建設機械の制御装置
JP2014025498A (ja) * 2012-07-25 2014-02-06 Kayaba Ind Co Ltd 建設機械の制御装置
JP2014037861A (ja) * 2012-08-15 2014-02-27 Kayaba Ind Co Ltd ハイブリッド建設機械の制御装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000136806A (ja) 1998-11-04 2000-05-16 Komatsu Ltd 圧油のエネルギー回収装置および圧油のエネルギー回収・再生装置
JP2006336307A (ja) * 2005-06-02 2006-12-14 Shin Caterpillar Mitsubishi Ltd 作業機械
JP2008014468A (ja) * 2006-07-10 2008-01-24 Shin Caterpillar Mitsubishi Ltd 作業機械における油圧制御システム
JP5078692B2 (ja) * 2008-03-26 2012-11-21 カヤバ工業株式会社 ハイブリッド建設機械の制御装置
JP5401992B2 (ja) * 2009-01-06 2014-01-29 コベルコ建機株式会社 ハイブリッド作業機械の動力源装置
JP5378061B2 (ja) * 2009-05-08 2013-12-25 カヤバ工業株式会社 ハイブリッド建設機械の制御装置
JP5265595B2 (ja) * 2010-02-12 2013-08-14 カヤバ工業株式会社 ハイブリッド建設機械の制御装置
US8655558B2 (en) 2010-02-12 2014-02-18 Kayaba Industry Co., Ltd. Control system for hybrid construction machine
CN102182730A (zh) * 2011-05-05 2011-09-14 四川省成都普什机电技术研究有限公司 带势能回收装置的挖掘机动臂流量再生系统
JP5785846B2 (ja) * 2011-10-17 2015-09-30 株式会社神戸製鋼所 油圧制御装置及びこれを備えた作業機械
JP6052980B2 (ja) * 2012-11-07 2016-12-27 Kyb株式会社 ハイブリッド建設機械の制御システム
JP6429856B2 (ja) * 2013-03-15 2018-11-28 イートン コーポレーションEaton Corporation 複数のポンプを備えた油圧トランスフォーマシステムにおいて流量分担するための方法とシステム
CN103452149B (zh) * 2013-08-26 2015-07-15 中外合资沃得重工(中国)有限公司 挖掘机动臂势能回收液压控制装置
CN203498888U (zh) * 2013-08-26 2014-03-26 中外合资沃得重工(中国)有限公司 挖掘机动臂势能回收液压控制装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004116603A (ja) * 2002-09-25 2004-04-15 Komatsu Ltd 圧油回収装置
JP2004116656A (ja) * 2002-09-26 2004-04-15 Komatsu Ltd 圧油エネルギー回収・回生装置
JP2011202457A (ja) * 2010-03-26 2011-10-13 Kyb Co Ltd ハイブリッド建設機械の制御装置
JP2014025498A (ja) * 2012-07-25 2014-02-06 Kayaba Ind Co Ltd 建設機械の制御装置
JP2014037861A (ja) * 2012-08-15 2014-02-27 Kayaba Ind Co Ltd ハイブリッド建設機械の制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019171547A1 (ja) 2018-03-08 2019-09-12 日立建機株式会社 作業機械
KR20190112782A (ko) 2018-03-08 2019-10-07 히다치 겡키 가부시키 가이샤 작업 기계
US10760246B2 (en) 2018-03-08 2020-09-01 Hitachi Construction Machinery Co., Ltd. Work machine

Also Published As

Publication number Publication date
KR101815411B1 (ko) 2018-01-04
CN106030123A (zh) 2016-10-12
EP3147519A1 (en) 2017-03-29
EP3147519B1 (en) 2019-03-06
JP6152473B2 (ja) 2017-06-21
KR20160105892A (ko) 2016-09-07
EP3147519A4 (en) 2018-01-10
US10280593B2 (en) 2019-05-07
CN106030123B (zh) 2018-03-13
JPWO2015173963A1 (ja) 2017-04-20
US20170009428A1 (en) 2017-01-12

Similar Documents

Publication Publication Date Title
WO2015173963A1 (ja) 作業機械の圧油エネルギ回生装置
JP6383879B2 (ja) 作業機械の圧油エネルギ回生装置
KR101942603B1 (ko) 건설 기계
KR102249953B1 (ko) 작업 기계
EP2524995B1 (en) Drive controller of operating machine
JP6291394B2 (ja) 作業機械の油圧駆動システム
US8659177B2 (en) Motive power regeneration system for working machine
WO2013121922A1 (ja) 建設機械
JP6072310B2 (ja) 作業機械の圧油エネルギ回収装置
WO2013099710A1 (ja) 作業機械の動力回生装置および作業機械
KR20100137421A (ko) 하이브리드 건설기계의 제어장치
US20180291935A1 (en) Hydraulic drive system of construction machine
JPWO2017099063A1 (ja) 作業機械
JP5731331B2 (ja) 作業機械の動力回生装置
JP2013160251A (ja) 作業機械の動力回生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892002

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016519078

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167021472

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15120545

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014892002

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014892002

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE