WO2015172726A1 - 图像显示方法 - Google Patents

图像显示方法 Download PDF

Info

Publication number
WO2015172726A1
WO2015172726A1 PCT/CN2015/078950 CN2015078950W WO2015172726A1 WO 2015172726 A1 WO2015172726 A1 WO 2015172726A1 CN 2015078950 W CN2015078950 W CN 2015078950W WO 2015172726 A1 WO2015172726 A1 WO 2015172726A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
image
dimensional
projection
dimension
Prior art date
Application number
PCT/CN2015/078950
Other languages
English (en)
French (fr)
Inventor
张丽
陈志强
黄清萍
孙运达
唐智
沈乐
唐虎
任乾鲁
金鑫
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Priority to RU2015127778/28A priority Critical patent/RU2599596C1/ru
Publication of WO2015172726A1 publication Critical patent/WO2015172726A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/466Displaying means of special interest adapted to display 3D data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/003Navigation within 3D models or images
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5223Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data generating planar views from image data, e.g. extracting a coronal view from a 3D image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • G06T2207/10124Digitally reconstructed radiograph [DRR]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/436Limited angle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2219/00Indexing scheme for manipulating 3D models or images for computer graphics
    • G06T2219/016Exploded view
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2219/00Indexing scheme for manipulating 3D models or images for computer graphics
    • G06T2219/028Multiple view windows (top-side-front-sagittal-orthogonal)
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2219/00Indexing scheme for manipulating 3D models or images for computer graphics
    • G06T2219/20Indexing scheme for editing of 3D models
    • G06T2219/2004Aligning objects, relative positioning of parts

Definitions

  • the present application relates to computed tomography (CT) technology, and in particular to an image display method in a CT system.
  • CT computed tomography
  • Some existing CT systems have ready-made three-dimensional data, but there are no DR images.
  • the judges suddenly see the three-dimensional image, they feel uncomfortable.
  • the contraband such as a pistol
  • the contraband will be a small agglomerate in the three-dimensional image, and the shape is unclear.
  • the judge suddenly saw the three-dimensional image it was not clear how the pistol suddenly became a small agglomeration.
  • the judges observe the three-dimensional image alone, and it is still unclear what the items carried by the passengers are. Therefore, even if a three-dimensional image already exists, the discriminator still wants to be able to compare the three-dimensional image with the DR image that was previously familiar, compare the two images, and utilize the rich judgment experience of the existing DR image.
  • the discriminator wishes to arrange such that a display is placed on the left side, a DR image is displayed, and a display is placed on the right side to display a CT image.
  • the user selects a specific location, requires DR-CT registration, displays the slice of the specific location, and can rely on the belt coding of the hardware device to know that the specific location is the head of the luggage package. Middle or tail.
  • the belt code is lost or missing during transmission, or sometimes does not match, the method cannot be accurately registered. There is an urgent need for new and effective methods of registration.
  • an image display method of a CT system is proposed, which is capable of displaying a DR image together with a three-dimensional image of an object to be inspected without the CT imaging device being provided.
  • an image display method of a CT system comprising the steps of: performing CT scan on an object to be inspected to obtain CT projection data; collating the CT projection data according to a predetermined interval; Starting angle and extracting basic data from the collated CT projection data at intervals of 360 degrees; forming a DR image based on the extracted basic data; reconstructing a three-dimensional image of the inspected object from the CT projection data; and simultaneously displaying on the screen DR image and reconstructed 3D image.
  • the image display method further includes the steps of: extracting supplementary data from the collated CT projection data by using the fixed angle plus 180 degrees as a starting angle and at an interval of 360 degrees;
  • the supplementary data is stored in the matrix; the left and right mirroring processing is performed on the matrix; and the supplementary data interval in the mirrored matrix is inserted into the basic data in a row, to obtain the supplemented basic data;
  • the basic data forms a DR image.
  • the image display method further includes the steps of: extracting basic data from the collated CT projection data with another fixed angle as a starting angle and at intervals of 360 degrees; forming based on the extracted basic data Another DR image; and simultaneously displaying the DR image, the other DR image, and the reconstructed three-dimensional image on a screen.
  • the step of collating the CT projection data according to the predetermined interval comprises: adjusting the CT projection data to the projected data per predetermined interval according to the undersampling rule when the sampling frequency is higher than the projection data every predetermined interval.
  • the CT projection data is adjusted to project the data once every predetermined interval according to linear interpolation.
  • the basic data when the basic data is high energy and low energy data, the basic data is processed according to a substance identification algorithm to obtain gray scale data and material data.
  • the DR image is interpolated to the resolution required by the user and displayed on the screen.
  • the data of the reconstructed three-dimensional image is one of: physical density, electron density data, atomic number data, high energy data, low energy data, gray scale data, material data.
  • an image display method of a CT system comprising the steps of: performing CT scan on an object to be inspected to obtain CT projection data; reconstructing a three-dimensional image of the object to be inspected from the CT projection data; Projecting the three-dimensional image data H(x, y, z) of the object to be inspected to obtain DR data at the viewing angle, wherein the dimension of each dimension of the three-dimensional image data H(x, y, z) is X ⁇ Y ⁇ Z,
  • the dimension x varies from 1 to X, which is the direction perpendicular to the belt motion in the horizontal plane, the dimension y varies from 1 to Y, the change is the vertical upward direction, and the dimension z varies from 1 to Z, the change being in the horizontal plane A direction along the belt; a DR image is formed based on the DR data at the viewing angle; a DR image and a three-dimensional image are simultaneously displayed on the screen.
  • the image display method further includes the steps of: projecting the three-dimensional image data H(x, y, z) of the object to be inspected according to another view to obtain DR data at the view;
  • the DR data at the viewing angle forms a DR image; two DR images and a three-dimensional image are simultaneously displayed on the screen.
  • the viewing angle and the other viewing angle are selected from a direction perpendicular to the movement of the belt in the horizontal plane, a vertical direction, and a direction of movement along the belt in the horizontal plane.
  • the three-dimensional data H(x, y, z) is projected along the direction of the dimension x to obtain two-dimensional data I(y, z), and the projection formula is as follows:
  • the two-dimensional data is DR data of a side view, and the data dimension size is Y ⁇ Z.
  • the three-dimensional data H(x, y, z) is projected along the direction of the dimension y to obtain two-dimensional data J(x, z), and the projection formula is as follows:
  • the two-dimensional data is DR data of a bottom view or a top view, and the data dimension size is X ⁇ Z.
  • the three-dimensional data H(x, y, z) is projected along the dimension z, that is, the direction of the belt motion, to obtain two-dimensional data K(x, y), and the projection formula is as follows:
  • the two-dimensional data is DR data of a front view, and the data dimension size is X ⁇ Y.
  • the data of the reconstructed three-dimensional image is one of: physical density, electron density data, atomic number data, high energy data, low energy data, gray scale data, material data.
  • the CT projection data is processed to obtain DR data, and after the DR data is obtained, the DR image is obtained by using the DR data processing algorithm. This allows the panelist to use the existing DR image interpretation experience to more accurately and quickly check the items carried by the passenger.
  • a method for image registration in a DR-CT system comprising a DR device and a CT device, the method comprising the steps of: Detecting an object for scanning to obtain CT projection data; reconstructing a three-dimensional image of the object to be inspected from the CT projection data; scanning the object to be inspected with a DR device to obtain a DR image; displaying the DR image and the three-dimensional image on a screen
  • An image is extracted from the data of the DR image in response to the user's selection of a particular location in the DR image; auxiliary DR data from the same perspective as the DR image is obtained from the three-dimensional image; a correlation between the column in the image and each column in the auxiliary DR data; a slice image corresponding to the column in the auxiliary DR data that has the greatest correlation with the column in the DR image
  • the DR image is simultaneously displayed on the screen.
  • the step of obtaining auxiliary DR data from the three-dimensional image at the same viewing angle as the DR image comprises: performing three-dimensional image data H(x, y, z) of the object under inspection along the dimension y direction. Projection, obtaining DR data at the viewing angle, wherein the dimension of each dimension of the three-dimensional image data H(x, y, z) is X ⁇ Y ⁇ Z, and the dimension x varies from 1 to X, and the change is perpendicular to the belt motion in the horizontal plane.
  • the dimension y varies from 1 to Y
  • the change is a vertically upward direction
  • the dimension z varies from 1 to Z, which is the direction of movement along the belt in the horizontal plane.
  • the three-dimensional data H(x, y, z) is projected along the direction of the dimension y to obtain two-dimensional data J(x, z), and the projection formula is as follows:
  • the two-dimensional data is DR data of a bottom view or a top view, and the data dimension size is X ⁇ Z.
  • a method for image registration in a DR-CT system comprising a DR device and a CT device, the method comprising the steps of: Checking the object for scanning to obtain CT projection data; scanning the object to be inspected with the DR device to obtain a DR image; displaying the DR image on the screen; responding to the user's selection of a specific position in the DR image Selecting, extracting corresponding columns from data of the DR image; obtaining auxiliary DR data from the CT projection data at the same viewing angle as the DR image; calculating the column and auxiliary DR data in the DR image a correlation between the columns; reconstructing a three-dimensional image of the object to be inspected from the CT projection data; and a slice image corresponding to the column of the auxiliary DR data that has the greatest correlation with the column in the DR image Displayed on the screen simultaneously with the DR image.
  • the step of obtaining auxiliary DR data from the CT projection data at the same viewing angle as the DR image comprises: collating the CT projection data according to a predetermined interval; using a fixed angle as a starting angle and The 360 degree is an interval, and the auxiliary data is extracted from the collated CT projection data.
  • the method further comprises the steps of: extracting supplementary data from the collated CT projection data by adding the 180 degrees as the starting angle and the interval of 360 degrees; and extracting the extracted The data is stored in the matrix; the left and right mirroring processing is performed on the matrix; and the supplementary data interval in the mirrored matrix is inserted into the auxiliary DR data in units of rows to obtain supplemental auxiliary DR data.
  • FIG. 1 is a schematic structural diagram of a CT apparatus according to an embodiment of the present invention.
  • Figure 2 is a block diagram showing the structure of a computer data processor as shown in Figure 1;
  • FIG. 3 is a block diagram showing the structure of a controller according to an embodiment of the present invention.
  • FIG. 4 is a flow chart depicting a method of displaying an image in a CT system, in accordance with one embodiment of the present invention.
  • Figure 5 is a schematic diagram depicting a process of collating CT projection data
  • Figure 6 shows a schematic diagram of a DR image obtained from CT projection data
  • FIG. 7 is a flowchart describing a method of displaying an image in a CT system according to another embodiment of the present invention.
  • FIG. 8 is a flow chart describing a method of registering a DR image and a CT image in a CT system according to still another embodiment of the present invention.
  • FIG. 9 is a flow chart describing a method of registering a DR image and a CT image in a CT system according to still another embodiment of the present invention.
  • some embodiments of the present invention propose to obtain a DR image of the object to be inspected from the CT projection data. It is displayed on the screen together with the reconstructed 3D image, which is convenient for the judge to use the existing judgment experience for security check. According to the above scheme, it is possible to inspect the articles carried by the passengers more accurately and more quickly.
  • projection data at a particular viewing angle is extracted from the data of the reconstructed three-dimensional image, and the projection data is combined into DR data at that perspective.
  • the data of the reconstructed three-dimensional image is projected according to different viewing angles, and the DR data at the viewing angle is obtained to form a DR image.
  • the problem of the inability to register the DR image and the CT image due to missing or missing belt coding is proposed, or a reconstructed three-dimensional image from the CT projection data is proposed.
  • the DR image of the specific view is obtained in the data, and the correlation between the selected column in the DR image obtained by the DR device and the DR image obtained from the data of the three-dimensional image is performed to determine the slice in which the column with the highest correlation is located. Displayed together with the DR image.
  • the CT apparatus includes a chassis 20, a carrier mechanism 40, a controller 50, a computer data processor 60, and the like.
  • the gantry 20 includes a source 10 that emits X-rays for inspection, such as an X-ray machine, as well as detection and acquisition. Device 30.
  • the carrier mechanism 40 carries the scanned area between the source 10 of the inspected baggage 20 passing through the frame 20 and the detecting and collecting device 30, while the frame 20 is rotated about the direction of advancement of the inspected baggage 70, thereby being emitted by the source 10
  • the rays can pass through the inspected baggage 70 to perform a CT scan of the inspected baggage 70.
  • the detecting and collecting device 30 is, for example, a detector having a monolithic module structure and a data collector, such as a flat panel detector, for detecting rays transmitted through the liquid object to be inspected, obtaining an analog signal, and converting the analog signal into a digital signal for output.
  • the checked baggage 70 is directed to X-ray projection data.
  • the controller 50 is used to control the various parts of the entire system to work synchronously.
  • the computer data processor 60 is used to process the data collected by the data collector, process and reconstruct the data, and output the results.
  • the radiation source 10 is placed on the side where the object to be inspected can be placed, and the detecting and collecting device 30 is placed on the other side of the checked baggage 70, including a detector and a data collector for acquiring the checked baggage.
  • the data collector includes a data amplification forming circuit that can operate in a (current) integration mode or a pulse (count) mode.
  • the data output cable of the detection and acquisition device 30 is coupled to the controller 50 and computer data processor 60 for storing the acquired data in computer data processor 60 in accordance with a trigger command.
  • FIG. 2 shows a block diagram of the computer data processor 60 shown in FIG. 1.
  • the data collected by the data collector is stored in the memory 61 via the interface unit 68 and the bus 64.
  • Configuration information and a program of the computer data processor are stored in a read only memory (ROM) 62.
  • a random access memory (RAM) 63 is used to temporarily store various data during the operation of the processor 66.
  • a computer program for performing data processing is also stored in the memory 61.
  • the internal bus 64 is connected to the above-described memory 61, read only memory 62, random access memory 63, input device 65, processor 66, display device 67, and interface unit 68.
  • the instruction code of the computer program instructs the processor 66 to execute a predetermined data processing algorithm, and after obtaining the data processing result, display it on, for example, an LCD display.
  • the processing result is outputted on the display device 67 of the class, or directly in the form of a hard copy such as printing.
  • FIG. 3 shows a block diagram of a controller in accordance with an embodiment of the present invention.
  • the controller 50 includes a control unit 51 that controls the radiation source 10, the carrier mechanism 40, and the detecting and collecting device 30 according to an instruction from the computer 60, and a trigger signal generating unit 52 for the control unit. Controlling a trigger command to trigger the action of the source 10, the detection and acquisition device 30, and the carrier mechanism 40;
  • the driving device 53 which drives the carrying mechanism 40 to transmit the checked baggage 70 according to the trigger command generated by the trigger signal generating unit 52 under the control of the control unit 51; the second driving device 54, which is based on the trigger signal generating unit 52 at the control unit 51
  • the trigger command generated under the control of the rack 20 rotates.
  • the projection data obtained by the detecting and collecting device 30 is stored in the computer 60 for CT tomographic image reconstruction, thereby obtaining tomographic image data of the checked baggage 70.
  • the computer 60 then obtains a DR image of at least one viewing angle of the checked baggage 70 from the tomographic image data, for example by executing software, and displays it along with the reconstructed three-dimensional image to facilitate the security check by the panelist.
  • the CT imaging system described above may also be a dual energy CT system, that is, the X-ray source 10 of the gantry 20 is capable of emitting both high and low energy rays, and the detection and acquisition device 30 detects projections at different energy levels.
  • the dual data CT reconstruction is performed by the computer data processor 60 to obtain the equivalent atomic number and equivalent electron density data of the respective faults of the checked baggage 70.
  • CT scanning is performed on the object 70 to be inspected by the CT system to obtain CT projection data.
  • the CT projection data herein may be, but is not limited to, the following: physical density or electron density data; atomic number data; high energy data; low energy data; gray scale data; material data.
  • the number of rows of detectors is exemplified by one row. When the detector is in multiple rows, the multiple rows are treated as a whole, and are treated as one row for data processing.
  • the CT projection data is collated at predetermined intervals.
  • CT projection data is arranged at intervals of 1 degree. That is: there is projection data once every 1 degree interval.
  • the sampling frequency is higher than 1 degree of projection data per interval
  • the projection data is adjusted to 1 degree of projection data every interval according to the undersampling rule.
  • the linear interpolation is adjusted to adjust the projection data once every 1 degree.
  • the CT projection data that is, the sinogram
  • the elements therein are denoted as A(m, n).
  • n represents the detector array element
  • n is changed to 1 to N of the detector array
  • N is the number of array elements in the detector array.
  • m represents the angle
  • m changes to the number of angles, that is, the first behavior of the matrix A is 1 to N data of the detector array of the first degree
  • the second behavior is 1 to N data of the detector array of the second degree. All angles are cycled by 360, and the arrangement is as follows: 1 degree to 360 degrees, 361 degrees to 720 degrees, 721 degrees to 1080 degrees, 1081 degrees to 1440 degrees, as shown in FIG.
  • step S43 basic data is extracted from the collated CT projection data with a fixed angle as a starting angle and at intervals of 360 degrees. For example, from the CT projection data, according to the circle period of 360 degrees Separate, at a fixed starting angle S, extract data of several angles, for example: 1 degree, 361 degrees, 721 degrees, 1081 degrees, 1441 degrees. which is:
  • the extracted basic data is recombined into matrix B.
  • a DR image is formed based on the extracted basic data, as shown in FIG.
  • the matrix B formed by recombination is processed to form a DR image according to an existing DR data processing algorithm.
  • the data is high-energy and low-energy data
  • gray scale data and material data are obtained according to the substance identification algorithm.
  • the computer data processor 60 runs software to reconstruct a three-dimensional image of the object under inspection from the CT projection data.
  • the DR image and the reconstructed three-dimensional image are simultaneously displayed on the screen.
  • the DR image is interpolated to the resolution required by the user and displayed on the display.
  • the extraction is continued according to the following formula. Assuming that the fixed starting angle is S, then the i-th extraction, for the number of angles Angle is
  • the extracted data is recombined into a matrix B1.
  • the matrix B1 is mirrored left and right, that is, the left and right symmetrical elements are exchanged, and the formula is as follows:
  • the obtained matrix B1 is inserted into the matrix B in intervals of rows, and combined with the matrix B to form a matrix C.
  • the data dimension size is M ⁇ N.
  • the formula for the combination is as follows:
  • the matrix C is processed according to the existing DR data processing algorithm to form a DR image.
  • the data is high-energy and low-energy data
  • gray scale data and material data are obtained according to the substance identification algorithm.
  • a DR image at a viewing angle is obtained.
  • the DR data at the angle may be formed by using another fixed angle different from the above-described angle S as the starting angle, and the corresponding DR image is obtained and displayed on the screen together with the above-mentioned DR image and the reconstructed three-dimensional image.
  • the charter to conduct a security check.
  • the detectors of the CT system may be in one or more rows, and images of any one of the viewing angles (including the top viewing angle, the bottom viewing angle, and the side viewing angle) may be obtained using CT data. Or you can use CT data to get any two images that are dual-view. And any number of images, that is, multiple views, can be obtained using CT data.
  • FIG. 7 is a flow chart describing a method of displaying an image in a CT system according to another embodiment of the present invention.
  • CT scanning is performed on the object to be inspected by the CT system to obtain CT projection data
  • a three-dimensional image of the object to be inspected is reconstructed from the CT projection data by the computer 60.
  • the reconstructed three-dimensional data herein may be, but is not limited to, the following: physical density or electron density data; atomic number data; high energy data; low energy data; gray scale data; material data.
  • step S73 the three-dimensional image data H(x, y, z) of the object to be inspected is projected according to a viewing angle to obtain DR data at the viewing angle, wherein the dimensions of each dimension of the three-dimensional image data H(x, y, z)
  • the dimension x varies from 1 to X
  • the change is the direction perpendicular to the belt motion in the horizontal plane
  • the dimension y varies from 1 to Y
  • the change is the vertical upward direction
  • the dimension z is from 1 to Z.
  • Change the change is the direction of movement along the belt in the horizontal plane
  • the two-dimensional data is DR data of a side view.
  • the data dimension size is Y ⁇ Z.
  • the two-dimensional data is DR data of a bottom view or a top view.
  • the data dimension size is X ⁇ Z.
  • the two-dimensional data is DR data of the front view.
  • the data dimension size is X ⁇ Y.
  • a DR image is formed based on the DR data at the viewing angle. For example, after the DR data is obtained, the DR image is processed according to the existing DR data processing algorithm. When the data is high-energy and low-energy data, gray scale data and material data are obtained according to the substance identification algorithm.
  • the DR image and the three-dimensional image are simultaneously displayed on the screen.
  • the DR image is interpolated to the resolution required by the user and displayed on the display.
  • a CT device of the existing DR system requires that when the user clicks on a certain place of the DR image, the accurate slice position can be obtained from the three-dimensional data in the head, middle or tail of the baggage package, thereby displaying the slice.
  • this method cannot be accurately registered because the belt code is lost or missing during transmission or sometimes cannot be matched.
  • an embodiment of the present invention proposes to perform correlation calculation between one column of DR images obtained by a DR device and each column of DR data extracted from a reconstructed three-dimensional image, and corresponding to the column with the highest correlation.
  • the slice image is displayed on the screen together with the DR image.
  • the DR data herein may be, but is not limited to, the following: physical density or electron density data; atomic number data; high energy data; low energy data; gray scale data; material data, and the like.
  • FIG. 8 is a flow chart describing a method of registering a DR image and a CT image in a CT system according to still another embodiment of the present invention.
  • step S81 the object to be inspected is scanned with a CT device to obtain CT projection data.
  • step S82 software is executed by the computer 60 to reconstruct a three-dimensional image of the object under inspection from the CT projection data.
  • step S83 the object to be inspected is scanned with the DR device to obtain a DR image, and then, in step S84, the DR image obtained by the DR device and the reconstructed three-dimensional image are displayed on the screen to facilitate the security check by the discriminator.
  • the discriminator operates an input device 65, such as a mouse, clicks on a column in the DR image, and wishes to see the slice image corresponding to the column for more accurate inspection.
  • an input device 65 such as a mouse
  • the corresponding column is extracted from the data of the DR image.
  • the computer 60 obtains the auxiliary DR data from the three-dimensional image at the same viewing angle as the DR image.
  • the DR system generates DR data, and the user specifies a certain location with the mouse in the DR data.
  • the DR data of the location expands in the direction of the detector array element, and is denoted as Array0(n), where n varies from 1 to N.
  • N is the number of array elements in the detector array.
  • the data is actually an array that stores the data for all detector elements.
  • the DR data is obtained from the CT data, and is recorded as a matrix J in which the element is J(x, z).
  • the matrix J is transposed to obtain J1, wherein the element is J1(z, x), and J1 is interpolated according to the required dimensional dimension M ⁇ N to obtain a matrix C having a data dimension size of M ⁇ N.
  • the step of obtaining auxiliary DR data from the three-dimensional image at the same viewing angle as the DR image comprises: projecting the three-dimensional image data H(x, y, z) of the object under inspection along the dimension y direction Obtaining DR data at the viewing angle, wherein the dimension of each dimension of the three-dimensional image data H(x, y, z) is X ⁇ Y ⁇ Z, and the dimension x varies from 1 to X, and the change is perpendicular to the belt motion in the horizontal plane.
  • the direction, dimension y varies from 1 to Y, the change is a vertically upward direction, and the dimension z varies from 1 to Z, which is the direction of movement along the belt in the horizontal plane.
  • the three-dimensional data H(x, y, z) is projected in the direction of the dimension y, and the two-dimensional data J(x, z) is obtained with reference to the above formula (6).
  • step S87 the computer 60 calculates a correlation between the columns in the DR image and the columns in the auxiliary DR data, and in the auxiliary DR data and the said in the DR image in step S88
  • the corresponding slice image of the column having the largest correlation between the columns is displayed on the screen simultaneously with the DR image.
  • auxiliary DR data is registered after reconstruction of a three-dimensional image.
  • auxiliary DR data can also be obtained prior to reconstructing the three-dimensional image and then used for registration of the image.
  • 9 is a flow chart describing a method of registering a DR image and a CT image in a CT system according to still another embodiment of the present invention.
  • the DR-CT imaging system includes a DR device and a CT device.
  • the object to be inspected is scanned by the CT apparatus to obtain CT projection data
  • the object to be inspected is scanned with the DR apparatus to obtain a DR image.
  • the DR image is displayed on the screen.
  • the discriminator operates an input device 65, such as a mouse, clicks on a column in the DR image, and wishes to see the slice image corresponding to the column for more accurate inspection.
  • an input device 65 such as a mouse
  • the corresponding column is extracted from the data of the DR image.
  • step S95 auxiliary DR data at the same viewing angle as the DR image is obtained from the CT projection data
  • step S96 calculating a correlation between the column in the DR image and each column in the auxiliary DR data
  • step S98 the slice image corresponding to the column in the auxiliary DR data that has the greatest correlation with the column in the DR image is simultaneously displayed on the screen with the DR image.
  • the step of obtaining auxiliary DR data from the CT projection data at the same viewing angle as the DR image comprises: collating the CT projection data at predetermined intervals; using a fixed angle as a starting angle and 360 The degree is interval, and the auxiliary data is extracted from the collated CT projection data.
  • the method further includes the steps of: extracting the supplemental data from the collated CT projection data by adding the 180 degrees as the starting angle and the interval of 360 degrees.
  • the extracted supplementary data is stored in the matrix; the left and right mirroring processing is performed on the matrix; and the supplementary data interval in the mirrored matrix is inserted into the auxiliary DR data in units of rows to obtain the supplemental auxiliary DR data. .
  • aspects of the embodiments disclosed herein may be implemented in an integrated circuit as a whole or in part, as one or more of one or more computers running on one or more computers.
  • a computer program eg, implemented as one or more programs running on one or more computer systems
  • implemented as one or more programs running on one or more processors eg, implemented as one or One or more programs running on a plurality of microprocessors, implemented as firmware, or substantially in any combination of the above, and those skilled in the art, in accordance with the present disclosure, will be provided with design circuitry and/or write software and / or firmware code capabilities.
  • signal bearing media include, but are not limited to, recordable media such as floppy disks, hard drives, compact disks (CDs), digital versatile disks (DVDs), digital tapes, computer memories, and the like; and transmission-type media such as digital and / or analog communication media (eg, fiber optic cable, waveguide, wired communication link, wireless communication link, etc.).

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Physics & Mathematics (AREA)
  • Pulmonology (AREA)
  • Human Computer Interaction (AREA)
  • Software Systems (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Computer Graphics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)

Abstract

公开了一种CT系统的图像显示方法。在该方法中,对被检查物体进行CT扫描,得到CT投影数据,按照预定的间隔对CT投影数据进行整理,以一固定角度作为起始角度并以360度为间隔,从整理后的CT投影数据中抽取基本数据,基于所抽取的基本数据形成DR图像,从CT投影数据重建被检查物体的三维图像,以及在屏幕上同时显示DR图像和重建的三维图像。该方案对CT数据进行处理,得到DR数据。得到DR数据后,直接利用DR数据处理算法,得到DR图像。这样能够让判图员利用已有的DR图像判图经验,更加准确,更加快速地检查旅客携带的物品。

Description

图像显示方法 技术领域
本申请涉及计算机断层成像(CT)技术,具体涉及一种CT系统中的图像显示方法。
背景技术
美国的9·11事件发生以后,航空领域的安全检查工作越来越受到重视。基于CT技术的安检产品有着不可比拟的先进性,性能指标优势明显。美国TSA认为,CT设备及其检测方法是实现机场安全检查的重要途径。普通的物品机,即X光机透视成像能够得到清晰的DR图像,这样的DR(Digital Radiography)图像已经在用户的心目中形成了固定的印象。用户已经非常熟悉DR图像了。在DR系统中,X射线源和探测器是固定的,是不旋转的。这些DR图像通常是顶视角图像或者底视角图像,非常直观,方便看图。读图和判图所形成的丰富经验,都是基于这些直观的DR图像。一位优秀的判图员,需要阅览过数万幅图像以上的实际DR图像。往往需要90个工作日以上的时间,才能培养出一位优秀的判图员。目前,已经有为数众多的优秀的判图员在医疗、安检等行业工作着。没有DR图像时,这些经验丰富的老判图员无法进行正确的判图。
现有的一些CT系统虽然有现成的三维数据,但是没有DR图像。当判图员一下子看到三维图像时,觉得不习惯。例如,由于观察角度不合适,违禁品(例如手枪)在三维图像中会是一个小的聚团,形态不清楚。判图员突然看到三维图像时,搞不清楚怎么手枪会突然成了一个小聚团。判图员单独观察三维图像,仍然不清楚旅客携带的物品究竟是什么。因此,即使已经存在三维图像时,判图员仍然希望能够将三维图像与以前曾经很熟悉的DR图像进行比照,对比这二种图像,并且利用已有的DR图像的丰富的判图经验。即,判图员希望这样布置:左边放一个显示器,显示DR图像,右边放一个显示器,显示CT图像。利用了已有的DR图像判图经验,众多判图员就可以更快速,更方便,更准确地知道旅客携带的物品究竟是什么。这样就可以节省了大量的人力,节省了时间。
此外,对于已有DR系统的CT设备,用户选择了特定位置,要求DR-CT配准,显示出特定位置的切片,可以依靠硬件装置的皮带编码,得知特定位置是行李包裹的头部,中部或者尾部。但是,由于皮带编码在传输过程中丢失或缺失,或者有时不能匹配,导致该方法无法准确进行配准。迫切需要有新的有效的配准方法。
发明内容
考虑到现有技术中的一个或多个问题,提出了一种CT系统的图像显示方法,能够在CT系统不具备DR成像设备的情况下,与被检查物体的三维图像一起显示DR图像。
在本发明的一个方面,提出了一种CT系统的图像显示方法,包括步骤:对被检查物体进行CT扫描,得到CT投影数据;按照预定的间隔对CT投影数据进行整理;以一固定角度作为起始角度并以360度为间隔,从整理后的CT投影数据中抽取基本数据;基于所抽取的基本数据形成DR图像;从CT投影数据重建被检查物体的三维图像;以及在屏幕上同时显示DR图像和重建的三维图像。
根据一些实施例,所述的图像显示方法还包括步骤:以所述固定角度加上180度作为起始角度并以360度为间隔,从整理后的CT投影数据中抽取补充数据;将所抽取的补充数据存储在矩阵中;对所述矩阵做左右镜像处理;以行为单位,将镜像处理后的矩阵中的补充数据间隔插入所述基本数据中,得到补充后的基本数据;基于补充后的基本数据形成DR图像。
根据一些实施例,所述的图像显示方法还包括步骤:以另一固定角度作为起始角度并以360度为间隔,从整理后的CT投影数据中抽取基本数据;基于所抽取的基本数据形成另一DR图像;以及在屏幕上同时显示所述DR图像、所述另一DR图像和重建的三维图像。
根据一些实施例,按照预定的间隔对CT投影数据进行整理的步骤包括:当采样频率高于每预定间隔投影数据1次时,按照欠采样规则,将CT投影数据调整为每预定间隔投影数据1次;当采样频率低于每预定间隔投影数据1次时,按照线性插值,将CT投影数据调整为每预定间隔投影数据1次。
根据一些实施例,当所述基本数据为高能和低能数据时,按照物质识别算法对所述基本数据进行处理得到灰度数据和材料数据。
根据一些实施例,将DR图像插值成为用户要求的分辨率,在屏幕上显示。
根据一些实施例,重建的三维图像的数据是以下之一:物理密度、电子密度数据、原子序数数据、高能数据、低能数据、灰度数据、材料数据。
在本发明的另一方面,提出了一种CT系统的图像显示方法,包括步骤:对被检查物体进行CT扫描,得到CT投影数据;从CT投影数据重建被检查物体的三维图像;按照一视角对被检查物体的三维图像数据H(x,y,z)进行投影,得到该视角下的DR数据,其中三维图像数据H(x,y,z)各维的尺寸为X×Y×Z,维度x从1到X变化,该变化为水平面内垂直于皮带运动的方向,维度y从1到Y变化,该变化为竖直向上的方向,维度z从1到Z变化,该变化为水平面内沿皮带运动的方向;基于该视角下的DR数据形成DR图像;在屏幕上同时显示DR图像和三维图像。
根据一些实施例,所述的图像显示方法还包括步骤:按照另一视角对被检查物体的三维图像数据H(x,y,z)进行投影,得到该视角下的DR数据;基于该另一视角下的DR数据形成DR图像;在屏幕上同时显示两幅DR图像和三维图像。
根据一些实施例,所述视角和所述另一视角是从水平面内垂直于皮带运动的方向、竖直方向和水平面内沿皮带运动的方向中选择的。
根据一些实施例,将三维数据H(x,y,z)沿着维度x的方向投影,得到二维数据I(y,z),投影公式如下:
Figure PCTCN2015078950-appb-000001
该二维数据为侧视角的DR数据,数据维度尺寸为Y×Z。
根据一些实施例,将三维数据H(x,y,z)沿着维度y的方向投影,得到二维数据J(x,z),投影公式如下:
Figure PCTCN2015078950-appb-000002
该二维数据为底视角或顶视角的DR数据,数据维度尺寸为X×Z。
根据一些实施例,将三维数据H(x,y,z)沿着维度z即皮带运动的方向投影,得到二维数据K(x,y),投影公式如下:
Figure PCTCN2015078950-appb-000003
该二维数据为前视角的DR数据,数据维度尺寸为X×Y。
根据一些实施例,重建的三维图像的数据是以下之一:物理密度、电子密度数据、原子序数数据、高能数据、低能数据、灰度数据、材料数据。
根据上述方案,对CT投影数据进行处理,得到DR数据,得到DR数据后,利用DR数据处理算法,得到DR图像。这样能够让判图员利用已有的DR图像判图经验,更加准确,更加快速地检查旅客携带的物品。
在本发明的又一方面,提出了一种在DR-CT系统中进行图像配准的方法,所述DR-CT成像系统包括DR设备和CT设备,所述方法包括步骤:用CT设备对被检查物体进行扫描以得到CT投影数据;从所述CT投影数据重建被检查物体的三维图像;用DR设备对被检查物体进行扫描以得到DR图像;在屏幕上显示所述DR图像和所述三维图像;响应于用户对DR图像中的特定位置的选择,从DR图像的数据中抽取相应的列;从所述三维图像中得到与所述DR图像相同视角下的辅助DR数据;计算所述DR图像中的所述列与辅助DR数据中的各列之间的相关性;将辅助DR数据中与所述DR图像中的所述列之间相关性最大的那一列对应的切片图像与所述DR图像同时显示在屏幕上。
根据一些实施例,从所述三维图像中得到与所述DR图像相同视角下的辅助DR数据的步骤包括:沿着维度y方向对被检查物体的三维图像数据H(x,y,z)进行投影,得到该视角下的DR数据,其中三维图像数据H(x,y,z)各维的尺寸为X×Y×Z,维度x从1到X变化,该变化为水平面内垂直于皮带运动的方向,维度y从1到Y变化,该变化为竖直向上的方向,维度z从1到Z变化,该变化为水平面内沿皮带运动的方向。
根据一些实施例,将三维数据H(x,y,z)沿着维度y的方向投影,得到二维数据J(x,z),投影公式如下:
Figure PCTCN2015078950-appb-000004
该二维数据为底视角或顶视角的DR数据,数据维度尺寸为X×Z。
在本发明的再一方面,提出了一种在DR-CT系统中进行图像配准的方法,所述DR-CT成像系统包括DR设备和CT设备,所述方法包括步骤:用CT设备对被检查物体进行扫描以得到CT投影数据;用DR设备对被检查物体进行扫描以得到DR图像;在屏幕上显示所述DR图像;响应于用户对DR图像中的特定位置的选 择,从DR图像的数据中抽取相应的列;从所述CT投影数据中得到与所述DR图像相同视角下的辅助DR数据;计算所述DR图像中的所述列与辅助DR数据中的各列之间的相关性;从所述CT投影数据重建被检查物体的三维图像;以及将辅助DR数据中与所述DR图像中的所述列之间相关性最大的那一列对应的切片图像与所述DR图像同时显示在屏幕上。
根据一些实施例,从所述CT投影数据中得到与所述DR图像相同视角下的辅助DR数据的步骤包括:按照预定的间隔对CT投影数据进行整理;以一固定角度作为起始角度并以360度为间隔,从整理后的CT投影数据中抽取得到所述辅助数据。
根据一些实施例,所述的方法还包括步骤:以所述固定角度加上180度作为起始角度并以360度为间隔,从整理后的CT投影数据中抽取补充数据;将所抽取的补充数据存储在矩阵中;对所述矩阵做左右镜像处理;以行为单位,将镜像处理后的矩阵中的补充数据间隔插入所述辅助DR数据中,得到补充后的辅助DR数据。
附图说明
为了更好地理解本发明,将根据以下附图对本发明进行详细描述:
图1示出了根据本发明实施例的CT设备的结构示意图;
图2示出了如图1所示的计算机数据处理器的结构框图;
图3示出了根据本发明实施方式的控制器的结构框图;
图4是描述根据本发明一个实施例的在CT系统中显示图像的方法的流程图;
图5是描述整理CT投影数据的过程的示意图;
图6示出了从CT投影数据得到的DR图像的示意图;
图7是描述根据本发明另一实施例的在CT系统中显示图像的方法的流程图;
图8是描述根据本发明又一实施例的在CT系统中配准DR图像和CT图像的方法的流程图;以及
图9是描述根据本发明再一实施例的在CT系统中配准DR图像和CT图像的方法的流程图。
具体实施方式
下面将详细描述本发明的具体实施例,应当注意,这里描述的实施例只用于举例说明,并不用于限制本发明。在以下描述中,为了提供对本发明的透彻理解,阐述了大量特定细节。然而,对于本领域普通技术人员显而易见的是:不必采用这些特定细节来实行本发明。在其他实例中,为了避免混淆本发明,未具体描述公知的结构、材料或方法。
在整个说明书中,对“一个实施例”、“实施例”、“一个示例”或“示例”的提及意味着:结合该实施例或示例描述的特定特征、结构或特性被包含在本发明至少一个实施例中。因此,在整个说明书的各个地方出现的短语“在一个实施例中”、“在实施例中”、“一个示例”或“示例”不一定都指同一实施例或示例。此外,可以以任何适当的组合和/或子组合将特定的特征、结构或特性组合在一个或多个实施例或示例中。此外,本领域普通技术人员应当理解,这里使用的术语“和/或”包括一个或多个相关列出的项目的任何和所有组合。
针对现有技术中一些CT设备不具备DR成像模块但是在判图过程中判图员又需要显示DR图像的问题,本发明的一些实施例提出了从CT投影数据中得到被检查物体的DR图像,与重建的三维图像一起在屏幕上显示,方便判图员利用已有的判图经验来进行安全检查。根据上述方案,能够更加准确,更加快速地检查旅客携带的物品。在一些实施例中,从重建的三维图像的数据中抽取特定视角下的投影数据,将这些投影数据组合成为该视角下的DR数据。在其他实施例中,对重建的三维图像的数据按照不同的视角进行投影,得到该视角下的DR数据,形成DR图像。
在另外的实施例中,针对一些配备了DR设备的CT设备中由于皮带编码缺失或者丢失造成的无法对DR图像和CT图像进行配准的问题,提出了从CT投影数据中或者重建的三维图像的数据中得到特定视角下的DR图像,并且将DR设备得到的DR图像中的所选列与从三维图像的数据中得到的DR图像进行相关性分析,确定相关性最大的那一列所在的切片与DR图像一起显示出来。
图1是根据本发明实施方式的CT设备的结构示意图。如图1所示,根据本实施方式的CT设备包括:机架20、承载机构40、控制器50、计算机数据处理器60等。机架20包括发出检查用X射线的射线源10,诸如X光机,以及探测和采集 装置30。承载机构40承载被检查行李70穿过机架20的射线源10与探测和采集装置30之间的扫描区域,同时机架20围绕被检查行李70的前进方向转动,从而由射线源10发出的射线能够透过被检查行李70,对被检查行李70进行CT扫描。
探测和采集装置30例如是具有整体模块结构的探测器及数据采集器,例如平板探测器,用于探测透射被检液态物品的射线,获得模拟信号,并且将模拟信号转换成数字信号,从而输出被检查行李70针对X射线的投影数据。控制器50用于控制整个系统的各个部分同步工作。计算机数据处理器60用来处理由数据采集器采集的数据,对数据进行处理并重建,输出结果。
如图1所示,射线源10置于可放置被检物体的一侧,探测和采集装置30置于被检查行李70的另一侧,包括探测器和数据采集器,用于获取被检查行李70的多角度投影数据。数据采集器中包括数据放大成形电路,它可工作于(电流)积分方式或脉冲(计数)方式。探测和采集装置30的数据输出电缆与控制器50和计算机数据处理器60连接,根据触发命令将采集的数据存储在计算机数据处理器60中。
图2示出了如图1所示的计算机数据处理器60的结构框图。如图2所示,数据采集器所采集的数据通过接口单元68和总线64存储在存储器61中。只读存储器(ROM)62中存储有计算机数据处理器的配置信息以及程序。随机存取存储器(RAM)63用于在处理器66工作过程中暂存各种数据。另外,存储器61中还存储有用于进行数据处理的计算机程序。内部总线64连接上述的存储器61、只读存储器62、随机存取存储器63、输入装置65、处理器66、显示装置67和接口单元68。
在用户通过诸如键盘和鼠标之类的输入装置65输入的操作命令后,计算机程序的指令代码命令处理器66执行预定的数据处理算法,在得到数据处理结果之后,将其显示在诸如LCD显示器之类的显示装置67上,或者直接以诸如打印之类硬拷贝的形式输出处理结果。
图3示出了根据本发明实施方式的控制器的结构框图。如图3所示,控制器50包括:控制单元51,根据来自计算机60的指令,来控制射线源10、承载机构40和探测和采集装置30;触发信号产生单元52,用于在控制单元的控制下产生用来触发射线源10、探测和采集装置30以及承载机构40的动作的触发命令;第一 驱动设备53,它在根据触发信号产生单元52在控制单元51的控制下产生的触发命令驱动承载机构40传送被检查行李70;第二驱动设备54,它根据触发信号产生单元52在控制单元51的控制下产生的触发命令机架20旋转。探测和采集装置30获得的投影数据存储在计算机60中进行CT断层图像重建,从而获得被检查行李70的断层图像数据。然后计算机60例如通过执行软件来从断层图像数据得到被检查行李70的至少一个视角下的DR图像,与重建的三维图像一起显示,方便判图员进行安全检查。根据其他实施例,上述的CT成像系统也可以是双能CT系统,也就是机架20的X射线源10能够发出高能和低能两种射线,探测和采集装置30探测到不同能量水平下的投影数据后,由计算机数据处理器60进行双能CT重建,得到被检查行李70的各个断层的等效原子序数和等效电子密度数据。
图4是描述根据本发明一个实施例的在CT系统中显示图像的方法的流程图。如图4所示,在步骤S41,通过CT系统对被检查物体70进行CT扫描,得到CT投影数据。这里的CT投影数据可以是,但不限于是以下的几种:物理密度或电子密度数据;原子序数数据;高能数据;低能数据;灰度数据;材料数据。该实施例中,探测器的排数以1排为例。当探测器为多排时,将多排看做为一个整体,当作是1排,进行数据处理。
在步骤S42,按照预定的间隔对CT投影数据进行整理。例如,CT投影数据以1度为间隔,进行整理。即:每间隔1度,有投影数据1次。在一些实施例中,当采样频率高于每间隔1度投影数据1次时,按照欠采样规则,调整为每间隔1度投影数据1次。当采样频率过低时,按照线性插值,调整为每间隔1度投影数据1次。
例如,可以将CT投影数据,即正弦图,整理排列为矩阵A,其中的元素记为A(m,n)。n表示探测器阵元,n变化为探测器阵列的1~N,N为探测器阵列中阵元的个数。m表示角度,m变化为角度数变化,即矩阵A的第1行为第1度的探测器阵列的1~N数据,第2行为第2度的探测器阵列的1~N数据。所有的角度以360为周期,周而复始,排列情况如下:1度~360度,361度~720度,721度~1080度,1081度~1440度......,如图5所示。
在步骤S43,以一固定角度作为起始角度,并以360度为间隔,从整理后的CT投影数据中抽取基本数据。例如,从CT投影数据中,按照圆周期360度为间 隔,以固定的起始角度S,抽取若干个角度的数据,例如:抽取了1度,361度,721度,1081度,1441度。即:
假设固定的起始角度为S,则第i次抽取,对于的角度数Angle为
Angle=S+i×360
其中i=0,1,2,......(1)
将抽取出的基本数据,重新组合成为矩阵B。
在步骤S44,基于所抽取的基本数据形成DR图像,如图6所示。例如,将重新组合形成的矩阵B,按照已有的DR数据处理算法,处理形成DR图像。当数据为高能和低能数据时,按照物质识别算法,得到灰度数据和材料数据。
在步骤S45,计算机数据处理器60运行软件从CT投影数据重建被检查物体的三维图像。
在步骤S46,在屏幕上同时显示DR图像和重建的三维图像。一些情况下,将DR图像插值成为用户要求的分辨率,在显示器上显示。
在其他实施例中,如果矩阵B的数据量不够,需要增加数据时,按照以下公式,继续抽取。假设固定的起始角度为S,则第i次抽取,对于的角度数Angle为
Angle=S+i×360+180
其中i=0,1,2,......(2)
将抽取出的数据,重新组合成为矩阵B1。
然后,对矩阵B1做左右镜像处理,即左右对称的元素,相互交换,公式如下:
B1(m,1)<==>B1(m,N)
B1(m,2)<==>B1(m,N-1)     (3)
......
接下来,将得到的矩阵B1,以行为单位,间隔插入矩阵B,与矩阵B组合,形成矩阵C。数据维度尺寸为M×N。组合的公式如下:
Figure PCTCN2015078950-appb-000005
最后,将矩阵C按照已有的DR数据处理算法,处理形成DR图像。当数据为高能和低能数据时,按照物质识别算法,得到灰度数据和材料数据。
在上述实施例中,固定的起始角度S,决定了DR图像的视角的方向。例如:S=1时可以得到顶视角;S=180时可以得到底视角;S=90时可以得到左侧视角;S=270时可以得到右侧视角。
以上的实施例中,得到的是一个视角下的DR图像。如果需要的话,可以以与上述的角度S不同的另一固定角度作为起始角度来形成该角度下的DR数据,得到相应的DR图像后与上述的DR图像和重建的三维图像一起显示在屏幕上,供判图员进行安全检查。
此外,一些实施例中,CT系统的探测器可以是一排或者多排,并且可以利用CT数据得到任意一个视角(包括顶视角、底视角、侧视角)的图像。或者可以利用CT数据得到任意二个即双视角的图像。以及可以利用CT数据得到任意多个即多视角的图像。
图7是描述根据本发明另一实施例的在CT系统中显示图像的方法的流程图。如图7所示,在步骤S71,利用CT系统对被检查物体进行CT扫描,得到CT投影数据,然后在步骤S72,通过计算机60从CT投影数据重建被检查物体的三维图像。这里的重建后的三维数据可以是,但不限于是以下的几种:物理密度或电子密度数据;原子序数数据;高能数据;低能数据;灰度数据;材料数据。
在步骤S73,按照一视角对被检查物体的三维图像数据H(x,y,z)进行投影,得到该视角下的DR数据,其中三维图像数据H(x,y,z)各维的尺寸为X×Y×Z,维度x从1到X变化,该变化为水平面内垂直于皮带运动的方向,维度y从1到Y变化,该变化为竖直向上的方向,维度z从1到Z变化,该变化为水平面内沿皮带运动的方向;
例如,按照需要的视角,进行投影,具体分为3种情况:
(1)将三维数据H(x,y,z)沿着维度x的方向投影,得到二维数据I(y,z),投影公式如下:
Figure PCTCN2015078950-appb-000006
该二维数据为侧视角的DR数据。数据维度尺寸为Y×Z。
(2)将三维数据H(x,y,z)沿着维度y的方向投影,得到二维数据J(x,z),投影公式如下:
Figure PCTCN2015078950-appb-000007
该二维数据为底视角或顶视角的DR数据。数据维度尺寸为X×Z。
(3)将三维数据H(x,y,z)沿着维度z即皮带运动的方向投影,得到二维数据K(x,y),投影公式如下:
Figure PCTCN2015078950-appb-000008
该二维数据为前视角的DR数据。数据维度尺寸为X×Y。
在步骤S74,基于该视角下的DR数据形成DR图像。例如,得到DR数据后,按照已有的DR数据处理算法,处理形成DR图像。当数据为高能和低能数据时,按照物质识别算法,得到灰度数据和材料数据。
在步骤S75,在屏幕上同时显示DR图像和三维图像。例如将DR图像插值成为用户要求的分辨率,在显示器上显示。
虽然上面描述的是CT系统不具备DR设备的情况,但是在一些具备DR设备的CT系统中,需要配准DR图像与切片图像。例如已有DR系统的CT设备,要求当用户点击DR图像的某个地方后,能够从三维数据中得到准确的切片位置是位于行李包裹的头部,中部或者尾部,从而显示出该切片。三维数据中有若干个切片,为了从三维数据中得到准确的位置来显示切片,可以依靠硬件装置的皮带编码,得知是行李包裹的头部,中部或者尾部。但是,由于皮带编码在传输过程中丢失或缺失,或者有时不能匹配,该方法无法准确进行配准。
针对上述问题,本发明的实施例提出了将DR设备得到的DR图像中的一列与从重建的三维图像中抽取的DR数据中的每一列进行相关性计算,将相关性最大的那一列所对应的切片图像与DR图像一起显示在屏幕上。这里的DR数据可以是,但不限于是以下的几种:物理密度或电子密度数据;原子序数数据;高能数据;低能数据;灰度数据;材料数据等等。
图8是描述根据本发明又一实施例的在CT系统中配准DR图像和CT图像的方法的流程图。
在步骤S81,用CT设备对被检查物体进行扫描以得到CT投影数据。在步骤S82,通过计算机60执行软件来从CT投影数据重建被检查物体的三维图像。
在步骤S83,用DR设备对被检查物体进行扫描以得到DR图像,然后,在步骤S84,在屏幕上显示DR设备得到的DR图像和重建的三维图像,方便判图员进行安全检查。
判图员操作诸如鼠标之类的输入装置65,点击DR图像中的某一列,希望看到与该列对应的切片图像,以便进行更为准确的检查。在步骤S85,响应于用户对DR图像中的特定位置的选择,从DR图像的数据中抽取相应的列。接下来,在步骤S86,计算机60从三维图像中得到与DR图像相同视角下的辅助DR数据。
例如DR系统生成DR数据,用户在该DR数据中用鼠标指定某个位置。该位置所在的DR数据沿探测器阵元方向扩展,记为Array0(n),其中n从1~N变化。N为探测器阵列中阵元的个数。该数据实际为一个数组,存储了所有探测器阵元的数据。
按照如图7所示的方法,从CT数据中得到DR数据,记为矩阵J,其中的元素为J(x,z)。将矩阵J转置,得到J1,其中的元素为J1(z,x),将J1按照要求的维度尺寸M×N插值,得到矩阵C,数据维度尺寸为M×N。
在一些实施例中,从三维图像中得到与所述DR图像相同视角下的辅助DR数据的步骤包括:沿着维度y方向对被检查物体的三维图像数据H(x,y,z)进行投影,得到该视角下的DR数据,其中三维图像数据H(x,y,z)各维的尺寸为X×Y×Z,维度x从1到X变化,该变化为水平面内垂直于皮带运动的方向,维度y从1到Y变化,该变化为竖直向上的方向,维度z从1到Z变化,该变化为水平面内沿皮带运动的方向。例如,将三维数据H(x,y,z)沿着维度y的方向投影,参考上述公式(6)得到二维数据J(x,z)。
然后,在步骤S87,计算机60计算所述DR图像中的所述列与辅助DR数据中的各列之间的相关性,并且在步骤S88将辅助DR数据中与所述DR图像中的所述列之间相关性最大的那一列对应的切片图像与所述DR图像同时显示在屏幕上。
例如,取出矩阵C的某个横行,例如m=1时,n从1~N变化,记入数组Array1(n)。按照下面的公式,计算误差E:
Figure PCTCN2015078950-appb-000009
重复上述步骤,取出下一个横行,例如m=2时,n从1~N变化,记入数组Array1(n),直到矩阵C所有的横行都被遍历。最后,从所有的E中,逐个查找,找到最小值对应的那个m,该位置匹配。取出三维数据H(x,y,z)的切片数据H(x,y,z=m)与DR图像一起在显示器上显示。
以上描述的是在重建三维图像后得到辅助DR数据进行配准的实施例。类似地,也可以在重建三维图像之前得到辅助DR数据,然后用于图像的配准。图9是描述根据本发明再一实施例的在CT系统中配准DR图像和CT图像的方法的流程图。
在如图9所示的DR-CT系统中进行图像配准的方法中,DR-CT成像系统包括DR设备和CT设备。在步骤S91,用CT设备对被检查物体进行扫描以得到CT投影数据,在步骤S92,用DR设备对被检查物体进行扫描以得到DR图像。然后,在步骤S93,在屏幕上显示所述DR图像。
判图员操作诸如鼠标之类的输入装置65,点击DR图像中的某一列,希望看到与该列对应的切片图像,以便进行更为准确的检查。在步骤S94,响应于用户对DR图像中的特定位置的选择,从DR图像的数据中抽取相应的列。
在步骤S95,从所述CT投影数据中得到与所述DR图像相同视角下的辅助DR数据;
在步骤S96,计算所述DR图像中的所述列与辅助DR数据中的各列之间的相关性;
在步骤S97,从所述CT投影数据重建被检查物体的三维图像;以及
在步骤S98,将辅助DR数据中与所述DR图像中的所述列之间相关性最大的那一列对应的切片图像与所述DR图像同时显示在屏幕上。
在一些实施例中,从CT投影数据中得到与所述DR图像相同视角下的辅助DR数据的步骤包括:按照预定的间隔对CT投影数据进行整理;以一固定角度作为起始角度并以360度为间隔,从整理后的CT投影数据中抽取得到所述辅助数据。
在其他实施例中,上述的方法还包括步骤:以该固定角度加上180度作为起始角度并以360度为间隔,从整理后的CT投影数据中抽取补充数据。将所抽取的补充数据存储在矩阵中;对所述矩阵做左右镜像处理;以行为单位,将镜像处理后的矩阵中的补充数据间隔插入所述辅助DR数据中,得到补充后的辅助DR数据。
以上的详细描述通过使用示意图、流程图和/或示例,已经阐述了图像显示方法和配准图像的方法的众多实施例。在这种示意图、流程图和/或示例包含一个或多个功能和/或操作的情况下,本领域技术人员应理解,这种示意图、流程图或示例中的每一功能和/或操作可以通过各种结构、硬件、软件、固件或实质上它们的任意组合来单独和/或共同实现。在一个实施例中,本发明的实施例所述主题的若干部分可以通过专用集成电路(ASIC)、现场可编程门阵列(FPGA)、数字信号处理器(DSP)、或其他集成格式来实现。然而,本领域技术人员应认识到,这里所公开的实施例的一些方面在整体上或部分地可以等同地实现在集成电路中,实现为在一台或多台计算机上运行的一个或多个计算机程序(例如,实现为在一台或多台计算机系统上运行的一个或多个程序),实现为在一个或多个处理器上运行的一个或多个程序(例如,实现为在一个或多个微处理器上运行的一个或多个程序),实现为固件,或者实质上实现为上述方式的任意组合,并且本领域技术人员根据本公开,将具备设计电路和/或写入软件和/或固件代码的能力。此外,本领域技术人员将认识到,本公开所述主题的机制能够作为多种形式的程序产品进行分发,并且无论实际用来执行分发的信号承载介质的具体类型如何,本公开所述主题的示例性实施例均适用。信号承载介质的示例包括但不限于:可记录型介质,如软盘、硬盘驱动器、紧致盘(CD)、数字通用盘(DVD)、数字磁带、计算机存储器等;以及传输型介质,如数字和/或模拟通信介质(例如,光纤光缆、波导、有线通信链路、无线通信链路等)。
虽然已参照几个典型实施例描述了本发明,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本发明能够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施例不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

Claims (20)

  1. 一种CT系统的图像显示方法,包括步骤:
    对被检查物体进行CT扫描,得到CT投影数据;
    按照预定的间隔对CT投影数据进行整理;
    以一固定角度作为起始角度并以360度为间隔,从整理后的CT投影数据中抽取基本数据;
    基于所抽取的基本数据形成DR图像;
    从CT投影数据重建被检查物体的三维图像;以及
    在屏幕上同时显示DR图像和重建的三维图像。
  2. 如权利要求1所述的图像显示方法,还包括步骤:
    以所述固定角度加上180度作为起始角度并以360度为间隔,从整理后的CT投影数据中抽取补充数据;
    将所抽取的补充数据存储在矩阵中;
    对所述矩阵做左右镜像处理;
    以行为单位,将镜像处理后的矩阵中的补充数据间隔插入所述基本数据中,得到补充后的基本数据;
    基于补充后的基本数据形成DR图像。
  3. 如权利要求1所述的图像显示方法,还包括步骤:
    以另一固定角度作为起始角度并以360度为间隔,从整理后的CT投影数据中抽取基本数据;
    基于所抽取的基本数据形成另一DR图像;以及
    在屏幕上同时显示所述DR图像、所述另一DR图像和重建的三维图像。
  4. 如权利要求1所述的图像显示方法,按照预定的间隔对CT投影数据进行整理的步骤包括:
    当采样频率高于每预定间隔投影数据1次时,按照欠采样规则,将CT投影数据调整为每预定间隔投影数据1次;
    当采样频率低于每预定间隔投影数据1次时,按照线性插值,将CT投影数据调整为每预定间隔投影数据1次。
  5. 如权利要求1所述的图像显示方法,其中,当所述基本数据为高能和低能数据时,按照物质识别算法对所述基本数据进行处理得到灰度数据和材料数据。
  6. 如权利要求1所述的图像显示方法,其中,将DR图像插值成为用户要求的分辨率,在屏幕上显示。
  7. 如权利要求1所述的图像显示方法,其中重建的三维图像的数据是以下之一:物理密度、电子密度数据、原子序数数据、高能数据、低能数据、灰度数据、材料数据。
  8. 一种CT系统的图像显示方法,包括步骤:
    对被检查物体进行CT扫描,得到CT投影数据;
    从CT投影数据重建被检查物体的三维图像;
    按照某一视角对被检查物体的三维图像数据H(x,y,z)进行投影,得到该视角下的DR数据,其中三维图像数据H(x,y,z)各维的尺寸为X×Y×Z,维度x从1到X变化,该变化为水平面内垂直于皮带运动的方向,维度y从1到Y变化,该变化为竖直向上的方向,维度z从1到Z变化,该变化为水平面内沿皮带运动的方向;
    基于该视角下的DR数据形成DR图像;
    在屏幕上同时显示DR图像和三维图像。
  9. 如权利要求8所述的图像显示方法,还包括步骤:
    按照另一视角对被检查物体的三维图像数据H(x,y,z)进行投影,得到该视角下的DR数据;
    基于该另一视角下的DR数据形成DR图像;
    在屏幕上同时显示两幅DR图像和三维图像。
  10. 如权利要求8所述的图像显示方法,其中所述视角和所述另一视角是从水平面内垂直于皮带运动的方向、竖直方向和水平面内沿皮带运动的方向中选择的。
  11. 如权利要求8所述的图像显示方法,其中将三维数据H(x,y,z)沿着维度x的方向投影,得到二维数据I(y,z),投影公式如下:
    Figure PCTCN2015078950-appb-100001
    该二维数据为侧视角的DR数据,数据维度尺寸为Y×Z。
  12. 如权利要求8所述的图像显示方法,其中将三维数据H(x,y,z)沿着维度y的方向投影,得到二维数据J(x,z),投影公式如下:
    Figure PCTCN2015078950-appb-100002
    该二维数据为底视角或顶视角的DR数据,数据维度尺寸为X×Z。
  13. 如权利要求8所述的图像显示方法,其中将三维数据H(x,y,z)沿着维度z即皮带运动的方向投影,得到二维数据K(x,y),投影公式如下:
    Figure PCTCN2015078950-appb-100003
    该二维数据为前视角的DR数据,数据维度尺寸为X×Y。
  14. 如权利要求8所述的图像显示方法,其中重建的三维图像的数据是以下之一:物理密度、电子密度数据、原子序数数据、高能数据、低能数据、灰度数据、材料数据。
  15. 一种在DR-CT系统中进行图像配准的方法,所述DR-CT成像系统包括DR设备和CT设备,所述方法包括步骤:
    用CT设备对被检查物体进行扫描以得到CT投影数据;
    从所述CT投影数据重建被检查物体的三维图像;
    用DR设备对被检查物体进行扫描以得到DR图像;
    在屏幕上显示所述DR图像和所述三维图像;
    响应于用户对DR图像中的特定位置的选择,从DR图像的数据中抽取相应的列;
    从所述三维图像中得到与所述DR图像相同视角下的辅助DR数据;
    计算所述DR图像中的所述列与辅助DR数据中的各列之间的相关性;
    将辅助DR数据中与所述DR图像中的所述列之间相关性最大的那一列对应的切片图像与所述DR图像同时显示在屏幕上。
  16. 如权利要求15所述的方法,其中从所述三维图像中得到与所述DR图像相同视角下的辅助DR数据的步骤包括:
    沿着维度y方向对被检查物体的三维图像数据H(x,y,z)进行投影,得到该视角下的DR数据,其中三维图像数据H(x,y,z)各维的尺寸为X×Y×Z,维度x从1到X 变化,该变化为水平面内垂直于皮带运动的方向,维度y从1到Y变化,该变化为竖直向上的方向,维度z从1到Z变化,该变化为水平面内沿皮带运动的方向。
  17. 如权利要求16所述的方法,其中将三维数据H(x,y,z)沿着维度y的方向投影,得到二维数据J(x,z),投影公式如下:
    Figure PCTCN2015078950-appb-100004
    该二维数据为底视角或顶视角的DR数据,数据维度尺寸为X×Z。
  18. 一种在DR-CT系统中进行图像配准的方法,所述DR-CT成像系统包括DR设备和CT设备,所述方法包括步骤:
    用CT设备对被检查物体进行扫描以得到CT投影数据;
    用DR设备对被检查物体进行扫描以得到DR图像;
    在屏幕上显示所述DR图像;
    响应于用户对DR图像中的特定位置的选择,从DR图像的数据中抽取相应的列;
    从所述CT投影数据中得到与所述DR图像相同视角下的辅助DR数据;
    计算所述DR图像中的所述列与辅助DR数据中的各列之间的相关性;
    从所述CT投影数据重建被检查物体的三维图像;以及
    将辅助DR数据中与所述DR图像中的所述列之间相关性最大的那一列对应的切片图像与所述DR图像同时显示在屏幕上。
  19. 如权利要求18所述的方法,其中从所述CT投影数据中得到与所述DR图像相同视角下的辅助DR数据的步骤包括:
    按照预定的间隔对CT投影数据进行整理;
    以一固定角度作为起始角度并以360度为间隔,从整理后的CT投影数据中抽取得到所述辅助数据。
  20. 如权利要求19所述的方法,还包括步骤:
    以所述固定角度加上180度作为起始角度并以360度为间隔,从整理后的CT投影数据中抽取补充数据;
    将所抽取的补充数据存储在矩阵中;
    对所述矩阵做左右镜像处理;
    以行为单位,将镜像处理后的矩阵中的补充数据间隔插入所述辅助DR数据中,得到补充后的辅助DR数据。
PCT/CN2015/078950 2014-05-14 2015-05-14 图像显示方法 WO2015172726A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015127778/28A RU2599596C1 (ru) 2014-05-14 2015-05-14 Способ отображения изображения

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410202944.7A CN105094725B (zh) 2014-05-14 2014-05-14 图像显示方法
CN201410202944.7 2014-05-14

Publications (1)

Publication Number Publication Date
WO2015172726A1 true WO2015172726A1 (zh) 2015-11-19

Family

ID=53189681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078950 WO2015172726A1 (zh) 2014-05-14 2015-05-14 图像显示方法

Country Status (7)

Country Link
US (1) US9805504B2 (zh)
EP (1) EP3021283B1 (zh)
JP (3) JP2015227872A (zh)
CN (1) CN105094725B (zh)
HK (1) HK1217796A1 (zh)
RU (1) RU2599596C1 (zh)
WO (1) WO2015172726A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2536650A (en) 2015-03-24 2016-09-28 Augmedics Ltd Method and system for combining video-based and optic-based augmented reality in a near eye display
KR101772327B1 (ko) * 2016-04-29 2017-08-29 (의료)길의료재단 부메랑 형상의 커널을 사용하는 3차원 병렬영상복원기법
DE102016209674B4 (de) * 2016-06-02 2023-10-26 Siemens Healthcare Gmbh Ermittlung einer räumlichen Verteilung von Materialeigenschaftswerten auf Basis einer Einzelenergie-CT-Bildaufnahme mit Hilfe eines iterativen Optimierungsverfahrens
CN106383132B (zh) * 2016-10-17 2019-05-14 北京君和信达科技有限公司 辐射检查系统和方法
JP7063378B2 (ja) * 2018-03-20 2022-05-09 日本電気株式会社 撮像装置及び撮像方法
WO2019211741A1 (en) 2018-05-02 2019-11-07 Augmedics Ltd. Registration of a fiducial marker for an augmented reality system
US10740983B2 (en) * 2018-06-01 2020-08-11 Ebay Korea Co. Ltd. Colored three-dimensional digital model generation
US11766296B2 (en) 2018-11-26 2023-09-26 Augmedics Ltd. Tracking system for image-guided surgery
CN109949899B (zh) * 2019-02-28 2021-05-28 未艾医疗技术(深圳)有限公司 图像三维测量方法、电子设备、存储介质及程序产品
CN110349151B (zh) * 2019-07-16 2021-12-03 科大讯飞华南人工智能研究院(广州)有限公司 一种目标识别方法及装置
US11382712B2 (en) 2019-12-22 2022-07-12 Augmedics Ltd. Mirroring in image guided surgery
CN112652054B (zh) * 2020-12-22 2022-12-20 上海索骥信息科技有限公司 一种dr/ct数字物体构建方法和系统
US11896445B2 (en) 2021-07-07 2024-02-13 Augmedics Ltd. Iliac pin and adapter
WO2023245505A1 (en) * 2022-06-22 2023-12-28 Syngular Technology Limited A system and a method for 3d image processing, and a method for rendering a 3d image

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030219093A1 (en) * 2002-05-22 2003-11-27 Ge Yokogawa Medical System, Limited Three dimensional back projection method and an x-ray CT apparatus
CN2774421Y (zh) * 2005-04-12 2006-04-26 车延军 多屏幕显示的手术导航装置
CN1783098A (zh) * 2004-11-23 2006-06-07 通用电气公司 用于体呈现显示协议的方法和设备
US20060291717A1 (en) * 2005-06-23 2006-12-28 General Electric Company Method to define the 3D oblique cross-section of anatomy at a specific angle and be able to easily modify multiple angles of display simultaneously
CN101936924A (zh) * 2009-06-30 2011-01-05 同方威视技术股份有限公司 物品检查系统、dr成像装置和ct成像装置

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205986A (ja) * 1989-02-03 1990-08-15 Toshiba Corp 画像表示装置
US5367552A (en) * 1991-10-03 1994-11-22 In Vision Technologies, Inc. Automatic concealed object detection system having a pre-scan stage
JP3313397B2 (ja) * 1992-05-21 2002-08-12 株式会社東芝 X線ct装置
EP0825457A3 (en) 1996-08-19 2002-02-13 Analogic Corporation Multiple angle pre-screening tomographic systems and methods
AU9474298A (en) * 1997-10-10 1999-05-03 Analogic Corporation Ct target detection using surface normals
US5907593A (en) * 1997-11-26 1999-05-25 General Electric Company Image reconstruction in a CT fluoroscopy system
JP2000107173A (ja) * 1998-10-08 2000-04-18 Fuji Photo Film Co Ltd 3次元用放射線画像形成装置
JP2000271110A (ja) * 1999-03-26 2000-10-03 Hitachi Medical Corp 医用x線装置
DE19954664B4 (de) * 1999-11-13 2006-06-08 Smiths Heimann Gmbh Vorrichtung zur Bestimmung von kristallinen und polykristallinen Materialien eines Gegenstandes
DE19954662B4 (de) * 1999-11-13 2004-06-03 Smiths Heimann Gmbh Vorrichtung und Verfahren zum Detektieren von unzulässigen Reisegepäckgegenständen
JP2001149368A (ja) * 1999-11-29 2001-06-05 Hitachi Medical Corp 医用x線装置
JP2004012407A (ja) * 2002-06-11 2004-01-15 Hitachi Ltd 透過画像提供システムおよびx線ct・dr撮影サービスシステム
JP2004177138A (ja) * 2002-11-25 2004-06-24 Hitachi Ltd 危険物探知装置および危険物探知方法
EP1645868A4 (en) * 2003-06-27 2007-03-28 Univ Tsinghua GAMMA RADIATION IMAGING SYSTEM FOR NON-DESTRUCTIVE INSPECTION OF LUGGAGE
US7215734B2 (en) * 2004-06-30 2007-05-08 General Electric Company Method and system for three-dimensional reconstruction of images
JP4711759B2 (ja) * 2005-07-08 2011-06-29 パナソニック株式会社 X線検査装置
CN100495439C (zh) * 2005-11-21 2009-06-03 清华大学 采用直线轨迹扫描的图像重建系统和方法
JP2007280354A (ja) * 2006-03-16 2007-10-25 Ricoh Co Ltd 三次元形状処理装置、三次元形状処理方法、三次元形状処理プログラム、記録媒体、パーツカタログ・システム、パーツカタログ作成方法、及びプログラム
CN101071111B (zh) * 2006-05-08 2011-05-11 清华大学 一种多视角航空集装箱安全检查系统及方法
CN101112316A (zh) * 2006-07-28 2008-01-30 Ge医疗系统环球技术有限公司 X射线混合诊断系统
CN200956017Y (zh) * 2006-09-08 2007-10-03 清华大学 集装箱多重dr/ct检测装置
US7894649B2 (en) * 2006-11-02 2011-02-22 Accuray Incorporated Target tracking using direct target registration
CN101271075A (zh) * 2007-03-22 2008-09-24 清华大学 一种ct扫描安全检查方法及其装置
WO2008120136A1 (en) * 2007-03-30 2008-10-09 Koninklijke Philips Electronics N.V. 2d/3d image registration
US8355595B2 (en) * 2007-05-15 2013-01-15 Xerox Corporation Contrast enhancement methods and apparatuses
CN101382507A (zh) * 2007-09-05 2009-03-11 同方威视技术股份有限公司 一种检查航空货运集装箱中违禁物品的装置
CN102608135B (zh) * 2007-10-05 2015-02-18 清华大学 在危险品检查系统中确定ct扫描位置的方法和设备
CN101403710B (zh) * 2007-10-05 2013-06-19 清华大学 液态物品检查方法和设备
JP5171215B2 (ja) * 2007-11-08 2013-03-27 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X線ct装置
CN101470082B (zh) * 2007-12-27 2011-03-30 同方威视技术股份有限公司 物品检测装置及其检测方法
US8180139B2 (en) * 2009-03-26 2012-05-15 Morpho Detection, Inc. Method and system for inspection of containers
US9401047B2 (en) * 2010-04-15 2016-07-26 Siemens Medical Solutions, Usa, Inc. Enhanced visualization of medical image data
US8615118B2 (en) * 2010-05-28 2013-12-24 The University Of Maryland, Baltimore Techniques for tomographic image by background subtraction
JP5536607B2 (ja) * 2010-10-13 2014-07-02 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X線ct装置
JP2012170736A (ja) * 2011-02-23 2012-09-10 Toshiba Corp X線コンピュータ断層撮影装置
EP2689394A1 (en) * 2011-03-22 2014-01-29 Analogic Corporation Compound object separation
US11284846B2 (en) * 2011-05-12 2022-03-29 The John Hopkins University Method for localization and identification of structures in projection images
CN102651145B (zh) * 2012-04-06 2014-11-05 哈尔滨工业大学 股骨三维模型可视化方法
EP2856430B1 (en) * 2012-05-01 2017-09-13 Analogic Corporation Determination of z-effective value for set of voxels using ct density image and sparse multi-energy data
JP6153105B2 (ja) * 2013-01-10 2017-06-28 東芝Itコントロールシステム株式会社 Ct装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030219093A1 (en) * 2002-05-22 2003-11-27 Ge Yokogawa Medical System, Limited Three dimensional back projection method and an x-ray CT apparatus
CN1783098A (zh) * 2004-11-23 2006-06-07 通用电气公司 用于体呈现显示协议的方法和设备
CN2774421Y (zh) * 2005-04-12 2006-04-26 车延军 多屏幕显示的手术导航装置
US20060291717A1 (en) * 2005-06-23 2006-12-28 General Electric Company Method to define the 3D oblique cross-section of anatomy at a specific angle and be able to easily modify multiple angles of display simultaneously
CN101936924A (zh) * 2009-06-30 2011-01-05 同方威视技术股份有限公司 物品检查系统、dr成像装置和ct成像装置

Also Published As

Publication number Publication date
EP3021283A2 (en) 2016-05-18
EP3021283A3 (en) 2016-09-14
JP2018128458A (ja) 2018-08-16
JP2019144250A (ja) 2019-08-29
CN105094725B (zh) 2019-02-19
JP2015227872A (ja) 2015-12-17
CN105094725A (zh) 2015-11-25
US9805504B2 (en) 2017-10-31
HK1217796A1 (zh) 2017-01-20
EP3021283B1 (en) 2020-12-09
JP6770121B2 (ja) 2020-10-14
US20150332498A1 (en) 2015-11-19
RU2599596C1 (ru) 2016-10-10

Similar Documents

Publication Publication Date Title
WO2015172726A1 (zh) 图像显示方法
CN105784731B (zh) 一种定位三维ct图像中的目标的方法和安检系统
CN105806856B (zh) 双能射线成像方法和系统
EP2437050B1 (en) Dual-energy material identification method and apparatus with undersampling
JP6968826B2 (ja) 投影画像を生成するためのシステムおよび方法
EP1875276B1 (en) Energy distribution reconstruction in ct
JP2014508954A (ja) 合成オブジェクト分割方法およびシステム{compoundobjectseparation}
WO2014048080A1 (zh) Ct成像中定位物体的方法以及设备
EP3187904B1 (en) Inspection devices for quarantine
CN101218607B (zh) 用于在扫描视场外的对象点的重建算法
JP2019522775A5 (zh)
US8027427B2 (en) Systems and method for scanning a continuous stream of objects
WO2016095776A1 (zh) 一种定位三维ct图像中的目标的方法和安检ct系统
WO2016095798A1 (zh) 一种定位三维ct图像中的目标的方法和安检系统
JP2017510364A (ja) X線ボリューム撮像装置一体型患者台
US9134258B2 (en) Systems and methods for imaging and detecting sheet-like material
CN105612433A (zh) 层析x射线照相合成成像
KR101493683B1 (ko) 콘-빔 기반 반응선 재구성을 이용한 초고해상도 pet 영상 재구성 장치 및 그 방법
CN102590239B (zh) 在液态物品检查系统中确定ct扫描位置的方法和设备
JP2021117148A (ja) 減弱分布画像作成装置、画像処理装置、放射線断層撮影システム、減弱分布画像作成方法、画像処理方法
CN115641388A (zh) 物品成像方法、装置、设备、系统和介质

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015127778

Country of ref document: RU

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15793055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15793055

Country of ref document: EP

Kind code of ref document: A1