WO2015170936A1 - 습윤성 표면을 가지는 하이드로겔 콘택트렌즈 및 그 제조방법 - Google Patents

습윤성 표면을 가지는 하이드로겔 콘택트렌즈 및 그 제조방법 Download PDF

Info

Publication number
WO2015170936A1
WO2015170936A1 PCT/KR2015/004656 KR2015004656W WO2015170936A1 WO 2015170936 A1 WO2015170936 A1 WO 2015170936A1 KR 2015004656 W KR2015004656 W KR 2015004656W WO 2015170936 A1 WO2015170936 A1 WO 2015170936A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact lens
hydrogel contact
hydrophilic
weight
hyaluronate
Prior art date
Application number
PCT/KR2015/004656
Other languages
English (en)
French (fr)
Inventor
이수창
오경희
Original Assignee
주식회사 인터로조
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 인터로조 filed Critical 주식회사 인터로조
Priority to EP15789300.9A priority Critical patent/EP3141943B1/en
Priority to CA2947829A priority patent/CA2947829C/en
Priority to CN201580024298.2A priority patent/CN106716233B/zh
Priority to JP2017511130A priority patent/JP6486457B2/ja
Priority to BR112016026141-0A priority patent/BR112016026141A2/ko
Priority to US15/309,753 priority patent/US10371965B2/en
Priority to ES15789300T priority patent/ES2928023T3/es
Publication of WO2015170936A1 publication Critical patent/WO2015170936A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/056Forming hydrophilic coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • G02B1/043Contact lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/049Contact lenses having special fitting or structural features achieved by special materials or material structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2343/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium or a metal; Derivatives of such polymers
    • C08J2343/04Homopolymers or copolymers of monomers containing silicon
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/109Sols, gels, sol-gel materials
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/16Laminated or compound lenses

Definitions

  • the present invention relates to a hydrogel contact lens having a wettable surface and a method of manufacturing the same, and more particularly, to forming a hydrophilic surface layer of an interpenetrating network (IPN) structure on the surface of a hydrogel contact lens, thereby providing a basic hydrogel contact lens.
  • IPN interpenetrating network
  • the present invention relates to a hydrogel contact lens having excellent wettability while satisfying physical property conditions and a method of manufacturing the same.
  • Contact lenses must be in direct contact with the eye to maintain the safety and efficacy of the eyes while maintaining the transparency and surface wettability of the contact lenses, so that oxygen must be adequately supplied from the atmosphere and the release of carbon dioxide from the cornea Should be appropriate.
  • the contact lens should be designed in consideration of the clinical aspects such that the tear layer flows smoothly and avoids excessive friction between the eyelid and the eye surface.
  • the material's mechanical strength, biocompatibility, non-toxicity, optical transparency of the material, refractive index, surface wet ability In addition, conditions such as water content, welling rate, and oxygen permeability suitable for the cornea should be met.
  • contact lenses may be classified into hard contact lenses and soft contact lenses according to materials, and are classified into vision correction, therapeutic, and cosmetic contact lenses according to their functions.
  • Hydrogel is a representative material of soft contact lenses that are used by modern people for vision correction and treatment. At this time, most hydrogel contact lenses are based on silicone or acrylate.
  • the cornea of the human eye is devoid of blood vessels and has a structure that receives oxygen directly from the external environment.
  • the lens itself acts as a kind of barrier, thereby reducing the oxygen transmission rate.
  • a general hydrogel contact lens is preferred by many people because of its comfortable fit, but there are problems such as hypoxia due to low oxygen permeability (corneal edema), and deterioration of the wettability of the lens surface due to leakage components attached to the lens surface. Therefore, hydrogel contact lenses are required, as well as excellent fit and high oxygen transmittance and wettability.
  • silicone-based hydrogel contact lenses are less comfortable to wear. That is, the oxygen permeability is sufficiently increased as the silicon content increases due to the nature of the silicone-based hydrogel material, but the hydrophilicity of the lens surface is reduced. This causes inconvenience to the wearer and causes problems such as eye irritation, corneal pigmentation, and adhesion of the lens to the cornea.
  • Patent Document 001 Korean Patent No. 10-0594414
  • the first generation of silicone-based hydrogel contact lens products used a method of increasing the hydrophilicity by plasma-surface treatment of the lens surface.
  • this is still a user inconvenience due to the low wettability of the surface, and a complex process called plasma surface treatment has been added to the manufacturing process caused a rise in production costs.
  • Korean Patent No. 10-0748379 (Patent Document 002) is a wet silicone hydrogel lens by Johnson & Johnson is presented.
  • the second generation silicon-based hydrogel contact lens uses a polyvinyl pyrrolidone (PVP) polymer as an internal wetting agent component to increase wettability and moisture content, and does not require a plasma post-treatment process. It is a technology that can make a hydrogel lens. However, this is because the internal wetting agent (PVP) gradually comes out of the lens and gradually wears out, so there is still a discomfort when wearing the lens.
  • PVP polyvinyl pyrrolidone
  • the third generation silicon-based hydrogel contact lens Korean Unexamined Patent Publication No. 10-2007-0067679 (Patent Document 003) is a contact lens by Asahikaei Aime Co. and CooperVisiond is presented.
  • the third generation silicon-based hydrogel contact lens is a technology for preparing a contact lens by synthesizing a silicon macromer having a hydrophilicity on the raw material itself.
  • this requires a high level of molecular design and synthesis of raw materials.
  • Korean Patent No. 10-1249705 Patent Document 004
  • Patent Document 004 Korean Patent No. 10-1249705
  • Patent Document 004 Korean Patent No. 10-1249705
  • the oligosaccharide is released outside the lens surface due to the lack of physical and chemical bonding strength with the polymer matrix.
  • Patent Document 001 Republic of Korea Patent No. 10-0594414
  • Patent Document 002 Republic of Korea Patent No. 10-0748379
  • Patent Document 003 Republic of Korea Patent Publication No. 10-2007-0067679
  • Patent Document 004 Republic of Korea Patent No. 10-1249705
  • an object of the present invention is to provide a hydrogel contact lens having a surface of excellent wettability while satisfying basic physical properties to be provided as a hydrogel contact lens.
  • an object of the present invention is to provide a method for producing a hydrogel contact lens described above.
  • a hydrophilic surface layer of an interpenetrating network (IPN) structure on the hydrogel contact lens substrate, IPN interpenetrating network
  • hydrogel contact lens characterized in that the physical intermixing layer with the hydrophilic surface layer formed in the contact lens substrate to a thickness of 20nm or more.
  • the hydrophilic surface layer may comprise a hyaluronate compound, a hydrophilic monomer and a crosslinking agent.
  • the hydrophilic surface layer may include 0.2 to 10 parts by weight of the hydrophilic monomer with respect to 0.05 to 2 parts by weight of the hyaluronate compound.
  • the content of the crosslinking agent may comprise 0.001 to 0.1 mol per mol of hydrophilic monomers.
  • the hyaluronate compound may be selected from one or two or more from sodium hyaluronic acid and sodium acetylated hyaluronate.
  • the hyaluronate compound may have a weight average molecular weight (Mw) of 50,000 to 3,000,000.
  • the crosslinking agent is ethylene glycol dimethacrylate (EGDMA), diethylene glycol methacrylate (DEGMA), glycerol dimethacrylate (GDMA), divinylbenzene (DVB) and trimethylol
  • EGDMA ethylene glycol dimethacrylate
  • DEGMA diethylene glycol methacrylate
  • GDMA glycerol dimethacrylate
  • DVB divinylbenzene
  • TMPTMA propane trimethacrylate
  • a second step of dipping the hydrogel contact lens substrate in a surface modification solution including a hyaluronate compound, a hydrophilic monomer, and a crosslinking agent is a surface modification solution including a hyaluronate compound, a hydrophilic monomer, and a crosslinking agent.
  • the process between the first step and the second step, the step of swelling the hydrogel contact lens substrate may further comprise a.
  • the second step is immersed in the surface modification solution for at least 1 hour
  • the surface modification solution may include 0.05 to 2% by weight of the hyaluronate compound, 0.2 to 10% by weight of the hydrophilic monomer, 0.001 to 0.5% by weight of the initiator and the balance of water, and the crosslinking agent may include 0.001 to 0.1 moles per mole of the hydrophilic monomer. Can be.
  • hyaluronate sodium Hyaluronate
  • a hydrophilic monomer is introduced into the inter-Penentrated Network (IPN) structure through a crosslinking agent on the surface of the contact lens, through which the contact lens substrate and the hydrophilic Since the physical intermixing layer is formed to have a predetermined thickness between the surface layers, the wettability is remarkably improved while satisfying basic properties such as moisture content, oxygen permeability, and mechanical strength.
  • FIG. 1 is a front cross-sectional Cryo-SEM photograph of a silicon hydrogel contact lens manufactured according to an embodiment of the present invention.
  • Figure 2 is a side cross-sectional Cryo-SEM photograph of a silicone hydrogel contact lens prepared according to an embodiment of the present invention.
  • FIG. 3 is a surface SEM photograph of a silicon hydrogel contact lens manufactured according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional SEM photograph of a silicon hydrogel contact lens manufactured according to an embodiment of the present invention.
  • the present invention hydrogel contact lens substrate; And a hydrophilic surface layer formed on an interpenetrating network (IPN) structure on the hydrogel contact lens substrate.
  • the hydrogel contact lens according to the present invention (hereinafter, abbreviated as "contact lens") is based on existing conventional acrylate-based hydrogel or silicone-based hydrogel contact lenses, but interpenetrating the surface of the substrate And a physical intermixing layer with the hydrophilic surface layer in the hydrophilic surface layer and the contact lens substrate formed in the network (IPN) structure.
  • the hydrophilic surface layer comprises a sodium hyaluronate compound, a hydrophilic monomer and a crosslinking agent, which have an interpenetrating network (IPN) structure.
  • IPN interpenetrating network
  • the hyaluronate compound and the hydrophilic monomer form an interpenetrating network (IPN) structure on the surface of the contact lens.
  • Method for manufacturing a contact lens according to the invention the first step of preparing a hydrogel contact lens substrate; And a second step (surface modification step) of immersing the hydrogel contact lens substrate in a surface modification solution comprising a hyaluronate compound, a hydrophilic monomer and a crosslinking agent.
  • the method for manufacturing a contact lens according to the present invention proceeds between the first step and the second step, further comprising the step of swelling the hydrogel contact lens substrate (swelling step). It may include.
  • the hydrogel contact lens substrate is a conventional hydrogel contact lens, which may be selected from, for example, an acrylate-based hydrogel or silicone-based hydrogel contact lens which is conventionally commonly used as a hydrogel contact lens.
  • the hydrogel contact lens substrate may be a transparent contact lens or a color contact lens to which a pigment is added.
  • the hydrogel contact lens substrate may be made of a hydrophilic acrylic polymer, a hydrophilic silicone polymer, or a hydrophilic silicone-acrylic polymer, and these polymers are not particularly limited as long as they can form a hydrogel.
  • the hydrogel contact lens substrate may include at least 80% by weight of the polymer based on the total weight, for example, 80% to 100% by weight, 85% to 99.9% by weight, or 88% by weight % To 98% by weight.
  • hydrogel contact lens substrate may be prepared and prepared by, for example, casting (cast molding), spin casting, or the like, but the manufacturing method is not particularly limited.
  • the hydrogel contact lens base material is manufactured by a cast molding method in one example, and a mixture solution containing a hydrophilic monomer, a crosslinking agent and an initiator is injected into the mold mold, and then heat is applied to polymerize the lens at the same time. It may be molded into a shape and manufactured.
  • the hydrophilic monomer is not particularly limited, which may be used that is commonly used in the art, for example, a hydrophilic acrylic monomer or a hydrophilic silicone acrylic monomer may be used.
  • the hydrophilic acrylic monomer may be, for example, C 1 -C 15 hydroxyalkyl methacrylate substituted with 1 to 3 hydroxyl groups, C 1 -C 15 hydroxyalkyl acrylate substituted with 1 to 3 hydroxyl groups, acrylamide ), Vinyl pyrrolidone, glycerol methacrylate, glycerol methacrylate, acrylic acid, methacrylic acid and the like.
  • the hydrophilic acrylic polymer is, for example, 2-hydroxyethyl methacrylate (HEMA), N, N-dimethyl acrylamide (N, N-dimethyl acrylamide, DMA), N-vinyl It may be at least one selected from pyrrolidone (N-vinyl pyrrolidone, NVP), glycerol monomethacrylate (GMMA), methacrylic acid (MAA) and the like.
  • HEMA 2-hydroxyethyl methacrylate
  • NVP N-vinyl pyrrolidone
  • GMMA glycerol monomethacrylate
  • MAA methacrylic acid
  • the hydrophilic silicone acrylic monomer may include a polydimethylsiloxane compound and the like.
  • specific examples of the hydrophilic silicone acrylic monomers include tris (3-methacryloxypropyl) silane, 2- (trimethylsilyloxy) ethyl methacrylate, 3-tris (trimethylsilyloxy) silylpropyl methacrylate, and 3- Methacryloxypropyl tris (trimethylsilyl) silane (MPTS), 3-methacryloxy-2- (hydroxypropyloxy) propylbis (trimethylsiloxy) methylsilane and 4-methacryloxybutyl terminated polydimethylsiloxane One or more selected from the like.
  • the crosslinking agent may be used, for example, at least one selected from ethylene glycol dimethacrylate (EGDMA), diethylene glycol methacrylate (DEGMA), divinylbenzene, trimethylolpropanetrimethacrylate (TMPTMA), and the like.
  • ELDMA ethylene glycol dimethacrylate
  • DEGMA diethylene glycol methacrylate
  • TMPTMA trimethylolpropanetrimethacrylate
  • the initiator is also for polymerization, which is, for example, azodiisobutylonitrile (AIBN) and benzoin methyl ether (BME), 2,5-dimethyl-2,5-di- (2-ethylhexa
  • AIBN azodiisobutylonitrile
  • BME benzoin methyl ether
  • DMPA dimethoxyphenyl acetophenone
  • the surface thereof is modified to form a hydrophilic surface layer.
  • the hydrophilic surface layer comprises a sodium hyaluronate compound, a hydrophilic monomer and a crosslinking agent.
  • the hydrogel contact lens substrate is immersed in the surface modification solution. More specifically, the hydrogel contact lens substrate is immersed in the surface modification solution in which the hyaluronate compound and the hydrophilic monomer are dissolved to form a hydrophilic surface layer on the surface of the hydrogel contact lens substrate.
  • the hydrophilic monomer may form an interpenetrating network (IPN) structure with the hyaluronate compound during the polymerization of the hydrophilic polymer through a crosslinking agent.
  • IPN interpenetrating network
  • the hydrophilic surface layer is formed from a mixture comprising a hyaluronate compound, a hydrophilic monomer, and a crosslinking agent, and the hydrophilic polymer formed by crosslinking the hydrophilic monomer is introduced into the substrate surface in the interpenetrating network (IPN) structure with the hyaluronate compound.
  • IPN interpenetrating network
  • a physical intermixing layer can be formed between the contact lens substrate and the hydrophilic surface layer.
  • 'introduction' means that the hyaluronate compound and the hydrophilic polymer are formed into a polymer brush through physical and chemical bonding to the contact lens surface, and the bonding position is not limited.
  • the term "IPN" refers to a state in which at least two or more crosslinked structures exist in the hydrophilic surface layer, and in one example, the crosslinked structure is a hydrophilic polymer polymerized with a hyaluronate compound and a hydrophilic monomer. It may be in an entanglement, or in a state of being linked to each other, or in a penetrating state.
  • the hyaluronate compound has a chemically and physically strong bonding force with the hydrophilic polymer and does not come out, and the contact angle and the water content are improved to have excellent wettability, and together with oxygen permeability and Young's modulus, etc. The physical properties of can be improved.
  • the hydrophilic surface layer may include 0.2 to 10 parts by weight of the hydrophilic monomer with respect to 0.05 to 2 parts by weight of the hyaluronate compound.
  • the improvement effect such as wettability (hydrophilicity) according to its use may be insignificant.
  • the amount of the hyaluronate compound exceeds 2 parts by weight, for example, formation of an IPN structure may be difficult.
  • the amount of the hydrophilic monomer is less than 0.2 part by weight, it may be difficult to form a good IPN structure.
  • the amount of hydrophilic monomer exceeds 10 parts by weight, for example, the effect of improving wettability can be reduced.
  • the hydrophilic surface layer may include 0.5 to 5 parts by weight of the hydrophilic monomer based on 0.1 to 1 parts by weight of the hyaluronate compound.
  • the 'hydrophilic monomer' and the 'hydrophilic polymer' are not particularly limited as long as they have at least one hydrophilic group in the molecule.
  • the 'hydrophilic polymer' includes the meaning of the homopolymer and the copolymer (co-polymer) of the hydrophilic monomer.
  • the hydrophilic monomer for example, one or more selected from hydrophilic acrylic monomers and hydrophilic silicone-acrylic monomers can be used.
  • the hydrophilic monomer may be selected from hydrophilic acrylic monomers.
  • the hydrophilic acrylic monomer may be, for example, C 1 -C 15 hydroxyalkyl methacrylate substituted with 1 to 3 hydroxyl groups, C 1 -C 15 hydroxyalkyl acrylate substituted with 1 to 3 hydroxyl groups, acrylamide ( acrylamide), vinyl pyrrolidone, glycerol methacrylate, glycerol methacrylate, acrylic acid, methacrylic acid and the like.
  • the hydrophilic acrylic polymer is, for example, 2-hydroxyethyl methacrylate (HEMA), N, N-dimethyl acrylamide (N, N-dimethyl acrylamide, DMA), N-vinyl It may be at least one selected from pyrrolidone (N-vinyl pyrrolidone, NVP), glycerol monomethacrylate (GMMA), methacrylic acid (MAA) and the like. And the hydrophilic polymer may be a homopolymer of the above hydrophilic acrylic monomer, or a copolymer of these monomers.
  • HEMA 2-hydroxyethyl methacrylate
  • NVP N-vinyl pyrrolidone
  • GMMA glycerol monomethacrylate
  • MAA methacrylic acid
  • the hydrophilic polymer may be a homopolymer of the above hydrophilic acrylic monomer, or a copolymer of these monomers.
  • the hyaluronate (NaHA) compound is a natural polysaccharide material, which can improve wettability and provide a moist fit.
  • the hyaluronate compound is not particularly limited as long as it includes a sodium hyaluronate component.
  • the sodium hyaluronate compound is, for example, sodium hyaluronic acid as a sodium salt form of hyaluronic acid and sodium acetylated sodium hyaluronate in which the hydroxyl group is partially acetylated. one or more selected from, for example, sodium acetylated hyaluronate.
  • the hyaluronate compound may use a polymer having a weight average molecular weight (Mw) in the range of 50,000 to 3,000,000.
  • Mw weight average molecular weight
  • the surface modification solution is a solution including at least a hyaluronate compound and a hydrophilic monomer, which may be, for example, an aqueous solution.
  • the surface modification solution may include a hyaluronate compound, a hydrophilic monomer, a crosslinking agent, and water (distilled water).
  • the crosslinking agent is capable of forming a robust IPN structure through a polymerization reaction with a hyaluronate compound and a hydrophilic monomer, and has an advantage of significantly improving an improvement effect such as wettability (hydrophilicity).
  • the crosslinking agent is, for example, ethylene glycol dimethacrylate (EGDMA), diethylene glycol methacrylate (DEGMA), glycerol dimethacrylate (GDMA), divinylbenzene (DVB) and trimethylolpropane trimethacrylate One or more selected from (TMPTMA) and the like.
  • Such a crosslinking agent may be included in 0.001 to 0.1 mole per mole of the hydrophilic monomer, more preferably 0.02 to 0.05 mole is included.
  • the wettability can be remarkably improved without deterioration of basic physical properties such as moisture content, oxygen permeability, and permeability. If the crosslinking agent is less than 0.02 per mole of hydrophilic monomer, the formation of IPN structure is insignificant, so that the moisture evaporation rate may be less than 160 seconds, and the wettability improvement effect may be insignificant. Densely formed may cause a problem that the effect of improving the wettability is reduced.
  • the surface modification solution may further comprise an initiator for the polymerization of the hydrophilic monomer.
  • the initiator is not particularly limited as long as it initiates a polymerization reaction of the hydrophilic monomer.
  • the initiator may be selected, for example, from azo compounds, specific examples being azodiisobutylonitrile (AIBN), 2,2'-azobis (2-amidinopropane) dihydrochloride (ABAH) And at least one selected from 4,4'-azobis (4-cyanovaleric acid) and the like.
  • the initiator may be used as a commercially available water-soluble product, for example, products such as Duzot's Vazo 56WSP and Vazo 68WSP, but is not limited thereto.
  • the surface modification solution may comprise 0.05 to 2% by weight hyaluronate compound, 0.2 to 10% by weight hydrophilic monomer, and 0.001 to 0.5% by weight initiator based on the total weight of the solution.
  • an aqueous solution may include 87.5 to 99.5% of water (distilled water) as the remaining amount.
  • the crosslinking agent may be included in an amount of 0.001 to 0.1 moles per mole of the hydrophilic monomer, and more preferably 0.02 to 0.05 moles.
  • the improvement effect such as wettability (hydrophilicity) according to its use may be insignificant.
  • the content of the hyaluronate compound exceeds 2% by weight, for example, the IPN structure may be destroyed.
  • the content of the hydrophilic monomer is less than 0.2% by weight, it may be difficult to form a good IPN structure.
  • the content of the hydrophilic monomer exceeds 10% by weight, for example, the effect of improving wettability may be reduced.
  • the content of the initiator is less than 0.001% by weight, the polymerization initiation reaction may be difficult.
  • the surface modification solution may include 0.1 to 1% by weight of the hyaluronate compound, 0.5 to 5% by weight of the hydrophilic monomer, and 0.005 to 0.2% by weight of the initiator based on the total weight of the solution.
  • the hydrophilic surface layer is formed through the immersion of the surface modification solution as described above, 0.5 to 49% by weight of the hyaluronate compound, 50 to 99.45% by weight of the hydrophilic monomer, and It may be formed by a surface modification solution containing 0.05 to 5% by weight of the initiator.
  • the hydrophilic surface layer preferably has a thickness of 40nm to 2 ⁇ m.
  • the thickness of the hydrophilic surface layer is less than 40nm, the hydrophilicity is low, the effect of improving the wettability of the lens surface may be insignificant.
  • the thickness of the hydrophilic surface layer exceeds 2 ⁇ m, the shape of the surface-modified contact lens is deformed, or in some cases, the oxygen permeability and optical properties are lowered, which adversely affects the basic function to be provided as a contact lens.
  • the step of swelling the hydrogel contact lens substrate may be performed before proceeding with the surface modification, that is, before immersion in the surface modification solution to form a hydrophilic surface layer.
  • the method of manufacturing a hydrogel contact lens according to the present invention comprises the steps of preparing a hydrogel contact lens substrate according to an exemplary embodiment; Swelling the hydrogel contact lens substrate; And immersing the swollen hydrogel contact lens substrate in a surface modification solution including a hyaluronate compound, a hydrophilic monomer, and a crosslinking agent.
  • the swelling may be performed by dipping the hydrogel contact lens substrate in an alcohol solution.
  • the hydrogel contact lens substrate may be immersed in an alcohol solution such as 20 to 60 wt% aqueous ethanol solution for 10 minutes to 3 hours, but is not limited thereto.
  • an alcohol solution such as 20 to 60 wt% aqueous ethanol solution for 10 minutes to 3 hours, but is not limited thereto.
  • the swelled hydrogel contact lens substrate may be immersed in the surface modification solution for at least 1 hour. Preferably it can be immersed for 1 to 10 hours, more preferably 1 to 5 hours is effective.
  • a physical intermixing layer can be formed in a dry thickness of 20 nm or more between the hydrogel contact lens substrate and the hydrophilic surface layer.
  • one or more washing processes, one or more sterilization processes, and the like may be further performed.
  • the washing may proceed by a method of impregnation in deionized water.
  • the sterilization may be used, such as autoclaving.
  • the physical intermixing layer is formed on the surface of the contact lens while the hyaluronate and the hydrophilic polymer are introduced into the IPN structure, it has excellent wettability while satisfying the basic physical properties to be provided as a hydrogel contact lens. In addition, some of the physical properties can be improved than before.
  • the measuring method of each physical property is as follows.
  • the water content (%) was evaluated by measuring the weight of the dry contact lens and the swollen contact lens after being hydrated in an aqueous 0.9 wt% sodium chloride (NaCl) solution for 24 hours, using the following equation. That is, the water content was evaluated as the ratio of the weight of the swelled contact lens (W swell ) to the weight of the dry contact lens (W dry ).
  • the specimens were immersed in PBS solution at room temperature for 24 hours and then stored for at least 2 hours at 35 ° C ⁇ 0.5 ° C, equivalent to the temperature of the eye.
  • the oxygen permeability (Dk) was measured using an oxygen permeability measuring instrument [Model 201T, Rehder Development Co., West Lafayette, USA] under a lens water saturation at a temperature of 35 ° C. ⁇ 0.5 ° C. and a humidity of 98%. Measured.
  • the contact angle (°) was measured by a captive air bubble method using a contact angle measuring device (DSA 100).
  • Young's modulus was measured by Young's Modulus method using a universal test machine.
  • the hydrogel contact lens is washed 30 times with the index finger using a Reusch-Fresh (Bausch Lumb) lens cleaning solution and immersed in a clean cleaning solution for 1 hour. The washing process was repeated 10 times, and then the content of hyaluronate of the contact lens was measured using HPLC (Agilent 1260 HPLC, C18 column, mobile phase: 0.3X PBS, acetonitrile) and expressed as the content of sodium hyaluronate (g) per lens weight.
  • HPLC Alent 1260 HPLC, C18 column, mobile phase: 0.3X PBS, acetonitrile
  • the hydrogel contact lens was swollen for 5 hours in 0.9 wt% aqueous sodium chloride solution and then excess water remaining in the lens surface layer was removed with Whatman Filter paper No. 1.
  • the removed lens is fixed to a polypropylene convex mold and placed on an electronic balance installed in a thermo-hygrostat with a temperature of 35 ° C and a relative humidity of 30%. The weight was measured every 10 seconds, and the average value was taken by measuring five times the time when the water content of the lens decreased by 10%.
  • X-ray photoelectron spectroscopy (XPS) analysis was performed on the prepared lens samples.
  • a thickness profile was obtained through ion sputtering. Specifically, Ar + ions were sputtered at an incidence angle of 70 degrees with respect to the vertical direction of the sample at a voltage of 1 kV.
  • Ar + ion sputtering was performed at 1 minute intervals, and C1s XPS spectra were obtained at 1 minute intervals and the surface composition was calculated according to each functional group.
  • the area of the section where the surface composition of the polymer forming the hydrophilic surface layer was changed from 95 wt% to 5 wt% was calculated as the thickness of the physical intermixing layer.
  • HEMA 2-hydroxyethyl methacrylate
  • MAA methacrylic acid
  • EGDMA ethylene glycol dimethacrylate
  • AIBN azodiisobutylonitrile
  • the prepared liquid mixture was injected into a female mold for cast molding, and a male mold was assembled to the female mold.
  • the assembled mold was placed in a heat oven maintained at 100 ° C. and polymerized for 2 hours, after which the mold was separated to obtain a lens.
  • the obtained lens was placed in an aqueous solution containing sodium bicarbonate (sodium bicarbonate) to hydrate to prepare an acrylate hydrogel contact lens.
  • sodium bicarbonate sodium bicarbonate
  • the prepared liquid mixture was injected into a female mold for cast molding, and a male mold was assembled to the female mold.
  • the assembled mold was placed in a heat oven maintained at 100 ° C. and polymerized for 2 hours, after which the mold was separated to obtain a lens.
  • the obtained lens was placed in a 70% ethanol aqueous solution and deionized water in that order to hydrate to prepare a silicone hydrogel contact lens.
  • the silicon hydrogel contact lens substrate prepared in Preparation Example 2 was swelled for 1 hour by immersing in 40 wt% ethanol aqueous solution. Then, after immersion in the surface modification solution, the reaction was carried out for 1 hour at a temperature of 80 °C to modify the surface (formation of hydrophilic surface layer on the surface of the substrate).
  • the surface modification solution was used by mixing a hyaluronate compound, a hydrophilic monomer, a crosslinking agent and a water-soluble initiator in distilled water.
  • the modified lens was washed for 2 hours using 80 ° C. deionized water, and sterilized by autoclaving at 121 ° C. for 20 minutes to finally obtain a surface-modified silicone hydrogel contact lens.
  • the physical properties of the obtained silicone hydrogel contact lenses were evaluated, and the results are shown in the following [Table 3].
  • a silicone hydrogel contact lens was prepared in the same manner as in Example 1 except for changing the content of the crosslinking agent in the surface modification solution.
  • the physical properties of the obtained product were evaluated and the results are shown in the following [Table 3].
  • the acrylate-based hydrogel contact lens substrate prepared in Preparation Example 1 was swelled for 1 hour by immersing in 40wt% ethanol aqueous solution. Then, after immersion in the surface modification solution, and reacted for 1 hour at a temperature of 80 °C to modify the surface (forming a hydrophilic surface layer on the surface of the substrate).
  • the surface modification solution was used by mixing a hyaluronate compound, a hydrophilic acrylate monomer and a water-soluble initiator in distilled water.
  • the modified lens was washed for 2 hours using 80 ° C. deionized water, and sterilized by autoclaving at 121 ° C. for 20 minutes to finally obtain a surface-modified acrylate hydrogel contact lens.
  • the physical properties of the obtained acrylate-based hydrogel contact lens was evaluated, and the results are shown in the following [Table 3].
  • a silicone hydrogel contact lens was prepared in the same manner as in Example 1 except that the immersion time of the surface modification solution was changed.
  • the physical properties of the obtained product were evaluated and the results are shown in the following [Table 3].
  • a silicone hydrogel contact lens was prepared in the same manner as in Example 1 except for changing the hydrophilic monomer in the surface modification solution.
  • the physical properties of the obtained product were evaluated and the results are shown in the following [Table 3].
  • the acrylate hydrogel contact lens was prepared in the same manner as in Example 4 except for changing the hydrophilic monomer in the surface modification solution.
  • the physical properties of the obtained product were evaluated and the results are shown in the following [Table 3].
  • the acrylate hydrogel contact lens substrate prepared in Preparation Example 1 was used as a specimen according to the comparative example. That is, the specimen according to the comparative example is an acrylate hydrogel contact lens before surface modification.
  • the silicone hydrogel contact lens substrate prepared in Preparation Example 2 was used as a specimen according to the comparative example. That is, the specimen according to the comparative example is a silicon hydrogel contact lens before surface modification.
  • the silicone hydrogel contact lens substrate prepared in Preparation Example 2 was swelled for 1 hour by immersing in 40wt% ethanol aqueous solution. Then, after immersion in the surface modification solution, and reacted for 1 hour at a temperature of 80 °C to modify the surface (forming a hydrophilic surface layer on the surface of the substrate).
  • the surface modification solution was used by mixing a hyaluronate compound in distilled water.
  • the modified lens was washed for 2 hours using 80 ° C. deionized water, and sterilized by autoclaving at 121 ° C. for 20 minutes to finally obtain a surface-modified silicone hydrogel contact lens.
  • the physical properties of the obtained silicone hydrogel contact lenses were evaluated, and the results are shown in the following [Table 3].
  • a silicone hydrogel contact lens was prepared in the same manner as in Example 1 except for changing the content of the crosslinking agent in the surface modification solution.
  • the physical properties of the obtained product were evaluated and the results are shown in the following [Table 3].
  • a silicone hydrogel contact lens was prepared in the same manner as in Example 1 except that the immersion time of the surface modification solution was changed.
  • the physical properties of the obtained product were evaluated and the results are shown in the following [Table 3].
  • the contact angle, moisture content, Young's modulus, and oxygen permeability of the lens specimens (after surface modification) according to each embodiment were higher than those of the lens specimens (before surface modification) according to the comparative examples. It was found to be excellent. In addition, the moisture evaporation rate, the thickness of the hydrophilic surface layer and the physical intermixing layer was also found to be excellent.
  • the thickness of the physical intermixing layer becomes thick, and as a result, the Young's modulus decreases to increase the soft property, thereby improving the fit of the contact lens.
  • FIGS. 1 and 2 are Cryo-SEM photographs of a cross section of a silicon hydrogel contact lens according to an embodiment of the present invention
  • FIGS. 3 and 4 are views of a silicon hydrogel contact lens according to an embodiment of the present invention. SEM pictures of the surface and cross section.
  • the sodium hyaluronate and the hydrophilic acrylic polymer form a hydrophilic surface layer (surface modified layer) on the surface of the contact lens in the IPN (Inter-Penentrated Network) structure. .

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Eyeglasses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

본 발명은 습윤성 표면을 가지는 하이드로겔 콘택트렌즈 및 그 제조방법에 관한 것으로, 보다 상세하게는 하이드로겔 콘택트렌즈의 표면에 상호침투 네트워크(IPN) 구조의 친수성 표면층을 형성함으로써, 하이드로겔 콘택트렌즈로서의 기본 물성 조건들을 충족하면서도 우수한 습윤성을 갖는 하이드로겔 콘택트렌즈 및 그 제조방법에 관한 것이다.

Description

습윤성 표면을 가지는 하이드로겔 콘택트렌즈 및 그 제조방법
본 발명은 습윤성 표면을 가지는 하이드로겔 콘택트렌즈 및 그 제조방법에 관한 것으로, 보다 상세하게는 하이드로겔 콘택트렌즈의 표면에 상호침투 네트워크(IPN) 구조의 친수성 표면층을 형성함으로써, 하이드로겔 콘택트렌즈로서의 기본 물성 조건들을 충족하면서도 우수한 습윤성을 갖는 하이드로겔 콘택트렌즈 및 그 제조방법에 관한 것이다.
콘택트렌즈(Contact lens)는 안구에 직접 접촉함으로써, 눈의 안전과 효능을 유지하는 동시에 콘택트렌즈의 투명성과 표면 습윤성을 유지해야 하므로, 대기로부터 산소가 적절하게 공급되어야 하고, 각막으로부터 이산화탄소의 방출이 적절해야한다.
또한, 콘택트렌즈는 눈물 층의 흐름이 원활해야 하고, 눈꺼풀과 눈 표면과의 과다한 마찰도 피해야 하는 임상학적인 측면도 고려하여 설계되어야한다. 아울러, 콘택트렌즈로써 사용되려면 재료의 기계적 강도(tensile strength), 생체적합성(biocompatibility), 무독성(non toxicity), 재료의 광학적 투명도(optical transparent), 굴절율(refractive index), 표면 친수성(surface wet ability), 각막에 적합한 함수율(water content), 팽윤비(welling rate), 산소투과성(oxygen permeability) 등의 조건들도 충족시켜야 한다.
일반적으로, 콘택트렌즈는 재료에 따라 크게 하드(hard) 콘택트렌즈와 소프트(soft) 콘택트렌즈로 나눌 수 있으며, 기능에 따라 시력교정용, 치료용, 미용 콘택트렌즈 등으로 분류된다. 하이드로겔(Hydrogel)은 현대인들이 시력교정 및 치료 등의 목적으로 사용되어지고 있는 소프트 콘택트렌즈의 대표적 재료이다. 이때, 대부분의 하이드로겔 콘택트렌즈는 실리콘계 또는 아크릴레이트계를 주재료로 하고 있다.
인체 눈의 각막은 혈관이 없으며, 외부환경으로부터 산소를 직접 공급받는 구조로 되어있다. 그런데 콘택트렌즈를 착용하게 되면 렌즈 자체가 일종의 장벽으로 작용하여, 산소투과율을 감소시키는 역할을 하게 된다. 일반적인 하이드로겔 콘택트렌즈는 편안한 착용감 때문에 많은 사람들이 선호하고 있지만, 낮은 산소투과율에 의한 저산소증(각막 부종), 렌즈 표면에 부착된 누액성분들로 인한 렌즈표면의 습윤성 저하와 같은 문제점이 있다. 따라서 하이드로겔 콘택트렌즈는 우수한 착용감은 물론, 높은 산소투과율 및 습윤성 등이 요구된다.
예를 들어, 실리콘계 하이드로겔 콘택트렌즈를 착용하게 되면, 눈에 충분한 산소가 공급되어 저산소증에 의한 각막 부종이라는 부작용이 없게 된다.
그러나 실리콘계 하이드로겔 콘택트렌즈는 착용감이 낮다. 즉, 실리콘계 하이드로겔 재료의 특성상 실리콘 함량이 증가함에 따라 산소투과율은 충분히 증가하지만, 렌즈 표면의 친수성은 감소하게 된다. 이에 따라, 착용자에게 불편함을 주고 눈자극, 각막 착색, 각막에 대한 렌즈의 부착 등의 문제가 발생한다.
이러한 단점을 극복하기 위하여, 대한민국 등록특허 제10-0594414호(특허문헌 001)에 따르면 초기 제1세대 실리콘계 하이드로겔 콘택트렌즈 제품들은 렌즈 표면을 플라즈마 표면 처리하여 친수성을 증가시키는 방법을 사용하였다. 그러나 이는 여전히 표면의 습윤성이 낮아 사용자의 불편이 있어 왔으며, 제조공정상에 플라즈마 표면처리라는 복잡한 공정이 추가되어 생산원가의 상승을 야기했다.
또한, 제2세대 실리콘계 하이드로겔 콘택트렌즈로서, 대한민국 등록특허 제10-0748379호(특허문헌 002)는 Johnson & Johnson에 의한 습윤성 실리콘 하이드로겔 렌즈가 제시되어 있다. 상기 제2세대 실리콘계 하이드로겔 콘택트렌즈는 내부습윤제(internal wetting agent) 성분으로서 폴리비닐 피롤리돈(PVP ; polyvinyl pyrrolidone) 고분자를 사용하여, 습윤성과 함수율을 증가시키고, 플라즈마 후처리 공정이 필요 없이 실리콘계 하이드로겔 렌즈를 만들 수 있는 기술이다. 그러나 이는 내부습윤제(PVP)가 렌즈 밖으로 서서히 빠져나오면서 점차 착용감이 나빠지므로, 이 또한 렌즈 착용시의 불편함(discomfort)이 여전히 존재한다.
한편, 제3세대 실리콘계 하이드로겔 콘택트렌즈로서, 대한민국 공개특허 제10-2007-0067679호(특허문헌 003)에는 Asahikaei Aime Co.와 CooperVisiond에 의한 콘택트렌즈가 제시되어 있다. 상기 제3세대 실리콘계 하이드로겔 콘택트렌즈는 원료자체에 친수성을 부여한 실리콘 거대단량체(macromer)를 합성하여 콘택트렌즈를 제조하는 기술이다. 그러나 이는 원료에 대한 고도의 분자설계 및 합성기술이 필요하다.
게다가 원료의 제조방법이 복잡하고 여러 단계의 공정을 거침으로 인하여 최종제품에 원료제조시의 자극성의 잔류물질이 남는 문제점이 있다.
또한, 아크릴레이트계 하이드로겔 콘택트렌즈의 경우에도 표면 습윤성을 높이려는 기술이 시도되고 있다. 예를 들어, 대한민국 등록특허 제10-1249705호(특허문헌 004)에서는 콘택트렌즈를 올리고당 용액에 침지시켜 렌즈 표면을 개질시키는 방법을 제시하였다. 그러나 이는 올리고당이 고분자 매트릭스와 물리적 및 화학적 결합력이 부족하여 렌즈 표면 밖으로 방출되는 문제점이 있다.
[특허문헌]
(특허문헌 001) 대한민국 등록특허 제10-0594414호
(특허문헌 002) 대한민국 등록특허 제10-0748379호
(특허문헌 003) 대한민국 공개특허 제10-2007-0067679호
(특허문헌 004) 대한민국 등록특허 제10-1249705호
이에, 본 발명은 하이드로겔 콘택트렌즈로서 갖추어야 할 기본 물성들을 충족하면서도 우수한 습윤성의 표면을 갖는 하이드로겔 콘택트렌즈를 제공하는 것을 목적으로 한다.
또한, 본 발명은 상술한 하이드로겔 콘택트렌즈의 제조방법을 제공하는 것을 목적으로 한다.
상기와 같은 목적을 달성하기 위한 본 발명은
하이드로겔 콘택트렌즈 기재; 및
상기 하이드로겔 콘택트렌즈 기재 상에 상호침투 네트워크(IPN) 구조의 친수성 표면층을 포함하며,
상기 콘택트렌즈 기재 내에 상기 친수성 표면층과의 물리적 상호혼합층이 20nm 이상의 두께로 형성된 것을 특징으로 하는 하이드로겔 콘택트렌즈에 관한 것이다.
본 발명의 일 실시예에 따르면, 상기 친수성 표면층은 히알루로네이트 화합물, 친수성 단량체 및 가교제를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 친수성 표면층은 히알루로네이트 화합물 0.05 내지 2중량부에 대하여 친수성 단량체 0.2 내지 10중량부를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 가교제의 함량은 친수성 단량체 1몰 당 0.001 내지 0.1 몰 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 히알루로네이트 화합물은 소듐 히알루론산(sodium hyaluronic acid) 및 아세틸화 소듐 히알루로네이트(sodium acetylated hyaluronate)로부터 1종 또는 2종 이상이 선택될 수 있다.
본 발명의 일 실시예에 따르면, 상기 히알루로네이트 화합물은, 중량평균분자량(Mw)이 50,000 내지 3,000,000일 수 있다.
본 발명의 일 실시예에 따르면, 상기 가교제는 에틸렌 글리콜 디메타크릴레이트(EGDMA), 디에틸렌 글리콜 메타크릴레이트(DEGMA), 글리세롤 디메타크릴레이트(GDMA), 디비닐벤젠(DVB) 및 트리메틸올프로판 트리메타크릴레이트(TMPTMA) 중에서 1종 또는 2종 이상 선택될 수 있다.
또한, 상기와 같은 목적을 달성하기 위한 본 발명은
하이드로겔 콘택트렌즈 기재를 준비하는 제1단계; 및
히알루로네이트 화합물, 친수성 단량체 및 가교제를 포함하는 표면 개질 용액에 상기 하이드로겔 콘택트렌즈 기재를 침지하는 제2단계;를 포함하는 것을 특징으로 하는 하이드로겔 콘택트렌즈의 제조방법에 관한 것이다.
본 발명의 일 실시예에 따르면, 상기 제1단계와 제2단계의 사이에 진행되며, 상기 하이드로겔 콘택트렌즈 기재를 팽윤시키는 단계;를 더 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 2단계는 상기 표면 개질 용액에 적어도 1시간 침지시키며,
상기 표면 개질 용액은 히알루로네이트 화합물 0.05 내지 2중량%, 친수성단량체 0.2 내지 10중량%, 개시제 0.001 내지 0.5중량% 및 잔량의 물을 포함하며, 가교제는 친수성 단량체 1몰 당 0.001 내지 0.1 몰 포함할 수 있다.
본 발명에 따르면, 표면 개질에 의해 형성된 친수성 표면층을 포함하여 우수한 습윤성을 가지는 효과가 있다. 구체적으로, 본 발명에 따르면, 콘택트렌즈의 표면에 히알루로네이트(Sodium Hyaluronate) 및 친수성 단량체가 가교제를 통해 상호침투 네트워크(IPN ; Inter-Penentrated Network) 구조로 도입되며, 이를 통해 콘택트렌즈 기재와 친수성 표면층 사이에 물리적 상호혼합층이 일정 두께로 형성됨으로써, 함수율, 산소투과도, 기계적 강도 등의 기본 물성을 충족시키면서 습윤성이 현저히 향상되는 장점이 있다.
또한, 일부의 물성에 있어서는 종래보다 개선된 효과를 갖는다.
도 1은 본 발명의 실시예에 따라 제조된 실리콘 하이드로겔 콘택트렌즈의 정단면 Cryo-SEM 사진이다.
도 2는 본 발명의 실시예에 따라 제조된 실리콘 하이드로겔 콘택트렌즈의 측단면 Cryo-SEM 사진이다.
도 3은 본 발명의 일 실시예에 따라 제조된 실리콘 하이드로겔 콘택트렌즈의 표면 SEM 사진이다.
도 4는 본 발명의 일 실시예에 따라 제조된 실리콘 하이드로겔 콘택트렌즈의 단면 SEM 사진이다.
이하, 본 발명을 상세히 설명한다.
본 발명은, 하이드로겔 콘택트렌즈 기재; 및 상기 하이드로겔 콘택트렌즈 기재 상에 상호침투 네트워크(IPN ; Inter-Penentrated Network) 구조로 형성된 친수성 표면층을 포함하는 하이드로겔 콘택트렌즈를 제공한다. 구체적으로, 본 발명에 따른 하이드로겔 콘택트렌즈(이하, "콘택트렌즈"로 약칭한다.)는 기존 통상의 아크릴레이트계 하이드로겔 또는 실리콘계 하이드로겔 콘택트렌즈를 기재로 하되, 상기 기재의 표면에 상호침투 네트워크(IPN) 구조로 형성된 친수성 표면층 및 콘택트렌즈 기재 내에 친수성 표면층과의 물리적 상호혼합층이 형성되는 것을 포함한다.
이때, 본 발명의 바람직한 실시 형태에 따라서, 상기 친수성 표면층은 히알루로네이트(Sodium Hyaluronate) 화합물, 친수성 단량체 및 가교제를 포함하며, 이들은 상호침투 네트워크(IPN) 구조를 갖는다. 구체적으로, 상기 히알루로네이트 화합물과 친수성 단량체가 콘택트렌즈의 표면에서 상호침투 네트워크(IPN) 구조를 형성하고 있다. 이하, 본 발명에 따른 콘택트렌즈의 제조방법의 설명을 통해 본 발명에 따른 콘택트렌즈의 실시 형태를 함께 설명한다.
본 발명에 따른 콘택트렌즈의 제조방법은, 하이드로겔 콘택트렌즈 기재를 준비하는 제1단계; 및 히알루로네이트 화합물, 친수성 단량체 및 가교제를 포함하는 표면 개질 용액에 상기 하이드로겔 콘택트렌즈 기재를 침지하는 제2단계(표면 개질 단계)를 포함한다. 또한, 본 발명에 따른 콘택트렌즈의 제조방법은, 예시적인 실시 형태에 따라서, 상기 제1단계와 제2단계의 사이에 진행되는 것으로서, 하이드로겔 콘택트렌즈 기재를 팽윤시키는 단계(팽윤 단계)를 더 포함할 수 있다.
각 단계별로 설명하면 다음과 같다.
(1) 하이드로겔 콘택트렌즈 기재의 준비
본 발명에서, 하이드로겔 콘택트렌즈 기재는 통상의 하이드로겔 콘택트렌즈로서, 이는 예를 들어 종래에 하이드로겔 콘택트렌즈로 통상적으로 사용되고 있는 아크릴레이트계 하이드로겔 또는 실리콘계 하이드로겔 콘택트렌즈로부터 선택될 수 있다. 또한, 본 발명에서, 상기 하이드로겔 콘택트렌즈 기재는 투명 콘택트렌즈이거나, 또는 안료가 첨가된 컬러 콘택트렌즈일 수도 있다.
상기 하이드로겔 콘택트렌즈 기재는 친수성 아크릴계 중합체, 친수성 실리콘계 중합체 또는 친수성 실리콘-아크릴계 중합체를 주재료로 할 수 있으며, 이들 중합체는 하이드로겔을 형성할 수 있는 것이면 특별히 제한되지 않는다. 또한, 상기 하이드로겔 콘택트렌즈 기재는 전체 중량 기준으로 상기 중합체를 80중량% 이상 포함할 수 있으며, 구체적으로는 예를 들어 80중량% 내지 100중량%, 85중량% 내지 99.9중량%, 또는 88중량% 내지 98중량%로 포함할 수 있다.
아울러, 상기 하이드로겔 콘택트렌즈 기재는, 예를 들어 주형(cast molding)법 및 회전주조회전(spin casting)법 등의 방법으로 제조하여 준비할 수 있으나, 그 제조방법은 특별히 제한되지 않는다.
상기 하이드로겔 콘택트렌즈 기재는, 하나의 예시에서 주형(cast molding)법에 의해 제조되되, 주형 몰드에 친수성 단량체, 가교제 및 개시제를 포함하는 혼합액이 주입된 다음, 열이 가해져 중합이 이루어짐과 동시에 렌즈 형상으로 성형되어 제조될 수 있다. 이때, 친수성 단량체는 특별히 제한되지 않으며, 이는 당업계에서 통상적으로 사용되는 것이 사용될 수 있으며, 예를 들어 친수성 아크릴계 단량체나 친수성 실리콘 아크릴계 단량체 등이 사용될 수 있다.
상기 친수성 아크릴계 단량체는, 예를 들어 하이드록시기가 1 내지 3개 치환된 C1-C15 하이드록시알킬 메타크릴레이트, 하이드록시기가 1 내지 3개 치환된 C1-C15 하이드록시알킬 아크릴레이트, 아크릴 아미드(acrylamide), 비닐 피롤리돈(vinyl pyrrolidone), 글리세롤 메타크릴레이트(glycerol methacrylate), 아크릴산, 및 메타크릴산 등으로부터 선택된 하나 이상일 수 있다. 상기 친수성 아크릴계 중합체는, 보다 구체적인 예를 들어, 2-하이드록시에틸 메타크릴레이트(2-hydroxyethyl methacrylate, HEMA), N,N-디메틸 아크릴아미드(N,N-dimethyl acrylamide, DMA), N-비닐 피롤리돈(N-vinyl pyrrolidone, NVP), 글리세롤 모노메타크릴레이트(glycerol monomethacrylate, GMMA), 및 메타크릴산(methacrylic acid, MAA) 등으로부터 선택된 하나 이상일 수 있다.
또한, 상기 친수성 실리콘 아크릴계 단량체는 폴리디메틸실록산계 화합물 등을 포함할 수 있다. 상기 친수성 실리콘 아크릴계 단량체는, 구체적인 예를 들어 트리스(3-메타크릴옥시프로필)실란, 2-(트리메틸실릴옥시)에틸 메타크릴레이트, 3-트리스(트리메틸실릴옥시)실릴프로필 메타크릴레이트, 3-메타크릴옥시프로필 트리스(트리메틸실릴)실란(MPTS), 3-메타크릴옥시-2-(하이드록시프로필옥시)프로필비스(트리메틸실록시)메틸실란 및 4-메타크릴옥시부틸 터미네이티드 폴리디메틸실록산 등으로부터 선택된 하나 이상일 수 있다.
아울러, 상기 가교제는, 예를 들어 에틸렌 글리콜 디메타크릴레이트(EGDMA), 디에틸렌 글리콜 메타크릴레이트(DEGMA), 디비닐벤젠 및 트리메틸올프로판트리메타크릴레이트(TMPTMA) 등으로부터 선택된 하나 이상을 사용할 수 있다. 또한, 상기 개시제는 중합을 위한 것으로서, 이는 예를 들어 아조디이소부틸로나이트릴(AIBN) 및 벤조인 메틸 에테르(BME), 2,5-디메틸-2,5-디-(2-에틸헥사노일퍼옥시)헥산 및 디메톡시페닐 아세토페논(DMPA) 등으로부터 선택된 하나 이상을 사용할 수 있다.
(2) 표면 개질(친수성 표면층의 형성)
상기 하이드로겔 콘택트렌즈 기재를 준비한 다음, 이의 표면을 개질하여 친수성 표면층을 형성시킨다. 이때, 바람직한 실시 형태에 따라서, 상기 친수성 표면층은 히알루로네이트(Sodium Hyaluronate) 화합물, 친수성 단량체 및 가교제를 포함한다.
구체적으로, 히알루로네이트 화합물, 친수성 단량체 및 가교제를 포함하는 표면 개질 용액을 준비한 다음, 상기 표면 개질 용액에 하이드로겔 콘택트렌즈 기재를 침지한다. 보다 구체적으로, 히알루로네이트 화합물 및 친수성 단량체가 용해된 표면 개질 용액에 하이드로겔 콘택트렌즈 기재를 침지시켜, 하이드로겔 콘택트렌즈 기재의 표면에 친수성 표면층을 형성시킨다. 이때, 상기 친수성 단량체는 가교제를 통해 친수성 중합체로 중합되는 과정에서 히알루로네이트 화합물과 상호침투 네트워크(IPN ; Inter-Penentrated Network) 구조를 형성할 수 있다. 즉, 친수성 표면층은 히알루로네이트 화합물, 친수성 단량체 및 가교제를 포함하는 혼합물로부터 형성되며, 상기 친수성 단량체가 가교되어 형성되는 친수성 중합체는 히알루로네이트 화합물과 상호침투 네트워크(IPN) 구조로 기재 표면에 도입되며, 상기 콘택트렌즈 기재와 친수성 표면층 사이에서 물리적 상호혼합층을 형성할 수 있다. 본 발명에서, '도입'은 히알로로네이트 화합물 및 친수성 중합체가 콘택트렌즈 표면에 물리적 및 화학적인 결합을 통해 고분자 브러쉬로 형성된 것을 의미하며, 그 결합 위치는 제한되지 않는다.
또한, 본 발명에서, 용어 「IPN」은 친수성 표면층 내에 적어도 2개 이상의 가교 구조가 존재하는 상태를 의미하며, 하나의 예시에서 상기 가교 구조는 히알루로네이트 화합물 및 친수성 단량체가 중합된 친수성 중합체가 서로 얽혀 있는 상태(entanglement), 또는 서로 연결(linking)되어 있는 상태, 또는 침투(penetrating)하고 있는 상태로 존재할 수 있다. 이러한 IPN 구조에 의해, 히알루로네이트 화합물이 친수성 중합체와 화학적 및 물리적으로 견고한 결합력을 가져 밖으로 빠져나오는 일이 없고, 또한 접촉각 및 함수율 등이 개선되어 우수한 습윤성을 가지면서, 이와 함께 산소투과도 및 영률 등의 물성이 개선될 수 있다.
아울러, 상기 친수성 표면층은 히알루로네이트 화합물 0.05 내지 2중량부에 대하여 친수성 단량체 0.2 내지 10 중량부를 포함할 수 있다. 구체적으로, 상기 친수성 표면층은 히알루로네이트 화합물과 친수성 단량체를 0.05 내지 2 : 0.2 내지 10의 중량비로 포함할 수 있다. 즉, 히알루로네이트 화합물 : 친수성 단량체 = 0.05 내지 2 : 0.2 내지 10의 중량비로 IPN 구조를 형성하고 있는 것이 좋다.
이때, 히알루로네이트 화합물의 양이 0.05 중량부 미만인 경우에는 이의 사용에 따른 습윤성(친수성) 등의 개선 효과가 미미할 수 있다. 그리고 히알루로네이트 화합물의 양이 2 중량부를 초과하는 경우에는, 예를 들어 IPN 구조의 형성이 어려울 수 있다. 또한, 친수성 단량체의 양이 0.2 중량부 미만인 경우에는 양호한 IPN 구조가 형성되기 어려울 수 있다. 그리고 친수성 단량체의 양이 10 중량부를 초과하는 경우에는, 예를 들어 습윤성 개선 효과가 줄어들 수 있다.
이러한 점을 고려할 때, 상기 친수성 표면층은 히알루로네이트 화합물 0.1 내지 1 중량부에 대하여 친수성 단량체 0.5 내지 5 중량부를 포함하는 것이 좋다.
또한, 본 발명에서, 상기 '친수성 단량체' 및 '친수성 중합체'는 분자 내에 하나 이상의 친수성기를 가지는 것이면 특별히 제한되지 않는다. 아울러, 본 발명에서, 상기 '친수성 중합체'는 친수성 단량체의 단독 중합체 및 공중합체(co-polymer)의 의미를 포함한다. 상기 친수성 단량체는, 예를 들어 친수성 아크릴계 단량체 및 친수성 실리콘-아크릴계 단량체 등으로부터 선택된 하나 이상을 사용할 수 있다. 바람직한 실시 형태에 따라서, 상기 친수성 단량체는 친수성 아크릴계 단량체로부터 선택될 수 있다.
상기 친수성 아크릴계 단량체는, 예를 들어, 하이드록시기가 1 내지 3개 치환된 C1-C15 하이드록시알킬 메타크릴레이트, 하이드록시기가 1 내지 3개 치환된 C1-C15 하이드록시알킬 아크릴레이트, 아크릴 아미드(acrylamide), 비닐 피롤리돈(vinyl pyrrolidone), 글리세롤 메타크릴레이트(glycerol methacrylate), 아크릴산, 및 메타크릴산 등으로부터 선택된 하나 이상일 수 있다. 상기 친수성 아크릴계 중합체는, 보다 구체적인 예를 들어, 2-하이드록시에틸 메타크릴레이트(2-hydroxyethyl methacrylate, HEMA), N,N-디메틸 아크릴아미드(N,N-dimethyl acrylamide, DMA), N-비닐 피롤리돈(N-vinyl pyrrolidone, NVP), 글리세롤 모노메타크릴레이트(glycerol monomethacrylate, GMMA), 및 메타크릴산(methacrylic acid, MAA) 등으로부터 선택된 하나 이상일 수 있다. 그리고 상기 친수성 중합체는 위와 같은 친수성 아크릴 단량체의 단독 중합체, 또는 이들 단량체의 공중합체일 수 있다.
상기 히알루로네이트(NaHA) 화합물은 천연 다당류 물질로서, 이는 습윤성을 개선하고 촉촉한 착용감을 제공할 수 있다. 본 발명에서, 상기 히알루로네이트 화합물은 소듐 히알루로네이트 성분을 포함하는 것이면 특별히 제한되지 않는다. 상기 소듐 히알루로네이트 화합물은, 예를 들어 히알루론산(hyaluronic acid)의 소듐염(sodium salt) 형태로서의 소듐 히알루론산(sodium hyaluronic acid) 및 하이드록실 그룹이 부분적으로 아세틸화된 아세틸화 소듐 히알루로네이트(sodium acetylated hyaluronate) 등으로부터 선택된 하나 이상을 사용할 수 있다.
또한, 상기 히알루로네이트 화합물은, 중량평균분자량(Mw)이 50,000 내지 3,000,000 범위인 고분자를 사용할 수 있다. 이와 같이, 고분자량의 히알루로네이트 화합물을 사용하는 경우, 친수성 중합체와의 IPN 구조 형성에 유리할 수 있으며, 이는 또한 저분자량보다 습윤성 등의 물성 개선 면에서도 바람직하다.
상기 표면 개질 용액은 상기와 같은 히알루로네이트 화합물과 친수성 단량체를 적어도 포함하는 용액으로서, 이는 예를 들어 수용액일 수 있다. 구체적으로, 상기 표면 개질 용액은 히알루로네이트 화합물, 친수성 단량체, 가교제 및 물(증류수)를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 가교제는, 히알루로네이트 화합물 및 친수성 단량체와 함께 중합반응을 통해 견고한 IPN 구조 형성이 가능하며 습윤성(친수성) 등의 개선 효과를 현저히 향상시킬 수 있는 장점이 있다. 상기 가교제는 예를 들어, 에틸렌 글리콜 디메타크릴레이트(EGDMA), 디에틸렌 글리콜 메타크릴레이트(DEGMA), 글리세롤 디메타크릴레이트(GDMA), 디비닐벤젠(DVB) 및 트리메틸올프로판 트리메타크릴레이트(TMPTMA) 등으로부터 선택된 하나 이상을 사용할 수 있다. 이러한 가교제는 친수성 단량체 1몰 당 0.001 내지 0.1 몰 포함될 수 있으며 보다 바람직하게 0.02 내지 0.05몰 포함되는 것이 바람직하다.
상기 가교제가 상술한 범위로 포함될 때, 함수율, 산소투과도, 투과도 등의 기본 물성들의 저하 없이 습윤성이 현저히 향상될 수 있으므로 효과적이다. 상기 가교제가 친수성 단량체 1몰 당 0.02 미만일 경우에는 IPN 구조 형성이 미미하여 수분증발속도가 160초 이하로 습윤성 향상 효과가 미미해질 우려가 있으며, 친수성 단량체 1몰 당 0.05몰 초과일 경우에는 IPN 구조가 너무 조밀하게 형성되어 습윤성 개선 효과가 줄어드는 문제가 발생할 수 있다.
또한, 표면 개질 용액은 친수성 단량체의 중합을 위한 개시제를 더 포함할 수 있다. 이때, 상기 개시제는 친수성 단량체의 중합 반응을 개시하는 것이면 특별히 제한되지 않는다. 상기 개시제는, 예를 들어 아조 화합물로부터 선택될 수 있으며, 구체적인 예를 들어 아조디이소부틸로나이트릴(AIBN), 2,2'-아조비스(2-아미디노프로판)디하이드로클로라이드(ABAH), 및 4,4'-아조비스(4-시아노발레릭산) 등으로 부터 선택된 하나 이상을 사용할 수 있다.
아울러, 상기 개시제는 상용화된 수용성 제품으로서, 예를 들어 듀퐁(Dupont)사의 Vazo 56WSP 및 Vazo 68WSP 등의 제품을 사용할 수 있으나, 이로 제한되는 것은 아니다.
예시적인 실시 형태에 따라서, 상기 표면 개질 용액은 용액의 전체 중량을 기준으로 히알루로네이트 화합물 0.05 내지 2중량%, 친수성 단량체 0.2 내지 10중량%, 및 개시제 0.001 내지 0.5중량%를 포함할 수 있다. 그리고 수용액인 경우 잔량으로서 물(증류수) 87.5 내지 99.5%를 포함할 수 있다.
상기 표면 개질 용액에 가교제는 친수성 단량체 1몰 당 0.001 내지 0.1 몰 포함될 수 있으며 보다 바람직하게 0.02 내지 0.05몰 포함할 수 있다.
상기 표면 개질 용액을 구성하는 각 성분의 함량과 관련하여, 히알루로네이트 화합물의 함량이 0.05 중량% 미만인 경우에는 이의 사용에 따른 습윤성(친수성) 등의 개선 효과가 미미할 수 있다. 그리고 히알루로네이트 화합물의 함량이 2 중량%를 초과하는 경우에는, 예를 들어 IPN 구조가 파괴될 수 있다. 또한, 친수성 단량체의 함량이 0.2 중량% 미만인 경우에는 양호한 IPN 구조가 형성되기 어려울 수 있다. 그리고 친수성 단량체의 함량이 10 중량%를 초과하는 경우에는, 예를 들어 습윤성 개선 효과가 줄어들 수 있다. 아울러, 개시제의 함량이 0.001 중량% 미만인 경우에는 중합 개시 반응이 어려워질 수 있고, 0.5 중량%를 초과하는 경우에는 과잉 사용에 따른 상승효과가 그다지 크지 않고 친수성 중합체의 분자량이 작아질 수 있다. 이러한 점을 고려할 때, 상기 표면 개질 용액은, 용액 전체 중량 기준으로 히알루로네이트 화합물 0.1 내지 1 중량%, 친수성 단량체 0.5 내지 5 중량%, 및 개시제 0.005 내지 0.2 중량%를 포함하는 것이 좋다.
또한, 본 발명의 하나의 구현예에 따라서, 상기 친수성 표면층은 위와 같은 표면 개질 용액의 침지를 통해 형성되되, 고형분 기준으로 히알루로네이트 화합물 0.5 내지 49 중량%, 친수성 단량체 50 내지 99.45 중량%, 및 개시제 0.05 내지 5 중량%를 포함하는 표면 개질 용액에 의해 형성될 수 있다.
또한, 본 발명의 바람직한 실시 형태에 따라서, 상기 친수성 표면층(표면 개질층)은 40nm 내지 2㎛의 두께를 가지는 것이 좋다. 이때, 상기 친수성 표면층(표면 개질층)의 두께가 40nm 미만이면, 친수성이 낮아 렌즈 표면의 습윤성 개선효과가 미미할 수 있다. 그리고 상기 친수성 표면층(표면 개질층)의 두께가 2㎛를 초과하는 경우, 표면 개질된 콘택트렌즈의 모양이 변형되거나, 경우에 따라서는 산소투과도 및 광학적 특성이 낮아져 콘택트렌즈로서 갖추어야할 기본 기능에 악영향을 미칠 수 있다.
(3) 하이드로겔 콘택트렌즈 기재의 팽윤
한편, 본 발명의 예시적인 실시 형태에 따라서, 상기 표면 개질을 진행하기 전에, 즉 표면 개질 용액에 침지하여 친수성 표면층을 형성하기 이전에 하이드로겔 콘택트렌즈 기재를 팽윤시키는 단계를 진행할 수 있다.
즉, 본 발명에 따른 하이드로겔 콘택트렌즈의 제조방법은, 예시적인 실시 형태에 따라서 하이드로겔 콘택트렌즈 기재를 준비하는 단계; 상기 하이드로겔 콘택트렌즈 기재를 팽윤시키는 단계; 및 히알루로네이트 화합물, 친수성 단량체 및 가교제를 포함하는 표면 개질 용액에 상기 팽윤된 하이드로겔 콘택트렌즈 기재를 침지하는 단계;를 포함할 수 있다.
상기 팽윤은 알코올 용액에 상기 하이드로겔 콘택트렌즈 기재를 침지하는 방법으로 진행될 수 있다. 구체적인 예를 들어, 20 내지 60 중량%의 에탄올 수용액 등과 같은 알코올 용액에 상기 하이드로겔 콘택트렌즈 기재를 10분 내지 3시간 동안 침지하는 방법으로 진행될 수 있으나 이로 제한되는 것은 아니다. 이와 같은 팽윤이 더 진행되는 경우, 하이드로겔 콘택트렌즈 기재와 친수성 표면층의 부착력이 개선되면서, 하이드로겔 콘택트렌즈 기재의 표면에서 IPN 구조의 친수성 표면층이 효과적으로 도입, 형성될 수 있다.
본 발명의 예시적인 실시 형태에 따르면, 표면 개질 용액에 상기 팽윤된 하이드로겔 콘택트렌즈 기재를 적어도 1 시간 침지시킬 수 있다. 바람직하게 1 시간 내지 10시간 침지할 수 있으며, 보다 바람직하게 1 시간 내지 5시간 침지하는 것이 효과적이다. 팽윤된 하이드로겔 콘택트렌즈 기재를 상술한 시간동안 침지함으로써, 하이드로겔 콘택트 렌즈 기재와 친수성 표면층 사이에 물리적 상호혼합층을 건조 두께로 20nm 두께 이상 형성시킬 수 있다. 상기 물리적 상호혼합층이 20nm 이상으로 형성됨으로써, 보다 균일하고 내구성있는 IPN 구조를 형성할 수 있으며, 습윤성을 효과적으로 향상시킬 수 있는 장점이 있다.
또한, 본 발명의 예시적인 실시 형태에 따라서, 상기 표면 개질을 진행한 후, 즉 표면 개질 용액에 침지하여 친수성 표면층을 형성한 후에는 1회 이상의 세척 공정과, 1회 이상의 멸균 공정 등을 더 진행할 수 있다. 이때, 상기 세척은 탈이온수에 함침하는 방법으로 진행될 수 있다. 상기 멸균은 고압증기멸균법 등을 이용할 수 있다.
이상에서 설명한 본 발명에 따르면, 콘택트렌즈의 표면에 물리적 상호혼합층이 형성되면서 동시에 히알루로네이트 및 친수성 중합체가 IPN 구조로 도입됨으로써, 하이드로겔 콘택트렌즈로서 갖추어야 할 기본 물성을 충족시키면서 우수한 습윤성을 갖는다. 또한, 일부의 물성에 있어서는 종래보다 개선될 수 있다.
이하, 실시예 및 비교예를 예시한다. 하기의 실시예들은 본 발명의 이해를 돕도록 하기 위해 제공되는 것일 뿐, 이에 의해 본 발명의 기술적 범위가 한정되는 것은 아니다.
또한, 하기에서 각 물성의 측정 방법은 다음과 같다.
1. 함수율(Water content) 측정
함수율(%)은 건조 콘택트렌즈의 무게와, 24시간 동안 0.9wt%의 염화나트륨(NaCl) 수용액에 함수시킨 후의 팽윤된 콘택트렌즈의 무게를 측정하여, 아래의 식을 이용하여 평가하였다. 즉, 건조 콘택트렌즈의 무게(Wdry)에 대한 팽윤된 콘택트렌즈의 무게(Wswell) 비율로써 함수율을 평가하였다.
함수율(Water content, %) = (Wswell - Wdry) / Wdry x 100
2. 산소 투과도(Dk) 측정
산소 투과도(Dk)를 알아보기 위해, 시편을 상온상태에서 PBS 용액에 24시간동안 함수시킨 후 눈의 온도와 같은 35℃±0.5℃에서 최소 2시간동안 보관하였다. 그리고 Incubator에 넣고, 온도 35℃±0.5℃와 습도 98% 분위기하의 렌즈 수분포화상태에서, 산소투과도 측정기기[Model 201T, Rehder Development Co., West Lafayette, USA]를 이용하여 산소 투과도(Dk)를 측정하였다.
3. 접촉각(Water content) 측정
접촉각(°)은 접촉각 측정기(DSA 100)를 사용하여 포착기포법 (Captive Air Bubble Method)으로 측정하였다.
4. 영률(Young's Modulus) 측정
영률(Mpa)은 만능시험기(Universal Test Machine)를 사용하여 Young's Modulus 측정법으로 측정하였다.
5. 친수성 표면층 안정성(Rubbing 안정성)
하이드로겔 콘택트렌즈를 리뉴-후레쉬(Bausch Lumb 社) 렌즈 세척액을 이용하여 검지손가락으로 30회 문질러 세척하고 깨끗한 세척액에 1시간 동안 침지한다. 상기 세척과정을 10회 반복한 다음 콘택트렌즈의 히알루로네이트의 함량을 HPLC(Agilent 1260 HPLC, C18컬럼, 이동상 : 0.3X PBS, 아세토니트릴)를 이용하여 측정하여 렌즈 무게당 소듐 히알루로네이트의 함량(g)으로 나타내었다.
6. 투습도 측정(수분증발 속도)
하이드로겔 콘텍트렌즈를 5시간동안 0.9중량% 염화나트륨 수용액에 팽윤시킨 다음 와트만 여과지(Whatman Filter paper) No.1로 렌즈 표면층에남아있는 과량의 물을 제거한다. 물기가 제거된 렌즈를 폴리프로필렌 재질의 볼록몰드(polypropylene convex mold)에 고정시키고 온도 35℃, 상대습도 30%의 항온항습기 안에 설치된 전자저울에 올려놓는다. 이를 매 10초 마다 중량을 측정하여 렌즈의 함수율이 10%가 감소하는 시간을 5회 반복 측정하여 평균값을 취하였다.
7. 물리적 상호혼합층 두께 측정
제조된 렌즈 시료에 대해 XPS(X-ray photoelectron spectroscopy) 분석을 실시하였다. 분석장비는 ESCALAB 220i XL(Thermo VG Scientific)을 사용하였으며, 10-7Pa의 초진공상태에서 magnesium X-ray 소스(hv=1253.6eV)를 이용하였으며 15kV 및 25W의 조건으로 표면에서 45도 각도로 방출되는 광전자를 검출하였다. 동시에 이온 스퍼터링을 통해 두께 프로파일을 얻었으며, 구체적으로 Ar+ 이온을 1kV 전압에서 시료 수직방향에 대해 70도 입사각도로 스퍼터링을 실시하였다. Ar+ 이온 스퍼터링은 1분 간격으로 수행되었으며, 1분 간격으로 C1s XPS 스펙트럼을 얻고 각각의 관능기에 따라 표면조성을 계산하였다. 친수성 표면층을 형성하는 고분자의 표면 조성이 95wt%에서 5wt%로 변경되는 구간의 영역을 물리적 상호혼합층의 두께로 계산하였다.
[제조예 1]
< 아크릴레이트계 하이드로겔 콘택트렌즈 기재의 제조 >
친수성 아크릴레이트 단량체로서 2-하이드록시에틸 메타크릴레이트(2-hydroxyethyl methacrylate, HEMA) 98g과 메타크릴산(methacrylic acid, MAA) 1.6g을 혼합하고, 가교제로서 에틸렌 글리콜 디메타크릴레이트(EGDMA) 0.4g 및 개시제로서 아조디이소부틸로나이트릴(AIBN) 0.5g을 넣고 30분간 교반시켜 혼합액을 제조하였다.
상기 제조된 혼합액을 캐스트 몰딩용 암몰드(female mold)에 주입하고, 상기 암몰드에 수몰드(male mold)를 조립하였다. 다음으로, 조립된 몰드를 100℃로 유지되는 열 오븐에 넣고 2시간 동안 중합하고, 이후 몰드를 분리하여 렌즈를 얻었다. 얻어진 렌즈를 중조(탄산수소나트륨)가 포함된 수용액에 넣어 수화를 진행시켜 아크릴레이트 하이드로겔 콘택트렌즈를 제조하였다. (아크릴레이트계 하이드로겔 콘택트렌즈 기재 제조) 위와 같이 제조된 아크릴레이트 하이드로겔 콘택트렌즈(아크릴레이트계 하이드로겔 콘택트렌즈 기재)의 물성(함수율, 영율 및 접촉각)을 평가하였으며, 그 결과를 하기 [표 1]에 나타내었다.
[제조예 2]
< 실리콘계 하이드로겔 콘택트렌즈 기재의 제조 >
실리콘 아크릴레이트 단량체로서 3-메타크릴옥시-2-(하이드록시프로필옥시)프로필비스(트리메틸실록시)메틸실란[3-methacryloxy-2-(hydroxypropyloxy)propylbis(trimethylsiloxy)methylsilane] (SiGMA, Gelest사 제품) 50g, N,N-디메틸 아크릴아미드(N,N-dimethyl acrylamide, DMA) 20g, N-비닐 피롤리돈(N-vinyl pyrrolidone, NVP) 20g을 혼합하고, 가교제로서 에틸렌 글리콜 디메타크릴레이트(EGDMA) 0.4g 및 개시제로서 아조디이소부틸로나이트릴(AIBN) 0.5g을 넣고 30분간 교반시켜 혼합액을 제조하였다.
상기 제조된 혼합액을 캐스트 몰딩용 암몰드(female mold)에 주입하고, 상기 암몰드에 수몰드(male mold)를 조립하였다. 다음으로, 조립된 몰드를 100℃로 유지되는 열 오븐에 넣고 2시간 동안 중합하고, 이후 몰드를 분리하여 렌즈를 얻었다. 얻어진 렌즈를 70% 에탄올 수용액과 탈이온수에 차례대로 넣고 수화를 진행시켜 실리콘 하이드로겔 콘택트렌즈를 제조하였다. (실리콘계 하이드로겔 콘택트렌즈 기재 제조)
위와 같이 제조된 실리콘 하이드로겔 콘택트렌즈(실리콘계 하이드로겔 콘택트렌즈 기재)의 물성(함수율, 영율 및 접촉각)을 평가하였으며, 그 결과를 하기 [표 1]에 나타내었다.
[표 1] 콘택트렌즈 기재의 물성
Figure PCTKR2015004656-appb-I000001
[실시예 1]
하기 [표 2]에 나타난 바와 같이, 상기 제조예 2에서 제조된 실리콘 하이드로겔 콘택트렌즈 기재를 40 wt% 에탄올 수용액에 침지하여 1시간 동안 팽윤시켰다. 그런 다음, 표면 개질 용액에 침지한 후, 80℃의 온도에서 1시간 동안 반응시켜 표면을 개질(기재의 표면에 친수성 표면층 형성)하였다. 상기 표면 개질 용액은 증류수에 히알루로네이트 화합물, 친수성 단량체, 가교제와 수용성 개시제를 혼합하여 사용하였다.
다음으로, 상기 개질이 완료된 렌즈를 80℃ 탈이온수를 이용하여 2시간 동안 세척하고, 121℃에서 20분간 고압증기멸균법으로 멸균하여 표면 개질된 실리콘 하이드로겔 콘택트렌즈를 최종적으로 얻었다. 이와 같이, 얻어진 실리콘 하이드로겔 콘택트렌즈에 대하여 물성을 평가하였으며, 그 결과를 하기 [표 3]에 나타내었다.
[실시예 2-3]
하기 [표 2]에 나타난 바와 같이, 표면 개질 용액에서 가교제의 함량을 변화시킨 것을 제외하고 실시예 1과 동일하게 실리콘 하이드로겔 콘텍트렌즈를 제조하였다. 얻어진 제품의 물성을 평가하였으며, 그 결과를 하기 [표 3]에 나타내었다.
[실시예 4]
하기 [표 2]에 나타난 바와 같이, 상기 제조예 1에서 제조된 아크릴레이트계 하이드로겔 콘택트렌즈 기재를 40wt% 에탄올 수용액에 침지하여 1시간 동안 팽윤시켰다. 그런 다음, 표면개질 용액에 침지한 후, 80℃의 온도에서 1시간 동안 반응시켜 표면을 개질(기재의 표면에 친수성 표면층 형성)하였다. 상기 표면 개질 용액은 증류수에 히알루로네이트 화합물, 친수성 아크릴레이트 단량체와 수용성 개시제를 혼합하여 사용하였다.
다음으로, 상기 개질이 완료된 렌즈를 80℃ 탈이온수를 이용하여 2시간 동안 세척하고, 121℃에서 20분간 고압증기멸균법으로 멸균하여 표면 개질된 아크릴레이트계 하이드로겔 콘택트렌즈를 최종적으로 얻었다. 이와 같이, 얻어진 아크릴레이트계 하이드로겔 콘택트렌즈에 대하여 물성을 평가하였으며, 그 결과를 하기 [표 3]에 나타내었다.
[실시예 5-6]
하기 [표 2]에 나타난 바와 같이, 표면 개질 용액의 침지시간을 변화시킨 것을 제외하고 실시예 1과 동일하게 실리콘 하이드로겔 콘텍트렌즈를 제조하였다. 얻어진 제품의 물성을 평가하였으며, 그 결과를 하기 [표 3]에 나타내었다.
[실시예 7-8]
하기 [표 2]에 나타난 바와 같이, 표면 개질 용액에서 친수성 단량체를 변경한 것을 제외하고 실시예 1과 동일하게 실리콘 하이드로겔 콘텍트렌즈를 제조하였다. 얻어진 제품의 물성을 평가하였으며, 그 결과를 하기 [표 3]에 나타내었다.
[실시예 9-10]
하기 [표 2]에 나타난 바와 같이, 표면 개질 용액에서 친수성 단량체를 변경한 것을 제외하고 실시예 4와 동일하게 아크릴레이트계 하이드로겔 콘텍트렌즈를 제조하였다. 얻어진 제품의 물성을 평가하였으며, 그 결과를 하기 [표 3]에 나타내었다.
[비교예 1]
상기 제조예 1에서 제조된 아크릴레이트 하이드로겔 콘택트렌즈 기재를 본 비교예에 따른 시편으로 사용하였다. 즉, 본 비교예에 따른 시편은 표면개질 전의 아크릴레이트 하이드로겔 콘택트렌즈이다.
[비교예 2]
상기 제조예 2에서 제조된 실리콘 하이드로겔 콘택트렌즈 기재를 본 비교예에 따른 시편으로 사용하였다. 즉, 본 비교예에 따른 시편은 표면개질 전의 실리콘 하이드로겔 콘택트렌즈이다.
[비교예 3]
하기 [표 2]에 나타난 바와 같이, 상기 제조예 2에서 제조된 실리콘 하이드로겔 콘택트렌즈 기재를 40wt% 에탄올 수용액에 침지하여 1시간 동안 팽윤시켰다. 그런 다음, 표면개질 용액에 침지한 후, 80℃의 온도에서 1시간 동안 반응시켜 표면을 개질(기재의 표면에 친수성 표면층 형성)하였다. 상기 표면 개질 용액은 증류수에 히알루로네이트 화합물을 혼합하여 사용하였다.
다음으로, 상기 개질이 완료된 렌즈를 80℃ 탈이온수를 이용하여 2시간 동안 세척하고, 121℃에서 20분간 고압증기멸균법으로 멸균하여 표면 개질된 실리콘 하이드로겔 콘택트렌즈를 최종적으로 얻었다. 이와 같이, 얻어진 실리콘 하이드로겔 콘택트렌즈에 대하여 물성을 평가하였으며, 그 결과를 하기 [표 3]에 나타내었다.
[비교예 4-5]
하기 [표 2]에 나타난 바와 같이, 표면 개질 용액에서 가교제의 함량을 변화시킨 것을 제외하고 실시예 1과 동일하게 실리콘 하이드로겔 콘텍트렌즈를 제조하였다. 얻어진 제품의 물성을 평가하였으며, 그 결과를 하기 [표 3]에 나타내었다.
[비교예 6]
하기 [표 2]에 나타난 바와 같이, 표면 개질 용액의 침지시간을 변화시킨 것을 제외하고 실시예 1과 동일하게 실리콘 하이드로겔 콘텍트렌즈를 제조하였다. 얻어진 제품의 물성을 평가하였으며, 그 결과를 하기 [표 3]에 나타내었다.
[표 2]
Figure PCTKR2015004656-appb-I000002
[표 3]
Figure PCTKR2015004656-appb-I000003
상기 [표 3]에 나타낸 바와 같이, 각 실시예들에 따른 렌즈 시편(표면 개질 후)이 비교예들에 따른 렌즈 시편(표면 개질 전)에 비하여, 접촉각, 함수율, 영률 및 산소투과도가 전반적으로 우수함을 알 수 있었다. 또한, 수분증발속도, 친수성 표면층 두께 및 물리적 상호혼합층의 두께 역시 우수한 것을 알 수 있었다.
이는 각 실시예들에 따른 시편의 경우, 히알루로네이트(Sodium Hyaluronate) 및 친수성 아크릴계 중합체가 IPN(Inter-Penentrated Network)구조로 콘택트렌즈의 표면에 친수성 표면층(표면 개질층)을 형성함으로 인해 나타나는 특성으로 판단된다. 또한, 가교제를 특정함량 함유할 때 그 효과가 현저해지는 것을 알 수 있다.
또한, 표면 개질 용액 침지시간이 증대됨으로써 물리적 상호혼합층의 두께가 두꺼워지며, 이로 인하여 영율이 감소하여 소프트(soft) 특성이 증가하여 콘택트렌즈의 착용감이 향상되는 것을 알 수 있었다.
비교예 6에서와 같이, 표면 개질 용액의 침지시간이 1시간 미만일 경우에는 물리적 상호혼합층이 20nm 미만으로 IPN 구조 형성 또한 미미해져 친수성 표면층의 두께도 얇게 형성되어 습윤성이 저하되는 것을 알 수 있었다.
첨부된 도 1 및 도 2는 본 발명의 일 실시예에 따른 실리콘 하이드로겔 콘택트렌즈의 단면의 Cryo-SEM 사진이며, 도 3 및 도 4는 본 발명의 일 실시예에 따른 실리콘 하이드로겔 콘택트렌즈의 표면 및 단면의 SEM 사진이다.
도 1 내지 도 4에 나타난 바와 같이 히알루로네이트(Sodium Hyaluronate) 및 친수성 아크릴계 중합체가 IPN(Inter-Penentrated Network)구조로 콘택트렌즈의 표면에 친수성 표면층(표면 개질층)을 형성하고 있는 것을 확인할 수 있었다.
이상의 실험예에서 확인되는 바와 같이, 아크릴레이트계 하이드로겔 콘택트렌즈는 물론 실리콘계 하이드로겔 콘택트렌즈의 표면을 IPN 구조의 친수성 표면층 및 물리적 상호혼합층을 형성하는 경우, 렌즈 표면의 습윤성이 현저히 증가되고 함수율, 산소투과도, 영율 등 제반 물성도 함께 향상되는 것을 확인할 수 있었다.

Claims (10)

  1. 하이드로겔 콘택트렌즈 기재; 및
    상기 하이드로겔 콘택트렌즈 기재 상에 상호침투 네트워크(IPN) 구조의 친수성 표면층을 포함하며, 상기 콘택트렌즈 기재 내에 상기 친수성 표면층과의 물리적 상호혼합층이 20nm 이상의 두께로 형성된 것을 특징으로 하는 하이드로겔 콘택트렌즈.
  2. 제 1항에 있어서,
    상기 친수성 표면층은 히알루로네이트 화합물, 친수성 단량체 및 가교제를 포함하는 혼합물로부터 형성되는 것을 특징으로 하는 하이드로겔 콘택트렌즈.
  3. 제 2항에 있어서,
    상기 혼합물은 히알루로네이트 화합물 0.05 내지 2중량부에 대하여 친수성 단량체 0.2 내지 10중량부를 포함하는 것을 특징으로 하는 하이드로겔 콘택트렌즈.
  4. 제 2항에 있어서,
    상기 가교제의 함량은 친수성 단량체 1몰 당 0.001 내지 0.1 몰 포함하는 것을 특징으로 하는 하이드로겔 콘택트렌즈.
  5. 제 2항에 있어서,
    상기 히알루로네이트 화합물은 소듐 히알루론산(sodium hyaluronic acid) 및 아세틸화 소듐 히알루로네이트(sodium acetylated hyaluronate)로부터 선택된 하나 이상인 것을 특징으로 하는 하이드로겔 콘택트렌즈.
  6. 제 2항에 있어서,
    상기 히알루로네이트 화합물은, 중량평균분자량(Mw)이 50,000 내지 3,000,000인 것을 특징으로 하는 하이드로겔 콘택트렌즈.
  7. 제 2항에 있어서,
    상기 가교제는 에틸렌 글리콜 디메타크릴레이트(EGDMA), 디에틸렌 글리콜 메타크릴레이트(DEGMA), 글리세롤 디메타크릴레이트(GDMA), 디비닐벤젠(DVB) 및 트리메틸올프로판 트리메타크릴레이트(TMPTMA) 중에서 선택되는 1종 또는 2종 이상인 것을 특징으로 하는 하이드로겔 콘택트렌즈.
  8. 하이드로겔 콘택트렌즈 기재를 준비하는 제1단계; 및
    히알루로네이트 화합물, 친수성 단량체 및 가교제를 포함하는 표면 개질 용액에 상기 하이드로겔 콘택트렌즈 기재를 침지하는 제2단계;를 포함하는 것을 특징으로 하는 하이드로겔 콘택트렌즈의 제조방법.
  9. 제 8항에 있어서,
    상기 제1단계와 제2단계의 사이에 진행되며, 상기 하이드로겔 콘택트렌즈 기재를 팽윤시키는 단계;를 더 포함하는 것을 특징으로 하는 하이드로겔 콘택트렌즈의 제조방법.
  10. 제 8항 또는 제 9항에 있어서,
    상기 2단계는 상기 표면 개질 용액에 적어도 1시간 침지시키며,
    상기 표면 개질 용액은 히알루로네이트 화합물 0.05 내지 2중량%, 친수성 단량체 0.2 내지 10중량%, 개시제 0.001 내지 0.5중량% 및 잔량의 물을 포함하며, 가교제는 친수성 단량체 1몰 당 0.001 내지 0.1 몰 포함하는 것을 특징으로 하는 하이드로겔 콘택트렌즈의 제조방법.
PCT/KR2015/004656 2014-05-09 2015-05-08 습윤성 표면을 가지는 하이드로겔 콘택트렌즈 및 그 제조방법 WO2015170936A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP15789300.9A EP3141943B1 (en) 2014-05-09 2015-05-08 Hydrogel contact lens having wet surface, and manufacturing method therefor
CA2947829A CA2947829C (en) 2014-05-09 2015-05-08 Hydrogel contact lens having wet surface, and manufacturing method therefor
CN201580024298.2A CN106716233B (zh) 2014-05-09 2015-05-08 具有润湿性表面的水凝胶隐形镜片及其制备方法
JP2017511130A JP6486457B2 (ja) 2014-05-09 2015-05-08 湿潤性表面を有するハイドロゲルコンタクトレンズ及びその製造方法
BR112016026141-0A BR112016026141A2 (ko) 2014-05-09 2015-05-08 Hydrogel contact lens having a wettable surface and a method of manufacturing the same
US15/309,753 US10371965B2 (en) 2014-05-09 2015-05-08 Hydrogel contact lens having wet surface, and manufacturing method therefor
ES15789300T ES2928023T3 (es) 2014-05-09 2015-05-08 Lentes de contacto de hidrogel con superficie húmeda y método de fabricación de las mismas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20140055401 2014-05-09
KR10-2014-0055401 2014-05-09

Publications (1)

Publication Number Publication Date
WO2015170936A1 true WO2015170936A1 (ko) 2015-11-12

Family

ID=54392717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/004656 WO2015170936A1 (ko) 2014-05-09 2015-05-08 습윤성 표면을 가지는 하이드로겔 콘택트렌즈 및 그 제조방법

Country Status (9)

Country Link
US (1) US10371965B2 (ko)
EP (1) EP3141943B1 (ko)
JP (1) JP6486457B2 (ko)
KR (1) KR101775358B1 (ko)
CN (1) CN106716233B (ko)
BR (1) BR112016026141A2 (ko)
CA (1) CA2947829C (ko)
ES (1) ES2928023T3 (ko)
WO (1) WO2015170936A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106526888B (zh) * 2015-09-15 2019-08-06 星欧光学股份有限公司 隐形眼镜产品
US10422927B2 (en) 2016-07-14 2019-09-24 Coopervision International Holding Company, Lp Method of manufacturing silicone hydrogel contact lenses having reduced rates of evaporation
KR101944008B1 (ko) 2017-09-18 2019-01-30 (주) 제이씨바이오 히알루론산을 포함하는 투명 하이드로겔 막 및 이를 이용한 콘택트렌즈
KR101994668B1 (ko) 2017-10-18 2019-07-02 한국화학연구원 습윤성 하이드로겔 콘택트렌즈
TWI640558B (zh) * 2017-11-17 2018-11-11 Benq Materials Corporation 眼用鏡片及其製造方法
CN112041350B (zh) * 2018-05-01 2023-10-03 鲍希与洛姆伯股份有限公司 含uv阻断剂的眼用装置和其制备方法
SG11202013115UA (en) * 2018-06-28 2021-01-28 Acuity Polymers Inc Ultra-high dk material
US10633472B2 (en) 2018-06-28 2020-04-28 Acuity Polymers, Inc. Ultra-high Dk material
US10816698B2 (en) * 2018-08-10 2020-10-27 Bausch & Lomb Incorporated High water content ophthalmic devices
TWI690424B (zh) * 2018-10-29 2020-04-11 優你康光學股份有限公司 具有聚合物多層膜的隱形眼鏡之製備方法
CN110202806A (zh) * 2019-07-04 2019-09-06 江苏彩康隐形眼镜有限公司 保湿性隐形眼镜的制备方法
WO2023082166A1 (zh) * 2021-11-12 2023-05-19 晶硕光学股份有限公司 隐形眼镜及其制造方法
CN114545658B (zh) * 2022-02-25 2023-07-14 金陵科技学院 一种药物缓释型互穿网络水凝胶隐形眼镜的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009223158A (ja) * 2008-03-18 2009-10-01 Seed Co Ltd 眼用レンズ及び眼用レンズの製造方法
KR20090115165A (ko) * 2007-02-26 2009-11-04 노파르티스 아게 하이드로겔 콘택트 렌즈에 원하는 성질을 부여하는 방법
JP2012037647A (ja) * 2010-08-05 2012-02-23 Seed Co Ltd コンタクトレンズ及びその製造方法
KR20130014626A (ko) * 2005-02-14 2013-02-07 존슨 앤드 존슨 비젼 케어, 인코포레이티드 착용감이 편안한 안과용 장치 및 이의 제조방법

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4806382A (en) * 1987-04-10 1989-02-21 University Of Florida Ocular implants and methods for their manufacture
US5352714A (en) 1991-11-05 1994-10-04 Bausch & Lomb Incorporated Wettable silicone hydrogel compositions and methods for their manufacture
IT1260154B (it) * 1992-07-03 1996-03-28 Lanfranco Callegaro Acido ialuronico e suoi derivati in polimeri interpenetranti (ipn)
WO1996024392A1 (en) 1995-02-07 1996-08-15 Fidia Advanced Biopolymers, S.R.L. Process for the coating of objects with hyaluronic acid, derivatives thereof, and semisynthetic polymers
US6213604B1 (en) 1999-05-20 2001-04-10 Bausch & Lomb Incorporated Plasma surface treatment of silicone hydrogel contact lenses with a flexible carbon coating
IT1317358B1 (it) 2000-08-31 2003-06-16 Fidia Advanced Biopolymers Srl Derivati cross-linkati dell'acido ialuronico.
US6835410B2 (en) * 2001-05-21 2004-12-28 Novartis Ag Bottle-brush type coatings with entangled hydrophilic polymer
JP2005218780A (ja) 2004-02-09 2005-08-18 Menicon Co Ltd 薬物放出速度を制御し得る薬物徐放可能なヒドロゲル材料の製造方法
MX2007002202A (es) 2004-08-27 2007-10-10 Asahikasei Aime Co Ltd Lentes de contacto de hidrogel de silicona.
KR100748397B1 (ko) 2004-12-13 2007-08-10 박기주 초박형 속결구조 디지털 분전반
KR100994747B1 (ko) * 2008-12-31 2010-12-07 주식회사 인터로조 습윤성이 향상된 하이드로젤 콘택트렌즈
TWI483996B (zh) * 2009-12-08 2015-05-11 Novartis Ag 具有共價貼合塗層之聚矽氧水凝膠鏡片
JP5720103B2 (ja) 2010-03-18 2015-05-20 東レ株式会社 シリコーンハイドロゲル、眼用レンズおよびコンタクトレンズ
BR112013002179B1 (pt) 2010-07-30 2020-12-15 Alcon Inc Lentes de silicone hidrogel com superfícies ricas em água
WO2012027834A1 (en) 2010-09-02 2012-03-08 Mcmaster University Hyaluronic acid-containing biopolymers
KR101249705B1 (ko) 2010-12-20 2013-04-05 주식회사 인터로조 콘택트렌즈의 표면 개질방법
JP2013235034A (ja) * 2012-05-02 2013-11-21 Menicon Co Ltd 表面処理樹脂成形体の製造方法及び表面処理樹脂成形体
US9395468B2 (en) 2012-08-27 2016-07-19 Ocular Dynamics, Llc Contact lens with a hydrophilic layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130014626A (ko) * 2005-02-14 2013-02-07 존슨 앤드 존슨 비젼 케어, 인코포레이티드 착용감이 편안한 안과용 장치 및 이의 제조방법
KR20090115165A (ko) * 2007-02-26 2009-11-04 노파르티스 아게 하이드로겔 콘택트 렌즈에 원하는 성질을 부여하는 방법
JP2009223158A (ja) * 2008-03-18 2009-10-01 Seed Co Ltd 眼用レンズ及び眼用レンズの製造方法
JP2012037647A (ja) * 2010-08-05 2012-02-23 Seed Co Ltd コンタクトレンズ及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3141943A4 *

Also Published As

Publication number Publication date
CN106716233B (zh) 2019-11-05
CA2947829C (en) 2018-08-21
CN106716233A (zh) 2017-05-24
EP3141943B1 (en) 2022-07-13
JP6486457B2 (ja) 2019-03-20
JP2017515171A (ja) 2017-06-08
US10371965B2 (en) 2019-08-06
KR20150128620A (ko) 2015-11-18
ES2928023T3 (es) 2022-11-14
BR112016026141A2 (ko) 2018-08-07
EP3141943A1 (en) 2017-03-15
EP3141943A4 (en) 2017-12-13
US20170146823A1 (en) 2017-05-25
CA2947829A1 (en) 2015-11-12
KR101775358B1 (ko) 2017-09-07

Similar Documents

Publication Publication Date Title
WO2015170936A1 (ko) 습윤성 표면을 가지는 하이드로겔 콘택트렌즈 및 그 제조방법
JP7331051B2 (ja) n-アルキルメタクリルアミドを含むシリコーンヒドロゲル及びそれから作製されたコンタクトレンズ
CA2577899C (en) Silicone hydrogel contact lenses
KR101135016B1 (ko) 비환식 폴리아미드를 포함하는 습윤성 하이드로겔
CN105399954B (zh) 亲水性硅氧烷低聚物、硅水凝胶、角膜接触镜及制备方法
CN109415474B (zh) 包含高含量聚酰胺的有机硅水凝胶
KR20090106581A (ko) 은 나노입자를 포함하는 항균성 의료 장치
RU2682256C2 (ru) Силиконовый акриламидный сополимер
JP5631655B2 (ja) コンタクトレンズ及びその製造方法
KR101872120B1 (ko) 고 함수율 표면층을 갖는 하이드로겔 콘택트렌즈 및 그 제조방법
WO2021157814A1 (ko) 콘택트 렌즈 및 이의 제조방법
CN115894796B (zh) 一种高透氧、高透光含硅氟水凝胶及含硅氟水凝胶角膜接触镜
WO2019221568A1 (ko) 콘택트렌즈용 코팅액 조성물, 그 제조방법 및 이를 이용한 코팅방법
EP2445951A1 (en) Silicone hydrogels formed from symmetric hydroxyl functionalized siloxanes
WO2022181930A1 (ko) 컬러 콘택트렌즈용 코팅액, 이의 제조방법 및 이를 포함하여 제조된 컬러 콘택트렌즈
KR101311134B1 (ko) 약물 서방성 의료용 디바이스
KR20170050475A (ko) 콘택트렌즈용 실리콘 히드로겔 조성물 및 이를 이용한 콘택트렌즈
WO2018080226A1 (ko) 표면이 친수화된 안과용 재료 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15789300

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2947829

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2017511130

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15309753

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015789300

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015789300

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016026141

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016026141

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161108