WO2015170688A1 - 金属担持多孔性配位高分子触媒 - Google Patents
金属担持多孔性配位高分子触媒 Download PDFInfo
- Publication number
- WO2015170688A1 WO2015170688A1 PCT/JP2015/063118 JP2015063118W WO2015170688A1 WO 2015170688 A1 WO2015170688 A1 WO 2015170688A1 JP 2015063118 W JP2015063118 W JP 2015063118W WO 2015170688 A1 WO2015170688 A1 WO 2015170688A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal
- group
- compound
- coordination polymer
- porous coordination
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/26—Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
- B01J31/28—Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G79/00—Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/32—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C15/00—Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
- C07C15/12—Polycyclic non-condensed hydrocarbons
- C07C15/14—Polycyclic non-condensed hydrocarbons all phenyl groups being directly linked
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C15/00—Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
- C07C15/12—Polycyclic non-condensed hydrocarbons
- C07C15/18—Polycyclic non-condensed hydrocarbons containing at least one group with formula
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2/00—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
- C07C2/86—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
- C07C2/88—Growth and elimination reactions
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C201/00—Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
- C07C201/06—Preparation of nitro compounds
- C07C201/12—Preparation of nitro compounds by reactions not involving the formation of nitro groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C205/00—Compounds containing nitro groups bound to a carbon skeleton
- C07C205/06—Compounds containing nitro groups bound to a carbon skeleton having nitro groups bound to carbon atoms of six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C209/00—Preparation of compounds containing amino groups bound to a carbon skeleton
- C07C209/30—Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
- C07C209/32—Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
- C07C209/36—Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C211/00—Compounds containing amino groups bound to a carbon skeleton
- C07C211/43—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
- C07C211/44—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring
- C07C211/45—Monoamines
- C07C211/46—Aniline
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/61—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
- C07C45/62—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by hydrogenation of carbon-to-carbon double or triple bonds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C47/00—Compounds having —CHO groups
- C07C47/20—Unsaturated compounds having —CHO groups bound to acyclic carbon atoms
- C07C47/228—Unsaturated compounds having —CHO groups bound to acyclic carbon atoms containing six-membered aromatic rings, e.g. phenylacetaldehyde
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/347—Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
- C07C51/36—Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by hydrogenation of carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C55/00—Saturated compounds having more than one carboxyl group bound to acyclic carbon atoms
- C07C55/02—Dicarboxylic acids
- C07C55/10—Succinic acid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/02—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
- C07D307/34—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D307/38—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D307/40—Radicals substituted by oxygen atoms
- C07D307/46—Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
- C07D307/48—Furfural
Definitions
- the present invention relates to a metal-supported porous coordination polymer catalyst, and particularly to a metal-supported catalyst using a specific porous coordination polymer as a carrier.
- a homogeneous metal catalyst that is uniformly dispersed in a solvent has been conventionally used.
- the heterogeneous metal catalyst is usually a solid, it can overcome the above-mentioned problems of the homogeneous metal catalyst, but it is often inferior to the homogeneous metal catalyst in terms of catalytic activity.
- Non-Patent Document 1 reports a technique of using a porous coordination polymer as a support for a heterogeneous metal catalyst. More specifically, a porous coordination polymer (IRMOF-3) obtained using Zn 2+ (zinc ion) as a metal ion and 2-amino-1,4-benzenedicarboxylic acid as an organic compound is converted to pyridyl-2. -A material obtained by modification with an aldehyde is used as a carrier for supporting a metal.
- the metal-supported catalyst of Non-Patent Document 1 has low catalytic activity and is not necessarily sufficient from an industrial point of view, and further improvement is necessary.
- the present invention provides a metal-supported catalyst (metal-supported porous coordination polymer catalyst) that includes a porous coordination polymer as a support, which has excellent catalytic activity and can be applied to various reactions. The purpose is to do.
- the present inventors have found that the above problems can be solved by using a porous coordination polymer exhibiting predetermined characteristics as a carrier, and have completed the present invention. That is, the above problems can be solved by the following means.
- the carrier is a porous coordination polymer in which a metal ion and an organic compound capable of coordinating to the metal ion constitute a repeating unit,
- the Bragg angle (2 ⁇ ) is 11.1 ⁇ 0.5 °, 19.8 ⁇ 0.5 °, and 26.0. Shows a peak at ⁇ 0.5 °, A metal-supported porous coordination polymer catalyst, wherein the organic compound has at least one functional group containing a nitrogen atom.
- the organic compound has at least two groups selected from the group consisting of a carboxylic acid group, a sulfonic acid group, a thiol group, a cyano group, a hydroxyl group, a phosphoric acid group, an imidazole group, a pyridine group, and an amino group.
- a method for producing a hydrogenation reaction product wherein a hydrogenation reaction product is produced.
- An oxidation reaction product is produced by performing an oxidation reaction on an alcohol compound or an aldehyde compound in the presence of the metal-supported porous coordination polymer catalyst according to any one of (1) to (5).
- a method for producing a reactant (11) In the presence of the metal-supported porous coordination polymer catalyst according to any one of (1) to (5), allyl alcohol or allyl ester is reacted with a compound represented by formula (9) described later. The manufacturing method of the allyl group containing compound which manufactures the allyl group containing compound represented by Formula (10) mentioned later.
- the metal carrying catalyst metal carrying
- carrier can be provided.
- metal-supported porous coordination polymer catalyst of the present invention (hereinafter also simply referred to as “metal-supported catalyst”) and various methods for producing various compounds using the metal-supported catalyst will be described.
- a feature of the present invention is that a porous coordination polymer having a Bragg angle (2 ⁇ ) having a predetermined value in an X-ray diffraction spectrum using CuK ⁇ rays as a radiation source is used as a carrier for a metal-supported catalyst. It is done. The reason why the catalytic activity is improved by using the porous coordination polymer is unknown, but when the metal is supported on the porous coordination polymer, the porous coordination polymer having a predetermined ordered structure is used.
- Non-Patent Document 1 the catalyst preparation requires a long time, whereas the metal-supported catalyst of the present invention can be prepared in a shorter time.
- the metal supported catalyst will be described in detail, and then the reaction using this metal supported catalyst will be described in detail.
- the metal-supported catalyst of the present invention has a specific porous coordination polymer that functions as a support and a metal supported on the support.
- a specific porous coordination polymer that functions as a support and a metal supported on the support.
- porous coordination polymer In the porous coordination polymer, a metal ion and an organic compound (organic ligand) capable of coordinating with the metal ion constitute a repeating unit.
- a porous coordination polymer is a material in which metal ions that are inorganic substances and organic compounds that are organic substances gather together in a self-assembled manner.
- the metal ion (metal atom) contained in the porous coordination polymer is not particularly limited and may be appropriately selected.
- the group 4 metal in the periodic table long-period periodic table
- Examples include ions (atoms) of elements selected from the group consisting of Group 13 metals.
- the synthesis of the porous coordination polymer is easier, and the catalytic activity of the metal-supported catalyst is more excellent, so that Zn 2+ , Co 2+ , Ni 2+ , Cu 2+ , Cr 2+ , Mn 2+ , Al 3+ , Further, a metal ion selected from the group consisting of Fe 3+ is preferable, Zn 2+ , Co 2+ , Ni 2+ , or Cr 2+ is more preferable, and Zn 2+ is further preferable. These may be used individually by 1 type and may use 2 or more types together.
- metal ion salt examples include sulfate, nitrate, carbonate, acetate, phosphate, hydrochloride, hydrobromide, and the like.
- the organic compound contained in the porous coordination polymer can be coordinated to the metal ion. That is, the organic compound includes a functional group capable of coordinating with a metal ion (hereinafter also referred to as a coordinating functional group).
- the type of the coordinating functional group is not particularly limited, and examples thereof include a carboxylic acid group, a sulfonic acid group, a thiol group, a cyano group, a hydroxyl group, a phosphoric acid group, an imidazole group, a pyridine group, and an amino group.
- a carboxylic acid group is preferable because a porous coordination polymer is easily synthesized and the catalytic activity of the metal-supported catalyst is more excellent.
- the number of the coordinating functional group contained in the organic compound is not particularly limited, but usually it is often 2 or more in one molecule of the organic compound, preferably 2 to 6, more preferably 2 to 3, Two are more preferred.
- the organic compound has at least one functional group containing a nitrogen atom (hereinafter also referred to as a nitrogen-containing group).
- the nitrogen-containing group is considered to interact (coordinate) with the metal supported on the support.
- the type of the nitrogen-containing group is not particularly limited, and examples thereof include an amino group (—NH 2 ), an imino group, and a nitrile group.
- the number of nitrogen-containing groups contained in the organic compound is not particularly limited, but may be one or more per molecule of the organic compound, preferably 1 to 4, more preferably 1 to 2, and more preferably 1 preferable.
- a compound having at least one nitrogen-containing group and having a cyclic structure is preferably exemplified.
- the compound having a cyclic structure include an alicyclic compound and an aromatic compound, and an aromatic compound is preferable in that a porous coordination polymer can be easily synthesized.
- An alicyclic compound is an organic compound having an alicyclic group. Examples of the alicyclic group include an adamantane group.
- An aromatic compound is an organic compound having an aromatic ring. Examples of the aromatic ring include an aromatic hydrocarbon ring and an aromatic heterocyclic ring. The aromatic ring may be a single ring or a condensed ring.
- aromatic hydrocarbon ring examples include a benzene ring, a biphenyl ring, a naphthalene ring, a terphenyl ring, an azulene ring, an anthracene ring, a phenanthrene ring, and a pyrene ring.
- aromatic heterocycle examples include furan ring, thiophene ring, oxazole ring, pyrrole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, Examples include a thiazole ring, an indole ring, and an indazole ring.
- an organic compound represented by the following formula (X) is preferable in that the catalytic activity of the obtained metal-supported catalyst is more excellent (hereinafter, also simply referred to as “the effect of the present invention is more excellent”).
- Ar represents an aromatic ring.
- the definition of the aromatic ring is as described above, and an aromatic hydrocarbon ring is preferable and a benzene ring is more preferable in that the effect of the present invention is more excellent.
- R 1 represents a group selected from the group consisting of an amino group, an imino group, and a nitrile group. Especially, an amino group is preferable at the point which the effect of this invention is more excellent.
- R 2 represents a group selected from the group consisting of a carboxylic acid group, a sulfonic acid group, a thiol group, a cyano group, a hydroxyl group, a phosphoric acid group, an imidazole group, a pyridine group, and an amino group.
- a carboxylic acid group is preferable at the point which the effect of this invention is more excellent.
- n represents an integer of 1 to 2, and 1 is preferable in that the effect of the present invention is more excellent.
- m represents an integer of 2 to 4, and 2 is preferable in that the effect of the present invention is more excellent.
- Examples of the compound represented by the formula (X) include the following examples. In the following examples, the definitions of R 1 and R 2 are as described above.
- the porous coordination polymer has a Bragg angle (2 ⁇ ) of 11.1 ⁇ 0.5 °, 19.8 ⁇ 0.5 °, and 26.0 in an X-ray diffraction spectrum using CuK ⁇ rays as a source. A peak is shown at ⁇ 0.5 °.
- the 11.1 ⁇ 0.5 ° is intended to have a peak in the range of 10.6 to 11.6 °.
- the porous coordination polymer may have a peak at a position other than the above position.
- X-ray diffraction can be measured with a fully automatic horizontal multipurpose X-ray diffractometer SmartLabo (manufactured by Rigaku Corporation).
- the method for producing the porous coordination polymer described above is not particularly limited as long as the porous coordination polymer exhibiting the above-mentioned predetermined characteristics is obtained, and a metal salt and an organic compound (a solvent is used if necessary). Although it may be obtained simply by mixing and diffusing, it may be put in a pressure-resistant container such as an autoclave and reacted under high temperature and pressure. Especially, the method of heat-processing above 130 degreeC to the mixture containing a metal salt and an organic compound is mentioned at the point which manufacture is easy and the catalytic activity of the metal supported catalyst obtained is more excellent.
- the types of metal salts and organic compounds used are as described above.
- the heating condition is usually 100 ° C.
- the heating time is not particularly limited, but is preferably 1 to 120 hours, more preferably 12 to 48 hours, from the viewpoint that the effects of the present invention are more excellent and productivity.
- an optimal mixing ratio is appropriately selected depending on the kind of the metal salt and the organic compound used.
- the molar ratio of the metal salt to the organic compound molar amount of metal salt / organic compound
- the molar amount is preferably from 0.9 to 1.1.
- the said mixture may contain the solvent as needed.
- the kind in particular of solvent used is not restrict
- organic solvent examples include alcohol solvents such as methanol, ethanol, and propanol; ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone; amide solvents such as formamide, dimethylacetamide, N-methylpyrrolidone, and dimethylformamide; acetonitrile, propionitrile And nitrile solvents such as methyl acetate, ethyl acetate, and ester solvents such as propylene glycol monomethyl ether acetate; and carbonate solvents such as dimethyl carbonate and diethyl carbonate.
- alcohol solvents such as methanol, ethanol, and propanol
- ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone
- amide solvents such as formamide, dimethylacetamide, N-methylpyrrolidone, and dimethylformamide
- the refinement process which removes an unreacted substance, and the drying process as needed.
- An example of the purification treatment is a washing treatment with a solvent.
- a solvent and a porous coordination polymer may be brought into contact with each other.
- the porous coordination polymer is added to the solvent, and the mixed solution is subjected to heat treatment as necessary. Is mentioned.
- the porous coordination polymer carries a metal.
- the type of metal is not particularly limited, and an optimal metal is appropriately selected depending on the reaction using the metal-supported catalyst. For example, at least selected from the group consisting of Group 8 to Group 11 metals in the periodic table One type is mentioned.
- the metal may be used alone or in combination of two or more, or may be an alloy. Especially, it is preferable that at least 1 sort (s) selected from the group which consists of palladium, ruthenium, platinum, and gold
- the state of the supported metal is not particularly limited, and may be a metal ion or a single metal.
- a salt containing a metal may be used as a raw material for supporting the metal on a porous coordination polymer.
- the metal salt include sulfate, nitrate, carbonate, acetate, phosphate, hydrochloride, hydrobromide, and the like.
- the amount of metal supported in the metal-supported catalyst is not particularly limited, but 0.001 to 20 parts by mass is 100 parts by mass with respect to 100 parts by mass of the porous coordination polymer from the viewpoint of more excellent effects of the present invention and cost. Preferably, 0.01 to 10 parts by mass is more preferable.
- the method for supporting the metal on the porous coordination polymer is not particularly limited, and a known method can be adopted.
- a method in which a porous coordination polymer and a metal salt containing the above metal are brought into contact with each other and then subjected to a heat treatment as necessary can be mentioned.
- the contact method in particular with a porous coordination polymer and a metal salt is not restrict
- the method of adding a porous coordination polymer and a metal salt to a solvent is mentioned.
- the type of the solvent used is not particularly limited, and may be any solvent that can disperse and dissolve the porous coordination polymer and the metal salt, and examples thereof include water and organic solvents.
- the organic solvent used in the case of manufacture of the porous coordination polymer mentioned above is mentioned.
- the temperature condition for contacting the porous coordination polymer and the metal salt is not particularly limited, and can be selected, for example, in the range of 20 to 60 ° C., and is usually performed at room temperature (25 ° C.). Although the contact time varies depending on the temperature, 0.5 to 24 hours are preferable and 1 to 12 hours are more preferable from the viewpoint of productivity.
- the obtained metal-supported catalyst may be washed with water or an organic solvent and dried by vacuum treatment or the like, if necessary.
- heat treatment is performed as necessary, but the temperature condition is not particularly limited, and for example, in the range of 70 to 150 ° C. You can choose.
- the metal-supported catalyst described above can be applied to various reactions, and can be used for, for example, a carbon-carbon bond formation reaction, a carbon-oxygen bond formation reaction, a reduction reaction, or an oxidation reaction.
- Examples of the carbon-carbon bond formation reaction cross coupling reaction
- Examples of the reduction reaction include a hydrogenation reaction and a nitro group reduction reaction.
- Examples of the oxidation reaction include an oxidation reaction of an alcohol compound (for example, a selective oxidation reaction from an alcohol compound to an aldehyde compound), an oxidation reaction of an aldehyde compound, and the like.
- the metal-supported catalyst described above can be suitably used in a method for producing a biaryl compound. More specifically, the method for producing a biaryl compound includes the step of cross-coupling a compound represented by the formula (1) and a compound represented by the formula (2) in the presence of the metal-supported catalyst and the basic compound. This is a method for producing a biaryl compound represented by formula (3) by ring reaction.
- the compound represented by the above formula (1) is a so-called aryl boron compound.
- the compound represented by the above formula (2) is a so-called aryl halide.
- Ar 1 and Ar 2 each independently represent an aryl group which may have a substituent. Examples of the aryl group include a phenyl group, a naphthyl group, and an anthryl group.
- X represents a halogen atom (a chlorine atom, a bromine atom, an iodine atom, etc.).
- the aryl group may contain a substituent.
- the type of the substituent is not particularly limited.
- alkoxy groups such as methoxy group, ethoxy group, propoxy group, butoxy group; halogen atoms such as fluorine atom, chlorine atom, bromine atom, iodine atom; aromatic hydrocarbon group, Examples thereof include an aromatic heterocyclic group, a heterocyclic group, or a group obtained by combining these.
- the number of substituents is not particularly limited, and examples thereof include 1 to 4.
- Ar 1 and Ar 2 are aryl groups having a substituent
- the compounds represented by Formula (1) and Formula (2) are represented by the following formulas.
- R represents a substituent
- each m independently represents an integer of 1 or more, preferably an integer of 1 to 4.
- the kind in particular of basic compound is not restrict
- the basic compound include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as barium hydroxide and calcium hydroxide, sodium carbonate, Examples of the carbonate include potassium carbonate and sodium hydrogen carbonate.
- the procedure of this production method is not particularly limited, and a method of mixing the compound represented by formula (1) and the compound represented by formula (2) in the presence of a metal-supported catalyst and a basic compound is preferable. More specifically, a metal supported catalyst and a basic compound are dissolved in a solvent to prepare a reaction solution, and the compound represented by the formula (1) and the compound represented by the formula (2) are added to the reaction solution. The method of adding and making it react is mentioned.
- the reaction temperature is not particularly limited, but 50 to 150 ° C. is preferable and 80 to 110 ° C. is more preferable in that the yield of the product is more excellent.
- the reaction time is not particularly limited, but 0.5 to 72 hours is preferable and 1 to 50 hours is more preferable from the viewpoint of better product yield and productivity.
- the reaction atmosphere is not particularly limited, and may be under air, under an inert gas atmosphere, or under a reducing gas (for example, hydrogen gas) atmosphere.
- a reducing gas for example, hydrogen gas
- the amount is not particularly limited, but is preferably from 0.5 to 3.0, more preferably from 1.2 to 2.0, from the viewpoint of better product yield.
- the mixing molar ratio of the compound represented by the formula (2) and the supported metal in the metal-supported catalyst is particularly Although not limited, 1.0 ⁇ 10 to 1.0 ⁇ 10 7 is preferable and 0.5 ⁇ 10 2 to 0.5 ⁇ 10 7 is more preferable in that the yield of the product is more excellent.
- the mixing molar ratio of the basic compound and the compound represented by the formula (2) (molar amount of the basic compound / mole amount of the compound represented by the formula (2)) is not particularly limited, but the yield of the product is not limited. 0.5 to 5.0 is preferable and 1.5 to 3.0 is more preferable in that the rate is more excellent.
- the above reaction may be further performed in the presence of a solvent.
- a well-known solvent for example, water, an organic solvent
- a well-known solvent for example, water, an organic solvent
- alcohol solvents such as methanol, ketone solvents such as acetone, amide solvents such as formamide, sulfoxide solvents such as dimethyl sulfoxide, ester solvents such as ethyl acetate, hydrocarbon solvents such as toluene, ether solvents Etc.
- alcohol solvents are preferable, primary alcohol solvents such as ethanol and propanol are more preferable, and ethanol is particularly preferable in that the yield of the product is more excellent.
- the method for mixing the metal-supported catalyst and the reaction substrate is not particularly limited, and a known method can be employed.
- the order which adds each component is not specifically limited, either, The said component may be added simultaneously to a reaction container, and you may add in order, respectively.
- the reaction system can be said to be an excellent system from an industrial viewpoint because the product and the metal-supported catalyst can be easily separated by a separation method such as filtration or centrifugation after completion of the reaction.
- the biaryl compound produced in the above step can be separated and purified by separation means such as filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, etc., or a separation means combining these.
- the metal-supported catalyst described above can be suitably used in a method for producing an aminoaryl compound. More specifically, as shown below, an aminoaryl compound can be obtained by reducing a nitroaryl compound in the presence of a metal-supported catalyst.
- the nitroaryl compound is a compound having a structure in which an aryl group and a nitro group are bonded to each other, and may have other substituents as long as it has the structure. More specifically, Ar 1 in the above scheme represents an aryl group. The definition of aryl groups represented by Ar 1 are the same as those defined Ar 1 in the formula (1) described above. The aryl group may contain a substituent.
- the kind of the substituent is not particularly limited, and is a halogen atom, an alkyl group (including a cycloalkyl group), an alkenyl group (including a cycloalkenyl group or a bicycloalkenyl group), an alkynyl group, an aryl group, a heterocyclic group, an alkoxy group, An aryloxy group, a silyloxy group, a heterocyclic oxy group, an acyloxy group, a cyano group, an alkoxycarbonyl group, or a combination thereof can be given.
- the number of substituents is not particularly limited, and examples thereof include 1 to 4.
- a nitrobenzene compound is preferable as the nitroaryl compound in that the yield of the product is more excellent.
- the nitrobenzene compound is a compound having a structure in which a nitro group is bonded to a benzene ring. When the nitrobenzene compound is used as a starting material, an aminobenzene compound is obtained.
- aminoaryl compound is a compound having a structure in which an aryl group and an amino group are bonded, and other substituents may be included as long as it has the structure.
- the mixing molar ratio of the nitroaryl compound and the supported metal in the metal-supported catalyst in the reaction system is not particularly limited, and the yield of the product is From the standpoint of superiority, 0.1 ⁇ 10 2 to 1.0 ⁇ 10 5 is preferable, and 0.5 ⁇ 10 2 to 1.0 ⁇ 10 4 is more preferable.
- other components for example, a solvent
- the reaction may be performed in the presence of a solvent.
- the type of the solvent is not particularly limited.
- an alcohol solvent is preferably used, and a primary alcohol solvent such as methanol, ethanol, and propanol is more preferable.
- the method for mixing the metal-supported catalyst and the nitroaryl compound is not particularly limited, and a known method can be employed.
- the order which adds each component is not specifically limited, either, The said component may be added simultaneously to a reaction container, and you may add in order, respectively.
- the reaction atmosphere is usually preferably carried out in a reducing gas atmosphere (for example, a hydrogen gas atmosphere).
- the nitroaryl compound may be heat-treated in the presence of the metal-supported catalyst.
- the reaction composition containing the metal-supported catalyst and the nitroaryl compound may be subjected to a heat treatment.
- the temperature conditions for the heat treatment are not particularly limited, the reaction temperature is preferably more than 30 ° C., more preferably 50 ° C. or more in terms of more excellent productivity.
- the upper limit is not particularly limited, but is preferably 120 ° C. or less and more preferably 100 ° C. or less from the viewpoint of economy.
- the reaction time of this production method is not particularly limited, but 1 to 40 hours is preferable and 2 to 24 hours is more preferable in that the yield of the product is more excellent.
- the above reaction system can be easily separated into a product and a metal-supported catalyst by a separation method such as filtration or centrifugation after completion of the reaction, and can be said to be an excellent system from an industrial viewpoint.
- generated at the said process can be isolate
- the metal-supported catalyst described above can be suitably used in a method for producing a hydrogenation reaction product. More specifically, as shown below, a hydrogenation reaction can be performed on an unsaturated compound having a carbon-carbon unsaturated bond in the presence of a metal-supported catalyst to obtain a hydrogenation reaction product.
- An unsaturated compound is a compound having a carbon-carbon unsaturated bond. Examples of the carbon-carbon unsaturated bond include a so-called carbon-carbon double bond and a carbon-carbon triple bond.
- the structure of the unsaturated compound is not particularly limited as long as it contains the above carbon-carbon unsaturated bond, and may be linear or cyclic.
- the compound represented by Formula (4) is mentioned, for example.
- R 3 to R 6 each independently represents a hydrogen atom or an organic group.
- the type of the organic group is not particularly limited, and examples thereof include halogen atoms, alkyl groups (including cycloalkyl groups, bicycloalkyl groups, and tricycloalkyl groups), alkenyl groups (including cycloalkenyl groups and bicycloalkenyl groups), and alkynyl groups.
- R 3 to R 6 may be bonded to form a ring.
- R 3 and R 4 , R 3 and R 5 , R 5 and R 6 , or R 4 and R 6 may be bonded to form a ring.
- the kind of ring formed is not particularly limited, and examples thereof include an aliphatic hydrocarbon ring, an aliphatic heterocyclic ring, an aromatic hydrocarbon ring, and an aromatic heterocyclic ring.
- the hydrogenation reaction product (hydrogenated product) obtained by this production method is a compound in which a carbon-carbon unsaturated bond is hydrogenated.
- the hydrogenation reaction product includes a compound represented by the formula (5).
- the definition of each group in Formula (5) is as above-mentioned.
- the mixing molar ratio of the unsaturated compound and the supported metal in the metal-supported catalyst in the reaction system is not particularly limited, and the yield of the product is From the standpoint of superiority, 0.1 ⁇ 10 2 to 1.0 ⁇ 10 5 is preferable, and 0.5 ⁇ 10 2 to 1.0 ⁇ 10 4 is more preferable.
- other components for example, a solvent
- the reaction may be performed in the presence of a solvent.
- the type of the solvent is not particularly limited.
- an alcohol solvent is preferably used, and a primary alcohol solvent such as methanol, ethanol, and propanol is more preferable.
- the method for mixing the metal-supported catalyst and the unsaturated compound is not particularly limited, and a known method can be employed.
- the order which adds each component is not specifically limited, either, The said component may be added simultaneously to a reaction container, and you may add in order, respectively.
- the reaction atmosphere is usually preferably carried out in a reducing gas atmosphere (for example, a hydrogen gas atmosphere).
- the unsaturated compound may be heat-treated in the presence of the metal-supported catalyst.
- the reaction composition containing the metal-supported catalyst and the unsaturated compound may be subjected to heat treatment.
- the temperature conditions for the heat treatment are not particularly limited, the reaction temperature is preferably more than 30 ° C., more preferably 50 ° C. or more in terms of more excellent productivity.
- the upper limit is not particularly limited, but is preferably 120 ° C. or less and more preferably 100 ° C. or less from the viewpoint of economy.
- the reaction time of this production method is not particularly limited, but 1 to 40 hours is preferable and 2 to 24 hours is more preferable in that the yield of the product is more excellent.
- the above reaction system can be easily separated into a product and a metal-supported catalyst by a separation method such as filtration or centrifugation after completion of the reaction, and can be said to be an excellent system from an industrial viewpoint.
- the hydrogenation reaction product produced in the above step can be separated and purified by separation means such as filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, etc., or a separation means combining these.
- the metal-supported catalyst described above can be suitably used in a method for producing a substituted olefin compound. More specifically, the method for producing a substituted olefin compound comprises cross-linking a compound represented by formula (6) and a compound represented by formula (7) in the presence of the metal-supported catalyst and the basic compound described above. This is a method for producing a substituted olefin compound represented by the formula (8) by a coupling reaction.
- R 10 represents an aryl group, a benzyl group, or an alkyl group.
- X represents a halogen atom (a chlorine atom, a bromine atom, an iodine atom, etc.).
- R 11 represents an aryl group or an alkyl group.
- R 10 and R 11 may contain a substituent. The type of the substituent is not particularly limited.
- alkoxy groups such as methoxy group, ethoxy group, propoxy group, butoxy group; halogen atoms such as fluorine atom, chlorine atom, bromine atom, iodine atom; aromatic hydrocarbon group, Examples thereof include an aromatic heterocyclic group, a heterocyclic group, or a group obtained by combining these.
- the number of substituents is not particularly limited, and examples thereof include 1 to 4.
- the kind in particular of basic compound is not restrict
- the basic compound include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as barium hydroxide and calcium hydroxide, sodium carbonate, Examples thereof include carbonates such as potassium carbonate and sodium hydrogen carbonate, and amine compounds such as triethylamine and diisopropylethylamine.
- a ligand may be further present if necessary.
- the kind in particular of a ligand is not restrict
- the procedure of this production method is not particularly limited, and a method of mixing the compound represented by formula (6) and the compound represented by formula (7) in the presence of a metal-supported catalyst and a basic compound is preferable. More specifically, a metal-supported catalyst and a basic compound are dissolved in a solvent to prepare a reaction solution, and the compound represented by formula (6) and the compound represented by formula (7) are added to the reaction solution. The method of adding and making it react is mentioned.
- the reaction temperature is not particularly limited, but 50 to 150 ° C. is preferable and 80 to 140 ° C. is more preferable in that the yield of the product is more excellent.
- the reaction time is not particularly limited, but 0.5 to 48 hours is preferable and 12 to 36 hours is more preferable from the viewpoint of better product yield and productivity.
- the reaction atmosphere is not particularly limited, and may be under air or under an inert gas atmosphere.
- the amount is not particularly limited, but is preferably 0.5 to 2.0, more preferably 1.0 to 1.5, from the viewpoint of more excellent product yield.
- the mixing molar ratio of the compound represented by the formula (6) and the supported metal in the metal-supported catalyst is particularly Although not limited, 1.0 ⁇ 10 2 to 1.0 ⁇ 10 6 is preferable and 1.0 ⁇ 10 3 to 1.0 ⁇ 10 5 is more preferable in that the yield of the product is more excellent.
- the mixing molar ratio of the basic compound and the compound represented by the formula (6) (molar amount of the basic compound / mole amount of the compound represented by the formula (6)) is not particularly limited, but the yield of the product is not limited. 0.5 to 5.0 is preferable and 1.0 to 2.0 is more preferable in that the rate is more excellent.
- the above reaction may be further performed in the presence of a solvent.
- a solvent for example, water, an organic solvent
- a well-known solvent for example, water, an organic solvent
- alcohol solvents such as methanol, ketone solvents such as acetone, amide solvents such as formamide, sulfoxide solvents such as dimethyl sulfoxide, ester solvents such as ethyl acetate, hydrocarbon solvents such as toluene, ether solvents Etc.
- the method for mixing the metal-supported catalyst and the reaction substrate is not particularly limited, and a known method can be employed.
- the order which adds each component is not specifically limited, either, The said component may be added simultaneously to a reaction container, and you may add in order, respectively.
- the reaction system can be said to be an excellent system from an industrial viewpoint because the product and the metal-supported catalyst can be easily separated by a separation method such as filtration or centrifugation after completion of the reaction.
- the biaryl compound produced in the above step can be separated and purified by separation means such as filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, etc., or a separation means combining these.
- the metal-supported catalyst described above can be suitably used in a method for producing an aldehyde compound. More specifically, the method for producing an aldehyde compound is a method for producing an aldehyde compound by oxidizing an alcohol compound in the presence of the metal-supported catalyst described above.
- An alcohol compound intends a compound having a hydroxyl group (OH group).
- An aldehyde compound intends a compound having an aldehyde group (CHO group).
- the mixing molar ratio of the alcohol compound and the supported metal in the metal-supported catalyst in the reaction system is not particularly limited, and the product yield is more excellent.
- 0.1 ⁇ 10 1 to 1.0 ⁇ 10 4 is preferable, and 0.1 ⁇ 10 2 to 1.0 ⁇ 10 3 is more preferable.
- other components for example, a solvent
- the reaction may be performed in the presence of a solvent.
- the method for mixing the metal-supported catalyst and the alcohol compound is not particularly limited, and a known method can be employed.
- the order which adds each component is not specifically limited, either, The said component may be added simultaneously to a reaction container, and you may add in order, respectively.
- the reaction atmosphere is usually an oxidizing gas atmosphere (for example, an oxygen gas atmosphere).
- the alcohol compound may be heat-treated in the presence of the metal-supported catalyst.
- the reaction composition containing the metal-supported catalyst and the alcohol compound may be subjected to heat treatment.
- the temperature conditions for the heat treatment are not particularly limited, the reaction temperature is preferably more than 30 ° C., more preferably 50 ° C. or more in terms of more excellent productivity.
- the upper limit is not particularly limited, but is preferably 150 ° C. or less from the viewpoint of economy.
- the reaction time of this production method is not particularly limited, but 1 to 40 hours is preferable and 2 to 24 hours is more preferable in that the yield of the product is more excellent.
- the above reaction system can be easily separated into a product and a metal-supported catalyst by a separation method such as filtration or centrifugation after completion of the reaction, and can be said to be an excellent system from an industrial viewpoint.
- the hydrogenation reaction product produced in the above step can be separated and purified by separation means such as filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, etc., or a separation means combining these.
- the metal-supported catalyst described above can be suitably used in a method for producing an allyl group-containing compound. More specifically, in the method for producing an allyl group-containing compound, allyl alcohol or allyl ester is reacted with a compound represented by formula (9) in the presence of the above-described metal-supported catalyst, and the compound represented by formula (10) is used. This is a method for producing an allyl group-containing compound.
- the allyl ester is a compound having one alkenyl group and at least one ester group in one molecule. Carbonic acid allyl ester, acetic acid allyl ester, propionic acid allyl ester, butyric acid allyl ester, valeric acid allyl ester And lauric acid allyl ester.
- Ar represents an aromatic hydrocarbon group which may have a substituent.
- the number of carbon atoms of the aromatic hydrocarbon group is not particularly limited, but is preferably 6 to 36 carbon atoms, more preferably 6 to 18 carbon atoms, from the viewpoints of better solubility in the reaction solvent and better handleability. More preferably, it has 6 to 12 carbon atoms.
- the aromatic hydrocarbon group may be monocyclic or polycyclic.
- Examples thereof include a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring, acenaphthene ring, fluoranthene ring, fluorene ring and the like.
- a benzene ring is preferable at the point which versatility is more excellent.
- the aromatic hydrocarbon group may have a substituent, for example, an aliphatic hydrocarbon group (preferably having 1 to 20 carbon atoms), an aromatic hydrocarbon group (preferably having 6 to 60 carbon atoms), It has a heterocyclic group, an alkoxy group, an alkanoyl group, an aryloxy group, or a combination thereof.
- the reaction can proceed without using a solvent (solvent-free system), but the reaction may be performed in the presence of a solvent, if necessary.
- a solvent solvent-free system
- the reaction may be performed in the presence of a solvent, if necessary.
- the type of the solvent used is not particularly limited, and examples thereof include alcohol solvents, ether solvents, ester solvents, ketone solvents, aromatic hydrocarbon solvents, and aliphatic hydrocarbon solvents. These solvents may be used alone or in combination of two or more.
- the procedure of this production method is not particularly limited, and a known method can be adopted.
- a method in which a metal-supported catalyst and predetermined components are added to a solvent and heat treatment is performed as necessary can be mentioned.
- the powder is collected by filtration and vacuum dried to obtain porous coordination polymer 1 Got.
- Elemental analysis values of the obtained porous coordination polymer 1 were as follows. C: 37.2%, H: 2.0%, N: 6.2%, Zn: 27.3% Further, the specific surface of the obtained porous coordination polymer 1 was 450.5 m 2 g ⁇ 1 .
- the X-ray diffraction measurement of the obtained porous coordination polymer 1 was carried out using a fully automatic horizontal multipurpose X-ray diffractometer SmartLab (manufactured by Rigaku Corporation). The obtained X-ray diffraction spectrum is shown in FIG. As shown in FIG.
- this metal-supported catalyst is referred to as 0.5Pd / AZC.
- 0.5Pd / AZC X-ray diffraction measurement performed in Synthesis Example 1
- peaks at Bragg angles (2 ⁇ ) of 11.2 °, 20.3 °, and 26.0 ° 2 ⁇ ⁇
- a metal supported catalyst (hereinafter referred to as 1.0Pd / AZC) in which the metal loading is 1.0 part by mass with respect to 100 parts by mass of the porous coordination polymer, and the metal loading is porous coordination.
- a metal-supported catalyst (hereinafter referred to as 3.0Pd / AZC) which is 3.0 parts by mass with respect to 100 parts by mass of the polymer, and the amount of metal supported is 5.0 with respect to 100 parts by mass of the porous coordination polymer.
- a metal-supported catalyst (hereinafter referred to as 5.0Pd / AZC) having a mass part was produced.
- Example A Carbon-carbon bond formation reaction> (Example A1) After adding 0.5Pd / AZC (1 mg) and potassium carbonate (K 2 CO 3 ) (4 mmol) to ethanol (5 ml), phenylboric acid (3 mmol) and bromobenzene (2 mmol) were further added. The reaction was carried out under stirring at 80 ° C. for 1 hour under air. After completion of the reaction, the product was analyzed by gas chromatography to identify biphenyl, and the yield ⁇ (molar amount of biphenyl produced / molar amount of bromobenzene used) ⁇ 100 ⁇ relative to bromobenzene was determined. The results are shown in Table 1.
- the metal-supported catalysts used in Examples A1 to A5 were recovered after completion of the reaction, washed with ethanol, and the recovered solid was vacuum-dried at room temperature. When biphenyl was produced under the conditions, it was confirmed that the yield was the same as the first time. Further, the metal-supported catalyst used after completion of the second reaction was recovered again, washed with ethanol, the recovered solid was vacuum-dried at room temperature, and again under the same conditions, As a result of production, it was confirmed that the yield was the same as that of the first time. From the above results, it was confirmed that the metal-supported catalyst of the present invention can be reused.
- Example B Carbon-carbon bond formation reaction> (Examples B1 to B6)
- Example B1 to B6 Carbon-carbon bond formation reaction>
- the type and amount of metal-supported catalyst, the amount of bromobenzene, phenylboric acid and potassium carbonate, and the reaction time (1 hour) were changed as shown in Table 2.
- Biphenyl was produced.
- Example B1 2 mmol of bromobenzene was used, and 3 mmol of phenylboric acid and 4 mmol of potassium carbonate were used accordingly.
- the “Pd (nmol)” column intends the molar amount of palladium contained in the metal-supported catalyst used. In addition, nmol intends nanomol.
- “TON” intends the turnover number (catalyst rotation speed). TON was calculated as the amount of biphenyl produced (mmol) / the amount of Pd used (mmol). In addition, mmol intends a mmol.
- mass ratio mass ratio
- Example C Carbon-carbon bond formation reaction> (Example C1) 3Pd / AZC (5 mg) and potassium carbonate (K 2 CO 3 ) (1 mmol) were added to ethanol (5 ml), and then phenylboric acid (0.75 mmol) and p-nitrochlorobenzene (0.5 mmol) were added. Then, the reaction was carried out under stirring at 80 ° C. for 3 hours under air. After completion of the reaction, the product is analyzed by gas chromatography to identify biphenyl, and the yield ⁇ (molar amount of biphenyl produced / molar amount of p-nitrochlorobenzene used) ⁇ 100 ⁇ relative to p-nitrochlorobenzene is determined. It was. The results are shown in Table 3.
- Example C2 According to the same procedure as in Example C1, except that the amount of the metal-supported catalyst, the reaction time, the type of reaction substrate (p-nitrochlorobenzene), the type of solvent, and the reaction temperature were changed as shown in Table 3. Manufactured. The results are shown in Table 3. In Examples C2 and C3, tetrabutylammonium bromide (1 mmol) was further added to ethanol. In Example C3, an autoclave was used for the reaction.
- Example D2 0.5 Pd / AZC (5 mg) and nitrobenzene (20 mmol) were added to ethanol (30 ml), and the reaction was performed at 80 ° C. for 40 hours in a hydrogen gas atmosphere (1 atm).
- TON showed 2733.
- the “TON (turnover number (catalyst rotation number)” was calculated as the amount of aniline produced (mmol) / the amount of Pd used (mmol), where mmol is intended to be mmol.
- Example E Reduction reaction> (Example E1) 3Pd / AZC (25 mg) and a compound (1 mmol) represented by the following formula (Y) were added to ethanol (5 ml), and the reaction was performed at 80 ° C. for 6 hours in a hydrogen gas atmosphere (1 atm). After completion of the reaction, the reaction solution was cooled to room temperature and centrifuged to separate the metal-supported catalyst from the supernatant solution containing the product. Next, using FID gas chromatography (Shimadzu GC-17, Agilent DB-1 column. Naphthalene is used as an internal standard substance), the compound represented by the formula (Z) as a product in the supernatant solution Identified.
- FID gas chromatography Shiadzu GC-17, Agilent DB-1 column. Naphthalene is used as an internal standard substance
- the yield of the product was calculated from the amount of the compound represented by the formula (Y) as a starting material.
- Yield (%) [Amount of compound represented by formula (Z) (mmol) / Amount of compound represented by formula (Y) used (mmol)] ⁇ 100 The yield was over 99%, and it was confirmed that the metal-supported catalyst of the present invention is useful for the reduction reaction.
- Example E2 To ethanol (30 ml), 0.5 Pd / AZC (5 mg) and a compound represented by the following formula (Y) (10 mmol) were added, and the reaction was performed at 80 ° C. for 40 hours in a hydrogen gas atmosphere (1 atm). It was. When analyzed in the same manner as in Example E1, TON showed 7228. Note that “TON (turnover number (catalyst rotation number)” was calculated as the amount of the compound represented by the generated formula (Z) (mmol) / the amount of Pd used (mmol). To do.
- Example F Reduction reaction> 3Pd / AZC (25 mg) and maleic anhydride (1 mmol) were added to water (5 ml), and the reaction was performed at 80 ° C. for 6 hours in a hydrogen gas atmosphere (1 atm). After completion of the reaction, the reaction solution was cooled to room temperature and centrifuged to separate the metal-supported catalyst from the supernatant solution containing the product. Next, using FID gas chromatography (Shimadzu GC-17, Agilent DB-1 column. Naphthalene was used as an internal standard substance), it was identified that succinic acid as a product was present in the supernatant solution. The product yield was calculated from the charged amount of maleic anhydride as a starting material.
- Example G Mizorogi-Heck reaction> (Example G1) To 1-methyl-2-pyrrolidone (5 ml), 0.5 Pd / AZC (25 mg), bromobenzene (3.75 mmol), styrene (4.5 mmol) and potassium carbonate (4.5 mmol) were added, and nitrogen gas flow was performed. The reaction was carried out at 130 ° C. for 24 hours under (20 ml / min). After completion of the reaction, the reaction solution was cooled to room temperature and centrifuged to separate the metal-supported catalyst from the supernatant solution containing the product. Next, using FID gas chromatography (Shimadzu GC-17, Agilent DB-1 column.
- Example G2 To 1-methyl-2-pyrrolidone (10 ml), 0.5 Pd / AZC (2 mg), bromobenzene (12 mmol), styrene (14.4 mmol) and potassium carbonate (14.4 mmol) were added, under nitrogen gas flow ( The reaction was performed at 130 ° C. for 72 hours at 20 ml / min. When analyzed in the same procedure as in Example G1, the TON showed 38064. The “TON (turnover number (catalyst rotation number)” was calculated as the compound represented by the generated formula (S) (mmol) / the amount of Pd used (mmol). .
- Example G3 The reaction was carried out under the same conditions as in Example G2, except that the reaction solvent was methyl isobutyl ketone (15 ml) and the reaction temperature was changed to 120 ° C. As a result, TON showed 79549.
- Example H Alcohol oxidation reaction> 4Ru / AZC (50 mg) and 5-hydroxymethylfurfural (HMF, 0.5 mmol) were added to N, N-dimethylformamide (DMF, 3 ml) at 120 ° C. under flowing oxygen (36 ml / min). The reaction was carried out for 11 hours. After completion of the reaction, the reaction solution was cooled to room temperature and centrifuged to separate the metal-supported catalyst from the supernatant solution containing the product. Next, high performance liquid chromatography (HPLC, Waters 600, Bio-Rad Aminex HPX-87H column) was used to identify the presence of 2,5-diformylfuran (DFF) as a product in the supernatant solution.
- DFF 2,5-diformylfuran
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Furan Compounds (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
Abstract
本発明は、触媒活性に優れ、各種反応に適用することができる、多孔性配位高分子を担体として含む金属担持触媒(金属担持多孔性配位高分子触媒)を提供する。本発明の金属担持多孔性配位高分子触媒は、担体と、担体に担持された金属とを有し、担体が、金属イオンと金属イオンに配位可能な有機化合物とが繰り返し単位を構成する多孔性配位高分子であり、多孔性配位高分子が、CuKα線を線源とするX線回折スペクトルにおいて、ブラッグ角(2θ)が11.1±0.5°、19.8±0.5°、および、26.0±0.5°にピークを示し、有機化合物が、窒素原子を含む官能基を少なくとも1つ有する。
Description
本発明は、金属担持多孔性配位高分子触媒に係り、特に、担体として特定の多孔性配位高分子を用いた金属担持触媒に関する。
金属種を触媒反応の活性中心とする反応系では、従来から、溶媒中に均一に分散する均一系金属触媒が使用されている。しかしながら、取り扱いが難しい、価格が高い、反応後に触媒と生成物との分離操作が煩雑である、などの問題がある点から、活性炭や酸化物などの担体に金属種を担持した触媒(不均一系金属触媒)の研究・開発が進められている。不均一系金属触媒は、通常、固体であるため、上述のような均一系金属触媒の問題点を克服することができるが、触媒活性の点では均一系金属触媒に劣る場合が多い。
一方、近年、金属イオンと、金属イオンに配位する有機化合物(有機配位子)とが2~3次元の配位ネットワークを形成した多孔性配位高分子(PCP:Porous Coordination Polymer)が種々の用途に適用されている。
例えば、非特許文献1においては、多孔性配位高分子を不均一系金属触媒の担体として使用する技術が報告されている。より具体的には、金属イオンとしてZn2+(亜鉛イオン)、有機化合物として2-アミノ-1,4-ベンゼンジカルボン酸を用いて得られる多孔性配位高分子(IRMOF-3)をピリジル-2-アルデヒドで修飾して得られる材料を、金属を担持する担体として用いている。
例えば、非特許文献1においては、多孔性配位高分子を不均一系金属触媒の担体として使用する技術が報告されている。より具体的には、金属イオンとしてZn2+(亜鉛イオン)、有機化合物として2-アミノ-1,4-ベンゼンジカルボン酸を用いて得られる多孔性配位高分子(IRMOF-3)をピリジル-2-アルデヒドで修飾して得られる材料を、金属を担持する担体として用いている。
Debraj Saha, Langmuir, 2013, 29, 3140.
しかしながら、非特許文献1の金属担持触媒では、触媒活性が低く、必ずしも工業的な点からは十分とはいえず、さらなる改良が必要であった。
本発明は、上記実情に鑑みて、触媒活性に優れ、各種反応に適用することができる、多孔性配位高分子を担体として含む金属担持触媒(金属担持多孔性配位高分子触媒)を提供することを目的とする。
本発明は、上記実情に鑑みて、触媒活性に優れ、各種反応に適用することができる、多孔性配位高分子を担体として含む金属担持触媒(金属担持多孔性配位高分子触媒)を提供することを目的とする。
本発明者らは、上記課題について鋭意検討した結果、所定の特性を示す多孔性配位高分子を担体として用いることにより、上記課題を解決できることを見出し、本発明を完成するに至った。
すなわち、以下に示す手段により上記課題を解決し得る。
すなわち、以下に示す手段により上記課題を解決し得る。
(1) 担体と、担体に担持された金属とを有し(備え)、
担体が、金属イオンと金属イオンに配位可能な有機化合物とが繰り返し単位を構成する多孔性配位高分子であり、
多孔性配位高分子が、CuKα線を線源とするX線回折スペクトルにおいて、ブラッグ角(2θ)が11.1±0.5°、19.8±0.5°、および、26.0±0.5°にピークを示し、
有機化合物が、窒素原子を含む官能基を少なくとも1つ有する、金属担持多孔性配位高分子触媒。
(2) 担体に担持された金属が、周期律表の第8族金属~第11族金属からなる群から選択される少なくとも1種を含む、(1)に記載の金属担持多孔性配位高分子触媒。
(3) 金属イオンが、周期律表の第4族金属~第13族金属からなる群から選択される少なくとも1種のイオンを含む、(1)または(2)に記載の金属担持多孔性配位高分子触媒。
(4) 有機化合物が、カルボン酸基、スルホン酸基、チオール基、シアノ基、ヒドロキシル基、リン酸基、イミダゾール基、ピリジン基、および、アミノ基からなる群から選択される基を少なくとも2つ有する、(1)~(3)のいずれかに記載の金属担持多孔性配位高分子触媒。
(5) 窒素原子を含む官能基が、アミノ基、イミノ基、および、ニトリル基からなる群から選択される、(1)~(4)のいずれかに記載の金属担持多孔性配位高分子触媒。
(6) 炭素-炭素結合生成反応、炭素-酸素結合生成反応、還元反応、または、酸化反応に用いられる、(1)~(5)のいずれかに記載の金属担持多孔性配位高分子触媒。
(7) (1)~(5)のいずれかに記載の金属担持多孔性配位高分子触媒、および、塩基性化合物の存在下、後述する式(1)で表される化合物と、後述する式(2)で表される化合物とをクロスカップリング反応させ、後述する式(3)で表されるビアリール化合物を製造する、ビアリール化合物の製造方法。
(8) (1)~(5)のいずれかに記載の金属担持多孔性配位高分子触媒の存在下、ニトロアリール化合物を還元してアミノアリール化合物を製造する、アミノアリール化合物の製造方法。
(9) (1)~(5)のいずれかに記載の金属担持多孔性配位高分子触媒の存在下、炭素-炭素不飽和結合を有する不飽和化合物に対して水素化反応を行い、水素化反応物を製造する、水素化反応物の製造方法。
(10) (1)~(5)のいずれかに記載の金属担持多孔性配位高分子触媒の存在下、アルコール化合物またはアルデヒド化合物に対して酸化反応を行い、酸化反応物を製造する、酸化反応物の製造方法。
(11) (1)~(5)のいずれかに記載の金属担持多孔性配位高分子触媒の存在下、アリルアルコールまたはアリルエステルと後述する式(9)で表される化合物とを反応させ、後述する式(10)で表されるアリル基含有化合物を製造する、アリル基含有化合物の製造方法。
担体が、金属イオンと金属イオンに配位可能な有機化合物とが繰り返し単位を構成する多孔性配位高分子であり、
多孔性配位高分子が、CuKα線を線源とするX線回折スペクトルにおいて、ブラッグ角(2θ)が11.1±0.5°、19.8±0.5°、および、26.0±0.5°にピークを示し、
有機化合物が、窒素原子を含む官能基を少なくとも1つ有する、金属担持多孔性配位高分子触媒。
(2) 担体に担持された金属が、周期律表の第8族金属~第11族金属からなる群から選択される少なくとも1種を含む、(1)に記載の金属担持多孔性配位高分子触媒。
(3) 金属イオンが、周期律表の第4族金属~第13族金属からなる群から選択される少なくとも1種のイオンを含む、(1)または(2)に記載の金属担持多孔性配位高分子触媒。
(4) 有機化合物が、カルボン酸基、スルホン酸基、チオール基、シアノ基、ヒドロキシル基、リン酸基、イミダゾール基、ピリジン基、および、アミノ基からなる群から選択される基を少なくとも2つ有する、(1)~(3)のいずれかに記載の金属担持多孔性配位高分子触媒。
(5) 窒素原子を含む官能基が、アミノ基、イミノ基、および、ニトリル基からなる群から選択される、(1)~(4)のいずれかに記載の金属担持多孔性配位高分子触媒。
(6) 炭素-炭素結合生成反応、炭素-酸素結合生成反応、還元反応、または、酸化反応に用いられる、(1)~(5)のいずれかに記載の金属担持多孔性配位高分子触媒。
(7) (1)~(5)のいずれかに記載の金属担持多孔性配位高分子触媒、および、塩基性化合物の存在下、後述する式(1)で表される化合物と、後述する式(2)で表される化合物とをクロスカップリング反応させ、後述する式(3)で表されるビアリール化合物を製造する、ビアリール化合物の製造方法。
(8) (1)~(5)のいずれかに記載の金属担持多孔性配位高分子触媒の存在下、ニトロアリール化合物を還元してアミノアリール化合物を製造する、アミノアリール化合物の製造方法。
(9) (1)~(5)のいずれかに記載の金属担持多孔性配位高分子触媒の存在下、炭素-炭素不飽和結合を有する不飽和化合物に対して水素化反応を行い、水素化反応物を製造する、水素化反応物の製造方法。
(10) (1)~(5)のいずれかに記載の金属担持多孔性配位高分子触媒の存在下、アルコール化合物またはアルデヒド化合物に対して酸化反応を行い、酸化反応物を製造する、酸化反応物の製造方法。
(11) (1)~(5)のいずれかに記載の金属担持多孔性配位高分子触媒の存在下、アリルアルコールまたはアリルエステルと後述する式(9)で表される化合物とを反応させ、後述する式(10)で表されるアリル基含有化合物を製造する、アリル基含有化合物の製造方法。
本発明によれば、触媒活性に優れ、各種反応に適用することができる、多孔性配位高分子を担体として含む金属担持触媒(金属担持多孔性配位高分子触媒)を提供することができる。
以下に、本発明の金属担持多孔性配位高分子触媒(以後、単に「金属担持触媒」とも称する)、および、該金属担持触媒を用いた各種化合物の製造方法の好適態様について説明する。
本発明の特徴点は、CuKα線を線源とするX線回折スペクトルにおいて、ブラッグ角(2θ)が所定の値のピークを示す多孔性配位高分子を金属担持触媒の担体として用いる点が挙げられる。上記多孔性配位高分子を使用することにより触媒活性が向上する理由は不明であるが、上記多孔性配位高分子に金属を担持させる際に、所定の規則構造を有する多孔性配位高分子中の有機化合物に含まれる窒素原子を含む官能基と担持された金属とが相互作用して、金属が触媒活性に優位なサイトに固定化されることにより、触媒活性の向上が達成されているものと推測される。
なお、非特許文献1では触媒調製に長期日数を要するのに対して、本発明の金属担持触媒はより短時間で調製が可能である。
以下では、まず、金属担持触媒について詳述し、その後、この金属担持触媒を用いた反応について詳述する。
本発明の特徴点は、CuKα線を線源とするX線回折スペクトルにおいて、ブラッグ角(2θ)が所定の値のピークを示す多孔性配位高分子を金属担持触媒の担体として用いる点が挙げられる。上記多孔性配位高分子を使用することにより触媒活性が向上する理由は不明であるが、上記多孔性配位高分子に金属を担持させる際に、所定の規則構造を有する多孔性配位高分子中の有機化合物に含まれる窒素原子を含む官能基と担持された金属とが相互作用して、金属が触媒活性に優位なサイトに固定化されることにより、触媒活性の向上が達成されているものと推測される。
なお、非特許文献1では触媒調製に長期日数を要するのに対して、本発明の金属担持触媒はより短時間で調製が可能である。
以下では、まず、金属担持触媒について詳述し、その後、この金属担持触媒を用いた反応について詳述する。
<金属担持触媒>
本発明の金属担持触媒は、担体として機能する特定の多孔性配位高分子と、担体に担持された金属とを有する。
以下、それぞれの成分について詳述する。
本発明の金属担持触媒は、担体として機能する特定の多孔性配位高分子と、担体に担持された金属とを有する。
以下、それぞれの成分について詳述する。
(多孔性配位高分子)
多孔性配位高分子は、金属イオンと、金属イオンに配位可能な有機化合物(有機配位子)とが繰り返し単位を構成している。通常、多孔性配位高分子は、無機物である金属イオンと、有機物である有機化合物とが自己集合的に集まり、組みあがった材料である。
多孔性配位高分子は、金属イオンと、金属イオンに配位可能な有機化合物(有機配位子)とが繰り返し単位を構成している。通常、多孔性配位高分子は、無機物である金属イオンと、有機物である有機化合物とが自己集合的に集まり、組みあがった材料である。
多孔性配位高分子中に含まれる金属イオン(金属原子)としては特に制限はなく、適宜選択することができるが、例えば、周期律表(長周期型周期律表)における第4族金属~第13族金属からなる群から選択される元素のイオン(原子)が挙げられる。なかでも、多孔性配位高分子の合成がより容易であり、金属担持触媒の触媒活性がより優れる点で、Zn2+、Co2+、Ni2+、Cu2+、Cr2+、Mn2+、Al3+、および、Fe3+からなる群から選択される金属イオンが好ましく、Zn2+、Co2+、Ni2+、または、Cr2+がより好ましく、Zn2+がさらに好ましい。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
なお、多孔性配位高分子の製造の際の上記金属イオンの原料としては、金属イオンを含む塩等の化合物を使用してもよい。金属イオンの塩(金属塩)としては、硫酸塩、硝酸塩、炭酸塩、酢酸塩、リン酸塩、塩酸塩、臭化水素酸塩などが挙げられる。
なお、多孔性配位高分子の製造の際の上記金属イオンの原料としては、金属イオンを含む塩等の化合物を使用してもよい。金属イオンの塩(金属塩)としては、硫酸塩、硝酸塩、炭酸塩、酢酸塩、リン酸塩、塩酸塩、臭化水素酸塩などが挙げられる。
多孔性配位高分子中に含まれる有機化合物は、上記金属イオンに配位可能である。つまり、有機化合物には、金属イオンと配位可能な官能基(以後、配位性官能基とも称する)が含まれる。配位性官能基の種類は特に制限されないが、例えば、カルボン酸基、スルホン酸基、チオール基、シアノ基、ヒドロキシル基、リン酸基、イミダゾール基、ピリジン基、アミノ基などが挙げられる。なかでも、多孔性配位高分子が合成しやすく、金属担持触媒の触媒活性がより優れる点で、カルボン酸基が好ましい。
有機化合物中に含まれる配位性官能基の数は特に制限されないが、通常、有機化合物1分子中に2個以上の場合が多く、2~6個が好ましく、2~3個がより好ましく、2個がさらに好ましい。
有機化合物は、窒素原子を含む官能基(以後、窒素含有基とも称する)を少なくとも1つ有する。窒素含有基は、担体に担持される金属と相互作用(配位)すると考えられる。窒素含有基の種類は特に制限されないが、例えば、アミノ基(-NH2)、イミノ基、ニトリル基などが挙げられる。
有機化合物中に含まれる窒素含有基の数は特に制限されないが、有機化合物1分子中に1個以上であればよく、1~4個が好ましく、1~2個がより好ましく、1個がさらに好ましい。
有機化合物中に含まれる配位性官能基の数は特に制限されないが、通常、有機化合物1分子中に2個以上の場合が多く、2~6個が好ましく、2~3個がより好ましく、2個がさらに好ましい。
有機化合物は、窒素原子を含む官能基(以後、窒素含有基とも称する)を少なくとも1つ有する。窒素含有基は、担体に担持される金属と相互作用(配位)すると考えられる。窒素含有基の種類は特に制限されないが、例えば、アミノ基(-NH2)、イミノ基、ニトリル基などが挙げられる。
有機化合物中に含まれる窒素含有基の数は特に制限されないが、有機化合物1分子中に1個以上であればよく、1~4個が好ましく、1~2個がより好ましく、1個がさらに好ましい。
有機化合物の好適態様の一つとして、上記窒素含有基を少なくとも1つ有し、かつ、環状構造を有する化合物が好適に挙げられる。環状構造を有する化合物としては、例えば、脂環式化合物、または、芳香族化合物が挙げられ、多孔性配位高分子の合成がしやすい点で、芳香族化合物が好ましい。
脂環式化合物とは、脂環基を有する有機化合物である。脂環基としては、例えば、アダマンタン基が挙げられる。
芳香族化合物とは、芳香環を有する有機化合物である。芳香環としては、芳香族炭化水素環または芳香族複素環が挙げられる。また、該芳香環は単環でもよく、縮合環でもよい。芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、テルフェニル環、アズレン環、アントラセン環、フェナントレン環、ピレン環等が挙げられる。芳香族複素環としては、例えば、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環等が挙げられる。
脂環式化合物とは、脂環基を有する有機化合物である。脂環基としては、例えば、アダマンタン基が挙げられる。
芳香族化合物とは、芳香環を有する有機化合物である。芳香環としては、芳香族炭化水素環または芳香族複素環が挙げられる。また、該芳香環は単環でもよく、縮合環でもよい。芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、テルフェニル環、アズレン環、アントラセン環、フェナントレン環、ピレン環等が挙げられる。芳香族複素環としては、例えば、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環等が挙げられる。
なかでも、得られる金属担持触媒の触媒活性がより優れる点(以後、単に「本発明の効果がより優れる点」とも称する)で、以下の式(X)で表される有機化合物が好ましい。
式(X)中、Arは芳香環を表す。芳香環の定義は上述の通りであり、本発明の効果がより優れる点で、芳香族炭化水素環が好ましく、ベンゼン環がより好ましい。
R1は、アミノ基、イミノ基、および、ニトリル基からなる群から選択される基を表す。なかでも、本発明の効果がより優れる点で、アミノ基が好ましい。
R2は、カルボン酸基、スルホン酸基、チオール基、シアノ基、ヒドロキシル基、リン酸基、イミダゾール基、ピリジン基、および、アミノ基からなる群から選択される基を表す。なかでも、本発明の効果がより優れる点で、カルボン酸基が好ましい。
nは、1~2の整数を表し、本発明の効果がより優れる点で、1が好ましい。
mは、2~4の整数を表し、本発明の効果がより優れる点で、2が好ましい。
式(X)で表される化合物としては、例えば、以下の例が挙げられる。なお、以下例中のR1およびR2の定義は上述の通りである。
R1は、アミノ基、イミノ基、および、ニトリル基からなる群から選択される基を表す。なかでも、本発明の効果がより優れる点で、アミノ基が好ましい。
R2は、カルボン酸基、スルホン酸基、チオール基、シアノ基、ヒドロキシル基、リン酸基、イミダゾール基、ピリジン基、および、アミノ基からなる群から選択される基を表す。なかでも、本発明の効果がより優れる点で、カルボン酸基が好ましい。
nは、1~2の整数を表し、本発明の効果がより優れる点で、1が好ましい。
mは、2~4の整数を表し、本発明の効果がより優れる点で、2が好ましい。
式(X)で表される化合物としては、例えば、以下の例が挙げられる。なお、以下例中のR1およびR2の定義は上述の通りである。
(多孔性配位高分子の特性)
多孔性配位高分子は、CuKα線を線源とするX線回折スペクトルにおいて、ブラッグ角(2θ)が11.1±0.5°、19.8±0.5°、および、26.0±0.5°にピークを示す。なお、上記11.1±0.5°とは、10.6~11.6°の範囲においてピークがあることを意図する。
また、多孔性配位高分子は、上記位置以外の位置にピークを有していてもよい。
X線回折の測定は、全自動水平型多目的X線回折装置SmartLabo(株式会社リガク製)等にて行うことができる。
多孔性配位高分子は、CuKα線を線源とするX線回折スペクトルにおいて、ブラッグ角(2θ)が11.1±0.5°、19.8±0.5°、および、26.0±0.5°にピークを示す。なお、上記11.1±0.5°とは、10.6~11.6°の範囲においてピークがあることを意図する。
また、多孔性配位高分子は、上記位置以外の位置にピークを有していてもよい。
X線回折の測定は、全自動水平型多目的X線回折装置SmartLabo(株式会社リガク製)等にて行うことができる。
(多孔性配位高分子の製造方法)
上述した多孔性配位高分子の製造方法は、上記所定の特性を示す多孔性配位高分子が得られれば特に制限されず、金属塩および有機化合物(必要に応じて、溶媒を使用)を混合して拡散させるだけで得られることもあるが、オートクレーブなどの耐圧容器に入れ、高温・加圧下で反応させてもよい。なかでも、製造が容易であり、得られる金属担持触媒の触媒活性がより優れる点で、金属塩および有機化合物を含む混合物に、130℃超にて加熱処理を施す方法が挙げられる。
使用される金属塩および有機化合物の種類は、上述の通りである。
加熱条件は、通常、100℃以上の場合が多く、本発明の効果がより優れる点で、130℃超が好ましく、135℃以上がより好ましい。上限は特に制限されないが、通常、200℃以下の場合が多い。
加熱時間は特に制限されないが、本発明の効果がより優れる点および生産性の点から、1~120時間が好ましく、12~48時間がより好ましい。
上述した多孔性配位高分子の製造方法は、上記所定の特性を示す多孔性配位高分子が得られれば特に制限されず、金属塩および有機化合物(必要に応じて、溶媒を使用)を混合して拡散させるだけで得られることもあるが、オートクレーブなどの耐圧容器に入れ、高温・加圧下で反応させてもよい。なかでも、製造が容易であり、得られる金属担持触媒の触媒活性がより優れる点で、金属塩および有機化合物を含む混合物に、130℃超にて加熱処理を施す方法が挙げられる。
使用される金属塩および有機化合物の種類は、上述の通りである。
加熱条件は、通常、100℃以上の場合が多く、本発明の効果がより優れる点で、130℃超が好ましく、135℃以上がより好ましい。上限は特に制限されないが、通常、200℃以下の場合が多い。
加熱時間は特に制限されないが、本発明の効果がより優れる点および生産性の点から、1~120時間が好ましく、12~48時間がより好ましい。
金属塩と有機化合物との混合比は、使用される金属塩および有機化合物の種類によって適宜最適な混合比が選択される。例えば、2価の金属イオンを含む金属塩と、2つの配位性官能基を有する有機化合物とを使用する場合は、金属塩と有機化合物とのモル比(金属塩のモル量/有機化合物のモル量)は0.9~1.1が好ましい。
なお、上記混合物には、必要に応じて、溶媒が含まれていてもよい。使用される溶媒の種類は特に制限されず、水または有機溶媒が挙げられる。有機溶媒としては、メタノール、エタノール、プロパノール等のアルコール系溶媒;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン系溶媒;ホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、ジメチルホルムアミド等のアミド系溶媒;アセトニトリル、プロピオニトリル等のニトリル系溶媒;酢酸メチル、酢酸エチル、プロピレングリコールモノメチルエーテルアセタート等のエステル系溶媒;ジメチルカーボネート、ジエチルカーボネート等のカーボネート系溶媒などが挙げられる。
また、上記混合物に加熱処理を施した後、必要に応じて、未反応物を除去する精製処理や、乾燥処理を実施してもよい。精製処理としては、溶媒での洗浄処理が挙げられる。洗浄処理としては、溶媒と多孔性配位高分子とを接触させればよく、例えば、溶媒中に多孔性配位高分子を添加して、必要に応じて、混合液に加熱処理を施す方法が挙げられる。
なお、上記混合物には、必要に応じて、溶媒が含まれていてもよい。使用される溶媒の種類は特に制限されず、水または有機溶媒が挙げられる。有機溶媒としては、メタノール、エタノール、プロパノール等のアルコール系溶媒;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン系溶媒;ホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、ジメチルホルムアミド等のアミド系溶媒;アセトニトリル、プロピオニトリル等のニトリル系溶媒;酢酸メチル、酢酸エチル、プロピレングリコールモノメチルエーテルアセタート等のエステル系溶媒;ジメチルカーボネート、ジエチルカーボネート等のカーボネート系溶媒などが挙げられる。
また、上記混合物に加熱処理を施した後、必要に応じて、未反応物を除去する精製処理や、乾燥処理を実施してもよい。精製処理としては、溶媒での洗浄処理が挙げられる。洗浄処理としては、溶媒と多孔性配位高分子とを接触させればよく、例えば、溶媒中に多孔性配位高分子を添加して、必要に応じて、混合液に加熱処理を施す方法が挙げられる。
(金属(以後、「担持金属」とも称する))
上記多孔性配位高分子には、金属が担持される。
金属の種類は特に制限されず、金属担持触媒を使用する反応によって適宜最適な金属が選択されるが、例えば、周期律表の第8族金属~第11族金属からなる群から選択される少なくとも1種が挙げられる。金属は1種のみを用いても、2種以上を併用してもよく、合金であってもよい。
なかでも、本発明の効果がより優れる点で、パラジウム、ルテニウム、白金、および、金からなる群から選択される少なくとも1種を含むことが好ましく、パラジウムがより好ましい。
担持された金属の状態は特に制限されず、金属イオンであっても、金属単体であってもよい。
なお、後述するように、上記金属を多孔性配位高分子に担持させる際の原料としては、上記金属を含む塩(金属塩)を使用してもよい。金属塩としては、硫酸塩、硝酸塩、炭酸塩、酢酸塩、リン酸塩、塩酸塩、臭化水素酸塩などが挙げられる。
上記多孔性配位高分子には、金属が担持される。
金属の種類は特に制限されず、金属担持触媒を使用する反応によって適宜最適な金属が選択されるが、例えば、周期律表の第8族金属~第11族金属からなる群から選択される少なくとも1種が挙げられる。金属は1種のみを用いても、2種以上を併用してもよく、合金であってもよい。
なかでも、本発明の効果がより優れる点で、パラジウム、ルテニウム、白金、および、金からなる群から選択される少なくとも1種を含むことが好ましく、パラジウムがより好ましい。
担持された金属の状態は特に制限されず、金属イオンであっても、金属単体であってもよい。
なお、後述するように、上記金属を多孔性配位高分子に担持させる際の原料としては、上記金属を含む塩(金属塩)を使用してもよい。金属塩としては、硫酸塩、硝酸塩、炭酸塩、酢酸塩、リン酸塩、塩酸塩、臭化水素酸塩などが挙げられる。
金属担持触媒中における金属の担持量は特に制限されないが、本発明の効果がより優れる点およびコストの点から、多孔性配位高分子100質量部に対して、0.001~20質量部が好ましく、0.01~10質量部がより好ましい。
(金属担持触媒の製造方法)
多孔性配位高分子に金属を担持する方法は特に制限されず、公知の方法を採用することができる。例えば、多孔性配位高分子と、上記金属を含む金属塩とを接触させ、その後必要に応じて、加熱処理を施す方法が挙げられる。
なお、多孔性配位高分子と金属塩との接触方法は特に制限されず、例えば、溶媒に多孔性配位高分子と金属塩とを加える方法が挙げられる。
使用される溶媒の種類は特に制限されず、多孔性配位高分子および金属塩を分散・溶解させることができる溶媒であればよく、水または有機溶媒が挙げられる。有機溶媒の種類は、上述した多孔性配位高分子の製造の際に使用される有機溶媒が挙げられる。
多孔性配位高分子と金属塩とを接触させる際の温度条件は特に制限されず、例えば、20~60℃の範囲で選択することができ、通常、室温(25℃)で行われる。
接触時間は温度によっても異なるが、生産性の点から、0.5~24時間が好ましく、1~12時間がより好ましい。
多孔性配位高分子と金属塩とを接触させた後、必要に応じて、得られた金属担持触媒を水や有機溶媒で洗浄し、真空処理などにより乾燥してもよい。
また、多孔性配位高分子と金属塩とを接触させた後には、必要に応じて、加熱処理が施されるが、その温度条件は特に制限されず、例えば、70~150℃の範囲で選択することができる。
多孔性配位高分子に金属を担持する方法は特に制限されず、公知の方法を採用することができる。例えば、多孔性配位高分子と、上記金属を含む金属塩とを接触させ、その後必要に応じて、加熱処理を施す方法が挙げられる。
なお、多孔性配位高分子と金属塩との接触方法は特に制限されず、例えば、溶媒に多孔性配位高分子と金属塩とを加える方法が挙げられる。
使用される溶媒の種類は特に制限されず、多孔性配位高分子および金属塩を分散・溶解させることができる溶媒であればよく、水または有機溶媒が挙げられる。有機溶媒の種類は、上述した多孔性配位高分子の製造の際に使用される有機溶媒が挙げられる。
多孔性配位高分子と金属塩とを接触させる際の温度条件は特に制限されず、例えば、20~60℃の範囲で選択することができ、通常、室温(25℃)で行われる。
接触時間は温度によっても異なるが、生産性の点から、0.5~24時間が好ましく、1~12時間がより好ましい。
多孔性配位高分子と金属塩とを接触させた後、必要に応じて、得られた金属担持触媒を水や有機溶媒で洗浄し、真空処理などにより乾燥してもよい。
また、多孔性配位高分子と金属塩とを接触させた後には、必要に応じて、加熱処理が施されるが、その温度条件は特に制限されず、例えば、70~150℃の範囲で選択することができる。
上述した金属担持触媒は、種々の反応に適用でき、例えば、炭素-炭素結合生成反応、炭素-酸素結合生成反応、還元反応、または、酸化反応に用いることができる。炭素-炭素結合生成反応(クロスカップリング反応)としては、例えば、鈴木-宮浦クロスカップリング反応、園頭カップリング反応、スティルカップリング反応、溝呂木-ヘック反応などが挙げられる。還元反応としては、例えば、水素化反応、ニトロ基の還元反応などが挙げられる。酸化反応としては、例えば、アルコール化合物の酸化反応(例えば、アルコール化合物からアルデヒド化合物への選択酸化反応)、アルデヒド化合物の酸化反応などが挙げられる。
以下では、鈴木-宮浦クロスカップリング反応、溝呂木-ヘック反応、ニトロ基の還元反応、水素化反応(水素添加反応)、アルコールの酸化反応、炭素-酸素結合生成反応の一態様について詳述する。
以下では、鈴木-宮浦クロスカップリング反応、溝呂木-ヘック反応、ニトロ基の還元反応、水素化反応(水素添加反応)、アルコールの酸化反応、炭素-酸素結合生成反応の一態様について詳述する。
<ビアリール化合物の製造方法(鈴木-宮浦クロスカップリング反応)>
上述した金属担持触媒は、ビアリール化合物の製造方法に好適に使用できる。より具体的には、ビアリール化合物の製造方法は、上述した金属担持触媒および塩基性化合物の存在下、式(1)で表される化合物と、式(2)で表される化合物とをクロスカップリング反応させ、式(3)で表されるビアリール化合物を製造する方法である。
上述した金属担持触媒は、ビアリール化合物の製造方法に好適に使用できる。より具体的には、ビアリール化合物の製造方法は、上述した金属担持触媒および塩基性化合物の存在下、式(1)で表される化合物と、式(2)で表される化合物とをクロスカップリング反応させ、式(3)で表されるビアリール化合物を製造する方法である。
まず、本製造方法で使用される材料について詳述し、その後、方法の手順について詳述する。
上記式(1)で表される化合物は、いわゆるアリールホウ素化合物である。また、上記式(2)で表される化合物は、いわゆるハロゲン化アリールである。
式(1)~(3)中、Ar1およびAr2は、それぞれ独立に、置換基を有していてもよいアリール基を表す。アリール基としては、フェニル基、ナフチル基、アントリル基などが挙げられる。
Xは、ハロゲン原子(塩素原子、臭素原子、ヨウ素原子など)を表す。
なお、アリール基には、置換基が含まれていてもよい。置換基の種類は特に制限されないが、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等のアルコキシ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;芳香族炭化水素基、芳香族複素環基、複素環基、またはこれらを組み合わせた基などが挙げられる。
置換基の数は特に制限されず、例えば、1~4個が挙げられる。
なお、Ar1およびAr2が置換基を有するアリール基である場合、式(1)および式(2)で表される化合物は、以下式として表される。なお、以下式中、Rは置換基を表し、mはそれぞれ独立に1以上の整数を表し、好ましくは1~4の整数を表す。
上記式(1)で表される化合物は、いわゆるアリールホウ素化合物である。また、上記式(2)で表される化合物は、いわゆるハロゲン化アリールである。
式(1)~(3)中、Ar1およびAr2は、それぞれ独立に、置換基を有していてもよいアリール基を表す。アリール基としては、フェニル基、ナフチル基、アントリル基などが挙げられる。
Xは、ハロゲン原子(塩素原子、臭素原子、ヨウ素原子など)を表す。
なお、アリール基には、置換基が含まれていてもよい。置換基の種類は特に制限されないが、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等のアルコキシ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;芳香族炭化水素基、芳香族複素環基、複素環基、またはこれらを組み合わせた基などが挙げられる。
置換基の数は特に制限されず、例えば、1~4個が挙げられる。
なお、Ar1およびAr2が置換基を有するアリール基である場合、式(1)および式(2)で表される化合物は、以下式として表される。なお、以下式中、Rは置換基を表し、mはそれぞれ独立に1以上の整数を表し、好ましくは1~4の整数を表す。
塩基性化合物の種類は特に制限されず、公知の塩基性化合物が使用できる。なかでも、生成物の収率がより優れる点で、塩基性無機化合物が好ましく挙げられる。
塩基性化合物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物や、水酸化バリウム、水酸化カルシウム等のアルカリ土類金属の水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリム等の炭酸塩が挙げられる。
塩基性化合物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物や、水酸化バリウム、水酸化カルシウム等のアルカリ土類金属の水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリム等の炭酸塩が挙げられる。
本製造方法の手順は特に制限されず、金属担持触媒および塩基性化合物の存在下、式(1)で表される化合物および式(2)で表される化合物を混合する方法が好ましく挙げられる。より具体的には、金属担持触媒および塩基性化合物を溶媒中に溶解させて反応溶液を調製し、該反応溶液に式(1)で表される化合物および式(2)で表される化合物を添加して、反応させる方法が挙げられる。
反応温度は特に制限されないが、生成物の収率がより優れる点で、50~150℃が好ましく、80~110℃がより好ましい。
反応時間は特に制限されないが、生成物の収率がより優れる、および、生産性の点から、0.5~72時間が好ましく、1~50時間がより好ましい。
反応雰囲気は特に制限されず、空気下であっても、不活性ガス雰囲気下であっても、還元性ガス(例えば、水素ガス)雰囲気下であってもよい。特に、本発明の金属担持触媒を用いれば、空気下においても優れた触媒活性を示す。
反応温度は特に制限されないが、生成物の収率がより優れる点で、50~150℃が好ましく、80~110℃がより好ましい。
反応時間は特に制限されないが、生成物の収率がより優れる、および、生産性の点から、0.5~72時間が好ましく、1~50時間がより好ましい。
反応雰囲気は特に制限されず、空気下であっても、不活性ガス雰囲気下であっても、還元性ガス(例えば、水素ガス)雰囲気下であってもよい。特に、本発明の金属担持触媒を用いれば、空気下においても優れた触媒活性を示す。
式(1)で表される化合物と、式(2)で表される化合物との混合モル比(式(1)で表される化合物のモル量/式(2)で表される化合物のモル量)は特に制限されないが、生成物の収率がより優れる点で、0.5~3.0が好ましく、1.2~2.0がより好ましい。
式(2)で表される化合物と、金属担持触媒中の担持金属との混合モル比(式(2)で表される化合物のモル量/金属担持触媒中の担持金属のモル量)は特に制限されないが、生成物の収率がより優れる点で、1.0×10~1.0×107が好ましく、0.5×102~0.5×107がより好ましい。
塩基性化合物と、式(2)で表される化合物との混合モル比(塩基性化合物のモル量/式(2)で表される化合物のモル量)は特に制限されないが、生成物の収率がより優れる点で、0.5~5.0が好ましく、1.5~3.0がより好ましい。
式(2)で表される化合物と、金属担持触媒中の担持金属との混合モル比(式(2)で表される化合物のモル量/金属担持触媒中の担持金属のモル量)は特に制限されないが、生成物の収率がより優れる点で、1.0×10~1.0×107が好ましく、0.5×102~0.5×107がより好ましい。
塩基性化合物と、式(2)で表される化合物との混合モル比(塩基性化合物のモル量/式(2)で表される化合物のモル量)は特に制限されないが、生成物の収率がより優れる点で、0.5~5.0が好ましく、1.5~3.0がより好ましい。
上述したように、上記反応においては、さらに溶媒の存在下にて実施してもよい。
溶媒の種類は特に制限されず、公知の溶媒(例えば、水、有機溶媒)を使用することができる。例えば、メタノール等のアルコール系溶媒、アセトン等のケトン系溶媒、ホルムアミド等のアミド系溶媒、ジメチルスルホキシド等のスルホキシド系溶媒、酢酸エチル等のエステル系溶媒、トルエン等の炭化水素系溶媒、エーテル系溶媒などが挙げられる。
なかでも、生成物の収率がより優れる点で、アルコール系溶媒が好ましく、エタノール、プロパノールなどの1級アルコール系溶媒がより好ましく、エタノールが特に好ましい。
溶媒の種類は特に制限されず、公知の溶媒(例えば、水、有機溶媒)を使用することができる。例えば、メタノール等のアルコール系溶媒、アセトン等のケトン系溶媒、ホルムアミド等のアミド系溶媒、ジメチルスルホキシド等のスルホキシド系溶媒、酢酸エチル等のエステル系溶媒、トルエン等の炭化水素系溶媒、エーテル系溶媒などが挙げられる。
なかでも、生成物の収率がより優れる点で、アルコール系溶媒が好ましく、エタノール、プロパノールなどの1級アルコール系溶媒がより好ましく、エタノールが特に好ましい。
本製造方法においては、金属担持触媒および反応基質の混合方法は特に制限されず、公知の方法が採用できる。また、各成分を加える順番も特に限定されず、反応容器に上記成分を同時に添加しても、それぞれ順番に添加してもよい。
上記反応系は、反応終了後、濾過または遠心分離のような分離方法により生成物と金属担持触媒とを容易に分離することができ、工業的な観点から優れた系であるといえる。
なお、上記工程で生成されたビアリール化合物は、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段により分離精製できる。
上記反応系は、反応終了後、濾過または遠心分離のような分離方法により生成物と金属担持触媒とを容易に分離することができ、工業的な観点から優れた系であるといえる。
なお、上記工程で生成されたビアリール化合物は、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段により分離精製できる。
<アミノアリール化合物の製造方法(ニトロ基の還元反応)>
上述した金属担持触媒は、アミノアリール化合物の製造方法に好適に使用できる。より具体的には、以下に示すように、金属担持触媒の存在下、ニトロアリール化合物を還元してアミノアリール化合物を得ることができる。
上述した金属担持触媒は、アミノアリール化合物の製造方法に好適に使用できる。より具体的には、以下に示すように、金属担持触媒の存在下、ニトロアリール化合物を還元してアミノアリール化合物を得ることができる。
なお、ニトロアリール化合物とは、アリール基とニトロ基とが結合した構造を有する化合物であり、該構造を有していれば他の置換基が含まれていてもよい。
より具体的には、上記スキーム中のAr1は、アリール基を表す。Ar1で表されるアリール基の定義は、上述した式(1)中のAr1の定義と同義である。アリール基には、置換基が含まれていてもよい。置換基の種類は特に制限されず、ハロゲン原子、アルキル基(シクロアルキル基を含む)、アルケニル基(シクロアルケニル基、ビシクロアルケニル基を含む)、アルキニル基、アリール基、複素環基、アルコキシ基、アリールオキシ基、シリルオキシ基、複素環オキシ基、アシルオキシ基、シアノ基、アルコキシカルボニル基、またはこれらの組み合わせが挙げられる。
置換基の数は特に制限されず、例えば、1~4個が挙げられる。
なかでも、生成物の収率がより優れる点で、ニトロアリール化合物としては、ニトロベンゼン化合物が好ましい。なお、ニトロベンゼン化合物とは、ベンゼン環にニトロ基が結合した構造を有する化合物であり、該ニトロベンゼン化合物を出発物質とした場合は、アミノベンゼン化合物が得られる。
より具体的には、上記スキーム中のAr1は、アリール基を表す。Ar1で表されるアリール基の定義は、上述した式(1)中のAr1の定義と同義である。アリール基には、置換基が含まれていてもよい。置換基の種類は特に制限されず、ハロゲン原子、アルキル基(シクロアルキル基を含む)、アルケニル基(シクロアルケニル基、ビシクロアルケニル基を含む)、アルキニル基、アリール基、複素環基、アルコキシ基、アリールオキシ基、シリルオキシ基、複素環オキシ基、アシルオキシ基、シアノ基、アルコキシカルボニル基、またはこれらの組み合わせが挙げられる。
置換基の数は特に制限されず、例えば、1~4個が挙げられる。
なかでも、生成物の収率がより優れる点で、ニトロアリール化合物としては、ニトロベンゼン化合物が好ましい。なお、ニトロベンゼン化合物とは、ベンゼン環にニトロ基が結合した構造を有する化合物であり、該ニトロベンゼン化合物を出発物質とした場合は、アミノベンゼン化合物が得られる。
また、アミノアリール化合物とは、アリール基とアミノ基が結合した構造を有する化合物であり、該構造を有していれば他の置換基が含まれていてもよい。
反応系におけるニトロアリール化合物と金属担持触媒中の担持金属との混合モル比(ニトロアリール化合物のモル量/金属担持触媒中の担持金属のモル量)は特に制限されず、生成物の収率がより優れる点で、0.1×102~1.0×105が好ましく、0.5×102~1.0×104がより好ましい。
本製造方法では、金属担持触媒およびニトロアリール化合物以外の他の成分(例えば、溶媒)が合わせて使用されてもよい。例えば、溶媒の存在下で反応を実施してもよい。
溶媒の種類は特に制限されないが、例えば、アルコール系溶媒が好ましく使用され、メタノール、エタノール、プロパノールなどの1級アルコール系溶媒がより好ましい。
本製造方法では、金属担持触媒およびニトロアリール化合物以外の他の成分(例えば、溶媒)が合わせて使用されてもよい。例えば、溶媒の存在下で反応を実施してもよい。
溶媒の種類は特に制限されないが、例えば、アルコール系溶媒が好ましく使用され、メタノール、エタノール、プロパノールなどの1級アルコール系溶媒がより好ましい。
本製造方法においては、金属担持触媒およびニトロアリール化合物の混合方法は特に制限されず、公知の方法が採用できる。また、各成分を加える順番も特に限定されず、反応容器に上記成分を同時に添加しても、それぞれ順番に添加してもよい。
なお、反応容器としては、反応系が加圧条件になることが考えられるため、耐圧ガラス反応管やオートクレーブを使用することが好ましい。
本製造方法においては、反応雰囲気としては、通常、還元性ガス雰囲気(例えば、水素ガス雰囲気)にて実施されることが好ましい。
なお、反応容器としては、反応系が加圧条件になることが考えられるため、耐圧ガラス反応管やオートクレーブを使用することが好ましい。
本製造方法においては、反応雰囲気としては、通常、還元性ガス雰囲気(例えば、水素ガス雰囲気)にて実施されることが好ましい。
本製造方法においては、必要に応じて、加熱処理を施してもよい。より具体的には、上記金属担持触媒の存在下、ニトロアリール化合物に加熱処理を施してもよい。言い換えると、金属担持触媒とニトロアリール化合物とを含有する反応組成物に、加熱処理を施してもよい。
加熱処理の温度条件は特に制限されないが、生産性がより優れる点で、反応温度としては、30℃超が好ましく、50℃以上がより好ましい。上限は特に制限されないが、経済性の点から、120℃以下が好ましく、100℃以下がより好ましい。
本製造方法の反応時間は特に制限されないが、生成物の収率がより優れる点で、1~40時間が好ましく、2~24時間がより好ましい。
加熱処理の温度条件は特に制限されないが、生産性がより優れる点で、反応温度としては、30℃超が好ましく、50℃以上がより好ましい。上限は特に制限されないが、経済性の点から、120℃以下が好ましく、100℃以下がより好ましい。
本製造方法の反応時間は特に制限されないが、生成物の収率がより優れる点で、1~40時間が好ましく、2~24時間がより好ましい。
上記反応系は、反応終了後、濾過または遠心分離のような分離方法により生成物と金属担持触媒とに容易に分離することができ、工業的な観点から優れた系であるといえる。
なお、上記工程で生成されたアミノアリール化合物は、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段により分離精製できる。
なお、上記工程で生成されたアミノアリール化合物は、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段により分離精製できる。
<水素化反応物の製造方法(水素化反応)>
上述した金属担持触媒は、水素化反応物の製造方法に好適に使用できる。より具体的には、以下に示すように、金属担持触媒の存在下、炭素-炭素不飽和結合を有する不飽和化合物に対して水素化反応を行い、水素化反応物を得ることができる。
不飽和化合物とは、炭素-炭素不飽和結合を有する化合物である。炭素-炭素不飽和結合としては、いわゆる炭素-炭素二重結合や炭素-炭素三重結合が挙げられる。不飽和化合物の構造は、上記炭素-炭素不飽和結合が含まれていれば特に制限されず、直鎖状であっても、環状であってもよい。不飽和化合物としては、例えば、式(4)で表される化合物が挙げられる。
上述した金属担持触媒は、水素化反応物の製造方法に好適に使用できる。より具体的には、以下に示すように、金属担持触媒の存在下、炭素-炭素不飽和結合を有する不飽和化合物に対して水素化反応を行い、水素化反応物を得ることができる。
不飽和化合物とは、炭素-炭素不飽和結合を有する化合物である。炭素-炭素不飽和結合としては、いわゆる炭素-炭素二重結合や炭素-炭素三重結合が挙げられる。不飽和化合物の構造は、上記炭素-炭素不飽和結合が含まれていれば特に制限されず、直鎖状であっても、環状であってもよい。不飽和化合物としては、例えば、式(4)で表される化合物が挙げられる。
式(4)中、R3~R6は、それぞれ独立に、水素原子または有機基を表す。有機基の種類は特に制限されず、例えば、ハロゲン原子、アルキル基(シクロアルキル基、ビシクロアルキル基、トリシクロアルキル基を含む)、アルケニル基(シクロアルケニル基、ビシクロアルケニル基を含む)、アルキニル基、アリール基、複素環基(ヘテロ環基といってもよい)、シアノ基、ヒドロキシル基、ニトロ基、カルボキシ基、アルコキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基(アニリノ基を含む)、アンモニオ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキルまたはアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキルまたはアリールスルフィニル基、アルキルまたはアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリールまたはヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ホスホノ基、シリル基、ヒドラジノ基、ウレイド基、ボロン酸基(-B(OH)2)、ホスファト基(-OPO(OH)2)、スルファト基(-OSO3H)、または、これらを組み合わせた基が挙げられる。
なお、R3~R6はそれぞれ結合して環を形成してもよい。例えば、R3とR4、R3とR5、R5とR6、または、R4とR6が、それぞれ結合して環を形成してもよい。形成される環の種類は特に制限されず、脂肪族炭化水素環、脂肪族複素環、芳香族炭化水素環、芳香族複素環などが挙げられる。
なお、R3~R6はそれぞれ結合して環を形成してもよい。例えば、R3とR4、R3とR5、R5とR6、または、R4とR6が、それぞれ結合して環を形成してもよい。形成される環の種類は特に制限されず、脂肪族炭化水素環、脂肪族複素環、芳香族炭化水素環、芳香族複素環などが挙げられる。
本製造方法によって得られる水素化反応物(水素添加物)は、炭素-炭素不飽和結合が水素添加された化合物である。例えば、不飽和化合物として、上述した式(4)で表される化合物が使用された場合、水素化反応物としては式(5)で表される化合物が挙げられる。なお、式(5)中の各基の定義は上述の通りである。
反応系における不飽和化合物と金属担持触媒中の担持金属との混合モル比(不飽和化合物のモル量/金属担持触媒中の担持金属のモル量)は特に制限されず、生成物の収率がより優れる点で、0.1×102~1.0×105が好ましく、0.5×102~1.0×104がより好ましい。
本製造方法では、金属担持触媒および不飽和化合物以外の他の成分(例えば、溶媒)が合わせて使用されてもよい。例えば、溶媒の存在下で反応を実施してもよい。
溶媒の種類は特に制限されないが、例えば、アルコール系溶媒が好ましく使用され、メタノール、エタノール、プロパノールなどの1級アルコール系溶媒がより好ましい。
本製造方法では、金属担持触媒および不飽和化合物以外の他の成分(例えば、溶媒)が合わせて使用されてもよい。例えば、溶媒の存在下で反応を実施してもよい。
溶媒の種類は特に制限されないが、例えば、アルコール系溶媒が好ましく使用され、メタノール、エタノール、プロパノールなどの1級アルコール系溶媒がより好ましい。
本製造方法においては、金属担持触媒および不飽和化合物の混合方法は特に制限されず、公知の方法が採用できる。また、各成分を加える順番も特に限定されず、反応容器に上記成分を同時に添加しても、それぞれ順番に添加してもよい。
なお、反応容器としては、反応系が加圧条件になることが考えられるため、耐圧ガラス反応管やオートクレーブを使用することが好ましい。
本製造方法においては、反応雰囲気としては、通常、還元性ガス雰囲気(例えば、水素ガス雰囲気)にて実施されることが好ましい。
なお、反応容器としては、反応系が加圧条件になることが考えられるため、耐圧ガラス反応管やオートクレーブを使用することが好ましい。
本製造方法においては、反応雰囲気としては、通常、還元性ガス雰囲気(例えば、水素ガス雰囲気)にて実施されることが好ましい。
本製造方法においては、必要に応じて、加熱処理を施してもよい。より具体的には、上記金属担持触媒の存在下、不飽和化合物に加熱処理を施してもよい。言い換えると、金属担持触媒と不飽和化合物とを含有する反応組成物に、加熱処理を施してもよい。
加熱処理の温度条件は特に制限されないが、生産性がより優れる点で、反応温度としては、30℃超が好ましく、50℃以上がより好ましい。上限は特に制限されないが、経済性の点から、120℃以下が好ましく、100℃以下がより好ましい。
本製造方法の反応時間は特に制限されないが、生成物の収率がより優れる点で、1~40時間が好ましく、2~24時間がより好ましい。
加熱処理の温度条件は特に制限されないが、生産性がより優れる点で、反応温度としては、30℃超が好ましく、50℃以上がより好ましい。上限は特に制限されないが、経済性の点から、120℃以下が好ましく、100℃以下がより好ましい。
本製造方法の反応時間は特に制限されないが、生成物の収率がより優れる点で、1~40時間が好ましく、2~24時間がより好ましい。
上記反応系は、反応終了後、濾過または遠心分離のような分離方法により生成物と金属担持触媒とに容易に分離することができ、工業的な観点から優れた系であるといえる。
なお、上記工程で生成された水素化反応物は、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段により分離精製できる。
なお、上記工程で生成された水素化反応物は、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段により分離精製できる。
<置換オレフィン化合物の製造方法(溝呂木-ヘック反応)>
上述した金属担持触媒は、置換オレフィン化合物の製造方法に好適に使用できる。より具体的には、置換オレフィン化合物の製造方法は、上述した金属担持触媒および塩基性化合物の存在下、式(6)で表される化合物と、式(7)で表される化合物とをクロスカップリング反応させ、式(8)で表される置換オレフィン化合物を製造する方法である。
上述した金属担持触媒は、置換オレフィン化合物の製造方法に好適に使用できる。より具体的には、置換オレフィン化合物の製造方法は、上述した金属担持触媒および塩基性化合物の存在下、式(6)で表される化合物と、式(7)で表される化合物とをクロスカップリング反応させ、式(8)で表される置換オレフィン化合物を製造する方法である。
まず、本製造方法で使用される材料について詳述し、その後、方法の手順について詳述する。
式(6)中、R10は、アリール基、ベンジル基、または、アルキル基を表す。Xは、ハロゲン原子(塩素原子、臭素原子、ヨウ素原子など)を表す。
式(7)中、R11は、アリール基、または、アルキル基を表す。
なお、上記R10およびR11には、置換基が含まれていてもよい。置換基の種類は特に制限されないが、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等のアルコキシ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;芳香族炭化水素基、芳香族複素環基、複素環基、またはこれらを組み合わせた基などが挙げられる。
置換基の数は特に制限されず、例えば、1~4個が挙げられる。
式(6)中、R10は、アリール基、ベンジル基、または、アルキル基を表す。Xは、ハロゲン原子(塩素原子、臭素原子、ヨウ素原子など)を表す。
式(7)中、R11は、アリール基、または、アルキル基を表す。
なお、上記R10およびR11には、置換基が含まれていてもよい。置換基の種類は特に制限されないが、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等のアルコキシ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;芳香族炭化水素基、芳香族複素環基、複素環基、またはこれらを組み合わせた基などが挙げられる。
置換基の数は特に制限されず、例えば、1~4個が挙げられる。
塩基性化合物の種類は特に制限されず、公知の塩基性化合物が使用できる。
塩基性化合物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物や、水酸化バリウム、水酸化カルシウム等のアルカリ土類金属の水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリム等の炭酸塩、トリエチルアミン、ジイソプロピルエチルアミン等のアミン化合物が挙げられる。
塩基性化合物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物や、水酸化バリウム、水酸化カルシウム等のアルカリ土類金属の水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリム等の炭酸塩、トリエチルアミン、ジイソプロピルエチルアミン等のアミン化合物が挙げられる。
上記反応には必要に応じて、さらに配位子を合わせて存在させてもよい。
配位子の種類は特に制限されず、公知の配位子が使用でき、例えば、トリフェニルホスフィンなどのホスフィン系配位子が使用できる。
配位子の種類は特に制限されず、公知の配位子が使用でき、例えば、トリフェニルホスフィンなどのホスフィン系配位子が使用できる。
本製造方法の手順は特に制限されず、金属担持触媒および塩基性化合物の存在下、式(6)で表される化合物および式(7)で表される化合物を混合する方法が好ましく挙げられる。より具体的には、金属担持触媒および塩基性化合物を溶媒中に溶解させて反応溶液を調製し、該反応溶液に式(6)で表される化合物および式(7)で表される化合物を添加して、反応させる方法が挙げられる。
反応温度は特に制限されないが、生成物の収率がより優れる点で、50~150℃が好ましく、80~140℃がより好ましい。
反応時間は特に制限されないが、生成物の収率がより優れる、および、生産性の点から、0.5~48時間が好ましく、12~36時間がより好ましい。
反応雰囲気は特に制限されず、空気下であっても、不活性ガス雰囲気下であってもよい。
反応温度は特に制限されないが、生成物の収率がより優れる点で、50~150℃が好ましく、80~140℃がより好ましい。
反応時間は特に制限されないが、生成物の収率がより優れる、および、生産性の点から、0.5~48時間が好ましく、12~36時間がより好ましい。
反応雰囲気は特に制限されず、空気下であっても、不活性ガス雰囲気下であってもよい。
式(7)で表される化合物と、式(6)で表される化合物との混合モル比(式(7)で表される化合物のモル量/式(6)で表される化合物のモル量)は特に制限されないが、生成物の収率がより優れる点で、0.5~2.0が好ましく、1.0~1.5がより好ましい。
式(6)で表される化合物と、金属担持触媒中の担持金属との混合モル比(式(6)で表される化合物のモル量/金属担持触媒中の担持金属のモル量)は特に制限されないが、生成物の収率がより優れる点で、1.0×102~1.0×106が好ましく、1.0×103~1.0×105がより好ましい。
塩基性化合物と、式(6)で表される化合物との混合モル比(塩基性化合物のモル量/式(6)で表される化合物のモル量)は特に制限されないが、生成物の収率がより優れる点で、0.5~5.0が好ましく、1.0~2.0がより好ましい。
式(6)で表される化合物と、金属担持触媒中の担持金属との混合モル比(式(6)で表される化合物のモル量/金属担持触媒中の担持金属のモル量)は特に制限されないが、生成物の収率がより優れる点で、1.0×102~1.0×106が好ましく、1.0×103~1.0×105がより好ましい。
塩基性化合物と、式(6)で表される化合物との混合モル比(塩基性化合物のモル量/式(6)で表される化合物のモル量)は特に制限されないが、生成物の収率がより優れる点で、0.5~5.0が好ましく、1.0~2.0がより好ましい。
上述したように、上記反応においては、さらに溶媒の存在下にて実施してもよい。
溶媒の種類は特に制限されず、公知の溶媒(例えば、水、有機溶媒)を使用することができる。例えば、メタノール等のアルコール系溶媒、アセトン等のケトン系溶媒、ホルムアミド等のアミド系溶媒、ジメチルスルホキシド等のスルホキシド系溶媒、酢酸エチル等のエステル系溶媒、トルエン等の炭化水素系溶媒、エーテル系溶媒などが挙げられる。
溶媒の種類は特に制限されず、公知の溶媒(例えば、水、有機溶媒)を使用することができる。例えば、メタノール等のアルコール系溶媒、アセトン等のケトン系溶媒、ホルムアミド等のアミド系溶媒、ジメチルスルホキシド等のスルホキシド系溶媒、酢酸エチル等のエステル系溶媒、トルエン等の炭化水素系溶媒、エーテル系溶媒などが挙げられる。
本製造方法においては、金属担持触媒および反応基質の混合方法は特に制限されず、公知の方法が採用できる。また、各成分を加える順番も特に限定されず、反応容器に上記成分を同時に添加しても、それぞれ順番に添加してもよい。
上記反応系は、反応終了後、濾過または遠心分離のような分離方法により生成物と金属担持触媒とを容易に分離することができ、工業的な観点から優れた系であるといえる。
なお、上記工程で生成されたビアリール化合物は、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段により分離精製できる。
上記反応系は、反応終了後、濾過または遠心分離のような分離方法により生成物と金属担持触媒とを容易に分離することができ、工業的な観点から優れた系であるといえる。
なお、上記工程で生成されたビアリール化合物は、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段により分離精製できる。
<アルデヒド化合物の製造方法(アルコール化合物の酸化反応)>
上述した金属担持触媒は、アルデヒド化合物の製造方法に好適に使用できる。より具体的には、アルデヒド化合物の製造方法は、上述した金属担持触媒の存在下、アルコール化合物を酸化することにより、アルデヒド化合物を製造する方法である。
アルコール化合物とは、ヒドロキシル基(OH基)を有する化合物を意図する。
アルデヒド化合物とは、アルデヒド基(CHO基)を有する化合物を意図する。
本発明の金属担持触媒を使用する場合は、アルコール化合物中にアルデヒド基が含まれる場合であっても、アルデヒド基に影響を与えることなく、ヒドロキシル基だけを選択的に酸化することができる。つまり、アルコール化合物の選択酸化反応を実施することができる。
上述した金属担持触媒は、アルデヒド化合物の製造方法に好適に使用できる。より具体的には、アルデヒド化合物の製造方法は、上述した金属担持触媒の存在下、アルコール化合物を酸化することにより、アルデヒド化合物を製造する方法である。
アルコール化合物とは、ヒドロキシル基(OH基)を有する化合物を意図する。
アルデヒド化合物とは、アルデヒド基(CHO基)を有する化合物を意図する。
本発明の金属担持触媒を使用する場合は、アルコール化合物中にアルデヒド基が含まれる場合であっても、アルデヒド基に影響を与えることなく、ヒドロキシル基だけを選択的に酸化することができる。つまり、アルコール化合物の選択酸化反応を実施することができる。
反応系におけるアルコール化合物と金属担持触媒中の担持金属との混合モル比(アルコール化合物のモル量/金属担持触媒中の担持金属のモル量)は特に制限されず、生成物の収率がより優れる点で、0.1×101~1.0×104が好ましく、0.1×102~1.0×103がより好ましい。
本製造方法では、金属担持触媒およびアルコール化合物以外の他の成分(例えば、溶媒)が合わせて使用されてもよい。例えば、溶媒の存在下で反応を実施してもよい。
本製造方法では、金属担持触媒およびアルコール化合物以外の他の成分(例えば、溶媒)が合わせて使用されてもよい。例えば、溶媒の存在下で反応を実施してもよい。
本製造方法においては、金属担持触媒およびアルコール化合物の混合方法は特に制限されず、公知の方法が採用できる。また、各成分を加える順番も特に限定されず、反応容器に上記成分を同時に添加しても、それぞれ順番に添加してもよい。
本製造方法においては、反応雰囲気としては、通常、酸化性ガス雰囲気(例えば、酸素ガス雰囲気)にて実施されることが好ましい。
本製造方法においては、反応雰囲気としては、通常、酸化性ガス雰囲気(例えば、酸素ガス雰囲気)にて実施されることが好ましい。
本製造方法においては、必要に応じて、加熱処理を施してもよい。より具体的には、上記金属担持触媒の存在下、アルコール化合物に加熱処理を施してもよい。言い換えると、金属担持触媒とアルコール化合物とを含有する反応組成物に、加熱処理を施してもよい。
加熱処理の温度条件は特に制限されないが、生産性がより優れる点で、反応温度としては、30℃超が好ましく、50℃以上がより好ましい。上限は特に制限されないが、経済性の点から、150℃以下が好ましい。
本製造方法の反応時間は特に制限されないが、生成物の収率がより優れる点で、1~40時間が好ましく、2~24時間がより好ましい。
加熱処理の温度条件は特に制限されないが、生産性がより優れる点で、反応温度としては、30℃超が好ましく、50℃以上がより好ましい。上限は特に制限されないが、経済性の点から、150℃以下が好ましい。
本製造方法の反応時間は特に制限されないが、生成物の収率がより優れる点で、1~40時間が好ましく、2~24時間がより好ましい。
上記反応系は、反応終了後、濾過または遠心分離のような分離方法により生成物と金属担持触媒とに容易に分離することができ、工業的な観点から優れた系であるといえる。
なお、上記工程で生成された水素化反応物は、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段により分離精製できる。
なお、上記工程で生成された水素化反応物は、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段により分離精製できる。
<アリル基含有化合物の製造方法(炭素-酸素結合生成反応)>
上述した金属担持触媒は、アリル基含有化合物の製造方法に好適に使用できる。より具体的には、アリル基含有化合物の製造方法は、上述した金属担持触媒の存在下、アリルアルコールまたはアリルエステルと式(9)で表される化合物とを反応させ、式(10)で表されるアリル基含有化合物を製造する方法である。
なお、アリルエステルとは、一分子中に1個のアルケニル基と少なくとも1個のエステル基を有する化合物であり、炭酸アリルエステル、酢酸アリルエステル、プロピオン酸アリルエステル、酪酸アリルエステル、吉草酸アリルエステル、ラウリン酸アリルエステル等が挙げられる。
上述した金属担持触媒は、アリル基含有化合物の製造方法に好適に使用できる。より具体的には、アリル基含有化合物の製造方法は、上述した金属担持触媒の存在下、アリルアルコールまたはアリルエステルと式(9)で表される化合物とを反応させ、式(10)で表されるアリル基含有化合物を製造する方法である。
なお、アリルエステルとは、一分子中に1個のアルケニル基と少なくとも1個のエステル基を有する化合物であり、炭酸アリルエステル、酢酸アリルエステル、プロピオン酸アリルエステル、酪酸アリルエステル、吉草酸アリルエステル、ラウリン酸アリルエステル等が挙げられる。
式(9)および式(10)中、Arは、置換基を有していてもよい芳香族炭化水素基を表す。
芳香族炭化水素基の炭素数は特に制限されないが、反応溶媒への溶解性などがより優れ、取扱い性がより優れる点より、炭素数6~36が好ましく、炭素数6~18がより好ましく、炭素数6~12がさらに好ましい。
芳香族炭化水素基は単環式であっても、多環式であってもよい。例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環などが挙げられる。なかでも、汎用性がより優れる点で、ベンゼン環が好ましい。
芳香族炭化水素基は置換基を有していてもよく、例えば、脂肪族炭化水素基(好ましくは、炭素数1~20)、芳香族炭化水素基(好ましくは、炭素数6~60)、複素環基、アルコキシ基、アルカノイル基、アリールオキシ基、またはこれらを組み合わせた基を有する。
芳香族炭化水素基の炭素数は特に制限されないが、反応溶媒への溶解性などがより優れ、取扱い性がより優れる点より、炭素数6~36が好ましく、炭素数6~18がより好ましく、炭素数6~12がさらに好ましい。
芳香族炭化水素基は単環式であっても、多環式であってもよい。例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環などが挙げられる。なかでも、汎用性がより優れる点で、ベンゼン環が好ましい。
芳香族炭化水素基は置換基を有していてもよく、例えば、脂肪族炭化水素基(好ましくは、炭素数1~20)、芳香族炭化水素基(好ましくは、炭素数6~60)、複素環基、アルコキシ基、アルカノイル基、アリールオキシ基、またはこれらを組み合わせた基を有する。
本製造方法は溶媒を使用しなくとも反応を進行させることができるが(無溶剤系)、必要に応じて、溶媒の存在下で反応を行ってもよい。出発原料が溶媒に溶解することにより、生成物の収率がより優れる。
使用される溶媒の種類は特に制限されず、例えば、アルコール系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、芳香族炭化水素系溶媒、または脂肪族炭化水素系溶媒などが挙げられる。
なお、これらの溶媒は、単独で使用しても二種類以上を混合使用してもよい。
使用される溶媒の種類は特に制限されず、例えば、アルコール系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、芳香族炭化水素系溶媒、または脂肪族炭化水素系溶媒などが挙げられる。
なお、これらの溶媒は、単独で使用しても二種類以上を混合使用してもよい。
本製造方法の手順は特に制限されず、公知の方法を採用できる。例えば、溶媒中に金属担持触媒および所定の成分を添加して、必要に応じて加熱処理を実施する方法が挙げられる。
以下、実施例により、本発明についてさらに詳細に説明するが、本発明はこれらに限定されるものではない。
(合成例1:多孔性配位高分子の製造(その1))
硝酸亜鉛六水和物(Zn(NO3)2・6H2O)(5mmol)と、2-アミノテレフタル酸(5mmol)と、N,N-ジメチルホルムアミド(以後、DMFとも称する)(35ml)とをオートクレーブ内に添加して、得られた混合溶液を140℃で24時間反応させた。反応終了後、反応溶液を室温まで冷却した後、ろ過およびDMFによる洗浄を実施した後、得られた固体を室温下にて真空乾燥した。次に、得られた黄色の粉末を、エタノールに加えて、80℃で24時間撹拌の処理を行い、反応終了後、粉末をろ過により回収し、真空乾燥して、多孔性配位高分子1を得た。
得られた多孔性配位高分子1の元素分析値は以下の通りであった。
C:37.2%,H:2.0%,N:6.2%,Zn:27.3%
また、得られた多孔性配位高分子1の比表面は450.5m2g-1であった。
さらに、全自動水平型多目的X線回折装置SmartLabo(株式会社リガク製)を用いて、得られた多孔性配位高分子1のX線回折測定を実施した。得られたX線回折スペクトルを図1(A)に示す。図1(A)に示すように、ブラッグ角(2θ)11.1°、20.2°、25.9°にピークがあることが確認された。なお、X線回折の測定の条件は、下記の通りとした。
X線管球:Cu
管電圧:40kV
管電流:30mA
スタート角度:9.0°
ストップ角度:39.0°
走査速度:2°/分
硝酸亜鉛六水和物(Zn(NO3)2・6H2O)(5mmol)と、2-アミノテレフタル酸(5mmol)と、N,N-ジメチルホルムアミド(以後、DMFとも称する)(35ml)とをオートクレーブ内に添加して、得られた混合溶液を140℃で24時間反応させた。反応終了後、反応溶液を室温まで冷却した後、ろ過およびDMFによる洗浄を実施した後、得られた固体を室温下にて真空乾燥した。次に、得られた黄色の粉末を、エタノールに加えて、80℃で24時間撹拌の処理を行い、反応終了後、粉末をろ過により回収し、真空乾燥して、多孔性配位高分子1を得た。
得られた多孔性配位高分子1の元素分析値は以下の通りであった。
C:37.2%,H:2.0%,N:6.2%,Zn:27.3%
また、得られた多孔性配位高分子1の比表面は450.5m2g-1であった。
さらに、全自動水平型多目的X線回折装置SmartLabo(株式会社リガク製)を用いて、得られた多孔性配位高分子1のX線回折測定を実施した。得られたX線回折スペクトルを図1(A)に示す。図1(A)に示すように、ブラッグ角(2θ)11.1°、20.2°、25.9°にピークがあることが確認された。なお、X線回折の測定の条件は、下記の通りとした。
X線管球:Cu
管電圧:40kV
管電流:30mA
スタート角度:9.0°
ストップ角度:39.0°
走査速度:2°/分
(合成例2:多孔性配位高分子の製造(その2)
硝酸亜鉛六水和物(Zn(NO3)2・6H2O)の代わりに、硝酸ニッケル六水和物(Ni(NO3)2・6H2O)を用いた以外は、合成例1と同様の手順に従って、多孔性配位高分子2を製造した。
得られた多孔性配位高分子2を用いて、合成例1で実施したX線回折測定を実施した。得られたX線回折スペクトルを図1(B)に示す。図1(B)に示すように、ブラッグ角(2θ)11.0°、19.8°、26.2°にピークがあることが確認された。
硝酸亜鉛六水和物(Zn(NO3)2・6H2O)の代わりに、硝酸ニッケル六水和物(Ni(NO3)2・6H2O)を用いた以外は、合成例1と同様の手順に従って、多孔性配位高分子2を製造した。
得られた多孔性配位高分子2を用いて、合成例1で実施したX線回折測定を実施した。得られたX線回折スペクトルを図1(B)に示す。図1(B)に示すように、ブラッグ角(2θ)11.0°、19.8°、26.2°にピークがあることが確認された。
(合成例3:多孔性配位高分子の製造(その3)
硝酸亜鉛六水和物(Zn(NO3)2・6H2O)の代わりに、硝酸コバルト六水和物(Co(NO3)2・6H2O)を用いた以外は、合成例1と同様の手順に従って、多孔性配位高分子3を製造した。
得られた多孔性配位高分子3を用いて、合成例1で実施したX線回折測定を実施した。得られたX線回折スペクトルを図1(C)に示す。図1(C)に示すように、ブラッグ角(2θ)11.1°、19.7°、26.1°にピークがあることが確認された。
硝酸亜鉛六水和物(Zn(NO3)2・6H2O)の代わりに、硝酸コバルト六水和物(Co(NO3)2・6H2O)を用いた以外は、合成例1と同様の手順に従って、多孔性配位高分子3を製造した。
得られた多孔性配位高分子3を用いて、合成例1で実施したX線回折測定を実施した。得られたX線回折スペクトルを図1(C)に示す。図1(C)に示すように、ブラッグ角(2θ)11.1°、19.7°、26.1°にピークがあることが確認された。
なお、公知のIRMOF-3(上記非特許文献1などで使用)のX線回折スペクトルにおいては、所定の位置にピークがないことが確認された(例えば、Gascon et al., Journal of Catalysis, 2009, 261, 75.でもIRMOF-3のX線回折スペクトルが開示されており、所定の位置にピークがないことが示されている)。つまり、得られた多孔性配位高分子1~3は、IRMOF-3とは長周期的な規則構造が異なる材料であることが確認された。
(合成例4:金属担持触媒の製造(その1))
得られた多孔性配位高分子1(250mg)と、塩化パラジウム(2.08mg)と、塩化カリウム(20mg)とを水(25ml)に添加して、得られた反応溶液を室温下にて6時間撹拌した。さらに、その後、反応溶液を80℃にて14時間撹拌した。その後、ろ過および水での洗浄を実施した後、回収した固体を室温下にて真空乾燥し、パラジウムが多孔性配位高分子1に担持された金属担持触媒を得た。なお、得られた金属担持触媒中における金属(パラジウム)の担持量は、多孔性配位高分子100質量部に対して、0.5質量部であった。以後、この金属担持触媒を、0.5Pd/AZCと称する。得られた0.5Pd/AZCに対して、合成例1で実施したX線回折測定を実施したところ、ブラッグ角(2θ)11.2°、20.3°、26.0°にピークがあることが確認され、これは多孔性配位高分子1で測定されたピークと同様のピークであった。従って、金属の担持操作(例えば、金属塩と接触させること、水溶液に浸すこと、加熱撹拌すること等)によって多孔性配位高分子1の基本骨格構造が大きく変化していないことが確認された。
なお、上記塩化パラジウムの使用量を変更して、金属の担持量が多孔性配位高分子100質量部に対して0.05質量部である金属担持触媒(以後、0.05Pd/AZCと称する)、金属の担持量が多孔性配位高分子100質量部に対して1.0質量部である金属担持触媒(以後、1.0Pd/AZCと称する)、金属の担持量が多孔性配位高分子100質量部に対して3.0質量部である金属担持触媒(以後、3.0Pd/AZCと称する)、金属の担持量が多孔性配位高分子100質量部に対して5.0質量部である金属担持触媒(以後、5.0Pd/AZCと称する)を製造した。
得られた多孔性配位高分子1(250mg)と、塩化パラジウム(2.08mg)と、塩化カリウム(20mg)とを水(25ml)に添加して、得られた反応溶液を室温下にて6時間撹拌した。さらに、その後、反応溶液を80℃にて14時間撹拌した。その後、ろ過および水での洗浄を実施した後、回収した固体を室温下にて真空乾燥し、パラジウムが多孔性配位高分子1に担持された金属担持触媒を得た。なお、得られた金属担持触媒中における金属(パラジウム)の担持量は、多孔性配位高分子100質量部に対して、0.5質量部であった。以後、この金属担持触媒を、0.5Pd/AZCと称する。得られた0.5Pd/AZCに対して、合成例1で実施したX線回折測定を実施したところ、ブラッグ角(2θ)11.2°、20.3°、26.0°にピークがあることが確認され、これは多孔性配位高分子1で測定されたピークと同様のピークであった。従って、金属の担持操作(例えば、金属塩と接触させること、水溶液に浸すこと、加熱撹拌すること等)によって多孔性配位高分子1の基本骨格構造が大きく変化していないことが確認された。
なお、上記塩化パラジウムの使用量を変更して、金属の担持量が多孔性配位高分子100質量部に対して0.05質量部である金属担持触媒(以後、0.05Pd/AZCと称する)、金属の担持量が多孔性配位高分子100質量部に対して1.0質量部である金属担持触媒(以後、1.0Pd/AZCと称する)、金属の担持量が多孔性配位高分子100質量部に対して3.0質量部である金属担持触媒(以後、3.0Pd/AZCと称する)、金属の担持量が多孔性配位高分子100質量部に対して5.0質量部である金属担持触媒(以後、5.0Pd/AZCと称する)を製造した。
(合成例5:金属担持触媒の製造(その2))
得られた多孔性配位高分子1(250mg)と、塩化ルテニウム・3水和物(25mg)を水(20ml)に添加して、得られた反応溶液を室温下にて1時間撹拌した。その後、ろ過および水での洗浄を実施した後、回収した固体を室温下にて真空乾燥し、ルテニウムが多孔性配位高分子1に担持された金属担持触媒を得た。なお、得られた金属担持触媒中における金属(ルテニウム)の担持量は、多孔性配位高分子100質量部に対して、4.0質量部であった。以後、この金属担持触媒を、4Ru/AZCと称する。
得られた多孔性配位高分子1(250mg)と、塩化ルテニウム・3水和物(25mg)を水(20ml)に添加して、得られた反応溶液を室温下にて1時間撹拌した。その後、ろ過および水での洗浄を実施した後、回収した固体を室温下にて真空乾燥し、ルテニウムが多孔性配位高分子1に担持された金属担持触媒を得た。なお、得られた金属担持触媒中における金属(ルテニウム)の担持量は、多孔性配位高分子100質量部に対して、4.0質量部であった。以後、この金属担持触媒を、4Ru/AZCと称する。
<実施例A:炭素-炭素結合生成反応>
(実施例A1)
エタノール(5ml)に、上記0.5Pd/AZC(1mg)、炭酸カリウム(K2CO3)(4mmol)を加えた後、さらに、フェニルホウ酸(3mmol)およびブロモベンゼン(2mmol)を添加して、空気下にて、80℃で1時間撹拌して、反応を実施した。
反応終了後、生成物をガスクロマトグラフィーにより分析してビフェニルを同定し、ブロモベンゼンに対する収率{(生成したビフェニルのモル量/使用したブロモベンゼンのモル量)×100}を求めた。結果を表1に示す。
(実施例A1)
エタノール(5ml)に、上記0.5Pd/AZC(1mg)、炭酸カリウム(K2CO3)(4mmol)を加えた後、さらに、フェニルホウ酸(3mmol)およびブロモベンゼン(2mmol)を添加して、空気下にて、80℃で1時間撹拌して、反応を実施した。
反応終了後、生成物をガスクロマトグラフィーにより分析してビフェニルを同定し、ブロモベンゼンに対する収率{(生成したビフェニルのモル量/使用したブロモベンゼンのモル量)×100}を求めた。結果を表1に示す。
(実施例A2~A5)
金属担持触媒の種類および使用量、並びに、反応時間を表1に示すように変更した以外は、実施例A1と同様の手順に従って、ビフェニルを製造した。結果を表1に示す。
なお、「>99」は、収率が99%超であることを意図する。
金属担持触媒の種類および使用量、並びに、反応時間を表1に示すように変更した以外は、実施例A1と同様の手順に従って、ビフェニルを製造した。結果を表1に示す。
なお、「>99」は、収率が99%超であることを意図する。
上記表1に示すように、本発明の金属担持触媒を使用すると、クロスカップリング反応にてビフェニルを高収率で得ることができた。特に、空気下においても優れた触媒活性を示すことが確認された。
また、上記実施例A1~実施例A5で使用された金属担持触媒を反応終了後それぞれ回収して、エタノールでの洗浄を実施した後、回収した固体を室温下にて真空乾燥し、再度同様の条件にてビフェニルの製造を行ったところ、1回目と同程度の収率を示すことが確認された。さらに、2回目の反応終了後で使用された金属担持触媒を再度回収して、エタノールでの洗浄を実施した後、回収した固体を室温下にて真空乾燥し、再度同様の条件にてビフェニルの製造を行ったところ、1回目と同程度の収率を示すことが確認された。
上記結果より、本発明の金属担持触媒は再利用が可能である点が確認された。
上記結果より、本発明の金属担持触媒は再利用が可能である点が確認された。
<実施例B:炭素-炭素結合生成反応>
(実施例B1~B6)
金属担持触媒の種類および使用量、ブロモベンゼン、フェニルホウ酸および炭酸カリウムの使用量、並びに、反応時間(1時間)を表2に示すように変更した以外は、実施例A1と同様の手順に従って、ビフェニルを製造した。結果を表2に示す。
なお、実施例B1~B6において、ブロモベンゼンとフェニルホウ酸と炭酸カリウムの使用量は、モル比でブロモベンゼン:フェニルホウ酸:炭酸カリウム=2:3:4の関係になるように調整された。例えば、実施例B1においては、ブロモベンゼンが2mmol使用されており、それに合わせてフェニルホウ酸は3mmol、炭酸カリウムは4mmol使用された。
(実施例B1~B6)
金属担持触媒の種類および使用量、ブロモベンゼン、フェニルホウ酸および炭酸カリウムの使用量、並びに、反応時間(1時間)を表2に示すように変更した以外は、実施例A1と同様の手順に従って、ビフェニルを製造した。結果を表2に示す。
なお、実施例B1~B6において、ブロモベンゼンとフェニルホウ酸と炭酸カリウムの使用量は、モル比でブロモベンゼン:フェニルホウ酸:炭酸カリウム=2:3:4の関係になるように調整された。例えば、実施例B1においては、ブロモベンゼンが2mmol使用されており、それに合わせてフェニルホウ酸は3mmol、炭酸カリウムは4mmol使用された。
表2中、「Pd(nmol)」欄は、使用した金属担持触媒中に含まれるパラジウムのモル量を意図する。なお、nmolはナノモルを意図する。
表2中、「TON」は、ターンオーバー数(触媒回転数)を意図する。なお、TONは、生成したビフェニル量(mmol)/使用したPd量(mmol)として算出した。なお、mmolはミリモルを意図する。
表2中、「TON」は、ターンオーバー数(触媒回転数)を意図する。なお、TONは、生成したビフェニル量(mmol)/使用したPd量(mmol)として算出した。なお、mmolはミリモルを意図する。
上記表2に示すように、本発明の金属担持触媒を使用すると、優れた収率およびTONを示すことが確認された。
なお、実施例AおよびBにおいては溶媒としてエタノールを使用したが、他の溶媒(N,N-ジメチルホルムアミド(DMF)、トルエン、水、DMFと水との混合液(DMF:水=4:1(質量比))、エタノールと水との混合液(エタノール:水=4:1(質量比)))を使用した場合も、ビフェニルを製造することができた。なかでも、エタノール、エタノールと水との混合液を使用した場合、収率がより優れていた。
<実施例C:炭素-炭素結合生成反応>
(実施例C1)
エタノール(5ml)に、3Pd/AZC(5mg)、炭酸カリウム(K2CO3)(1mmol)を加えた後、さらに、フェニルホウ酸(0.75mmol)およびp-ニトロクロロベンゼン(0.5mmol)を添加して、空気下にて、80℃で3時間撹拌して、反応を実施した。
反応終了後、生成物をガスクロマトグラフィーにより分析してビフェニルを同定し、p-ニトロクロロベンゼンに対する収率{(生成したビフェニルのモル量/使用したp-ニトロクロロベンゼンのモル量)×100}を求めた。結果を表3に示す。
(実施例C1)
エタノール(5ml)に、3Pd/AZC(5mg)、炭酸カリウム(K2CO3)(1mmol)を加えた後、さらに、フェニルホウ酸(0.75mmol)およびp-ニトロクロロベンゼン(0.5mmol)を添加して、空気下にて、80℃で3時間撹拌して、反応を実施した。
反応終了後、生成物をガスクロマトグラフィーにより分析してビフェニルを同定し、p-ニトロクロロベンゼンに対する収率{(生成したビフェニルのモル量/使用したp-ニトロクロロベンゼンのモル量)×100}を求めた。結果を表3に示す。
(実施例C2)
金属担持触媒の使用量、反応時間、反応基質(p-ニトロクロロベンゼン)の種類、溶媒の種類、反応温度を表3に示すように変更した以外は、実施例C1と同様の手順に従って、ビフェニルを製造した。結果を表3に示す。
なお、実施例C2およびC3においては、エタノールにさらにテトラブチルアンモニウムブロマイド(1mmol)を添加した。
また、実施例C3においては、反応に際してオートクレーブを使用した。
金属担持触媒の使用量、反応時間、反応基質(p-ニトロクロロベンゼン)の種類、溶媒の種類、反応温度を表3に示すように変更した以外は、実施例C1と同様の手順に従って、ビフェニルを製造した。結果を表3に示す。
なお、実施例C2およびC3においては、エタノールにさらにテトラブチルアンモニウムブロマイド(1mmol)を添加した。
また、実施例C3においては、反応に際してオートクレーブを使用した。
上記表3に示すように、本発明の金属担持触媒を使用すると、ブロモベンゼン類よりも反応性が低いクロロベンゼン類でも優れた触媒活性を示すことが確認された。
<実施例D:還元反応>
(実施例D1)
エタノール(5ml)に、3Pd/AZC(25mg)およびニトロベンゼン(1mmol)を加えて、水素ガス雰囲気下(1atm)にて、80℃で2.5時間反応を行った。
反応終了後、反応溶液を室温まで冷却し、遠心分離を行い、生成物を含む上澄み溶液から金属担持触媒を分離した。次に、FIDガスクロマトグラフィー(Shimadzu GC-17、Agilent DB-1 カラム。内部標準物質として、ナフタレンを使用。)を用いて、上澄み溶液中に生成物であるアニリンがあることを同定した。
生成物の収率は、出発物質であるニトロベンゼンの仕込み量から計算した。
収率(%)=[生成したアニリン量(mmol)/使用したニトロベンゼン量(mmol)]×100
収率は99%超であり、本発明の金属担持触媒が還元反応に有用であることが確認された。
(実施例D1)
エタノール(5ml)に、3Pd/AZC(25mg)およびニトロベンゼン(1mmol)を加えて、水素ガス雰囲気下(1atm)にて、80℃で2.5時間反応を行った。
反応終了後、反応溶液を室温まで冷却し、遠心分離を行い、生成物を含む上澄み溶液から金属担持触媒を分離した。次に、FIDガスクロマトグラフィー(Shimadzu GC-17、Agilent DB-1 カラム。内部標準物質として、ナフタレンを使用。)を用いて、上澄み溶液中に生成物であるアニリンがあることを同定した。
生成物の収率は、出発物質であるニトロベンゼンの仕込み量から計算した。
収率(%)=[生成したアニリン量(mmol)/使用したニトロベンゼン量(mmol)]×100
収率は99%超であり、本発明の金属担持触媒が還元反応に有用であることが確認された。
(実施例D2)
エタノール(30ml)に、0.5Pd/AZC(5mg)およびニトロベンゼン(20mmol)を加えて、水素ガス雰囲気下(1atm)にて、80℃で40時間反応を行った。
上記実施例D1と同様の手順で分析したところ、TONは2733を示した。
なお、「TON(ターンオーバー数(触媒回転数)」は、生成したアニリン量(mmol)/使用したPd量(mmol)として算出した。なお、mmolはミリモルを意図する。
エタノール(30ml)に、0.5Pd/AZC(5mg)およびニトロベンゼン(20mmol)を加えて、水素ガス雰囲気下(1atm)にて、80℃で40時間反応を行った。
上記実施例D1と同様の手順で分析したところ、TONは2733を示した。
なお、「TON(ターンオーバー数(触媒回転数)」は、生成したアニリン量(mmol)/使用したPd量(mmol)として算出した。なお、mmolはミリモルを意図する。
<実施例E:還元反応>
(実施例E1)
エタノール(5ml)に、3Pd/AZC(25mg)および以下式(Y)で表される化合物(1mmol)を加えて、水素ガス雰囲気下(1atm)にて、80℃で6時間反応を行った。
反応終了後、反応溶液を室温まで冷却し、遠心分離を行い、生成物を含む上澄み溶液から金属担持触媒を分離した。次に、FIDガスクロマトグラフィー(Shimadzu GC-17、Agilent DB-1 カラム。内部標準物質として、ナフタレンを使用。)を用いて、上澄み溶液中に生成物である式(Z)で表される化合物があることを同定した。
生成物の収率は、出発物質である式(Y)で表される化合物の仕込み量から計算した。
収率(%)=[生成した式(Z)で表される化合物量(mmol)/使用した式(Y)で表される化合物量(mmol)]×100
収率は99%超であり、本発明の金属担持触媒が還元反応に有用であることが確認された。
(実施例E1)
エタノール(5ml)に、3Pd/AZC(25mg)および以下式(Y)で表される化合物(1mmol)を加えて、水素ガス雰囲気下(1atm)にて、80℃で6時間反応を行った。
反応終了後、反応溶液を室温まで冷却し、遠心分離を行い、生成物を含む上澄み溶液から金属担持触媒を分離した。次に、FIDガスクロマトグラフィー(Shimadzu GC-17、Agilent DB-1 カラム。内部標準物質として、ナフタレンを使用。)を用いて、上澄み溶液中に生成物である式(Z)で表される化合物があることを同定した。
生成物の収率は、出発物質である式(Y)で表される化合物の仕込み量から計算した。
収率(%)=[生成した式(Z)で表される化合物量(mmol)/使用した式(Y)で表される化合物量(mmol)]×100
収率は99%超であり、本発明の金属担持触媒が還元反応に有用であることが確認された。
(実施例E2)
エタノール(30ml)に、0.5Pd/AZC(5mg)および以下式(Y)で表される化合物(10mmol)を加えて、水素ガス雰囲気下(1atm)にて、80℃で40時間反応を行った。
上記実施例E1と同様の手順で分析したところ、TONは7228を示した。
なお、「TON(ターンオーバー数(触媒回転数)」は、生成した式(Z)で表される化合物量(mmol)/使用したPd量(mmol)として算出した。なお、mmolはミリモルを意図する。
エタノール(30ml)に、0.5Pd/AZC(5mg)および以下式(Y)で表される化合物(10mmol)を加えて、水素ガス雰囲気下(1atm)にて、80℃で40時間反応を行った。
上記実施例E1と同様の手順で分析したところ、TONは7228を示した。
なお、「TON(ターンオーバー数(触媒回転数)」は、生成した式(Z)で表される化合物量(mmol)/使用したPd量(mmol)として算出した。なお、mmolはミリモルを意図する。
<実施例F:還元反応>
水(5ml)に、3Pd/AZC(25mg)および無水マレイン酸(1mmol)を加えて、水素ガス雰囲気下(1atm)にて、80℃で6時間反応を行った。
反応終了後、反応溶液を室温まで冷却し、遠心分離を行い、生成物を含む上澄み溶液から金属担持触媒を分離した。次に、FIDガスクロマトグラフィー(Shimadzu GC-17、Agilent DB-1 カラム。内部標準物質として、ナフタレンを使用。)を用いて、上澄み溶液中に生成物であるコハク酸があることを同定した。
生成物の収率は、出発物質である無水マレイン酸の仕込み量から計算した。
収率(%)=[生成したコハク酸量(mmol)/使用した無水マレイン酸量(mmol)]×100
収率は98%であり、本発明の金属担持触媒が無水物の水和反応を経由した生成物を逐次的に還元する反応にも有用であることが確認された。
水(5ml)に、3Pd/AZC(25mg)および無水マレイン酸(1mmol)を加えて、水素ガス雰囲気下(1atm)にて、80℃で6時間反応を行った。
反応終了後、反応溶液を室温まで冷却し、遠心分離を行い、生成物を含む上澄み溶液から金属担持触媒を分離した。次に、FIDガスクロマトグラフィー(Shimadzu GC-17、Agilent DB-1 カラム。内部標準物質として、ナフタレンを使用。)を用いて、上澄み溶液中に生成物であるコハク酸があることを同定した。
生成物の収率は、出発物質である無水マレイン酸の仕込み量から計算した。
収率(%)=[生成したコハク酸量(mmol)/使用した無水マレイン酸量(mmol)]×100
収率は98%であり、本発明の金属担持触媒が無水物の水和反応を経由した生成物を逐次的に還元する反応にも有用であることが確認された。
<実施例G:溝呂木-ヘック反応>
(実施例G1)
1-メチル-2-ピロリドン(5ml)に、0.5Pd/AZC(25mg)、ブロモベンゼン(3.75mmol)、スチレン(4.5mmol)および炭酸カリウム(4.5mmol)を加えて、窒素ガス流通下(20ml/min)にて、130℃で24時間反応を行った。
反応終了後、反応溶液を室温まで冷却し、遠心分離を行い、生成物を含む上澄み溶液から金属担持触媒を分離した。次に、FIDガスクロマトグラフィー(Shimadzu GC-17、Agilent DB-1 カラム。内部標準物質として、ナフタレンを使用。)を用いて、上澄み溶液中に生成物である式(S)で表される化合物量があることを同定した。
生成物の収率は、出発物質であるブロモベンゼンの仕込み量から計算した。
収率(%)=[生成した式(S)で表される化合物(mmol)/使用したブロモベンセン量(mmol)]×100
収率は84%であり、本発明の金属担持触媒が溝呂木―ヘック反応に有用であることが確認された。
(実施例G1)
1-メチル-2-ピロリドン(5ml)に、0.5Pd/AZC(25mg)、ブロモベンゼン(3.75mmol)、スチレン(4.5mmol)および炭酸カリウム(4.5mmol)を加えて、窒素ガス流通下(20ml/min)にて、130℃で24時間反応を行った。
反応終了後、反応溶液を室温まで冷却し、遠心分離を行い、生成物を含む上澄み溶液から金属担持触媒を分離した。次に、FIDガスクロマトグラフィー(Shimadzu GC-17、Agilent DB-1 カラム。内部標準物質として、ナフタレンを使用。)を用いて、上澄み溶液中に生成物である式(S)で表される化合物量があることを同定した。
生成物の収率は、出発物質であるブロモベンゼンの仕込み量から計算した。
収率(%)=[生成した式(S)で表される化合物(mmol)/使用したブロモベンセン量(mmol)]×100
収率は84%であり、本発明の金属担持触媒が溝呂木―ヘック反応に有用であることが確認された。
(実施例G2)
1-メチル-2-ピロリドン(10ml)に、0.5Pd/AZC(2mg)、ブロモベンゼン(12mmol)、スチレン(14.4mmol)および炭酸カリウム(14.4mmol)を加えて、窒素ガス流通下(20ml/min)にて、130℃で72時間反応を行った。
上記実施例G1と同様の手順で分析したところ、TONは38064を示した。
なお、「TON(ターンオーバー数(触媒回転数)」は、生成した式(S)で表される化合物(mmol)/使用したPd量(mmol)として算出した。なお、mmolはミリモルを意図する。
1-メチル-2-ピロリドン(10ml)に、0.5Pd/AZC(2mg)、ブロモベンゼン(12mmol)、スチレン(14.4mmol)および炭酸カリウム(14.4mmol)を加えて、窒素ガス流通下(20ml/min)にて、130℃で72時間反応を行った。
上記実施例G1と同様の手順で分析したところ、TONは38064を示した。
なお、「TON(ターンオーバー数(触媒回転数)」は、生成した式(S)で表される化合物(mmol)/使用したPd量(mmol)として算出した。なお、mmolはミリモルを意図する。
(実施例G3)
反応溶媒をメチルイソブチルケトン(15ml)、反応温度を120℃に変更した以外は、上記実施例G2と同じ条件で反応を実施したところ、TONは79549を示した。
反応溶媒をメチルイソブチルケトン(15ml)、反応温度を120℃に変更した以外は、上記実施例G2と同じ条件で反応を実施したところ、TONは79549を示した。
<実施例H:アルコール酸化反応>
N,N-ジメチルホルムアミド(DMF,3ml)に、4Ru/AZC(50mg)および5-ヒドロキシメチルフルフラール(HMF,0.5mmol)を加えて、酸素流通下(36ml/min)にて、120℃で11時間反応を行った。
反応終了後、反応溶液を室温まで冷却し、遠心分離を行い、生成物を含む上澄み溶液から金属担持触媒を分離した。次に、高速液体クロマトグラフィー(HPLC, Waters 600、Bio-Rad Aminex HPX-87Hカラム。)を用いて、上澄み溶液中に生成物で2,5-ジホルミルフラン(DFF)があることを同定した。
生成物の収率は、検量線法により出発物質であるHMFの仕込み量から計算した。
収率(%)=[生成したDFF(mmol)/使用したHMF(mmol)]×100
収率は52%であり、本発明の金属担持触媒が酸化反応に有用であることが確認された。
N,N-ジメチルホルムアミド(DMF,3ml)に、4Ru/AZC(50mg)および5-ヒドロキシメチルフルフラール(HMF,0.5mmol)を加えて、酸素流通下(36ml/min)にて、120℃で11時間反応を行った。
反応終了後、反応溶液を室温まで冷却し、遠心分離を行い、生成物を含む上澄み溶液から金属担持触媒を分離した。次に、高速液体クロマトグラフィー(HPLC, Waters 600、Bio-Rad Aminex HPX-87Hカラム。)を用いて、上澄み溶液中に生成物で2,5-ジホルミルフラン(DFF)があることを同定した。
生成物の収率は、検量線法により出発物質であるHMFの仕込み量から計算した。
収率(%)=[生成したDFF(mmol)/使用したHMF(mmol)]×100
収率は52%であり、本発明の金属担持触媒が酸化反応に有用であることが確認された。
Claims (11)
- 担体と、前記担体に担持された金属とを有し、
前記担体が、金属イオンと前記金属イオンに配位可能な有機化合物とが繰り返し単位を構成する多孔性配位高分子であり、
前記多孔性配位高分子が、CuKα線を線源とするX線回折スペクトルにおいて、ブラッグ角(2θ)が11.1±0.5°、19.8±0.5°、および、26.0±0.5°にピークを示し、
前記有機化合物が、窒素原子を含む官能基を少なくとも1つ有する、金属担持多孔性配位高分子触媒。 - 前記担体に担持された金属が、周期律表の第8族金属~第11族金属からなる群から選択される少なくとも1種を含む、請求項1に記載の金属担持多孔性配位高分子触媒。
- 前記金属イオンが、周期律表の第4族金属~第13族金属からなる群から選択される少なくとも1種のイオンを含む、請求項1または2に記載の金属担持多孔性配位高分子触媒。
- 前記有機化合物が、カルボン酸基、スルホン酸基、チオール基、シアノ基、ヒドロキシル基、リン酸基、イミダゾール基、ピリジン基、および、アミノ基からなる群から選択される基を少なくとも2つ有する、請求項1~3のいずれか1項に記載の金属担持多孔性配位高分子触媒。
- 前記窒素原子を含む官能基が、アミノ基、イミノ基、および、ニトリル基からなる群から選択される、請求項1~4のいずれか1項に記載の金属担持多孔性配位高分子触媒。
- 炭素-炭素結合生成反応、炭素-酸素結合生成反応、還元反応、または、酸化反応に用いられる、請求項1~5のいずれか1項に記載の金属担持多孔性配位高分子触媒。
- 請求項1~5のいずれか1項に記載の金属担持多孔性配位高分子触媒の存在下、ニトロアリール化合物を還元してアミノアリール化合物を製造する、アミノアリール化合物の製造方法。
- 請求項1~5のいずれか1項に記載の金属担持多孔性配位高分子触媒の存在下、炭素-炭素不飽和結合を有する不飽和化合物に対して水素化反応を行い、水素化反応物を製造する、水素化反応物の製造方法。
- 請求項1~5のいずれか1項に記載の金属担持多孔性配位高分子触媒の存在下、アルコール化合物またはアルデヒド化合物に対して酸化反応を行い、酸化反応物を製造する、酸化反応物の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016517905A JPWO2015170688A1 (ja) | 2014-05-07 | 2015-05-01 | 金属担持多孔性配位高分子触媒 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014096036 | 2014-05-07 | ||
JP2014-096036 | 2014-05-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015170688A1 true WO2015170688A1 (ja) | 2015-11-12 |
Family
ID=54392538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/063118 WO2015170688A1 (ja) | 2014-05-07 | 2015-05-01 | 金属担持多孔性配位高分子触媒 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2015170688A1 (ja) |
WO (1) | WO2015170688A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200028687A (ko) * | 2018-09-07 | 2020-03-17 | 인하대학교 산학협력단 | 팔라듐 담지 다공성 폴리우레아 불균일 촉매 및 이를 이용한 스즈키-미야우라(Suzuki-Miyaura) 커플링 반응 |
CN111054437A (zh) * | 2018-10-17 | 2020-04-24 | 中国石油化工股份有限公司 | 一种异辛烯醛选择加氢制备异辛醛的催化剂、制备方法及应用 |
WO2023123126A1 (zh) * | 2021-12-29 | 2023-07-06 | 苏州大学 | 一种含氮多孔有机聚合物复合材料及其制备方法与应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004285315A (ja) * | 2002-05-15 | 2004-10-14 | Nippon Shokubai Co Ltd | 多孔性配位不飽和金属錯体 |
JP2009022862A (ja) * | 2007-07-19 | 2009-02-05 | National Institute Of Advanced Industrial & Technology | 固体触媒 |
JP2010527890A (ja) * | 2007-05-21 | 2010-08-19 | 財団法人韓国化学研究院 | 配位的に不飽和な金属部位を有する表面官能基化された多孔性有機無機ハイブリッド材料又はメソポーラス材料の製造及びその触媒的応用 |
JP2010184878A (ja) * | 2009-02-10 | 2010-08-26 | Mitsubishi Chemicals Corp | 多孔性材料 |
JP2011026253A (ja) * | 2009-07-27 | 2011-02-10 | Showa Denko Kk | アリルエーテルの製造方法 |
WO2013021944A1 (ja) * | 2011-08-05 | 2013-02-14 | 国立大学法人京都大学 | 金属ナノ粒子のpcp複合体とその作製方法 |
-
2015
- 2015-05-01 JP JP2016517905A patent/JPWO2015170688A1/ja active Pending
- 2015-05-01 WO PCT/JP2015/063118 patent/WO2015170688A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004285315A (ja) * | 2002-05-15 | 2004-10-14 | Nippon Shokubai Co Ltd | 多孔性配位不飽和金属錯体 |
JP2010527890A (ja) * | 2007-05-21 | 2010-08-19 | 財団法人韓国化学研究院 | 配位的に不飽和な金属部位を有する表面官能基化された多孔性有機無機ハイブリッド材料又はメソポーラス材料の製造及びその触媒的応用 |
JP2009022862A (ja) * | 2007-07-19 | 2009-02-05 | National Institute Of Advanced Industrial & Technology | 固体触媒 |
JP2010184878A (ja) * | 2009-02-10 | 2010-08-26 | Mitsubishi Chemicals Corp | 多孔性材料 |
JP2011026253A (ja) * | 2009-07-27 | 2011-02-10 | Showa Denko Kk | アリルエーテルの製造方法 |
WO2013021944A1 (ja) * | 2011-08-05 | 2013-02-14 | 国立大学法人京都大学 | 金属ナノ粒子のpcp複合体とその作製方法 |
Non-Patent Citations (2)
Title |
---|
JORGE GASCON ET AL.: "Amino-based metal-organic frameworks as stable, highly active basic catalysts", JOURNAL OF CATALYSIS, vol. 261, no. Issue 1, 28 November 2008 (2008-11-28), pages 75 - 87, XP025873033 * |
KENJI NISHIKAWA ET AL.: "Pd Nano Ryushi Naiho MOF(Metal-Organic Framework) Shokubai no Chosei to Fukin'itsu-kei Shokubai Hanno eno Oyo", DAI 110 KAI CATSJ MEETING YOKOSHU, 14 September 2012 (2012-09-14), pages 414 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200028687A (ko) * | 2018-09-07 | 2020-03-17 | 인하대학교 산학협력단 | 팔라듐 담지 다공성 폴리우레아 불균일 촉매 및 이를 이용한 스즈키-미야우라(Suzuki-Miyaura) 커플링 반응 |
KR102103917B1 (ko) * | 2018-09-07 | 2020-04-24 | 인하대학교 산학협력단 | 팔라듐 담지 다공성 폴리우레아 불균일 촉매 및 이를 이용한 스즈키-미야우라(Suzuki-Miyaura) 커플링 반응 |
CN111054437A (zh) * | 2018-10-17 | 2020-04-24 | 中国石油化工股份有限公司 | 一种异辛烯醛选择加氢制备异辛醛的催化剂、制备方法及应用 |
WO2023123126A1 (zh) * | 2021-12-29 | 2023-07-06 | 苏州大学 | 一种含氮多孔有机聚合物复合材料及其制备方法与应用 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015170688A1 (ja) | 2017-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zolfigol et al. | A highly stable and active magnetically separable Pd nanocatalyst in aqueous phase heterogeneously catalyzed couplings | |
JP2008255106A (ja) | 金属錯体 | |
CN103418438A (zh) | 一种氮杂卡宾类钯催化剂及其制备方法和应用 | |
CN101733162A (zh) | 有机金属框架物负载钯及其制备方法、用途 | |
WO2022092260A1 (ja) | 反応方法及びその反応に用いる装置 | |
Li et al. | Two organic–inorganic hybrid polyoxovanadates as reusable catalysts for Knoevenagel condensation | |
Ulusoy et al. | Structural, spectral, electrochemical and catalytic reactivity studies of a series of N2O2 chelated palladium (II) complexes | |
JP6765482B2 (ja) | 5,5−ジブロモ−5−フェニル吉草酸メチルエステル | |
Chutia et al. | Synthesis and characterization of Co (II) and Cu (II) supported complexes of 2-pyrazinecarboxylic acid for cyclohexene oxidation | |
WO2015170688A1 (ja) | 金属担持多孔性配位高分子触媒 | |
Xie et al. | An efficient approach to the ammoxidation of alcohols to nitriles and the aerobic oxidation of alcohols to aldehydes in water using Cu (II)/pypzacac complexes as catalysts | |
Yadav et al. | Ferrocene-functionalized dithiocarbamate zinc (II) complexes as efficient bifunctional catalysts for the one-pot synthesis of chromene and imidazopyrimidine derivatives via Knoevenagel condensation reaction | |
CN110117237A (zh) | 一种芳香腈或烯基腈类化合物的制备方法 | |
WO2023167321A1 (ja) | メカノケミカル反応用添加剤、メカノケミカル方法、配位子化合物及び錯体 | |
Yang et al. | A thiourea-functionalized metal–organic macrocycle for the catalysis of Michael additions and prominent size-selective effect | |
CN109810147B (zh) | 芘标记的苯并咪唑氮杂环卡宾钯金属配合物及制备和应用 | |
Wang et al. | Synthesis, characterization and ethylene oligomerization of nickel complexes bearing N-(2-(1 H-benzo [d] imidazol-2-yl) quinolin-8-yl) benzamide derivatives | |
JP5092140B2 (ja) | 非対称型ビス(ターピリジン)化合物の合成方法 | |
CN107827913B (zh) | 含1,10-菲啰啉状的n-杂环卡宾铜(i)配合物及用途 | |
WO2016104518A1 (ja) | オレフィンの製造方法 | |
WO2009122408A1 (en) | STABLE C - (sup3) - CYCLOMETALATED PINCER COMPLEXES, THEIR PREPARATION AND USE AS CATALYSTS | |
KR20200018346A (ko) | 신규 촉매 화합물 및 이를 이용한 아크릴레이트의 합성 방법 | |
JP2004262832A (ja) | ピンサー型金属錯体及びその製造方法、並びにピンサー型金属錯体触媒 | |
JP7232459B2 (ja) | 有機化合物のベンジル位の空気酸化方法及び空気酸化触媒 | |
CN109810056B (zh) | S-烷基-s-喹啉基-n-磺酰基氮硫叶立德化合物及其制备和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15789870 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016517905 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15789870 Country of ref document: EP Kind code of ref document: A1 |