WO2023123126A1 - 一种含氮多孔有机聚合物复合材料及其制备方法与应用 - Google Patents

一种含氮多孔有机聚合物复合材料及其制备方法与应用 Download PDF

Info

Publication number
WO2023123126A1
WO2023123126A1 PCT/CN2021/142699 CN2021142699W WO2023123126A1 WO 2023123126 A1 WO2023123126 A1 WO 2023123126A1 CN 2021142699 W CN2021142699 W CN 2021142699W WO 2023123126 A1 WO2023123126 A1 WO 2023123126A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
organic polymer
porous organic
containing porous
composite material
Prior art date
Application number
PCT/CN2021/142699
Other languages
English (en)
French (fr)
Inventor
李红喜
崔耀
李海燕
徐泽
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to PCT/CN2021/142699 priority Critical patent/WO2023123126A1/zh
Publication of WO2023123126A1 publication Critical patent/WO2023123126A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/32Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions without formation of -OH groups
    • C07C29/34Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions without formation of -OH groups by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C33/00Unsaturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C33/40Halogenated unsaturated alcohols
    • C07C33/46Halogenated unsaturated alcohols containing only six-membered aromatic rings as cyclic parts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/30Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention belongs to the technical field of catalytic chemistry, and relates to the preparation of a nitrogen-containing porous organic polymer composite material and its catalyzed cross-coupling reaction of secondary alcohols and primary alcohols to synthesize ⁇ -alkylated secondary alcohol compounds.
  • Alcohols are very important in organic synthesis and chemical industry.
  • Traditional routes to obtain ⁇ -alkylated alcohols from secondary alcohols usually require a multistep process involving oxidation of secondary alcohols, metallation of alkyl halides, and reduction of ⁇ -alkylated ketones.
  • Reaction of an alcohol as an alkylating agent with another alcohol has been considered as a green direct method to obtain ⁇ -alkylated alcohols, H2 and/or H2O are produced as by-products during the transition metal-catalyzed reaction , has high atom utilization efficiency and is environmentally friendly.
  • the metal-catalyzed cross-coupling reaction of secondary alcohols and primary alcohols is mainly carried out by dehydrogenation-condensation-hydrogenation steps, selectively obtaining ⁇ , ⁇ -unsaturated ketones, ⁇ -alkylated ketones, ⁇ -alkane Kylated secondary alcohols.
  • Various homogeneous catalytic systems using metal complexes such as Ru, Ir, Pd, Cu, Co, and Mn have been developed for the ⁇ -alkylation of secondary alcohols with primary alcohols.
  • the prior art still needs to be improved in terms of metal pollution reduction and catalyst recovery performance.
  • the object of the present invention is to provide a preparation of nitrogen-containing porous organic polymer composite material and its catalyzed cross-coupling reaction of secondary alcohol and primary alcohol to synthesize ⁇ -alkylated secondary alcohol compounds.
  • Nitrogen-containing porous organic polymers were prepared by a simple method using 2,6-bis(benzimidazole)pyridine and biphenyl as polymerization monomers. After the polymer is loaded with metal ruthenium, a composite material is obtained as a catalyst, and in toluene solvent, the cross-coupling reaction involving secondary alcohol and primary alcohol is catalyzed to finally prepare ⁇ -alkylated secondary alcohol.
  • the composite material used as a catalyst can be reused more than 4 times, and it is still stable after 4 cycles, and its catalytic activity does not decrease significantly. It is an effective and efficient catalyst.
  • a nitrogen-containing porous organic polymer composite material which is prepared from pyridine compounds and benzene compounds to prepare nitrogen-containing porous organic polymers, and then reacts with ruthenium salts to obtain the nitrogen-containing porous organic polymers.
  • Polymer composite material preferably, nitrogen-containing porous organic polymer is prepared from pyridine compound and benzene compound under inert gas, and then reacted with ruthenium salt to obtain nitrogen-containing porous organic polymer composite material.
  • the pyridine compound is 2,6-bis(benzimidazole)pyridine
  • the benzene compound is biphenyl
  • the ruthenium salt is ruthenium trichloride.
  • the preparation method of the above-mentioned nitrogen-containing porous organic polymer composite material comprises the following steps: under an inert gas, 2,6-bis(benzimidazole)pyridine, biphenyl and aluminum chloride are added to anhydrous chloroform, and then React for 15 to 30 hours, then wash the obtained precipitate with water, dilute hydrochloric acid, and organic solvent to obtain a nitrogen-containing porous organic polymer, and then add RuCl 3 and nitrogen-containing porous organic polymer to absolute ethanol , and then reflux and stir for 8 to 15 hours to obtain a nitrogen-containing polymer-supported metal ruthenium composite material.
  • the reaction is carried out at 50-65°C for 15-30 hours, and then the obtained precipitate is washed with water, dilute hydrochloric acid, water, methanol, and ether in sequence, and then vacuum-dried to obtain a nitrogen-containing porous organic polymer; reflux Stirring for 8-15 hours, washing the obtained precipitate with water, dilute hydrochloric acid, water, methanol, and ether in sequence, and then vacuum-drying to obtain a nitrogen-containing porous organic polymer composite material.
  • the inert gas is selected from any one of nitrogen and argon, preferably nitrogen; chloroform is used as an organic solvent; aluminum trichloride is used as a catalyst.
  • the invention discloses the application of the above-mentioned nitrogen-containing porous organic polymer composite material in the preparation of recyclable catalysts or the above-mentioned nitrogen-containing porous organic polymer composite material in catalyzing the cross-coupling of secondary alcohol and primary alcohol to synthesize ⁇ -alkylation Application of secondary alcohols.
  • the secondary alcohol is selected from 1-phenethyl alcohol, 1-(4-chlorophenyl)ethanol, 1-(4-bromophenyl)ethanol, 1-(4-methylphenyl)ethanol, 1-(4 -methoxyphenyl)ethanol, 1-(2-chlorophenyl)ethanol, 1-(2-methoxy)ethanol, 1-(2-methylphenyl)ethanol, 1-(3-methoxy Any one in phenyl alcohol) ethanol, 1-(3-methylphenyl) ethanol;
  • the primary alcohol is selected from benzyl alcohol, 4-chlorobenzyl alcohol, 4-trifluoromethyl benzyl alcohol, 4- Methoxybenzyl alcohol, 4-tert-butylbenzyl alcohol, 2-methylbenzyl alcohol, 2-methoxybenzyl alcohol, 3-methoxybenzyl alcohol, 3-methylbenzyl alcohol, 3-chlorobenzyl alcohol any of the
  • the invention discloses a method for the synthesis of ⁇ -alkylated secondary alcohol compounds by catalyzing the cross-coupling of the secondary alcohol and the primary alcohol by the above-mentioned nitrogen-containing porous organic polymer composite material, comprising the following steps: mixing the secondary alcohol, the primary alcohol, Alkali, nitrogen-containing porous organic polymer composite material and solvent, under nitrogen, react at 100-140 ° C for 4-12 hours to obtain ⁇ -alkylated secondary alcohol compounds; further, after the reaction is completed, the composite material catalyst is removed by filtration, Water was added, extracted with ethyl acetate, the organic phases were combined, the organic phase was dried over anhydrous sodium sulfate, and concentrated under reduced pressure, the crude product was purified by silica gel column, using petroleum ether and ethyl acetate as eluents, to obtain ⁇ -Alkylated secondary alcohols.
  • the reaction of the secondary alcohol and the primary alcohol to prepare the ⁇ -alkylated secondary alcohol is carried out in the presence of a base in a nitrogen atmosphere; the secondary alcohol, primary alcohol, alkali, nitrogen-containing porous organic polymer composite material Dosage ratio is 1 mmol : (1-1.5) mmol : (0.3-1) mmol : (15-25) mg, preferably 1 mmol : 1.2 mmol : 0.5 mmol : 20 mg.
  • the alkali is potassium hydroxide or cesium hydroxide.
  • the temperature of the reaction is 100-140°C.
  • reaction time is 4 to 12 hours.
  • the present invention discloses a preparation method of a nitrogen-containing porous organic polymer for the first time, which uses 2,6-bis(benzimidazole) Pyridine and biphenyl are monomers, chloroform is a solvent, and aluminum trichloride is a catalyst; the polymer has good stability, large specific surface area and uniform pore size distribution.
  • the nitrogen-containing porous organic polymer described in the present invention can support metal ruthenium, and the metal ruthenium has the characteristics of uniform distribution and trivalent valence.
  • the nitrogen-containing porous organic polymer-supported metal ruthenium composite material described in the present invention can be applied to catalyze the cross-coupling reaction of secondary alcohols and primary alcohols to synthesize ⁇ -alkylated secondary alcohols, with high conversion efficiency, It has the characteristics of wide application range and green and mild reaction conditions.
  • the catalyst is centrifuged from the reaction system, washed and dried, and then added to a new reaction system to proceed to the next round of reaction.
  • the nitrogen-containing polymer-loaded metal ruthenium composite material can be reused 4 times, and its catalytic activity did not decrease significantly.
  • Fig. 1 is a scanning electron microscope image of the nitrogen-containing porous organic polymer material of the present invention.
  • Fig. 2 is a solid NMR carbon spectrum of the nitrogen-containing porous organic polymer material of the present invention.
  • Fig. 3 is the nitrogen adsorption/desorption isotherm at 77 K of the nitrogen-containing porous organic polymer and the nitrogen-containing porous organic polymer-supported metal ruthenium composite material of the present invention.
  • Fig. 4 is nitrogen-containing porous organic polymer of the present invention and nitrogen-containing porous organic polymer loaded metal ruthenium composite material N 1s photoelectron energy spectrum, compares the photoelectron energy spectrum of nitrogen before and after metal loading, and its binding energy increases to some extent, this It is caused by the coordination between nitrogen and ruthenium.
  • Fig. 5 is an element distribution diagram of the nitrogen-containing porous organic polymer-supported metal ruthenium composite material of the present invention, illustrating the uniform distribution of C, N, and Ru elements.
  • Fig. 6 is the nitrogen-containing porous organic polymer loaded metal ruthenium composite material of the present invention as the efficiency diagram of the reaction recycling of the catalyst embodiment 3, from which it can be seen that the catalyst maintains a higher efficiency in the process of recycling, and no Significantly decreased.
  • metal ruthenium is evenly distributed on the nitrogen-containing polymer, and its substrate is a nitrogen-containing polymer, wherein the valence of metal ruthenium is trivalent; preferably, the nitrogen-containing polymer
  • the loading amount of ruthenium is 2.5 wt% ⁇ 3.5 wt%, preferably 2.9 wt% to 3.3 wt%, which can be obtained by using the mass percentage between metal ruthenium and nitrogen-containing polymer material.
  • Example 2 RuCl 3 (17 mg) and pyrazole polymer (200 mg) were added to a three-neck round bottom flask containing 25 mL of absolute ethanol, and liquid nitrogen freezing-pumping-nitrogen filling-thawing was repeated three times, Then reflux and stir for 12 hours. After the reaction, the solid was separated by centrifugation, washed with water, ethanol and ether in turn, and then vacuum-dried to obtain the corresponding nitrogen-containing polymer-loaded metal ruthenium composite material (the loading capacity of ruthenium is 3.11 wt%) , as the catalyst for the following examples.
  • Fig. 1 is the scanning electron microscope figure of above-mentioned nitrogen-containing porous organic polymer material
  • Fig. 2 is the solid nuclear magnetic carbon spectrogram of above-mentioned nitrogen-containing porous organic polymer material
  • Fig. 3 is above-mentioned nitrogen-containing porous organic polymer and nitrogen-containing porous organic polymer Nitrogen adsorption/desorption isotherms of metal ruthenium composites loaded with metals at 77 K; Fig.
  • FIG. 4 shows the N 1s photoelectron spectra of the above nitrogen-containing porous organic polymers and nitrogen-containing porous organic polymers loaded metal ruthenium composites, comparing metal-loaded Before and after the photoelectron spectrum of nitrogen, its binding energy has increased, which is caused by the coordination between nitrogen and ruthenium;
  • Figure 5 is the element distribution diagram of the above-mentioned nitrogen-containing porous organic polymer loaded metal ruthenium composite material, illustrating Uniform distribution of C, N, Ru elements.
  • the catalyst is separated from the reaction system by centrifugation. After the catalyst is washed and dried with water, methanol and ether, the next round of catalytic reaction will be carried out; the catalyst is recycled according to the above process, and the cycle 4 After several times, it still maintains a high activity, see Figure 6.
  • the precursor prepared by the present invention is a nitrogen-containing porous organic polymer, and the metal ruthenium in the prepared composite material is evenly distributed on the polymer substrate, which is useful for catalyzing the cross-coupling of secondary alcohols and primary alcohols to synthesize ⁇ -alkylated secondary Alcohol compounds have high catalytic efficiency.
  • the use of the catalyst of the invention can reduce metal pollution to products and has recyclability, and the functionalized nitrogen-containing porous organic polymer is loaded with metal to composite material, which can exhibit excellent catalytic performance in various reactions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

本发明公开了一种含氮多孔有机聚合物复合材料及其制备方法与应用。具体而言,本发明以三氯化铝为催化剂,将2,6-双(苯并咪唑)吡啶和联苯共聚得到多孔有机聚合物,以其作为载体通过配位作用将三氯化钌负载于该聚合物上,得到复合材料。该材料能够高效催化二级醇和一级醇的交叉偶联反应,合成β-烷基化的仲醇类化合物。该催化体系具有宽泛的官能团耐受性,催化剂连续循环使用多次后,仍保持较高催化活性且金属钌没有浸出。

Description

一种含氮多孔有机聚合物复合材料及其制备方法与应用 技术领域
本发明属于催化化学技术领域,涉及一种含氮多孔有机聚合物复合材料的制备及其催化二级醇和一级醇的交叉偶联反应合成β-烷基化的仲醇类化合物。
背景技术
醇类化合物在有机合成和化学工业中非常重要。从仲醇获得β-烷基化醇的传统路线通常需要多步过程,该过程涉及仲醇的氧化、烷基卤化物的金属化和β-烷基化酮的还原。通过醇作为烷基化试剂与另一种醇反应已被认为是获得β-烷基化醇的绿色直接方法,在过渡金属催化的反应过程中,H 2和/或H 2O作为副产物产生,具有高效的原子利用效率且对环境无害。其中,通过金属催化仲醇和伯醇的交叉偶联反应主要是通过脱氢-缩合-氢化步骤进行的,选择性地得到α,β-不饱和酮,α-烷基化的酮,β-烷基化的仲醇。目前已经开发出使用Ru,Ir,Pd,Cu,Co和Mn等金属络合物的各种均相催化体系,用于仲醇与伯醇的β-烷基化反应。但是现有技术在减少金属污染以及催化剂回收性能方面还需要提高。
技术问题
针对上述情况,本发明的目的在于提供种含氮多孔有机聚合物复合材料的制备及其催化二级醇和一级醇的交叉偶联反应合成β-烷基化的仲醇类化合物。以2,6-双(苯并咪唑)吡啶和联苯为聚合单体,通过简单的方法制备了含氮多孔有机聚合物。该聚合物负载金属钌之后得到复合材料作为催化剂,在甲苯溶剂中,催化二级醇和一级醇参与的交叉偶联反应,最终制得β-烷基化的仲醇。另外,在上述反应体系中,作为催化剂使用的复合材料可以被重复利用4次以上,循环4次后仍然稳定,并且其催化活性也未出现明显降低,是一种有效且高效的催化剂。
技术解决方案
为了实现上述目的,本发明采用如下技术方案:一种含氮多孔有机聚合物复合材料,由吡啶化合物、苯化合物制备含氮多孔有机聚合物,然后与钌盐反应,得到所述含氮多孔有机聚合物复合材料;优选的,惰性气体下,由吡啶化合物、苯化合物制备含氮多孔有机聚合物,然后与钌盐反应,得到含氮多孔有机聚合物复合材料。优选的,吡啶化合物为2,6-双(苯并咪唑)吡啶;苯化合物为联苯;钌盐为三氯化钌。
上述含氮多孔有机聚合物复合材料的制备方法包括如下步骤:惰性气体下,将2,6-双(苯并咪唑)吡啶,联苯和三氯化铝加入到无水三氯甲烷中,而后反应15~30小时,然后将得到的沉淀物用水、稀盐酸、有机溶剂洗涤,得到含氮多孔有机聚合物,然后在惰性气体下,将RuCl 3和含氮多孔有机聚合物加入到无水乙醇中,而后回流搅拌8~15小时,得到含氮聚合物负载金属钌复合材料。
上述技术方案中,反应在50~65℃下进行15~30小时,然后将得到的沉淀物依次用水、稀盐酸、水、甲醇、乙醚洗涤,然后真空干燥,得到含氮多孔有机聚合物;回流搅拌8~15小时,将得到的沉淀物依次用水、稀盐酸、水、甲醇、乙醚洗涤,然后真空干燥,得到含氮多孔有机聚合物复合材料。
上述技术方案中,所述惰性气体选自氮气、氩气中的任意一种,优选氮气;以三氯甲烷为有机溶剂;三氯化铝为催化剂。
本发明公开了上述含氮多孔有机聚合物复合材料在制备可循环催化剂中的应用或者上述含氮多孔有机聚合物复合材料在催化二级醇和一级醇的交叉偶联反合成β-烷基化仲醇类化合物中的应用。所述二级醇选自1-苯乙醇、1-(4-氯苯基)乙醇、1-(4-溴苯基)乙醇、1-(4-甲基苯基)乙醇、1-(4-甲氧基苯基)乙醇、1-(2-氯苯基)乙醇、1-(2-甲氧基)乙醇、1-(2-甲基苯基)乙醇、1-(3-甲氧基苯基)乙醇、1-(3-甲基苯基)乙醇中的任意一种;所述一级醇选自苯甲醇、4-氯苯甲醇、4-三氟甲基苯甲醇、4-甲氧基苯甲醇、4-叔丁基苯甲醇、2-甲基苯甲醇、2-甲氧基苯甲醇、3-甲氧基苯甲醇、3-甲基苯甲醇、3-氯苯甲醇中的任意一种。
本发明公开了上述含氮多孔有机聚合物复合材料催化二级醇和一级醇的交叉偶联反合成β-烷基化仲醇类化合物的方法包括如下步骤:混合二级醇、一级醇、碱、含氮多孔有机聚合物复合材料与溶剂,氮气下,100~140℃反应4~12小时,得到β-烷基化仲醇类化合物;进一步的,反应结束后,过滤除去复合材料催化剂,加入水,用乙酸乙酯进行萃取,合并有机相,有机相经无水硫酸钠干燥,并在减压下浓缩,粗产物通过硅胶柱纯化,使用石油醚和乙酸乙酯作为洗脱剂,得到β-烷基化仲醇类化合物。
上述技术方案中,二级醇和一级醇反应制备β-烷基化仲醇在碱存在下、在氮气氛围中进行;二级醇、一级醇、碱、含氮多孔有机聚合物复合材料的用量比为1 mmol : (1~1.5) mmol : (0.3~1) mmol : (15~25)mg,优选为1 mmol : 1.2 mmol : 0.5 mmol : 20 mg。
上述技术方案中,所述碱为氢氧化钾或者氢氧化铯。
上述技术方案中,所述反应的温度为100~140℃。
上述技术方案中,所述反应的时间为4~12小时。
有益效果
与现有技术相比,采用上述技术方案的本发明具有下列优点:(1)本发明首次披露了一种含氮多孔有机聚合物的制备方法,其以2,6-双(苯并咪唑)吡啶和联苯为单体,三氯甲烷为溶剂,三氯化铝为催化剂;该聚合物稳定性好,比表面积大,孔径分布均匀。
(2)本发明中记载的含氮多孔有机聚合物可以负载金属钌,且金属钌具有分布均匀、化合价为三价等特点。
(3)本发明中记载的含氮多孔有机聚合物负载金属钌复合材料可以应用于催化二级醇和一级醇的交叉偶联反合成β-烷基化仲醇类化合物,具有转化效率高、适用范围广、反应条件绿色温和等特点。
(4)催化反应结束后,从反应体系中离心出催化剂,将催化剂洗涤干燥后加入到新的反应体系中,即可进行下一轮反应,该含氮聚合物负载金属钌复合材料能够重复使用4次,并且其催化活性也未出现明显降低。
附图说明
图1为本发明的含氮多孔有机聚合物材料的扫描电镜图。
图2为本发明含氮多孔有机聚合物材料的固体核磁碳谱图。
图3为本发明的含氮多孔有机聚合物和含氮多孔有机聚合物负载金属钌复合材料在77 K下的氮气吸附/解吸等温线。
图4为本发明的含氮多孔有机聚合物和含氮多孔有机聚合物负载金属钌复合材料的N 1s光电子能谱,对比金属负载前后氮的光电子能谱,其结合能有所增大,这是氮钌之间的配位作用造成的。
图5为本发明的含氮多孔有机聚合物负载金属钌复合材料的元素分布图,说明了C、N、Ru元素的均匀分布。
图6为本发明的含氮多孔有机聚合物负载金属钌复合材料作为催化剂催化实施例3反应循环利用的效率图,从中可以看出,在循环使用的过程中催化剂保持较高的效率,没有发生明显下降。
本发明的实施方式
下面将结合附图和具体实施例对本发明做出进一步的描述。除非另有说明,下列实施例中所使用的试剂、材料、仪器等均可通过商业手段获得,具体的制备操作以及测试表征都是常规技术。本发明公开的含氮多孔有机聚合物复合材料中,金属钌均匀分布在含氮聚合物上,其基底为含氮聚合物,其中金属钌呈现的化合价为三价;优选的,含氮聚合物负载金属钌材料中,钌的负载量为2.5 wt%~3.5 wt%,优选2.9 wt%~3.3 wt%,可以利用金属钌与含氮聚合物材料之间的质量百分比获得。
实施例1:在氮气氛围下,将2,6-双(苯并咪唑)吡啶(1mmol),联苯(0.154g, 1 mmol)和三氯化铝(10 mmol, 1.33 g)加入到无水三氯甲烷20 mL中,而后在58 ℃下搅拌反应24小时,反应结束后,将得到的沉淀物依次用水、稀盐酸(HCl-H 2O,v/v = 1 : 1)、水、甲醇、乙醚洗涤,然后真空干燥,得到含氮多孔有机聚合物。
实施例2:将RuCl 3 (17 mg)、吡唑聚合物(200 mg)加入到含有25mL无水乙醇的三颈圆底烧瓶中,液氮冷冻-抽气-充氮气-解冻反复进行三次,而后回流搅拌12小时,反应结束后,离心分离出固体,依次用水、乙醇和乙醚洗涤,然后真空干燥,即得相应的含氮聚合物负载金属钌复合材料(钌的负载量为3.11 wt%),作为以下实施例的催化剂。
上述反应示意如下。
Figure 757589dest_path_image001
图1为上述含氮多孔有机聚合物材料的扫描电镜图;图2为上述含氮多孔有机聚合物材料的固体核磁碳谱图;图3为上述含氮多孔有机聚合物和含氮多孔有机聚合物负载金属钌复合材料在77 K下的氮气吸附/解吸等温线;图4为上述含氮多孔有机聚合物和含氮多孔有机聚合物负载金属钌复合材料的N 1s光电子能谱,对比金属负载前后氮的光电子能谱,其结合能有所增大,这是氮钌之间的配位作用造成的;图5为上述含氮多孔有机聚合物负载金属钌复合材料的元素分布图,说明了C、N、Ru元素的均匀分布。
实施例3。
Figure 641231dest_path_image002
将二级醇(1 mmol)、一级醇(1.2 mmol)、含氮聚合物负载金属钌复合材料(20 mg)、氢氧化钾(0.5 mmol)加入到装有磁力搅拌子15 mL反应管中,加入2 mL甲苯,液氮冷冻-抽气-充氮气-解冻反复进行三次,在130 ℃油浴锅中反应12小时;反应结束后,过滤除去含氮聚合物负载金属钌复合材料,加入水,用乙酸乙酯进行萃取,合并有机相,有机相经无水硫酸钠干燥,并在减压下浓缩,粗产物通过硅胶柱纯化,使用石油醚和乙酸乙酯作为洗脱剂,得到相应的仲醇,HPLC收率93%,分离收率88%。
所得产物的核磁数据如下: 1H NMR (400 MHz, CDCl 3, ppm): δ 7.34 – 7.26 (m, 4H), 7.26 – 7.20 (m, 3H), 7.15 (t, J = 6.2 Hz, 3H), 4.59 (dd, J = 7.4, 5.7 Hz, 1H), 2.65 (m, 2H), 2.23 (s, 1H), 2.14 – 1.86 (m, 2H). 13C NMR (100 MHz, CDCl 3, ppm): δ 144.7, 141.9, 128.54, 128.51, 128.45, 127.7, 126.0, 125.9, 73.9, 40.5, 32.1。
上述反应结束后,通过离心的方式,从反应体系中分离出催化剂,催化剂经水、甲醇、乙醚洗涤烘干后,再将进行下一轮催化反应;按照上述过程对催化剂进行循环利用,循环4次后仍保持较高活性,参见图6。
在上述反应过程的基础上,保持底物不变,改变其他条件,得到如表1的结果。
表1 反应条件与产物收率。
Figure 849359dest_path_image003
Figure 938493dest_path_image004
表1中, 1a (1 mmol), 2a (1.2 mmol), cat. (20 mg), base (eq.), toluene (2 mL) ,HPLC收率(联苯为内标物)。
实施例4。
Figure 624689dest_path_image005
将二级醇(1 mmol)、一级醇(1.2 mmol)、含氮聚合物负载金属钌复合材料(20 mg)、氢氧化钾(0.5 mmol)加入到装有磁力搅拌子15 mL反应管中,加入2 mL甲苯,液氮冷冻-抽气-充氮气-解冻反复进行三次,在130 ℃油浴锅中反应12小时;反应结束后,过滤除去含氮聚合物负载金属钌复合材料,加入水,用乙酸乙酯进行萃取,合并有机相,有机相经无水硫酸钠干燥,并在减压下浓缩,粗产物通过硅胶柱纯化,使用石油醚和乙酸乙酯作为洗脱剂,得到相应的仲醇。
所得产物的核磁数据如下: 1H NMR (400 MHz, CDCl 3, ppm): δ 7.31 (d, J = 8.3 Hz, 2H), 7.28 (t, J = 7.7 Hz, 4H), 7.18 (t, J = 8.6 Hz, 3H), 4.69 – 4.62 (m, 1H), 2.77 – 2.61 (m, 2H), 2.09 (m, 1H), 1.98 (m, 1H), 1.81 (s, 1H). 13C NMR (100 MHz, CDCl 3, ppm): δ 143.2, 141.6, 133.4, 128.8, 128.6, 128.5, 127.4, 126.1, 73.3, 40.6, 32.1。
实施例5。
Figure 362838dest_path_image006
将二级醇(1 mmol)、一级醇(1.2 mmol)、含氮聚合物负载金属钌复合材料(20 mg)、氢氧化钾(0.5 mmol)加入到装有磁力搅拌子15 mL反应管中,加入2 mL甲苯,液氮冷冻-抽气-充氮气-解冻反复进行三次,在130 ℃油浴锅中反应12小时;反应结束后,过滤除去含氮聚合物负载金属钌复合材料,加入水,用乙酸乙酯进行萃取,合并有机相,有机相经无水硫酸钠干燥,并在减压下浓缩。粗产物通过硅胶柱纯化,使用石油醚和乙酸乙酯作为洗脱剂,得到相应的仲醇。
所得产物的核磁数据如下: 1H NMR (400 MHz, CDCl 3, ppm): δ 7.47 (d, J = 8.3 Hz, 2H), 7.28 (t, J = 7.5 Hz, 2H), 7.22 (d, J = 8.3 Hz, 2H), 7.18 (t, J = 8.3 Hz, 3H), 4.65 (dd, J = 7.6, 5.5 Hz, 1H), 2.78 – 2.61 (m, 2H), 2.16 – 2.05 (m, 1H), 2.03 – 1.93 (m, 1H), 1.77 (s, 1H). 13C NMR (100 MHz, CDCl 3, ppm): δ 142.7, 140.6, 130.7, 127.7, 127.6, 127.6, 126.8, 125.1, 125.1, 120.5, 72.3, 39.6, 31.0。
实施例6。
Figure 741866dest_path_image007
将二级醇(1 mmol)、一级醇(1.2 mmol)、含氮聚合物负载金属钌复合材料(20 mg)、氢氧化钾(0.5 mmol)加入到装有磁力搅拌子15 mL反应管中,加入2 mL甲苯,液氮冷冻-抽气-充氮气-解冻反复进行三次,在130 ℃油浴锅中反应12小时;反应结束后,过滤除去含氮聚合物负载金属钌复合材料,加入水,用乙酸乙酯进行萃取,合并有机相,有机相经无水硫酸钠干燥,并在减压下浓缩。粗产物通过硅胶柱纯化,使用石油醚和乙酸乙酯作为洗脱剂,得到相应的仲醇。
所得产物的核磁数据如下: 1H NMR (400 MHz, CDCl 3, ppm): δ 7.27 – 7.21 (m, 2H), 7.19 (s, 1H), 7.18 – 7.08 (m, 6H), 4.63 – 4.51 (m, 1H), 2.76 – 2.54 (m, 2H), 2.31 (s, 3H), 2.19 (s, 1H), 2.12 – 2.01 (m, 1H), 2.01 – 1.90 (m, 1H). 13C NMR (100 MHz, CDCl 3, ppm): δ 142.0, 141.7, 137.3, 129.2, 128.5, 128.4, 126.0, 125.9, 73.7, 40.4, 32.1, 21.2。
实施例7。
Figure 667097dest_path_image008
将二级醇(1 mmol)、一级醇(1.2 mmol)、含氮聚合物负载金属钌复合材料(20 mg)、氢氧化钾(0.5 mmol)加入到装有磁力搅拌子15 mL反应管中,加入2 mL甲苯,液氮冷冻-抽气-充氮气-解冻反复进行三次,在130 ℃油浴锅中反应12小时;反应结束后,过滤除去含氮聚合物负载金属钌复合材料,加入水,用乙酸乙酯进行萃取,合并有机相,有机相经无水硫酸钠干燥,并在减压下浓缩。粗产物通过硅胶柱纯化,使用石油醚和乙酸乙酯作为洗脱剂,得到相应的仲醇。
所得产物的核磁数据如下: 1H NMR (400 MHz, CDCl 3, ppm): δ 7.29 – 7.21 (m, 3H), 7.20 (d, J = 1.9 Hz, 1H), 7.15 (dd, J = 7.1, 5.3 Hz, 3H), 6.90 – 6.77 (m, 2H), 4.61 – 4.50 (m, 1H), 3.74 (s, 3H), 2.80 – 2.50 (m, 2H), 2.29 (s, 1H), 2.14 – 2.02 (m, 1H), 1.95 (m, 1H). 13C NMR (100 MHz, CDCl 3, ppm): δ 159.1, 141.9, 136.8, 128.5, 128.4, 127.3, 125.9, 113.9, 73.4, 55.3, 40.4, 32.1。
实施例8。
Figure 32351dest_path_image009
将二级醇(1 mmol)、一级醇(1.2 mmol)、含氮聚合物负载金属钌复合材料(20 mg)、氢氧化钾(0.5 mmol)加入到装有磁力搅拌子15 mL反应管中,加入2 mL甲苯,液氮冷冻-抽气-充氮气-解冻反复进行三次,在130 ℃油浴锅中反应12小时;反应结束后,过滤除去含氮聚合物负载金属钌复合材料,加入水,用乙酸乙酯进行萃取,合并有机相,有机相经无水硫酸钠干燥,并在减压下浓缩。粗产物通过硅胶柱纯化,使用石油醚和乙酸乙酯作为洗脱剂,得到相应的仲醇。
所得产物的核磁数据如下: 1H NMR (600 MHz, CDCl 3) δ 7.57 (dd, J = 7.7, 1.6 Hz, 1H), 7.34 – 7.30 (m, 1H), 7.29 – 7.25 (m, 3H), 7.23 – 7.19 (m, 3H), 7.17 (d, J = 7.3 Hz, 2H), 5.13 (dd, J = 8.4, 4.1 Hz, 1H), 2.93 – 2.81 (m, 1H), 2.74 (m, 1H), 2.15 – 1.99 (m, 2H), 1.85 (s, 1H). 13C NMR (151 MHz, CDCl 3) δ 142.1, 141.8, 132.0, 129.6, 129.2, 128.6, 128.5, 128.4, 127.3, 127.2, 126.0, 125.4, 70.4, 39.1, 32.3。
实施例9。
Figure 359427dest_path_image010
将二级醇(1 mmol)、一级醇(1.2 mmol)、含氮聚合物负载金属钌复合材料(20 mg)、氢氧化钾(0.5 mmol)加入到装有磁力搅拌子15 mL反应管中,加入2 mL甲苯,液氮冷冻-抽气-充氮气-解冻反复进行三次,在130 ℃油浴锅中反应12小时;反应结束后,过滤除去含氮聚合物负载金属钌复合材料,加入水,用乙酸乙酯进行萃取,合并有机相,有机相经无水硫酸钠干燥,并在减压下浓缩。粗产物通过硅胶柱纯化,使用石油醚和乙酸乙酯作为洗脱剂,得到相应的仲醇。
所得产物的核磁数据如下: 1H NMR (400 MHz, CDCl 3, ppm): δ 7.45 (dd, J = 7.5, 1.4 Hz, 1H), 7.42 – 7.37 (m, 2H), 7.37 – 7.22 (m, 4H), 7.07 (t, J = 7.3 Hz, 1H), 6.96 (d, J = 8.2 Hz, 1H), 5.03 (s, 1H), 3.89 (s, 3H), 3.03 (s, 1H), 3.00 – 2.90 (m, 1H), 2.81 (m, 1H), 2.32 – 2.14 (m, 2H). 13C NMR (100 MHz, CDCl 3, ppm): δ 156.5, 142.2, 132.4, 128.5, 128.3, 126.9, 125.7, 120.7, 110.5, 70.1, 55.2, 38.8, 32.3。
实施例10。
Figure 909357dest_path_image011
将二级醇(1 mmol)、一级醇(1.2 mmol)、含氮聚合物负载金属钌复合材料(20 mg)、氢氧化钾(0.5 mmol)加入到装有磁力搅拌子15 mL反应管中,加入2 mL甲苯,液氮冷冻-抽气-充氮气-解冻反复进行三次,在130 ℃油浴锅中反应12小时;反应结束后,过滤除去含氮聚合物负载金属钌复合材料,加入水,用乙酸乙酯进行萃取,合并有机相,有机相经无水硫酸钠干燥,并在减压下浓缩。粗产物通过硅胶柱纯化,使用石油醚和乙酸乙酯作为洗脱剂,得到相应的仲醇。
所得产物的核磁数据如下: 1H NMR (400 MHz, CDCl 3, ppm): δ 7.43 (d, J = 7.5 Hz, 1H), 7.28 – 7.21 (m, 2H), 7.20 – 7.09 (m, 5H), 7.07 (d, J = 7.2 Hz, 1H), 4.83 (dd, J = 8.0, 4.5 Hz, 1H), 2.79 (m, 1H), 2.67 (m, 1H), 2.17 (s, 3H), 2.10 (s, 1H), 2.05 – 1.87 (m, 2H). 13C NMR (100 MHz, CDCl 3, ppm): δ 142.8, 141.9, 134.5, 130.5, 128.5, 128.4, 127.2, 126.3, 125.9, 125.2, 69.9, 39.5, 32.3, 18.9。
实施例11。
Figure 587463dest_path_image012
将二级醇(1 mmol)、一级醇(1.2 mmol)、含氮聚合物负载金属钌复合材料(20 mg)、氢氧化钾(0.5 mmol)加入到装有磁力搅拌子15 mL反应管中,加入2 mL甲苯,液氮冷冻-抽气-充氮气-解冻反复进行三次,在130 ℃油浴锅中反应12小时;反应结束后,过滤除去含氮聚合物负载金属钌复合材料,加入水,用乙酸乙酯进行萃取,合并有机相,有机相经无水硫酸钠干燥,并在减压下浓缩。粗产物通过硅胶柱纯化,使用石油醚和乙酸乙酯作为洗脱剂,得到相应的仲醇。
所得产物的核磁数据如下: 1H NMR (400 MHz, CDCl 3, ppm): δ 7.23 (dd, J = 14.1, 7.0 Hz, 3H), 7.16 (t, J = 9.4 Hz, 3H), 6.87 (d, J = 2.0 Hz, 2H), 6.77 (dd, J = 8.1, 1.8 Hz, 1H), 4.57 (dd, J = 7.1, 5.9 Hz, 1H), 3.73 (s, 3H), 2.75 – 2.53 (m, 2H), 2.42 (s, 1H), 2.14 – 1.88 (m, 2H). 13C NMR (150 MHz, CDCl 3, ppm): δ 159.8, 146.4, 141.9, 129.5, 128.5, 128.4, 125.9, 118.3, 113.0, 111.5, 73.7, 55.2, 40.4, 32.1. 19F NMR (377 MHz, CDCl 3, ppm): δ-63.3。
实施例12。
Figure 756407dest_path_image013
将二级醇(1 mmol)、一级醇(1.2 mmol)、含氮聚合物负载金属钌复合材料(20 mg)、氢氧化钾(0.5 mmol)加入到装有磁力搅拌子15 mL反应管中,加入2 mL甲苯,液氮冷冻-抽气-充氮气-解冻反复进行三次,在130 ℃油浴锅中反应12小时;反应结束后,过滤除去含氮聚合物负载金属钌复合材料,加入水,用乙酸乙酯进行萃取,合并有机相,有机相经无水硫酸钠干燥,并在减压下浓缩。粗产物通过硅胶柱纯化,使用石油醚和乙酸乙酯作为洗脱剂,得到相应的仲醇。
所得产物的核磁数据如下: 1H NMR (400 MHz, CDCl 3, ppm): δ 7.29 – 7.20 (m, 2H), 7.19 (d, J = 7.5 Hz, 1H), 7.14 (dd, J = 8.4, 4.0 Hz, 3H), 7.12 – 7.00 (m, 3H), 4.54 (m, 1H), 2.77 – 2.54 (m, 2H), 2.33 (s, 1H), 2.30 (s, 3H), 2.01 (m, 2H). 13C NMR (100 MHz, CDCl 3, ppm): δ 144.6, 141.9, 138.1, 128.5, 128.4, 128.4, 126.7, 125.9, 123.1, 73.8, 40.4, 32.1, 21.5。
实施例13。
Figure 203569dest_path_image014
将二级醇(1 mmol)、一级醇(1.2 mmol)、含氮聚合物负载金属钌复合材料(20 mg)、氢氧化钾(0.5 mmol)加入到装有磁力搅拌子15 mL反应管中,加入2 mL甲苯,液氮冷冻-抽气-充氮气-解冻反复进行三次,在130 ℃油浴锅中反应12小时;反应结束后,过滤除去含氮聚合物负载金属钌复合材料,加入水,用乙酸乙酯进行萃取,合并有机相,有机相经无水硫酸钠干燥,并在减压下浓缩。粗产物通过硅胶柱纯化,使用石油醚和乙酸乙酯作为洗脱剂,得到相应的仲醇。
所得产物的核磁数据如下: 1H NMR (400 MHz, CDCl 3, ppm): δ 7.34 (q, J = 6.2 Hz, 4H), 7.25 (dd, J = 16.2, 9.5 Hz, 3H), 7.11 (d, J = 8.3 Hz, 2H), 4.65 (t, J = 4.7 Hz, 1H), 2.82 – 2.54 (m, 2H), 2.19 – 1.88 (m, 3H). 13C NMR (100 MHz, CDCl 3, ppm): δ 144.6, 140.4, 131.7, 130.0, 128.7, 128.6, 127.9, 126.1, 73.9, 40.5, 31.5。
实施例14。
Figure 658821dest_path_image015
将二级醇(1 mmol)、一级醇(1.2 mmol)、含氮聚合物负载金属钌复合材料(20 mg)、氢氧化钾(0.5 mmol)加入到装有磁力搅拌子15 mL反应管中,加入2 mL甲苯,液氮冷冻-抽气-充氮气-解冻反复进行三次,在130 ℃油浴锅中反应12小时;反应结束后,过滤除去含氮聚合物负载金属钌复合材料,加入水,用乙酸乙酯进行萃取,合并有机相,有机相经无水硫酸钠干燥,并在减压下浓缩。粗产物通过硅胶柱纯化,使用石油醚和乙酸乙酯作为洗脱剂,得到相应的仲醇。
所得产物的核磁数据如下: 1H NMR (400 MHz, CDCl 3, ppm): δ 7.49 (d, J = 8.1 Hz, 2H), 7.31 (s, 1H), 7.28 (dd, J = 8.6, 2.1 Hz, 3H), 7.23 (t, J = 5.8 Hz, 3H), 4.59 (dd, J = 7.7, 5.5 Hz, 1H), 2.83 – 2.56 (m, 2H), 2.48 (s, 1H), 2.17 – 1.85 (m, 2H). 13C NMR (100 MHz, CDCl 3, ppm): δ 146.1, 144.4, 128.8, 128.7, 127.9, 126.0, 125.4, 125.4, 125.3, 125.3, 73.7, 40.1, 31.9。
实施例15。
Figure 824223dest_path_image016
将二级醇(1 mmol)、一级醇(1.2 mmol)、含氮聚合物负载金属钌复合材料(20 mg)、氢氧化钾(0.5 mmol)加入到装有磁力搅拌子15 mL反应管中,加入2 mL甲苯,液氮冷冻-抽气-充氮气-解冻反复进行三次,在130 ℃油浴锅中反应12小时;反应结束后,过滤除去含氮聚合物负载金属钌复合材料,加入水,用乙酸乙酯进行萃取,合并有机相,有机相经无水硫酸钠干燥,并在减压下浓缩。粗产物通过硅胶柱纯化,使用石油醚和乙酸乙酯作为洗脱剂,得到相应的仲醇。
所得产物的核磁数据如下: 1H NMR (400 MHz, CDCl 3, ppm): δ 7.34 (d, J = 2.3 Hz, 4H), 7.31 – 7.25 (m, 1H), 7.10 (dd, J = 8.1, 3.8 Hz, 2H), 6.83 (dd, J = 8.1, 5.8 Hz, 2H), 4.74 – 4.61 (m, 1H), 3.78 (s, 3H), 2.78 – 2.54 (m, 2H), 2.23 – 1.83 (m, 3H). 13C NMR (100 MHz, CDCl 3, ppm): δ 157.9, 144.8, 134.0, 129.5, 128.6, 127.7, 126.1, 114.0, 74.0, 55.4, 40.9, 31.3。
实施例16。
Figure 531279dest_path_image017
将二级醇(1 mmol)、一级醇(1.2 mmol)、含氮聚合物负载金属钌复合材料(20 mg)、氢氧化钾(0.5 mmol)加入到装有磁力搅拌子15 mL反应管中,加入2 mL甲苯,液氮冷冻-抽气-充氮气-解冻反复进行三次,在130 ℃油浴锅中反应12小时;反应结束后,过滤除去含氮聚合物负载金属钌复合材料,加入水,用乙酸乙酯进行萃取,合并有机相,有机相经无水硫酸钠干燥,并在减压下浓缩。粗产物通过硅胶柱纯化,使用石油醚和乙酸乙酯作为洗脱剂,得到相应的仲醇。
所得产物的核磁数据如下: 1H NMR (400 MHz, CDCl 3, ppm): δ 7.33 – 7.25 (m, 6H), 7.25 – 7.19 (m, 1H), 7.09 (d, J = 8.3 Hz, 2H), 4.60 (t, J = 6.5 Hz, 1H), 2.78 – 2.48 (m, 2H), 2.27 (s, 1H), 2.03 (m, 2H), 1.29 (s, 9H). 13C NMR (100 MHz, CDCl 3, ppm): δ 148.7, 144.7, 138.8, 128.5, 128.2, 127.6, 126.1, 125.3, 73.9, 40.5, 34.4, 31.5, 31.5。
实施例17。
Figure 98527dest_path_image018
将二级醇(1 mmol)、一级醇(1.2 mmol)、含氮聚合物负载金属钌复合材料(20 mg)、氢氧化钾(0.5 mmol)加入到装有磁力搅拌子15 mL反应管中,加入2 mL甲苯,液氮冷冻-抽气-充氮气-解冻反复进行三次,在130 ℃油浴锅中反应12小时;反应结束后,过滤除去含氮聚合物负载金属钌复合材料,加入水,用乙酸乙酯进行萃取,合并有机相,有机相经无水硫酸钠干燥,并在减压下浓缩。粗产物通过硅胶柱纯化,使用石油醚和乙酸乙酯作为洗脱剂,得到相应的仲醇。
所得产物的核磁数据如下: 1H NMR (400 MHz, CDCl 3, ppm): δ 7.27 (d, J = 4.4 Hz, 4H), 7.23 – 7.19 (m, 1H), 7.07 (dd, J = 5.9, 3.2 Hz, 4H), 4.60 (dd, J = 7.6, 5.5 Hz, 1H), 2.72 – 2.63 (m, 1H), 2.58 – 2.49 (m, 1H), 2.41 (s, 1H), 2.20 (s, 3H), 2.02 – 1.87 (m, 2H). 13C NMR (100 MHz, CDCl 3, ppm): δ 144.6, 140.1, 136.0, 130.2, 128.8, 128.5, 127.6, 125.99, 125.98, 74.1, 39.2, 29.4, 19.2。
实施例18。
Figure 459101dest_path_image019
将二级醇(1 mmol)、一级醇(1.2 mmol)、含氮聚合物负载金属钌复合材料(20 mg)、氢氧化钾(0.5 mmol)加入到装有磁力搅拌子15 mL反应管中,加入2 mL甲苯,液氮冷冻-抽气-充氮气-解冻反复进行三次,在130 ℃油浴锅中反应12小时;反应结束后,过滤除去含氮聚合物负载金属钌复合材料,加入水,用乙酸乙酯进行萃取,合并有机相,有机相经无水硫酸钠干燥,并在减压下浓缩。粗产物通过硅胶柱纯化,使用石油醚和乙酸乙酯作为洗脱剂,得到相应的仲醇。
所得产物的核磁数据如下: 1H NMR (400 MHz, CDCl 3, ppm): δ 7.28 (dd, J = 9.1, 5.2 Hz, 4H), 7.22 – 7.08 (m, 3H), 6.89 – 6.77 (m, 2H), 4.56 (dd, J = 8.3, 5.0 Hz, 1H), 3.74 (s, 3H), 2.70 (m, 2H), 2.65 (s, 1H), 2.07 – 1.91 (m, 2H). 13C NMR (100 MHz, CDCl 3, ppm): δ 157.4, 144.7, 130.1, 130.1, 128.3, 127.3, 127.2, 126.0, 120.7, 110.4, 73.6, 55.3, 39.3, 26.5。
实施例19。
Figure 111799dest_path_image020
将二级醇(1 mmol)、一级醇(1.2 mmol)、含氮聚合物负载金属钌复合材料(20 mg)、氢氧化钾(0.5 mmol)加入到装有磁力搅拌子15 mL反应管中,加入2 mL甲苯,液氮冷冻-抽气-充氮气-解冻反复进行三次,在130 ℃油浴锅中反应12小时;反应结束后,过滤除去含氮聚合物负载金属钌复合材料,加入水,用乙酸乙酯进行萃取,合并有机相,有机相经无水硫酸钠干燥,并在减压下浓缩。粗产物通过硅胶柱纯化,使用石油醚和乙酸乙酯作为洗脱剂,得到相应的仲醇。
所得产物的核磁数据如下: 1H NMR (400 MHz, CDCl 3, ppm): δ 7.38 – 7.19 (m, 5H), 7.20 – 7.12 (m, 1H), 6.72 (dd, J = 19.4, 7.1 Hz, 3H), 4.65 – 4.52 (m, 1H), 3.72 (s, 3H), 2.78 – 2.50 (m, 2H), 2.35 (s, 1H), 2.16 – 1.89 (m, 2H). 13C NMR (100 MHz, CDCl 3, ppm): δ 159.7, 144.7, 143.5, 129.4, 128.5, 127.60, 126.0, 120.9, 114.3, 111.2, 73.8, 55.1, 40.4, 32.1。
实施例20。
Figure 747180dest_path_image021
将二级醇(1 mmol)、一级醇(1.2 mmol)、含氮聚合物负载金属钌复合材料(20 mg)、氢氧化钾(0.5 mmol)加入到装有磁力搅拌子15 mL反应管中,加入2 mL甲苯,液氮冷冻-抽气-充氮气-解冻反复进行三次,在130 ℃油浴锅中反应12小时;反应结束后,过滤除去含氮聚合物负载金属钌复合材料,加入水,用乙酸乙酯进行萃取,合并有机相,有机相经无水硫酸钠干燥,并在减压下浓缩。粗产物通过硅胶柱纯化,使用石油醚和乙酸乙酯作为洗脱剂,得到相应的仲醇。
所得产物的核磁数据如下: 1H NMR (400 MHz, CDCl 3, ppm): δ 7.28 (s, 4H), 7.24 (d, J = 5.8 Hz, 1H), 7.13 (t, J = 7.7 Hz, 1H), 7.02 – 6.87 (m, 3H), 4.71 – 4.45 (m, 1H), 2.72 – 2.51 (m, 2H), 2.29 (s, 4H), 2.00 (m, 2H). 13C NMR (100 MHz, CDCl 3, ppm): δ 144.7, 141.8, 137.9, 129.3, 128.5, 128.3, 127.6, 126.6, 126.0, 125.5, 73.9, 40.5, 32.0, 21.5。
实施例21 。
Figure 277256dest_path_image022
将二级醇(1 mmol)、一级醇(1.2 mmol)、含氮聚合物负载金属钌复合材料(20 mg)、氢氧化钾(0.5 mmol)加入到装有磁力搅拌子15 mL反应管中,加入2 mL甲苯,液氮冷冻-抽气-充氮气-解冻反复进行三次,在130 ℃油浴锅中反应12小时;反应结束后,过滤除去含氮聚合物负载金属钌复合材料,加入水,用乙酸乙酯进行萃取,合并有机相,有机相经无水硫酸钠干燥,并在减压下浓缩。粗产物通过硅胶柱纯化,使用石油醚和乙酸乙酯作为洗脱剂,得到相应的仲醇。
所得产物的核磁数据如下: 1H NMR (400 MHz, CDCl 3, ppm): δ 7.33 – 7.30 (m, 1H), 7.29 (s, 1H), 7.26 (dd, J = 11.3, 4.8 Hz, 2H), 7.17 – 7.10 (m, 3H), 7.00 (dt, J = 6.5, 1.7 Hz, 1H), 4.57 (t, J = 6.5 Hz, 1H), 2.60 (m, 2H), 2.41 (s, 1H), 2.10 – 1.86 (m, 2H). 13C NMR (100 MHz, CDCl 3, ppm): δ 144.4, 144.0, 134.1, 129.7, 128.6, 128.6, 127.8, 126.7, 126.1, 126.0, 73.7, 40.2, 31.7。
上述实施例的产物对应的分离收率见表2。
表2 实施例产物收率:
Figure 605469dest_path_image023
本发明制备的前驱体是含氮多孔有机聚合物,制备的复合材料中金属钌均匀分布在聚合物基底上,其对于催化二级醇和一级醇的交叉偶联反合成β-烷基化仲醇类化合物具有高效的催化效率。本发明催化剂的使用能够减少金属对产品的污染且有可回收利用性,在功能化的含氮多孔有机聚合物上负载金属的到复合材料,可以在各种反应中表现出色的催化性能。

Claims (10)

  1. 一种含氮多孔有机聚合物复合材料,其特征在于,由吡啶化合物、苯化合物制备含氮多孔有机聚合物,然后与钌盐反应,得到含氮多孔有机聚合物复合材料。
  2. 根据权利要求1所述含氮多孔有机聚合物复合材料,其特征在于,吡啶化合物为2,6-双(苯并咪唑)吡啶;苯化合物为联苯;钌盐为三氯化钌。
  3. 权利要求1所述含氮多孔有机聚合物复合材料的制备方法,其特征在于,包括如下步骤:惰性气体下,由吡啶化合物、苯化合物制备含氮多孔有机聚合物,然后与钌盐反应,得到含氮多孔有机聚合物复合材料。
  4. 根据权利要求3所述含氮多孔有机聚合物复合材料的制备方法,其特征在于,制备含氮多孔有机聚合物在有机溶剂中进行,无机铝盐为催化剂。
  5. 根据权利要求4所述含氮多孔有机聚合物复合材料的制备方法,其特征在于,将2,6-双(苯并咪唑)吡啶,联苯和无机铝盐在有机溶剂中反应15~30小时,然后将得到的沉淀物用水、稀盐酸、有机溶剂洗涤,得到含氮多孔有机聚合物。
  6. 根据权利要求3所述含氮多孔有机聚合物复合材料的制备方法,其特征在于,含氮多孔有机聚合物与钌盐在溶剂中回流反应,得到含氮多孔有机聚合物复合材料。
  7. 含氮多孔有机聚合物在制备权利要求1所述含氮多孔有机聚合物复合材料中的应用,其特征在于,由吡啶化合物、苯化合物制备含氮多孔有机聚合物。
  8. 权利要求1所述含氮多孔有机聚合物复合材料在制备可循环催化剂中的应用。
  9. 权利要求1所述含氮多孔有机聚合物复合材料在催化二级醇和一级醇的交叉偶联反合成β-烷基化仲醇类化合物中的应用。
  10. 根据权利要求9所述的应用,其特征在于,所述二级醇选自1-苯乙醇、1-(4-氯苯基)乙醇、1-(4-溴苯基)乙醇、1-(4-甲基苯基)乙醇、1-(4-甲氧基苯基)乙醇、1-(2-氯苯基)乙醇、1-(2-甲氧基)乙醇、1-(2-甲基苯基)乙醇、1-(3-甲氧基苯基)乙醇、1-(3-甲基苯基)乙醇中的任意一种;所述一级醇选自苯甲醇、4-氯苯甲醇、4-三氟甲基苯甲醇、4-甲氧基苯甲醇、4-叔丁基苯甲醇、2-甲基苯甲醇、2-甲氧基苯甲醇、3-甲氧基苯甲醇、3-甲基苯甲醇、3-氯苯甲醇中的任意一种。
PCT/CN2021/142699 2021-12-29 2021-12-29 一种含氮多孔有机聚合物复合材料及其制备方法与应用 WO2023123126A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/142699 WO2023123126A1 (zh) 2021-12-29 2021-12-29 一种含氮多孔有机聚合物复合材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/142699 WO2023123126A1 (zh) 2021-12-29 2021-12-29 一种含氮多孔有机聚合物复合材料及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2023123126A1 true WO2023123126A1 (zh) 2023-07-06

Family

ID=86996945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142699 WO2023123126A1 (zh) 2021-12-29 2021-12-29 一种含氮多孔有机聚合物复合材料及其制备方法与应用

Country Status (1)

Country Link
WO (1) WO2023123126A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170688A1 (ja) * 2014-05-07 2015-11-12 国立大学法人北陸先端科学技術大学院大学 金属担持多孔性配位高分子触媒
WO2016011231A1 (en) * 2014-07-16 2016-01-21 The Trustees Of The University Of Pennsylvania Silicon-based cross coupling agents and methods of their use
CN109908940A (zh) * 2019-04-02 2019-06-21 大连理工大学 一种氮掺杂多孔碳负载金属的m@cn复合催化材料、制备方法及应用
CN111013624A (zh) * 2019-12-16 2020-04-17 佛山职业技术学院 一种氮掺杂多孔碳包覆金属纳米复合催化剂及其制备方法
CN111250168A (zh) * 2018-11-30 2020-06-09 中国科学院大连化学物理研究所 一种钌基催化剂及其制备方法、应用
CN111848931A (zh) * 2020-08-01 2020-10-30 青岛科技大学 一类含有吡啶基团的多孔有机聚合物的制备方法和应用
CN113751076A (zh) * 2020-06-04 2021-12-07 南京工业大学 双咪唑鎓盐钯负载多孔有机聚合物催化剂及其制法与应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170688A1 (ja) * 2014-05-07 2015-11-12 国立大学法人北陸先端科学技術大学院大学 金属担持多孔性配位高分子触媒
WO2016011231A1 (en) * 2014-07-16 2016-01-21 The Trustees Of The University Of Pennsylvania Silicon-based cross coupling agents and methods of their use
CN111250168A (zh) * 2018-11-30 2020-06-09 中国科学院大连化学物理研究所 一种钌基催化剂及其制备方法、应用
CN109908940A (zh) * 2019-04-02 2019-06-21 大连理工大学 一种氮掺杂多孔碳负载金属的m@cn复合催化材料、制备方法及应用
CN111013624A (zh) * 2019-12-16 2020-04-17 佛山职业技术学院 一种氮掺杂多孔碳包覆金属纳米复合催化剂及其制备方法
CN113751076A (zh) * 2020-06-04 2021-12-07 南京工业大学 双咪唑鎓盐钯负载多孔有机聚合物催化剂及其制法与应用
CN111848931A (zh) * 2020-08-01 2020-10-30 青岛科技大学 一类含有吡啶基团的多孔有机聚合物的制备方法和应用

Similar Documents

Publication Publication Date Title
Liu et al. Visible-light-induced tandem radical addition–cyclization of 2-aryl phenyl isocyanides catalysed by recyclable covalent organic frameworks
CN112778533B (zh) 一种卟啉基多孔有机聚合物及其制备方法和环状碳酸酯的合成方法
EP3906213A1 (en) Reversible liquid organic system for loading and discharging hydrogen based on ethylene glycol
EP1308435A2 (en) Process for producing optically active amino alcohols
Kazemnejadi et al. Ni/Pd-catalyzed Suzuki–Miyaura cross-coupling of alcohols and aldehydes and C–N cross-coupling of nitro and amines via domino redox reactions: base-free, hydride acceptor-free
EP1386663B1 (en) Microencapsulated metal catalyst
CN112264105B (zh) 一种用于取代酮和双酚f合成的负载型钯催化剂
WO2023123126A1 (zh) 一种含氮多孔有机聚合物复合材料及其制备方法与应用
CN114292385B (zh) 一种含氮多孔有机聚合物复合材料及其制备方法与应用
Nandeshwar et al. A Sustainable Approach for Graphene Oxide‐supported Metal N‐Heterocyclic Carbenes Catalysts
JP4744091B2 (ja) 光学活性ニトロ化合物およびシアノ化合物の製造方法
CN114456203A (zh) 一种壳聚糖席夫碱铜功能材料催化制备β-硼基酮的方法
KR102290946B1 (ko) 아민기 및 설폰기가 도입된 산-염기 이중 관능성 zif의 제조 및 이의 용도
EP1439159B1 (en) Process for producing optically active compound
JP2003522744A (ja) 多環式芳香族化合物の製造方法
CN113117724A (zh) 一种可回收负载型Au52Cu72(SR)55团簇催化剂及其应用
CN113351253A (zh) 具有酸碱协同催化功能的mof@cof核壳型复合材料的制备方法
CN114534791B (zh) 一种多功能非均相催化剂及其制备方法和应用
CN105149000A (zh) 一种负载型环状金属铱催化剂及其制备方法和在二氢吲哚类化合物脱氢反应中的应用
CN111804332B (zh) 一类树脂材料负载的聚醚功能化离子液体催化剂在烯烃氢甲酰化反应中的应用
CN115583874B (zh) 金属铑催化内炔的不对称串联反应的方法
CN110270378B (zh) 三嗪基连接杯[4]芳烃的多孔聚合物固载钯催化剂CaPOP3@Pd及制备方法和应用
CN115490576B (zh) 一种反式-2-烯烃的合成方法
CN115193479B (zh) 一种pbs微球负载金属铱催化剂及制备方法与应用
CN113663733B (zh) 石墨烯共价负载联吡啶金属络合物催化剂的制备及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969494

Country of ref document: EP

Kind code of ref document: A1