WO2015170209A1 - Substrate separation apparatus for stacked body - Google Patents

Substrate separation apparatus for stacked body Download PDF

Info

Publication number
WO2015170209A1
WO2015170209A1 PCT/IB2015/052893 IB2015052893W WO2015170209A1 WO 2015170209 A1 WO2015170209 A1 WO 2015170209A1 IB 2015052893 W IB2015052893 W IB 2015052893W WO 2015170209 A1 WO2015170209 A1 WO 2015170209A1
Authority
WO
WIPO (PCT)
Prior art keywords
suction
substrate
separation apparatus
separation
pad
Prior art date
Application number
PCT/IB2015/052893
Other languages
French (fr)
Inventor
Masakatsu Ohno
Satoru IDOJIRI
Kanpei Kikuchi
Yoshiharu Hirakata
Kohei Yokoyama
Original Assignee
Semiconductor Energy Laboratory Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co., Ltd. filed Critical Semiconductor Energy Laboratory Co., Ltd.
Priority to CN201580022803.XA priority Critical patent/CN106256013B/en
Priority to KR1020167028299A priority patent/KR102407609B1/en
Publication of WO2015170209A1 publication Critical patent/WO2015170209A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67712Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations the substrate being handled substantially vertically
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/461Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/463Mechanical treatment, e.g. grinding, ultrasonic treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B43/00Operations specially adapted for layered products and not otherwise provided for, e.g. repairing; Apparatus therefor
    • B32B43/006Delaminating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/11Methods of delaminating, per se; i.e., separating at bonding face
    • Y10T156/1126Using direct fluid current against work during delaminating
    • Y10T156/1132Using vacuum directly against work during delaminating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/11Methods of delaminating, per se; i.e., separating at bonding face
    • Y10T156/1168Gripping and pulling work apart during delaminating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/11Methods of delaminating, per se; i.e., separating at bonding face
    • Y10T156/1168Gripping and pulling work apart during delaminating
    • Y10T156/1179Gripping and pulling work apart during delaminating with poking during delaminating [e.g., jabbing, etc.]
    • Y10T156/1184Piercing layer during delaminating [e.g., cutting, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/19Delaminating means
    • Y10T156/1928Differential fluid pressure delaminating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/19Delaminating means
    • Y10T156/1928Differential fluid pressure delaminating means
    • Y10T156/1944Vacuum delaminating means [e.g., vacuum chamber, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/19Delaminating means
    • Y10T156/1961Severing delaminating means [e.g., chisel, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/19Delaminating means
    • Y10T156/1961Severing delaminating means [e.g., chisel, etc.]
    • Y10T156/1967Cutting delaminating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/19Delaminating means
    • Y10T156/1978Delaminating bending means

Definitions

  • the present invention relates to a substrate separation apparatus for a stacked body. More specifically, the present invention relates to a substrate separation apparatus for a stacked body, to separate one substrate from a stacked body where an element layer including a light-emitting element, a power generation element, a power storage element, a display element, a memory element, a semiconductor element, or the like is formed between a pair of substrates.
  • EL electroluminescence
  • a layer containing a light-emitting substance is sandwiched between a pair of electrodes. Voltage is applied to the light-emitting element to obtain light emission from the light-emitting substance.
  • a substrate having flexibility also referred to as a flexible substrate
  • a light-emitting device with the light-emitting element has been considered to make the light-emitting device flexible.
  • a technology in which a separation layer is formed over a substrate such as a glass substrate or a quartz substrate, a semiconductor element such as a thin film transistor is formed over the separation layer, and then, the semiconductor element is transferred to another substrate (e.g., a flexible substrate) has been developed (see Patent Document 1).
  • the upper-limit temperature of a manufacturing process needs to be set relatively low because a material for the flexible substrate has low heat resistance. For this reason, the quality of the components of the light-emitting device might be reduced. Furthermore, in the case where alignment is required in the manufacturing process, expansion and contraction of the flexible substrate due to heating in the manufacturing process might reduce the yield.
  • the steps be performed on a rigid substrate such as a glass substrate, and that the components of the light-emitting device or the like be transferred to the flexible substrate in the final stage of the manufacturing process.
  • the following manufacturing process can be used: thin components (including, for example, a light-emitting element) formed over two different rigid substrates are attached to each other, one of the rigid substrates is separated to be replaced by a flexible substrate, and the other of the rigid substrates is also separated to be replaced by a flexible substrate.
  • the first separation step requires a technique with great difficulty for separating one rigid substrate from the pair of rigid substrates attached to each other with an extremely narrow gap.
  • Patent Document 1 Japanese Published Patent Application No. 2003-174153
  • Patent Document 2 Japanese Published Patent Application No. 2010-50313
  • An object of one embodiment of the present invention is to provide a substrate separation apparatus for a stacked body, which enables one substrate to be securely separated from a stacked body including an element layer between a pair of substrates.
  • Invention 1 is a substrate separation apparatus for a stacked body to separate a second substrate from a stacked body including an element layer between a first substrate and the second substrate, which includes a fixing jig for fixing the first substrate, and a first suction unit and a second suction unit for sucking the second substrate.
  • the first suction unit includes a plurality of first suction portions provided along the outer periphery of the second substrate.
  • the first suction portions each include a plurality of first suction pads capable of touching and being attached by suction to the top surface of the second substrate.
  • the second suction unit includes a second suction portion provided near the outer periphery of the second substrate.
  • the second suction portion includes a second suction pad capable of touching and being attached by suction to the top surface of the second substrate.
  • the second suction portion is configured to have higher suction power than that of the first suction portion.
  • Invention 2 is the substrate separation apparatus for a stacked body according to Invention 1, further including a separation starting jig for separating part of the second substrate from the first substrate such that the part serves as a separation starting position for separating the second substrate.
  • the second suction portion is provided closer to the separation starting position than the first suction portions are.
  • Invention 3 is the substrate separation apparatus for a stacked body according to Invention 1 or 2, in which the plurality of first suction portions are arranged both on the center of the second substrate and along the outer periphery of the second substrate.
  • Invention 4 is the substrate separation apparatus for a stacked body according to any one of Inventions 1 to 3, further including a liquid supplying unit for supplying a liquid to the separation starting position.
  • Invention 5 is the substrate separation apparatus for a stacked body according to any one of Inventions 1 to 4, further including a control mechanism capable of first moving the second suction unit in a direction of separating the second substrate and then moving the first suction units in the direction of separating the second substrate.
  • Invention 6 is the substrate separation apparatus for a stacked body according to any one of Inventions 1 to 5, in which a suction area of the second suction portion is larger than a suction area of the first suction portion.
  • each of the plurality of first suction portions includes the plurality of first suction pads, and the first suction pads elastically deform in accordance with the warp of the separated second substrate. Therefore, detachment of the first suction pads can be prevented and the substrate can be securely separated.
  • FIG. 1 is a general perspective view showing a substrate separation apparatus for a stacked body of Embodiment 1 of the present invention
  • FIG. 2 is a general perspective view showing a state where the stacked body in FIG. 1 is fixed on a fixing stage;
  • FIG. 3 A is a front view of a first suction portion in FIG. 1 part of which is cut off, and FIG. 3B is a bottom view of FIG. 3 A;
  • FIG. 4A is a front view of a second suction portion in FIG. 1 part of which is cut off, and FIG. 4B is a bottom view of FIG. 4 A;
  • FIG. 5 is a general perspective view showing a separation process of the substrate separation apparatus for a stacked body of Embodiment 1 of the present invention
  • FIG. 6 is a general perspective view showing a process after the separation process shown in FIG. 5;
  • FIG. 7 is a general perspective view showing a process after the separation process shown in FIG. 6;
  • FIG. 8 is a general perspective view showing a modification example of the separation process shown in FIG. 7;
  • FIG. 9 is an enlarged longitudinal sectional view showing a separation process of the substrate separation apparatus for a stacked body of Embodiment 1 of the present invention.
  • FIG. 10 is an enlarged longitudinal sectional view showing a modification example of the separation process shown in FIG. 9.
  • FIG. 11 shows a substrate separation apparatus for a stacked body of Embodiment 2 of the present invention.
  • FIG. 1 is a general perspective view showing a substrate separation apparatus for a stacked body of Embodiment 1 of the present invention.
  • a substrate separation apparatus 1 of Embodiment 1 includes a fixing stage (a fixing jig) 3 for fixing a stacked body 2 thereto, first suction units 4, a second suction unit 5, and a wedge-shaped jig (a separation starting jig) 6. Note that details such as a power mechanism with which each component is provided are not shown in FIG. 1.
  • the stacked body 2 corresponds to a component made up of a first substrate 21, a second substrate 22, and a thin element layer 23 (see FIGS. 6, 7, and 9) sandwiched therebetween.
  • the first substrate 21 and the second substrate 22 can be rigid substrates such as glass substrates, for example, although not particularly limited thereto.
  • the element layer 23 can be a stacked body including a functional element such as a semiconductor element, a display element, or a light-emitting element, and the like, for example.
  • a separation layer that makes a separation process easier is preferably formed between the element layer 23 and the second substrate 22 or the first substrate 21. When the separation process is performed, the separation layer may remain attached to the first substrate 21, to the second substrate 22, or to the element layer 23.
  • part of the separation layer or element layer 23 preferably includes a region to be a separation starting point.
  • the fixing stage 3 that fixes the stacked body 2 thereto for example, a vacuum suction stage, an electrostatic attraction stage, or the like can be used.
  • the stacked body 2 may be fixed to the stage with a screwing tool, a pneumatic cylinder, or the like.
  • the wedge-shaped jig (the separation starting jig) 6 an edged tool can be used. The wedge-shaped jig 6 is inserted into an extremely narrow gap between the first substrate 21 and the second substrate 22 that are attached to each other to push apart the two substrates, whereby the separation starting position for separating the second substrate 22 is set.
  • the thickness of the pointed tip of the wedge-shaped jig 6 be smaller than the gap and the thickness of a plate-like portion of the wedge-shaped jig 6 be larger than the gap.
  • a sensor 61 that senses the position where the wedge-shaped jig 6 is inserted may be provided.
  • a nozzle (a water supplying unit) 62 to which a liquid is supplied be provided near a position of the stacked body 2 where the wedge-shaped jig 6 is inserted.
  • the liquid water (preferably pure water), an organic solvent, or the like can be used.
  • a neutral, alkaline, or acidic aqueous solution, an aqueous solution in which salt is dissolved, or the like may also be used.
  • a liquid containing water is used. The presence of the liquid in the portion where the separation proceeds can decrease the power required for the separation. Moreover, electrostatic discharge damage to an electronic device or the like can be prevented.
  • the first suction units 4 each include a plurality of first suction portions 41.
  • the second suction unit 5 includes a second suction portion 51.
  • the second suction portion 51 is provided at a corner 221 near the outer periphery of the second substrate 22 that is rectangular (i.e., near the separation starting position).
  • vertical movement mechanisms 71 having the same structure and movable portions 72 having the same structure are formed, whereby the vertical movement of the first suction portions 41 and the second suction portion 51 can be individually controlled.
  • the number of the first suction portions 41 is 11 is shown here, one embodiment of the present invention is not limited thereto.
  • each of the first suction portions 41 includes an attachment block 42 fixed to the bottom of the movable portion 72 under the vertical movement mechanism 71, and a plurality of first suction pads 43 are attached to the under surface of the attachment block 42.
  • a mechanism including a universal joint or a hinge may be used as the movable portion 72.
  • the movable portion 72 may be formed using an elastic material such as rubber or a spring.
  • An inlet 44 leading to a vacuum pump or the like is formed on the top surface of the attachment block 42, and the inlet 44 is connected with the first suction pads 43.
  • the four first suction pads 43 are brought into contact with the top surface of the outer periphery of the second substrate 22, and concurrently vacuum-suck the second substrate 22.
  • one suction portion 41 includes four first suction pads 43 is shown here, one embodiment of the present invention is not limited thereto.
  • the second suction portion 51 includes an attachment block 52 fixed to the bottom of the movable portion 72 under the vertical movement mechanism 71, and a second suction pad 53, which is made of rubber and has a cylindrical shape whose under surface (suction area) has an elliptical shape, is attached to the under surface of the attachment block 52.
  • An inlet 54 leading to a vacuum pump or the like is formed on the top surface of the attachment block 52, and the inlet 54 is connected with the second suction pad 53.
  • the second suction pad 53 is brought into contact with the top surface near the corner 221 of the second substrate 22, and vacuum-sucks the second substrate 22.
  • the suction area of the second suction pad 53 is larger than the total suction area of the four first suction pads 43. Therefore, the suction power of the second suction portion 51 is higher than the suction power of the first suction portion 41.
  • the suction area of the second suction portion 51 is made large, and the suction power of the second suction portion 51 is higher than that of the first suction portion 41.
  • the second suction portion 51 includes one suction pad in this example, a plurality of suction pads may be included to increase the suction power.
  • the degree of vacuum of the second suction portion 51 may be set higher than that of the first suction portion 41 such that the suction power of the second suction portion 51 is higher than that of the first suction portion 41.
  • the first substrate 21 is fixed to the fixing stage 3, and all of the first suction pads 43 of the 11 first suction portions 41 and the one second suction pad 53 of the second suction portion 51 are attached to the top surface of the second substrate 22 by suction.
  • the wedge-shaped jig 6 is inserted into the gap between the first substrate 21 and the second substrate 22.
  • the thickness of the element layer 23 sandwiched between the first substrate 21 and the second substrate 22 is extremely small, and the gap between the first substrate 21 and the second substrate 22 is extremely narrow. Assuming that the element layer 23 is a light-emitting element or a stacked body including the light-emitting element, the gap is approximately 1 ⁇ to 15 ⁇ .
  • the position of the gap be determined by the sensor 61 (e.g., an optical sensor, a displacement sensor, or a camera) shown in FIG. 1, and then the wedge-shaped jig 6 be inserted into the position.
  • the sensor 61 e.g., an optical sensor, a displacement sensor, or a camera
  • the wedge-shaped jig 6 is inserted into the gap between the first substrate 21 and the second substrate 22 at the corner 221 of the second substrate 22 to push the attached first substrate 21 and second substrate 22 apart. Then, separation starts to proceed from the region to be the separation starting point that is formed in advance. At this time, water is preferably supplied from the nozzle 62 to the portion where the separation proceeds, as described above.
  • the separation process is shown in FIG. 5, FIG. 6, FIG. 7, and FIG. 9. Note that some of the components shown in FIG. 2 are omitted in FIG. 5, FIG. 6, and FIG. 7 for simplicity.
  • arrows put on the first suction portions 41 and the second suction portion 51 schematically show the amount of upward movement of the first suction pads 43 and the second suction pad 53 or the amount of suction power to move the first suction pads 43 and the second suction pad 53 upward.
  • the second suction pad 53 of the second suction portion 51 which is the closest to the corner 221, slowly moves upward. Then, in order that the separation proceeds in a separation direction 81 indicated by an arrow in FIG. 5, the first suction pads 43 of first suction portions 41a, 41b, and 41c sequentially move upward such that one side of the second substrate 22 separates from the element layer.
  • FIG. 8 is a general perspective view showing a modification example of the separation process in FIG. 7. As shown in FIG. 7, as shown in FIG.
  • the first suction pads 43 of the first suction portions 41k, 41j, 41i, and 41h sequentially move upward to let the separation proceed in a separation direction 84 indicated by an arrow such that the separation ends at the corner where the first suction portion 41h is provided. That is, the separation proceeds such that the separation ends at a corner of the second substrate 22 rather than on a side of the second substrate 22.
  • FIG. 9 is an enlarged longitudinal sectional view showing the separation process of the substrate separation apparatus 1 of Embodiment 1.
  • the first suction portion 41 includes the plurality of first suction pads 43 each of which has a small diameter.
  • each of the plurality of first suction pads 43 made of rubber elastically deforms in accordance with the warp of the second substrate 22. Therefore, the first suction pads 43 can be prevented from being detached from the second substrate 22, and the substrate 22 can be securely separated from the element layer.
  • FIG. 9 shows a case where the separation occurs between the second substrate 22 and the element layer 23.
  • FIG. 10 is a longitudinal sectional view showing a modification example of the separation process in FIG. 9. As shown in FIG. 10, the separation may occur between the first substrate 21 and the element layer 23. That case is preferable in that the second substrate 22 can be transferred with the element layer 23 thereon facing downward.
  • FIG. 11 shows a substrate separation apparatus for a stacked body of Embodiment 2 of the present invention.
  • a substrate separation apparatus 11 of Embodiment 2 includes, in addition to the components included in the above-described substrate separation apparatus 1 of Embodiment 1 (see FIG. 5), four first suction portions 411, 412, 413, and 414 arranged on the center of the second substrate 22. That is, the first suction portions 41 and the second suction portion 51 are arranged only along the outer periphery of the second substrate 22 in the above-described substrate separation apparatus 1 of Embodiment 1. In contrast, the four first suction portions 411, 412, 413, and 414 are additionally arranged on the center of the second substrate 22 in the substrate separation apparatus 11 of Embodiment 2.
  • the first suction portions can be arranged over the whole area of the second substrate 22.
  • the angle formed between the first substrate 21 and the second substrate 22 at the time of separation or the pull strength to move the first suction portions upward can be more precisely controlled.
  • cut-off of the separated portion and detachment of the first suction pads 43 can be prevented, and the separation process of a stacked body can be performed with a high yield.
  • the first suction portions 41 are each configured such that the plurality of first suction pads 43 move concurrently with the use of the one vertical movement mechanism 71, for example.
  • the plurality of first suction pads 43 may move individually with the use of individual vertical movement mechanisms 71.
  • Such a structure is preferable because the angle formed between the first substrate 21 and the second substrate 22 at the time of separation or the pull strength to move the first suction portions upward can be more precisely controlled.
  • air pressure in suction circuits for the first suction pads 43 and the second suction pad 53 may be constantly sensed such that a separation operation can be stopped when there is an abnormality in the air pressure. With such a structure, cut-off of the separated portion and detachment of the first suction pads 43 or the second suction pad 53 can be prevented, and the separation process of a stacked body can be performed with a high yield.
  • 1 and 11 substrate separation apparatus
  • 2 stacked body
  • 21 first substrate
  • 22 second substrate
  • 221 corner
  • 222 diagonally opposed corner position
  • 23 element layer
  • 3 fixing stage (fixing jig)
  • 4 first suction unit
  • 41 first suction portion
  • 41a, 41b, 41c, 41d, 41e, and 41f first suction portion
  • 41g, 41h, 41i, 41j, and 41k first suction portion
  • 411, 412, 413, and 414 first suction portion
  • 42 attachment block
  • 43 first suction pad
  • 44 inlet
  • 5 second suction unit
  • 51 second suction portion
  • 52 attachment block
  • 53 second suction pad
  • 54 inlet
  • 6 wedge-shaped jig (separation starting jig)
  • 61 sensor
  • 62 nozzle (water supplying unit)
  • 71 vertical movement mechanism
  • 72 movable portion
  • 81, 82, 83, and 84 separation

Abstract

A wedge-shaped jig (6) is inserted into a gap between a first substrate (21) and a second substrate (22) at a corner (221) of the second substrate (22) and separation of the attached first substrate (21) and second substrate (22) starts to proceed; then, a second suction pad (53) of a second suction portion (51), which is the closest to the corner (221), moves upward. Then, first suction pads (43) of first suction portions (41a), (41b), and (41c) sequentially move upward such that one side of the second substrate (22) separates from the stacked body. Although the second substrate (22) warps as the separation of the second substrate (22) proceeds, each of the plurality of first suction pads (43) elastically deforms. Therefore, the first suction pads (43) can be prevented from being detached from the second substrate (22), and the substrate (22) can be securely separated from the stacked body.

Description

DESCRIPTION
SUBSTRATE SEPARATION APPARATUS FOR STACKED BODY TECHNICAL FIELD
[0001]
The present invention relates to a substrate separation apparatus for a stacked body. More specifically, the present invention relates to a substrate separation apparatus for a stacked body, to separate one substrate from a stacked body where an element layer including a light-emitting element, a power generation element, a power storage element, a display element, a memory element, a semiconductor element, or the like is formed between a pair of substrates.
BACKGROUND ART
[0002]
In recent years, research and development of light-emitting elements utilizing electroluminescence (EL) have been actively carried out. As a basic structure of the light-emitting element, a layer containing a light-emitting substance is sandwiched between a pair of electrodes. Voltage is applied to the light-emitting element to obtain light emission from the light-emitting substance. Use of a substrate having flexibility (also referred to as a flexible substrate) for a light-emitting device with the light-emitting element has been considered to make the light-emitting device flexible. As a method for manufacturing a light-emitting device using a flexible substrate, a technology in which a separation layer is formed over a substrate such as a glass substrate or a quartz substrate, a semiconductor element such as a thin film transistor is formed over the separation layer, and then, the semiconductor element is transferred to another substrate (e.g., a flexible substrate) has been developed (see Patent Document 1).
[0003]
When components of a light-emitting device or the like are formed directly on a flexible substrate, the upper-limit temperature of a manufacturing process needs to be set relatively low because a material for the flexible substrate has low heat resistance. For this reason, the quality of the components of the light-emitting device might be reduced. Furthermore, in the case where alignment is required in the manufacturing process, expansion and contraction of the flexible substrate due to heating in the manufacturing process might reduce the yield. Accordingly, to reasonably perform various heating steps, alignment steps, and the like in a manufacturing process of a light-emitting device or the like using a flexible substrate, it is preferable that the steps be performed on a rigid substrate such as a glass substrate, and that the components of the light-emitting device or the like be transferred to the flexible substrate in the final stage of the manufacturing process.
[0004]
In addition, depending on the kinds of light-emitting device or the like using a flexible substrate, the following manufacturing process can be used: thin components (including, for example, a light-emitting element) formed over two different rigid substrates are attached to each other, one of the rigid substrates is separated to be replaced by a flexible substrate, and the other of the rigid substrates is also separated to be replaced by a flexible substrate. In this process, the first separation step requires a technique with great difficulty for separating one rigid substrate from the pair of rigid substrates attached to each other with an extremely narrow gap. In order for this separation to be performed, a method in which a cut is formed in the separation layer with a blade, separation is induced by blow of a gas from the cut, and a rigid substrate is drawn up by suction pads such that the separation extends to the whole area of the separation layer has also been proposed (see Patent Document 2). However, in the method of pulling the substrate apart by the suction pads, force required for pulling apart is not necessarily uniform and varies as the separation proceeds. Nonetheless, with the method disclosed in Patent Document 2, it is impossible to apply delicate, adjusted force to a glass substrate to be separated.
[Reference]
[Patent Document]
[0005]
[Patent Document 1] Japanese Published Patent Application No. 2003-174153
[Patent Document 2] Japanese Published Patent Application No. 2010-50313
DISCLOSURE OF INVENTION
[0006]
An object of one embodiment of the present invention is to provide a substrate separation apparatus for a stacked body, which enables one substrate to be securely separated from a stacked body including an element layer between a pair of substrates.
[0007]
The object is achieved by the following means. That is, Invention 1 is a substrate separation apparatus for a stacked body to separate a second substrate from a stacked body including an element layer between a first substrate and the second substrate, which includes a fixing jig for fixing the first substrate, and a first suction unit and a second suction unit for sucking the second substrate. The first suction unit includes a plurality of first suction portions provided along the outer periphery of the second substrate. The first suction portions each include a plurality of first suction pads capable of touching and being attached by suction to the top surface of the second substrate. The second suction unit includes a second suction portion provided near the outer periphery of the second substrate. The second suction portion includes a second suction pad capable of touching and being attached by suction to the top surface of the second substrate. The second suction portion is configured to have higher suction power than that of the first suction portion.
[0008]
Invention 2 is the substrate separation apparatus for a stacked body according to Invention 1, further including a separation starting jig for separating part of the second substrate from the first substrate such that the part serves as a separation starting position for separating the second substrate. The second suction portion is provided closer to the separation starting position than the first suction portions are. Invention 3 is the substrate separation apparatus for a stacked body according to Invention 1 or 2, in which the plurality of first suction portions are arranged both on the center of the second substrate and along the outer periphery of the second substrate. Invention 4 is the substrate separation apparatus for a stacked body according to any one of Inventions 1 to 3, further including a liquid supplying unit for supplying a liquid to the separation starting position.
[0009]
Invention 5 is the substrate separation apparatus for a stacked body according to any one of Inventions 1 to 4, further including a control mechanism capable of first moving the second suction unit in a direction of separating the second substrate and then moving the first suction units in the direction of separating the second substrate.
[0010]
Invention 6 is the substrate separation apparatus for a stacked body according to any one of Inventions 1 to 5, in which a suction area of the second suction portion is larger than a suction area of the first suction portion.
[0011]
In the substrate separation apparatus for a stacked body of the inventions, each of the plurality of first suction portions includes the plurality of first suction pads, and the first suction pads elastically deform in accordance with the warp of the separated second substrate. Therefore, detachment of the first suction pads can be prevented and the substrate can be securely separated.
BRIEF DESCRIPTION OF DRAWINGS
[0012] In the accompanying drawings:
FIG. 1 is a general perspective view showing a substrate separation apparatus for a stacked body of Embodiment 1 of the present invention;
FIG. 2 is a general perspective view showing a state where the stacked body in FIG. 1 is fixed on a fixing stage;
FIG. 3 A is a front view of a first suction portion in FIG. 1 part of which is cut off, and FIG. 3B is a bottom view of FIG. 3 A;
FIG. 4A is a front view of a second suction portion in FIG. 1 part of which is cut off, and FIG. 4B is a bottom view of FIG. 4 A;
FIG. 5 is a general perspective view showing a separation process of the substrate separation apparatus for a stacked body of Embodiment 1 of the present invention;
FIG. 6 is a general perspective view showing a process after the separation process shown in FIG. 5;
FIG. 7 is a general perspective view showing a process after the separation process shown in FIG. 6;
FIG. 8 is a general perspective view showing a modification example of the separation process shown in FIG. 7;
FIG. 9 is an enlarged longitudinal sectional view showing a separation process of the substrate separation apparatus for a stacked body of Embodiment 1 of the present invention;
FIG. 10 is an enlarged longitudinal sectional view showing a modification example of the separation process shown in FIG. 9; and
FIG. 11 shows a substrate separation apparatus for a stacked body of Embodiment 2 of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
[0013]
(Embodiment 1)
Embodiment 1 of the present invention will be hereinafter described based on the accompanying drawings. FIG. 1 is a general perspective view showing a substrate separation apparatus for a stacked body of Embodiment 1 of the present invention. A substrate separation apparatus 1 of Embodiment 1 includes a fixing stage (a fixing jig) 3 for fixing a stacked body 2 thereto, first suction units 4, a second suction unit 5, and a wedge-shaped jig (a separation starting jig) 6. Note that details such as a power mechanism with which each component is provided are not shown in FIG. 1.
[0014] The stacked body 2 corresponds to a component made up of a first substrate 21, a second substrate 22, and a thin element layer 23 (see FIGS. 6, 7, and 9) sandwiched therebetween. The first substrate 21 and the second substrate 22 can be rigid substrates such as glass substrates, for example, although not particularly limited thereto. The element layer 23 can be a stacked body including a functional element such as a semiconductor element, a display element, or a light-emitting element, and the like, for example. A separation layer that makes a separation process easier is preferably formed between the element layer 23 and the second substrate 22 or the first substrate 21. When the separation process is performed, the separation layer may remain attached to the first substrate 21, to the second substrate 22, or to the element layer 23. Furthermore, part of the separation layer or element layer 23 preferably includes a region to be a separation starting point.
[0015]
As the fixing stage 3 that fixes the stacked body 2 thereto, for example, a vacuum suction stage, an electrostatic attraction stage, or the like can be used. Alternatively, the stacked body 2 may be fixed to the stage with a screwing tool, a pneumatic cylinder, or the like. As the wedge-shaped jig (the separation starting jig) 6, an edged tool can be used. The wedge-shaped jig 6 is inserted into an extremely narrow gap between the first substrate 21 and the second substrate 22 that are attached to each other to push apart the two substrates, whereby the separation starting position for separating the second substrate 22 is set. For this reason, it is preferable that the thickness of the pointed tip of the wedge-shaped jig 6 be smaller than the gap and the thickness of a plate-like portion of the wedge-shaped jig 6 be larger than the gap. In addition, a sensor 61 that senses the position where the wedge-shaped jig 6 is inserted may be provided.
[0016]
It is preferable that a nozzle (a water supplying unit) 62 to which a liquid is supplied be provided near a position of the stacked body 2 where the wedge-shaped jig 6 is inserted. As the liquid, water (preferably pure water), an organic solvent, or the like can be used. A neutral, alkaline, or acidic aqueous solution, an aqueous solution in which salt is dissolved, or the like may also be used. Preferably, a liquid containing water is used. The presence of the liquid in the portion where the separation proceeds can decrease the power required for the separation. Moreover, electrostatic discharge damage to an electronic device or the like can be prevented.
[0017]
The first suction units 4 each include a plurality of first suction portions 41. Along the outer periphery of the second substrate 22, which is rectangular in shape, 11 first suction portions 41 are arranged to form a rectangle. The second suction unit 5 includes a second suction portion 51. The second suction portion 51 is provided at a corner 221 near the outer periphery of the second substrate 22 that is rectangular (i.e., near the separation starting position). In the upper parts of the first suction portions 41 and the second suction portion 51, vertical movement mechanisms 71 having the same structure and movable portions 72 having the same structure are formed, whereby the vertical movement of the first suction portions 41 and the second suction portion 51 can be individually controlled. Although an example in which the number of the first suction portions 41 is 11 is shown here, one embodiment of the present invention is not limited thereto.
[0018]
As shown in FIGS. 3A and 3B, each of the first suction portions 41 includes an attachment block 42 fixed to the bottom of the movable portion 72 under the vertical movement mechanism 71, and a plurality of first suction pads 43 are attached to the under surface of the attachment block 42. As the movable portion 72, a mechanism including a universal joint or a hinge may be used. Furthermore, the movable portion 72 may be formed using an elastic material such as rubber or a spring. An inlet 44 leading to a vacuum pump or the like is formed on the top surface of the attachment block 42, and the inlet 44 is connected with the first suction pads 43. The four first suction pads 43, each of which is made of rubber and has a cylindrical shape whose under surface (suction area) is circular, are brought into contact with the top surface of the outer periphery of the second substrate 22, and concurrently vacuum-suck the second substrate 22. Although an example in which one suction portion 41 includes four first suction pads 43 is shown here, one embodiment of the present invention is not limited thereto.
[0019]
As shown in FIGS. 4A and 4B, the second suction portion 51 includes an attachment block 52 fixed to the bottom of the movable portion 72 under the vertical movement mechanism 71, and a second suction pad 53, which is made of rubber and has a cylindrical shape whose under surface (suction area) has an elliptical shape, is attached to the under surface of the attachment block 52. An inlet 54 leading to a vacuum pump or the like is formed on the top surface of the attachment block 52, and the inlet 54 is connected with the second suction pad 53. The second suction pad 53 is brought into contact with the top surface near the corner 221 of the second substrate 22, and vacuum-sucks the second substrate 22. The suction area of the second suction pad 53 is larger than the total suction area of the four first suction pads 43. Therefore, the suction power of the second suction portion 51 is higher than the suction power of the first suction portion 41.
[0020]
Specifically, at the beginning of the separation of the second substrate 22, high suction power to lift the second substrate 22 is required at the corner 221 near the separation starting position. Accordingly, the suction area of the second suction portion 51 is made large, and the suction power of the second suction portion 51 is higher than that of the first suction portion 41. Although the second suction portion 51 includes one suction pad in this example, a plurality of suction pads may be included to increase the suction power. Furthermore, although an example in which the suction area of the second suction pad 53 is larger than the total suction area of the four first suction pads 43 is shown here, one embodiment of the present invention is not limited thereto. For example, the degree of vacuum of the second suction portion 51 may be set higher than that of the first suction portion 41 such that the suction power of the second suction portion 51 is higher than that of the first suction portion 41.
[0021]
As shown in FIG. 2, the first substrate 21 is fixed to the fixing stage 3, and all of the first suction pads 43 of the 11 first suction portions 41 and the one second suction pad 53 of the second suction portion 51 are attached to the top surface of the second substrate 22 by suction. Then, the wedge-shaped jig 6 is inserted into the gap between the first substrate 21 and the second substrate 22. The thickness of the element layer 23 sandwiched between the first substrate 21 and the second substrate 22 is extremely small, and the gap between the first substrate 21 and the second substrate 22 is extremely narrow. Assuming that the element layer 23 is a light-emitting element or a stacked body including the light-emitting element, the gap is approximately 1 μπι to 15 μπι. Thus, it is very difficult to fix the position of the wedge-shaped jig 6 and insert the wedge-shaped jig 6 into the gap. Therefore, it is preferable that the position of the gap be determined by the sensor 61 (e.g., an optical sensor, a displacement sensor, or a camera) shown in FIG. 1, and then the wedge-shaped jig 6 be inserted into the position.
[0022]
As shown in FIG. 2, the wedge-shaped jig 6 is inserted into the gap between the first substrate 21 and the second substrate 22 at the corner 221 of the second substrate 22 to push the attached first substrate 21 and second substrate 22 apart. Then, separation starts to proceed from the region to be the separation starting point that is formed in advance. At this time, water is preferably supplied from the nozzle 62 to the portion where the separation proceeds, as described above. The separation process is shown in FIG. 5, FIG. 6, FIG. 7, and FIG. 9. Note that some of the components shown in FIG. 2 are omitted in FIG. 5, FIG. 6, and FIG. 7 for simplicity. Furthermore, arrows put on the first suction portions 41 and the second suction portion 51 schematically show the amount of upward movement of the first suction pads 43 and the second suction pad 53 or the amount of suction power to move the first suction pads 43 and the second suction pad 53 upward. [0023]
After the wedge-shaped jig 6 is inserted into the gap at the corner 221 of the second substrate 22 and the separation of the attacked first substrate 21 and second substrate 22 starts to proceed as shown in FIG. 5, the second suction pad 53 of the second suction portion 51, which is the closest to the corner 221, slowly moves upward. Then, in order that the separation proceeds in a separation direction 81 indicated by an arrow in FIG. 5, the first suction pads 43 of first suction portions 41a, 41b, and 41c sequentially move upward such that one side of the second substrate 22 separates from the element layer.
[0024]
Next, in order that the separation proceeds from the separated one side of the second substrate 22 in a separation direction 82 indicated by an arrow as shown in FIG. 6, the first suction pads 43 of first suction portions 4 Id, 41e, 4 If, and 41g sequentially move upward. Then, as shown in FIG. 7, the first suction pads 43 of first suction portions 41h, 41i, 41j, and 41k sequentially move upward to let the separation proceed in a separation direction 83 indicated by an arrow such that the separation ends at a corner position 222 diagonally opposed to the corner 221 of the second substrate 22 where the wedge-shaped jig 6 is inserted. FIG. 8 is a general perspective view showing a modification example of the separation process in FIG. 7. As shown in FIG. 8, the first suction pads 43 of the first suction portions 41k, 41j, 41i, and 41h sequentially move upward to let the separation proceed in a separation direction 84 indicated by an arrow such that the separation ends at the corner where the first suction portion 41h is provided. That is, the separation proceeds such that the separation ends at a corner of the second substrate 22 rather than on a side of the second substrate 22.
[0025]
FIG. 9 is an enlarged longitudinal sectional view showing the separation process of the substrate separation apparatus 1 of Embodiment 1. As shown in FIG. 9, the first suction portion 41 includes the plurality of first suction pads 43 each of which has a small diameter. Although the second substrate 22 warps as the separation of the second substrate 22 proceeds, each of the plurality of first suction pads 43 made of rubber elastically deforms in accordance with the warp of the second substrate 22. Therefore, the first suction pads 43 can be prevented from being detached from the second substrate 22, and the substrate 22 can be securely separated from the element layer. Note that FIG. 9 shows a case where the separation occurs between the second substrate 22 and the element layer 23. In this manner, the separation can be performed with the element layer 23 in a flat state; thus, damage to the element layer 23 can be suppressed. FIG. 10 is a longitudinal sectional view showing a modification example of the separation process in FIG. 9. As shown in FIG. 10, the separation may occur between the first substrate 21 and the element layer 23. That case is preferable in that the second substrate 22 can be transferred with the element layer 23 thereon facing downward.
[0026]
(Embodiment 2)
FIG. 11 shows a substrate separation apparatus for a stacked body of Embodiment 2 of the present invention. As shown in FIG. 11, a substrate separation apparatus 11 of Embodiment 2 includes, in addition to the components included in the above-described substrate separation apparatus 1 of Embodiment 1 (see FIG. 5), four first suction portions 411, 412, 413, and 414 arranged on the center of the second substrate 22. That is, the first suction portions 41 and the second suction portion 51 are arranged only along the outer periphery of the second substrate 22 in the above-described substrate separation apparatus 1 of Embodiment 1. In contrast, the four first suction portions 411, 412, 413, and 414 are additionally arranged on the center of the second substrate 22 in the substrate separation apparatus 11 of Embodiment 2.
[0027]
With such a structure, the first suction portions can be arranged over the whole area of the second substrate 22. Thus, the angle formed between the first substrate 21 and the second substrate 22 at the time of separation or the pull strength to move the first suction portions upward can be more precisely controlled. As a result, cut-off of the separated portion and detachment of the first suction pads 43 can be prevented, and the separation process of a stacked body can be performed with a high yield.
[0028]
[Other embodiments]
Although the embodiments of the present invention are described above, the present invention is not limited to the above embodiments. In the above embodiments, the first suction portions 41 are each configured such that the plurality of first suction pads 43 move concurrently with the use of the one vertical movement mechanism 71, for example. As another example, the plurality of first suction pads 43 may move individually with the use of individual vertical movement mechanisms 71. Such a structure is preferable because the angle formed between the first substrate 21 and the second substrate 22 at the time of separation or the pull strength to move the first suction portions upward can be more precisely controlled. Furthermore, air pressure in suction circuits for the first suction pads 43 and the second suction pad 53 may be constantly sensed such that a separation operation can be stopped when there is an abnormality in the air pressure. With such a structure, cut-off of the separated portion and detachment of the first suction pads 43 or the second suction pad 53 can be prevented, and the separation process of a stacked body can be performed with a high yield. REFERENCE NUMERALS
[0029]
1 and 11 : substrate separation apparatus, 2: stacked body, 21 : first substrate, 22: second substrate, 221 : corner, 222: diagonally opposed corner position, 23 : element layer, 3 : fixing stage (fixing jig), 4: first suction unit, 41 : first suction portion, 41a, 41b, 41c, 41d, 41e, and 41f: first suction portion, 41g, 41h, 41i, 41j, and 41k: first suction portion, 411, 412, 413, and 414: first suction portion, 42: attachment block, 43 : first suction pad, 44: inlet, 5: second suction unit, 51 : second suction portion, 52: attachment block, 53 : second suction pad, 54: inlet, 6: wedge-shaped jig (separation starting jig), 61 : sensor, 62: nozzle (water supplying unit), 71 : vertical movement mechanism, 72: movable portion, 81, 82, 83, and 84: separation direction
This application is based on Japanese Patent Application serial no. 2014-095579 filed with Japan Patent Office on May 3, 2014, the entire contents of which are hereby incorporated by reference.

Claims

1. A substrate separation apparatus configured to separate a second substrate from a first substrate, comprising:
a fixing jig capable of fixing the first substrate;
a first suction unit over the fixing jig comprising:
first suction portions each comprising:
first suction pads capable of being attached to a top surface of the second substrate by suction; and
a second suction unit over the fixing jig comprising:
a second suction portion comprising:
a second suction pad capable of being attached to the top surface of the second substrate by suction,
wherein the substrate separation apparatus is configured so that a suction power of the second suction portion is higher than a suction power of the first suction portion.
2. The substrate separation apparatus according to claim 1, further comprising:
a separation starting jig capable of being inserted into a gap between the first substrate and the second substrate to separate the second substrate from the first substrate,
wherein the second suction portion is provided closer to the separation starting jig than the first suction portions are.
3. The substrate separation apparatus according to claim 2, further comprising:
a liquid supplying unit capable of supplying a liquid to the gap.
4. The substrate separation apparatus according to claim 1, further configured so that the first suction portions are arranged on a center of the second substrate and along an outer periphery of the second substrate.
5. The substrate separation apparatus according to claim 1, further configured so that the second suction portion is arranged at a corner of the second substrate.
6. The substrate separation apparatus according to claim 1, further comprising:
a control mechanism capable of controlling movements of the second suction unit and the first suction unit.
7. The substrate separation apparatus according to claim 1, wherein a suction area of the second suction pad of the second suction portion is larger than a total suction area of the first suction pads of the first suction portion.
8. The substrate separation apparatus according to claim 1, wherein a shape of the first suction pad and a shape of the second suction pad are different from each other.
9. A substrate separation apparatus configured to separate a second substrate bonded to a first substrate, comprising:
a fixing jig capable of fixing the first substrate;
a first suction unit over the fixing jig comprising:
first suction portions each comprising:
first suction pads capable of being attached to a top surface of the second substrate over the first substrate by suction; and
a second suction unit over the fixing jig comprising:
a second suction portion comprising:
a second suction pad capable of being attached to the top surface of the second substrate by suction,
wherein the first suction portions are provided along an outer periphery of the second substrate,
wherein the second suction portion is provided near the outer periphery of the second substrate, and
wherein the substrate separation apparatus is configured so that a suction power of the second suction portion is higher than a suction power of the first suction portion.
10. The substrate separation apparatus according to claim 9, further comprising:
a separation starting jig capable of being inserted into a gap between the first substrate and the second substrate to separate the second substrate from the first substrate,
wherein the second suction portion is provided closer to the separation starting jig than the first suction portions are.
11. The substrate separation apparatus according to claim 10, further comprising:
a liquid supplying unit capable of supplying a liquid to the gap.
12. The substrate separation apparatus according to claim 9, further configured so that the first suction portions are arranged on a center of the second substrate and along an outer periphery of the second substrate.
13. The substrate separation apparatus according to claim 9, further configured so that the second suction portion is arranged at a corner of the second substrate.
14. The substrate separation apparatus according to claim 9, further comprising:
a control mechanism capable of controlling movements of the second suction unit and the first suction unit.
15. The substrate separation apparatus according to claim 9, wherein a suction area of the second suction pad of the second suction portion is larger than a total suction area of the first suction pads of the first suction portion.
16. The substrate separation apparatus according to claim 9, wherein a shape of the first suction pad and a shape of the second suction pad are different from each other.
17. A method for separating a second substrate from a first substrate, comprising steps of:
attaching first suction pads of each of first suction portions of a first suction unit to a top surface of the second substrate by suction;
attaching a second suction pad of a second suction portion of a second suction unit to the top surface of the second substrate by suction;
moving the second suction pad to separate the second substrate from the first substrate; and
after the moving, moving the first suction pads to separate the second substrate from the first substrate,
wherein a suction power of the second suction portion is higher than a suction power of the first suction portion.
18. The method according to claim 17, further comprising:
inserting a separation starting jig into a gap between the first substrate and the second substrate.
19. The method according to claim 18, further comprising:
supplying a liquid to the gap by a liquid supplying unit.
20. The method according to claim 17, wherein the first suction portions are arranged on a center of the second substrate and along an outer periphery of the second substrate.
21. The method according to claim 17, wherein the second suction portion is arranged at a corner of the second substrate.
22. The method according to claim 17, wherein movements of the second suction unit and the first suction unit are controlled by a control mechanism.
23. The method according to claim 17, wherein a suction area of the second suction pad of the second suction portion is larger than a total suction area of the first suction pads of the first suction portion.
24. The method according to claim 17, wherein a shape of the first suction pad and a shape of the second suction pad are different from each other.
PCT/IB2015/052893 2014-05-03 2015-04-21 Substrate separation apparatus for stacked body WO2015170209A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580022803.XA CN106256013B (en) 2014-05-03 2015-04-21 The substrate desquamation equipment of laminated body
KR1020167028299A KR102407609B1 (en) 2014-05-03 2015-04-21 Substrate separation apparatus for stacked body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-095579 2014-05-03
JP2014095579A JP6548871B2 (en) 2014-05-03 2014-05-03 Laminated substrate peeling apparatus

Publications (1)

Publication Number Publication Date
WO2015170209A1 true WO2015170209A1 (en) 2015-11-12

Family

ID=54355752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2015/052893 WO2015170209A1 (en) 2014-05-03 2015-04-21 Substrate separation apparatus for stacked body

Country Status (6)

Country Link
US (1) US9805953B2 (en)
JP (1) JP6548871B2 (en)
KR (1) KR102407609B1 (en)
CN (1) CN106256013B (en)
TW (1) TWI654654B (en)
WO (1) WO2015170209A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6815096B2 (en) 2015-05-27 2021-01-20 株式会社半導体エネルギー研究所 Peeling device
CN105047589B (en) * 2015-07-08 2018-05-29 浙江中纳晶微电子科技有限公司 Wafer solution bonding apparatus
JP6519951B2 (en) * 2015-07-24 2019-05-29 日本電気硝子株式会社 METHOD FOR MANUFACTURING GLASS FILM, AND METHOD FOR MANUFACTURING ELECTRONIC DEVICE INCLUDING GLASS FILM
CN106739424B (en) * 2015-11-20 2020-02-14 财团法人工业技术研究院 Taking-down and bonding device, taking-down method and bonding method using same
JP6617919B2 (en) * 2015-12-02 2019-12-11 Dic株式会社 Article dismantling method
CN106301216A (en) * 2016-08-29 2017-01-04 安徽凯达能源科技有限公司 The adhesive property detection device of solar panel
KR102650013B1 (en) * 2016-10-05 2024-03-21 삼성디스플레이 주식회사 Disassembling system for display device and method for disassembling using this
JP7234109B2 (en) * 2016-11-15 2023-03-07 コーニング インコーポレイテッド How to process the substrate
US10556758B1 (en) * 2017-03-08 2020-02-11 Maxco Supply, Inc. Denester and method of denesting a stack of containers
WO2018179174A1 (en) * 2017-03-29 2018-10-04 シャープ株式会社 Display device manufacturing method, display device manufacturing apparatus, and inspection device
US11183410B2 (en) * 2017-04-24 2021-11-23 Photronics, Inc. Pellicle removal tool
US10374161B2 (en) * 2017-08-16 2019-08-06 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Glass substrate separation method and glass substrate separation device
JP7115490B2 (en) * 2017-09-20 2022-08-09 日本電気硝子株式会社 Glass substrate manufacturing method
CN109592157B (en) * 2017-09-30 2024-02-20 深圳市宇道机电技术有限公司 Mounting equipment
JP6956598B2 (en) * 2017-11-09 2021-11-02 三菱電機株式会社 Separation method of semiconductor test equipment and semiconductor elements
CN109901311B (en) * 2017-12-08 2021-07-27 上海和辉光电股份有限公司 Stripping device
KR102507884B1 (en) * 2018-01-05 2023-03-09 삼성디스플레이 주식회사 Apparatus for separating window and method for separating window using the same
JP2020100502A (en) * 2018-12-20 2020-07-02 日本電気硝子株式会社 Method and device of manufacturing glass film, and method of manufacturing electronic device including glass film
JP6916223B2 (en) * 2019-01-30 2021-08-11 日機装株式会社 Peeling device
KR20200144163A (en) * 2019-06-17 2020-12-29 삼성디스플레이 주식회사 Apparatus of manufacturing for display device and method of manufacturing for display device
US11279057B2 (en) * 2019-12-18 2022-03-22 The Boeing Company Material removal apparatus, system, and method
CN115401984A (en) * 2022-08-24 2022-11-29 无锡百柔光电科技有限公司 Separation device and separation method for flexible electronic product
CN115401983A (en) * 2022-08-24 2022-11-29 无锡百柔光电科技有限公司 Separating device and separating method for multilayer flexible electronic product

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277501A (en) * 2007-04-27 2008-11-13 Shin Etsu Chem Co Ltd Manufacturing method of laminated wafer
US20140076500A1 (en) * 2012-09-19 2014-03-20 Tokyo Electron Limited Delamination device

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4027740B2 (en) 2001-07-16 2007-12-26 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
TW564471B (en) 2001-07-16 2003-12-01 Semiconductor Energy Lab Semiconductor device and peeling off method and method of manufacturing semiconductor device
FR2834381B1 (en) * 2002-01-03 2004-02-27 Soitec Silicon On Insulator DEVICE FOR CUTTING A LAYER OF A SUBSTRATE, AND ASSOCIATED METHOD
JP5307970B2 (en) 2006-01-11 2013-10-02 旭硝子株式会社 Method and apparatus for peeling large glass substrate
US8137417B2 (en) * 2006-09-29 2012-03-20 Semiconductor Energy Laboratory Co., Ltd. Peeling apparatus and manufacturing apparatus of semiconductor device
TWI570900B (en) 2006-09-29 2017-02-11 半導體能源研究所股份有限公司 Method for manufacturing semiconductor device
JP2009224437A (en) * 2008-03-14 2009-10-01 Seiko Epson Corp Apparatus for manufacturing thin film electronic device and method for manufacturing thin film electronic device
JP2010050313A (en) 2008-08-22 2010-03-04 Seiko Epson Corp Method of transferring thin film and method of manufacturing thin film electronic device
KR101311652B1 (en) * 2009-02-06 2013-09-25 아사히 가라스 가부시키가이샤 Method for manufacturing electronic device and separation apparatus used therefor
CN102202994B (en) * 2009-08-31 2014-03-12 旭硝子株式会社 Peeling device
JP5375586B2 (en) * 2009-12-22 2013-12-25 株式会社スリーボンド Peeling apparatus and peeling method
JP5875962B2 (en) * 2012-09-19 2016-03-02 東京エレクトロン株式会社 Peeling device, peeling system and peeling method
JP6076856B2 (en) 2013-08-09 2017-02-08 東京エレクトロン株式会社 Peeling device, peeling system and peeling method
JP2014060348A (en) 2012-09-19 2014-04-03 Tokyo Electron Ltd Peeling device, peeling system, and peeling method
JP6104753B2 (en) 2013-08-09 2017-03-29 東京エレクトロン株式会社 Peeling device, peeling system and peeling method
TWI618131B (en) 2013-08-30 2018-03-11 半導體能源研究所股份有限公司 Device for forming separation starting point, stack manufacturing apparatus, and method for forming separation starting point
WO2015029806A1 (en) 2013-08-30 2015-03-05 Semiconductor Energy Laboratory Co., Ltd. Processing apparatus and processing method of stack
TWI705861B (en) 2013-08-30 2020-10-01 日商半導體能源研究所股份有限公司 Support supply apparatus and method for supplying support
US9981457B2 (en) 2013-09-18 2018-05-29 Semiconductor Emergy Laboratory Co., Ltd. Manufacturing apparatus of stack
KR102342231B1 (en) 2014-05-03 2021-12-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Film-like member support apparatus
JP6378530B2 (en) 2014-05-03 2018-08-22 株式会社半導体エネルギー研究所 Film adsorption mechanism
WO2015170210A1 (en) 2014-05-03 2015-11-12 Semiconductor Energy Laboratory Co., Ltd. Separation apparatus for thin film stacked body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277501A (en) * 2007-04-27 2008-11-13 Shin Etsu Chem Co Ltd Manufacturing method of laminated wafer
US20140076500A1 (en) * 2012-09-19 2014-03-20 Tokyo Electron Limited Delamination device

Also Published As

Publication number Publication date
JP6548871B2 (en) 2019-07-24
KR102407609B1 (en) 2022-06-13
CN106256013A (en) 2016-12-21
KR20160146699A (en) 2016-12-21
US9805953B2 (en) 2017-10-31
CN106256013B (en) 2019-09-24
TW201604927A (en) 2016-02-01
JP2015213131A (en) 2015-11-26
TWI654654B (en) 2019-03-21
US20150318200A1 (en) 2015-11-05

Similar Documents

Publication Publication Date Title
US9805953B2 (en) Substrate separation apparatus for stacked body
US20150319893A1 (en) Separation apparatus for thin film stacked body
US20140020844A1 (en) Film peeling apparatus
CN101382683A (en) Substrate bonding apparatus and method
KR20100085366A (en) Substrate holder unit and subtrate assembling appartus having the same
CN101813847B (en) Substrate bonding apparatus and method
KR101765299B1 (en) Curved laminator
TWI443428B (en) Substrate bonding apparatus and susbtrate bonding method
KR101951811B1 (en) Methods and apparatus for bonding and de-bonding a highly flexible substrate to a carrier
CN110228283B (en) Rapid and selective transfer printing device based on electrostatic adsorption and manufacturing method thereof
US11939173B2 (en) Transportation head for microchip transfer device, microchip transfer device having same, and transfer method thereby
EP3933942A1 (en) Adhering device, transfer device using same, and transfer method
CN104992920B (en) A kind of method for controlling electrostatic chuck suction
CN107848880B (en) Method for manufacturing glass film and method for manufacturing electronic device including glass film
JP5599642B2 (en) Substrate processing apparatus and substrate processing method
KR101268397B1 (en) Substrate bonding apparatus and substrate bonding method
KR20120087462A (en) Substrate bonding apparatus and substrate bonding method
KR101221034B1 (en) Substrate chuck and apparatus for processing substrate using the same
KR101356624B1 (en) Substrate bonding apparatus
CN1694236A (en) Plane holding device
KR101288864B1 (en) Substrate bonding apparatus
KR101232905B1 (en) Substrate bonding apparatus and substrate bonding method
US20220143838A1 (en) Adherent device, transfer equipment using the same, and transfer method
KR20120088631A (en) Substrate bonding apparatus and substrate bonding method
TW201434364A (en) Apparatus and method of batch assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15789489

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167028299

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15789489

Country of ref document: EP

Kind code of ref document: A1