WO2015168975A1 - 钻晶膜的镀膜方法及其设备 - Google Patents

钻晶膜的镀膜方法及其设备 Download PDF

Info

Publication number
WO2015168975A1
WO2015168975A1 PCT/CN2014/079760 CN2014079760W WO2015168975A1 WO 2015168975 A1 WO2015168975 A1 WO 2015168975A1 CN 2014079760 W CN2014079760 W CN 2014079760W WO 2015168975 A1 WO2015168975 A1 WO 2015168975A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
coating
crystal film
heating
vacuum
Prior art date
Application number
PCT/CN2014/079760
Other languages
English (en)
French (fr)
Inventor
王建成
Original Assignee
深圳市深新隆实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市深新隆实业有限公司 filed Critical 深圳市深新隆实业有限公司
Publication of WO2015168975A1 publication Critical patent/WO2015168975A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source

Definitions

  • the present invention relates to a coating method and apparatus, and more particularly to a coating method and apparatus for a glass substrate.
  • the object of the present invention is to overcome the deficiencies of the prior art and to provide a method for coating a crystal film and an apparatus therefor.
  • the present invention adopts the following technical solutions:
  • the method of coating the diamond film includes the following steps:
  • preheating the target preheating to 300-500 ° C, preheating time is 1-2 minutes;
  • the temperature of the working chamber is naturally cooled to 60 ° C, the vacuum is released, the working chamber is opened, and the substrate is removed.
  • a further technical solution is that the target material is a telluride, and when the ion is cleaned, the vacuum is increased to 0.005 Pa, and the argon gas is further charged to 0.02 Pa, and the temperature of the surface of the substrate is 150-250 ° C.
  • the telluride is cerium oxide, cerium chloride, cerium fluoride, cerium nitrate, cerium carbonate, cerium acetate, cerium trichloride or cerium hydroxide; the thickness of the substrate is 0.1-5 mm.
  • the substrate is an inorganic glass.
  • a coating device for drilling a crystal film comprising a sealing cavity having an opening, the sealing cavity being coupled with a vacuum component, the sealing cavity further comprising an evaporation source and an ion source, and a light source test at the bottom of the sealing cavity
  • the evaporation source is a vaporization evaporation source, comprising a thermal evaporation source rod disposed at the bottom of the sealing chamber, and a heating plate fixed to the upper end of the thermal evaporation source rod And an evaporation source temperature sensor, and a telluride material disposed on the hot plate.
  • a further technical solution is: further comprising a substrate heating assembly, the substrate heating assembly comprising an adjustable heating bracket disposed at a bottom of the sealing cavity, the heating bracket having a heating element and a heating temperature sensor at the upper end, A reflector is placed around the heating element.
  • a further technical solution is: the substrate holder is rotatably coupled to the top of the sealing cavity, and the top of the sealing cavity is further provided with a substrate rotating power component that drives the substrate holder to rotate; the adjustable heating The holder is located below the edge of the substrate holder, and the substrate being rotated is uniformly heated above the adjustable heating holder during coating.
  • the substrate heating assembly further includes an adjustment motor and a nut screw pair coupled to the adjustment motor.
  • the substrate holder is a black bracket and is provided with a substrate temperature sensor.
  • control circuit further includes a control circuit electrically connected to the electric heating plate, the evaporation source temperature sensor, the heating element, the heating temperature sensor, the substrate rotating power component, the adjusting motor, and the substrate temperature sensor.
  • the bottom of the sealed cavity is provided with an electron gun as an evaporation source; the electron gun is two; the sealed cavity is a cylindrical body, including a casing body and a casing body a movable joint door, the movable door is located outside and constitutes the opening; a vacuum suction port is disposed on an inner side of the casing body, and the vacuum suction port is coupled with the vacuum assembly; a sealing area is provided in the sealed chamber, and a partition assembly for separating the vacuum suction port from the working area, wherein the working area is provided with the substrate fixing frame; the partitioning component is a partition plate.
  • the partition plate is provided with a plurality of vent holes or venting grooves.
  • the invention has the beneficial effects compared with the prior art: the invention adopts a telluride as a target on a glass substrate, and adopts resistive heating evaporation for coating, and precise temperature control during coating, which can improve the scratch resistance of the glass surface.
  • FIG. 1 is a flow chart of a specific embodiment of a method for coating a drilled crystal film of the present invention
  • FIG. 2 is a schematic plan view showing a specific embodiment of a coating device for drilling a crystal film of the present invention
  • FIG. 3 is a schematic cross-sectional view showing a specific embodiment of a coating device for drilling a crystal film of the present invention
  • FIG. 4 is a block diagram showing electrical control of a specific embodiment of a coating apparatus for drilling a crystal film of the present invention.
  • the substrate is coated; the target is heated to 1400-1600 ° C (depending on the target), the coating time is 3-5 minutes, the coating thickness of the substrate is 40-60 nm, and the surface temperature of the substrate is 200- 260 ° C, the degree of vacuum is 0.002Pa-0.005Pa;
  • the temperature of the working chamber is naturally cooled to 60 ° C, the vacuum is released, the working chamber is opened, and the substrate is removed.
  • the target is a telluride
  • the telluride is cerium oxide, cerium chloride, cerium fluoride, cerium nitrate, cerium carbonate, cerium acetate, cerium trichloride or cerium hydroxide
  • the thickness of the substrate is 0.1-5 mm
  • the sheet is inorganic glass.
  • the telluride when coating, is preferentially placed in a dusty shape, uniformly placed on the hot plate, and the powdered telluride has a particle size of 1-3 mm.
  • the target is heated to 1500 ° C (the allowable error is plus or minus ten percent); the thickness of the substrate is preferably 50 nm (the allowed error is positive or negative) 10%); the surface temperature of the substrate is preferably 230-240 ° C, and the vacuum is preferably 0.002 Pa (the allowable error is plus or minus ten percent).
  • the present invention adopts the coating device for drilling a crystal film described in FIG. 2 to FIG. 4, which comprises a sealing cavity 10 having an opening (in the present embodiment, the whole is cylindrical), and the sealing cavity
  • the body 10 is coupled with a vacuum assembly, an evaporation source and an ion source 30 are disposed in the sealed cavity 10, and a light source test assembly 40 (for detecting the thickness of the coating) at the bottom of the sealed cavity 10 and disposed on the top of the sealed cavity 10
  • the substrate holder 50; the evaporation source comprises a resistance heating type vaporization evaporation source 20 (in this embodiment, a sheet-shaped tungsten boat structure is used, which is easy to heat and vaporize the vapor), and is provided at the bottom of the sealing chamber.
  • the substrate heating assembly 60 further includes an adjustable heating bracket 61 disposed at the bottom of the sealing cavity 10.
  • the heating bracket 61 is provided with a heating element 62 and a heating temperature sensor 63 at the upper end, and the heating element 62 is reflective around the heating element 62.
  • the plate 64 is configured to provide heat to the substrate by reflection, to improve heat transfer efficiency, and to stabilize the temperature of the glass substrate fixed to the substrate holder.
  • the substrate holder 50 is rotatably coupled to the top of the sealing cavity 10.
  • the top of the sealing cavity 10 is further provided with a substrate rotating power assembly 51 for driving the substrate holder 50 to rotate;
  • the adjustable heating bracket 61 is located on the substrate holder Below the edge of 50, the substrate 90 that is rotating is uniformly heated above the adjustable heating bracket 61 during coating.
  • the substrate heating assembly 60 further includes an adjustment motor 69 and a nut screw pair coupled to the adjustment motor 69 (the screw 68 is in driving engagement with the adjustment motor 69, the nut being disposed on the nut plate 67 extending downwardly from the adjustable heating bracket 61).
  • the substrate holder 50 is a black holder (which is advantageous for absorbing heat, contributing to stabilization of the temperature of the surface of the substrate), and is provided with a substrate temperature sensor 59. Also included is a control circuit 80 that is electrically coupled to the hot plate 22, the evaporation source temperature sensor 23, the heating element 62, the heating temperature sensor 63, the substrate rotating power assembly 51, the regulating motor 69, and the substrate temperature sensor 59.
  • the bottom of the sealing cavity 10 is provided with an electron gun 17 as an evaporation source; two electron guns can be used as evaporation sources in different situations (ie, heating targets); in this embodiment, the sealing cavity 10 is a cylindrical body, including a casing body 11 and a movable door 12 movably coupled to the casing body 11, the movable door 12 is located outside and constitutes the opening; the inside of the casing body is provided with a vacuum suction port, a vacuum suction port and a vacuum assembly ( That is, the vacuum pump 19) is coupled; the working chamber 100 is provided in the sealing cavity 10, and a partitioning assembly for separating the vacuum suction port and the working area; the substrate holding frame is arranged above the working area; the partitioning component is semicircular The partition 18 (the article for the work area is sucked to the rear non-working area), and the partition 18 is provided with a plurality of ventilation slots 181.
  • the adjusting motor of the present invention can adjust the distance between the heating assembly and the substrate holder to meet the heating of the substrates of different thicknesses and different areas to ensure that the substrate is in a relatively stable temperature range.
  • the heating element 62 therein is a quartz heating tube.
  • An electron gun temperature sensor 82 and a vacuum sensor 81 coupled to the control circuit 80 are also included.
  • a transmission mechanism for driving the reflector is further included, and the reflector can be deflected at a different angle from the heating element so that the deflection angle also occurs when the distance between the heating element and the substrate holder is different.
  • the change is such that heat is concentrated to the substrate on the substrate holder to facilitate control of the surface temperature of the substrate.
  • the transmission mechanism includes a transmission rod connected to the reflector at the upper end, and a coupling plate is coupled to the lower end of the transmission rod, and the coupling plate is coupled to the angle adjustment motor of the bottom of the sealing cavity through the nut screw transmission pair.
  • the thermal evaporation source strut can also adopt an adjustable structure to adjust the height of the upper and lower sides, so that it can be adapted to a wider range of ultra-hard nano-coating, or through the nut screw drive pair and the bottom of the sealed cavity. The lift motor is adjusted.
  • the present invention uses a telluride as a target on a glass substrate, and uses a resistive heating evaporation to carry out the coating, which can improve the scratch resistance of the glass surface to above 8H, and the ability of the glass surface to resist scratching reaches the natural gemstone.
  • the level not only improves the life of the product, but also compensates for the shortcomings of sapphire's low flexibility and easy breakage. And the cost has been greatly reduced.

Abstract

本发明公开了一种钻晶膜的镀膜方法及其设备。钻晶膜的镀膜方法,包括以下步骤:基片清洗;打开镀膜设备的工作仓,基片装夹于镀膜设备的镀膜架;关闭工作仓,抽真空;对靶材进行预加热,预加热至300-500℃,预热时间为1-2分钟;启用离子源,对基片进行离子清洗,清洗时间为3-5分钟;对基片进行镀膜;工作仓的温度自然降温至60℃,释放真空,打开工作仓,取下基片。本发明在玻璃基片上采用镧化物作为靶材,并采用电阻式加热蒸发进行镀膜,可以提高玻璃表面抗划伤能力到8H以上,使玻璃表面硬度达到天然宝石级别,不但提高了产品寿命。并且又弥补了蓝宝石柔韧度不高、容易破碎的缺陷,而成本又有极大的降低。

Description

钻晶膜的镀膜方法及其设备
技术领域
本发明涉及一种镀膜方法和设备,更具体地说是指一种用于玻璃基片的镀膜方法和设备。
背景技术
目前,玻璃面板行业采用的镜片多数为普通Na.Ca.Si玻璃,表面硬度6H,不抗划伤,寿命短。产品市场档次、附加值较低。为提高外观表镜档次,增加产品附加值,提高是表面抗划伤能力,市场上多采用天然蓝宝石,表面硬度9H,但成本高、价格昂贵切柔韧度低,容易破碎。
发明内容
本发明的目的在于克服现有技术的缺陷,提供一种钻晶膜的镀膜方法及其设备。
为实现上述目的,本发明采用以下技术方案:
钻晶膜的镀膜方法,包括以下步骤:
1)基片清洗;
2)打开镀膜设备的工作仓,基片装夹于镀膜设备的镀膜架;
3)关闭工作仓,抽真空;
4)对靶材进行预加热,预加热至300-500℃,预热时间为1-2分钟;
5)启用离子源,对基片进行离子清洗,清洗时间为3-5分钟;
6)对基片进行镀膜;靶材加热至1400-1600℃,镀膜时间为3-5分钟,基片的镀膜厚度为40-60nm,基片的表面温度为200-260℃,真空度为0.002Pa-0.005Pa;
7)工作仓的温度自然降温至60℃,释放真空,打开工作仓,取下基片。
其进一步技术方案为:所述的靶材为镧化物,离子清洗时,真空至0.005Pa,再充入氩气至0.02Pa,基片表面的温度为150-250℃。
其进一步技术方案为:所述的镧化物为氧化镧、氯化镧、氟化镧、硝酸镧、碳酸镧、醋酸镧、三氯化镧或氢氧化镧;基片的厚度为0.1-5mm,所述的基片为无机玻璃。
钻晶膜的镀膜设备,包括具有开口的密封腔体,所述的密封腔体联接有真空组件,所述的密封腔体内还设有蒸发源和离子源,及位于密封腔体底部的光源测试组件和设于密封腔体顶部的基片固定架;所述的蒸发源为镧化物蒸发源,包括设于密封腔体底部的热蒸发源支杆、固定于热蒸发源支杆上端的电热板和蒸发源温度传感器,以及设于电热板上的镧化物材料。
其进一步技术方案为:还包括基片加热组件,所述基片加热组件包括设于密封腔体底部的可调式加热支架,所述的加热支架上端设有加热元件和加热温度传感器,所述的加热元件四周设有反光板。
其进一步技术方案为:所述的基片固定架与密封腔体的顶部旋转式联接,密封腔体的顶部还设有驱动基片固定架旋转的基片旋转动力组件;所述的可调式加热支架位于基片固定架边缘的下方,镀膜时,旋转中的基片在可调式加热支架的上方均匀受热。
其进一步技术方案为:所述的基片加热组件还包括调节电机和与调节电机传动联接的螺母螺杆副。
其进一步技术方案为:所述的基片固定架为黑色支架,并且设有基片温度传感器。
其进一步技术方案为:还包括控制电路,所述的控制电路与电热板、蒸发源温度传感器、加热元件、加热温度传感器、基片旋转动力组件、调节电机、基片温度传感器电性连接。
其进一步技术方案为:所述的密封腔体的底部设有作为蒸发源的电子枪;所述的电子枪为二个;所述的密封腔体为圆柱状体,包括机壳本体和与机壳本体活动联接的的活动门,所述的活动门位于外侧并构成所述的开口;机壳本体的内侧设有真空吸气口,所述的真空吸气口与所述的真空组件联接;所述的密封腔体内设有工作区域,及用于分隔真空吸气口与工作区域的分隔组件,所述的工作区域上方设有所述的基片固定架;所述的分隔组件为隔板,所述的隔板上设有若干个通气孔或通气槽。
本发明与现有技术相比的有益效果是:本发明在玻璃基片上采用镧化物作为靶材,并采用电阻式加热蒸发进行镀膜,及镀膜时温度的精密控制,能提高玻璃表面抗划伤能力到8H以上,使玻璃表面硬度达到天然宝石级别,不但提高了产品寿命。并且又弥补了蓝宝石柔韧度不高、容易破碎的缺陷,而成本又有极大的降低。
下面结合附图和具体实施例对本发明作进一步描述。
附图说明
图1为本发明钻晶膜的镀膜方法具体实施例的流程图;
图2为本发明钻晶膜的镀膜设备具体实施例的平面示意图;
图3为本发明钻晶膜的镀膜设备具体实施例的俯视剖面示意图;
图4为本发明钻晶膜的镀膜设备具体实施例的电气控制方框图。
附图标记
10 密封腔体 100 工作区域
11 机壳本体 12 活动门
17 电子枪 18 隔板
181 通气槽 19 真空泵
20 镧化物蒸发源 21 热蒸发源支杆
22 电热板 23 蒸发源温度传感器
24 镧化物材料 30 离子源
40 光源测试组件 50 基片固定架
51 基片旋转动力组件 59 基片温度传感器
60 基片加热组件 61 加热支架
62 加热元件 63 加热温度传感器
64 反光板 67 螺母板
68 螺杆 69 调节电机
80 控制电路 90 基片
81 真空传感器 82 电子枪温度传感器
具体实施方式
为了更充分理解本发明的技术内容,下面结合具体实施例对本发明的技术方案进一步介绍和说明,但不局限于此。
如图1所示,本发明钻晶膜(也可以称为超硬纳米膜)的镀膜方法,包括以下步骤:
1.基片清洗;
2.打开镀膜设备的工作仓,基片装夹于镀膜设备的镀膜架;
3.关闭工作仓,抽真空;
4.对靶材进行预加热,预加热至300-500℃,预热时间为1-2分钟;
5.启用离子源,对基片进行离子清洗,清洗时间为3-5分钟;
6.对基片进行镀膜;靶材加热至1400-1600℃(视靶材而定),镀膜时间为3-5分钟,基片的镀膜厚度为40-60nm,基片的表面温度为200-260℃,真空度为0.002Pa-0.005Pa;
7.工作仓的温度自然降温至60℃,释放真空,打开工作仓,取下基片。
其中,靶材为镧化物,镧化物为氧化镧、氯化镧、氟化镧、硝酸镧、碳酸镧、醋酸镧、三氯化镧或氢氧化镧;基片的厚度为0.1-5mm,基片为无机玻璃。离子清洗时,真空至0.005Pa(允许的误差为正负百分之十),再充入氩气至0.02Pa(允许的误差为正负百分之十),基片表面的温度为150-250℃。
作为优选方案,镀膜时,镧化物优先考虑以粉尘状的形状,均匀在放置在电热板,而且粉末状的镧化物,粒度为1-3mm。
作为优选方案,其中,对基片进行镀膜时;靶材加热至1500℃为佳(允许的误差为正负百分之十);基片的镀膜厚度以50nm为佳(允许的误差为正负百分之十);基片的表面温度为230-240℃为佳,真空度以0.002Pa为佳(允许的误差为正负百分之十)。
为了实施图1的镀膜方法,本发明采用图2至图4所述的钻晶膜的镀膜设备,它包括具有开口的密封腔体10(本实施例中,其整体为圆柱形),密封腔体10联接有真空组件,密封腔体10内还设有蒸发源和离子源30,及位于密封腔体10底部的光源测试组件40(用于检测镀膜的厚度)和设于密封腔体10顶部的基片固定架50;蒸发源包括电阻加热式的镧化物蒸发源20(本实施例中,采用的是片状的钨舟结构,易于加热蒸发镧化物),包括设于密封腔体底部的热蒸发源支杆21、固定于热蒸发源支杆21上端的电热板22和蒸发源温度传感器23,以及设于电热板22上的镧化物材料24。
还包括基片加热组件60,基片加热组件60包括设于密封腔体10底部的可调式加热支架61,加热支架61上端设有加热元件62和加热温度传感器63,加热元件62四周设有反光板64,这样可以通过反射,集中为基片提供热量,提高传热效率,使得固定于基片固定架上的玻璃基片温度稳定。
基片固定架50与密封腔体10的顶部旋转式联接,密封腔体10的顶部还设有驱动基片固定架50旋转的基片旋转动力组件51;可调式加热支架61位于基片固定架50边缘的下方,镀膜时,旋转中的基片90在可调式加热支架61的上方均匀受热。
基片加热组件60还包括调节电机69和与调节电机69传动联接的螺母螺杆副(螺杆68与调节电机69传动联接,螺母设于可调式加热支架61向下延伸的螺母板67上)。基片固定架50为黑色支架(利于吸收热量,有助于基片表面的温度的稳定),并且设有基片温度传感器59。还包括控制电路80,控制电路80与电热板22、蒸发源温度传感器23、加热元件62、加热温度传感器63、基片旋转动力组件51、调节电机69、基片温度传感器59电性连接。密封腔体10的底部设有作为蒸发源的电子枪17;电子枪为二个,可以作为不同情况下的蒸发源(即加热靶材);本实施例中,密封腔体10为圆柱状体,包括机壳本体11和与机壳本体11活动联接的的活动门12,活动门12位于外侧并构成所述的开口;机壳本体的内侧设有真空吸气口,真空吸气口与真空组件(即真空泵19)联接;密封腔体10内设有工作区域100,及用于分隔真空吸气口与工作区域的分隔组件,工作区域上方设有前述的基片固定架;分隔组件为半圆形的隔板18(用于工作区域的物品被吸至后面的非工作区域),隔板18上设有若干个通气槽181。
因为蒸发源的温度远远高于基片表面的温度,因此,对于基片表面温度的控制,现有技术中都存在不稳定,不均匀,并且很难达到精确控制的目的。所以,本发明的调节电机能实现加热组件与基片固定架之间距离的调节,以满足不同厚度、不同面积的基片的加热,以保证基片在一个比较稳定的温度区间。其中的加热元件62为为石英加热管。还包括与控制电路80联接的电子枪温度传感器82和真空传感器81。
于其它实施例中,还包括用于驱动反光板的传动机构,可以使反光板与加热元件成不同的偏转角度,以使得加热元件与基片固定架之间的距离不同时,偏转角度也发生变化,以使热量集中辐射至基片固定架上的基片,以利于基片表面温度的控制。该传动机构包括上端与反光板连接的传动杆,传动杆的下端联接有联接板,联接板通过螺母螺杆传动副与密封腔体底部下方的角度调节电机传动联接。
于其它实施例中,热蒸发源支杆也可以采用可调式结构,以进行上下高度的调节,这样可以适合更大范围的超硬纳米镀膜,也可通过螺母螺杆传动副与密封腔体底部下方的升降电机来调节。
综上所述,本发明在玻璃基片上采用镧化物作为靶材,并采用电阻式加热蒸发进行镀膜,可以提高玻璃表面抗划伤能力到8H以上,使玻璃表面抗划伤的能力达到天然宝石级别,不但提高了产品寿命,并且又弥补了蓝宝石柔韧度不高、容易破碎的缺陷。而成本又有极大的降低。
上述仅以实施例来进一步说明本发明的技术内容,以便于读者更容易理解,但不代表本发明的实施方式仅限于此,任何依本发明所做的技术延伸或再创造,均受本发明的保护。本发明的保护范围以权利要求书为准。

Claims (10)

  1. 钻晶膜的镀膜方法,其特征在于包括以下步骤:
    1)打开镀膜设备的工作仓,基片装夹于镀膜设备的镀膜架;
    2)关闭工作仓,抽真空;
    3)对靶材进行预加热;
    4)启用离子源,对基片进行离子清洗;
    5)对基片进行镀膜;靶材加热,基片的表面被镀膜;
    6)工作仓降温,释放真空,打开工作仓,取下基片;
    其中,所述的靶材为镧化物。
  2. 根据权利要求1所述的钻晶膜的镀膜方法,其特征在于:
    更具体的步骤3)为:对靶材进行预加热,预加热至500℃以上,预热时间为1-2分钟;
    更具体的步骤4)为:启用离子源,对基片进行离子清洗,清洗时间为3-5分钟;
    更具体的步骤5)为:对基片进行镀膜;靶材加热至1400-1600℃,镀膜时间为3-5分钟,基片的镀膜厚度为40-60nm,基片的表面温度为≧150℃,真空度为0.002Pa-0.005Pa;
    更具体的步骤6)为:工作仓的温度自然降温至60℃,释放真空,打开工作仓,取下基片;
    离子清洗时,真空至0.005Pa,再充入氩气至0.02Pa,基片表面的温度为≧150℃。
  3. 根据权利要求1或2所述的钻晶膜的镀膜方法,其特征在于所述的镧化物为氧化镧、氯化镧、氟化镧、硝酸镧、碳酸镧、醋酸镧、三氯化镧或氢氧化镧;基片的厚度为0.1-5mm,所述的基片为无机玻璃。
  4. 钻晶膜的镀膜设备,包括具有开口的密封腔体,所述的密封腔体联接有真空组件,所述的密封腔体内还设有蒸发源和离子源,及位于密封腔体底部的光源测试组件和设于密封腔体顶部的基片固定架;其特征在于所述的蒸发源为镧化物蒸发源,包括设于密封腔体底部的热蒸发源支杆、固定于热蒸发源支杆上端的电热板和蒸发源温度传感器,以及设于电热板上的镧化物材料。
  5. 根据权利要求4所述的钻晶膜的镀膜设备,其特征在于还包括基片加热组件,所述基片加热组件包括设于密封腔体底部的可调式加热支架,所述的加热支架上端设有加热元件和加热温度传感器,所述的加热元件四周设有反光板。
  6. 根据权利要求5所述的钻晶膜的镀膜设备,其特征在于所述的基片固定架与密封腔体的顶部旋转式联接,密封腔体的顶部还设有驱动基片固定架旋转的基片旋转动力组件;所述的可调式加热支架位于基片固定架边缘的下方,镀膜时,旋转中的基片在可调式加热支架的上方均匀受热。
  7. 根据权利要求5所述的钻晶膜的镀膜设备,其特征在于所述的基片加热组件还包括调节电机和与调节电机传动联接的螺母螺杆副。
  8. 根据权利要求5所述的钻晶膜的镀膜设备,其特征在于所述的基片固定架为黑色支架,并且设有基片温度传感器。
  9. 根据权利要求8所述的钻晶膜的镀膜设备,其特征在于还包括控制电路,所述的控制电路与电热板、蒸发源温度传感器、加热元件、加热温度传感器、基片旋转动力组件、调节电机、基片温度传感器电性连接。
  10. 根据权利要求4所述的钻晶膜的镀膜设备,其特征在于所述的密封腔体的底部设有作为蒸发源的电子枪;所述的电子枪为二个;所述的密封腔体为圆柱状体,包括机壳本体和与机壳本体活动联接的的活动门,所述的活动门位于外侧并构成所述的开口;机壳本体的内侧设有真空吸气口,所述的真空吸气口与所述的真空组件联接;所述的密封腔体内设有工作区域,及用于分隔真空吸气口与工作区域的分隔组件,所述的工作区域上方设有所述的基片固定架;所述的分隔组件为隔板,所述的隔板上设有若干个通气孔或通气槽。
PCT/CN2014/079760 2014-05-08 2014-06-12 钻晶膜的镀膜方法及其设备 WO2015168975A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410193120.8 2014-05-08
CN201410193120.8A CN103938163B (zh) 2014-05-08 2014-05-08 钻晶膜的镀膜方法及其设备

Publications (1)

Publication Number Publication Date
WO2015168975A1 true WO2015168975A1 (zh) 2015-11-12

Family

ID=51186025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079760 WO2015168975A1 (zh) 2014-05-08 2014-06-12 钻晶膜的镀膜方法及其设备

Country Status (2)

Country Link
CN (1) CN103938163B (zh)
WO (1) WO2015168975A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112831756A (zh) * 2020-12-31 2021-05-25 苏州佑伦真空设备科技有限公司 一种自动化的真空蒸镀方法
CN114351108A (zh) * 2022-01-17 2022-04-15 湘潭宏大真空技术股份有限公司 一种大面积真空镀膜的玻璃基片角度调节装置
CN115044880A (zh) * 2022-07-27 2022-09-13 松山湖材料实验室 一种镀膜治具及镀膜方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030227670A1 (en) * 2001-07-18 2003-12-11 Nikon Corporation, Tokyo, Japan Optical element equipped with lanthanum fluoride film
CN101925837A (zh) * 2007-11-30 2010-12-22 康宁股份有限公司 用于duv元件的致密均匀氟化物膜及其制备方法
CN102864412A (zh) * 2012-08-31 2013-01-09 西北工业大学 非晶氧化镧薄膜的制备方法
US8674311B1 (en) * 2010-03-10 2014-03-18 Radiation Monitoring Devices, Inc. Polycrystalline lanthanum halide scintillator, devices and methods
CN203834006U (zh) * 2014-05-08 2014-09-17 深圳市深新隆实业有限公司 钻晶膜的镀膜设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100482856C (zh) * 2005-05-24 2009-04-29 鸿富锦精密工业(深圳)有限公司 镀膜设备及其镀膜方法
CN102312200B (zh) * 2010-06-30 2014-04-23 鸿富锦精密工业(深圳)有限公司 蒸镀机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030227670A1 (en) * 2001-07-18 2003-12-11 Nikon Corporation, Tokyo, Japan Optical element equipped with lanthanum fluoride film
CN101925837A (zh) * 2007-11-30 2010-12-22 康宁股份有限公司 用于duv元件的致密均匀氟化物膜及其制备方法
US8674311B1 (en) * 2010-03-10 2014-03-18 Radiation Monitoring Devices, Inc. Polycrystalline lanthanum halide scintillator, devices and methods
CN102864412A (zh) * 2012-08-31 2013-01-09 西北工业大学 非晶氧化镧薄膜的制备方法
CN203834006U (zh) * 2014-05-08 2014-09-17 深圳市深新隆实业有限公司 钻晶膜的镀膜设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"FOUNDATIONS OF FILM PREPARATION TECHNOLOGIES: 4 TH EDITION", ISBN: 4-526-05503-4, article ASAMAKI, T., pages: 170 *
YANG, CHEN ET AL.: "Preparation of La2O3 Films by Ion Beam Assistant E-Beam Evaporation", RARE METAL MATERIALS AND ENGINEERING, vol. 36, no. suppl. 1, 31 August 2007 (2007-08-31), pages 928 - 930 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112831756A (zh) * 2020-12-31 2021-05-25 苏州佑伦真空设备科技有限公司 一种自动化的真空蒸镀方法
CN114351108A (zh) * 2022-01-17 2022-04-15 湘潭宏大真空技术股份有限公司 一种大面积真空镀膜的玻璃基片角度调节装置
CN114351108B (zh) * 2022-01-17 2023-04-25 湘潭宏大真空技术股份有限公司 一种大面积真空镀膜的玻璃基片角度调节装置
CN115044880A (zh) * 2022-07-27 2022-09-13 松山湖材料实验室 一种镀膜治具及镀膜方法

Also Published As

Publication number Publication date
CN103938163B (zh) 2017-06-23
CN103938163A (zh) 2014-07-23

Similar Documents

Publication Publication Date Title
WO2015168975A1 (zh) 钻晶膜的镀膜方法及其设备
JP5422132B2 (ja) アブソーバ層の候補および塗布技術
WO2014008703A1 (zh) 清洁装置
TWI570265B (zh) Film forming apparatus, base, and film forming method
JP7211793B2 (ja) 蒸発レート測定装置、蒸発レート測定装置の制御方法、成膜装置、成膜方法及び電子デバイスを製造する方法
TWI494174B (zh) 基板表面處理設備
CN107002219A (zh) 用于在处理腔室中掩蔽基板的掩模布置
WO2016206162A1 (zh) 一种玻璃放置和取出方法
KR20110032695A (ko) 유도가열 금속 증착원
TW202020969A (zh) 用於低粒子電漿蝕刻之方法及設備
WO2010041409A1 (ja) 基板管理方法
KR100380676B1 (ko) 정전 척의 파티클 발생 저감 방법
JP2004031181A (ja) パターン成膜装置およびパターン成膜方法
US20090142907A1 (en) Semiconductor manufacturing apparatus and manufacturing method of semiconductor device
TWI540233B (zh) 基座處理方法及基座處理用板
JP2020184575A (ja) ロボット用ハンド、ウェハ搬送用ロボット及びウェハ搬送装置
KR20160029081A (ko) 간접 냉각 디바이스에 적응된 냉각 플레이트를 구비하는 타깃
KR101625940B1 (ko) 글래스용 필름 부착장치 및 필름 부착방법
CN112010260B (zh) 一种键合设备、键合系统和键合方法
TW201321540A (zh) 真空成膜方法及真空成膜裝置
KR101961186B1 (ko) 웨이퍼 증착장치
JP4316265B2 (ja) 液晶表示パネルの製造方法
CN203834006U (zh) 钻晶膜的镀膜设备
TW201623660A (zh) 氧化釔膜結構物
WO2017094775A1 (ja) アーク式成膜装置および成膜方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14891503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14891503

Country of ref document: EP

Kind code of ref document: A1