WO2015166780A1 - 結晶シリコン系太陽電池、結晶シリコン系太陽電池モジュール、およびそれらの製造方法 - Google Patents

結晶シリコン系太陽電池、結晶シリコン系太陽電池モジュール、およびそれらの製造方法 Download PDF

Info

Publication number
WO2015166780A1
WO2015166780A1 PCT/JP2015/061160 JP2015061160W WO2015166780A1 WO 2015166780 A1 WO2015166780 A1 WO 2015166780A1 JP 2015061160 W JP2015061160 W JP 2015061160W WO 2015166780 A1 WO2015166780 A1 WO 2015166780A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
silicon
electrode layer
transparent electrode
main surface
Prior art date
Application number
PCT/JP2015/061160
Other languages
English (en)
French (fr)
Inventor
俊彦 宇都
足立 大輔
恒 宇津
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to US15/308,030 priority Critical patent/US10217887B2/en
Priority to JP2016515913A priority patent/JP6568518B2/ja
Priority to CN201580022564.8A priority patent/CN106463561B/zh
Priority to EP15785959.6A priority patent/EP3136451B1/en
Publication of WO2015166780A1 publication Critical patent/WO2015166780A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a crystalline silicon solar cell having a heterojunction on the surface of a crystalline silicon substrate and a method for manufacturing the same.
  • the present invention also relates to a crystalline silicon solar cell module and a method for manufacturing the same.
  • a crystalline silicon solar cell including a conductive silicon thin film on a single crystal silicon substrate is called a heterojunction solar cell.
  • a heterojunction solar cell having an intrinsic amorphous silicon thin film between a conductive silicon thin film and a crystalline silicon substrate is known as one of the forms of the crystalline silicon solar cell having the highest conversion efficiency. .
  • the heterojunction solar cell includes a reverse-conductivity-type silicon thin film on the light-receiving surface side of a one-conductivity-type crystalline silicon substrate and a single-conductivity-type silicon thin film on the back surface side.
  • a reverse-conductivity-type silicon thin film on the light-receiving surface side of a one-conductivity-type crystalline silicon substrate and a single-conductivity-type silicon thin film on the back surface side.
  • an n-type single crystal silicon substrate is used, and a p-type silicon thin film is formed on the light receiving surface side, and an n-type silicon thin film is formed on the back surface side.
  • Carriers generated at these semiconductor junctions are taken out of the solar cell through the electrodes.
  • a combination of a transparent conductive layer and a metal collector electrode is used as the electrode.
  • Patent Document 1 discloses a heterojunction solar cell in which a pattern collecting electrode is formed by plating on the light receiving surface side of the solar cell and a silver electrode is formed on the entire surface by sputtering on the back surface side. .
  • Patent Document 2 discloses a heterojunction solar cell in which a metal electrode is formed on the entire back surface by electrolytic plating.
  • a metal electrode In electrolytic plating, a metal electrode can be easily formed thick. Therefore, improvement in characteristics and productivity can be expected by reducing the resistance of the metal electrode.
  • a silicon-based thin film or a transparent electrode layer is formed on the side surface of the silicon substrate or the surface opposite to the film forming surface, and is formed on the front and back sides. It is known that a short circuit occurs between the transparent electrodes.
  • a metal electrode is formed on the back surface side by electrolytic plating in a state where a short circuit has occurred, a metal layer is deposited on the light receiving surface side, causing a new leak path and a light shielding loss. Therefore, it is necessary to remove the short circuit between the transparent electrode layers on the front and back before forming the metal electrode by electrolytic plating.
  • the metal component is simply removed from the plating solution within the silicon substrate simply by removing the short circuit between the transparent electrode layers on the front and back surfaces. It has been found that there are problems such as undesired metal precipitation resulting from diffusion other than the short circuit of the transparent electrode layers on the front and back surfaces.
  • the present invention forms a back metal electrode by an electrolytic plating method capable of reducing the process cost, and suppresses deposition of undesired metal, diffusion of metal into the silicon substrate, and the like.
  • An object is to improve the productivity and conversion efficiency of solar cells.
  • a plated metal electrode is formed by electrolytic plating on the back surface side in a state having a predetermined insulating region on the periphery on the light receiving surface side. According to this configuration, undesired metal deposition due to leakage can be suppressed during electrolytic plating.
  • an n-type crystalline silicon substrate having a first main surface, a second main surface and side surfaces is used.
  • a crystalline silicon-based solar cell includes an n-type crystalline silicon substrate; a first intrinsic silicon-based thin film, a p-type silicon-based thin film, and a first transparent electrode layer, which are sequentially formed on a first main surface of the n-type crystalline silicon substrate And a pattern collector electrode; a second intrinsic silicon-based thin film, an n-type silicon-based thin film, a second transparent electrode layer, and a plated metal electrode sequentially formed on the second main surface of the n-type crystalline silicon substrate; Is provided.
  • the plated metal electrode is formed in the entire region on the second transparent electrode layer.
  • At least one of the first intrinsic silicon-based thin film and the second intrinsic silicon-based thin film is formed on the entire surface of the crystalline silicon substrate on the first main surface, the entire surface on the second main surface, and all of the side surfaces. Is formed. That is, the entire surface of the crystalline silicon substrate is covered with the silicon-based thin film.
  • the crystalline silicon solar cell of the present invention has an insulating region in which the short circuit between the first transparent electrode layer and the second transparent electrode layer is removed at the periphery of the first main surface.
  • the method for producing a crystalline silicon solar cell includes a step of forming a first intrinsic silicon-based thin film on the entire region and side surface of the first main surface of the n-type crystalline silicon substrate (first intrinsic silicon-based thin film). Forming step); a step of forming a p-type silicon-based thin film on the first intrinsic silicon-based thin film (p-type silicon-based thin film forming step); first transparent in all regions other than the peripheral edge on the first main surface side; A step of forming an electrode layer (first transparent electrode layer forming step); a step of forming a second intrinsic silicon-based thin film on all regions and side surfaces of the second main surface of the n-type crystalline silicon substrate (first step) Bi-intrinsic silicon-based thin film forming step); a step of forming an n-type silicon-based thin film on the second intrinsic silicon-based thin film (n-type silicon-based thin film forming step); and a second transparent on the n-type silicon-based thin film A second transparent electrode layer
  • a plating metal electrode is formed on the entire surface of the second transparent electrode layer by electroplating with the above-mentioned insulating region on the periphery of the first main surface (plating). Metal electrode forming step) is performed.
  • the film formation is performed in a state where the periphery of the first main surface is covered with a mask, so that the first main surface side is covered with the first main surface.
  • One transparent electrode layer is formed. Thereby, said insulation area
  • the second transparent electrode layer is also formed on the entire surface and the side surface on the second main surface side.
  • film formation is performed without using a mask, so that the second transparent electrode layer is formed on the entire surface and side surfaces of the second main surface.
  • the crystalline silicon solar cell of the present invention for example, in the p-type silicon-based thin film forming step and the n-type silicon-based thin film forming step, film formation is performed without using a mask, so that the first main surface is formed.
  • a p-type silicon-based thin film is formed on the entire surface and side surfaces of the first n-type silicon, and an n-type silicon-based thin film is formed on the entire surface and side surfaces of the second main surface.
  • it is preferable that the p-type silicon-based thin film is formed before the n-type silicon-based thin film is formed.
  • the p-type silicon-based thin film is positioned closer to the n-type crystalline silicon substrate than the n-type silicon-based thin film. Precipitation is further suppressed.
  • a base metal layer may be formed on the entire surface of the second transparent electrode layer after the second transparent electrode layer is formed and before the plated metal electrode is formed.
  • a plated electrode layer is formed on the base metal layer by electrolytic plating.
  • the crystalline silicon solar cell of the present invention has a plated metal electrode on the entire back surface side, the light transmitted without being absorbed by the crystalline silicon substrate is reflected by the metal electrode on the back surface, thereby improving the light utilization efficiency. it can. Further, since the plated metal electrode is formed by electrolytic plating, the electrode can be easily formed thick. Furthermore, since electrolytic plating is performed in a state having a predetermined insulating region, undesired metal deposition, metal diffusion into the silicon substrate, and the like are suppressed. Therefore, according to the present invention, the productivity and conversion efficiency of the solar cell can be improved.
  • FIG. 1 is a schematic cross-sectional view of a crystalline silicon solar cell according to an embodiment of the present invention.
  • An n-type single crystal silicon substrate is used in the crystalline silicon solar cell of the present invention.
  • the crystalline silicon substrate 1 has a first main surface 51, a second main surface 52, and a side surface 55.
  • the crystalline silicon solar cell of the present invention is a so-called heterojunction solar cell.
  • the first intrinsic silicon thin film 2 the p type silicon thin film 3
  • the first The second intrinsic silicon-based thin film 7, the n-type silicon-based thin film 8, and the second transparent electrode layer 9 are provided on the second main surface 52 of the n-type crystalline silicon substrate 1.
  • a plated metal electrode 21 On the first main surface 51 of the n-type crystalline silicon substrate 1, the first intrinsic silicon thin film 2, the p type silicon thin film 3, the first The second intrinsic silicon-based thin film 7, the n-type silicon-based thin film 8, and the second transparent electrode layer 9 are provided on the second main surface 52 of the n-type crystalline silicon substrate 1. , And a plated metal electrode 21.
  • an electron having a smaller effective mass and scattering cross section generally has a higher mobility, and therefore an n-type single crystal silicon substrate is used as the crystalline silicon substrate 1.
  • the heterojunction on the light-receiving surface side that absorbs the most light incident on the crystalline silicon substrate is the reverse junction, a strong electric field is provided to efficiently separate and recover electron-hole pairs. it can. Therefore, the conversion efficiency is enhanced by using the first main surface side including the p-type silicon-based thin film 3 as the light receiving surface.
  • the crystalline silicon substrate 1 preferably has a texture structure (not shown) on the surface from the viewpoint of light confinement.
  • a first intrinsic silicon thin film 2 and a p-type silicon thin film 3 are formed as silicon thin films.
  • a second intrinsic silicon thin film 7 and an n-type silicon thin film 8 are formed as silicon thin films.
  • i-type hydrogenated amorphous silicon composed of silicon and hydrogen is preferably used.
  • surface passivation can be effectively performed while suppressing impurity diffusion into the crystalline silicon substrate.
  • the conductive type (p-type or n-type) silicon-based thin films 3 and 8 an amorphous silicon-based thin film, a microcrystalline silicon-based thin film (thin film including amorphous silicon and crystalline silicon), or the like is used.
  • silicon-based thin film silicon-based alloys such as silicon oxide, silicon carbide, and silicon nitride can be used in addition to silicon.
  • the conductive silicon thin film is preferably an amorphous silicon thin film.
  • Transparent electrode layers 4 and 9 are formed on the conductive silicon thin films 3 and 8.
  • a conductive metal oxide such as zinc oxide, indium oxide, tin oxide, or a composite metal oxide thereof is used.
  • indium-based oxides are preferable, and those containing indium tin oxide (ITO) as a main component are particularly preferable.
  • the transparent electrode layer may be a single layer or a laminated structure composed of a plurality of layers. From the viewpoint of transparency, conductivity, and light reflection reduction, the film thickness of the first transparent electrode layer 4 and the second transparent electrode layer 9 is preferably about 10 nm to 140 nm.
  • “having a specific component as a main component” means that the content of the component is more than 50% by weight, preferably 70% by weight or more, and more preferably 90% by weight or more. .
  • the silicon-based thin films 2, 3, 7, and 8 and the transparent electrode layers 4 and 9 dry processes such as CVD, sputtering, and vapor deposition are preferable.
  • the silicon-based thin film is preferably formed by a plasma CVD method.
  • a physical vapor deposition method such as a sputtering method, a CVD (MOCVD) method using a reaction between an organometallic compound and oxygen or water is preferable.
  • the order of film formation of these layers is not particularly limited. From the viewpoint of improving productivity, the first intrinsic silicon-based thin film 2 and the p-type silicon-based thin film 3 are continuously formed using the same film forming apparatus. Preferably, it is done. Similarly, it is preferable that the second intrinsic silicon-based thin film 7 and the n-type silicon-based thin film 8 are continuously formed. The first intrinsic silicon thin film 2 and the p-type silicon thin film 3 are formed on the first main surface, and the second intrinsic silicon thin film 7 and the n-type silicon thin film 8 are formed on the second main surface. Either may be the first in the order of film formation.
  • the transparent electrode layers 4 and 9 may be formed after all the silicon-based thin films 2, 3, 7, and 8 have been formed. On one main surface, an intrinsic silicon-based thin film and a conductive type may be formed. After forming the silicon thin film and the transparent electrode layer, an intrinsic silicon thin film, a conductive silicon thin film and a transparent electrode layer may be formed on the other main surface. In order to enhance the passivation effect on the side surface of the crystalline silicon substrate, it is preferable that the transparent electrode layers 4 and 9 are formed after forming all the silicon-based thin films 2, 3, 7 and 8.
  • the silicon-based thin films 2, 3, 7, and 8 and the transparent electrode layers 4 and 9 on the crystalline silicon substrate 1 in order to change the film-forming surface, it is necessary to turn the substrate upside down. Can be a factor of lowering. Therefore, it is preferable that the number of changes of the film forming surface is as small as possible.
  • the film-forming surface is changed, and an intrinsic silicon-based thin film and a conductive type are formed on the other main surface.
  • a silicon-based thin film is formed, a transparent electrode layer is formed on the other main surface without changing the film-forming surface, and then the film-forming surface is changed to be transparent on the one main surface. It is preferable to form an electrode layer.
  • the p-type silicon thin film 3 is formed before the n-type silicon thin film 8, the first intrinsic silicon thin film 2, the p-type silicon thin film 3, the second intrinsic silicon thin film 7, n
  • the order of forming the type silicon-based thin film 8, the second transparent electrode layer 9, and the first transparent electrode layer 4 is preferable.
  • FIG. 2 shows the formation of the first intrinsic silicon thin film 2 and the p type silicon thin film 3 on the first main surface of the n-type crystalline silicon substrate 1, and then the second intrinsic silicon thin film on the second main surface.
  • 7 is a cross-sectional view schematically showing the configuration in the vicinity of the peripheral edge of the crystalline silicon substrate when 7 and the n-type silicon-based thin film 8 are formed and then the second transparent electrode layer 9 and the first transparent electrode layer 4 are formed. is there.
  • the “periphery” refers to a peripheral edge of the main surface and a region at a predetermined distance (for example, about several tens of ⁇ m to several mm) from the peripheral edge.
  • the “peripheral portion” refers to a region including the peripheral edge and the side surface of the first main surface and the second main surface.
  • the electrode layer 9 is also formed on the side surface of the crystalline silicon substrate 1 and the periphery of the first main surface by wraparound during film formation.
  • the silicon-based thin films 2 and 3 and the first transparent electrode layer 4 formed on the first main surface of the crystalline silicon substrate 1 are formed on the side surfaces and the second main surface of the silicon substrate 1 by wraparound during film formation. It is also formed on the periphery. Therefore, in the form shown in FIG. 2, the first transparent electrode layer 4 and the second transparent electrode layer 9 are short-circuited.
  • the plated metal electrode 21 is formed on the second transparent electrode layer 9 by the electrolytic plating method in a state where the first transparent electrode layer 4 and the second transparent electrode layer 9 are short-circuited
  • the first main surface Metal is also deposited on the first transparent electrode layer 4 on the light receiving surface side. Therefore, it is necessary to form the plated metal electrode on the second main surface side in a state where the first transparent electrode layer 4 and the second transparent electrode layer 9 are not short-circuited.
  • heterojunction solar cells by forming a film with the periphery of the substrate covered with a mask or the like and preventing adhesion to the periphery and side surfaces, a method that does not cause a short circuit on the front and back, etching processing, etc. A method for removing the short-circuit portion is known. Any method can be employed in the present invention.
  • the plated metal electrode 21 is formed by electrolytic plating in a state where an insulating region in which neither the first transparent electrode layer nor the second transparent electrode layer is formed is formed.
  • an insulating region in which neither the first transparent electrode layer nor the second transparent electrode layer is formed is formed.
  • FIGS. 3A to 3D are schematic cross-sectional views showing the film forming state in the vicinity of the peripheral edge of the substrate before the formation of the plated metal electrode in the process of manufacturing the crystalline silicon solar cell of the present invention.
  • at least the first intrinsic silicon-based thin film 2 is formed in the insulating regions 41 to 44 at the periphery of the first main surface, and the first transparent electrode layer 4 and the second transparent electrode layer 9 are Also not formed.
  • the entire surface on the first main surface, the entire surface and the side surface on the second main surface of the crystalline silicon substrate 1 are covered with the silicon-based thin film, and the first An insulating region in which a short circuit between the first transparent electrode layer and the second transparent electrode layer is removed is formed on the periphery of the main surface.
  • the first intrinsic silicon-based thin film 2 and the p-type silicon-based thin film 3 are formed on the entire surface and the side surface on the first main surface side, and the second intrinsic silicon-based thin film 7 and the n-type silicon are formed.
  • the system thin film 8 and the second transparent electrode layer 9 are formed on the entire surface and the side surface on the second main surface side.
  • the first transparent electrode layer 4 is formed in the entire region other than the peripheral edge on the first main surface side, and is not formed on the side surface.
  • both the first transparent electrode layer 4 and the second transparent electrode layer 9 are formed on the periphery of the first main surface as shown in FIG. A non-insulating region 41 is formed.
  • an insulating region 42 can be formed on the periphery of the main surface. Even when the p-type silicon-based thin film is formed, if the film is formed in a state where the periphery of the first main surface is covered with a mask, as shown in FIGS. Insulating regions 43 and 44 where the intrinsic silicon-based thin film 2 is formed on the periphery and the transparent electrode layer and the conductive silicon-based thin film are not formed can be formed.
  • the first main surface side (the first It is possible to prevent metal from being deposited on the transparent electrode layer 4). Furthermore, since at least the intrinsic silicon-based thin film 2 is formed on the insulating region, undesired metal deposition due to leakage is also suppressed.
  • FIGS. 4A to 4E related to the comparative example metal deposition due to leakage when forming a metal electrode on the second main surface by electrolytic plating will be described.
  • a method of removing leakage between the first transparent electrode layer and the second transparent electrode layer there is a method of cleaving and removing the peripheral portion of the substrate by laser irradiation.
  • the insulating region 91 is in a state where the side surface of the n-type crystalline silicon substrate 1 is exposed.
  • FIG. 4B the groove reaches the silicon substrate 1, and the n-type crystalline silicon substrate 1 is exposed in the insulating region 92.
  • the second transparent electrode layer 9 when the second transparent electrode layer 9 is energized and electrolytic plating is performed with the n-type crystalline silicon substrate 1 exposed, the second transparent electrode layer 9 through the n-type silicon thin film 8 Since electrons are also supplied to the n-type crystalline silicon substrate 1, plating metal is deposited from the insulating regions 91 and 92 that are exposed portions of the n-type crystalline silicon substrate 1. Such undesired metal deposition causes a new short circuit and a leakage path, and causes a reduction in the curve factor and open circuit voltage of the solar cell.
  • the metal when the metal is deposited on the first main surface, light shielding by the metal occurs, and the amount of light taken into the n-type crystalline silicon substrate 1 from the light receiving surface (first main surface) side is reduced, so that the solar cell It causes the current density to decrease. Further, when the exposed portion of the silicon substrate comes into contact with the plating solution during electroplating, metal ions in the plating solution diffuse into the silicon substrate, which causes deterioration in conversion characteristics.
  • the silicon-based thin films 2 and 3 and the transparent electrode layer 4 are formed with the periphery of the first main surface covered, and the silicon-based thin film 7 with the periphery of the second main surface covered. , 8 and the transparent electrode layer 9 are formed, as shown in FIG. 4C, a silicon substrate is formed on the side surface, the peripheral edge of the first main surface, and the peripheral edge of the second main surface. Exposed insulating regions 93, 94, 95 are formed.
  • the silicon-based thin films 2 and 3 and the transparent electrode layer 4 are formed in a state where the periphery on the first main surface side is covered, and the silicon-based thin films 7 and 8 and the transparent electrode layer on the second main surface side are formed.
  • an insulating region 96 in which the silicon substrate is exposed is formed on the periphery of the first main surface, as shown in FIG. Also in these forms, when the second transparent electrode layer 9 is energized and electrolytic plating is performed, metal deposition in the insulating region and diffusion of metal ions in the plating solution into the silicon substrate occur.
  • a mask is not used for forming the silicon-based thin films 2 and 3 and the transparent electrode layer 4 on the first main surface side and forming the silicon-based thin films 7 and 8 on the second main surface side.
  • the second transparent electrode layer 9 is formed with the periphery of the main surface covered with a mask, as shown in FIG. 4E, the second intrinsic silicon is formed on the periphery of the second main surface.
  • the thin film 7 and the n-type silicon thin film 8 are formed, and the insulating region 97 where the transparent electrode layer 9 is not formed is formed.
  • the second transparent electrode layer 9 when the second transparent electrode layer 9 is energized and subjected to electrolytic plating in a state having an insulating region only on the second main surface side and no insulating region on the first main surface side, Electrons are supplied from the second transparent electrode layer 9 to the insulating region 97 and the first transparent electrode layer 4 through the n-type silicon thin film 8, and plating metal is deposited. Further, when the deposition of the plating metal on the insulating region 97 proceeds, the second transparent electrode layer 9 and the first transparent electrode layer 4 are brought into conduction through the deposited metal, causing a short circuit between the front and back transparent electrode layers.
  • the p-type silicon-based thin film 3 is formed before the n-type silicon-based thin film 8, so that the p-type is formed on the side surface of the n-type crystalline silicon substrate 1.
  • a form in which the silicon-based thin film 3 is located closer to the n-type crystalline silicon substrate 1 than the n-type silicon-based thin film 8 is illustrated.
  • the n-type silicon thin film 8 is formed first, and the n-type silicon thin film 8 is closer to the n-type crystalline silicon substrate 1 than the p-type silicon thin film 3. May be located.
  • the second transparent electrode layer 9 is also formed on the entire surface and side surface of the second main surface side without using a mask when forming the second transparent electrode layer 9.
  • the silicon-based thin film is protected from the plating solution by the conductive oxide constituting the transparent electrode layer. Therefore, it is possible to suppress deterioration of characteristics caused by alloying of silicon, diffusion of metal components in the plating solution into the silicon substrate, or the like.
  • the plated metal electrode 21 is formed on the side surface of the substrate by electrolytic plating. It is suppressed.
  • the second transparent electrode layer since it is not necessary to use a mask when forming the second transparent electrode layer 9, mask coating and alignment processes are not required, and production efficiency can be improved. Furthermore, since the second transparent electrode layer is also formed on the periphery of the second main surface, the carrier recovery efficiency on the second main surface side is increased.
  • the p-type silicon thin film 3 is formed on the entire surface and side surfaces of the first main surface without using a mask when forming the p-type silicon thin film 3.
  • the production efficiency can be further improved.
  • the film is formed with the peripheral edge of the first main surface covered with a mask when the p-type silicon thin film 3 is formed, as shown in FIG. Since the leakage with the silicon-based thin film 8 can be prevented, the conversion efficiency can be improved.
  • the plated metal is formed on the second transparent electrode layer 9 by electrolytic plating. Electrode 21 is formed.
  • the plated metal electrode 21 is formed on the entire surface on the second main surface side, the light reaching the second main surface side without being absorbed by the silicon substrate is reflected and reincident on the silicon substrate, Light utilization efficiency can be increased.
  • silicon has a small absorption coefficient from the near infrared to the long wavelength side, the use efficiency of light is improved by using a material with high light reflectance in the near infrared to infrared wavelength region as the plated metal electrode. It is done.
  • the plated metal electrode 21 on the second transparent electrode layer 9 mainly composed of conductive metal oxide the adhesion between the silicon-based thin film and the electrode can be improved and the contact resistance can be reduced.
  • the second transparent electrode layer 9 diffusion of metal components from the plated metal electrode 21 or the base metal layer 25 to the silicon-based thin film or silicon substrate is suppressed, so that conversion characteristics can be improved.
  • a base metal layer 25 may be formed on the second transparent electrode layer 9 before the plating metal electrode is formed.
  • the surface conductivity can be increased and the efficiency of electrolytic plating can be improved.
  • the second transparent electrode layer 9 can be protected from the plating solution by the base metal layer 25.
  • the second transparent electrode layer 9 is an amorphous conductive metal oxide, since the durability against the plating solution is low, in order to prevent the second transparent electrode layer 9 from being eroded by the plating solution, A metal layer 25 is preferably formed.
  • the metal material constituting the base metal layer 25 copper, nickel, tin, aluminum, chromium, silver, gold, zinc, lead, palladium, or the like, or an alloy thereof can be used.
  • the formation method of the base metal layer 25 is not specifically limited, In order to coat
  • the film thickness of the base metal layer 25 is not particularly limited, but is preferably 200 nm or less, more preferably 100 nm or less, and even more preferably 60 nm or less from the viewpoint of productivity. Further, the film thickness of the base metal layer 25 is preferably 50% or less, more preferably 30% or less, and still more preferably 20% or less of the film thickness of the plated metal electrode. On the other hand, from the viewpoint of providing the base metal layer itself with high conductivity and preventing exposure of the second transparent electrode layer due to pinholes or the like, the thickness of the base metal layer 25 is preferably 10 nm or more, more preferably 20 nm or more. Preferably, 30 nm or more is more preferable.
  • the material of the plated metal electrode 21 is not particularly limited as long as it can be formed by electrolytic plating.
  • the plated metal electrode 21 copper, nickel, tin, aluminum, chromium, silver, gold, zinc, lead, palladium, or an alloy thereof can be formed.
  • the metal constituting the plated metal electrode is preferably copper or an alloy containing copper as a main component. .
  • the plating metal electrode is formed by immersing the anode in a plating solution and bringing the second transparent electrode layer 9 (or the underlying metal layer 25 formed on the surface) into contact with the plating solution and the second transparent electrode. This is done by applying a voltage between the electrode layers.
  • the plated metal electrode mainly composed of copper is formed by, for example, acidic copper plating.
  • the plating solution used for acidic copper plating contains copper ions, and a known composition mainly composed of copper sulfate, sulfuric acid, water, or the like can be used. Copper can be deposited on the second transparent electrode layer 9 by applying a current of about 0.1 to 10 A / dm 2 to the plating solution.
  • the plating time is appropriately set according to the electrode area, current density, cathode current efficiency, set film thickness, and the like.
  • the plated metal electrode may have a laminated structure of a plurality of layers. For example, after forming a first plating layer made of a material having high conductivity such as copper, by forming a metal layer that has better chemical stability than the first plating layer, it is possible to achieve low resistance and chemical stability. An excellent back metal electrode can be formed.
  • the plating solution After forming the plated metal electrode by electrolytic plating, it is preferable to remove the plating solution remaining on the surface.
  • the plating solution can be removed, for example, by removing the plating solution remaining on the surface of the substrate taken out from the plating tank by air-blow type air cleaning, washing with water, and then blowing off the cleaning solution by air blowing.
  • the amount of plating solution brought in at the time of rinsing can be reduced. Therefore, it is possible to reduce the amount of cleaning liquid required for water washing, and also reduce the waste liquid processing time generated by water washing, thereby reducing the environmental load and cost of washing and improving the productivity of solar cells. it can.
  • a pattern collecting electrode 11 is formed on the first transparent electrode layer 4 on the first main surface.
  • the method for forming the pattern collecting electrode is not particularly limited, and can be formed by a plating method, a printing method such as an ink jet method or a screen, or a conductive wire bonding method.
  • a printing method such as an ink jet method or a screen
  • a conductive wire bonding method for example, in the screen printing method, a process of printing a conductive paste composed of metal particles and a resin binder by screen printing is preferably used.
  • the pattern collecting electrode can be formed by performing plating in a state where the first transparent electrode layer is coated with a resist having an opening corresponding to the pattern shape of the collecting electrode.
  • the pattern collector electrode 11 is formed by depositing metal using the opening of the insulating layer formed on the base metal layer as a starting point of plating. May be formed.
  • the pattern collecting electrode 11 is formed by electrolytic plating, the first transparent electrode layer and the second transparent electrode layer are short-circuited in order to suppress undesired metal deposition on the side surface and the second main surface. It is preferable that the electrolytic plating is performed in a state in which the insulating region is not formed (the state where the insulating region is formed as described above).
  • the formation of the pattern collecting electrode 11 on the first main surface may be performed either before or after the formation of the plated metal electrode 21 on the second main surface.
  • the pattern collector electrode 11 can be formed simultaneously with the formation of the plated metal electrode 21.
  • the first transparent electrode layer and the second transparent electrode layer are not short-circuited, power is supplied to each of the first main surface side and the second main surface side, whereby the plated metal layer 21 and the pattern collection are collected.
  • the electrodes can be formed simultaneously. According to this method, the number of electrode layer forming steps by plating can be reduced, and productivity can be improved.
  • FIG. 7 is a schematic cross-sectional view showing a solar cell module according to an embodiment.
  • the solar cell module includes a wiring member 150 for electrically connecting the solar cell and an external circuit.
  • a plurality of solar cells 100 are electrically connected via an interconnector 155.
  • a solar cell string in which a plurality of solar cells 100 are connected to each other via an interconnector 155 is produced.
  • the collector electrode 11 of one solar cell and the plated metal layer 21 of the solar cell adjacent thereto are electrically connected via the interconnector 155.
  • a wiring member 150 is connected to the solar cells 100 at both ends constituting the solar cell string.
  • the electrode of the solar cell and the wiring member are connected via an appropriate adhesive (not shown) or the like.
  • the solar cell 100 is sandwiched between the protective materials 131 and 132 through the sealing material 120 to form a solar cell module.
  • a protective material 131, 132 is disposed on each of the light receiving surface side and the back surface side of the solar cell 100 via a sealing material to form a laminated body, and then the laminated body is heated under a predetermined condition to be sealed.
  • the material 120 is cured and sealing is performed.
  • a solar cell module can be produced by attaching an Al frame (not shown) or the like.
  • the light-receiving surface side protective material 131 light-transmitting and water-blocking glass, light-transmitting plastic, or the like is used.
  • the back surface side protective material 132 a resin film such as PET or a laminated film in which a metal foil such as aluminum is sandwiched between resin films is used.
  • the sealing material 120 seals the solar cell 100 between the front and back protective materials 131 and 132.
  • a translucent resin such as EVA, EEA, PVB, silicon, urethane, acrylic, or epoxy can be used.
  • the solar cell module when the solar cell is sealed, moisture or the like from the outside is prevented from entering the inside of the solar cell, and the long-term reliability of the solar cell module can be improved.
  • the protective material 131,132 is closely laminated
  • a silicon-based thin film is also formed on the side surface of the crystalline silicon substrate 1, intrusion of moisture and the like from the side surface of the solar cell into the crystalline silicon substrate is suppressed.
  • the plated metal electrode 21 is also formed on the side surface of the solar cell, it is possible to further suppress the intrusion of moisture and the like from the side surface, thereby further improving the long-term reliability of the solar cell module. Can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】不所望の金属の析出やシリコン基板内への金属の拡散等を抑制しつつ、裏面側の全面にメッキ金属電極層が形成された、結晶シリコン系太陽電池を提供する。 【解決手段】本発明の結晶シリコン系太陽電池は、n型結晶シリコン基板(1)の第一の主面(51)上に第一真性シリコン系薄膜(2)、p型シリコン系薄膜(3)、第一透明電極層(4)、およびパターン集電極(11)を備え、第二の主面(52)上に第二真性シリコン系薄膜(7)、n型シリコン系薄膜(8)、第二透明電極層(9)、およびメッキ金属電極(21)を備える。第一の主面の周縁に、第一透明電極層(4)と第二透明電極層(9)との短絡が除去された絶縁領域を有する。メッキ金属電極(21)は、第二透明電極層(9)上の全領域に形成されている。

Description

結晶シリコン系太陽電池、結晶シリコン系太陽電池モジュール、およびそれらの製造方法
 本発明は、結晶シリコン基板表面にヘテロ接合を有する結晶シリコン系太陽電池およびその製造方法に関する。また、本発明は、結晶シリコン系太陽電池モジュールおよびその製造方法に関する。
 単結晶シリコン基板上に、導電型シリコン系薄膜を備える結晶シリコン系太陽電池は、ヘテロ接合太陽電池と呼ばれている。中でも、導電型シリコン系薄膜と結晶シリコン基板との間に真性の非晶質シリコン薄膜を有するヘテロ接合太陽電池は、変換効率の最も高い結晶シリコン系太陽電池の形態の一つとして知られている。
 ヘテロ接合太陽電池は、一導電型結晶シリコン基板の受光面側に逆導電型シリコン系薄膜を備え、裏面側に一導電型シリコン系薄膜を備える。一般には、n型単結晶シリコン基板が用いられ、その受光面側にp型シリコン系薄膜、裏面側にn型シリコン系薄膜が形成される。これらの半導体接合部分で生じたキャリアは、電極を介して太陽電池の外部へ取り出される。電極としては、一般に、透明導電層と、金属集電極との組み合わせが用いられる。
 金属集電極は不透明であるため、太陽電池の受光面積を拡大するために、受光面側には、ライン状にパターン化された金属集電極が用いられる。一方、裏面側には金属電極を全面に形成し、結晶シリコン基板に吸収されずに透過した光を裏面側の金属電極で反射させ結晶シリコン基板内に再入射させることにより、光利用効率を高めることが検討されている。例えば、特許文献1には、太陽電池の受光面側にはメッキ法によりパターン集電極が形成され、裏面側にはスパッタ法により全面に銀電極が形成されたヘテロ接合太陽電池が開示されている。また、特許文献2には、裏面側の全面に電解メッキにより金属電極が形成されたヘテロ接合太陽電池が開示されている。電解メッキは、金属電極を容易に厚く形成できるため、金属電極の低抵抗化による特性向上や生産性向上が期待できる。
WO2013/161127号国際公開パンフレット WO2013/001861号国際公開パンフレット
 特許文献1にも開示されているように、ヘテロ接合太陽電池の製造においては、シリコン系薄膜や透明電極層がシリコン基板の側面や製膜面の反対面にも回り込んで製膜され、表裏の透明電極同士での短絡が生じることが知られている。短絡が生じた状態で、電解メッキにより裏面側に金属電極を形成すると、受光面側にも金属層が析出し、新たなリーク経路の発生や、遮光ロス等の原因となる。そのため、電解メッキにより金属電極を形成する前に、表裏の透明電極層の短絡を除去する必要がある。
 本発明者らの検討によると、ヘテロ接合太陽電池の裏面側にメッキ法により金属電極を形成する場合、単に表裏の透明電極層の短絡を除去するのみでは、メッキ液から金属成分がシリコン基板内に拡散したり、表裏の透明電極層の短絡以外のリークに起因する不所望の金属析出を生じる等の問題があることが判明した。
 このような課題に鑑み、本発明は、プロセスコストを低減可能な電解メッキ法により裏面金属電極を形成し、かつ不所望の金属の析出やシリコン基板内への金属の拡散等を抑制することにより、太陽電池の生産性および変換効率を向上させることを目的とする。
 本発明においては、受光面側の周縁に、所定の絶縁領域を有する状態で、裏面側に電解メッキによりメッキ金属電極が形成される。当該構成によれば、電解メッキの際に、リークに起因する不所望の金属析出を抑制できる。
 本発明の結晶シリコン系太陽電池には、第一の主面、第二の主面および側面を有するn型結晶シリコン基板が用いられる。結晶シリコン系太陽電池は、n型結晶シリコン基板と;n型結晶シリコン基板の第一の主面上に順次形成された、第一真性シリコン系薄膜、p型シリコン系薄膜、第一透明電極層、およびパターン集電極と;n型結晶シリコン基板の第二の主面上に順次形成された、第二真性シリコン系薄膜、n型シリコン系薄膜、第二透明電極層、およびメッキ金属電極と、を備える。メッキ金属電極は、第二透明電極層上の全領域に形成されている。
 結晶シリコン基板の第一の主面上の全面、第二の主面上の全面および側面の全ての領域は、第一真性シリコン系薄膜および第二真性シリコン系薄膜のうちの少なくともいずれか一方が形成されている。すなわち、結晶シリコン基板は、その全表面がシリコン系薄膜により覆われている。本発明の結晶シリコン系太陽電池は、第一の主面の周縁に、第一透明電極層と第二透明電極層との短絡が除去された絶縁領域を有する。
 本発明の結晶シリコン系太陽電池の製造方法は、n型結晶シリコン基板の第一の主面上の全領域および側面に、第一真性シリコン系薄膜が形成される工程(第一真性シリコン系薄膜形成工程);第一真性シリコン系薄膜上に、p型シリコン系薄膜が形成される工程(p型シリコン系薄膜形成工程);第一の主面側の周縁以外の全領域に、第一透明電極層が形成される工程(第一透明電極層形成工程);n型結晶シリコン基板の第二の主面上の全領域および側面に、第二真性シリコン系薄膜が製膜される工程(第二真性シリコン系薄膜形成工程);第二真性シリコン系薄膜上に、n型シリコン系薄膜が形成される工程(n型シリコン系薄膜形成工程);およびn型シリコン系薄膜上に、第二透明電極層が製膜される第二透明電極層形成工程、を有する。さらに、これら各工程の実施後に、第一の主面の周縁に上記の絶縁領域を有する状態で、電解メッキ法により、第二透明電極層上の全面にメッキ金属電極が形成される工程(メッキ金属電極形成工程)が実施される。
 例えば、第一透明電極層形成工程において、第一の主面の周縁がマスクで被覆された状態で製膜が行われることにより、第一の主面側の周縁以外の全領域に、前記第一透明電極層が形成される。これにより、第一の主面の周縁に上記の絶縁領域を形成できる。
 本発明の結晶シリコン太陽電池の一形態では、第二透明電極層が、第二の主面側の全面および側面にも形成されている。例えば、第二透明電極層形成工程において、マスクを用いることなく製膜が行われることにより、第二の主面上の全面および側面に、第二透明電極層が形成される。
 本発明の結晶シリコン太陽電池の一形態では、例えば、p型シリコン系薄膜形成工程およびn型シリコン系薄膜形成工程において、マスクを用いることなく製膜が行われることにより、第一の主面上の全面および側面にp型シリコン系薄膜が形成され、第二の主面上の全面および側面にn型シリコン系薄膜が形成される。当該形態では、n型シリコン系薄膜形成よりも、p型シリコン系薄膜形成が先に行われることが好ましい。これにより、n型結晶シリコン基板の側面において、n型シリコン系薄膜よりもp型シリコン系薄膜の方が、n型結晶シリコン基板に近い側に位置する、この場合、リークによる不所望の金属の析出がさらに抑制される。
 第二透明電極層形成後、メッキ金属電極形成よりも前に、第二透明電極層上の全面に下地金属層が形成されてもよい。この場合、下地金属層上に、電解メッキによりメッキ電極層が形成される。
 本発明の結晶シリコン系太陽電池は、裏面側の全面にメッキ金属電極を有するため、結晶シリコン基板に吸収されずに透過した光を裏面側の金属電極で反射させ、光利用効率を高めることができる。また、メッキ金属電極が電解メッキ法により形成されるため、電極を容易に厚く形成できる。さらには、所定の絶縁領域を有する状態で電解メッキが行われるため、不所望の金属の析出やシリコン基板内への金属の拡散等が抑制される。そのため、本発明に拠れば、太陽電池の生産性および変換効率を向上できる。
本発明の結晶シリコン系太陽電池の一形態を示す模式的断面図である。 結晶シリコン基板上にシリコン系薄膜および透明電極層を形成後の、基板の周縁部付近の製膜状態の一例を表す模式的断面図である。 本発明の結晶シリコン太陽電池の製造過程(メッキ金属電極形成前)における基板の周縁部付近の製膜状態を表す模式的断面図である。 比較例の結晶シリコン太陽電池の製造過程(メッキ金属電極形成前)における基板の周縁部付近の製膜状態を表す模式的断面図である。 本発明の結晶シリコン太陽電池の製造過程(メッキ金属電極形成前)における基板の周縁部付近の製膜状態を表す模式的断面図であり、p型シリコン系薄膜よりもn型シリコン系薄膜の製膜が先に実施された場合を表している。 本発明の結晶シリコン太陽電池の製造過程(メッキ金属電極形成前)における基板の周縁部付近の製膜状態を表す模式的断面図であり、透明電極層上に下地金属層が形成された場合を表している。 一実施形態にかかる太陽電池モジュールの模式的断面図である。
 図1は、本発明の一実施形態にかかる結晶シリコン系太陽電池の模式的断面図である。本発明の結晶シリコン系太陽電池には、n型単結晶シリコン基板が用いられる。結晶シリコン基板1は、第一の主面51と第二の主面52と側面55とを有している。
 本発明の結晶シリコン系太陽電池は、いわゆるヘテロ接合太陽電池であり、n型結晶シリコン基板1の第一の主面51上に、第一真性シリコン系薄膜2、p型シリコン系薄膜3、第一透明電極層4およびパターン集電極11を備え、n型結晶シリコン基板1の第二の主面52上に、第二真性シリコン系薄膜7、n型シリコン系薄膜8、第二透明電極層9、およびメッキ金属電極21を備える。
 正孔と電子とを比較した場合、有効質量および散乱断面積の小さい電子の方が、一般的に移動度が大きいため、結晶シリコン基板1としてn型単結晶シリコン基板が用いられる。ヘテロ接合太陽電池では、結晶シリコン基板へ入射した光が最も多く吸収される受光面側のへテロ接合を逆接合とすれば、強い電場が設けられ、電子・正孔対を効率的に分離回収できる。そのため、p型シリコン系薄膜3を備える第一の主面側を受光面とすることにより、変換効率が高められる。
 結晶シリコン基板1は、光閉じ込めの観点から、表面にテクスチャ構造(不図示)を有することが好ましい。結晶シリコン基板1の第一の主面上には、シリコン系薄膜として、第一真性シリコン系薄膜2およびp型シリコン系薄膜3が形成される。結晶シリコン基板1の第二の主面上には、シリコン系薄膜として、第二真性シリコン系薄膜7およびn型シリコン系薄膜8が形成される。
 真性シリコン系薄膜2,7としては、シリコンと水素で構成されるi型水素化非晶質シリコンが好ましく用いられる。結晶シリコン基板上に、i型水素化非晶質シリコンが製膜されることにより、結晶シリコン基板への不純物拡散を抑えつつ表面パッシベーションを有効に行うことができる。
 導電型(p型またはn型)シリコン系薄膜3,8としては、非晶質シリコン系薄膜、微結晶シリコン系薄膜(非晶質シリコンと結晶質シリコンとを含む薄膜)等が用いられる。シリコン系薄膜としては、シリコン以外に、シリコンオキサイド、シリコンカーバイド、シリコンナイトライド等のシリコン系合金を用いることもできる。これらの中でも、導電型シリコン系薄膜は、非晶質シリコン薄膜であることが好ましい。
 導電型シリコン系薄膜3,8上には、透明電極層4,9が形成される。透明電極層は、酸化亜鉛、酸化インジウム、酸化錫等の導電性金属酸化物、あるいはこれらの複合金属酸化物が用いられる。中でも、導電性、光学特性、および長期信頼性の観点から、インジウム系酸化物が好ましく、酸化インジウム錫(ITO)を主成分とするものが特に好ましい。透明電極層は、単層でもよく、複数の層からなる積層構造でもよい。透明性、導電性、および光反射低減の観点から、第一透明電極層4および第二透明電極層9の膜厚は、10nm~140nm程度が好ましい。
 なお、本明細書において、特定の成分を「主成分とする」とは、その成分の含有量が50重量%より多いことを意味し、70重量%以上が好ましく、90重量%以上がより好ましい。
 シリコン系薄膜2,3,7,8、および透明電極層4,9の製膜方法としては、CVD法、スパッタ法、蒸着法等のドライプロセスが好ましい。中でも、シリコン系薄膜はプラズマCVD法により製膜されることが好ましい。透明電極層の製膜方法は、スパッタ法等の物理気相堆積法や、有機金属化合物と酸素または水との反応を利用したCVD(MOCVD)法等が好ましい。
 これら各層の製膜順序は特に限定されないが、生産性向上の観点から、第一真性シリコン系薄膜2とp型シリコン系薄膜3は、同一の製膜装置を用いて、連続して製膜が行われることが好ましい。同様に、第二真性シリコン系薄膜7とn型シリコン系薄膜8は、連続して製膜が行われることが好ましい。第一の主面上への第一真性シリコン系薄膜2およびp型シリコン系薄膜3の製膜と、第二の主面上への第二真性シリコン系薄膜7およびn型シリコン系薄膜8の製膜との順序は、どちらが先でもよい。後に詳述するように、n型シリコン系薄膜8の製膜よりも、p型シリコン系薄膜3の製膜を先に行えば、メッキ金属電極21の形成時に、リークに起因する不所望の金属析出を低減できる。
 全てのシリコン系薄膜2,3,7,8の製膜を行った後に、透明電極層4,9の製膜が行われてもよく、一方の主面上に、真性シリコン系薄膜、導電型シリコン系薄膜および透明電極層を形成後、他方の主面上に、真性シリコン系薄膜、導電型シリコン系薄膜および透明電極層が形成されてもよい。結晶シリコン基板の側面に対するパッシベーション効果を高めるためには、全てのシリコン系薄膜2,3,7,8を製膜後に、透明電極層4,9の製膜が行われることが好ましい。
 結晶シリコン基板1上に、シリコン系薄膜2,3,7,8および透明電極層4,9を形成する際に、製膜面を変更するためには、基板を裏返す操作が必要となり、生産効率を低下させる要因となり得る。そのため、製膜面の変更回数は、できる限り少ないことが好ましい。
 上記の各観点を総合すると、一方の主面上に真性シリコン系薄膜および導電型シリコン系薄膜を製膜後に、製膜面を変更して、他方の主面上に真性シリコン系薄膜および導電型シリコン系薄膜を製膜し、製膜面を変更せずに、前記他方の主面上に透明電極層を製膜し、その後に製膜面を変更して、前記一方の主面上に透明電極層を製膜することが好ましい。例えば、n型シリコン系薄膜8よりも、p型シリコン系薄膜3の製膜を先に行う場合、第一真性シリコン系薄膜2、p型シリコン系薄膜3、第二真性シリコン系薄膜7,n型シリコン系薄膜8、第二透明電極層9、第一透明電極層4の製膜順が好ましい。
 図2は、n型結晶シリコン基板1の第一の主面上に、第一真性シリコン系薄膜2およびp型シリコン系薄膜3を形成後、第二の主面上に第二真性シリコン系薄膜7およびn型シリコン系薄膜8を形成し、その後に、第二透明電極層9および第一透明電極層4を形成した場合の結晶シリコン基板の周縁部付近の構成を模式的に表す断面図である。なお、本明細書において、「周縁」とは、主面の周端および周端から所定距離(例えば、数十μm~数mm程度)の領域を指す。また、「周縁部」とは、第一の主面および第二の主面の周縁と側面とを含む領域を指す。
 マスクを使用せずに、CVD法やスパッタ法等のドライプロセスにより上記各層が形成された場合、結晶シリコン基板1の第二の主面上に形成されたシリコン系薄膜7,8および第二透明電極層9は、製膜時の回り込みによって、結晶シリコン基板1の側面および第一の主面の周縁にも形成される。また、結晶シリコン基板1の第一の主面上に形成されたシリコン系薄膜2,3および第一透明電極層4は、製膜時の回り込みによって、シリコン基板1の側面および第二の主面の周縁にも形成される。そのため、図2に示す形態では、第一透明電極層4と第二透明電極層9とが短絡した状態となっている。
 このように、第一透明電極層4と第二透明電極層9とが短絡した状態で、第二透明電極層9上に電解メッキ法によりメッキ金属電極21を形成すると、第一の主面(受光面)側の第一透明電極層4上にも金属が析出してしまう。そのため、第一透明電極層4と第二透明電極層9とが短絡していない状態で、第二の主面側へのメッキ金属電極の形成を行う必要がある。
 ヘテロ接合太陽電池の製造においては、基板の周縁がマスク等で被覆された状態で製膜を行い周縁および側面への付着を防止することにより、表裏の短絡を生じさせない方法や、エッチング加工等により短絡部分を除去する方法等が知られている。本発明では、いずれの方法も採用できる。
 本発明においては、第一透明電極層および第二透明電極層のいずれも形成されていない絶縁領域が形成された状態で、電解メッキによりメッキ金属電極21が形成される。リークによる金属の析出を抑制するためには、絶縁領域上にシリコン系薄膜が形成され、シリコン基板が露出していない状態とする必要がある。このような絶縁領域を容易に形成し得ることから、本発明においては、透明電極層の形成時にマスクを用いて、表裏の短絡を生じさせないようにすることが好ましい。
 本発明においては、第一の主面の周縁に、第一透明電極層および第二透明電極層のいずれも形成されておらず、かつシリコン系薄膜が形成されている絶縁領域が形成された状態で、第二の主面上にメッキ金属電極が形成される。図3(A)~(D)は、本発明の結晶シリコン太陽電池の製造過程において、メッキ金属電極形成前における基板の周縁部付近の製膜状態を表す模式的断面図である。いずれの形態においても、第一の主面の周縁の絶縁領域41~44では、少なくとも第一真性シリコン系薄膜2が形成されており、第一透明電極層4および第二透明電極層9はいずれも形成されていない。すなわち、メッキ金属電極層形成前は、結晶シリコン基板1の第一の主面上の全面、第二の主面上の全面および側面が、シリコン系薄膜で覆われた状態であり、かつ第一の主面の周縁に、第一透明電極層と第二透明電極層との短絡が除去された絶縁領域が形成されている。
 図3(A)では、第一真性シリコン系薄膜2およびp型シリコン系薄膜3が、第一の主面側の全面および側面に形成されており、第二真性シリコン系薄膜7、n型シリコン系薄膜8および第二透明電極層9が第二の主面側の全面および側面に形成されている。第一透明電極層4は、第一の主面側の周縁以外の全領域に形成されており、側面には形成されていない。例えば、シリコン系薄膜2,3,7,8および第二透明電極層9の形成時にはマスクを用いずに製膜を行い、第一透明電極層4の形成時には、第一の主面の周縁をマスクで被覆した状態で製膜を行えば、図3(A)に示すように、第一の主面の周縁に、第一透明電極層4および第二透明電極層9のいずれも製膜されていない絶縁領域41が形成される。
 また、第二透明電極層9の形成時にもマスクを用い、第二の主面の周縁をマスクで被覆した状態で製膜を行っても、図3(B)に示すように、第一の主面の周縁に、絶縁領域42を形成できる。p型シリコン系薄膜の形成時にも、第一の主面の周縁をマスクで被覆した状態で製膜を行えば、図3(C)および(D)に示すように、第一の主面の周縁に、真性シリコン系薄膜2が製膜されており、透明電極層および導電型シリコン系薄膜が製膜されていない絶縁領域43,44を形成できる。
 このように、第一の主面の周縁に、透明電極層4,9のいずれも形成されていない絶縁領域が設けられていれば、透明電極層の短絡による第一の主面側(第一透明電極層4上)への金属の析出を防止できる。さらには、絶縁領域上には、少なくとも真性シリコン系薄膜2が形成されているため、リークによる不所望の金属の析出も抑制される。
 比較例に関わる図4(A)~(E)を参照しながら、第二の主面上に電解メッキにより金属電極を形成する際のリークによる金属の析出について説明する。第一透明電極層と第二透明電極層とのリークを除去する方法として、レーザ照射により基板の周縁部を割断除去する方法がある。この場合、図4(A)に示すように、絶縁領域91は、n型結晶シリコン基板1の側面が露出した状態となる。また、レーザ照射により、透明電極層4を除去して絶縁領域を形成する場合、透明電極層4のみを除去することは困難である。そのため、図4(B)に示すように、溝がシリコン基板1に達し、絶縁領域92では、n型結晶シリコン基板1が露出した状態となる。
 このように、n型結晶シリコン基板1が露出した状態で、第二透明電極層9に通電して電解メッキを実施すると、第二透明電極層9から、n型シリコン系薄膜8を介して、n型結晶シリコン基板1にも電子が供給されるため、n型結晶シリコン基板1の露出部である絶縁領域91,92からメッキ金属が析出する。このような不所望の金属の析出は、新たな短絡やリーク経路を発生させ、太陽電池の曲線因子や開放端電圧を低下させる原因となる。また、第一の主面上に金属が析出すると、金属による遮光が生じ、受光面(第一の主面)側からn型結晶シリコン基板1へ取り込まれる光の量が低減し、太陽電池の電流密度を低下させる原因となる。また、電解メッキの際に、シリコン基板の露出部がメッキ液と接触すると、メッキ液中の金属イオンがシリコン基板内に拡散して、変換特性を低下させる原因となる。
 第一の主面の周縁が被覆された状態で、シリコン系薄膜2、3および透明電極層4の製膜が行われ、第二の主面の周縁が被覆された状態で、シリコン系薄膜7、8および透明電極層9の製膜が行われた場合は、図4(C)に示すように、側面、第一の主面の周縁、および第二の主面の周縁に、シリコン基板が露出した絶縁領域93,94,95が形成される。第一の主面側の周縁が被覆された状態で、シリコン系薄膜2、3および透明電極層4の製膜が行われ、第二の主面側のシリコン系薄膜7,8および透明電極層9の製膜にはマスクが用いられない場合は、図4(D)に示すように、第一の主面の周縁にシリコン基板が露出した絶縁領域96が形成される。これらの形態においても、第二透明電極層9に通電して電解メッキを実施すると、絶縁領域における金属の析出や、メッキ液中の金属イオンのシリコン基板内への拡散が生じる。
 第一の主面側のシリコン系薄膜2、3および透明電極層4の製膜、ならびに第二の主面側のシリコン系薄膜7、8の製膜にはマスクが用いられず、第二の主面の周縁をマスクで被覆した状態で第二透明電極層9の製膜が行われた場合は、図4(E)に示すように、第二の主面の周縁に、第二真性シリコン系薄膜7およびn型シリコン系薄膜8が製膜されており、透明電極層9が製膜されていない絶縁領域97が形成される。このように、第二の主面側にのみ絶縁領域を有し、第一の主面側には絶縁領域が存在しない状態で、第二透明電極層9に通電して電解メッキを実施すると、第二透明電極層9から、n型シリコン系薄膜8を介して、絶縁領域97および第一透明電極層4にも電子が供給され、メッキ金属が析出する。また、絶縁領域97上へのメッキ金属の析出が進むと、第二透明電極層9と第一透明電極層4とが析出金属を介して導通され、表裏の透明電極層の短絡が生じる。
 一方、図3(A)~(D)に示すように、第一の主面の周縁に、シリコン系薄膜が形成されており、透明電極層4,9のいずれも形成されていない絶縁領域41~44が、第一の主面上に設けられていれば、第二透明電極層9に通電して電解メッキを実施しても、リークによる絶縁領域上の金属の析出は生じないことが分かる。また、シリコン基板1の側面がシリコン系薄膜で被覆されているために、太陽電池の実用時に、側面からの水分等の侵入が抑制される。
 なお、図3(A)~(D)では、n型シリコン系薄膜8よりも、p型シリコン系薄膜3の製膜を先に行うことにより、n型結晶シリコン基板1の側面において、p型シリコン系薄膜3が、n型シリコン系薄膜8よりも、n型結晶シリコン基板1に近い側に位置する形態が図示されている。一方、図5に示すように、n型シリコン系薄膜8が先に製膜され、p型シリコン系薄膜3よりもn型シリコン系薄膜8の方が、n型結晶シリコン基板1に近い側に位置していてもよい。ただし、この形態では、図5中に破線矢印で示すように、n型シリコン系薄膜8、n型結晶シリコン基板1、およびp型シリコン系薄膜3からなるn/n/p接合部分でのリーク経路が存在するため、絶縁領域46のp型シリコン系薄膜3の露出部分にメッキ金属がわずかに析出し、遮光等の原因となり得る。ただし、シリコン系薄膜上への析出金属は、エアブロー等により除去できる場合があるため、図4(A)~(D)の形態に比べると、析出金属による影響は小さい。
 上記説明したように、第一の主面の周縁に、シリコン系薄膜が形成されており、かつ第一透明電極層4および第二透明電極層9のいずれも製膜されていない絶縁領域が存在すれば、メッキ金属電極21形成時に、不所望の金属の析出を抑制できる。特に、図3(A)~(D)に示すように、n型シリコン系薄膜8よりもp型シリコン系薄膜3が先に製膜された場合に、リークによるメッキ金属析出の抑止効果が大きい。
 中でも、図3(A)および(C)に示すように、第二透明電極層9の形成時にマスクを用いることなく、第二の主面側の全面および側面にも第二透明電極層9が製膜される場合、透明電極層を構成する導電性酸化物により、シリコン系薄膜がメッキ液から保護される。そのため、シリコンの合金化や、メッキ液中の金属成分のシリコン基板中への拡散等に起因する特性低下を抑制できる。さらには、基板の側面に、シリコン系薄膜および第二透明電極層9に加えて、電解メッキによりメッキ金属電極21が形成されるため、太陽電池の実用時に、側面からの水分等の侵入がさらに抑制される。また、第二透明電極層9の形成時にマスクを用いる必要がないため、マスクの被覆や位置合わせの工程が不要となり、生産効率を向上できる。さらには、第二の主面の周縁にも第二透明電極層が形成されるため、第二の主面側でのキャリア回収効率が高められる。
 中でも、図3(A)に示すように、p型シリコン系薄膜3の形成時にマスクを用いることなく、第一の主面側の全面および側面にもp型シリコン系薄膜3が製膜される場合、第一真性シリコン系薄膜2とp型シリコン系薄膜3とを連続製膜できるため、生産効率をより向上できる。一方、p型シリコン系薄膜3の形成時に第一の主面の周縁がマスクで被覆された状態で製膜を行えば、図3(C)に示すように、p型シリコン系薄膜3とn型シリコン系薄膜8とのリークを防止できるため、変換効率を向上できる。
 上記のように、n型結晶シリコン基板1上にシリコン系薄膜2,3,7,8および透明電極層4,9が形成された後、第二透明電極層9上に、電解メッキによりメッキ金属電極21が形成される。第二の主面側の全面にメッキ金属電極21が形成されることにより、シリコン基板で吸収されず第二の主面側に到達した光を反射して、シリコン基板へ再入射させることにより、光の利用効率を高めることができる。特に、シリコンは近赤外から長波長側の吸光係数が小さいため、メッキ金属電極として近赤外から赤外域の波長領域の光の反射率が高い材料を用いることにより、光の利用効率が高められる。
 また、導電性金属酸化物を主成分とする第二透明電極層9上にメッキ金属電極21が形成されることにより、シリコン系薄膜と電極との密着性の向上や接触抵抗の低減が図られる。また、第二透明電極層9を備えることにより、メッキ金属電極21や下地金属層25からシリコン系薄膜やシリコン基板への金属成分の拡散が抑制されるため、変換特性を向上できる。
 本発明においては、図6に示すように、メッキ金属電極の形成前に、第二透明電極層9上に、下地金属層25が形成されてもよい。第二透明電極層9の表面に、下地金属層25が形成されることにより、表面の導電性を高め、電解メッキの効率を向上できる。
 また、下地金属層25により、第二透明電極層9をメッキ液から保護することもできる。特に、第二透明電極層9が非晶質の導電性金属酸化物である場合は、メッキ液に対する耐久性が低いため、メッキ液による第二透明電極層9の浸食を防止するために、下地金属層25が形成されることが好ましい。
 下地金属層25を構成する金属材料としては、銅、ニッケル、錫、アルミニウム、クロム、銀、金、亜鉛、鉛、パラジウム等、あるいはこれらの合金を用いることができる。下地金属層25の形成方法は特に限定されないが、第二透明電極層9の表面全体を効率的に被覆するためには、スパッタ法、蒸着法等のドライプロセスや、無電解メッキが好ましい。スパッタ法が採用される場合、第二透明電極層9と下地金属層25とを連続製膜することもできる。
 下地金属層25の膜厚は特に限定されないが、生産性の観点からは、200nm以下が好ましく、100nm以下がより好ましく、60nm以下がさらに好ましい。また、下地金属層25の膜厚は、メッキ金属電極の膜厚の50%以下が好ましく、30%以下がより好ましく、20%以下がさらに好ましい。一方、下地金属層自体に高い導電性を持たせ、かつピンホール等による第二透明電極層の露出を防止する観点から、下地金属層25の膜厚は、10nm以上が好ましく、20nm以上がより好ましく、30nm以上がさらに好ましい。
 メッキ金属電極21の材料は、電解メッキで形成できる金属であれば特に限定されない。例えば、メッキ金属電極21として、銅、ニッケル、錫、アルミニウム、クロム、銀、金、亜鉛、鉛、パラジウム等、あるいはこれらの合金を形成することができる。これらの中でも、電解メッキによる析出速度が大きく、導電率が高く、かつ材料が安価であることから、メッキ金属電極を構成する金属は、銅、または銅を主成分とする合金であることが好ましい。
 メッキ金属電極の形成は、メッキ液中に陽極を浸漬し、第二透明電極層9(あるいはその表面に形成された下地金属層25)をメッキ液と接触させた状態で、陽極と第二透明電極層との間に電圧を印加することにより行われる。銅を主成分とするメッキ金属電極は、例えば酸性銅メッキにより形成される。酸性銅メッキに用いられるメッキ液は、銅イオンを含むものであり、硫酸銅、硫酸、水等を主成分とする公知の組成のものが使用可能である。このメッキ液に、0.1~10A/dm程度の電流を流すことにより、第二透明電極層9上に銅を析出させることができる。メッキ時間は、電極の面積、電流密度、陰極電流効率、設定膜厚等に応じて適宜設定される。
 メッキ金属電極は、複数の層の積層構成としてもよい。例えば、銅等の導電率の高い材料からなる第一のメッキ層を形成後、第一のメッキ層よりも化学的安定性に優れる金属層を形成することにより、低抵抗で化学的安定性に優れた裏面金属電極を形成することができる。
 電解メッキによるメッキ金属電極の形成後には、表面に残留したメッキ液を除去することが好ましい。メッキ液を除去することにより、真性シリコン系薄膜2やp型シリコン系薄膜の露出部の表面(第一の主面の周縁の絶縁領域41~44,46;図3(A)~(D),図5,図6参照)や、第二透明電極層9の端面等に付着した金属もあわせて除去することができる。メッキ液の除去は、例えば、メッキ槽から取り出された基板の表面に残留したメッキ液をエアブロー式のエアー洗浄により除去した後、水洗を行い、さらにエアブローにより洗浄液を吹き飛ばす方法により行うことができる。水洗の前にエアー洗浄を行い基板表面に残留するメッキ液量を低減することによって、水洗の際に持ち込まれるメッキ液の量を減少させることができる。そのため、水洗に要する洗浄液の量を減少できると共に、水洗に伴って発生する廃液処理の手間も低減できることから、洗浄による環境負荷や費用が低減されると共に、太陽電池の生産性を向上させることができる。
 第一の主面の第一透明電極層4上にはパターン集電極11が形成される。パターン集電極の形成方法は特に制限されず、メッキ法、インクジェット、スクリーン等の印刷法、導線接着法等により形成できる。例えば、スクリーン印刷法においては、金属粒子と樹脂バインダーからなる導電ペーストをスクリーン印刷によって印刷する工程が好ましく用いられる。
 メッキ法では、第一透明電極層上に、集電極のパターン形状に対応した開口を有するレジストを被覆した状態でメッキを行うことにより、パターン集電極を形成できる。その他、上記特許文献1(WO2013/161127号)等に開示されているように、下地金属層上に形成された絶縁層の開口部をメッキの起点として金属を析出させることによって、パターン集電極11が形成されてもよい。パターン集電極11が電解メッキにより形成される場合は、側面や第二の主面への不所望の金属の析出を抑制するために、第一透明電極層と第二透明電極層とが短絡していない状態(上記のように絶縁領域が形成された状態)で、電解メッキが行われることが好ましい。
 第一の主面上へのパターン集電極11の形成は、第二の主面上へのメッキ金属電極21の形成の前後いずれに行われてもよい。パターン集電極11が電解メッキにより形成される場合は、メッキ金属電極21の形成と同時にパターン集電極11の形成を行うこともできる。例えば、第一透明電極層と第二透明電極層とが短絡していない状態で、第一の主面側および第二の主面側のそれぞれに給電することにより、メッキ金属層21とパターン集電極とを同時に形成することができる。この方法によれば、メッキによる電極層の形成工程数を削減でき、生産性を向上できる。
 上記により製造された結晶シリコン系太陽電池は、実用に供するに際して、モジュール化されることが好ましい。図7は、一実施形態の太陽電池モジュールを示す模式的断面図である。太陽電池モジュールは、太陽電池と外部回路とを電気的に接続するための配線部材150を備える。一般に、太陽電池モジュールは、図7に示すように、複数の太陽電池100が、インターコネクタ155を介して電気的に接続されている。このような複数の太陽電池が接続された太陽電池モジュールの作製においては、複数の太陽電池100が、インターコネクタ155を介して互いに接続された、太陽電池ストリングが作製される。複数の太陽電池が直列に接続される場合、1つの太陽電池の集電極11と、それに隣接する太陽電池のメッキ金属層21とが、インターコネクタ155を介して電気的に接続される。太陽電池ストリングを構成する両端の太陽電池100に、配線部材150が接続される。太陽電池の電極と配線部材とは、適宜の接着剤(不図示)等を介して接続される。
 太陽電池100は、封止材120を介して、保護材131,132に挟持され、太陽電池モジュールが形成される。例えば、太陽電池100の受光面側および裏面側のそれぞれに、封止材を介して保護材131,132を配置して積層体とした後、積層体を所定条件で加熱することにより、封止材120を硬化させ、封止が行われる。そしてAlフレーム(不図示)等を取り付けることで太陽電池モジュールを作製することができる。
 受光面側保護材131はとしては、透光性及び遮水性を有するガラス、透光性プラスチック等が用いられる。裏面側保護材132としては、PET等の樹脂フィルムや、アルミニウム等の金属箔を樹脂フィルムで挟持した積層フィルム等が用いられる。封止材120は、表裏の保護材131,132の間で太陽電池100を封止する。封止材としては、EVA,EEA,PVB,シリコン、ウレタン、アクリル、エポキシ等の透光性の樹脂を用いることができる。
 上記のように、太陽電池が封止されることにより、外部からの水分等が太陽電池内部への侵入が抑制され、太陽電池モジュールの長期信頼性を高めることができる。なお、太陽電池100の受光面側および裏面側には、封止材120を介して保護材131,132が密着積層されているのに対して、太陽電池の側面は封止材で保護されているのみである。そのため、太陽電池モジュールにおいては、外部からの水分等が、側面から、太陽電池に接触しやすい傾向がある。本発明の太陽電池は、結晶シリコン基板1の側面にもシリコン系薄膜が形成されているため、太陽電池の側面から結晶シリコン基板内部への水分等の侵入が抑制される。特に、図7に示すように、太陽電池の側面にもメッキ金属電極21が形成されていれば、側面からの水分等の侵入をさらに抑制できるため、太陽電池モジュールの長期信頼性をより高めることができる。
 1.   n型結晶シリコン基板
 2,7. 真性シリコン系薄膜
 3.   p型シリコン系薄膜
 8.   n型シリコン系薄膜
 4,9. 透明電極層
 21.  メッキ金属電極
 25.  下地金属層
 11.  パターン集電極
 41~44. 絶縁領域
 100.  太陽電池
 120. 封止材
 131,132. 保護材
 150.  配線部材
 155.  インターコネクタ
 200.  太陽電池モジュール

Claims (13)

  1.  第一の主面、第二の主面および側面を有するn型結晶シリコン基板と;前記n型結晶シリコン基板の第一の主面上に順次形成された、第一真性シリコン系薄膜、p型シリコン系薄膜、第一透明電極層、およびパターン集電極と;前記n型結晶シリコン基板の第二の主面上に順次形成された、第二真性シリコン系薄膜、n型シリコン系薄膜、第二透明電極層、およびメッキ金属電極と、を備える結晶シリコン系太陽電池であって、
     前記結晶シリコン基板の第一の主面上の全面、第二の主面上の全面および側面の全ての領域に、前記第一真性シリコン系薄膜および前記第二真性シリコン系薄膜のうちの少なくともいずれか一方が形成されており、
     第一の主面の周縁に、第一透明電極層と第二透明電極層との短絡が除去された絶縁領域を有し、
     前記メッキ金属電極が、前記第二透明電極層上の全領域に形成されている、結晶シリコン系太陽電池。
  2.  前記第二透明電極層が、第二の主面側の全面および側面にも形成されている、請求項1に記載の結晶シリコン系太陽電池。
  3.  前記p型シリコン系薄膜は、第一の主面上の全面および側面に形成されており、前記n型シリコン系薄膜は、第二の主面上の全面および側面に形成されている、請求項1または2に記載の結晶シリコン系太陽電池。
  4.  前記n型結晶シリコン基板の側面において、前記p型シリコン系薄膜は、前記n型シリコン系薄膜よりも、前記n型結晶シリコン基板に近い側に位置する、請求項3に記載の結晶シリコン系太陽電池。
  5.  前記第二透明電極層と前記メッキ金属電極との間に、下地金属層を備える、請求項1~4のいずれか1項に記載の結晶シリコン系太陽電池。
  6.  請求項1~5のいずれか1項に記載の結晶シリコン系太陽電池を含む太陽電池モジュール。
  7.  第一の主面および第二の主面を有するn型結晶シリコン基板と;前記n型結晶シリコン基板の第一の主面上に順次形成された、第一真性シリコン系薄膜、p型シリコン系薄膜、第一透明電極層、およびパターン集電極と;前記n型結晶シリコン基板の第二の主面上に順次形成された、第二真性シリコン系薄膜、n型シリコン系薄膜、第二透明電極層、およびメッキ金属電極と、を備える結晶シリコン系太陽電池の製造方法であって、
     n型結晶シリコン基板の第一の主面上の全領域および側面に、第一真性シリコン系薄膜が形成される第一真性シリコン系薄膜形成工程;
     前記第一真性シリコン系薄膜上に、p型シリコン系薄膜が形成されるp型シリコン系薄膜形成工程;
     第一の主面側の周縁以外の全領域に、第一透明電極層が形成される第一透明電極層形成工程;
     前記n型結晶シリコン基板の第二の主面上の全領域および側面に、第二真性シリコン系薄膜が製膜される第二真性シリコン系薄膜形成工程;
     前記第二真性シリコン系薄膜上に、n型シリコン系薄膜が形成されるn型シリコン系薄膜形成工程;および
     前記n型シリコン系薄膜上に、第二透明電極層が製膜される第二透明電極層形成工程、を有し、
     さらに、前記各工程の実施後に、前記第一透明電極層および前記第二透明電極層のいずれも形成されていない絶縁領域を第一の主面の周縁に有する状態で、電解メッキ法により前記第二透明電極層上の全面にメッキ金属電極が形成されるメッキ金属電極形成工程が実施される、結晶シリコン系太陽電池の製造方法。
  8.  前記第一透明電極層形成工程において、第一の主面の周縁がマスクで被覆された状態で製膜が行われることにより、第一の主面側の周縁以外の全領域に、前記第一透明電極層が形成される、請求項7に記載の結晶シリコン系太陽電池の製造方法。
  9.  前記第二透明電極層形成工程において、マスクを用いることなく製膜が行われることにより、第二の主面上の全面および側面に、前記第二透明電極層が形成される、請求項7または8に記載の結晶シリコン系太陽電池の製造方法。
  10.  前記p型シリコン系薄膜形成工程において、マスクを用いることなく製膜が行われることにより、第一の主面上の全面および側面に、前記p型シリコン系薄膜が形成され、
     前記n型シリコン系薄膜形成工程において、マスクを用いることなく製膜が行われることにより、第二の主面上の全面および側面に、前記n型シリコン系薄膜が形成される、請求項7~9のいずれか1項に記載の結晶シリコン系太陽電池の製造方法。
  11.  前記p型シリコン系薄膜形成工程が、前記n型シリコン系薄膜形成工程よりも先に行われる、請求項10に記載の結晶シリコン系太陽電池の製造方法。
  12.  前記第二透明電極層形成工程後、前記メッキ金属電極形成工程よりも前に、前記第二透明電極層上の全面に下地金属層が形成され、
     前記メッキ金属電極形成工程において、前記下地金属層上に、前記メッキ金属電極が形成される、請求項7~11のいずれか1項に記載の結晶シリコン系太陽電池の製造方法。
  13.  結晶シリコン系太陽電池モジュールの製造方法であって、
     請求項7~12のいずれか1項に記載の方法により結晶シリコン系太陽電池が製造される工程;および
     前記太陽電池が封止される工程、
    をこの順に有する、結晶シリコン系太陽電池モジュールの製造方法。
PCT/JP2015/061160 2014-05-02 2015-04-09 結晶シリコン系太陽電池、結晶シリコン系太陽電池モジュール、およびそれらの製造方法 WO2015166780A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/308,030 US10217887B2 (en) 2014-05-02 2015-04-09 Crystalline silicon-based solar cell, crystalline-silicon solar cell module, and manufacturing methods therefor
JP2016515913A JP6568518B2 (ja) 2014-05-02 2015-04-09 結晶シリコン系太陽電池の製造方法、および結晶シリコン系太陽電池モジュールの製造方法
CN201580022564.8A CN106463561B (zh) 2014-05-02 2015-04-09 晶体硅系太阳能电池、晶体硅系太阳能电池模块及它们的制造方法
EP15785959.6A EP3136451B1 (en) 2014-05-02 2015-04-09 Crystalline-silicon solar cell, crystalline-silicon solar-cell module, and manufacturing methods therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014095543 2014-05-02
JP2014-095543 2014-05-02

Publications (1)

Publication Number Publication Date
WO2015166780A1 true WO2015166780A1 (ja) 2015-11-05

Family

ID=54358515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061160 WO2015166780A1 (ja) 2014-05-02 2015-04-09 結晶シリコン系太陽電池、結晶シリコン系太陽電池モジュール、およびそれらの製造方法

Country Status (5)

Country Link
US (1) US10217887B2 (ja)
EP (1) EP3136451B1 (ja)
JP (1) JP6568518B2 (ja)
CN (1) CN106463561B (ja)
WO (1) WO2015166780A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179317A1 (ja) * 2016-04-13 2017-10-19 株式会社カネカ 結晶シリコン系太陽電池およびその製造方法、ならびに太陽電池モジュール
CN114649422A (zh) * 2020-12-17 2022-06-21 浙江爱旭太阳能科技有限公司 一种硅基异质结太阳电池结构及制备方法
CN114649438A (zh) * 2020-12-17 2022-06-21 浙江爱旭太阳能科技有限公司 一种n型hibc太阳电池的制备方法
JP7114821B1 (ja) 2022-03-18 2022-08-08 株式会社東芝 多層接合型光電変換素子及び多層接合型光電変換素子の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158299A1 (ja) * 2015-03-31 2016-10-06 株式会社カネカ 太陽電池およびその製造方法、太陽電池モジュール、ならびに配線シート
JP2019021599A (ja) * 2017-07-21 2019-02-07 株式会社東芝 透明電極、およびその製造方法、ならびにその透明電極を用いた電子デバイス
CN108321239A (zh) * 2017-12-21 2018-07-24 君泰创新(北京)科技有限公司 一种太阳能异质结电池及其制备方法
DE102018116466B3 (de) * 2018-07-06 2019-06-19 Solibro Hi-Tech Gmbh Dünnschichtsolarmodul und Verfahren zur Herstellung eines Dünnschichtsolarmoduls
CN109961870A (zh) * 2019-03-01 2019-07-02 泰州中来光电科技有限公司 一种晶体硅太阳电池用黑色银浆及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129904A (ja) * 1995-10-26 1997-05-16 Sanyo Electric Co Ltd 光起電力素子およびその製造方法
WO2013161127A1 (ja) * 2012-04-25 2013-10-31 株式会社カネカ 太陽電池およびその製造方法、ならびに太陽電池モジュール
WO2014054600A1 (ja) * 2012-10-02 2014-04-10 株式会社カネカ 結晶シリコン太陽電池の製造方法、太陽電池モジュールの製造方法、結晶シリコン太陽電池並びに太陽電池モジュール

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101281936B (zh) * 2008-04-24 2011-05-11 珈伟太阳能(武汉)有限公司 单面指状交叉式太阳能电池片的切割方法
EP2450970A1 (en) * 2010-11-05 2012-05-09 Roth & Rau AG Edge isolation by lift-off
JP2013012606A (ja) 2011-06-29 2013-01-17 Sanyo Electric Co Ltd 太陽電池及びその製造方法
JP2013058702A (ja) 2011-09-09 2013-03-28 Mitsubishi Electric Corp 太陽電池セルおよびその製造方法、太陽電池モジュールおよびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129904A (ja) * 1995-10-26 1997-05-16 Sanyo Electric Co Ltd 光起電力素子およびその製造方法
WO2013161127A1 (ja) * 2012-04-25 2013-10-31 株式会社カネカ 太陽電池およびその製造方法、ならびに太陽電池モジュール
WO2014054600A1 (ja) * 2012-10-02 2014-04-10 株式会社カネカ 結晶シリコン太陽電池の製造方法、太陽電池モジュールの製造方法、結晶シリコン太陽電池並びに太陽電池モジュール

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179317A1 (ja) * 2016-04-13 2017-10-19 株式会社カネカ 結晶シリコン系太陽電池およびその製造方法、ならびに太陽電池モジュール
CN108886069A (zh) * 2016-04-13 2018-11-23 株式会社钟化 晶体硅系太阳能电池及其制造方法、以及太阳能电池模块
JPWO2017179317A1 (ja) * 2016-04-13 2018-11-29 株式会社カネカ 結晶シリコン系太陽電池およびその製造方法、ならびに太陽電池モジュール
US10879409B2 (en) 2016-04-13 2020-12-29 Kaneka Corporation Crystalline silicon solar cell, production method therefor, and solar cell module
CN108886069B (zh) * 2016-04-13 2022-01-14 株式会社钟化 晶体硅系太阳能电池及其制造方法、以及太阳能电池模块
CN114649422A (zh) * 2020-12-17 2022-06-21 浙江爱旭太阳能科技有限公司 一种硅基异质结太阳电池结构及制备方法
CN114649438A (zh) * 2020-12-17 2022-06-21 浙江爱旭太阳能科技有限公司 一种n型hibc太阳电池的制备方法
CN114649422B (zh) * 2020-12-17 2024-05-10 浙江爱旭太阳能科技有限公司 一种硅基异质结太阳电池结构及制备方法
CN114649438B (zh) * 2020-12-17 2024-05-10 浙江爱旭太阳能科技有限公司 一种n型hibc太阳电池的制备方法
JP7114821B1 (ja) 2022-03-18 2022-08-08 株式会社東芝 多層接合型光電変換素子及び多層接合型光電変換素子の製造方法
JP2023138160A (ja) * 2022-03-18 2023-09-29 株式会社東芝 多層接合型光電変換素子及び多層接合型光電変換素子の製造方法

Also Published As

Publication number Publication date
JPWO2015166780A1 (ja) 2017-04-20
CN106463561B (zh) 2019-02-05
CN106463561A (zh) 2017-02-22
EP3136451A4 (en) 2018-01-17
EP3136451B1 (en) 2020-04-01
US20170084772A1 (en) 2017-03-23
JP6568518B2 (ja) 2019-08-28
EP3136451A1 (en) 2017-03-01
US10217887B2 (en) 2019-02-26

Similar Documents

Publication Publication Date Title
JP6568518B2 (ja) 結晶シリコン系太陽電池の製造方法、および結晶シリコン系太陽電池モジュールの製造方法
JP6404474B2 (ja) 太陽電池および太陽電池モジュール
JP6564874B2 (ja) 結晶シリコン系太陽電池の製造方法および結晶シリコン系太陽電池モジュールの製造方法
WO2011115206A1 (ja) 太陽電池、その太陽電池を用いた太陽電池モジュール及び太陽電池の製造方法
JP6677801B2 (ja) 結晶シリコン系太陽電池およびその製造方法、ならびに太陽電池モジュール
US20200091362A1 (en) Solar cell module and method for producing same
WO2016111339A1 (ja) 太陽電池およびその製造方法、ならびに太陽電池モジュール
JP2014103259A (ja) 太陽電池、太陽電池モジュールおよびその製造方法
US9761752B2 (en) Solar cell, solar cell module, method for manufacturing solar cell, and method for manufacturing solar cell module
US9391215B2 (en) Device for generating photovoltaic power and method for manufacturing same
KR101251841B1 (ko) 태양광 발전장치 및 이의 제조방법
KR20130070464A (ko) 태양광 발전장치 및 이의 제조방법
JP2016184616A (ja) 太陽電池および太陽電池モジュール
JP5935047B2 (ja) 太陽電池、太陽電池モジュール及び太陽電池の製造方法
JP6191995B2 (ja) 太陽電池モジュール
WO2017056370A1 (ja) 太陽電池セルおよび太陽電池セルの製造方法
WO2013042242A1 (ja) 太陽電池、太陽電池モジュール及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15785959

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016515913

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15308030

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015785959

Country of ref document: EP