WO2015166712A1 - 測距装置、測距方法、及び測距プログラム - Google Patents

測距装置、測距方法、及び測距プログラム Download PDF

Info

Publication number
WO2015166712A1
WO2015166712A1 PCT/JP2015/056874 JP2015056874W WO2015166712A1 WO 2015166712 A1 WO2015166712 A1 WO 2015166712A1 JP 2015056874 W JP2015056874 W JP 2015056874W WO 2015166712 A1 WO2015166712 A1 WO 2015166712A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
distance
subject
exposure
light
Prior art date
Application number
PCT/JP2015/056874
Other languages
English (en)
French (fr)
Inventor
智紀 増田
宏 玉山
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2016515887A priority Critical patent/JP6321145B2/ja
Priority to DE112015002096.9T priority patent/DE112015002096T5/de
Publication of WO2015166712A1 publication Critical patent/WO2015166712A1/ja
Priority to US15/333,139 priority patent/US9995825B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S17/14Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves wherein a voltage or current pulse is initiated and terminated in accordance with the pulse transmission and echo reception respectively, e.g. using counters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • G01S7/4876Extracting wanted echo signals, e.g. pulse detection by removing unwanted signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/40Systems for automatic generation of focusing signals using time delay of the reflected waves, e.g. of ultrasonic waves
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • H04N23/633Control of cameras or camera modules by using electronic viewfinders for displaying additional information relating to control or operation of the camera
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/673Focus control based on electronic image sensor signals based on contrast or high frequency components of image signals, e.g. hill climbing method
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/74Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means

Definitions

  • the technology of the present disclosure relates to a distance measuring device, a distance measuring method, and a distance measuring program.
  • Japanese Patent Application Laid-Open No. 2008-96181 discloses a time detection unit that detects a time from when measurement light is emitted until it is received by a light receiving unit, and a shake amount of a housing when the measurement light is emitted from a light emitting unit. And a distance determining means for determining the distance to the object to be measured based on the time detected by the time detecting means and the amount of shake detected by the shake detecting means. , An apparatus is disclosed.
  • Japanese Patent Application Laid-Open No. 2002-207163 includes a function for performing focus adjustment, and a distance measuring function for measuring a subject distance by irradiating a subject with laser light along the optical axis of the lens and detecting the reflected light.
  • a distance-measuring device having a photographing function for photographing a subject is disclosed.
  • Japanese Patent Laid-Open No. 2010-147554 discloses a position detection unit that detects a shooting position, a direction detection unit that detects a shooting direction, and irradiates a subject with laser light and detects reflected light to detect the subject from the shooting position.
  • a distance measuring means for measuring the distance to, a photographing position detected by the position detecting means, a photographing orientation detected by the orientation detecting means, a recording means for recording the distance measured by the distance measuring means, and a subject
  • a person detection unit that determines whether or not the detected subject image is a person by detecting the image, and prohibits distance measurement by the distance measurement unit when the person detection unit determines that the subject image is a person
  • An electronic camera including a control means is disclosed.
  • One embodiment of the present invention has been proposed in view of such a situation, and an object thereof is to provide a distance measuring device, a distance measuring method, and a distance measuring program capable of reducing unnecessary shooting.
  • a distance measuring apparatus includes a photographing unit that photographs a subject image formed by an imaging optical system that forms a subject image representing a subject.
  • a light emitting unit that emits directional light that is directional light along the optical axis direction of the image optical system, a light receiving unit that receives reflected light from a subject of directional light, and a directional light by the light emitting unit.
  • the distance measuring apparatus according to the first aspect of the present invention can reduce useless photographing as compared with the case where the main exposure is performed regardless of the distance measurement.
  • the control unit performs control to present information related to the result of distance measurement to the presenting unit that presents information
  • the photographing instruction is accepted by the accepting unit that accepts the photographing instruction for starting the main exposure
  • control for performing the main exposure is performed.
  • the distance measuring device according to the second aspect of the present invention is not presented with information related to the result of distance measurement, as compared to the case where the main exposure is started according to the photographing instruction received by the receiving unit. Shooting based on the user's judgment based on the distance measurement result can be realized.
  • the accepting unit further instructs the execution unit to start shooting at least one of focus adjustment and exposure adjustment.
  • the reception and control unit performs control such that at least one of focus adjustment and exposure adjustment is executed by the execution unit when a shooting preparation instruction is received by the reception unit.
  • the derivation unit performs the derivation of the distance a plurality of times, Of the distances obtained by derivation, a distance having a high frequency is derived as a final distance.
  • the distance measuring device according to the fourth aspect of the present invention is more necessary for the user than when a distance with a high frequency is not output among distances obtained by deriving the distance to the subject a plurality of times. Can be derived as the final distance.
  • the execution unit performs focus adjustment, and the derivation unit uses the focus state specifying information when the distance is derived.
  • a distance range to be used when determining the frequency or a time range from emission of directional light to light reception is determined, and a final distance is derived within the determined distance range or time range.
  • the distance measuring apparatus according to the fifth aspect of the present invention is focused on by the user as compared to the case where the distance to the subject is not derived based on the distance range or the time range determined based on the adjustment result.
  • a distance within the distance range can be derived as the final distance.
  • the derivation unit when the distance is derived, the derivation unit is finally determined with a resolution determined according to the result of determining the distance range or the time range. To derive the distance.
  • the distance measuring device is used when the distance to the subject is derived as the final distance without using the resolution determined according to the result of determining the distance range or the time range. In comparison, the final distance can be derived closely.
  • the execution unit executes at least one of focus adjustment and exposure adjustment, and emits light.
  • the unit can adjust the emission intensity of the directional light, and adjusts the emission intensity based on at least one of the in-focus state specifying information and the subject luminance or the exposure state specifying information to emit the directional light.
  • the distance measuring apparatus 10 according to the seventh aspect of the present invention has an emission intensity that is higher than that in the case where the emission intensity of the directional light is adjusted without using either the focus adjustment result or the exposure adjustment result. It can suppress that directional light is inject
  • the emission unit decreases the emission intensity as the focal length indicated by the focus state specifying information is shorter.
  • the distance measuring device is in a state where the emission intensity is excessive or insufficient as compared with the case where the focal length obtained as a result of the focus adjustment is shorter and the emission intensity is not reduced.
  • the emission intensity is excessive or insufficient as compared with the case where the focal length obtained as a result of the focus adjustment is shorter and the emission intensity is not reduced.
  • the emission unit decreases the emission intensity as the subject luminance is lower, and is indicated by the exposure state specifying information.
  • the distance measuring apparatus according to the ninth aspect of the present invention is in a state where the injection intensity is excessive or insufficient as compared with the case where the exposure intensity obtained as a result of the exposure adjustment is large and the emission intensity is not reduced. It can suppress that directional light is inject
  • the light receiving section can adjust the light reception sensitivity, and the focus state specifying information
  • the light receiving sensitivity is adjusted based on the received light to receive the reflected light.
  • the distance measuring device according to the tenth aspect of the present invention reflects the light receiving unit with the light receiving sensitivity excessively or insufficiently compared to the case where the light receiving sensitivity of the light receiving unit is adjusted without using the focus adjustment result. It can suppress that light is received.
  • the light receiving unit lowers the light receiving sensitivity as the focal distance indicated by the focus state specifying information is shorter.
  • the distance measuring device according to the eleventh aspect of the present invention is in a state where the light receiving sensitivity is excessive or insufficient as compared with the case where there is no configuration in which the light receiving sensitivity is decreased as the focal length obtained as a result of the focus adjustment is shorter. It can suppress that reflected light is received by the light-receiving part.
  • the distance measuring apparatus further includes a display unit that displays an image, and the control unit is included in the display unit.
  • control is performed to display a moving image obtained by photographing by the photographing unit and to display information on the distance to the subject derived by the deriving unit.
  • the distance measuring device in any one of the first aspect to the twelfth aspect of the present invention, is subject luminance or This is performed a predetermined number of times according to the exposure state specifying information.
  • the distance measuring device is a distance measuring device in which the influence of ambient light noise is reduced compared to the case where the number of directional light emissions is fixed regardless of the subject brightness. The result can be obtained.
  • the distance measuring device in the thirteenth aspect of the present invention, the distance measurement by the emitting unit, the light receiving unit, and the deriving unit is indicated as the subject luminance is higher or by the exposure state specifying information. Do more with lower exposure.
  • the distance measuring apparatus is less influenced by ambient light noise than when the number of directional light emissions is fixed despite the subject brightness being high. A ranging result with reduced can be obtained.
  • a distance measuring device further includes a storage unit that stores the distance derived by the derivation unit in any one of the first to fourteenth aspects of the present invention, When the derivation unit cannot derive the distance, the storage by the storage unit is stopped.
  • the distance measuring device can prevent incomplete distance data from being stored.
  • the memory setting for setting whether or not to stop the storage by the storage unit when the derivation unit cannot derive the distance Further comprising a portion.
  • the distance measuring device according to the sixteenth aspect of the present invention can set whether or not to store in the storage unit according to the user's intention when the distance cannot be derived.
  • the derivation unit performs a focus adjustment to adjust the focus on the subject of the imaging optical system.
  • the distance is derived when there is no focus adjustment error by the adjustment unit and no exposure adjustment error by the exposure adjustment unit that adjusts the exposure when the photographing unit captures an image.
  • the distance measuring method is light having directivity along the optical axis direction of the imaging optical system that forms a subject image showing the subject.
  • the distance to the subject is derived based on the timing at which the directional light is emitted by the emitting unit that emits the directional light and the timing at which the reflected light is received by the light receiving unit that receives the reflected light from the subject.
  • at least one of focus adjustment and exposure adjustment to the subject of the imaging optical system is executed, and focus adjustment and exposure adjustment are performed.
  • the distance measuring method can reduce useless photographing as compared with the case where the main exposure is performed regardless of the distance measurement.
  • a distance measuring program has directivity along the optical axis direction of an imaging optical system that forms an object image representing an object on a computer. Based on the timing at which the directional light is emitted by the emitting unit that emits directional light that is light and the timing at which the reflected light is received by the light receiving unit that receives the reflected light from the subject of the directional light, Deriving the distance and performing at least one of focus adjustment and exposure adjustment on the subject of the imaging optical system prior to photographing by the photographing unit that photographs the subject image formed by the imaging optical system, and focus adjustment Control to synchronize the timing at which at least one of the exposure adjustment and the timing of distance measurement are synchronized with each other, and control to shift to a state where the main exposure can be performed by the photographing unit after the distance measurement is completed. It is intended for executing a process comprising. Thereby, the distance measuring program according to the nineteenth aspect of the present invention can reduce useless photographing as compared with the case
  • ranging refers to measuring the distance to the subject to be measured.
  • magnitude of exposure is synonymous with the level of exposure.
  • FIG. 1 is a block diagram illustrating an example of a configuration of main functions of a distance measuring device 10 according to the present embodiment.
  • the distance measuring device 10 has a function of measuring a distance and a function of generating a photographed image showing a subject by photographing the subject.
  • the distance measuring apparatus 10 includes a control unit 20, a light emitting lens 30, a laser diode 32, a light receiving lens 34, a photodiode 36, an imaging optical system 40, an image sensor 42, a viewfinder 46, and a storage unit 48. Is provided.
  • the control unit 20 includes a time counter 22, a distance measurement control unit 24, and a main control unit 26.
  • the time counter 22 has a function of generating a count signal at predetermined intervals in accordance with a signal (for example, a clock pulse) input from the main control unit 26 via the distance measurement control unit 24.
  • the distance measurement control unit 24 has a function of measuring a distance according to the control of the main control unit 26.
  • the distance measurement control unit 24 of the present embodiment performs distance measurement by controlling the driving of the laser diode 32 at a timing according to the count signal generated by the time counter 22.
  • the ranging control unit 24 functions as a derivation unit according to the technique of the present disclosure.
  • Specific examples of the distance measurement control unit 24 include ASIC (Application Specific Integrated Circuit) and FPGA (field-programmable gate array).
  • the distance measurement control unit 24 of the present embodiment has a storage unit (not shown). Specific examples of the storage unit included in the distance measurement control unit 24 include a nonvolatile storage unit such as a ROM (Read Only Memory) and a volatile storage unit such as a RAM (Random Access Memory).
  • the main control unit 26 has a function of controlling the entire distance measuring device 10. Further, the main control unit 26 of the present embodiment has a function of controlling the imaging optical system 40 and the image sensor 42 to photograph a subject and generating a photographed image (subject image).
  • the main control unit 26 functions as a control unit, a luminance detection unit, a focus adjustment unit, and an exposure adjustment unit according to the technique of the present disclosure. Specific examples of the main control unit 26 include a CPU (central processing unit).
  • the distance measurement control unit 24 of the present embodiment has a storage unit (not shown). Specific examples of the storage unit included in the distance measurement control unit 24 include a nonvolatile storage unit such as a ROM (Read Only Memory) and a volatile storage unit such as a RAM (Random Access Memory).
  • the ROM stores a control processing program described later in advance.
  • control processing program is not necessarily stored in the main control unit 26 from the beginning.
  • the control program may first be stored in an arbitrary portable storage medium such as an SSD (Solid State Drive), a CD-ROM, a DVD disk, a magneto-optical disk, and an IC card.
  • the distance measuring device 10 may acquire the control program from the portable storage medium in which the program is stored and store it in the main control unit 26 or the like.
  • the distance measuring device 10 may acquire a control program from another external device via the Internet, a LAN (Local Area Network), or the like, and store it in the main control unit 26 or the like.
  • LAN Local Area Network
  • the operation unit 44 is a user interface operated by the user when giving various instructions to the distance measuring device 10.
  • the operation unit 44 includes a release button, a distance measurement instruction button, and buttons and keys used when the user gives various instructions (all not shown).
  • Various instructions received by the operation unit 44 are output as operation signals to the main control unit 26, and the main control unit 26 executes processing according to the operation signals input from the operation unit 44.
  • the release button of the operation unit 44 detects a two-stage pressing operation of a shooting preparation instruction state and a shooting instruction state.
  • the shooting preparation instruction state refers to, for example, a state where the image is pressed from the standby position to the intermediate position (half-pressed position), and the shooting instruction state refers to a state where the image is pressed to the final pressed position (full-pressed position) exceeding the intermediate position. Point to.
  • a state where the button is pressed from the standby position to the half-pressed position is referred to as a “half-pressed state”
  • “a state where the button is pressed from the standby position or the half-pressed position to the fully-pressed position” is referred to as the “fully pressed state”. That's it.
  • the manual focus mode and the autofocus mode are selectively set according to a user instruction.
  • the shooting conditions are adjusted by pressing the release button of the operation unit 44 halfway, and then exposure (shooting) is performed when the release button is fully pressed.
  • the AE (Automatic Exposure) function works to adjust the exposure
  • the AF (Auto-Focus) function works to adjust the focus. Shooting is done when fully pressed.
  • the storage unit 48 mainly stores image data obtained by photographing, and uses a non-volatile memory.
  • Specific examples of the storage unit 48 include a flash memory and an HDD (Hard Disk Drive).
  • the viewfinder 46 has a function of displaying image and character information.
  • the viewfinder 46 of the present embodiment is an electronic viewfinder (hereinafter referred to as “EVF”), and displays a live view image (through image) that is an example of a continuous frame image obtained by capturing a continuous frame at the time of shooting. Used for.
  • the viewfinder 46 is also used to display a still image that is an example of a single frame image obtained by shooting a single frame when a still image shooting instruction is given. Furthermore, the viewfinder 46 is also used for displaying a playback image and a menu screen in the playback mode.
  • the imaging optical system 40 includes a photographing lens including a focus lens, a motor, a slide mechanism, and a shutter (all not shown).
  • the slide mechanism moves the focus lens along the optical axis direction (not shown) of the imaging optical system 40.
  • a focus lens is attached to the slide mechanism so as to be slidable along the optical axis direction.
  • a motor is connected to the slide mechanism, and the slide mechanism slides the focus lens along the optical axis direction under the power of the motor.
  • the motor is connected to the main control unit 26 of the control unit 20, and driving is controlled in accordance with a command from the main control unit 26.
  • a stepping motor is applied as a specific example of the motor. Accordingly, the motor operates in synchronization with the pulse power according to a command from the main control unit 26.
  • the main control unit 26 drives the motor of the imaging optical system 40 so that the contrast value of the image obtained by imaging with the imaging element 42 is maximized.
  • the focus is adjusted by controlling.
  • the main control unit 26 calculates AE information that is a physical quantity indicating the brightness of an image obtained by imaging.
  • the main control unit 26 derives the shutter speed and F value corresponding to the brightness of the image indicated by the AE information. Then, the main control unit 26 performs exposure adjustment by controlling each related unit so that the derived shutter speed and F value (aperture value) are obtained.
  • the image sensor 42 is an image sensor provided with a color filter (not shown), and functions as an imaging unit according to the technique of the present disclosure.
  • a CMOS image sensor is used as an example of the image sensor 42.
  • the image sensor 42 is not limited to a CMOS image sensor, and may be a CCD image sensor, for example.
  • the color filter includes a G filter corresponding to G (green) that contributes most to obtain a luminance signal, an R filter corresponding to R (red), and a B filter corresponding to B (blue).
  • Each pixel (not shown) of the image sensor 42 is assigned one of the filters “R”, “G”, and “B” included in the color filter.
  • image light indicating the subject is imaged on the light receiving surface of the image sensor 42 via the imaging optical system 40.
  • the image sensor 42 has a plurality of pixels (not shown) arranged in a matrix in the horizontal direction and the vertical direction, and signal charges corresponding to image light are accumulated in the pixels of the image sensor 42.
  • the signal charges accumulated in the pixels of the image sensor 42 are sequentially read out as digital signals corresponding to the signal charges (voltage) based on the control of the main control unit 26.
  • signal charges are sequentially read out in the horizontal direction, that is, in units of pixels for each pixel row.
  • horizontal blanking period a period in which signal charges are not read after the charges are read from the pixels in one pixel row and before the charges are read from the pixels in the next pixel row.
  • the imaging element 42 has a so-called electronic shutter function, and controls the charge accumulation time (shutter speed) of each photosensor at a timing based on the control of the main control unit 26 by using the electronic shutter function. .
  • the image sensor 42 outputs a digital signal indicating the pixel value of the photographed image from each pixel.
  • the photographed image output from each pixel is a chromatic image, for example, a color image having the same color array as the pixel array.
  • the captured image (frame) output from the image sensor 42 is stored in the main control unit 26 via the main control unit 26 or a predetermined RAW (raw) image storage area (not shown) in the storage unit 48. Is temporarily stored (overwritten).
  • the main control unit 26 performs various image processing on the frame.
  • the main control unit 26 includes a WB (White Balance) gain unit, a gamma correction unit, and a synchronization processing unit (all not shown), and the original digital signal (RAW image) temporarily stored in the main control unit 26 or the like. ) Sequentially performs signal processing in each processing unit. That is, the WB gain unit performs white balance (WB) adjustment by adjusting the gains of the R, G, and B signals.
  • the gamma correction unit performs gamma correction on the R, G, and B signals that have been subjected to WB adjustment by the WB gain unit.
  • the synchronization processing unit performs color interpolation processing corresponding to the color filter array of the image sensor 42 and generates synchronized R, G, and B signals.
  • the main control unit 26 performs image processing on the RAW image in parallel every time a RAW image for one screen is acquired by the image sensor 42.
  • the main control unit 26 outputs the generated image data of the recorded image for recording to an encoder (not shown) that converts the input signal into a signal of another format.
  • the R, G, and B signals processed by the main control unit 26 are converted (encoded) into recording signals by the encoder and recorded in the storage unit 48.
  • the captured image for display processed by the main control unit 26 is output to the viewfinder 46.
  • the term “for recording” and “for display” are used when it is not necessary to distinguish between the above “recorded image for recording” and “captured image for display”. Is referred to as a “photographed image”.
  • the main control unit 26 of the present embodiment displays the live view image on the viewfinder 46 by performing control to continuously display the captured image for display as a moving image.
  • the light emitting lens 30 and the laser diode 32 function as an example of an emission unit according to the technique of the present disclosure.
  • the laser diode 32 is driven based on an instruction from the distance measurement control unit 24, and emits laser light toward the subject to be measured via the light emitting lens 30 in the optical axis direction of the imaging optical system 40. It has a function.
  • a specific example of the light emitting lens 30 of the present embodiment includes an objective lens.
  • the laser light emitted from the laser diode 32 is an example of directional light according to the technique of the present disclosure.
  • the light receiving lens 34 and the photodiode 36 function as an example of a light receiving unit according to the technique of the present disclosure.
  • the photodiode 36 has a function of receiving laser light emitted from the laser diode 32 and reflected by the subject through the light receiving lens 34 and outputting an electric signal corresponding to the amount of received light to the distance measurement control unit 24.
  • the main control unit 26 instructs the distance measurement control unit 24 to perform distance measurement. Specifically, in this embodiment, the main control unit 26 instructs the distance measurement control unit 24 to perform distance measurement by transmitting a distance measurement instruction signal to the distance measurement control unit 24. In addition, the main control unit 26 transmits a synchronization signal for synchronizing the distance measurement operation and the photographing operation to the distance measurement control unit 24 when measuring the distance to the subject and photographing the subject in parallel.
  • the distance measurement control unit 24 When receiving the synchronization signal and the distance measurement instruction signal, the distance measurement control unit 24 emits laser light toward the subject by controlling the light emission of the laser diode 32 at a timing according to the count signal of the time counter 22. Control timing. In addition, the distance measurement control unit 24 samples an electrical signal corresponding to the amount of received light output from the photodiode 36 at a timing corresponding to the count signal of the time counter 22.
  • the distance measurement control unit 24 derives the distance to the subject based on the light emission timing at which the laser diode 32 emits the laser light and the light reception timing at which the photodiode 36 receives the laser light, and the distance representing the derived distance Data is output to the main control unit 26.
  • the main control unit 26 causes the viewfinder 46 to display information related to the distance to the subject based on the distance data. Further, the main control unit 26 stores the distance data in the storage unit 48.
  • FIG. 2 is a timing chart showing an example of the timing of the distance measuring operation in the measurement of the distance to the subject in the distance measuring device 10.
  • a single distance measurement (measurement) sequence includes a voltage adjustment period, an actual measurement period, and a pause period.
  • the voltage adjustment period is a period during which the drive voltages of the laser diode 32 and the photodiode 36 are adjusted to appropriate voltage values.
  • the voltage adjustment period is set to several hundreds of milliseconds (milliseconds).
  • the actual measurement period is a period during which the distance to the subject is actually measured.
  • the operation of emitting (emitting) laser light and receiving the laser light reflected by the subject is repeated several hundred times to emit light (emitted).
  • the distance to the subject is measured by measuring the elapsed time from light reception to light reception. That is, in the distance measuring device 10 of the present embodiment, the distance to the subject is measured several hundred times in one measurement sequence.
  • FIG. 3 shows an example of a timing chart showing the timing from light emission to light reception in one measurement.
  • the distance measurement control unit 24 outputs a laser trigger for causing the laser diode 32 to emit light to the laser diode 32 in accordance with the count signal of the time counter 22.
  • the laser diode 32 emits light in response to the laser trigger.
  • the light emission time of the laser diode 32 is set to several tens of nanoseconds (nanoseconds).
  • the emitted laser light is emitted in the optical axis direction of the imaging optical system 40 toward the subject via the light emitting lens 30.
  • the laser light emitted from the distance measuring device 10 is reflected by the subject and reaches the distance measuring device 10.
  • the photodiode 36 of the distance measuring device 10 receives the reflected laser light via the light receiving lens 34.
  • a distance measuring apparatus that performs distance measurement on a subject whose distance from the distance measuring apparatus 10 is within several km.
  • the time required for the laser beam emitted from the laser diode 32 through the light emitting lens 30 toward the subject several km away to return (receive light) is several km ⁇ 2 / light speed ⁇ several ⁇ sec (microseconds). Become. Therefore, in order to measure the distance to a subject several kilometers away, as an example, as shown in FIG. 2, a time of at least several ⁇ sec is required.
  • a specific measurement time is set to several msec as shown in FIG. Since the round trip time of the laser light varies depending on the distance to the subject, the measurement time per one time may be varied according to the distance assumed by the distance measuring device 10.
  • the distance measurement control unit 24 derives the distance to the subject based on the measurement value measured several hundred times as described above.
  • the distance measurement control unit 24 of the present embodiment derives the distance to the subject by analyzing a histogram of measured values for several hundred times.
  • FIG. 4 is a graph showing an example of a histogram of measured values when the distance to the subject is on the horizontal axis and the number of measurements is on the vertical axis.
  • the distance measurement control unit 24 derives the distance to the subject corresponding to the maximum number of times of measurement in the histogram as a measurement result, and outputs distance data indicating the derived measurement result to the main control unit 26.
  • a histogram may be generated based on the round trip time of laser light (elapsed time from light emission to light reception), 1/2 of the round trip time of laser light, or the like.
  • the pause period is a period for stopping the driving of the laser diode 32 and the photodiode 36.
  • the rest period is set to several hundreds msec.
  • one measurement period is set to several 100 msec.
  • the main control unit 26 of the distance measuring device 10 displays the live view image on the viewfinder 46 as described above when shooting is not performed.
  • the main control unit 26 displays a live view image by displaying, on the viewfinder 46, a captured image captured at several tens of fps (several tens of milliseconds / image) as a moving image. Therefore, several tens of live view images are displayed on the viewfinder 46 during one measurement period.
  • the photographing operation and the distance measuring operation when the photographing operation and the distance measuring operation in the distance measuring device 10 of the present embodiment are synchronized will be described.
  • a shooting operation and a distance measuring operation when a shooting operation for shooting a still image and a distance measuring operation are synchronized will be described.
  • FIG. 5 is a flowchart showing an example of the flow of control processing executed by the main control unit 26 of the distance measuring device 10 of the present embodiment.
  • the flowchart shown in FIG. 5 is executed when the distance measuring device 10 is turned on.
  • step 100 the main control unit 26 starts a live view operation.
  • the main control unit 26 performs control to continuously display captured images obtained by capturing with the imaging optical system 40 and the image sensor 42 as moving images, thereby causing the viewfinder 46 to display a live view image. Is displayed.
  • step 102 the main control unit 26 determines whether or not the release button of the operation unit 44 is half-pressed. When it is not half-pressed, for example, when the release button is not pressed at all, the process proceeds to step 126. On the other hand, if it is half pressed, the routine proceeds to step 104.
  • step 104 the main control unit 26 transmits a synchronization signal to the distance measurement control unit 24.
  • a synchronization signal is transmitted from the main control unit 26 to the distance measurement control unit 24.
  • the distance measurement control unit 24 starts the distance measurement operation (measurement of the distance to the subject) upon receiving the synchronization signal.
  • the main control unit 26 controls the imaging optical system 40 and performs AE and AF as described above.
  • exposure adjustment is performed by performing AE
  • focus adjustment is performed by performing AF
  • image light indicating the subject is focused on the light receiving surface of the image sensor 42.
  • the main control unit 26 transmits exposure state specifying information for specifying the current exposure state, which is a result obtained by performing AE, to the distance measurement control unit 24.
  • the main control unit 26 transmits focus state specifying information for specifying the current focus state, which is a result obtained by performing AF, to the distance measurement control unit 24.
  • An example of the exposure state specifying information includes an F value and a shutter speed that are uniquely determined according to the subject brightness, or an F value and a shutter speed that are derived from a so-called AE evaluation value that is uniquely determined according to the subject brightness. .
  • Another example of the exposure state specifying information is an AE evaluation value.
  • An example of the focus state specifying information is a subject distance obtained by AF. In the following, for convenience of explanation, when it is not necessary to distinguish between the exposure state specifying information and the focus state specifying information, these will be referred to as “specific information”.
  • the main control unit 26 determines whether or not distance data has been received. As will be described in detail later, the distance measurement control unit 24 transmits distance data indicating the distance measurement result (finally derived distance) to the main control unit 26 when the distance is measured. The main control unit 26 is in a standby state until the distance data transmitted by the distance measurement control unit 24 is received. If the distance data is received, the main control unit 26 proceeds to step 112.
  • step 112 the main control unit 26 displays information on the distance to the subject on the viewfinder 46 superimposed on the live view image based on the received distance data.
  • the main control unit 26 stores the received distance data in the storage unit 48 in association with the captured image obtained by imaging.
  • the captured image image data indicating the captured image
  • distance data distance data
  • step 114 the main control unit 26 determines whether or not the release button of the operation unit 44 has been fully pressed. If it is not fully pressed, the process proceeds to step 116.
  • step 116 the main control unit 26 determines whether or not the pressing operation on the release button of the operation unit 44 has been released. If the press has not been released, the process returns to step 114 and the present process is repeated. On the other hand, if the press is released, the process proceeds to step 126.
  • step 114 the process proceeds from step 114 to step 118.
  • step 118 the main control unit 26 starts main exposure (photographing).
  • the pixels of the image sensor 42 are irradiated with light (image light is imaged on the light receiving surface of the image sensor 42), and each pixel has a signal charge corresponding to the irradiated light. Accumulated.
  • the main control unit 26 detects whether or not the main exposure has been completed.
  • the process waits until the main exposure is completed.
  • the process proceeds to step 122.
  • the method for determining whether or not the main exposure has been completed is not limited, but a specific example is a method for determining by determining whether or not the main exposure time determined by various conditions has elapsed. .
  • step 122 the main control unit 26 starts reading the signal charges accumulated in each pixel of the image sensor 42.
  • step 124 the main control unit 26 determines whether or not to end reading. If signal charges have not yet been read from all the pixels of the image sensor 42, the main control unit 26 performs the determination in step 124 again. On the other hand, if signal charges have been read from all the pixels of the image sensor 42, the process proceeds to step 126.
  • step 126 the main control unit 26 determines whether or not a power switch (not shown) is turned off. If the power switch is not turned off, the process returns to step 102 and this process is repeated. On the other hand, if the power is turned off, the process proceeds to step 128.
  • a power switch not shown
  • step 128 the main control unit 26 terminates the present process after stopping the live view operation. Further, the main control unit 26 turns off the power of the distance measuring device 10.
  • FIG. 6 is a flowchart showing an example of the flow of the distance measurement process executed by the distance measurement control unit 24 of the distance measuring device 10 of the present embodiment.
  • the flowchart shown in FIG. 6 is executed when the distance measuring device 10 is turned on.
  • step 150 the ranging control unit 24 determines whether or not a synchronization signal has been received. Specifically, the distance measurement control unit 24 determines whether or not the synchronization signal transmitted from the main control unit 26 is received in step 104 of the control process in the main control unit 26 described above. The process waits until the synchronization signal is received. When the synchronization signal is received, the process proceeds to step 152.
  • step 152 the distance measurement control unit 24 determines whether or not the specific information transmitted in step 108 of the control process has been received. If the specific information is not received in step 152, the determination is denied, and the distance measurement control unit 24 performs the determination in step 152 again. If the specific information is received in step 152, the determination is affirmed and the process proceeds to step 154.
  • the distance measurement control unit 24 determines a distance measurement effective range (an example of a distance range according to the technique of the present disclosure) based on the focus state specifying information received in step 152.
  • the ranging control unit 24 refers to a range derivation table (not shown) in which the ranging effective range is uniquely derived from the focus state specifying information, and determines the ranging effective range.
  • the distance measurement effective range is a distance range used when calculating the frequency of the distance obtained by deriving the distance to the subject a plurality of times. That is, the effective distance measurement range refers to the effective range of the distance to be derived in step 170 described later, and refers to the subject distance estimated from the focus state specifying information and the vicinity thereof.
  • the range derivation table there is a table in which the moving direction and moving distance from a predetermined reference position of the focus lens are associated with the effective ranging area.
  • the moving direction and moving distance are specified by the focus state specifying information.
  • the distance measurement control unit 24 determines the effective distance measurement range using an arithmetic expression in which the focusing state specifying information is an independent variable and the effective distance measurement range is a dependent variable without using the range derivation table. It may be.
  • the distance measurement control unit 24 determines a derivation resolution that is uniquely determined from the effective distance measurement range determined in step 154.
  • the derivation resolution is a resolution increased according to the effective ranging area determined in step 154, and is set higher than the predetermined resolution.
  • the predetermined resolution here refers to, for example, the resolution used when distance measurement is performed without being constrained by the effective distance measurement range (when the distance to the subject is derived).
  • a resolution set higher than the predetermined resolution by using a predetermined number of bits (for example, 8 bits) as the number of bits defining the predetermined resolution is adopted. Yes.
  • the distance measurement control unit 24 shifts to the voltage adjustment period and adjusts the drive voltage of the laser diode 32 and the photodiode 36 to adjust the laser light emission intensity of the laser diode 32. Then, the light receiving sensitivity of the photodiode 36 is adjusted.
  • the emission intensity of the laser light emitted from the laser diode 32 is adjusted based on the specific information received in step 152.
  • the distance measurement control unit 24 adjusts the emission intensity of the laser light with reference to an intensity setting table (not shown) in which voltage information indicating the drive voltage of the laser diode 32 is uniquely derived from the specific information. That is, the distance measurement control unit 24 derives the voltage information corresponding to the specific information received in step 152 from the intensity setting table, and the drive voltage indicated by the derived voltage information can be applied to the laser diode 32. The voltage is adjusted so as to become (see FIG. 8).
  • the intensity setting table there is voltage information for decreasing the laser beam emission intensity as the distance to the main subject is shorter, and reducing the laser beam emission intensity as the amount of ambient light decreases (as the exposure increases).
  • Examples include stored tables.
  • the distance to the main subject is specified by the focus state specifying information, and the amount of ambient light is specified by the exposure state specifying information.
  • the ambient light becomes noise for the laser beam, which means that the noise of the laser beam decreases as the amount of ambient light decreases. Therefore, in this step 202, the distance measurement control unit 24 performs voltage adjustment so that the emission intensity of the laser light becomes small when the amount of ambient light is small. Note that an increase in exposure means that the subject brightness decreases, so that the emission intensity may be decreased as the subject brightness decreases.
  • the distance measurement control unit 24 does not use the intensity setting table, but based on voltage information derived by an arithmetic expression using the exposure state specifying information and the focused state specifying information as independent variables and the voltage information as dependent variables. Thus, the laser beam emission intensity may be adjusted.
  • the emission intensity of the laser light is adjusted based on the exposure state specifying information and the focus state specifying information received in step 152 is illustrated, but the technology of the present disclosure is limited to this. is not.
  • the emission intensity of the laser beam may be adjusted based on the exposure state specifying information or the focus state specifying information.
  • the light receiving sensitivity of the photodiode 36 is adjusted based on the focus state specifying information received in step 152.
  • the distance measurement control unit 24 adjusts the light receiving sensitivity of the photodiode 36 with reference to a sensitivity adjustment table (not shown) in which voltage information indicating the driving voltage of the photodiode 36 is uniquely derived from the specific information. . That is, the distance measurement control unit 24 derives voltage information corresponding to the focus state specifying information received in step 152 from the sensitivity adjustment table, and the drive voltage indicated by the derived voltage information is applied to the photodiode 36. Voltage adjustment is performed so that the voltage can be applied (see FIG. 8).
  • the sensitivity adjustment table there is a table storing voltage information in which the light receiving sensitivity of the photodiode 36 decreases as the distance to the main subject decreases.
  • the distance measurement control unit 24 does not use the sensitivity adjustment table, and based on the voltage information derived from an arithmetic expression using the focusing state specifying information as an independent variable and the voltage information as a dependent variable, the photodiode 36.
  • the light receiving sensitivity may be set.
  • step 160 the distance measurement control unit 24 determines whether or not the voltage adjustment is completed.
  • the voltage adjustment period is set to several hundred msec. For this reason, the distance measurement control unit 24 determines that the voltage adjustment is completed when several hundred msec have elapsed since the transition to the voltage adjustment period. Therefore, the distance measurement control unit 24 is in a standby state, assuming that the voltage adjustment is not completed until several hundreds of milliseconds have elapsed since the transition to the voltage adjustment period, and when several hundreds of milliseconds have elapsed, the voltage adjustment has been completed. Proceed to step 164.
  • the distance measurement control unit 24 causes the laser diode 32 to emit light so that the laser beam having the emission intensity adjusted in step 158 is emitted.
  • the distance measurement control unit 24 determines whether or not a predetermined time has elapsed. Specifically, the distance measurement control unit 24 determines whether or not several msec have elapsed since one measurement time is set to several msec as described above. If the predetermined time (in this embodiment, several msec, which is one measurement time) has not elapsed, the process enters a standby state. If the predetermined time has elapsed, the process proceeds to step 168.
  • the laser diode 32 When the laser diode 32 emits light in the process of step 164, the laser light is emitted toward the subject through the light emitting lens 30. The laser light reflected by the subject is received by the photodiode 36 through the light receiving lens 34 until the predetermined time elapses.
  • the distance measurement control unit 24 acquires an elapsed time from light emission to light reception and stores it in a storage unit (for example, a RAM in the distance measurement control unit 24). .
  • the distance measurement control unit 24 stores the fact in a storage unit (for example, a RAM in the distance measurement control unit 24). Then, according to the number of times the measurement error has occurred, for example, if the number of times is not negligible in deriving the distance to the subject using the histogram, the fact that the measurement error has occurred is displayed on the viewfinder 46 or the like. You may do it.
  • the main control unit 26 may not store the captured image in the storage unit 48.
  • the user may be allowed to set whether to store the captured image via the operation unit 44 (an example of a storage setting unit according to the technique of the present disclosure).
  • step 168 the distance measurement control unit 24 determines whether or not a predetermined number of measurements have been completed. In step 168, when the predetermined number of times of measurement is completed, the determination is affirmed and the process proceeds to step 170. If it is determined in step 168 that the measurement has not been completed a predetermined number of times, the determination is negative and the process returns to step 164.
  • step 170 first, the distance measurement control unit 24 derives the distance to the subject based on the time from when the laser light is emitted by the processing of step 164 until the photodiode 36 receives the laser light. Then, the distance measurement control unit 24 generates a histogram of the distance to the derived subject with a predetermined resolution, as shown in FIG. 4 as an example. Next, as shown in FIG. 4 as an example, the distance measurement control unit 24 reconstructs a histogram of the distance to the subject using the derived resolution within the effective distance measurement range determined in the process of step 154. Then, the distance measurement control unit 24 analyzes the histogram within the distance measurement effective range, and generates distance data representing the distance obtained by the analysis (in the example illustrated in FIG. 4, the number of times of measurement is the maximum value). Here, the distance represented by the distance data is a final distance (final output) provided to the user.
  • the distance represented by the distance data is a final distance (final output) provided to the user.
  • the histogram generated with the derived resolution is subdivided compared to the histogram generated with the predetermined resolution. Therefore, the distance obtained by analyzing the histogram is expressed in finer numerical units (smaller numerical units) than the distance obtained by analyzing the histogram generated with a predetermined resolution.
  • step 172 the distance measurement control unit 24 transmits the distance data generated in step 170 to the main control unit 26, and then proceeds to step 174.
  • step 174 the distance measurement control unit 24 determines whether or not a condition (end condition) predetermined as a condition for ending the distance measurement process is satisfied.
  • a condition end condition
  • the end condition there is a condition that an end instruction by the user is received by the operation unit 44. If it is determined in step 174 that the termination condition is not satisfied, the determination is negative and the routine proceeds to step 150. In step 174, if the end condition is satisfied, the determination is affirmed and the distance measurement process is ended.
  • control is performed so as to synchronize the timing at which AE and AF are performed with the timing of distance measurement (steps 104 and 150). Then, after the distance measurement is completed, control is performed so as to shift to a state where the main exposure is possible (step 114). Thereby, the distance measuring device 10 can reduce useless photographing compared with the case where the main exposure is performed regardless of the distance measurement. In addition, the distance measuring device 10 can reduce the time and effort required to start distance measurement, compared to a case where the timing at which AE and AF are executed and the timing of distance measurement are not synchronized.
  • the distance measuring device 10 information regarding the distance to the subject is displayed on the viewfinder 46, and the main exposure is controlled when the release button is fully pressed (step 112). 114).
  • the distance measuring device 10 is based on the information on the distance to the subject as compared to the case where the main exposure is performed in response to the full press of the release button without displaying the information on the distance to the subject on the viewfinder 46. Shooting based on the user's judgment can be realized. As a result, useless shooting is reduced.
  • the distance measuring device 10 when the release button is half-pressed, AE, AF, and distance measurement are performed in synchronization. Therefore, the distance measuring device 10 can perform AE, AF, and distance measurement in synchronization with the user's judgment, as compared with the case without this configuration.
  • the distance measuring device 10 information related to a distance having a high frequency among distances obtained by deriving the distance to the subject a plurality of times is displayed on the viewfinder 46. Therefore, the distance measuring device 10 is necessary for the user as compared with a case where the distance finder 46 does not have a configuration in which information on a distance with a high frequency among the distances obtained by performing derivation of the distance to the subject is displayed on the viewfinder 46. It is possible to provide the user with information regarding a highly probable distance.
  • the distance measuring device 10 when the distance to the subject is derived, the effective distance measuring range is determined based on the focus state specifying information, and the subject is determined based on the determined effective distance measuring range. The distance to is derived. Therefore, the distance measuring device 10 can derive the final distance within the distance range focused by the user as compared to the case where the effective distance measurement range is not determined based on the focus state specifying information.
  • the distance to the subject is derived with an increased resolution according to the effective distance measuring range determined based on the focus state specifying information. Accordingly, the distance measuring device 10 can derive the final distance more closely than when the final distance is derived without using the resolution increased according to the effective range.
  • the laser diode 32 emits laser light having an emission intensity adjusted according to at least one of the focused state specifying information and the exposure state specifying information. Therefore, the distance measuring device 10 allows the laser diode 32 to emit laser light in a state where the emission intensity is excessive or insufficient as compared with the case where the emission intensity of the laser light is adjusted without using the focus state specifying information and the exposure state specifying information. Injecting can be suppressed.
  • the reflected light from the subject of the laser light is received by the photodiode 36 with the light receiving sensitivity adjusted according to the in-focus state specifying information. Therefore, the distance measuring apparatus 10 receives reflected light by the photodiode 36 with the light receiving sensitivity being excessive or insufficient as compared with the case where the light receiving sensitivity of the photodiode 36 is adjusted without using the focus state specifying information. Can be suppressed.
  • the distance measuring apparatus 10 accurately indicates to the user the relationship between the state of the subject and the distance to the subject in parallel with the display of the live view image, as compared with the case where the information regarding the distance to the subject is not displayed on the viewfinder 46. Can be grasped.
  • the main control unit 26 may perform control so that the main exposure is started when no measurement error occurs (after the distance measurement is completed). In this case, the effort required for the user to operate the release button is reduced.
  • a histogram related to the number of times of measurement of the distance to the subject is generated, but the technology of the present disclosure is not limited to this.
  • a histogram relating to the number of times of measurement required for the round trip from laser light emission to light reception may be generated.
  • a time range corresponding to the effective distance measurement range may be set, and the histogram may be reconstructed with a resolution increased according to the time range.
  • the distance to the subject derived based on the time of the maximum value of the reconstructed histogram may be set as the finally output distance (the distance presented to the user).
  • both end portions of the histogram based on all data are included in the effective ranging area (the range not shaded in the example shown in FIG. 7A).
  • the technique of the present disclosure is not limited to this.
  • one end portion (shaded portion) of the histogram has a distance measurement effective range (FIG. 7B). In the example shown in FIG. 7C, it may not be included in the range (not shaded).
  • the distance measurement control unit 24 generates a histogram for the distances remaining by excluding the distance outside the effective distance measurement range from the distances (all data) to the subject obtained by a plurality of derivations. It may be. Also in this case, the distance measurement control unit 24 may generate a histogram with the above-described derivation resolution.
  • the case where the information related to the distance to the subject is superimposed on the live view image and displayed on the viewfinder 46 is exemplified, but the technology of the present disclosure is not limited to this.
  • information regarding the distance to the subject may be displayed in a display area different from the display area of the live view image. In this way, information regarding the distance to the subject may be displayed on the viewfinder 46 in parallel with the display of the live view image.
  • AE and AF are started in accordance with a shooting preparation instruction received by a UI (user interface) unit of an external device that is connected to the distance measuring device 10 and used in accordance with a shooting instruction received by the UI unit of the external device.
  • the main exposure may be started.
  • an external device connected to the distance measuring device 10 there is a smart device, a personal computer (PC), or a spectacle-type or watch-type wearable terminal device.
  • the live view image and the distance measurement result (information on the distance to the subject) are displayed on the viewfinder 46 is exemplified, but the technology of the present disclosure is not limited to this.
  • at least one of the live view image and the distance measurement result may be displayed on a display unit of an external device that is connected to the distance measuring device 10 and used.
  • a display unit of an external device connected to the distance measuring device 10 a smart device display, a PC display, or a wearable terminal device display can be cited.
  • the distance measurement control unit 24 may perform the distance derivation as described above when no AF error occurs, and may not perform the distance derivation when an AF error occurs.
  • the distance measurement control unit 24 may perform the distance derivation as described above when no AE error occurs, and may not perform the distance derivation when an AE error occurs.
  • focus adjustment and exposure adjustment by AF and AE are exemplified.
  • the technology of the present disclosure is not limited to this, and focus adjustment by manual focus and exposure adjustment by manual exposure. Also good.
  • the technique of this indication is not limited to this, For a digital camera (imaging device) You may apply the technique of this indication.
  • step 202 the case where the voltage adjustment is performed in step 202 is illustrated, but the technology of the present disclosure is not limited to this, and the voltage adjustment may not necessarily be performed.
  • control process (see FIG. 5) and the distance measurement process (see FIG. 6) described in the above embodiment are merely examples. Therefore, it goes without saying that unnecessary steps may be deleted, new steps may be added, and the processing order may be changed within a range not departing from the spirit.
  • each process included in the control process and the distance measurement process described in the above embodiment may be realized by a software configuration using a computer by executing a program, or may be realized by other hardware configurations. May be. Further, it may be realized by a combination of a hardware configuration and a software configuration.
  • the number of times of laser light emission is fixed is exemplified, but the technology of the present disclosure is not limited to this. Since the ambient light becomes noise for the laser light, the number of light emission times of the laser light may be a light emission number determined according to the subject brightness.
  • the number of times of laser light emission is derived from the light emission number determination table 300 shown in FIG. 9 as an example.
  • the subject brightness and the laser light emission count are associated with each other so that the higher the subject brightness, the greater the laser light emission count. That is, in the light-emitting times determination table 300, the object luminance, L 1 ⁇ L 2 ⁇ ⁇ and magnitude of L n is satisfied, emission number, N 1 ⁇ N 2 ⁇ ⁇ N n The magnitude relationship is established.
  • the number of times of light emission is exemplified by 100 times. However, the number of times of light emission is not limited to this. Good.
  • luminance information transmission processing (see FIG. 10) is executed by the main control unit 26 in order to realize the derivation of the number of times of laser light emission by the emission number determination table 300, and the distance measurement control unit 24 emits light.
  • the number determination process (see FIG. 11) is executed.
  • luminance information transmission processing executed by the main control unit 26 when the power switch of the distance measuring device 10 is turned on will be described with reference to FIG.
  • step 400 the main control unit 26 determines whether or not a luminance acquisition start condition that is a condition for starting acquisition of subject luminance is satisfied.
  • a luminance acquisition start condition is a condition that the release button is half-pressed.
  • Another example of the luminance acquisition start condition is a condition that a captured image is output from the image sensor 42.
  • step 400 if the luminance acquisition start condition is satisfied, the determination is affirmed and the routine proceeds to step 402. If the luminance acquisition start condition is not satisfied at step 400, the determination is negative and the routine proceeds to step 406.
  • step 402 the main control unit 26 acquires the subject brightness from the photographed image, and then proceeds to step 404.
  • the subject brightness is acquired from the captured image is illustrated, but the technology of the present disclosure is not limited to this.
  • the main control unit 26 may acquire the subject brightness from the brightness sensor.
  • step 404 the main control unit 26 transmits the luminance information indicating the subject luminance acquired in step 402 to the distance measurement control unit 24, and then proceeds to step 406.
  • step 406 the main control unit 26 determines whether or not an end condition that is a condition for ending the luminance information transmission process is satisfied.
  • An example of the end condition is a condition that the power switch of the distance measuring device 10 is turned off. If the termination condition is not satisfied at step 406, the determination is negative and the routine proceeds to step 400. In step 406, if the end condition is satisfied, the determination is affirmed, and the luminance information transmission process ends.
  • step 410 the distance measurement control unit 24 determines whether or not the luminance information transmitted by executing the process of step 404 has been received. In step 410, when the luminance information transmitted by executing the process of step 404 is not received, the determination is negative and the process proceeds to step 416. In step 410, when the luminance information transmitted by executing the process of step 404 is received, the determination is affirmed and the process proceeds to step 412.
  • step 412 the distance measurement control unit 24 derives the number of times of light emission corresponding to the subject luminance indicated by the luminance information received in step 410 from the light emission number determination table 300, and then proceeds to step 414.
  • step 414 the distance measurement control unit 24 stores the number of times of light emission derived in the process of step 412 in the storage unit 48, and then proceeds to step 416.
  • the number of times of light emission stored in the storage unit 48 by the process of step 416 means the “predetermined number of times” in step 168 of the distance measurement process shown in FIG.
  • step 416 the main control unit 26 determines whether or not an end condition that is a condition for ending the main light emission number determination process is satisfied.
  • An example of the end condition is a condition that the power switch of the distance measuring device 10 is turned off. If the termination condition is not satisfied at step 416, the determination is negative and the routine proceeds to step 410. In step 416, if the end condition is satisfied, the determination is affirmed and the main light emission number determination process is ended.
  • the number of times of laser light emission is derived according to the light emission number determination table 500 shown in FIG. 12 as an example.
  • exposure state specifying information E 1 , E 2 ,... E n
  • subject brightness the number of times of laser light emission
  • N 1 , N 2 , etc N n the number of times of laser light emission
  • the exposure state specifying information uniquely determined according to the subject brightness means, for example, exposure state specifying information indicating exposure that decreases as the subject brightness increases.
  • the main control unit 26 executes the exposure state specifying information transmission process (see FIG. 13), and the distance measurement control unit 24 executes the light emission frequency determination process (see FIG. 13). 14) is executed.
  • step 600 the main control unit 26 determines whether or not the release button is half-pressed. If it is determined in step 600 that the release button has not been pressed halfway, the determination is negative and the process proceeds to step 606. If the release button is pressed halfway in step 600, the determination is affirmed and the routine proceeds to step 602.
  • a release button is provided in the operation unit 44 will be described as an example, but the technology of the present disclosure is not limited to this.
  • step 600 may be omitted, and the process of step 602 may be started when the power is turned on.
  • step 602 the main control unit 26 performs AE based on the subject brightness acquired from the captured image, and then proceeds to step 604.
  • step 604 the main control unit 26 transmits the exposure state specifying information to the distance measurement control unit 24, and then proceeds to step 606.
  • step 606 the main control unit 26 determines whether or not an end condition that is a condition for ending the exposure state specifying information transmission process is satisfied.
  • An example of the end condition is a condition that the power switch of the distance measuring device 10 is turned off. If it is determined in step 606 that the termination condition is not satisfied, the determination is negative and the process proceeds to step 600. In step 606, when the end condition is satisfied, the determination is affirmed, and the exposure state specifying information transmission process is ended.
  • step 610 the distance measurement control unit 24 determines whether or not the exposure state specifying information transmitted by executing the process of step 604 has been received. If it is determined in step 610 that the exposure state specifying information transmitted by executing the process of step 604 has not been received, the determination is negative and the routine proceeds to step 616. In step 610, when the exposure state specifying information transmitted by executing the process of step 604 is received, the determination is affirmed and the process proceeds to step 612.
  • step 612 the distance measurement control unit 24 derives the number of times of light emission corresponding to the exposure state specifying information received in step 610 from the light emission number determination table 500, and then proceeds to step 614.
  • step 614 the distance measurement control unit 24 stores the number of times of light emission derived in the process of step 612 in the storage unit 48, and then proceeds to step 616.
  • the number of times of light emission stored in the storage unit 48 by the processing of step 616 means the “predetermined number of times” in step 168 of the distance measurement processing shown in FIG.
  • step 616 the main control unit 26 determines whether or not an end condition that is a condition for ending the exposure state specifying information transmission process is satisfied.
  • An example of the end condition is a condition that the power switch of the distance measuring device 10 is turned off. If it is determined in step 616 that the termination condition is not satisfied, the determination is negative and the process proceeds to step 610. In step 616, if the end condition is satisfied, the determination is affirmed, and the exposure state specifying information transmission process is ended.
  • the distance measuring device 10 increases the number of times of laser light emission (distance measurement) as the subject luminance increases, the number of times of laser light emission (distance measurement) is fixed regardless of the subject luminance. Compared to the case where the measurement is performed, it is possible to obtain a distance measurement result in which the influence of ambient light noise is reduced.
  • laser light is exemplified as distance measurement light.
  • the technology of the present disclosure is not limited to this, and any directional light that is directional light may be used. .
  • it may be directional light obtained by a light emitting diode (LED: Light Emitting Diode) or a super luminescent diode (SLD: Super Luminescent Diode).
  • the directivity of the directional light is preferably the same as the directivity of the laser light.
  • the directivity can be used for ranging within a range of several meters to several kilometers. preferable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

 測距装置は、撮影部と、結像光学系の光軸方向に沿って、指向性のある光である指向性光を射出する射出部と、指向性光の被写体からの反射光を受光する受光部と、指向性光が射出されたタイミング及び反射光が受光されたタイミングに基づいて被写体までの距離を導出する導出部と、撮影部による撮影に先立って、結像光学系の被写体への焦点調整、及び露出調整の少なくとも一方を実行する実行部と、実行部により焦点調整及び露出調整の少なくとも一方が実行されるタイミングと、射出部、受光部、及び導出部による測距のタイミングとを同期させる制御を行い、測距が完了した後に撮影部による本露光が可能な状態に移行する制御を行う制御部と、を含む。

Description

測距装置、測距方法、及び測距プログラム
 本開示の技術は、測距装置、測距方法、及び測距プログラムに関する。
 特開2008-96181号公報には、計測光が射出されたときから受光手段で受光されるまでの時間を検出する時間検出手段と、発光手段から計測光を射出したときの筐体のぶれ量を計測光の発光時に検出するぶれ量検出手段と、時間検出手段によって検出された時間とぶれ量検出手段によって検出されたぶれ量とに基づいて被計測物までの距離を決定する距離決定手段と、を含む装置が開示されている。
 特開2002-207163号公報には、焦点調整を行う機能と、レーザ光をレンズの光軸に沿って被写体に照射し、その反射光を検出することにより被写体距離を測距する測距機能と、被写体を撮影する撮影機能とを有する測距撮影装置が開示されている。
 特開2010-147554号公報には、撮影位置を検出する位置検出手段と、撮影方位を検出する方位検出手段と、被写体にレーザー光を照射してその反射光を検出することで撮影位置から被写体までの距離を計測する距離計測手段と、位置検出手段によって検出された撮影位置、前記方位検出手段によって検出された撮影方位、および、距離計測手段によって計測された距離を記録する記録手段と、被写体像を検出して検出した被写体像が人物であるか否かを判定する人物検出手段と、人物検出手段により被写体像が人物であると判定されると、距離計測手段による距離の計測を禁止する制御手段と、を含む電子カメラが開示されている。
 しかしながら、上記の測距撮影装置では、焦点調整及び測距とは無関係に撮影が行われるため、撮影が無駄になってしまう場合がある。
 本発明の一つの実施形態は、このような実情を鑑みて提案されたものであり、無駄な撮影を削減することができる測距装置、測距方法、及び測距プログラムを提供することを目的とする。
 上記目的を達成するために、本発明の第1の態様に係る測距装置は、被写体を示す被写体像を結像する結像光学系により結像された被写体像を撮影する撮影部と、結像光学系の光軸方向に沿って、指向性のある光である指向性光を射出する射出部と、指向性光の被写体からの反射光を受光する受光部と、射出部により指向性光が射出されたタイミング及び受光部により反射光が受光されたタイミングに基づいて被写体までの距離を導出する導出部と、撮影部による撮影に先立って、結像光学系の被写体への焦点調整、及び露出調整の少なくとも一方を実行する実行部と、実行部により焦点調整及び露出調整の少なくとも一方が実行されるタイミングと、射出部、受光部、及び導出部による測距のタイミングとを同期させる制御を行い、測距が完了した後に撮影部による本露光が可能な状態に移行する制御を行う制御部と、を含む。これにより、本発明の第1の態様に係る測距装置は、測距とは無関係に本露光が行われる場合に比べ、無駄な撮影を削減することができる。
 本発明の第2の態様に係る測距装置では、本発明の第1の態様において、制御部は、情報を提示する提示部に対して、測距の結果に関する情報を提示させる制御を行い、本露光を開始させる撮影指示を受け付ける受付部によって撮影指示が受け付けられた場合に、本露光が行われる制御を行う。これにより、本発明の第2の態様に係る測距装置は、測距の結果に関する情報が提示されずに、受付部によって受け付けられた撮影指示に応じて本露光が開始される場合に比べ、測距の結果に基づくユーザの判断に依拠した撮影を実現することができる。
 本発明の第3の態様に係る測距装置では、本発明の第2の態様において、受付部は、実行部に対して焦点調整及び露出調整の少なくとも一方の実行を開始させる撮影準備指示を更に受け付け、制御部は、受付部により撮影準備指示が受け付けられた場合に、実行部により焦点調整及び露出調整の少なくとも一方が実行される制御を行う。これにより、本発明の第3の態様に係る測距装置は、本構成を有しない場合に比べ、ユーザの判断に依拠して焦点調整及び露出調整の少なくとも一方と測距とを同期させて行うことができる。
 本発明の第4の態様に係る測距装置では、本発明の第1の態様から第3の態様の何れか1つにおいて、導出部は、距離の導出を複数回行い、複数回の距離の導出によって得られる距離のうちの頻度が高い距離を最終的な距離として導出する。これにより、本発明の第4の態様に係る測距装置は、被写体までの距離の導出が複数回行われて得られる距離のうちの頻度が高い距離を出力しない場合に比べ、ユーザにとって必要性の高い距離を最終的な距離として導出することができる。
 本発明の第5の態様に係る測距装置では、本発明の第4の態様において、実行部は、焦点調整を実行し、導出部は、距離を導出する場合に、合焦状態特定情報に基づいて、頻度を求める際に使用する距離範囲、又は指向性光の射出から受光までの時間範囲を定め、定めた距離範囲又は時間範囲の範囲内で最終的な距離を導出する。これにより、本発明の第5の態様に係る測距装置は、調整結果に基づいて定められた距離範囲又は時間範囲に基づいて被写体までの距離が導出されない場合に比べ、ユーザが着目している距離範囲内の距離を最終的な距離として導出することができる。
 本発明の第6の態様に係る測距装置では、本発明の第5の態様において、導出部は、距離を導出する場合に、距離範囲又は時間範囲を定めた結果に応じて定まる分解能で最終的な距離を導出する。これにより、本発明の第6の態様に係る測距装置は、距離範囲又は時間範囲を定めた結果に応じて定まる分解能を用いずに被写体までの距離が最終的な距離として導出される場合に比べ、最終的な距離を綿密に導出することができる。
 本発明の第7の態様に係る測距装置では、本発明の第1の態様から第6の態様の何れか1つにおいて、実行部は、焦点調整及び露出調整の少なくとも一方を実行し、射出部は、指向性光の射出強度が調整可能であり、合焦状態特定情報と被写体輝度又は露出状態特定情報との少なくとも一方に基づいて射出強度を調整して指向性光を射出する。これにより、本発明の第7の態様に係る測距装置10は、焦点調整の結果及び露出調整の結果の何れも用いずに指向性光の射出強度が調整される場合に比べ、射出強度が過不足した状態で射出部により指向性光が射出されることを抑制することができる。
 本発明の第8の態様に係る測距装置では、本発明の第7の態様において、射出部は、合焦状態特定情報により示される焦点距離が短いほど射出強度を小さくする。これにより、本発明の第8の態様に係る測距装置は、焦点調整により結果的に得られる焦点距離が短いほど射出強度を小さくする構成を有しない場合に比べ、射出強度が過不足した状態で射出部により指向性光が射出されることを抑制することができる。
 本発明の第9の態様に係る測距装置では、本発明の第7の態様又は第8の態様において、射出部は、被写体輝度が低いほど射出強度を小さくし、露出状態特定情報により示される露出が高いほど射出強度を小さくする。これにより、本発明の第9の態様に係る測距装置は、露出調整により結果的に得られる露出が大きいほど射出強度を小さくする構成を有しない場合に比べ、射出強度が過不足した状態で射出部により指向性光が射出されることを抑制することができる。
 本発明の第10の態様に係る測距装置では、本発明の第1の態様から第9の態様の何れか1つにおいて、受光部は、受光感度が調整可能であり、合焦状態特定情報に基づいて受光感度を調整して反射光を受光する。これにより、本発明の第10の態様に係る測距装置は、焦点調整の結果を用いずに受光部の受光感度が調整される場合に比べ、受光感度が過不足した状態で受光部によって反射光が受光されることを抑制することができる。
 本発明の第11の態様に係る測距装置では、本発明の第10の態様において、受光部は、合焦状態特定情報により示される焦点距離が短いほど受光感度を下げる。これにより、本発明の第11の態様に係る測距装置は、焦点調整により結果的に得られる焦点距離が短いほど受光感度を下げる構成を有しない場合に比べ、受光感度が過不足した状態で受光部によって反射光が受光されることを抑制することができる。
 本発明の第12の態様に係る測距装置では、本発明の第1の態様から第11の態様の何れか1つにおいて、画像を表示する表示部を更に含み、制御部は、表示部に対して、撮影部により撮影されて得られた動画像を表示させ、かつ、導出部により導出された被写体までの距離に関する情報を表示させる制御を行う。これにより、本発明の第12の態様に係る測距装置は、動画像の表示に並行して、被写体までの距離に関する情報が表示されない場合に比べ、被写体の様子と被写体までの距離との関係をユーザに正確に把握させることができる。
 本発明の第13の態様に係る測距装置では、本発明の第1の態様から第12の態様の何れか1つにおいて、射出部、受光部、及び導出部による測距は、被写体輝度又は露出状態特定情報に応じて予め定めた回数行う。これにより、本発明の第13の態様に係る測距装置は、被写体輝度に拘わらず指向性光の発光回数が固定化されている場合に比べ、環境光のノイズの影響が緩和された測距結果を得ることができる。
 本発明の第14の態様に係る測距装置では、本発明の第13の態様において、射出部、受光部、及び導出部による測距は、被写体輝度が高いほど又は露出状態特定情報により示される露出が低いほど多く行う。これにより、本発明の第14の態様に係る測距装置は、被写体輝度が高くなっているにも拘わらず指向性光の発光回数が固定化されている場合に比べ、環境光のノイズの影響が緩和された測距結果を得ることができる。
 本発明の第15の態様に係る測距装置では、本発明の第1の態様から第14の態様の何れか1つの態様において、導出部によって導出された距離を記憶する記憶部を更に含み、導出部によって距離の導出が不可能な場合、記憶部による記憶を中止する。これにより、本発明の第15の態様に係る測距装置は、不完全な距離データの記憶を防止することができる。
 本発明の第16の態様に係る測距装置では、本発明の第15の態様において、導出部による距離の導出が不可能な場合に記憶部による記憶を中止するか否かを設定する記憶設定部を更に含む。これにより、本発明の第16の態様に係る測距装置は、距離の導出が不可能な場合に記憶部への記憶を行うか否かをユーザの意思に応じて設定することができる。
 本発明の第17の態様に係る測距装置では、本発明の第1の態様から第16の態様の何れか1つにおいて、導出部は、結像光学系の被写体への焦点調整を行う焦点調整部による焦点調整エラー、及び撮影部が撮影する場合の露出を調整する露出調整部による露出調整エラーがない場合に、距離を導出する。これにより、本発明の第17の態様に係る測距装置は、合焦及び露出調整された画像と共に測距結果を得ることができる。
 上記目的を達成するために、本発明の第18の態様に係る測距方法は、被写体を示す被写体像を結像する結像光学系の光軸方向に沿って、指向性のある光である指向性光を射出する射出部により指向性光が射出されたタイミング、及び指向性光の被写体からの反射光を受光する受光部により反射光が受光されたタイミングに基づいて被写体までの距離を導出し、結像光学系により結像された被写体像を撮影する撮影部による撮影に先立って、結像光学系の被写体への焦点調整、及び露出調整の少なくとも一方を実行し、焦点調整及び露出調整の少なくとも一方が実行されるタイミングと、測距のタイミングとを同期させる制御を行い、測距が完了した後に撮影部による本露光が可能な状態に移行する制御を行うことを含む。これにより、本発明の第18の態様に係る測距方法は、測距とは無関係に本露光が行われる場合に比べ、無駄な撮影を削減することができる。
 上記目的を達成するために、本発明の第19の態様に係る測距プログラムは、コンピュータに、被写体を示す被写体像を結像する結像光学系の光軸方向に沿って、指向性のある光である指向性光を射出する射出部により指向性光が射出されたタイミング、及び指向性光の被写体からの反射光を受光する受光部により反射光が受光されたタイミングに基づいて被写体までの距離を導出し、結像光学系により結像された被写体像を撮影する撮影部による撮影に先立って、結像光学系の被写体への焦点調整、及び露出調整の少なくとも一方を実行し、焦点調整及び露出調整の少なくとも一方が実行されるタイミングと、測距のタイミングとを同期させる制御を行い、測距が完了した後に撮影部による本露光が可能な状態に移行する制御を行うことを含む処理を実行させるためのものである。これにより、本発明の第19の態様に係る測距プログラムは、測距とは無関係に本露光が行われる場合に比べ、無駄な撮影を削減することができる。
 本発明の一つの実施形態によれば、測距とは無関係に本露光が行われる場合に比べ、無駄な撮影を削減することができる、という効果が得られる。
実施形態に係る測距装置の要部構成の一例を示すブロック図である。 実施形態に係る測距装置における被写体までの距離を計測する測距動作のタイミングの一例を示すタイミングチャートである。 実施形態の測距装置において1回の計測における発光から受光までのタイミングの一例を表すタイミングチャートである。 被写体までの距離を横軸、計測回数を縦軸とした場合の計測値のヒストグラムの一例を示すグラフである。 実施形態に係る測距装置の主制御部で実行される制御処理の流れの一例を表すフローチャートである。 実施形態に係る測距装置の測距制御部で実行される測距処理の流れの一例を表すフローチャートである。 実施形態に係る測距装置において得られるヒストグラムの変形例であって、AFに基づく被写体距離範囲以外の計測結果を用いずに被写体までの距離を導出する例を説明するための図である。 実施形態に係る測距装置において得られるヒストグラムの変形例であって、AFに基づく被写体距離未満の距離の計測値を用いずに被写体までの距離を導出する例を説明するための図である。 実施形態に係る測距装置において得られるヒストグラムの変形例であって、AFに基づく被写体距離より長い距離の計測値を用いずに被写体までの距離を導出する例を説明するための図である。 AF及びAE結果に基づいて駆動電圧を調整する一例を示すブロック図である。 発光回数決定テーブルの構成の一例を示す概念図である。 輝度情報送信処理の流れの一例を示すフローチャートである。 発光回数決定処理の流れの一例を示すフローチャートである。 発光回数決定テーブルの構成の他の例を示す概念図である。 露出状態特定情報送信処理の流れの他の例を示すフローチャートである。 発光回数決定処理の流れの他の例を示すフローチャートである。
 以下、添付図面に従って本開示の技術に係る測距装置の実施形態の一例について説明する。なお、本実施形態において、「測距」とは、計測対象となる被写体までの距離を計測することを指す。また、本実施形態において、露出の大小は、露出の高低と同義である。
 まず、本実施形態に係る測距装置の構成について説明する。図1は、本実施形態に係る測距装置10の要部機能の構成の一例を示すブロック図である。
 本実施形態の測距装置10は、測距する機能と、被写体を撮影することにより被写体を示す撮影画像を生成する機能とを有する。本実施形態の測距装置10は、制御部20、発光用レンズ30、レーザダイオード32、受光用レンズ34、フォトダイオード36、結像光学系40、撮像素子42、ビューファインダー46、及び記憶部48を備える。
 制御部20は、タイムカウンタ22、測距制御部24、及び主制御部26を備える。タイムカウンタ22は、測距制御部24を介して主制御部26から入力された信号(例えば、クロックパルス)に応じて予め定められた一定周期毎にカウント信号を発生させる機能を有する。
 測距制御部24は、主制御部26の制御に応じて、測距する機能を有する。本実施形態の測距制御部24は、タイムカウンタ22で発生したカウント信号に応じたタイミングで、レーザダイオード32の駆動を制御して測距を行う。測距制御部24が、本開示の技術に係る導出部として機能する。測距制御部24の具体例としては、ASIC(Application Specific Integrated Circuit)やFPGA(field-programmable gate array)等が挙げられる。また、本実施形態の測距制御部24は、記憶部(図示省略)を有している。測距制御部24が有する記憶部の具体例としては、ROM(Read Only Memory)等の不揮発性の記憶部や、RAM(Random Access Memory)等の揮発性の記憶部が挙げられる。
 主制御部26は、測距装置10全体を制御する機能を有する。また、本実施形態の主制御部26は、結像光学系40及び撮像素子42を制御して被写体を撮影し、撮影画像(被写体像)を生成する機能を有する。主制御部26が本開示の技術に係る制御部、輝度検出部、焦点調整部、及び露出調整部として機能する。主制御部26の具体例としては、CPU(central processing unit)等が挙げられる。また、本実施形態の測距制御部24は、記憶部(図示省略)を有している。測距制御部24が有する記憶部の具体例としては、ROM(Read Only Memory)等の不揮発性の記憶部や、RAM(Random Access Memory)等の揮発性の記憶部が挙げられる。ROMには、後述する制御処理のプログラムが予め記憶されている。
 なお、制御処理のプログラムは、必ずしも最初から主制御部26に記憶させておく必要はない。例えば、SSD(Solid State Drive)、CD-ROM、DVDディスク、光磁気ディスク、及びICカード等の任意の可搬型の記憶媒体に先ずは制御プログラムを記憶させておいてもよい。そして、プログラムを記憶させておいた可搬型の記憶媒体から測距装置10が制御プログラムを取得して主制御部26等に記憶するようにしてもよい。また、インターネットやLAN(Local Area Network)などを介して他の外部装置から制御プログラムを測距装置10が取得して、主制御部26等に記憶するようにしてもよい。
 操作部44は、測距装置10に対して各種指示を与える際にユーザによって操作されるユーザ・インタフェースである。操作部44は、レリーズボタン、測距指示ボタン、及び各種指示をユーザが与える際に用いられるボタンやキー等(いずれも図示省略)を含む。操作部44によって受け付けられた各種指示は操作信号として主制御部26に出力され、主制御部26は、操作部44から入力された操作信号に応じた処理を実行する。
 操作部44のレリーズボタンは、撮影準備指示状態と撮影指示状態との2段階の押圧操作を検出する。撮影準備指示状態とは、例えば待機位置から中間位置(半押し位置)まで押下される状態を指し、撮影指示状態とは、中間位置を超えた最終押下位置(全押し位置)まで押下される状態を指す。なお、以下では、「待機位置から半押し位置まで押下される状態」を「半押し状態」といい、「待機位置又は半押し位置から全押し位置まで押下される状態」を「全押し状態」という。
 本実施形態に係る測距装置10では、マニュアルフォーカスモードとオートフォーカスモードとがユーザの指示に応じて選択的に設定される。オートフォーカスモードでは、操作部44のレリーズボタンを半押し状態にすることにより撮影条件の調整が行われ、その後、引き続き全押し状態にすると露光(撮影)が行われる。つまり、操作部44のレリーズボタンを半押し状態にすることによりAE(Automatic Exposure)機能が働いて露出調整が行われた後、AF(Auto-Focus)機能が働いて焦点調整され、レリーズボタンを全押し状態にすると撮影が行われる。
 記憶部48は、主として撮影によって得られた画像データが記憶されるものであり、不揮発性のメモリが用いられる。記憶部48の具体例としては、フラッシュメモリやHDD(Hard Disk Drive)が挙げられる。
 ビューファインダー46は、画像及び文字情報等を表示する機能を有する。本実施形態のビューファインダー46は、電子ビューファインダー(以下、「EVF」という)であり、撮影時に連続フレームで撮影されて得られた連続フレーム画像の一例であるライブビュー画像(スルー画像)の表示に用いられる。また、ビューファインダー46は、静止画撮影の指示が与えられた場合に単一フレームで撮影されて得られた単一フレーム画像の一例である静止画像の表示にも用いられる。更に、ビューファインダー46は、再生モード時の再生画像の表示やメニュー画面等の表示にも用いられる。
 結像光学系40は、フォーカスレンズを含む撮影レンズ、モータ、スライド機構、及びシャッタ(いずれも図示省略)を備えている。スライド機構は、フォーカスレンズを結像光学系40の光軸方向(図示省略)に沿って移動させる。スライド機構には光軸方向に沿ってスライド可能にフォーカスレンズが取り付けられている。また、スライド機構にはモータが接続されており、スライド機構は、モータの動力を受けてフォーカスレンズを光軸方向に沿ってスライドさせる。モータは、制御部20の主制御部26に接続されており、主制御部26からの命令に従って駆動が制御される。なお、本実施形態の測距装置10では、モータの具体例として、ステッピングモータを適用している。従って、モータは、主制御部26からの命令によりパルス電力に同期して動作する。
 本実施形態に係る測距装置10では、オートフォーカスモード時に、主制御部26が、撮像素子42による撮像によって得られた画像のコントラスト値が最大となるように結像光学系40のモータを駆動制御することによって焦点調整を行う。また、オートフォーカスモード時に、主制御部26は、撮像によって得られた画像の明るさを示す物理量であるAE情報を算出する。主制御部26は、操作部44のレリーズボタンが半押し状態とされたときには、AE情報により示される画像の明るさに応じたシャッタスピード及びF値を導出する。そして、主制御部26は、導出したシャッタスピード及びF値(絞り値)となるように関係各部を制御することによって露出調整を行う。
 撮像素子42は、カラーフィルタ(図示省略)を備えた撮像素子であり、本開示の技術に係る撮影部として機能する。本実施形態では、撮像素子42の一例としてCMOS型のイメージセンサを用いている。なお、撮像素子42は、CMOS型のイメージセンサに限らず、例えば、CCDイメージセンサでもよい。カラーフィルタは、輝度信号を得るために最も寄与するG(緑)に対応するGフィルタ、R(赤)に対応するRフィルタ、及びB(青)に対応するBフィルタを含む。撮像素子42の各画素(図示省略)には、カラーフィルタに含まれる“R”、“G”、及び“B”の何れかのフィルタが割り当てられている。
 被写体を撮影する場合、被写体を示す画像光は、結像光学系40を介して撮像素子42の受光面に結像される。撮像素子42は、複数の画素(図示省略)が水平方向及び垂直方向にマトリクス状に配列されており、画像光に応じた信号電荷が撮像素子42の画素に蓄積される。撮像素子42の画素に蓄積された信号電荷は、主制御部26の制御に基づいて信号電荷(電圧)に応じたデジタル信号として順次読み出される。
 なお、本実施形態の測距装置10では、水平方向毎に、すなわち、画素行毎に画素単位で信号電荷を順次読み出す。1列の画素行の画素から電荷を読み出した後、次の画素行の画素から電荷を読み出すまでの間に、信号電荷の読み出しを行わない期間(以下、「水平ブランキング期間」という)が生じる。
 また、撮像素子42は、いわゆる電子シャッタ機能を有しており、電子シャッタ機能を働かせることで、主制御部26の制御に基づいたタイミングによって各フォトセンサの電荷蓄積時間(シャッタスピード)を制御する。
 撮像素子42は、各画素から撮影画像の画素値を示すデジタル信号を出力する。なお、各画素から出力される撮影画像は有彩色画像であり、例えば、画素の配列と同じカラー配列のカラー画像である。撮像素子42から出力された撮影画像(フレーム)は、主制御部26を介して主制御部26内の記憶部または、記憶部48の予め定められたRAW(生)画像記憶領域(図示省略)に一時記憶(上書き保存)される。
 主制御部26は、フレームに対して各種の画像処理を施す。主制御部26は、WB(White Balance)ゲイン部、ガンマ補正部及び同時化処理部を有し(いずれも図示省略)、主制御部26内等に一時記憶された元のデジタル信号(RAW画像)に対して各処理部で順次信号処理を行う。すなわち、WBゲイン部は、R,G,B信号のゲインを調整することによりホワイトバランス(WB)調整を実行する。ガンマ補正部は、WBゲイン部でWB調整が実行された各R,G,B信号をガンマ補正する。同時化処理部は、撮像素子42のカラーフィルタの配列に対応した色補間処理を行い、同時化したR,G,B信号を生成する。なお、主制御部26は、撮像素子42により1画面分のRAW画像が取得される毎に、そのRAW画像に対して並列に画像処理を行う。
 また、主制御部26は、生成した記録用の撮影画像の画像データを、入力された信号を別の形式の信号に変換するエンコーダ(図示省略)に出力する。主制御部26により処理されたR,G,B信号は、エンコーダにより記録用の信号に変換(エンコーディング)され、記憶部48に記録される。また、主制御部26により処理された表示用の撮影画像は、ビューファインダー46に出力される。なお、以下では、説明の便宜上、上記の「記録用の撮影画像」及び「表示用の撮影画像」を区別して説明する必要がない場合は「記録用の」との文言及び「表示用の」との文言を省略して「撮影画像」と称する。
 また、本実施形態の主制御部26は、表示用の撮影画像を動画像として連続して表示させる制御を行うことにより、ビューファインダー46にライブビュー画像を表示する。
 発光用レンズ30及びレーザダイオード32は、本開示の技術に係る射出部の一例として機能する。レーザダイオード32は、測距制御部24からの指示に基づいて駆動され、レーザ光を発光用レンズ30を介して計測対象となる被写体へ向けて、結像光学系40の光軸方向に射出する機能を有する。本実施形態の発光用レンズ30の具体例としては、対物レンズなどが挙げられる。なお、レーザダイオード32により射出されるレーザ光は、本開示の技術に係る指向性光の一例である。
 また、受光用レンズ34及びフォトダイオード36は、本開示の技術に係る受光部の一例として機能する。フォトダイオード36は、レーザダイオード32から射出され、被写体で反射されたレーザ光を受光用レンズ34を介して受光し、受光量に応じた電気信号を測距制御部24に出力する機能を有する。
 操作部44の測距指示ボタン等により、測距するようにユーザから指示がなされると、主制御部26は、測距制御部24に、測距を行うように指示する。具体的には、本実施形態では、主制御部26は、測距指示信号を測距制御部24に送信することにより、測距制御部24に対して測距を行うように指示する。また、主制御部26は、被写体までの距離の計測及び被写体の撮影を並行して行う場合は、測距動作と撮影動作とを同期させるための同期信号を測距制御部24に送信する。
 同期信号及び測距指示信号を受信すると、測距制御部24は、タイムカウンタ22のカウント信号に応じたタイミングで、レーザダイオード32の発光を制御することにより、被写体に向けてレーザ光を射出するタイミングを制御する。また、測距制御部24は、タイムカウンタ22のカウント信号に応じたタイミングで、フォトダイオード36から出力された受光量に応じた電気信号をサンプリングする。
 測距制御部24は、レーザダイオード32がレーザ光を発光した発光タイミングと、フォトダイオード36がレーザ光を受光した受光タイミングとに基づいて、被写体までの距離を導出し、導出した距離を表す距離データを主制御部26に出力する。主制御部26は、距離データに基づいて、被写体までの距離に関する情報をビューファインダー46に表示させる。また、主制御部26は、距離データを記憶部48に記憶させる。
 測距制御部24による被写体までの距離の計測についてさらに詳細に説明する。図2は、測距装置10における被写体までの距離の計測における測距動作のタイミングの一例を示すタイミングチャートである。
 本実施形態の測距装置10では、1回の測距(計測)シーケンスに、電圧調整期間、実計測期間、及び休止期間を含む。電圧調整期間とは、レーザダイオード32及びフォトダイオード36の駆動電圧を、適切な電圧値に調整する期間をいう。具体例として、本実施形態の測距装置10では、図2に示すように、電圧調整期間を数100msec(ミリ)秒としている。
 また、実計測期間とは、被写体までの距離を実際に計測する期間をいう。本実施形態の測距装置10では、具体例として、図2に示すように、レーザ光を発光(射出)させ、被写体で反射したレーザ光を受光する動作を数100回繰り返し、発光(射出)から受光までの経過時間を計測することにより被写体までの距離を計測している。すなわち、本実施形態の測距装置10では、1回の計測シーケンスにおいて、被写体までの距離の計測を数100回、行っている。
 図3には、1回の計測における発光から受光までのタイミングを表すタイミングチャートの一例を示す。測距を行う場合、測距制御部24は、タイムカウンタ22のカウント信号に応じて、レーザダイオード32を発光させるためのレーザトリガをレーザダイオード32に出力する。レーザダイオード32は、レーザトリガに応じて、発光する。本実施形態の測距装置10では、具体例として、レーザダイオード32の発光時間を、数10nsec(ナノ秒)としている。発光したレーザ光は、発光用レンズ30を介して被写体に向けて結像光学系40の光軸方向に射出される。測距装置10から射出されたレーザ光は、被写体で反射し、測距装置10に到達する。測距装置10のフォトダイオード36は、受光用レンズ34を介して、反射してきたレーザ光を受光する。
 本実施形態の測距装置10では、具体例として、測距装置10からの距離が数km以内の被写体に対して測距を行う測距装置としている。レーザダイオード32から発光用レンズ30を介して数km先の被写体に向けて射出したレーザ光が戻ってくる(受光する)までの時間は、数km×2/光速≒数μsec(マイクロ秒)となる。従って、数km先の被写体までの距離を計測するためには、一例として図2に示すように少なくとも数μsecの時間を要する。
 なお、本実施形態の測距装置10では、レーザ光の往復時間等を考慮し、具体例として、1回の計測時間を図2に示すように数msecとしている。なお、被写体までの距離により、レーザ光の往復時間は異なるため、測距装置10が想定する距離に応じて、1回あたりの計測時間を異ならせてもよい。
 測距装置10では、測距制御部24が、上述のようにして数100回計測した計測値に基づいて、被写体までの距離を導出する。本実施形態の測距制御部24では、具体的一例として、数100回分の計測値のヒストグラムを解析して被写体までの距離を導出している。図4には、被写体までの距離を横軸、計測回数を縦軸とした場合の計測値のヒストグラムの一例を表したグラフを示す。測距制御部24は、上記ヒストグラムにおいて、計測回数の最大値に対応する被写体までの距離を計測結果として導出し、導出した計測結果を示す距離データを主制御部26に出力する。なお、被写体までの距離に代えて、レーザ光の往復時間(発光から受光までの経過時間)や、レーザ光の往復時間の1/2等に基づいてヒストグラムを生成するようにしてもよい。
 また、休止期間とは、レーザダイオード32及びフォトダイオード36の駆動を休止させるための期間をいう。本実施形態の測距装置10では、具体例として、図2に示すように、休止期間を数100msecとしている。
 更に、本実施形態の測距装置10では、1回の計測期間を数100msecとしている。
 一方、本実施形態の測距装置10の主制御部26は、撮影を行わない場合は、上述したようにライブビュー画像をビューファインダー46に表示する。主制御部26は、数10fps(数10msec/画像)で撮影された撮影画像を動画像としてビューファインダー46に表示することによりライブビュー画像の表示を行う。そのため、1回の計測期間の間に、数10個のライブビュー画像がビューファインダー46に表示されることになる。
 次に本実施形態の測距装置10における撮影動作と測距動作とを同期させた場合の撮影動作及び測距動作について説明する。なお、以下では、具体例として、静止画像を撮影する撮影動作と測距動作とを同期させた場合の撮影動作及び測距動作について説明する。
 先ず、主制御部26で実行される制御処理について説明する。図5には、本実施形態の測距装置10の主制御部26で実行される制御処理の流れの一例を表すフローチャートを示す。
 図5に示すフローチャートは、測距装置10に電源が投入されると実行される。
 まず、ステップ100で、主制御部26は、ライブビュー動作を開始する。上述したように、主制御部26は、結像光学系40及び撮像素子42により撮影して得た撮影画像を動画像として連続して表示させる制御を行うことにより、ビューファインダー46にライブビュー画像を表示させる。
 次のステップ102で、主制御部26は、操作部44のレリーズボタンが半押しされたか否かを判定する。半押しされていない場合、例えば、レリーズボタンが全く押されていない場合等は、ステップ126へ進む。一方、半押しされている場合は、ステップ104へ進む。
 ステップ104で、主制御部26は、同期信号を測距制御部24に送信する。このように、本実施形態の測距装置10では、主制御部26による撮影動作と、測距制御部24による測距動作とを同期させるために、撮影(撮像素子42への本露光)の開始に先だって、同期信号が主制御部26から測距制御部24に送信される。詳細を後述するが、測距制御部24では、同期信号を受信すると測距動作(被写体までの距離の計測)を開始する。
 次のステップ106で、主制御部26は、結像光学系40を制御し、上述したようにAE及びAFを行う。測距装置10では、AEを行うことにより、露出調整が行われ、AFを行うことにより焦点調整され、被写体を示す画像光が撮像素子42の受光面に合焦状態で結像される。
 次のステップ108で、主制御部26は、AEが行われることによって得られた結果である現時点の露出状態を特定する露出状態特定情報を測距制御部24に送信する。また、本ステップ108で、主制御部26は、AFが行われることによって得られた結果である現時点の合焦状態を特定する合焦状態特定情報を測距制御部24に送信する。なお、露出状態特定情報の一例としては、被写体輝度に応じて一意に定まるF値及びシャッタスピード、又は被写体輝度に応じて一意に定まる所謂AE評価値から導出されるF値及びシャッタスピードが挙げられる。また、露出状態特定情報の他の例としては、AE評価値が挙げられる。また、合焦状態特定情報の一例としては、AFにより得られる被写体距離が挙げられる。また、以下では、説明の便宜上、露出状態特定情報及び合焦状態特定情報を区別して説明する必要がない場合、これらを「特定情報」と称する。
 次のステップ110で、主制御部26は、距離データを受信したか否かを判定する。詳細は後述するが、測距制御部24は、測距すると、測距結果(最終的に導出された距離)を示す距離データを主制御部26に送信する。主制御部26は、測距制御部24が送信した距離データを受信するまで待機状態となり、距離データを受信した場合は、ステップ112へ進む。
 ステップ112で、主制御部26は、受信した距離データに基づいて、被写体までの距離に関する情報をライブビュー画像に重畳してビューファインダー46に表示する。また、主制御部26は、受信した距離データを、撮影して得た撮影画像に対応付けて記憶部48に記憶する。本ステップにより、被写体を撮影して得た撮影画像(撮影画像を示す画像データ)と、被写体までの距離(距離データ)とが、対応付けられた状態で記憶部48に記憶される。
 次のステップ114で、主制御部26は、操作部44のレリーズボタンが全押しされたか否かを判定する。全押しされていない場合は、ステップ116へ進む。
 ステップ116で、主制御部26は、操作部44のレリーズボタンへの押圧操作が解除されたか否かを判定する。押圧が解除されていない場合は、ステップ114に戻り、本処理を繰り返す。一方、押圧が解除された場合は、ステップ126へ進む。
 一方、レリーズボタンが全押しされている場合は、ステップ114からステップ118へ進む。
 ステップ118で、主制御部26は、本露光(撮影)を開始させる。本露光が開始されることにより、撮像素子42の画素に光が照射され(画像光が撮像素子42の受光面に結像され)、各画素には、照射された光に応じた信号電荷が蓄積される。
 次のステップ120で、主制御部26は、本露光が終了したか否かを検出する。本露光が終了するまで待機状態となり、本露光が終了した場合は、ステップ122へ進む。なお、本露光が終了したか否かの判定方法は限定されないが、具体例としては、種々の条件により定められた本露光時間が経過したか否かを判定することにより判定する方法が挙げられる。
 ステップ122で、主制御部26は、撮像素子42の各画素に蓄積された信号電荷の読み出しを開始する。
 次のステップ124で、主制御部26は、読み出しを終了するか否かを判定する。撮像素子42の全ての画素から未だ信号電荷を読み出していない場合、主制御部26は、本ステップ124の判定を再び行う。一方、撮像素子42の全ての画素から信号電荷を読み出した場合は、ステップ126へ進む。
 ステップ126で、主制御部26は、図示しない電源スイッチがオフされたか否かを判定する。電源スイッチがオフされていない場合は、ステップ102に戻り、本処理を繰り返す。一方、電源がオフされた場合は、ステップ128へ進む。
 ステップ128で、主制御部26は、ライブビュー動作を停止させた後、本処理を終了する。また、主制御部26は、測距装置10の電源をオフにする。
 次に、測距制御部24で実行される測距処理について説明する。図6には、本実施形態の測距装置10の測距制御部24で実行される測距処理の流れの一例を表すフローチャートを示す。
 図6に示すフローチャートは、測距装置10に電源が投入されると実行される。
 まず、ステップ150で、測距制御部24は、同期信号を受信したか否かを判定する。具体的には、測距制御部24は、上述した主制御部26における制御処理のステップ104で主制御部26から送信された同期信号を受信したか否かを判定する。同期信号を受信するまで待機状態になり、同期信号を受信するとステップ152へ進む。
 ステップ152で、測距制御部24は、上記制御処理のステップ108で送信された特定情報を受信したか否かを判定する。ステップ152において、特定情報を受信していない場合は判定が否定されて、測距制御部24は、ステップ152の判定を再び行う。ステップ152において、特定情報を受信した場合は判定が肯定されて、ステップ154へ進む。
 ステップ154で、測距制御部24は、ステップ152で受信した合焦状態特定情報に基づいて測距有効範囲(本開示の技術に係る距離範囲の一例)を決定する。例えば、測距制御部24は、合焦状態特定情報から測距有効範囲が一意に導出される範囲導出テーブル(図示省略)を参照して測距有効範囲を決定する。
 測距有効範囲は、被写体までの距離の導出が複数回行われて得られた距離の頻度を求める際に使用される距離範囲である。すなわち、測距有効範囲とは、後述のステップ170で導出対象とされる距離の有効範囲を指し、合焦状態特定情報から推測される被写体距離及びその近傍の範囲を意味する。
 上記範囲導出テーブルの一例としては、フォーカスレンズの予め定められた基準位置からの移動方向及び移動距離と測距有効範囲とが対応付けられたテーブルが挙げられる。上記移動方向及び移動距離は、合焦状態特定情報により特定される。
 なお、測距制御部24は、範囲導出テーブルを用いずに、合焦状態特定情報を独立変数とし、測距有効範囲を従属変数とする演算式を用いて、測距有効範囲を決定するようにしてもよい。
 次のステップ156で、測距制御部24は、ステップ154で決定した測距有効範囲から一意に定まる導出分解能を決定する。
 導出分解能は、ステップ154で決定した測距有効範囲に応じて高めた分解能であり、所定分解能よりも高く設定される。なお、ここでいう所定分解能とは、例えば、測距有効範囲に拘束されることなく測距を行う場合(被写体までの距離を導出する場合)に用いられる分解能を指す。なお、本実施形態では、導出分解能の一例として、所定分解能を規定するビット数として予め定められたビット数(例えば、8ビット)を利用して所定分解能よりも高く設定された分解能を採用している。
 次のステップ158で、測距制御部24は、電圧調整期間に移行して、レーザダイオード32及びフォトダイオード36の駆動電圧の電圧調整を行うことで、レーザダイオード32のレーザ光の射出強度を調整し、フォトダイオード36の受光感度を調整する。
 レーザダイオード32が発光するレーザ光の射出強度は、ステップ152で受信された特定情報に基づいて調整される。例えば、測距制御部24は、レーザダイオード32の駆動電圧を示す電圧情報が特定情報から一意に導出される強度設定用テーブル(図示省略)を参照して、レーザ光の射出強度を調整する。すなわち、測距制御部24は、ステップ152で受信した特定情報に対応する電圧情報を強度設定用テーブルから導出し、導出した電圧情報により示される駆動電圧がレーザダイオード32に対して印加可能な状態になるように電圧調整を行う(図8参照)。
 強度設定用テーブルの一例としては、主要被写体までの距離が短いほどレーザ光の射出強度を小さくし、環境光の光量が少ないほど(露出が大きいほど)レーザ光の射出強度を小さくする電圧情報が格納されたテーブルが挙げられる。主要被写体までの距離は合焦状態特定情報により特定され、環境光の光量は露出状態特定情報により特定される。なお、環境光は、レーザ光にとってノイズとなるが、これは、環境光の光量が少ないほどレーザ光のノイズが少なくなることを意味する。そこで、本ステップ202において、測距制御部24は、環境光の光量が少ない場合に、レーザ光の射出強度が小さくなるように電圧調整を行っている。なお、露出が大きくなるということは、被写体輝度が低くなることを意味するので、被写体輝度が低いほど射出強度を小さくしてもよい。
 なお、測距制御部24は、強度設定用テーブルを用いずに、露出状態特定情報及び合焦状態特定情報を独立変数とし、電圧情報を従属変数とする演算式により導出された電圧情報に基づいて、レーザ光の射出強度を調整するようにしてもよい。
 また、ここでは、ステップ152で受信された露出状態特定情報及び合焦状態特定情報に基づいてレーザ光の射出強度が調整される場合を例示したが、本開示の技術はこれに限定されるものではない。例えば、露出状態特定情報又は合焦状態特定情報に基づいてレーザ光の射出強度が調整されるようにしてもよい。
 フォトダイオード36の受光感度は、ステップ152で受信された合焦状態特定情報に基づいて調整される。例えば、測距制御部24は、フォトダイオード36の駆動電圧を示す電圧情報が特定情報から一意に導出される感度調整用テーブル(図示省略)を参照して、フォトダイオード36の受光感度を調整する。すなわち、測距制御部24は、ステップ152で受信された合焦状態特定情報に対応する電圧情報を感度調整用テーブルから導出し、導出した電圧情報により示される駆動電圧がフォトダイオード36に対して印加可能な状態になるように電圧調整を行う(図8参照)。
 感度調整用テーブルの一例としては、主要被写体までの距離が短いほどフォトダイオード36の受光感度が下がる電圧情報が格納されたテーブルが挙げられる。
 なお、測距制御部24は、感度調整用テーブルを用いずに、合焦状態特定情報を独立変数とし、電圧情報を従属変数とする演算式により導出された電圧情報に基づいて、フォトダイオード36の受光感度を設定するようにしてもよい。
 ステップ160で、測距制御部24は、電圧調整が終了したか否かを判定する。本実施形態では、一例として図2に示すように、電圧調整期間を数100msecとしている。そのため、測距制御部24は、電圧調整期間に移行してから、数100msecが経過した場合は、電圧調整が終了したと判定する。従って、測距制御部24は、電圧調整期間に移行してから数100msecが経過するまでは、電圧調整が終了していないとして待機状態となり、数100msecが経過した場合は、電圧調整が終了したものとしてステップ164へ進む。
 次のステップ164で、測距制御部24は、ステップ158で調整した射出強度のレーザ光が射出されるようにレーザダイオード32を発光させる。
 次のステップ166で、測距制御部24は、所定時間が経過したか否かを判定する。具体的には、測距制御部24は、上述したように、1回の計測時間を数msecとしているため、数msecが経過したか否かを判定する。所定時間(本実施形態では、1回の計測時間である数msec)が経過していない場合は、待機状態となり、所定時間が経過した場合は、ステップ168へ進む。
 ステップ164の処理によってレーザダイオード32が発光することによりレーザ光が発光用レンズ30を介して被写体に向けて射出される。上記所定時間が経過するまでに、被写体で反射したレーザ光は、受光用レンズ34を介してフォトダイオード36により受光される。ここで、測距制御部24は、フォトダイオード36で受光した場合は、発光から受光までの経過時間を取得し、記憶部(例えば、測距制御部24内のRAM等)に記憶させておく。
 一方、例えば、被写体が動いてしまった場合等では、レーザ光の発光から受光までの経過時間が数msecを超えてしまったり、レーザ光が戻ってこなかったり(反射光を受光しなかったり)する場合がある。このような場合は、計測エラーとなる。なお、計測エラーが生じた場合は、測距制御部24は、その旨を記憶部(例えば、測距制御部24内のRAM等)に記憶させておく。そして、計測エラーが生じた回数等に応じ、例えば、ヒストグラムを用いて被写体までの距離を導出する上で無視できないほどの回数であれば、計測エラーが生じたことをビューファインダー46等に表示するようにしてもよい。また、このように計測エラーが生じた場合には、主制御部26が撮影画像を記憶部48に記憶させないようにしてもよい。この場合に、撮影画像を記憶するか否かをユーザが操作部44(本開示の技術に係る記憶設定部の一例)を介して設定できるようにしてもよい。
 次のステップ168で、測距制御部24は、所定回数の計測を終了したか否かを判定する。ステップ168において、所定回数の計測を終了した場合は判定が肯定されて、ステップ170へ進む。ステップ168において、所定回数の計測を終了していない場合は判定が否定されて、ステップ164へ戻る。
 ステップ170で、先ず、測距制御部24は、ステップ164の処理によってレーザ光を発光してからフォトダイオード36がレーザ光を受光する迄の時間に基づいて、被写体までの距離を導出する。そして、測距制御部24は、一例として図4に示すように、導出した被写体までの距離のヒストグラムを所定分解能で生成する。次に、測距制御部24は、一例として図4に示すように、被写体までの距離のヒストグラムを、ステップ154の処理で決定した測距有効範囲内で導出分解能を用いて再構築する。そして、測距制御部24は、測距有効範囲内のヒストグラムを解析し、解析して得た距離(図4に示す例では、計測回数が最大値の距離)を表す距離データを生成する。なお、ここで、距離データにより表される距離は、ユーザに提供される最終的な距離(最終出力)である。
 なお、導出分解能で生成されたヒストグラムは、所定分解能で生成されるヒストグラムに比べ、細分化されている。従って、ヒストグラムが解析されて得られた距離は、所定分解能で生成されたヒストグラムが解析されて得られた距離に比べ、綿密な数値単位(より小さくなる数値単位)で表現される。
 次のステップ172で、測距制御部24は、ステップ170で生成した距離データを主制御部26に送信し、その後、ステップ174へ進む。
 ステップ174で、測距制御部24は、本測距処理を終了する条件として予め定められた条件(終了条件)を満たしたか否かを判定する。終了条件の一例としては、ユーザによる終了指示が操作部44によって受け付けられたとの条件が挙げられる。ステップ174において、終了条件を満たしていない場合は判定が否定されて、ステップ150へ進む。ステップ174において、終了条件を満たした場合は判定が肯定されて、本測距処理を終了する。
 以上説明したように、本実施形態に係る測距装置10では、AE及びAFが実行されるタイミングと測距のタイミングとを同期させるように制御が行われる(ステップ104,150)。そして、測距が完了した後に本露光が可能な状態に移行するように制御される(ステップ114)。これにより、測距装置10は、測距とは無関係に本露光が行われる場合に比べ、無駄な撮影を削減することができる。また、測距装置10は、AE及びAFが実行されるタイミングと測距のタイミングとが同期していない場合に比べ、測距の開始に要する手間を軽減することができる。
 また、本実施形態に係る測距装置10では、被写体までの距離に関する情報がビューファインダー46に表示され、レリーズボタンが全押しされた場合に、本露光が行われるように制御される(ステップ112,114)。これにより、測距装置10は、被写体までの距離に関する情報がビューファインダー46に表示されずに、レリーズボタンの全押しに応じて本露光が行われる場合に比べ、被写体までの距離に関する情報に基づくユーザの判断に依拠した撮影を実現することができる。この結果、無駄な撮影が削減される。
 また、本実施形態に係る測距装置10では、レリーズボタンが半押しされた場合に、AE及びAFと測距とが同期して行われる。従って、測距装置10は、本構成を有しない場合に比べ、ユーザの判断に依拠してAE及びAFと測距とを同期させて行うことができる。
 また、本実施形態に係る測距装置10では、被写体までの距離の導出が複数回行われて得られる距離のうちの頻度が高い距離に関する情報がビューファインダー46に表示される。従って、測距装置10は、被写体までの距離の導出が複数回行って得た距離のうちの頻度が高い距離に関する情報がビューファインダー46に表示される構成を有しない場合に比べ、ユーザにとって必要性の高い距離に関する情報をユーザに提供することができる。
 また、本実施形態に係る測距装置10では、被写体までの距離が導出される際に合焦状態特定情報に基づいて測距有効範囲が定められ、定められた測距有効範囲に基づいて被写体までの距離が導出される。従って、測距装置10は、合焦状態特定情報に基づいて測距有効範囲が定められない場合に比べ、ユーザが着目している距離範囲内で最終的な距離を導出することができる。
 また、本実施形態に係る測距装置10では、合焦状態特定情報に基づいて定められた測距有効範囲に応じて高めた分解能で被写体までの距離が導出される。従って、測距装置10は、測距有効範囲に応じて高めた分解能を用いずに最終的な距離が導出される場合に比べ、最終的な距離を綿密に導出することができる。
 また、本実施形態に係る測距装置10では、合焦状態特定情報及び露出状態特定情報の少なくとも一方に応じて調整された射出強度のレーザ光がレーザダイオード32により射出される。従って、測距装置10は、合焦状態特定情報及び露出状態特定情報を用いずにレーザ光の射出強度が調整される場合に比べ、射出強度が過不足した状態でレーザダイオード32によりレーザ光が射出されることを抑制することができる。
 また、本実施形態に係る測距装置10では、レーザ光の被写体からの反射光が合焦状態特定情報に応じて調整された受光感度でフォトダイオード36によって受光される。従って、測距装置10は、合焦状態特定情報を用いずにフォトダイオード36の受光感度が調整される場合に比べ、受光感度が過不足した状態でフォトダイオード36によって反射光が受光されることを抑制することができる。
 更に、本実施形態に係る測距装置10では、ビューファインダー46にライブビュー画像が表示され、かつ、ライブビュー画像の表示に並行して、被写体までの距離に関する情報がビューファインダー46に表示される。従って、測距装置10は、ライブビュー画像の表示に並行して、被写体までの距離に関する情報がビューファインダー46に表示されない場合に比べ、被写体の様子と被写体までの距離との関係をユーザに正確に把握させることができる。
 なお、上記実施形態では、ビューファインダー46に表示された被写体までの距離に関する情報を確認したユーザ(測距の完了を確認したユーザ)の意思に従って本露光が開始される場合を例示したが、本開示の技術はこれに限定されるものではない。例えば、主制御部26は、計測エラーが生じなかった場合(測距が完了した後)に本露光を開始させるように制御を行うようにしてもよい。この場合、ユーザによるレリーズボタンの操作に要する手間が軽減される。
 また、上記実施形態では、測距開始のタイミング及び本露光開始のタイミングと同時に電圧調整が行われる場合を例示したが、本開示の技術はこれに限定されるものではない。例えば、測距開始及び本露光開始に先立って電圧調整が行われるようにしてもよい。
 また、上記実施形態では、被写体までの距離の計測回数に関するヒストグラムが生成される場合を例示したが、本開示の技術はこれに限定されるものではない。例えば、レーザ光の射出から受光までの往復に要する時間の計測回数に関するヒストグラムが生成されるようにしてもよい。また、測距有効範囲に相当する時間範囲を設定し、時間範囲に応じて高めた分解能でヒストグラムが再構築されるようにしてもよい。この場合、例えば、再構築されたヒストグラムの最大値の時間に基づいて導出された被写体までの距離を最終的に出力される距離(ユーザに提示される距離)とすればよい。
 また、上記実施形態では、一例として図4及び図7Aに示すように、全データによるヒストグラムの両端部が測距有効範囲(図7Aに示す例では、網掛けがされていない範囲)に含まれない場合を例示したが、本開示の技術はこれに限定されるものではなく、一例として図7B及び図7Cに示すように、ヒストグラムの一端部(網掛け部分)が測距有効範囲(図7B及び図7Cに示す例では、網掛けがされていない範囲)に含まれないようにしてもよい。
 また、上記実施形態では、説明の便宜上、一旦生成されたヒストグラム(全データによるヒストグラム)が測距有効範囲に基づいて再構築される場合を例示したが、本開示の技術はこれに限定されるものではない。例えば、測距制御部24は、複数回の導出により得た被写体までの距離(全データ)のうち、測距有効範囲外の距離を排除して残った距離を対象にしてヒストグラムを生成するようにしてもよい。この場合も、測距制御部24は、上述した導出分解能でヒストグラムを生成するようにすればよい。
 また、上記実施形態では、被写体までの距離に関する情報がライブビュー画像に重畳されてビューファインダー46に表示される場合を例示したが、本開示の技術はこれに限定されるものではない。例えば、ライブビュー画像の表示領域とは別の表示領域に被写体までの距離に関する情報が表示されるようにしてもよい。このように、被写体までの距離に関する情報は、ライブビュー画像の表示と並行してビューファインダー46に表示されるようにすればよい。
 また、上記実施形態では、測距装置10に設けられているレリーズボタンが操作される場合を例示したが、本開示の技術はこれに限定されるものではない。例えば、測距装置10に接続して使用される外部装置のUI(ユーザ・インタフェース)部によって受け付けられた撮影準備指示に従ってAE及びAFが開始され、外部装置のUI部によって受け付けられた撮影指示に従って本露光が開始されるようにしてもよい。測距装置10に接続して使用される外部装置の一例としては、スマートデバイス、パーソナル・コンピュータ(PC)、又は、眼鏡型若しくは腕時計型のウェアラブル端末装置が挙げられる。
 また、上記実施形態では、ビューファインダー46にライブビュー画像及び測距結果(被写体までの距離に関する情報)が表示される場合を例示したが、本開示の技術はこれに限定されるものではない。例えば、測距装置10に接続して使用される外部装置の表示部にライブビュー画像及び測距結果の少なくとも一方が表示されるようにしてもよい。測距装置10に接続して使用される外部装置の表示部の一例としては、スマートデバイスのディスプレイ、PCのディスプレイ、又はウェアラブル端末装置のディスプレイが挙げられる。
 また、上記実施形態では、説明の便宜上、AFのエラーがないことを前提にして説明したが、本開示の技術はこれに限定されるものではない。すなわち、測距制御部24は、AFのエラーが生じてない場合に上述したように距離の導出を行い、AFのエラーが生じた場合に距離の導出を行わないようにしてもよい。
 また、上記実施形態では、説明の便宜上、AEのエラーがないことを前提にして説明したが、本開示の技術はこれに限定されるものではない。すなわち、測距制御部24は、AEのエラーが生じていない場合に上述したように距離の導出を行い、AEのエラーが生じた場合に距離の導出を行わないようにしてもよい。
 また、上記実施形態では、AF及びAEによる焦点調整及び露出調整を例示したが、本開示の技術はこれに限定されるものではなく、マニュアルフォーカスによる焦点調整、及びマニュアル露出による露出調整であってもよい。
 また、上記実施形態では、測距装置10に対して本開示の技術を適用した場合を例示したが、本開示の技術はこれに限定されるものではなく、デジタルカメラ(撮影装置)に対して本開示の技術を適用してもよい。
 また、上記実施形態では、ステップ202で電圧調整が行われる場合を例示したが、本開示の技術はこれに限定されるものではなく、電圧調整は必ずしも行われなくてもよい。
 また、上記実施形態で説明した制御処理(図5参照)及び測距処理(図6参照)はあくまでも一例である。従って、主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよいことは言うまでもない。また、上記実施形態で説明した制御処理及び測距処理に含まれる各処理は、プログラムを実行することにより、コンピュータを利用してソフトウェア構成により実現されてもよいし、その他のハードウェア構成で実現されてもよい。また、ハードウェア構成とソフトウェア構成の組み合わせによって実現してもよい。
 また、上記実施形態では、レーザ光の発光回数が固定化されている場合を例示したが、本開示の技術はこれに限定されるものではない。環境光は、レーザ光にとってノイズとなるため、レーザ光の発光回数は、被写体輝度に応じて定められた発光回数であってもよい。
 以下、レーザ光の発光回数の決め方の一例について説明する。
 レーザ光の発光回数は、一例として図9に示す発光回数決定テーブル300から導出される。発光回数決定テーブル300では、被写体輝度が高くなるほどレーザ光の発光回数が多くなるように、被写体輝度とレーザ光の発光回数とが対応付けられている。すなわち、発光回数決定テーブル300において、被写体輝度は、L<L<・・・<Lの大小関係が成立しており、発光回数は、N<N<・・・<Nの大小関係が成立している。なお、図2に示す例では、100回単位の発光回数が例示されているが、これに限らず、発光回数は発光回数決定テーブル300によって10回単位又は1回単位で定められるようにしてもよい。
 測距装置10では、発光回数決定テーブル300によるレーザ光の発光回数の導出を実現するために、主制御部26によって輝度情報送信処理(図10参照)が実行され、測距制御部24によって発光回数決定処理(図11参照)が実行される。
 先ず、測距装置10の電源スイッチがオンされると主制御部26によって実行される輝度情報送信処理について図10を参照して説明する。
 図10に示す輝度情報送信処理では、先ず、ステップ400で、主制御部26は、被写体輝度の取得を開始する条件である輝度取得開始条件を満たしたか否かを判定する。輝度取得開始条件の一例としては、レリーズボタンが半押しされたとの条件が挙げられる。輝度取得開始条件の他の例としては、撮像素子42から撮影画像が出力されたとの条件が挙げられる。
 ステップ400において、輝度取得開始条件を満たした場合は、判定が肯定されて、ステップ402へ移行する。ステップ400において、輝度取得開始条件を満たしていない場合は、判定が否定されて、ステップ406へ移行する。
 ステップ402で、主制御部26は、撮影画像から被写体輝度を取得し、その後、ステップ404へ移行する。なお、ここでは、撮影画像から被写体輝度が取得される場合を例示しているが、本開示の技術はこれに限定されるものではない。例えば、被写体輝度を検出する輝度センサが測距装置10に搭載されているのであれば、主制御部26は、輝度センサから被写体輝度を取得してもよい。
 ステップ404で、主制御部26は、ステップ402で取得した被写体輝度を示す輝度情報を測距制御部24に送信し、その後、ステップ406へ移行する。
 ステップ406で、主制御部26は、本輝度情報送信処理を終了する条件である終了条件を満たしたか否かを判定する。終了条件の一例としては、測距装置10の電源スイッチがオフされたとの条件が挙げられる。ステップ406において、終了条件を満たしていない場合は、判定が否定されて、ステップ400へ移行する。ステップ406において、終了条件を満たした場合は、判定が肯定されて、本輝度情報送信処理を終了する。
 次に、測距装置10の電源スイッチがオンされると測距制御部24によって実行される発光回数決定処理について図11を参照して説明する。
 図11に示す発光回数決定処理では、先ず、ステップ410で、測距制御部24は、ステップ404の処理が実行されることによって送信された輝度情報を受信したか否かを判定する。ステップ410において、ステップ404の処理が実行されることによって送信された輝度情報を受信していない場合は、判定が否定されて、ステップ416へ移行する。ステップ410において、ステップ404の処理が実行されることによって送信された輝度情報を受信した場合は、判定が肯定されて、ステップ412へ移行する。
 ステップ412で、測距制御部24は、発光回数決定テーブル300から、ステップ410で受信した輝度情報により示される被写体輝度に対応する発光回数を導出し、その後、ステップ414へ移行する。
 ステップ414で、測距制御部24は、ステップ412の処理で導出した発光回数を記憶部48に記憶し、その後、ステップ416へ移行する。なお、本ステップ416の処理によって記憶部48に記憶された発光回数は、図6に示す測距処理のステップ168における「所定回数」を意味する。
 ステップ416で、主制御部26は、本発光回数決定処理を終了する条件である終了条件を満たしたか否かを判定する。終了条件の一例としては、測距装置10の電源スイッチがオフされたとの条件が挙げられる。ステップ416において、終了条件を満たしていない場合は、判定が否定されて、ステップ410へ移行する。ステップ416において、終了条件を満たした場合は、判定が肯定されて、本発光回数決定処理を終了する。
 次に、レーザ光の発光回数の決め方の他の例について説明する。
 レーザ光の発光回数は、一例として図12に示す発光回数決定テーブル500に従って導出される。発光回数決定テーブル500では、被写体輝度に応じて一意に定まる露出状態特定情報(E,E,・・・・E)とレーザ光の発光回数(N,N,・・・・N)とが対応付けられている。なお、ここで、被写体輝度に応じて一意に定まる露出状態特定情報とは、例えば、被写体輝度が高いほど低くなる露出を示す露出状態特定情報を意味する。
 発光回数決定テーブル500を用いてレーザ光の発光回数を導出する場合、主制御部26によって露出状態特定情報送信処理(図13参照)が実行され、測距制御部24によって発光回数決定処理(図14参照)が実行される。
 先ず、測距装置10の電源スイッチがオンされると主制御部26によって実行される露出状態特定情報送信処理について図13を参照して説明する。
 図13に示す露出状態特定情報送信処理では、先ず、ステップ600で、主制御部26は、レリーズボタンが半押しされたか否かを判定する。ステップ600において、レリーズボタンが半押しされていない場合は、判定が否定されて、ステップ606へ移行する。ステップ600において、レリーズボタンが半押しされた場合は、判定が肯定されて、ステップ602へ移行する。なお、図13では、操作部44にレリーズボタンが備えられている場合を例に挙げて説明するが、本開示の技術はこれに限定されるものではない。例えば、操作部44に測距撮影開始ボタンが備えられている場合には、ステップ600を省略して、電源が投入された場合にステップ602の処理が開始されるようにすればよい。
 ステップ602で、主制御部26は、撮影画像から取得した被写体輝度に基づいてAEを行い、その後、ステップ604へ移行する。
 ステップ604で、主制御部26は、露出状態特定情報を測距制御部24に送信し、その後、ステップ606へ移行する。
 ステップ606で、主制御部26は、本露出状態特定情報送信処理を終了する条件である終了条件を満たしたか否かを判定する。終了条件の一例としては、測距装置10の電源スイッチがオフされたとの条件が挙げられる。ステップ606において、終了条件を満たしていない場合は、判定が否定されて、ステップ600へ移行する。ステップ606において、終了条件を満たした場合は、判定が肯定されて、本露出状態特定情報送信処理を終了する。
 次に、測距装置10の電源スイッチがオンされると測距制御部24によって実行される発光回数決定処理について図14を参照して説明する。
 図14に示す発光回数決定処理では、先ず、ステップ610で、測距制御部24は、ステップ604の処理が実行されることによって送信された露出状態特定情報を受信したか否かを判定する。ステップ610において、ステップ604の処理が実行されることによって送信された露出状態特定情報を受信していない場合は、判定が否定されて、ステップ616へ移行する。ステップ610において、ステップ604の処理が実行されることによって送信された露出状態特定情報を受信した場合は、判定が肯定されて、ステップ612へ移行する。
 ステップ612で、測距制御部24は、発光回数決定テーブル500から、ステップ610で受信した露出状態特定情報に対応する発光回数を導出し、その後、ステップ614へ移行する。
 ステップ614で、測距制御部24は、ステップ612の処理で導出した発光回数を記憶部48に記憶し、その後、ステップ616へ移行する。なお、本ステップ616の処理によって記憶部48に記憶された発光回数は、図6に示す測距処理のステップ168における「所定回数」を意味する。
 ステップ616で、主制御部26は、本露出状態特定情報送信処理を終了する条件である終了条件を満たしたか否かを判定する。終了条件の一例としては、測距装置10の電源スイッチがオフされたとの条件が挙げられる。ステップ616において、終了条件を満たしていない場合は、判定が否定されて、ステップ610へ移行する。ステップ616において、終了条件を満たした場合は、判定が肯定されて、本露出状態特定情報送信処理を終了する。
 このように、測距装置10は、被写体輝度が高いほどレーザ光の発光回数(測距回数)を多くしているので、被写体輝度に拘わらずレーザ光の発光回数(測距回数)が固定化されている場合に比べ、環境光のノイズの影響が緩和された測距結果を得ることができる。
 また、上記実施形態では、測距用の光としてレーザ光を例示しているが、本開示の技術はこれに限定されるものではなく、指向性のある光である指向性光であればよい。例えば、発光ダイオード(LED:Light Emitting Diode)やスーパールミネッセントダイオード(SLD:Super Luminescent Diode)により得られる指向性光であってもよい。指向性光が有する指向性は、レーザ光が有する指向性と同程度の指向性であることが好ましく、例えば、数メートルから数キロメートルの範囲内における測距で使用可能な指向性であることが好ましい。
 なお、2014年5月2日に出願された日本国特許出願2014-095539号及び2014年8月5日に出願された日本国特許出願2014-159804号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願及び技術規格は、個々の文献、特許出願及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
 以上の実施形態に関し、更に以下の付記を開示する。
 (付記1)
 被写体を示す被写体像を結像する結像光学系により結像された被写体像を撮影する撮影部と、
 結像光学系の光軸方向に沿ってレーザ光を射出する射出部と、
 レーザ光の被写体からの反射光を受光する受光部と、
 射出部によりレーザ光が射出されたタイミング及び受光部により反射光が受光されたタイミングに基づいて被写体までの距離を導出する導出部と、
 撮影部による撮影に先立って、結像光学系の被写体への焦点調整、及び露出調整の少なくとも一方を実行する実行部と、
 実行部により焦点調整及び露出調整の少なくとも一方が実行されるタイミングと、射出部、受光部、及び導出部による測距のタイミングとを同期させる制御を行い、測距が完了した後に撮影部による本露光が可能な状態に移行する制御を行う制御部と、
 を含む測距装置。
 (付記2)
 被写体を示す被写体像を結像する結像光学系の光軸方向に沿ってレーザ光を射出する射出部によりレーザ光が射出されたタイミング、及びレーザ光の被写体からの反射光を受光する受光部により反射光が受光されたタイミングに基づいて被写体までの距離を導出し、
 結像光学系により結像された被写体像を撮影する撮影部による撮影に先立って、結像光学系の被写体への焦点調整、及び露出調整の少なくとも一方を実行し、
 焦点調整及び露出調整の少なくとも一方が実行されるタイミングと、測距のタイミングとを同期させる制御を行い、測距が完了した後に撮影部による本露光が可能な状態に移行する制御を行うことを含む測距方法。
 (付記3)
 コンピュータに、
 被写体を示す被写体像を結像する結像光学系の光軸方向に沿ってレーザ光を射出する射出部によりレーザ光が射出されたタイミング、及びレーザ光の被写体からの反射光を受光する受光部により反射光が受光されたタイミングに基づいて被写体までの距離を導出し、
 結像光学系により結像された被写体像を撮影する撮影部による撮影に先立って、結像光学系の被写体への焦点調整、及び露出調整の少なくとも一方を実行し、
 焦点調整及び露出調整の少なくとも一方が実行されるタイミングと、測距のタイミングとを同期させる制御を行い、測距が完了した後に撮影部による本露光が可能な状態に移行する制御を行うことを含む処理を実行させるための測距プログラム。

Claims (19)

  1.  被写体を示す被写体像を結像する結像光学系により結像された被写体像を撮影する撮影部と、
     前記結像光学系の光軸方向に沿って、指向性のある光である指向性光を射出する射出部と、
     前記指向性光の前記被写体からの反射光を受光する受光部と、
     前記射出部により前記指向性光が射出されたタイミング及び前記受光部により前記反射光が受光されたタイミングに基づいて前記被写体までの距離を導出する導出部と、
     前記撮影部による撮影に先立って、前記結像光学系の被写体への焦点調整、及び露出調整の少なくとも一方を実行する実行部と、
     前記実行部により前記焦点調整及び前記露出調整の少なくとも一方が実行されるタイミングと、前記射出部、前記受光部、及び前記導出部による測距のタイミングとを同期させる制御を行い、前記測距が完了した後に前記撮影部による本露光が可能な状態に移行する制御を行う制御部と、
     を含む測距装置。
  2.  前記制御部は、情報を提示する提示部に対して、前記測距の結果に関する情報を提示させる制御を行い、前記本露光を開始させる撮影指示を受け付ける受付部によって前記撮影指示が受け付けられた場合に、前記本露光が行われる制御を行う請求項1に記載の測距装置。
  3.  前記受付部は、前記実行部に対して前記焦点調整及び前記露出調整の少なくとも一方の実行を開始させる撮影準備指示を更に受け付け、
     前記制御部は、前記受付部により前記撮影準備指示が受け付けられた場合に、前記実行部により前記焦点調整及び前記露出調整の少なくとも一方が実行される制御を行う請求項2に記載の測距装置。
  4.  前記導出部は、前記距離の導出を複数回行い、前記複数回の前記距離の導出によって得られる距離のうちの頻度が高い距離を最終的な距離として導出する請求項1から請求項3の何れか一項に記載の測距装置。
  5.  前記実行部は、前記焦点調整を実行し、
     前記導出部は、前記距離を導出する場合に、合焦状態特定情報に基づいて、前記頻度を求める際に使用する距離範囲、又は前記指向性光の射出から受光までの時間範囲を定め、定めた前記距離範囲又は前記時間範囲の範囲内で前記最終的な距離を導出する請求項4に記載の測距装置。
  6.  前記導出部は、前記距離を導出する場合に、前記距離範囲又は前記時間範囲を定めた結果に応じて定まる分解能で前記最終的な距離を導出する請求項5に記載の測距装置。
  7.  前記実行部は、前記焦点調整及び前記露出調整の少なくとも一方を実行し、
     前記射出部は、前記指向性光の射出強度が調整可能であり、合焦状態特定情報と被写体輝度又は露出状態特定情報との少なくとも一方に基づいて前記射出強度を調整して前記指向性光を射出する請求項1から請求項6の何れか一項に記載の測距装置。
  8.  前記射出部は、前記合焦状態特定情報により示される焦点距離が短いほど前記射出強度を小さくする請求項7に記載の測距装置。
  9.  前記射出部は、前記被写体輝度が低いほど前記射出強度を小さくし、前記露出状態特定情報により示される露出が高いほど前記射出強度を小さくする請求項7又は請求項8に記載の測距装置。
  10.  前記受光部は、受光感度が調整可能であり、合焦状態特定情報に基づいて前記受光感度を調整して前記反射光を受光する請求項1から請求項9の何れか一項に記載の測距装置。
  11.  前記受光部は、前記合焦状態特定情報により示される焦点距離が短いほど前記受光感度を下げる請求項10に記載の測距装置。
  12.  画像を表示する表示部を更に含み、
     前記制御部は、前記表示部に対して、前記撮影部により撮影されて得られた動画像を表示させ、かつ、前記導出部により導出された前記被写体までの距離に関する情報を表示させる制御を行う請求項1から請求項11の何れか一項に記載の測距装置。
  13.  前記射出部、前記受光部、及び前記導出部による測距は、被写体輝度又は露出状態特定情報に応じて予め定めた回数行う請求項1から請求項12の何れか一項に記載の測距装置。
  14.  前記射出部、前記受光部、及び前記導出部による測距は、前記被写体輝度が高いほど又は前記露出状態特定情報により示される露出が低いほど多く行う請求項13に記載の測距装置。
  15.  前記導出部によって導出された前記距離を記憶する記憶部を更に含み、前記導出部によって前記距離の導出が不可能な場合、前記記憶部による記憶を中止する請求項1から請求項14の何れか一項に記載の測距装置。
  16.  前記導出部による前記距離の導出が不可能な場合に前記記憶部による記憶を中止するか否かを設定する記憶設定部を更に含む請求項15に記載の測距装置。
  17.  前記導出部は、前記結像光学系の被写体への焦点調整を行う焦点調整部による焦点調整エラー、及び前記撮影部が撮影する場合の露出を調整する露出調整部による露出調整エラーがない場合に、前記距離を導出する請求項1から請求項16の何れか一項に記載の測距装置。
  18.  被写体を示す被写体像を結像する結像光学系の光軸方向に沿って、指向性のある光である指向性光を射出する射出部により前記指向性光が射出されたタイミング、及び前記指向性光の前記被写体からの反射光を受光する受光部により前記反射光が受光されたタイミングに基づいて前記被写体までの距離を導出し、
     前記結像光学系により結像された被写体像を撮影する撮影部による撮影に先立って、前記結像光学系の被写体への焦点調整、及び露出調整の少なくとも一方を実行し、
     前記焦点調整及び前記露出調整の少なくとも一方が実行されるタイミングと、測距のタイミングとを同期させる制御を行い、前記測距が完了した後に前記撮影部による本露光が可能な状態に移行する制御を行うことを含む測距方法。
  19.  コンピュータに、
     被写体を示す被写体像を結像する結像光学系の光軸方向に沿って、指向性のある光である指向性光を射出する射出部により前記指向性光が射出されたタイミング、及び前記指向性光の前記被写体からの反射光を受光する受光部により前記反射光が受光されたタイミングに基づいて前記被写体までの距離を導出し、
     前記結像光学系により結像された被写体像を撮影する撮影部による撮影に先立って、前記結像光学系の被写体への焦点調整、及び露出調整の少なくとも一方を実行し、
     前記焦点調整及び前記露出調整の少なくとも一方が実行されるタイミングと、測距のタイミングとを同期させる制御を行い、前記測距が完了した後に前記撮影部による本露光が可能な状態に移行する制御を行うことを含む処理を実行させるための測距プログラム。
PCT/JP2015/056874 2014-05-02 2015-03-09 測距装置、測距方法、及び測距プログラム WO2015166712A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016515887A JP6321145B2 (ja) 2014-05-02 2015-03-09 測距装置、測距方法、及び測距プログラム
DE112015002096.9T DE112015002096T5 (de) 2014-05-02 2015-03-09 Abstandsmessvorrichtung, Abstandsmessverfahren und Abstandsmessprogramm
US15/333,139 US9995825B2 (en) 2014-05-02 2016-10-24 Distance measurement device, distance measurement method, and distance measurement program

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-095539 2014-05-02
JP2014095539 2014-05-02
JP2014-159804 2014-08-05
JP2014159804 2014-08-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/333,139 Continuation US9995825B2 (en) 2014-05-02 2016-10-24 Distance measurement device, distance measurement method, and distance measurement program

Publications (1)

Publication Number Publication Date
WO2015166712A1 true WO2015166712A1 (ja) 2015-11-05

Family

ID=54358453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056874 WO2015166712A1 (ja) 2014-05-02 2015-03-09 測距装置、測距方法、及び測距プログラム

Country Status (4)

Country Link
US (1) US9995825B2 (ja)
JP (1) JP6321145B2 (ja)
DE (1) DE112015002096T5 (ja)
WO (1) WO2015166712A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105259555A (zh) * 2015-11-27 2016-01-20 中山市厚源电子科技有限公司 一种伸缩式激光测距传感器
CN107991663A (zh) * 2017-12-26 2018-05-04 河南科技大学 一种基于时间信息编码的激光测距装置及其方法
CN108307180A (zh) * 2016-08-26 2018-07-20 三星电子株式会社 图像传感器中的像素、成像单元、用于测距的系统及方法
CN108700415A (zh) * 2016-02-19 2018-10-23 日本先锋公司 地物数据结构、控制装置、存储装置、控制方法、程序以及存储介质
JP2020052062A (ja) * 2019-12-20 2020-04-02 パイオニア株式会社 地物データ構造、制御装置、記憶装置、制御方法、プログラム及び記憶媒体
WO2021182405A1 (ja) * 2020-03-12 2021-09-16 ファナック株式会社 撮像回数を調整する距離画像撮像システム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102158699B1 (ko) * 2014-09-25 2020-09-22 엘지전자 주식회사 이동 단말기 제어방법 및 이동 단말기
JP7195093B2 (ja) * 2018-09-18 2022-12-23 直之 村上 テレビカメラの映す画像の距離を計測する方法
CN113875218B (zh) 2019-05-31 2024-02-23 株式会社理光 成像系统、成像方法和载体装置
WO2021065175A1 (ja) * 2019-09-30 2021-04-08 富士フイルム株式会社 処理装置、電子機器、処理方法、及びプログラム
CN114521240A (zh) 2019-09-30 2022-05-20 富士胶片株式会社 处理装置、电子设备、处理方法及程序
DE102019127667A1 (de) * 2019-10-15 2021-04-15 Sick Ag Entfernungsmessender optoelektronischer Sensor und Verfahren zur Erfassung eines Zielobjekts
CN117784088B (zh) * 2024-01-30 2024-07-09 荣耀终端有限公司 激光扫描装置、系统、控制方法及存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09105983A (ja) * 1995-10-13 1997-04-22 Nikon Corp カメラ
JP2001350084A (ja) * 2000-06-07 2001-12-21 Olympus Optical Co Ltd 自動焦点調節装置
JP2003130953A (ja) * 2001-10-24 2003-05-08 Nikon Corp 測距装置
JP2003139534A (ja) * 2001-10-30 2003-05-14 Pentax Corp 光波測距儀
JP2003344046A (ja) * 2002-05-22 2003-12-03 Pentax Corp 光波測距儀
JP2006322834A (ja) * 2005-05-19 2006-11-30 Nikon Corp 距離測定装置、及び距離測定方法
JP2009103463A (ja) * 2007-10-19 2009-05-14 Nissan Motor Co Ltd 光検出装置、光検出方法および車両
JP2011234871A (ja) * 2010-05-10 2011-11-24 Olympus Corp 内視鏡システム
JP2012165087A (ja) * 2011-02-04 2012-08-30 Nikon Corp 電子カメラ

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3023603B2 (ja) * 1998-04-03 2000-03-21 セイコープレシジョン株式会社 カメラ用測距装置
JP4002680B2 (ja) * 1998-07-15 2007-11-07 オリンパス株式会社 測距装置付きカメラ
JP2002207163A (ja) 2001-01-05 2002-07-26 Fuji Photo Optical Co Ltd テレビレンズの測距装置
JP2008096181A (ja) 2006-10-10 2008-04-24 Nikon Vision Co Ltd 距離測定装置
WO2009008745A2 (en) * 2007-07-06 2009-01-15 Industrial Research Limited Laser speckle imaging systems and methods
JP5176934B2 (ja) 2008-12-16 2013-04-03 株式会社ニコン 電子カメラ
DE102009029372A1 (de) * 2009-09-11 2011-03-24 Robert Bosch Gmbh Messvorrichtung zur Messung einer Entfernung zwischen der Messvorrichtung und einem Zielobjekt mit Hilfe optischer Messstrahlung
DE102009029364A1 (de) * 2009-09-11 2011-03-24 Robert Bosch Gmbh Messvorrichtung zur Messung einer Entfernung zwischen der Messvorrichtung und einem Zielobjekt mit Hilfe optischer Messstrahlung
US8760499B2 (en) * 2011-04-29 2014-06-24 Austin Russell Three-dimensional imager and projection device
US11265534B2 (en) * 2014-02-08 2022-03-01 Microsoft Technology Licensing, Llc Environment-dependent active illumination for stereo matching
US9912884B2 (en) * 2014-03-03 2018-03-06 Photoneo, s.r.o. Methods and apparatus for superpixel modulation
WO2015166711A1 (ja) * 2014-05-02 2015-11-05 富士フイルム株式会社 測距装置、測距方法、及び測距プログラム
JP6224232B2 (ja) * 2014-05-02 2017-11-08 富士フイルム株式会社 測距装置、測距法、及び測距プログラム
WO2015166714A1 (ja) * 2014-05-02 2015-11-05 富士フイルム株式会社 測距装置、測距方法、及び測距プログラム
DE112015002088B4 (de) * 2014-05-02 2024-07-25 Fujifilm Corporation Abstandsmessvorrichtung, Abstandsmessverfahren und Abstandsmessprogramm
DE112015003608T5 (de) * 2014-08-05 2017-04-20 Fujifilm Corporation Abstandsmessvorrichtung, Abstandsmessverfahren und Abstandsmessprogramm

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09105983A (ja) * 1995-10-13 1997-04-22 Nikon Corp カメラ
JP2001350084A (ja) * 2000-06-07 2001-12-21 Olympus Optical Co Ltd 自動焦点調節装置
JP2003130953A (ja) * 2001-10-24 2003-05-08 Nikon Corp 測距装置
JP2003139534A (ja) * 2001-10-30 2003-05-14 Pentax Corp 光波測距儀
JP2003344046A (ja) * 2002-05-22 2003-12-03 Pentax Corp 光波測距儀
JP2006322834A (ja) * 2005-05-19 2006-11-30 Nikon Corp 距離測定装置、及び距離測定方法
JP2009103463A (ja) * 2007-10-19 2009-05-14 Nissan Motor Co Ltd 光検出装置、光検出方法および車両
JP2011234871A (ja) * 2010-05-10 2011-11-24 Olympus Corp 内視鏡システム
JP2012165087A (ja) * 2011-02-04 2012-08-30 Nikon Corp 電子カメラ

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105259555A (zh) * 2015-11-27 2016-01-20 中山市厚源电子科技有限公司 一种伸缩式激光测距传感器
EP3418686A4 (en) * 2016-02-19 2019-10-23 Pioneer Corporation CHARACTERISTIC STRUCTURE, CONTROL DEVICE, MEMORY DEVICE, CONTROL PROCEDURE, PROGRAM AND STORAGE MEDIUM
US11971487B2 (en) 2016-02-19 2024-04-30 Pioneer Corporation Feature data structure, control device, storage device, control method, program and storage medium
CN108700415A (zh) * 2016-02-19 2018-10-23 日本先锋公司 地物数据结构、控制装置、存储装置、控制方法、程序以及存储介质
CN108307180B (zh) * 2016-08-26 2020-12-11 三星电子株式会社 图像传感器中的像素、成像单元、用于测距的系统及方法
CN108307180A (zh) * 2016-08-26 2018-07-20 三星电子株式会社 图像传感器中的像素、成像单元、用于测距的系统及方法
CN107991663B (zh) * 2017-12-26 2023-11-17 河南科技大学 一种基于时间信息编码的激光测距装置及其方法
CN107991663A (zh) * 2017-12-26 2018-05-04 河南科技大学 一种基于时间信息编码的激光测距装置及其方法
JP2020052062A (ja) * 2019-12-20 2020-04-02 パイオニア株式会社 地物データ構造、制御装置、記憶装置、制御方法、プログラム及び記憶媒体
JP7038694B2 (ja) 2019-12-20 2022-03-18 パイオニア株式会社 車載機、サーバ装置、及び制御方法
JP2022082571A (ja) * 2019-12-20 2022-06-02 パイオニア株式会社 制御装置、サーバ装置、制御方法、及びプログラム
WO2021182405A1 (ja) * 2020-03-12 2021-09-16 ファナック株式会社 撮像回数を調整する距離画像撮像システム
JPWO2021182405A1 (ja) * 2020-03-12 2021-09-16
JP7410271B2 (ja) 2020-03-12 2024-01-09 ファナック株式会社 撮像回数を調整する距離画像撮像システム

Also Published As

Publication number Publication date
US9995825B2 (en) 2018-06-12
JP6321145B2 (ja) 2018-05-09
JPWO2015166712A1 (ja) 2017-04-20
DE112015002096T5 (de) 2017-03-02
US20170045616A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
JP6321145B2 (ja) 測距装置、測距方法、及び測距プログラム
JP6224232B2 (ja) 測距装置、測距法、及び測距プログラム
US11940265B2 (en) Distance measurement device, distance measurement method, and distance measurement program
JP6246911B2 (ja) 測距装置、測距方法、及び測距プログラム
US12041351B2 (en) Distance measurement device, distance measurement method, and distance measurement program
US8274598B2 (en) Image capturing apparatus and control method therefor
WO2015166711A1 (ja) 測距装置、測距方法、及び測距プログラム
JP2012132957A (ja) 撮像装置及び撮像装置の設定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15786182

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016515887

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015002096

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15786182

Country of ref document: EP

Kind code of ref document: A1