WO2015166702A1 - 六角板状酸化亜鉛粒子の製造方法 - Google Patents
六角板状酸化亜鉛粒子の製造方法 Download PDFInfo
- Publication number
- WO2015166702A1 WO2015166702A1 PCT/JP2015/055927 JP2015055927W WO2015166702A1 WO 2015166702 A1 WO2015166702 A1 WO 2015166702A1 JP 2015055927 W JP2015055927 W JP 2015055927W WO 2015166702 A1 WO2015166702 A1 WO 2015166702A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zinc oxide
- hexagonal plate
- aqueous solution
- oxide particles
- microemulsion
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G9/00—Compounds of zinc
- C01G9/02—Oxides; Hydroxides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/0241—Containing particulates characterized by their shape and/or structure
- A61K8/0245—Specific shapes or structures not provided for by any of the groups of A61K8/0241
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/0241—Containing particulates characterized by their shape and/or structure
- A61K8/0254—Platelets; Flakes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/19—Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
- A61K8/27—Zinc; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/10—General cosmetic use
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/20—Particle morphology extending in two dimensions, e.g. plate-like
- C01P2004/22—Particle morphology extending in two dimensions, e.g. plate-like with a polygonal circumferential shape
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/51—Particles with a specific particle size distribution
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/51—Particles with a specific particle size distribution
- C01P2004/53—Particles with a specific particle size distribution bimodal size distribution
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
Definitions
- the present invention relates to a method for producing hexagonal plate-like zinc oxide particles.
- Hexagonal zinc oxide particles are used in various forms such as cosmetics and paints in powder form, and can also be used in applications such as thermoelectric materials and sputter targets by using oriented sintered bodies. It becomes.
- Patent Document 1 International Publication No. 2012/147886 discloses hexagonal plate-like zinc oxide particles having a primary particle diameter of 0.01 ⁇ m or more and an aspect ratio of 2.5 or more. It is described that plate-like zinc oxide particles can be used as a component of cosmetics, heat-dissipating fillers, heat-dissipating resin compositions, heat-dissipating greases and heat-dissipating coating compositions.
- hexagonal plate-like zinc oxide particles are produced by aging fine zinc oxide in an aqueous zinc salt solution, and the particle diameter of the fine zinc oxide is 0.005 ⁇ m or more and 0.05 ⁇ m or less. Is preferred. It is understood that the fine zinc oxide is used as a seed crystal.
- Non-Patent Document 1 (G. Han et al., J. Vac. Sci. Technol. B28 (2), C2C16-C2C19 (2010)) describes deionized water and 0.10 M hexamethylenetetramine (hereinafter referred to as “Hexamethylenetetramine”).
- HMT aqueous solution was added to a 0.10 M sodium di (2-ethylhexyl) sulfosuccinate (hereinafter AOT) -1-butanol solution to prepare a microemulsion, and 0.10 M Zn (NO 3 ) 2 Aqueous solution is added and stirred and mixed, and the resulting mixture is gradually heated to 75 ° C. and held at this temperature for 3 to 4 hours. The precipitate is filtered and dried to give hexagonal plate-like zinc oxide particles Is disclosed.
- Non-Patent Document 2 (G. Han et al., EJ. Surf. Sci. Nanotech. Vol. 7 (2009) 354-357) describes 0.10M HMT and 0.10M Zn (NO 3 ).
- Cited Document 1 uses fine zinc oxide as a seed crystal, crystallinity, impurity distribution, and the like are not uniform within a single particle (because it includes a crystal portion derived from the seed crystal). was there.
- the yield of hexagonal plate-like particles relative to the raw material and the yield per unit reaction solution are extremely low, and the particle size is increased.
- the particle size distribution was broad.
- the particle size distribution of the hexagonal plate-like particles is broad, there are inconveniences such as reduced applicability when used as powder and reduced sinterability when used after sintering. Therefore, hexagonal plate-like zinc oxide particles having a small particle size distribution (that is, having a relatively uniform particle size) are desired.
- the present inventors are now dripping a zinc salt aqueous solution into a microemulsion containing an aqueous hexamethylenetetramine solution having a molar concentration of 0.05 M or more as an aqueous phase, and heating it to a reaction temperature of 80 ° C. or higher without using an autoclave.
- hexagonal plate-like zinc oxide particles having a sharp particle size distribution that is, having a relatively uniform particle size
- an object of the present invention is to produce hexagonal plate-like zinc oxide particles having a sharp particle size distribution (that is, having a relatively uniform particle size) with high yield and yield.
- a method for producing hexagonal plate-like zinc oxide particles An aqueous solution of hexamethylenetetramine (HMT), a solution in which an anionic surfactant is dissolved in a water-insoluble organic solvent, and water as necessary are mixed with stirring, and a hexamethylenetetramine having a molar concentration of 0.05 M or more is mixed.
- HMT hexamethylenetetramine
- Producing a microemulsion comprising an aqueous solution as an aqueous phase; Dropping an aqueous zinc salt solution into the microemulsion; Heating the microemulsion containing the zinc salt aqueous solution to a reaction temperature of 80 ° C. or higher without using an autoclave to produce hexagonal plate-like zinc oxide particles;
- a method is provided comprising:
- Example 6 is a SEM photograph of hexagonal plate-like zinc oxide powder obtained in Example 6.
- the present invention relates to a method for producing hexagonal plate-like zinc oxide particles.
- the hexagonal plate-like zinc oxide particles are zinc oxide crystal particles having a hexagonal wurtzite structure, basically single crystal particles.
- an aqueous solution of hexamethylenetetramine (HMT) hereinafter referred to as an HMT aqueous solution
- HMT aqueous solution aqueous solution of hexamethylenetetramine
- anionic surfactant is dissolved in a water-insoluble organic solvent
- optionally water optionally water
- an aqueous zinc salt solution is dropped into the microemulsion.
- the microemulsion containing the aqueous zinc salt solution is heated to a reaction temperature of 80 ° C. or higher without using an autoclave to generate hexagonal plate-like zinc oxide particles.
- hexagonal plate-like zinc oxide having an unexpectedly sharp particle size distribution
- the particles can be produced in surprisingly high yields and yields. Having a sharp particle size distribution means that the particle sizes are relatively uniform.
- the hexagonal plate-like zinc oxide particles having a relatively uniform particle size are extremely useful in various applications using the zinc oxide particles. By performing film formation, molding, and / or sintering using such zinc oxide particles, a more uniform and high-quality zinc oxide film, zinc oxide molded body, and / or zinc oxide sintered body can be obtained. Can do.
- the method of the present invention is a method that does not use a seed crystal (because it does not include a crystal part derived from a seed crystal), the crystallinity and impurity distribution are not easily uniform in a single particle, and the uniformity is improved. Excellent hexagonal plate-like zinc oxide particles can be obtained.
- the method of the present invention does not require the use of a large-scale autoclave (because it involves high-temperature and high-pressure reaction conditions), and therefore has the advantage that it can be carried out with a relatively simple apparatus configuration.
- a microemulsion containing an aqueous solution as the aqueous phase is produced.
- a microemulsion is a form of emulsion in which one of the liquids that do not dissolve in each other is dispersed as fine droplets (with a particle size of, for example, several to 100 nm) in the order of nanometers in the other liquid. Alternatively, it has a translucent (typically colorless and transparent) appearance.
- the initial concentration of the HMT aqueous solution is not particularly limited, and it is sufficient that when the microemulsion is formed, a predetermined concentration is reached in the aqueous phase of the microemulsion. Further, it may be added.
- the molar concentration of the aqueous HMT solution in the microemulsion is preferably 0.05 M or more, more preferably 0.10 M or more, still more preferably 0.25 M or more, and particularly preferably 0.50 M or more. Thus, it contributes to the improvement of the yield of hexagonal plate-like zinc oxide particle by raising the molar concentration of HMT aqueous solution.
- the upper limit of the molar concentration of the aqueous HMT solution in the microemulsion is not particularly limited, but is typically 2.0M or less, and more typically 1.0M or less.
- the molar concentration of the HMT aqueous solution in the microemulsion is preferably determined in consideration of the balance with the molar concentration of the zinc salt aqueous solution.
- the ratio of the molar concentration of the aqueous HMT solution in the microemulsion to the molar concentration of the aqueous zinc salt solution is preferably in the range of 0.5 to 1.0, more preferably 0.5 to 0.00. 8, more preferably 0.6 to 0.8. Within this range, the yield is improved.
- a solution in which an anionic surfactant is dissolved in a water-insoluble organic solvent is prepared separately from the HMT aqueous solution, and is mixed with the HMT aqueous solution and optionally water at the time of preparing the microemulsion.
- the water-insoluble organic solvent is not particularly limited as long as the desired particle size distribution, yield and yield can be achieved.
- preferable water-insoluble organic solvents include alcohols having 4 to 8 carbon atoms, ethers having 4 to 10 carbon atoms, and ketones having 4 to 10 carbon atoms, such as 1-butanol and diethyl. Examples thereof include ether and methyl isobutyl ketone, and 1-butanol is particularly preferable.
- the anionic surfactant is not particularly limited as long as the desired particle size distribution, yield and yield can be achieved.
- the anionic surfactant include a sulfonate surfactant such as sodium di (2-ethylhexyl) sulfosuccinate (hereinafter referred to as AOT), and a sulfate surfactant such as sodium dodecyl sulfate (SDS).
- carboxylate type surfactants such as sodium fatty acid, and phosphate type surfactants such as sodium monoalkyl phosphate, and particularly preferably AOT.
- AOT concentration of a preferable AOT solution (for example, AOT-1-butanol solution) is 0.01 to 1M, more preferably 0.05 to 0.5M.
- an aqueous zinc salt solution is added dropwise to the obtained microemulsion.
- the dropwise addition of the zinc salt aqueous solution is preferably performed over 1 minute, more preferably 2 minutes or more, further preferably 3 minutes or more, and particularly preferably 3 to 10 minutes.
- the dropping time is within such a range, the particle size distribution can be made sharper.
- the zinc salt include zinc sulfate, zinc nitrate, zinc chloride, organic acid salt (for example, zinc acetate), zinc alkoxide, and the like, and zinc nitrate is more preferable.
- the concentration of the aqueous zinc salt solution is preferably 0.01 M or more, more preferably 0.05 M or more, still more preferably 0.2 M or more, and 0.8 M or more.
- the upper limit of the concentration of the zinc salt aqueous solution is not particularly limited, but is typically 3.0M or less, and more typically 2.0M or less.
- the molar concentration of the HMT aqueous solution in the microemulsion is 0.5 M or more, and the concentration of the zinc salt aqueous solution is 0.8 M or more.
- the reactor can be designed to be relatively small for a high yield.
- the microemulsion containing the obtained zinc salt aqueous solution is heated to a reaction temperature of 80 ° C. or higher without using an autoclave to generate hexagonal plate-like zinc oxide particles.
- the reaction temperature is 80 ° C or higher, preferably 85 ° C or higher, more preferably 85 to 95 ° C.
- the heating to the reaction temperature is preferably carried out slowly at a temperature rising rate of 5 ° C./min or less, more preferably 3 ° C./min or less, and further preferably 1 to 3 ° C./min. By controlling the heating rate within such a range, the particle size distribution can be further sharpened.
- the microemulsion is preferably maintained at the above reaction temperature for 1 hour or more, more preferably 1 to 5 hours, and further preferably 2 to 4 hours.
- the heat treatment conditions are not particularly limited, but in order to sufficiently remove the organic components that can remain in the solid containing hexagonal plate-like zinc oxide particles, in any atmosphere (for example, air atmosphere), for example, It is preferable to carry out at 500 to 1000 ° C. for 0.5 to 3 hours, for example.
- Hexagonal plate-like zinc oxide particles thus obtained by the method of the present invention have a sharp particle size distribution (that is, a relatively uniform particle size), and according to the method of the present invention, Such hexagonal plate-like zinc oxide particles can be produced with high yield and yield.
- This sharp particle size distribution can be evaluated by the ratio of the D90 particle size to the D10 particle size (that is, the D90 / D10 ratio), and the smaller the D90 / D10 ratio, the sharper the particle size distribution. .
- the hexagonal plate-like zinc oxide particles preferably have a particle size distribution with a D90 / D10 ratio of 4.00 or less, more preferably 3.50 or less, even more preferably 3.30 or less, particularly Preferably it is 3.00 or less. Since the lower ratio of D90 / D10 is desirable, it should not be particularly limited. However, D90 / D10 is practically 2.00 or more, 2.30 or more, or 2.50 or more.
- the hexagonal plate-like zinc oxide particles preferably have a volume-based D50 average particle diameter of 0.70 to 2.00 ⁇ m from the viewpoint of facilitating the production of a dense sintered body.
- the D10 particle size, D90 particle size, and D50 average particle size described in this specification are all volume-based, and can be measured by a commercially available laser diffraction particle size distribution measuring apparatus.
- a plate or a sintered body is produced by using a molding method in which a shearing force is applied to the plate-like particles such as tape molding or extrusion molding.
- a molded body or sintered body in which the particles are oriented can be obtained. This is because the direction of the plate-like particles is controlled by the shearing force.
- the hexagonal plate-like zinc oxide particles may further contain an additive substance.
- the additive substance may be pre-dissolved in the hexagonal plate-like zinc oxide particles through addition to the raw material liquid, or simply coexist or mixed without solid solution, and the hexagonal plate-like zinc oxide particles are solidified at the time of forming the sintered body. It is good also as a structure made to melt
- Such additive substances can be various additives and dopants that impart desired properties (for example, conductivity and insulation) according to the use and specifications of the molded body.
- Preferred examples of the dopant element include B, Al, Ga, In, C, F, Cl, Br, I, H, Li, Na, K, N, P, As, Cu, Ag, and any combination thereof. Is mentioned.
- n-type dopant elements include B, Al, Ga, In, C, F, Cl, Br, I and various combinations thereof.
- Preferred examples of p-type dopant elements include H, Li, Na, K, N, P, As, C, Cu, Ag, and any combination thereof.
- Example 1 (Comparison) AOT (sodium di (2-ethylhexyl) sulfosuccinate, manufactured by Alfa Aesar) and 1-butanol were mixed to prepare a 0.1 M AOT / 1-butanol solution. Further, HMT (hexamethylenetetramine, manufactured by Sigma Aldrich) and Milli-Q water (ultra pure water) were mixed to prepare a 0.1M HMT aqueous solution. 10 mL of 0.1 M AOT-1-butanol solution, 25 mL of 0.1 M HMT aqueous solution and 50 mL of Milli-Q water were vigorously stirred.
- AOT sodium di (2-ethylhexyl) sulfosuccinate, manufactured by Alfa Aesar
- HMT hexamethylenetetramine
- Milli-Q water ultra pure water
- the crystal phase of the obtained powder by XRD As a result of confirming the crystal phase of the obtained powder by XRD, it was a ZnO single phase. As a result of measuring the weight of the powder, it was 0.096 g. This corresponds to a yield of 47.3% when the yield is 100% when all the raw materials are changed to ZnO. Further, the total amount of the solution in this example is 110 mL, and the yield per 1 L of the solution corresponds to 0.87 g.
- the average particle size D50 was 0.38 ⁇ m.
- index which shows the sharpness of a particle size distribution was 4.85.
- Example 2 (Comparison) A hexagonal plate-like zinc oxide powder was prepared and evaluated in the same manner as in Example 1 except that the reaction temperature was 75 ° C.
- Example 3 (Comparison) A hexagonal plate-like zinc oxide powder was prepared and evaluated in the same manner as in Example 1 except that the reaction temperature was 80 ° C.
- Example 4 (Comparison) A hexagonal plate-like zinc oxide powder was prepared and evaluated in the same manner as in Example 1 except that the reaction temperature was 85 ° C.
- Example 5 (Comparison) A hexagonal plate-like zinc oxide powder was prepared and evaluated in the same manner as in Example 1 except that the reaction temperature was 90 ° C.
- Example 6 A hexagonal plate-like zinc oxide powder was prepared and evaluated in the same manner as in Example 1 except that the HMT concentration in the microemulsion was 0.067 M and the reaction temperature was 80 ° C. An SEM photograph of the obtained hexagonal plate-like zinc oxide powder is shown in FIG.
- Example 7 A hexagonal plate-like zinc oxide powder was prepared and evaluated in the same manner as in Example 6 except that the reaction temperature was 90 ° C.
- Example 8 A hexagonal plate-like zinc oxide powder was prepared and evaluated in the same manner as in Example 7 except that the HMT concentration in the microemulsion was 0.67 M and the concentration of the dropped aqueous solution of Zn (NO 3 ) 2 was 1 M.
- Example 9 Except that the type of zinc salt was ZnCl 2 in the same manner as Example 7, was prepared and evaluated in the hexagonal plate-like zinc oxide powder.
- Example 10 A hexagonal plate-like zinc oxide powder was prepared and evaluated in the same manner as in Example 7 except that the dropping time of the zinc salt aqueous solution was 1 minute.
- Example 11 A hexagonal plate-like zinc oxide powder was prepared and evaluated in the same manner as in Example 7 except that the temperature increase rate during heating was 6.4 ° C./min.
- Example 12 A hexagonal plate-like zinc oxide powder was prepared and evaluated in the same manner as in Example 7 except that the HMT concentration in the microemulsion was changed to 0.134M.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Chemical & Material Sciences (AREA)
- Birds (AREA)
- Epidemiology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Dermatology (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
シャープな粒度分布を有する(即ち粒度が比較的揃った)六角板状酸化亜鉛粒子を高い収量及び収率で製造する方法が提供される。本発明の六角板状酸化亜鉛粒子の製造方法は、ヘキサメチレンテトラミン(HMT)水溶液と、非水溶性有機溶媒中に陰イオン性界面活性剤を溶解させた溶液と、所望により水とを攪拌混合して、0.05M以上のモル濃度のヘキサメチレンテトラミン水溶液を水相として含むマイクロエマルションを生成する工程と、マイクロエマルションに亜鉛塩水溶液を滴下する工程と、亜鉛塩水溶液を含有するマイクロエマルションを、オートクレーブを使わずに80℃以上の反応温度に加熱して、六角板状酸化亜鉛粒子を生成させる工程とを含む。
Description
本発明は、六角板状酸化亜鉛粒子の製造方法に関する。
六角板状酸化亜鉛粒子は、粉末形態で化粧品、塗料等の様々な用途に使用されており、また、配向焼結体の形態にすることで、熱電材料やスパッタターゲット等の用途にも使用可能となる。
例えば、特許文献1(国際公開第2012/147886号)には、一次粒子径が0.01μm以上、アスペクト比が2.5以上の六角板状酸化亜鉛粒子が開示されており、そのような六角板状酸化亜鉛粒子が、化粧料、放熱性フィラー、放熱性樹脂組成物、放熱性グリース及び放熱性塗料組成物の成分として使用可能であることが記載されている。この文献において、六角板状酸化亜鉛粒子の製造は、微粒子酸化亜鉛を亜鉛塩水溶液中で熟成することによって行われており、微粒子酸化亜鉛の粒子径が0.005μm以上0.05μm以下であるのが好ましいとされている。この微粒子酸化亜鉛は種結晶として使用されているものと解される。
種結晶を用いることなく六角板状酸化亜鉛粒子を製造する方法も知られている。例えば、非特許文献1(G. Han et al., J. Vac. Sci. Technol. B28(2), C2C16-C2C19 (2010))には、脱イオン水と0.10Mのヘキサメチレンテトラミン(以下、HMT)水溶液とを0.10Mのジ(2-エチルヘキシル)スルホこはく酸ナトリウム(以下、AOT)-1-ブタノール溶液に添加してマイクロエマルションを作製し、0.10MのZn(NO3)2水溶液を添加して撹拌及び混合し、得られた混合液を徐々に75℃に昇温させてこの温度で3~4時間保持し、沈殿物を濾別及び乾燥して六角板状酸化亜鉛粒子を得たことが開示されている。また、非特許文献2(G. Han et al., e-J. Surf. Sci. Nanotech. Vol. 7 (2009) 354-357)には、0.10MのHMT及び0.10MのZn(NO3)2の混合水溶液を0.10MのAOT-1-ブタノール溶液に添加して撹拌し、この混合液をオートクレーブ中90℃で12時間保持し、得られた白色の懸濁液を遠心分離、洗浄及び乾燥に付して六角板状酸化亜鉛粒子を得たことが開示されている。
G. Han et al., J. Vac.Sci.Technol. B28(2), C2C16-C2C19 (2010)
G. Han et al., e-J. Surf.Sci.Nanotech. Vol. 7 (2009) 354-357
しかしながら、引用文献1に記載の方法は、微粒子酸化亜鉛を種結晶として用いるため、(種結晶由来の結晶部分を含むが故に)単一粒子内で結晶性や不純物分布等が不均一となる場合があった。一方、種結晶を用いない非特許文献1及び2に記載の方法にあっては、原料に対する六角板状粒子の収率、及び単位反応溶液当たりの収量が著しく低いと共に、粒径を大きくした時に粒度分布がブロードになるという問題があった。特に、六角板状粒子の粒度分布がブロードであると、粉末として利用する場合の塗布性が低下したり、焼結して利用する場合の焼結性が低下したりする等の不都合があることから、粒度分布の小さい(即ち粒度が比較的揃った)六角板状酸化亜鉛粒子が望まれる。
本発明者らは、今般、0.05M以上のモル濃度のヘキサメチレンテトラミン水溶液を水相として含むマイクロエマルションに亜鉛塩水溶液を滴下してオートクレーブを使わずに80℃以上の反応温度に加熱することで、シャープな粒度分布を有する(即ち粒度が比較的揃った)六角板状酸化亜鉛粒子を高い収量及び収率で製造できることを知見した。
したがって、本発明の目的は、シャープな粒度分布を有する(即ち粒度が比較的揃った)六角板状酸化亜鉛粒子を高い収量及び収率で製造することにある。
本発明の一態様によれば、六角板状酸化亜鉛粒子の製造方法であって、
ヘキサメチレンテトラミン(HMT)水溶液と、非水溶性有機溶媒中に陰イオン性界面活性剤を溶解させた溶液と、所望により水とを攪拌混合して、0.05M以上のモル濃度のヘキサメチレンテトラミン水溶液を水相として含むマイクロエマルションを生成する工程と、
前記マイクロエマルションに亜鉛塩水溶液を滴下する工程と、
前記亜鉛塩水溶液を含有するマイクロエマルションを、オートクレーブを使わずに80℃以上の反応温度に加熱して、六角板状酸化亜鉛粒子を生成させる工程と、
を含む、方法が提供される。
ヘキサメチレンテトラミン(HMT)水溶液と、非水溶性有機溶媒中に陰イオン性界面活性剤を溶解させた溶液と、所望により水とを攪拌混合して、0.05M以上のモル濃度のヘキサメチレンテトラミン水溶液を水相として含むマイクロエマルションを生成する工程と、
前記マイクロエマルションに亜鉛塩水溶液を滴下する工程と、
前記亜鉛塩水溶液を含有するマイクロエマルションを、オートクレーブを使わずに80℃以上の反応温度に加熱して、六角板状酸化亜鉛粒子を生成させる工程と、
を含む、方法が提供される。
六角板状酸化亜鉛粒子の製造方法
本発明は六角板状酸化亜鉛粒子の製造方法に関する。六角板状酸化亜鉛粒子は、六方晶ウルツ鉱型構造を有する酸化亜鉛結晶の粒子、基本的には単結晶粒子である。本発明の製造方法においては、先ず、ヘキサメチレンテトラミン(HMT)水溶液(以下、HMT水溶液という)と、非水溶性有機溶媒中に陰イオン性界面活性剤を溶解させた溶液と、所望により水とを攪拌混合して、0.05M以上のモル濃度のHMT水溶液を水相として含むマイクロエマルションを生成する。次いで、マイクロエマルションに亜鉛塩水溶液を滴下する。続いて、亜鉛塩水溶液を含有するマイクロエマルションを、オートクレーブを使わずに80℃以上の反応温度に加熱して、六角板状酸化亜鉛粒子を生成させる。
本発明は六角板状酸化亜鉛粒子の製造方法に関する。六角板状酸化亜鉛粒子は、六方晶ウルツ鉱型構造を有する酸化亜鉛結晶の粒子、基本的には単結晶粒子である。本発明の製造方法においては、先ず、ヘキサメチレンテトラミン(HMT)水溶液(以下、HMT水溶液という)と、非水溶性有機溶媒中に陰イオン性界面活性剤を溶解させた溶液と、所望により水とを攪拌混合して、0.05M以上のモル濃度のHMT水溶液を水相として含むマイクロエマルションを生成する。次いで、マイクロエマルションに亜鉛塩水溶液を滴下する。続いて、亜鉛塩水溶液を含有するマイクロエマルションを、オートクレーブを使わずに80℃以上の反応温度に加熱して、六角板状酸化亜鉛粒子を生成させる。
このような手順において、とりわけマイクロエマルション中におけるHMT濃度を0.05M以上と高くし、かつ、反応温度を80℃以上と高くすることで、予想外にシャープな粒度分布を有する六角板状酸化亜鉛粒子を驚くほど高い収量及び収率で製造することができる。シャープな粒度分布を有することは、粒度が比較的揃っていることを意味する。このように粒度が比較的揃った六角板状酸化亜鉛粒子は酸化亜鉛粒子を用いる様々な用途において極めて利用価値が高いものである。そのような酸化亜鉛粒子を用いて成膜、成形、及び/又は焼結を行うことで、より均質で高品位な酸化亜鉛膜、酸化亜鉛成形体、及び/又は酸化亜鉛焼結体を得ることができる。粒度が比較的揃っていることで、粉末として利用する場合の塗布性が向上したり、焼結して利用する場合の焼結性が向上したりする等の利点がある。また、本発明の方法は、種結晶を用いない手法のため、(種結晶由来の結晶部分を含まないが故に)単一粒子内で結晶性や不純物分布等が不均一となりにくく、均一性に優れた六角板状酸化亜鉛粒子を得ることができる。その上、本発明の方法は、(高温高圧の反応条件を伴うが故に)大掛かりな装置であるオートクレーブを使わなくて済むことから、比較的簡素な装置構成で実施できるとの利点もある。
(1)マイクロエマルションの生成
HMT水溶液と、非水溶性有機溶媒中に陰イオン性界面活性剤を溶解させた溶液と、所望により水とを攪拌混合して、0.05M以上のモル濃度のHMT水溶液を水相として含むマイクロエマルションを生成する。マイクロエマルションは、エマルションの一形態であり、互いに溶解しない液体の一方が他の液体中にナノメートルオーダーの微細な液滴(粒子径が例えば数~100nmのもの)として分散したものであり、透明又は半透明(典型的には無色透明)の外観を呈する。
HMT水溶液と、非水溶性有機溶媒中に陰イオン性界面活性剤を溶解させた溶液と、所望により水とを攪拌混合して、0.05M以上のモル濃度のHMT水溶液を水相として含むマイクロエマルションを生成する。マイクロエマルションは、エマルションの一形態であり、互いに溶解しない液体の一方が他の液体中にナノメートルオーダーの微細な液滴(粒子径が例えば数~100nmのもの)として分散したものであり、透明又は半透明(典型的には無色透明)の外観を呈する。
HMT水溶液の初期濃度は特に限定されず、マイクロエマルションを生成した際に、そのマイクロエマルションの水相において所定の濃度に達していればよく、それ故、マイクロエマルションの作製時に必要に応じて水を更に添加してもよい。マイクロエマルション中におけるHMT水溶液のモル濃度は0.05M以上であるのが好ましく、より好ましくは0.10M以上、さらに好ましくは0.25M以上、特に好ましくは0.50M以上である。このようにHMT水溶液のモル濃度を高めることで六角板状酸化亜鉛粒子の収率の向上に寄与する。マイクロエマルション中におけるHMT水溶液のモル濃度の上限は特に限定されないが、典型的には2.0M以下であり、より典型的には1.0M以下である。
もっとも、マイクロエマルション中におけるHMT水溶液のモル濃度は、亜鉛塩水溶液のモル濃度とのバランスを考慮して決定されるのが望ましい。具体的には、マイクロエマルション中におけるHMT水溶液のモル濃度の、亜鉛塩水溶液のモル濃度に対する比は0.5~1.0の範囲内であるのが好ましく、より好ましくは0.5~0.8、さらに好ましくは0.6~0.8である。この範囲内であると収率の向上に寄与する。
非水溶性有機溶媒中に陰イオン性界面活性剤を溶解させた溶液は、HMT水溶液とは別に用意されるものであり、マイクロエマルション作製時にHMT水溶液及び所望により水と混合される。非水溶性有機溶媒は、所望の粒度分布、収量及び収率が実現できる限り特に限定されない。好ましい非水溶性有機溶媒の例としては、炭素数4~8のアルコール類、炭素数4~10のエーテル類、炭素数4~10のケトン類が挙げられ、具体的には1-ブタノール、ジエチルエーテル、及びメチルイソブチルケトンが挙げられ、特に好ましくは1-ブタノールである。陰イオン性界面活性剤は、所望の粒度分布、収量及び収率が実現できる限り特に限定されない。陰イオン性界面活性剤の例としては、ジ(2-エチルヘキシル)スルホコハク酸ナトリウム(以下、AOTという)等のスルホン酸塩型界面活性剤、ドデシル硫酸ナトリウム(SDS)等の硫酸塩型界面活性剤、脂肪酸ナトリウム等のカルボン酸塩型界面活性剤、モノアルキルリン酸エステルナトリウム等のリン酸エステル型界面活性剤が挙げられ、特に好ましくはAOTである。AOTを用いる場合、好ましいAOT溶液(例えばAOT-1-ブタノール溶液)の濃度は0.01~1Mであり、より好ましくは0.05~0.5Mである。
(2)亜鉛塩水溶液の滴下
次いで、得られたマイクロエマルションに亜鉛塩水溶液を滴下する。この亜鉛塩水溶液の滴下は1分間以上にわたって行われるのが好ましく、より好ましくは2分以上、さらに好ましくは3分以上、特に好ましくは3~10分である。このような範囲内の滴下時間であると、粒度分布をよりシャープにすることができる。亜鉛塩の好ましい例としては、硫酸亜鉛、硝酸亜鉛、塩化亜鉛、有機酸塩(例えば酢酸亜鉛)、亜鉛アルコキシド等が挙げられるが、より好ましくは硝酸亜鉛である。亜鉛塩水溶液の濃度は、0.01M以上が好ましく、より好ましくは0.05M以上であり、さらに好ましくは0.2M以上であり、0.8M以上である。亜鉛塩水溶液の濃度の上限は特に限定されないが、典型的には3.0M以下であり、より典型的には2.0M以下である。
次いで、得られたマイクロエマルションに亜鉛塩水溶液を滴下する。この亜鉛塩水溶液の滴下は1分間以上にわたって行われるのが好ましく、より好ましくは2分以上、さらに好ましくは3分以上、特に好ましくは3~10分である。このような範囲内の滴下時間であると、粒度分布をよりシャープにすることができる。亜鉛塩の好ましい例としては、硫酸亜鉛、硝酸亜鉛、塩化亜鉛、有機酸塩(例えば酢酸亜鉛)、亜鉛アルコキシド等が挙げられるが、より好ましくは硝酸亜鉛である。亜鉛塩水溶液の濃度は、0.01M以上が好ましく、より好ましくは0.05M以上であり、さらに好ましくは0.2M以上であり、0.8M以上である。亜鉛塩水溶液の濃度の上限は特に限定されないが、典型的には3.0M以下であり、より典型的には2.0M以下である。
特に好ましくは、マイクロエマルション中におけるHMT水溶液のモル濃度を0.5M以上とし、かつ、亜鉛塩水溶液の濃度が0.8M以上とする。こうすることで、極めてシャープな粒度分布を有する六角板状酸化亜鉛粒子を際立って高い収量及び収率で作製することができる。また、このように高濃度のHMT水溶液及び亜鉛塩水溶液を用いることで、高い収量の割には反応装置を比較的小さく設計することも可能となる。
(3)マイクロエマルションの加熱
続いて、得られた亜鉛塩水溶液を含有するマイクロエマルションを、オートクレーブを使わずに80℃以上の反応温度に加熱して、六角板状酸化亜鉛粒子を生成させる。反応温度を80℃以上と高くすることで、シャープな粒度分布を有する六角板状酸化亜鉛粒子を得ることができる。反応温度は80℃以上、好ましくは85℃以上、より好ましくは85~95℃である。この反応温度への加熱は5℃/分以下の昇温速度で緩やかに行われるのが好ましく、より好ましくは3℃/分以下であり、さらに好ましくは1~3℃/分である。このような範囲内に昇温速度を制御することで、粒度分布を更にシャープにすることができる。マイクロエマルションは上記反応温度で1時間以上保持されるのが好ましく、より好ましくは1~5時間、さらに好ましくは2~4時間である。
続いて、得られた亜鉛塩水溶液を含有するマイクロエマルションを、オートクレーブを使わずに80℃以上の反応温度に加熱して、六角板状酸化亜鉛粒子を生成させる。反応温度を80℃以上と高くすることで、シャープな粒度分布を有する六角板状酸化亜鉛粒子を得ることができる。反応温度は80℃以上、好ましくは85℃以上、より好ましくは85~95℃である。この反応温度への加熱は5℃/分以下の昇温速度で緩やかに行われるのが好ましく、より好ましくは3℃/分以下であり、さらに好ましくは1~3℃/分である。このような範囲内に昇温速度を制御することで、粒度分布を更にシャープにすることができる。マイクロエマルションは上記反応温度で1時間以上保持されるのが好ましく、より好ましくは1~5時間、さらに好ましくは2~4時間である。
(4)任意工程
生成された六角板状酸化亜鉛粒子を分離、乾燥及び/又は熱処理する工程を行うのが好ましい。分離は遠心分離等を用いるのが好ましく、その際、イオン交換水やエタノール等の溶媒を用いて洗浄を行うのが好ましい。乾燥条件は特に限定されるものではなく、常温で行ってもよいが、所定の温度(例えば60~150℃)に加熱して行うのが製造効率の観点から好ましい。また、熱処理条件も特に限定されるものではないが、六角板状酸化亜鉛粒子を含む固形物中に残存しうる有機物成分を十分に除去するために、任意の雰囲気(例えば大気雰囲気)中、例えば500~1000℃で例えば0.5~3時間行うのが好ましい。
生成された六角板状酸化亜鉛粒子を分離、乾燥及び/又は熱処理する工程を行うのが好ましい。分離は遠心分離等を用いるのが好ましく、その際、イオン交換水やエタノール等の溶媒を用いて洗浄を行うのが好ましい。乾燥条件は特に限定されるものではなく、常温で行ってもよいが、所定の温度(例えば60~150℃)に加熱して行うのが製造効率の観点から好ましい。また、熱処理条件も特に限定されるものではないが、六角板状酸化亜鉛粒子を含む固形物中に残存しうる有機物成分を十分に除去するために、任意の雰囲気(例えば大気雰囲気)中、例えば500~1000℃で例えば0.5~3時間行うのが好ましい。
六角板状酸化亜鉛粒子
こうして本発明の方法により得られた六角板状酸化亜鉛粒子はシャープな粒度分布を有する(即ち粒度が比較的揃った)ものであり、しかも本発明の方法によれば、そのような六角板状酸化亜鉛粒子を高い収量及び収率で製造することができる。このシャープな粒度分布はD90粒径のD10粒径に対する比(即ち、D90/D10の比)によって評価することができ、D90/D10の比が小さい方がシャープな粒度分布を有するということができる。具体的には、六角板状酸化亜鉛粒子は、D90/D10の比が4.00以下である粒度分布を有するのが好ましく、より好ましくは3.50以下、さらに好ましくは3.30以下、特に好ましくは3.00以下である。D90/D10の比は低い方が望ましいため特に限定されるべきではないが、D90/D10が2.00以上、2.30以上、又は2.50以上が現実的である。また、六角板状酸化亜鉛粒子は、0.70~2.00μmの体積基準D50平均粒径を有するのが緻密質な焼結体の作製を容易にする観点から好ましい。本明細書に記載されるD10粒径、D90粒径、及びD50平均粒径は、いずれも体積基準であり、市販のレーザ回折式粒度分布測定装置により測定することができる。
こうして本発明の方法により得られた六角板状酸化亜鉛粒子はシャープな粒度分布を有する(即ち粒度が比較的揃った)ものであり、しかも本発明の方法によれば、そのような六角板状酸化亜鉛粒子を高い収量及び収率で製造することができる。このシャープな粒度分布はD90粒径のD10粒径に対する比(即ち、D90/D10の比)によって評価することができ、D90/D10の比が小さい方がシャープな粒度分布を有するということができる。具体的には、六角板状酸化亜鉛粒子は、D90/D10の比が4.00以下である粒度分布を有するのが好ましく、より好ましくは3.50以下、さらに好ましくは3.30以下、特に好ましくは3.00以下である。D90/D10の比は低い方が望ましいため特に限定されるべきではないが、D90/D10が2.00以上、2.30以上、又は2.50以上が現実的である。また、六角板状酸化亜鉛粒子は、0.70~2.00μmの体積基準D50平均粒径を有するのが緻密質な焼結体の作製を容易にする観点から好ましい。本明細書に記載されるD10粒径、D90粒径、及びD50平均粒径は、いずれも体積基準であり、市販のレーザ回折式粒度分布測定装置により測定することができる。
六角板状酸化亜鉛粒子は板状の形状を有するため、テープ成形や押出し成形といった板状粒子に剪断力が印加される成形方法を用いて成形体又は焼結体を作製することで、板状粒子が配向された成形体又は焼結体を得ることができる。これは、剪断力によって板状粒子の向きが制御されるためである。
六角板状酸化亜鉛粒子は添加物質を更に含むものであってもよい。添加物質は原料液への添加を通じて六角板状酸化亜鉛粒子に予め固溶させてもよいし、固溶させることなく単に共存又は混合させておき焼結体形成時に六角板状酸化亜鉛粒子に固溶させる構成としてもよい。そのような添加物質としては、成形体の用途や仕様に応じた所望の特性(例えば導電性や絶縁性)を付与する種々の添加剤やドーパントであることができる。ドーパント元素の好ましい例としては、B、Al、Ga、In、C、F、Cl、Br、I、H、Li、Na、K、N、P、As、Cu、Ag、及びこれらの任意の組合せが挙げられる。n型ドーパント元素の好ましい例としては、B、Al、Ga、In、C、F、Cl、Br、I及びこれらの各種組合せが挙げられ、p型ドーパント元素の好ましい例としては、H、Li、Na、K、N、P、As、C、Cu、Ag及びこれらの任意の組合せが挙げられる。
本発明を以下の例によってさらに具体的に説明する。
例1(比較)
AOT(ジ(2-エチルヘキシル)スルホこはく酸ナトリウム、Alfa Aesar社製)と1-ブタノールとを混合して、0.1MのAOT/1-ブタノール溶液を作製した。また、HMT(ヘキサメチレンテトラミン、シグマアルドリッチ製)とMilli-Q水(超純水)とを混合し、0.1MのHMT水溶液を作製した。0.1MのAOT-1-ブタノール溶液10mLと0.1MのHMT水溶液25mLとMilli-Q水50mLとを激しく攪拌した。水と1-ブタノールは混和しないため、攪拌初期は白濁するが、激しく攪拌を続けると無色透明化し、マイクロエマルションが作製される。このときマイクロエマルション中のHMT濃度はHMTが水相に存在するものとして、0.033Mと計算される。一方、Zn(NO3)2・6H2O(キシダ化学製)とMilli-Q水を混合し、0.1MのZn(NO3)2水溶液を作製した。次に、マイクロエマルションをスターラーで攪拌しながら、0.1MのZn(NO3)2水溶液25mLをスポイトを用い、全量を5分かけて滴下した。前記溶液をホットスターラーにて攪拌しながら、28分かけて25℃から70℃まで1.6℃/分の昇温速度で昇温し、70℃にて3時間保持した。その後ホットスターラーから下ろし、自然冷却した。次に、上澄みを除去した後、生成した固形物の洗浄操作を行った。洗浄操作は、遠心分離機を用い、溶媒をエタノールとイオン交換水に交互に2回ずつ変えて行った。得られた固形物を乾燥機を用いて80℃で乾燥した。固形物中にわずかに残存した有機物成分を除去するため、大気中900℃で1時間の熱処理を実施し、六角板状酸化亜鉛粉末を得た。
AOT(ジ(2-エチルヘキシル)スルホこはく酸ナトリウム、Alfa Aesar社製)と1-ブタノールとを混合して、0.1MのAOT/1-ブタノール溶液を作製した。また、HMT(ヘキサメチレンテトラミン、シグマアルドリッチ製)とMilli-Q水(超純水)とを混合し、0.1MのHMT水溶液を作製した。0.1MのAOT-1-ブタノール溶液10mLと0.1MのHMT水溶液25mLとMilli-Q水50mLとを激しく攪拌した。水と1-ブタノールは混和しないため、攪拌初期は白濁するが、激しく攪拌を続けると無色透明化し、マイクロエマルションが作製される。このときマイクロエマルション中のHMT濃度はHMTが水相に存在するものとして、0.033Mと計算される。一方、Zn(NO3)2・6H2O(キシダ化学製)とMilli-Q水を混合し、0.1MのZn(NO3)2水溶液を作製した。次に、マイクロエマルションをスターラーで攪拌しながら、0.1MのZn(NO3)2水溶液25mLをスポイトを用い、全量を5分かけて滴下した。前記溶液をホットスターラーにて攪拌しながら、28分かけて25℃から70℃まで1.6℃/分の昇温速度で昇温し、70℃にて3時間保持した。その後ホットスターラーから下ろし、自然冷却した。次に、上澄みを除去した後、生成した固形物の洗浄操作を行った。洗浄操作は、遠心分離機を用い、溶媒をエタノールとイオン交換水に交互に2回ずつ変えて行った。得られた固形物を乾燥機を用いて80℃で乾燥した。固形物中にわずかに残存した有機物成分を除去するため、大気中900℃で1時間の熱処理を実施し、六角板状酸化亜鉛粉末を得た。
得られた粉末の結晶相をXRDにて確認した結果、ZnO単相であった。粉末重量を測定した結果、0.096gであった。これは、原料が全てZnOへ変化した場合を収率100%とした場合、収率47.3%に相当する。また、本例での溶液量総量は110mLであり、溶液1L当たりの収量は0.87gに相当する。レーザ回折式粒度分布測定装置(日機装株式会社製、製品型番:MT3300EXII)により粒度分布を測定した結果、平均粒径D50は0.38μmであった。又、粒度分布のシャープさを示す指標となる、D90/D10は4.85であった。
例2(比較)
反応温度を75℃とした以外は例1と同様にして、六角板状酸化亜鉛粉末の作製及び評価を行った。
反応温度を75℃とした以外は例1と同様にして、六角板状酸化亜鉛粉末の作製及び評価を行った。
例3(比較)
反応温度を80℃とした以外は例1と同様にして、六角板状酸化亜鉛粉末の作製及び評価を行った。
反応温度を80℃とした以外は例1と同様にして、六角板状酸化亜鉛粉末の作製及び評価を行った。
例4(比較)
反応温度を85℃とした以外は例1と同様にして、六角板状酸化亜鉛粉末の作製及び評価を行った。
反応温度を85℃とした以外は例1と同様にして、六角板状酸化亜鉛粉末の作製及び評価を行った。
例5(比較)
反応温度を90℃とした以外は例1と同様にして、六角板状酸化亜鉛粉末の作製及び評価を行った。
反応温度を90℃とした以外は例1と同様にして、六角板状酸化亜鉛粉末の作製及び評価を行った。
例6
マイクロエマルション中のHMT濃度を0.067Mとし、反応温度を80℃とした以外は例1と同様にして、六角板状酸化亜鉛粉末の作製及び評価を行った。得られた六角板状酸化亜鉛粉末のSEM写真を図1に示す。
マイクロエマルション中のHMT濃度を0.067Mとし、反応温度を80℃とした以外は例1と同様にして、六角板状酸化亜鉛粉末の作製及び評価を行った。得られた六角板状酸化亜鉛粉末のSEM写真を図1に示す。
例7
反応温度を90℃とした以外は例6と同様にして、六角板状酸化亜鉛粉末の作製及び評価を行った。
反応温度を90℃とした以外は例6と同様にして、六角板状酸化亜鉛粉末の作製及び評価を行った。
例8
マイクロエマルション中のHMT濃度を0.67Mとし、滴下したZn(NO3)2水溶液の濃度を1Mとした以外は例7と同様にして、六角板状酸化亜鉛粉末の作製及び評価を行った。
マイクロエマルション中のHMT濃度を0.67Mとし、滴下したZn(NO3)2水溶液の濃度を1Mとした以外は例7と同様にして、六角板状酸化亜鉛粉末の作製及び評価を行った。
例9
亜鉛塩の種類をZnCl2とした以外は例7と同様にして、六角板状酸化亜鉛粉末の作製及び評価を行った。
亜鉛塩の種類をZnCl2とした以外は例7と同様にして、六角板状酸化亜鉛粉末の作製及び評価を行った。
例10
亜鉛塩水溶液の滴下時間を1分とした以外は例7と同様にして、六角板状酸化亜鉛粉末の作製及び評価を行った。
亜鉛塩水溶液の滴下時間を1分とした以外は例7と同様にして、六角板状酸化亜鉛粉末の作製及び評価を行った。
例11
加熱時の昇温速度を6.4℃/分とした以外は例7と同様にして、六角板状酸化亜鉛粉末の作製及び評価を行った。
加熱時の昇温速度を6.4℃/分とした以外は例7と同様にして、六角板状酸化亜鉛粉末の作製及び評価を行った。
例12
マイクロエマルション中のHMT濃度を0.134Mとした以外は例7と同様にして、六角板状酸化亜鉛粉末の作製及び評価を行った。
マイクロエマルション中のHMT濃度を0.134Mとした以外は例7と同様にして、六角板状酸化亜鉛粉末の作製及び評価を行った。
Claims (12)
- 六角板状酸化亜鉛粒子の製造方法であって、
ヘキサメチレンテトラミン(HMT)水溶液と、非水溶性有機溶媒中に陰イオン性界面活性剤を溶解させた溶液と、所望により水とを攪拌混合して、0.05M以上のモル濃度のヘキサメチレンテトラミン水溶液を水相として含むマイクロエマルションを生成する工程と、
前記マイクロエマルションに亜鉛塩水溶液を滴下する工程と、
前記亜鉛塩水溶液を含有するマイクロエマルションを、オートクレーブを使わずに80℃以上の反応温度に加熱して、六角板状酸化亜鉛粒子を生成させる工程と、
を含む、方法。 - 前記マイクロエマルション中におけるヘキサメチレンテトラミン水溶液のモル濃度の、亜鉛塩水溶液のモル濃度に対する比が0.5~1.0の範囲内である、請求項1に記載の方法。
- 前記反応温度への加熱が5℃/分以下の昇温速度で行われる、請求項1又は2に記載の方法。
- 前記亜鉛塩水溶液の滴下が2分間以上にわたって行われる、請求項1~3のいずれか1項に記載の方法。
- 前記マイクロエマルションが前記反応温度で1時間以上保持される、請求項1~4のいずれか一項に記載の方法。
- 前記マイクロエマルション中におけるヘキサメチレンテトラミン水溶液のモル濃度が0.5M以上であり、かつ、前記亜鉛塩水溶液の濃度が0.8M以上である、請求項1~5のいずれか一項に記載の方法。
- 亜鉛塩が硝酸亜鉛である、請求項1~6のいずれか一項に記載の方法。
- 前記陰イオン性界面活性剤が、ジ(2-エチルヘキシル)スルホこはく酸ナトリウム(AOT)である、請求項1~7のいずれか一項に記載の方法。
- 前記非水溶性有機溶媒が1-ブタノールである、請求項1~8のいずれか一項に記載の方法。
- 前記六角板状酸化亜鉛粒子を分離、乾燥及び/又は熱処理する工程をさらに含む、請求項1~9のいずれか一項に記載の方法。
- 前記六角板状酸化亜鉛粒子が、0.70~2.00μmの体積基準D50平均粒径を有する、請求項1~10のいずれか一項に記載の方法。
- 前記六角板状酸化亜鉛粒子は、D90/D10の比が4.00以下である粒度分布を有する、請求項1~11のいずれか一項に記載の方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016515882A JP6456365B2 (ja) | 2014-05-01 | 2015-02-27 | 六角板状酸化亜鉛粒子の製造方法 |
US15/336,937 US10093550B2 (en) | 2014-05-01 | 2016-10-28 | Method for manufacturing hexagonal plate-shaped zinc oxide particles |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-094856 | 2014-05-01 | ||
JP2014094856 | 2014-05-01 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/336,937 Continuation US10093550B2 (en) | 2014-05-01 | 2016-10-28 | Method for manufacturing hexagonal plate-shaped zinc oxide particles |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015166702A1 true WO2015166702A1 (ja) | 2015-11-05 |
Family
ID=54358443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/055927 WO2015166702A1 (ja) | 2014-05-01 | 2015-02-27 | 六角板状酸化亜鉛粒子の製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10093550B2 (ja) |
JP (1) | JP6456365B2 (ja) |
WO (1) | WO2015166702A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017141189A (ja) * | 2016-02-10 | 2017-08-17 | 学校法人同志社 | 抗菌性を有する酸化亜鉛粉体の製造方法 |
CN113184895A (zh) * | 2021-04-23 | 2021-07-30 | 西安交通大学 | 一种可控性双层棱盘状微米氧化锌及其制备方法 |
CN113575611A (zh) * | 2021-06-30 | 2021-11-02 | 南京凯创协同纳米技术有限公司 | 一种可在高铁车厢应用的消杀喷剂及制备方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11608275B2 (en) | 2017-09-13 | 2023-03-21 | Entekno Endustriyel Teknolojik Ve Nano Malzemeler Sanayive Ticaret Anonim Sirketi | Method for producing zinc oxide platelets with controlled size and morphology |
EP3718971A4 (en) * | 2017-11-30 | 2021-09-15 | Sakai Chemical Industry Co., Ltd. | GRANULAR COMPOSITE CONTAINING KERATIN AND ZINC OXIDE IN HEXAGONAL FLAKES |
CN111661872B (zh) * | 2020-06-16 | 2022-10-04 | 华东师范大学 | 一种纳米氧化锗的制备方法 |
CN115072765B (zh) * | 2022-06-22 | 2023-06-23 | 通化师范学院 | 一种制备六棱柱状氧化锌的方法 |
CN115849432A (zh) * | 2022-12-29 | 2023-03-28 | 常州纳欧新材料科技有限公司 | 一种表面改性的片状氧化锌及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008230877A (ja) * | 2007-03-19 | 2008-10-02 | Mitsubishi Materials Corp | 酸化亜鉛結晶の製造方法及び該方法により得られる酸化亜鉛結晶付き基材 |
CN102659168A (zh) * | 2012-04-27 | 2012-09-12 | 哈尔滨理工大学 | 制备氧化锌纳米梭的方法 |
JP2013245139A (ja) * | 2012-05-28 | 2013-12-09 | Chiba Inst Of Technology | 酸化亜鉛結晶の生成方法 |
WO2014007045A1 (ja) * | 2012-07-02 | 2014-01-09 | 日本碍子株式会社 | 酸化亜鉛粉末及びその製造方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012147886A1 (ja) | 2011-04-28 | 2012-11-01 | 堺化学工業株式会社 | 六角板状酸化亜鉛粒子、その製造方法、それを配合した化粧料、放熱性フィラー、放熱性樹脂組成物、放熱性グリース及び放熱性塗料組成物 |
-
2015
- 2015-02-27 JP JP2016515882A patent/JP6456365B2/ja active Active
- 2015-02-27 WO PCT/JP2015/055927 patent/WO2015166702A1/ja active Application Filing
-
2016
- 2016-10-28 US US15/336,937 patent/US10093550B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008230877A (ja) * | 2007-03-19 | 2008-10-02 | Mitsubishi Materials Corp | 酸化亜鉛結晶の製造方法及び該方法により得られる酸化亜鉛結晶付き基材 |
CN102659168A (zh) * | 2012-04-27 | 2012-09-12 | 哈尔滨理工大学 | 制备氧化锌纳米梭的方法 |
JP2013245139A (ja) * | 2012-05-28 | 2013-12-09 | Chiba Inst Of Technology | 酸化亜鉛結晶の生成方法 |
WO2014007045A1 (ja) * | 2012-07-02 | 2014-01-09 | 日本碍子株式会社 | 酸化亜鉛粉末及びその製造方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017141189A (ja) * | 2016-02-10 | 2017-08-17 | 学校法人同志社 | 抗菌性を有する酸化亜鉛粉体の製造方法 |
CN113184895A (zh) * | 2021-04-23 | 2021-07-30 | 西安交通大学 | 一种可控性双层棱盘状微米氧化锌及其制备方法 |
CN113575611A (zh) * | 2021-06-30 | 2021-11-02 | 南京凯创协同纳米技术有限公司 | 一种可在高铁车厢应用的消杀喷剂及制备方法 |
CN113575611B (zh) * | 2021-06-30 | 2022-08-02 | 南京凯创协同纳米技术有限公司 | 一种可在高铁车厢应用的消杀喷剂及制备方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6456365B2 (ja) | 2019-01-23 |
US10093550B2 (en) | 2018-10-09 |
US20170044022A1 (en) | 2017-02-16 |
JPWO2015166702A1 (ja) | 2017-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6456365B2 (ja) | 六角板状酸化亜鉛粒子の製造方法 | |
Priya et al. | Biosynthesis of cerium oxide nanoparticles using Aloe barbadensis miller gel | |
Cunha et al. | Facile synthetic route for producing one-dimensional zinc oxide nanoflowers and characterization of their optical properties | |
Gömpel et al. | Facile hydrothermal synthesis of crystalline Ta 2 O 5 nanorods, MTaO 3 (M= H, Na, K, Rb) nanoparticles, and their photocatalytic behaviour | |
Chayed et al. | Effect of cu doped in mgo on nanostructures and their band gap energies | |
Gusatti et al. | Effect of different precursors in the chemical synthesis of ZnO nanocrystals | |
Salek et al. | Room temperature inorganic polycondensation of oxide (Cu2O and ZnO) nanoparticles and thin films preparation by the dip-coating technique | |
KR102206930B1 (ko) | 고강도이며 열전도율이 낮은 산화 아연 소결체 제작용 산화 아연 분말 | |
JP5588815B2 (ja) | 酸化ガリウム粉末 | |
Zhu et al. | Polyvinylpyrrolidone-assisted growth and optical properties of ZnO hexagonal bilayer disk-like microstructures | |
Salavati-Niasari et al. | Single-source molecular precursor for synthesis of CdS nanoparticles and nanoflowers | |
JP2013014498A (ja) | ソルボサーマル法を用いるCu,Zn,Sn及びSを含有する硫化物系化合物半導体ナノ粒子の製造方法 | |
JP5212588B2 (ja) | ナノ粒子の製造方法 | |
CN110869320A (zh) | 硫化锌纳米颗粒的机械-热制备 | |
Sun et al. | One-pot synthesis and characterization of chalcopyrite CuInS 2 nanoparticles | |
JP5729926B2 (ja) | 酸化ガリウム粉末 | |
KR101578454B1 (ko) | 구형 금나노입자 제조방법 및 이를 이용하여 제조된 구형 금나노입자 | |
KR20150027560A (ko) | 입자 크기 및 조성을 제어할 수 있는 구리 셀레나이드의 제조방법 | |
Zhan et al. | Synthesis of ZnO submicron spheres by a two-stage solution method | |
JP5925535B2 (ja) | ガリウム・インジウム複合酸化物粉末 | |
JP7475839B2 (ja) | 亜鉛含有ナノ粒子の合成方法 | |
Kim et al. | Morphology control of Bi2S3 nanostructures and the formation mechanism | |
Pineda-Reyes et al. | Nanoparticles of zinc oxide obtained by water in oil microemulsion system | |
JP2014227334A (ja) | 希土類酸化物微粒子の製造方法、及び希土類酸化物微粒子 | |
CN113905988B (zh) | 稀土类碳酸盐微粒的制造方法及稀土类碳酸盐微粒 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15786657 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016515882 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15786657 Country of ref document: EP Kind code of ref document: A1 |