WO2015165191A1 - 一种三相双模式逆变器的稳态控制方法 - Google Patents
一种三相双模式逆变器的稳态控制方法 Download PDFInfo
- Publication number
- WO2015165191A1 WO2015165191A1 PCT/CN2014/086501 CN2014086501W WO2015165191A1 WO 2015165191 A1 WO2015165191 A1 WO 2015165191A1 CN 2014086501 W CN2014086501 W CN 2014086501W WO 2015165191 A1 WO2015165191 A1 WO 2015165191A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- grid
- phase
- inverter
- circuit
- voltage
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
- H02M7/53871—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
- H02J3/48—Controlling the sharing of the in-phase component
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/539—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
- H02M7/5395—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/12—Arrangements for reducing harmonics from ac input or output
- H02M1/126—Arrangements for reducing harmonics from ac input or output using passive filters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/4815—Resonant converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Definitions
- the invention relates to the field of distributed power generation in a micro-grid, in particular to a steady-state control method for a three-phase dual-mode inverter.
- the adoption and utilization of distributed power sources (photovoltaics, wind power, fuel cells, etc.) through the microgrid is an effective way to solve the current energy crisis and environmental degradation.
- the inverter in the microgrid serves as the interface between the distributed power source and the microgrid, and will be distributed energy. Turning into high-quality electrical energy, it is of great significance to study inverters suitable for microgrid operation.
- the existing research mainly focuses on the control method in which the inverter works alone in the grid-connected mode or off-grid (island) mode, but for the inverter that can work in the grid-connected and off-grid dual mode, and the corresponding smoothing
- the research on switching control is not perfect.
- the inverter In a highly flexible microgrid, the inverter should have the ability to simultaneously supply power to the local load and the grid, and in exceptional circumstances, the inverter can disconnect from the grid and directly supply power to the local load.
- the micro-source and the grid cannot be strictly synchronized, and the control schemes are different, which will generate instantaneous overvoltage or overcurrent.
- the three phases of the thyristor (SCR) or solid state relay (SSR) cannot be simultaneously Turning off, causing voltage or current imbalance, so that the active or reactive power increases and fluctuates, and finally the DC side voltage cannot be stabilized.
- the technical problem to be solved by the present invention is to provide a steady-state control method for a three-phase dual-mode inverter according to the deficiencies of the prior art, overcome the shortcomings of the existing dual-mode inverter control, and solve the inverter in the micro-grid.
- the energy backflow phenomenon due to the phase error ensures the stability of the system operation.
- the technical solution adopted by the present invention is: a steady-state control method for a three-phase dual-mode inverter, which is suitable for a micro-grid dual-mode inverter parallel system, the micro-grid dual-mode inverter
- the parallel system includes a plurality of dual mode inverters, a parallel/off-grid switch, a three-phase power grid and an inverter control circuit
- the dual mode inverter includes a DC storage capacitor, a three-phase inverter circuit, and an inverter control circuit
- the LC filter circuit, the DC storage capacitor, the three-phase inverter circuit, and the LC filter circuit are sequentially connected, and the LC filter circuit is connected to the line impedance, and the line resistance is
- the anti-internal switch is connected to the parallel/off-grid switch, and the parallel/off-grid switch is connected to the three-phase power grid
- the inverter control circuit includes a sampling and conditioning circuit, a phase-locked loop circuit, a controller, and
- the off-grid mode steady state control method is:
- the sampling conditioning circuit pairs the three-phase grid voltage u sa , the DC storage capacitor voltage u dc , the LC filter circuit capacitor voltage u oa , u ob , u oc , the line current i oa , i Ob , i oc , incoming current i sa , i sb , and i sc are respectively sampled, and then the sampled data is sent to the controller for processing, the effective value of each sampled value is calculated, and the LC filter circuit capacitor voltage u oa , u ob , u oc and line currents i oa , i ob , i oc are respectively converted into LC filter circuit capacitor voltages u o ⁇ , u o ⁇ and line currents i o ⁇ , i o ⁇ in ⁇ coordinates;
- K is the control quantity constant, the value range is 0 ⁇ K ⁇ 1, L f is the LC filter circuit inductance value, T c is the PWM carrier period; u dc (k) is the DC side of the dual mode inverter sampled at time k The voltage, u o ⁇ (k), u o ⁇ (k) is the LC filter circuit capacitor voltage at the ⁇ coordinate at time k, i o ⁇ (k), i o ⁇ (k) is the line current at the ⁇ coordinate at time k, a predicted reference value of the line current at the ⁇ coordinate of the k+1 time;
- the d a , d b , d c and the triangular carrier are bipolarly modulated to obtain the duty cycle signal of the three-phase inverter circuit switch tube, and the driving protection circuit is used to control the opening and closing of the three-phase inverter circuit switch tube.
- the grid-connected mode steady state control method is:
- I o1 and I s1 are the output current RMS value and the grid current RMS value of the dual-mode inverter after the power change
- I o2 and I s2 are the output current RMS and the grid current of the dual-mode inverter before the power change.
- R', X' are the line impedance and inductive reactance of the dual-mode inverter to the AC bus, respectively, and R" and X" are the line impedance and the inductive reactance of the local load to the AC bus, respectively.
- the present invention has the beneficial effects that the present invention proposes a steady state control strategy for a dual mode inverter, the steady state control is controlled by the outer loop droop, the voltage quasi-resonant control, and the current inner loop.
- the beat control is constructed to achieve steady state control in the on/off mode. Since the output voltage of the inverter in the grid-connected mode is always slightly ahead of the grid voltage, the invention introduces phase lead control, which avoids the energy backflow phenomenon caused by the phase error of the inverter in the grid-connected mode, and ensures the micro-inversion.
- the source can continuously deliver energy to the grid, achieving stable operation in the grid-connected mode.
- the invention can be widely applied in the microgrid control system, and the effect in the high power system is particularly remarkable.
- FIG. 1 is a schematic diagram of a parallel structure of a micro-grid dual-mode inverter according to an embodiment of the present invention
- FIG. 2 is a block diagram of steady state control of a dual mode inverter according to an embodiment of the present invention
- FIG. 3 is a schematic diagram showing changes in output frequency of an inverter according to an embodiment of the present invention
- FIG. 3(a) is a change in a droop curve when power is changed
- FIG. 3(b) is a change in frequency and phase.
- FIG. 1 is a schematic diagram of a parallel structure of a micro-grid dual-mode inverter according to an embodiment of the present invention, which mainly includes: a full-bridge inverter circuit, a filter, a local load, a parallel/off-grid switch, a power grid, and the like.
- the distributed power is converted to a constant voltage DC with a voltage of U dc ; the DC is converted to AC by a three-phase PWM inverter circuit; the filter is used to filter out glitch caused by the high frequency switch, u o , i o is a filter
- the rear inverter outputs voltage and current; the output AC power supplies power to the local load Z load , and the / off-grid switch S is used to connect the micro source to the grid.
- the voltage of the common connection point (PCC) is u s
- the grid voltage mentioned in the present invention refers to the voltage at the PCC.
- FIG. 2 is a block diagram of steady state control of a dual mode inverter according to an embodiment of the present invention.
- k U is the voltage feedback coefficient
- k F is the reference voltage feed forward coefficient
- ⁇ is the inverter leading the grid voltage phase.
- the dual mode steady state control method is:
- the sampling conditioning circuit pairs the three-phase grid voltage u sa , the DC storage capacitor voltage u dc , the LC filter circuit capacitor voltage u oa , u ob , u oc , the line current i oa , i Ob , i oc , incoming current i sa , i sb , and i sc are respectively sampled, and then the sampled data is sent to the controller for processing, the effective value of each sampled value is calculated, and the LC filter circuit capacitor voltage u oa , u ob , u oc and line currents i oa , i ob , i oc are respectively converted into LC filter circuit capacitor voltages u o ⁇ , u o ⁇ and line currents i o ⁇ , i o ⁇ in ⁇ coordinates;
- ⁇ * and U * are the real-time values of the grid voltage angular frequency and amplitude, which vary according to the change of the grid voltage; in the off-grid mode, ⁇ * and U * are set values;
- Inverter output voltage phase in off-grid mode Zero.
- the phase of the grid voltage is detected by the phase-locked loop circuit.
- the leading phase angle is ⁇ , then the output voltage phase equal:
- K is the control quantity constant, the value range is 0 ⁇ K ⁇ 1, L f is the filter inductance value, T c is the PWM carrier period;
- u dc (k) is the sampling DC side voltage value at time k, u o ⁇ (k ), u o ⁇ (k) is the value of the grid voltage sampled at time k at the ⁇ coordinate,
- i o ⁇ (k), i o ⁇ (k) are the values of the output current of the sampled inverter at the time ⁇ at the ⁇ coordinate.
- i o ⁇ (k+1), i o ⁇ (k+1) are the values of the reference current of the k+1 time at the ⁇ coordinate, respectively;
- the SPWM modulated wave signals d a , d b , d c are bipolarly modulated with the triangular carrier to obtain the duty cycle signal of the fully controlled power device, and the driving protection circuit is used to control the opening of the fully controlled power device. And shut down.
- the steady state control of the grid connection mode increases the phase advance control link.
- the inverter In order to ensure the normal energy flow between the micro-source and the grid, and avoid the energy backflow caused by the phase error of the inverter, the inverter should lead the grid to a small phase ⁇ . When the output power changes, the phase ⁇ also needs to change. Adjusting the phase ⁇ ensures the accuracy of the control and enhances the stability of the inverter in the grid-connected operating mode.
- the phase ⁇ calculation formula is:
- the initial value ⁇ 0 ranges from 0.0001 to 0.15, which is related to the rated power of the dual mode inverter.
- ⁇ is the phase compensation parameter, which is related to the inverter output power.
- I o1 and I s1 are the output current rms value and the grid-connected current RMS value of the dual-mode inverter after the power change
- I o2 and I s2 are the output current RMS value and the grid-connected current of the dual-mode inverter before the power change.
- the effective values, R', X' are the line impedance and inductive reactance of the dual-mode inverter to the AC bus, respectively
- R" and X" are the line impedance and inductive reactance of the local load to the AC bus, respectively.
- FIG. 3 is a schematic diagram showing changes in output frequency of an inverter according to an embodiment of the present invention.
- Fig. 3(a) shows the change in the droop curve when the power changes
- Fig. 3(b) shows the frequency and phase change.
- the output voltage of the inverter must be ahead of the grid voltage due to the impedance of the transmission line. Therefore, in order to ensure that the micro-source continuously delivers energy to the grid without causing backflow, it is necessary to ensure that the phase of the micro-source always leads the grid.
- the phase of the micro-source slightly exceeds the phase of the grid to facilitate the flow of power.
- the phase-locked loop does not act on the droop control and only provides real-time frequency and phase reference.
- the increase in output power is taken as an example.
- the droop characteristic curve needs to change from point a to point d under the condition of constant frequency.
- the phase difference between the micro-source and the power grid needs to be increased due to the increase in current. If a delay strategy is used to change the phase angle, it takes a delay of nearly one cycle, during which a large number of harmonics are introduced, and the phase angle cannot be changed frequently by delay.
- the present invention changes the phase angle by changing the frequency.
- the adjustment process always keeps the droop coefficient constant.
- the droop characteristic curve shown in Fig. 3(a) when the frequency of the micro source increases, the operating point changes from a to b, and the control only needs to change the rated frequency, and the output power does not change; when the frequency is maintained at the maximum value, Increase the rated power, the working point changes from b to c; the last working point changes from c to d, only changing the rated frequency, the output power of the micro-source can be increased, the phase adjustment is completed, and the frequency before and after the adjustment phase is guaranteed to be constant.
- This adjustment does not introduce harmonics.
- the frequency changes it is guaranteed to be in the range of 49.8 ⁇ 50.2Hz.
- the vector relationship analysis shows that the leading phase ⁇ needs to be adjusted.
- the phase to be adjusted is set to ⁇ , and in order to avoid system oscillation caused by direct frequency change, the present invention performs phase advance adjustment by means of frequency adjustment.
- the instantaneous frequency output varies according to the following formula:
- T a is the adjustment time and f o is the system output frequency before adjustment.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
Description
Claims (1)
- 一种三相双模式逆变器的稳态控制方法,适用于微电网双模式逆变器并联系统,所述微电网双模式逆变器并联系统包括多个双模式逆变器、并/离网开关、三相电网和逆变控制电路;所述双模式逆变器包括直流储能电容、三相逆变电路、逆变控制电路、LC滤波电路,所述直流储能电容、三相逆变电路、LC滤波电路依次连接,所述LC滤波电路与线路阻抗连接,所述线路阻抗通过交流母线与并/离网开关连接,所述并/离网开关接入三相电网;所述逆变控制电路包括采样调理电路、锁相环电路、控制器、驱动保护电路;所述采样调理电路输入端与所述LC滤波电路连接;所述控制器与所述驱动保护电路输入端、采样调理电路输出端、锁相环电路输出端连接;所述锁相环电路输入端与所述交流母线连接;其特征在于,该方法包括离网模式稳态控制方法和并网模式稳态控制方法;所述离网模式稳态控制方法为:1)在每个采样周期的起始点,采样调理电路对三相电网电压usa、直流储能电容电压udc、LC滤波电路电容电压uoa、uob、uoc、线路电流ioa、iob、ioc、入网电流isa、isb、isc分别进行采样,然后将采样数据送给控制器进行处理,计算各采样值的有效值,并将LC滤波电路电容电压uoa、uob、uoc和线路电流ioa、iob、ioc分别转换为在αβ坐标下的LC滤波电路电容电压uoα、uoβ和线路电流ioα、ioβ;2)将LC滤波电路电容电压uoa、uob、uoc与线路电流ioa、iob、ioc分别相乘,得到双模式逆变器的有功功率P和无功功率Q;3)对双模式逆变器输出电压幅值参考值U*、角频率参考值ω*、有功功率参考值P*、无功功率参考值Q*,以及上述有功功率平P、无功功率Q进行下垂控制运算,得到双模式逆变器的输出电压幅值Uo和角频率ωo;其中,并网模式下,ω*、U*为电网电压角频率和幅值的实时值,根据电网电压的变化而变化;离网模式下,ω*、U*为设定值;5)将urefα、urefβ分别减去uoα与反馈系数kU的乘积、uoβ与反馈系数kU的乘积,得到的差值作为准谐振QPR控制器的输入;其中反馈系数kU的取值范围为0.1~2;6)引入参考电压前馈环节kF·urefα *、kF·urefβ *,将kF·urefα *、kF·urefβ *与准谐振QPR控制器的输出相加,得到线路电流的参考值irefα、irefβ;其中kF为电压前馈系数,取值范围为0.01~5;7)对线路电流参考值irefα、irefβ,LC滤波电路电容电压uoα、uoβ,直流储能电容电压udc进行电流无差拍控制,得到三相逆变电路开关管控制量dα、dβ:其中,K为控制量常数,取值范围0<K<1,Lf为LC滤波电路电感值,Tc为PWM载波周期;udc(k)为k时刻采样的双模式逆变器直流侧电压,uoα(k)、uoβ(k)为k时刻的αβ坐标下的LC滤波电路电容电压,ioα(k)、ioβ(k)为k时刻αβ坐标下线路电流,为k+1时刻αβ坐标下的线路电流的预测参考值;8)对dα、dβ进行坐标变化,得到稳态控制时abc坐标下的三相逆变电路开关管控制量da、db、dc;9)将da、db、dc与三角载波进行双极性调制,得到三相逆变电路开关管的占空比信号,经驱动保护电路,控制三相逆变电路开关管的开通与关断;所述并网模式稳态控制方法为:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/307,809 US9837931B2 (en) | 2014-04-30 | 2014-09-15 | Phased lock loop control for multiple inverters connected to a polyphase grid |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410181861.4A CN103944190B (zh) | 2014-04-30 | 2014-04-30 | 一种三相双模式逆变器的稳态控制方法 |
CN201410181861.4 | 2014-04-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015165191A1 true WO2015165191A1 (zh) | 2015-11-05 |
Family
ID=51191740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/086501 WO2015165191A1 (zh) | 2014-04-30 | 2014-09-15 | 一种三相双模式逆变器的稳态控制方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9837931B2 (zh) |
CN (1) | CN103944190B (zh) |
WO (1) | WO2015165191A1 (zh) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108683205A (zh) * | 2018-04-09 | 2018-10-19 | 湖南大学 | 一种海上高压直流远供系统的阻抗稳定控制方法 |
CN109638863A (zh) * | 2018-12-29 | 2019-04-16 | 南京工程学院 | 基于双重偏差补偿控制算法的多功能储能变流器设计方法 |
CN109902347A (zh) * | 2019-01-24 | 2019-06-18 | 合肥工业大学 | 基于基波阻抗辨识的并网系统短路比测量方法及装置 |
CN110048455A (zh) * | 2019-04-24 | 2019-07-23 | 湖南大学 | 具有弱电网故障穿越能力的下垂控制逆变器及其控制方法 |
CN110112772A (zh) * | 2019-04-24 | 2019-08-09 | 张锐明 | 一种能源逆变并网控制装置及控制方法 |
CN110460112A (zh) * | 2019-09-18 | 2019-11-15 | 东北大学 | 一种基于功率偏差量一致性控制的微电网下垂控制方法 |
CN111342487A (zh) * | 2020-02-28 | 2020-06-26 | 国充充电科技江苏股份有限公司 | 一种储能变换器的并联控制方法、系统及电子设备 |
CN112583044A (zh) * | 2020-11-10 | 2021-03-30 | 西安理工大学 | 一种三电平并网变换器的自适应电流分岔控制方法 |
CN113572147A (zh) * | 2021-07-22 | 2021-10-29 | 中国船舶重工集团公司第七一一研究所 | 直流供配电系统 |
CN113759184A (zh) * | 2020-06-03 | 2021-12-07 | 台达电子企业管理(上海)有限公司 | 逆变器的孤岛检测方法及装置 |
CN113889999A (zh) * | 2021-10-25 | 2022-01-04 | 国网山西省电力公司电力科学研究院 | 一种抑制直流微电网电压波动的自抗扰控制方法及系统 |
CN113890073A (zh) * | 2021-09-29 | 2022-01-04 | 内蒙古科技大学 | 不等容的多逆变器并联飞轮储能系统改进模型预测方法 |
CN114006451A (zh) * | 2021-11-18 | 2022-02-01 | 中车大连电力牵引研发中心有限公司 | 一种轨道车辆充电机输出电流控制系统及控制方法 |
CN114156935A (zh) * | 2021-11-10 | 2022-03-08 | 国网山西省电力公司电力科学研究院 | 一种下垂控制逆变器并网系统的多参数稳定域分析法 |
CN114285081A (zh) * | 2022-01-04 | 2022-04-05 | 河北工业大学 | 基于自适应虚拟电阻的广域电力系统稳定方法 |
CN114336788A (zh) * | 2021-12-30 | 2022-04-12 | 西安交通大学 | 一种交流微电网的免通讯母线电压二次控制方法 |
CN116526481A (zh) * | 2022-09-21 | 2023-08-01 | 华中科技大学 | 一种并网逆变器和并网逆变器中数字滤波器的参数确定方法 |
Families Citing this family (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9867931B2 (en) | 2013-10-02 | 2018-01-16 | Cook Medical Technologies Llc | Therapeutic agents for delivery using a catheter and pressure source |
CN103944190B (zh) | 2014-04-30 | 2016-02-10 | 湖南大学 | 一种三相双模式逆变器的稳态控制方法 |
CN104300581B (zh) * | 2014-10-31 | 2016-08-24 | 东南大学 | 一种带并网点动态电压补偿的无缝并网逆变器及其方法 |
DE102014119502B3 (de) * | 2014-12-23 | 2016-03-24 | Sma Solar Technology Ag | Netzgekoppelter Wechselrichter, Wechselrichteranordnung und Betriebsverfahren für eine Wechselrichteranordnung |
JP6289675B2 (ja) * | 2014-12-24 | 2018-03-07 | 三菱電機株式会社 | 電力変換装置 |
WO2017062034A1 (en) * | 2015-10-09 | 2017-04-13 | Ge Aviation Systems Llc | Control of ac source inverter to reduce total harmonic distortation and output voltage unbalance |
CN106099899B (zh) | 2016-05-30 | 2018-08-28 | 浙江大学 | 一种基于电压基准节点的带死区直流电网电压下垂控制策略 |
CN107147150A (zh) * | 2017-07-19 | 2017-09-08 | 云南电网有限责任公司电力科学研究院 | 一种光纤智慧小区微电网的互联系统 |
CN107546998B (zh) * | 2017-07-25 | 2019-12-10 | 华南理工大学 | 一种基于双环预测控制的切换型控制方法 |
GB2570151B (en) * | 2018-01-14 | 2020-07-15 | Zhong Qingchang | Reconfiguration of inertia, damping, and fault ride-through for a virtual synchronous machine |
CN108173258B (zh) * | 2018-02-08 | 2021-02-02 | 哈尔滨工业大学 | 一种三端口变换器的虚拟电感和虚拟电容功率分配方法 |
FR3077938B1 (fr) * | 2018-02-14 | 2020-01-10 | Schneider Toshiba Inverter Europe Sas | Procede de commande d'un convertisseur connecte a une machine electrique |
CN108494109B (zh) * | 2018-03-16 | 2020-03-20 | 清华大学 | 一种不依赖实时无线通讯的双向无线充电系统的控制策略 |
GB2574645B (en) * | 2018-06-14 | 2020-07-15 | Zhong Qingchang | Passive virtual synchronous machine with bounded frequency and virtual flux |
DE102018115490A1 (de) * | 2018-06-27 | 2020-01-02 | Vacon Oy | Verfahren zur Reduzierung des Gleichtaktstroms in Leistungselektronik-Ausrüstung |
CN109103925B (zh) * | 2018-07-31 | 2022-01-28 | 国网江苏省电力有限公司淮安供电分公司 | 一种基于光伏发电的微电网 |
CN108880317B (zh) * | 2018-09-12 | 2024-01-09 | 珠海泰通电气技术有限公司 | 一种换流器的三环控制装置及方法 |
CN109450267B (zh) * | 2018-10-23 | 2021-02-02 | 南京航空航天大学 | 一种基于混合有源三次谐波注入变换器的升压控制方法 |
CN109256817B (zh) * | 2018-11-27 | 2021-11-16 | 南方电网科学研究院有限责任公司 | 控制直流微电网接口逆变器进行频率调节的方法及装置 |
CN109494767A (zh) * | 2018-12-14 | 2019-03-19 | 易事特集团股份有限公司 | 微网频率控制方法和微网系统 |
CN109713726B (zh) * | 2019-02-25 | 2023-04-21 | 福州大学 | 用于阻抗源逆变器孤岛和并网双模式运行的自适应模型预测控制方法 |
CN109888829B (zh) * | 2019-03-21 | 2022-10-11 | 哈尔滨工业大学 | 基于改进感性下垂控制的光伏微网系统离并网无缝切换系统 |
CN111852788B (zh) * | 2019-04-30 | 2022-07-15 | 北京金风科创风电设备有限公司 | 风电机组的功率损耗异常的诊断方法和装置 |
CN110311407B (zh) * | 2019-06-12 | 2022-09-27 | 合肥工业大学 | 基于电压闭环的级联型逆变器双模式无缝切换控制方法 |
CN110635499B (zh) * | 2019-10-16 | 2023-02-21 | 中天储能科技有限公司 | 基于并离网暂态过程分段控制的储能变流器平滑切换方法 |
CN110932309A (zh) * | 2019-10-30 | 2020-03-27 | 东北大学 | 一种基于acsf-mpc和pi双模式切换的逆变器控制系统及方法 |
CN111082453A (zh) * | 2019-12-04 | 2020-04-28 | 中国电力科学研究院有限公司 | 一种基于V-f控制光伏逆变器调节的方法及系统 |
CN112003319B (zh) * | 2020-07-09 | 2021-12-17 | 西安理工大学 | 一种应用于双向并网变换器的双电流反馈控制方法 |
CN112713608B (zh) * | 2020-12-16 | 2023-04-14 | 福州大学 | 一种逆变器的准定频多阈值区间滞环控制方法 |
CN112615557B (zh) * | 2020-12-21 | 2022-08-16 | 上海交通大学 | 三电平并网逆变器有限控制集模型预测定频方法 |
CN112952902B (zh) * | 2021-02-25 | 2023-04-07 | 云南电网有限责任公司电力科学研究院 | 一种新型光伏并网配电网侧控制系统及方法 |
CN113410904B (zh) * | 2021-03-29 | 2023-01-24 | 广东电网有限责任公司电力科学研究院 | 一种多模块并联型应急电源及控制方法 |
CN112993998B (zh) * | 2021-04-16 | 2022-08-16 | 南方电网科学研究院有限责任公司 | 一种基于lcc闭环阻抗模型的系统谐波稳定性判断方法 |
CN113452305A (zh) * | 2021-05-12 | 2021-09-28 | 武汉华海通用电气有限公司 | 多台共母线三相逆变器输出并联带异步电机变频调速装置 |
CN113255485B (zh) * | 2021-05-13 | 2022-05-17 | 云南电网有限责任公司 | 一种水力发电机组并网模式的识别方法及装置 |
CN113241796B (zh) * | 2021-06-03 | 2022-05-27 | 合肥工业大学 | 极弱电网下光伏并网逆变器功率控制方法 |
CN115693731A (zh) * | 2021-07-30 | 2023-02-03 | 华为数字能源技术有限公司 | 一种储能系统、并离网切换的方法及储能变流器 |
CN113612402A (zh) * | 2021-08-09 | 2021-11-05 | 山特电子(深圳)有限公司 | 一种三相逆变控制系统和控制方法 |
CN113964879B (zh) * | 2021-11-23 | 2022-12-02 | 合肥工业大学 | 一种新能源并网逆变器自同步电压源控制方法 |
CN114172181B (zh) * | 2021-11-29 | 2024-03-12 | 国网福建省电力有限公司电力科学研究院 | 基于两级式混合储能的冲击功率和脉冲功率快速平抑方法 |
CN114142760B (zh) * | 2021-12-15 | 2023-04-28 | 西南交通大学 | 一种三相全桥逆变器的离散控制方法及装置 |
CN114696320B (zh) * | 2022-03-25 | 2024-04-19 | 国网湖北省电力有限公司电力科学研究院 | 一种新能源发电装备自同步电压源控制及低电压穿越控制双模式切换控制方法 |
CN116111867B (zh) * | 2022-12-01 | 2024-04-12 | 浙江巨磁智能技术有限公司 | 基于虚拟瞬时功率的构网型储能变换器预同步控制方法 |
CN115955002B (zh) * | 2022-12-19 | 2023-08-01 | 广州明德电力技术有限公司 | 一种应用于电压暂态治理的dvr实时控制系统及方法 |
CN117060446B (zh) * | 2023-08-22 | 2024-02-13 | 湖南工商大学 | 一种用于三相串联型储能系统的分散主从自同步控制方法 |
CN117498710A (zh) * | 2023-10-13 | 2024-02-02 | 江苏科曜能源科技有限公司 | 并网逆变器的控制方法及系统 |
CN117277421B (zh) * | 2023-11-17 | 2024-02-02 | 合肥工业大学 | 一种并网逆变器多模型控制方法 |
CN117970781B (zh) * | 2024-03-22 | 2024-06-25 | 东莞市茂腾电子科技有限公司 | 一种逆变器智能控制方法及系统 |
CN118275761B (zh) * | 2024-06-03 | 2024-10-11 | 青岛鼎信通讯股份有限公司 | 一种电流检测装置及方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6122184A (en) * | 1997-06-19 | 2000-09-19 | The Texas A&M University System | Method and system for an improved converter output filter for an induction drive system |
CN102185341A (zh) * | 2011-04-14 | 2011-09-14 | 天津大学 | 基于主从控制策略微网的主电源双模式运行控制方法 |
CN102222931A (zh) * | 2011-04-19 | 2011-10-19 | 吉林省电力有限公司电力科学研究院 | 一种微电网三相并网逆变系统及其控制方法 |
CN102447268A (zh) * | 2011-12-19 | 2012-05-09 | 湖南大学 | 一种基于功率前馈的鲁棒双环光伏并网控制方法 |
CN103078545A (zh) * | 2013-01-15 | 2013-05-01 | 东华大学 | 一种独立或并网双模逆变器的控制电路及切换方法 |
CN103944190A (zh) * | 2014-04-30 | 2014-07-23 | 湖南大学 | 一种三相双模式逆变器的稳态控制方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5757099A (en) * | 1996-03-01 | 1998-05-26 | Wisconsin Alumni Research Foundation | Hybrid parallel active/passive filter system with dynamically variable inductance |
US7333352B2 (en) * | 2004-07-01 | 2008-02-19 | Northern Power Systems, Inc. | Frequency control and power balancing in disturbed power inverter system and method thereof |
CN1710771A (zh) * | 2005-07-08 | 2005-12-21 | 湖南大学 | 谐振阻抗型混合有源电力滤波器及控制方法 |
US8482947B2 (en) * | 2009-07-31 | 2013-07-09 | Solarbridge Technologies, Inc. | Apparatus and method for controlling DC-AC power conversion |
CN102545238B (zh) * | 2012-01-11 | 2015-05-06 | 云南电力试验研究院(集团)有限公司电力研究院 | 一种微网svg多目标配置的控制方法 |
CN103199720B (zh) * | 2013-04-17 | 2014-01-08 | 湖南大学 | 一种三相功率变流器的综合控制方法 |
CN103427700B (zh) * | 2013-09-02 | 2015-07-01 | 湖南大学 | 一种三相四开关功率变流器的不平衡补偿控制方法 |
EP2894523A1 (fr) * | 2014-01-10 | 2015-07-15 | ETA SA Manufacture Horlogère Suisse | Objet portable pour la gestion d'une activité annexe |
US9608352B2 (en) * | 2015-05-11 | 2017-03-28 | Microsoft Technology Licensing, Llc | Interface for multiple connectors |
US9923485B2 (en) * | 2015-11-05 | 2018-03-20 | Futurewei Technologies, Inc. | Multi-channel inverter systems |
-
2014
- 2014-04-30 CN CN201410181861.4A patent/CN103944190B/zh not_active Expired - Fee Related
- 2014-09-15 US US15/307,809 patent/US9837931B2/en not_active Expired - Fee Related
- 2014-09-15 WO PCT/CN2014/086501 patent/WO2015165191A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6122184A (en) * | 1997-06-19 | 2000-09-19 | The Texas A&M University System | Method and system for an improved converter output filter for an induction drive system |
CN102185341A (zh) * | 2011-04-14 | 2011-09-14 | 天津大学 | 基于主从控制策略微网的主电源双模式运行控制方法 |
CN102222931A (zh) * | 2011-04-19 | 2011-10-19 | 吉林省电力有限公司电力科学研究院 | 一种微电网三相并网逆变系统及其控制方法 |
CN102447268A (zh) * | 2011-12-19 | 2012-05-09 | 湖南大学 | 一种基于功率前馈的鲁棒双环光伏并网控制方法 |
CN103078545A (zh) * | 2013-01-15 | 2013-05-01 | 东华大学 | 一种独立或并网双模逆变器的控制电路及切换方法 |
CN103944190A (zh) * | 2014-04-30 | 2014-07-23 | 湖南大学 | 一种三相双模式逆变器的稳态控制方法 |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108683205A (zh) * | 2018-04-09 | 2018-10-19 | 湖南大学 | 一种海上高压直流远供系统的阻抗稳定控制方法 |
CN108683205B (zh) * | 2018-04-09 | 2021-06-18 | 湖南大学 | 一种海上高压直流远供系统的阻抗稳定控制方法 |
CN109638863A (zh) * | 2018-12-29 | 2019-04-16 | 南京工程学院 | 基于双重偏差补偿控制算法的多功能储能变流器设计方法 |
CN109638863B (zh) * | 2018-12-29 | 2022-04-29 | 南京工程学院 | 基于双重偏差补偿控制算法的多功能储能变流器设计方法 |
CN109902347A (zh) * | 2019-01-24 | 2019-06-18 | 合肥工业大学 | 基于基波阻抗辨识的并网系统短路比测量方法及装置 |
CN109902347B (zh) * | 2019-01-24 | 2022-10-04 | 合肥工业大学 | 基于基波阻抗辨识的并网系统短路比测量方法及装置 |
CN110048455A (zh) * | 2019-04-24 | 2019-07-23 | 湖南大学 | 具有弱电网故障穿越能力的下垂控制逆变器及其控制方法 |
CN110048455B (zh) * | 2019-04-24 | 2021-06-01 | 湖南大学 | 具有弱电网故障穿越能力的下垂控制逆变器及其控制方法 |
CN110112772A (zh) * | 2019-04-24 | 2019-08-09 | 张锐明 | 一种能源逆变并网控制装置及控制方法 |
CN110460112A (zh) * | 2019-09-18 | 2019-11-15 | 东北大学 | 一种基于功率偏差量一致性控制的微电网下垂控制方法 |
CN110460112B (zh) * | 2019-09-18 | 2023-02-28 | 东北大学 | 一种基于功率偏差量一致性控制的微电网下垂控制方法 |
CN111342487A (zh) * | 2020-02-28 | 2020-06-26 | 国充充电科技江苏股份有限公司 | 一种储能变换器的并联控制方法、系统及电子设备 |
CN113759184A (zh) * | 2020-06-03 | 2021-12-07 | 台达电子企业管理(上海)有限公司 | 逆变器的孤岛检测方法及装置 |
CN112583044B (zh) * | 2020-11-10 | 2023-05-23 | 西安理工大学 | 一种三电平并网变换器的自适应电流分岔控制方法 |
CN112583044A (zh) * | 2020-11-10 | 2021-03-30 | 西安理工大学 | 一种三电平并网变换器的自适应电流分岔控制方法 |
CN113572147A (zh) * | 2021-07-22 | 2021-10-29 | 中国船舶重工集团公司第七一一研究所 | 直流供配电系统 |
CN113572147B (zh) * | 2021-07-22 | 2024-03-19 | 中国船舶集团有限公司第七一一研究所 | 直流供配电系统 |
CN113890073B (zh) * | 2021-09-29 | 2023-07-14 | 内蒙古科技大学 | 不等容的多逆变器并联飞轮储能系统改进模型预测方法 |
CN113890073A (zh) * | 2021-09-29 | 2022-01-04 | 内蒙古科技大学 | 不等容的多逆变器并联飞轮储能系统改进模型预测方法 |
CN113889999A (zh) * | 2021-10-25 | 2022-01-04 | 国网山西省电力公司电力科学研究院 | 一种抑制直流微电网电压波动的自抗扰控制方法及系统 |
CN113889999B (zh) * | 2021-10-25 | 2023-07-25 | 国网山西省电力公司电力科学研究院 | 一种抑制直流微电网电压波动的自抗扰控制方法及系统 |
CN114156935B (zh) * | 2021-11-10 | 2023-08-04 | 国网山西省电力公司电力科学研究院 | 一种下垂控制逆变器并网系统的多参数稳定域分析法 |
CN114156935A (zh) * | 2021-11-10 | 2022-03-08 | 国网山西省电力公司电力科学研究院 | 一种下垂控制逆变器并网系统的多参数稳定域分析法 |
CN114006451A (zh) * | 2021-11-18 | 2022-02-01 | 中车大连电力牵引研发中心有限公司 | 一种轨道车辆充电机输出电流控制系统及控制方法 |
CN114006451B (zh) * | 2021-11-18 | 2024-04-19 | 中车大连电力牵引研发中心有限公司 | 一种轨道车辆充电机输出电流控制系统及控制方法 |
CN114336788A (zh) * | 2021-12-30 | 2022-04-12 | 西安交通大学 | 一种交流微电网的免通讯母线电压二次控制方法 |
CN114285081A (zh) * | 2022-01-04 | 2022-04-05 | 河北工业大学 | 基于自适应虚拟电阻的广域电力系统稳定方法 |
CN114285081B (zh) * | 2022-01-04 | 2023-06-02 | 河北工业大学 | 基于自适应虚拟电阻的广域电力系统稳定方法 |
CN116526481A (zh) * | 2022-09-21 | 2023-08-01 | 华中科技大学 | 一种并网逆变器和并网逆变器中数字滤波器的参数确定方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103944190A (zh) | 2014-07-23 |
US9837931B2 (en) | 2017-12-05 |
CN103944190B (zh) | 2016-02-10 |
US20170047862A1 (en) | 2017-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015165191A1 (zh) | 一种三相双模式逆变器的稳态控制方法 | |
CN104953606B (zh) | 一种孤岛微网公共耦合点电压不平衡网络化分层补偿方法 | |
JP5580147B2 (ja) | 安定化制御方法 | |
CN107863785B (zh) | 电压电流协同控制的微电网无缝切换控制系统及方法 | |
CN103928946B (zh) | 一种三相双模式逆变器的平滑切换控制方法 | |
TWI522767B (zh) | 太陽光能發電系統 | |
CN106684918A (zh) | 一种lcl逆变器弱阻尼谐振抑制与功率快速调节方法 | |
CN109103935B (zh) | 一种三相储能变流器的离并网无缝切换控制方法 | |
CN111740454B (zh) | 一种基于母线接口变换器的混合微电网交直流电压统一控制方法 | |
WO2024078198A1 (zh) | 一种储能系统控制方法、装置及储能系统 | |
CN111371120A (zh) | 基于lcl并网逆变器的微电网平滑切换控制系统及方法 | |
CN106921170B (zh) | 一种多变流器型三相不平衡负荷综合调节系统结构及控制策略 | |
CN111786396A (zh) | 基于储能型链式statcom的高压直流输电系统换相失败抑制方法 | |
TWI488415B (zh) | Three - phase feedforward inductor current control device and its control method | |
CN109861284B (zh) | 一种新能源微电网的线路阻抗矫正装置 | |
CN109524970B (zh) | 一种基于分布式光储系统的配电网电压控制系统及方法 | |
CN106533238A (zh) | 一种基于电压补偿的船舶电气系统并网逆变器的控制方法 | |
Li et al. | Smooth switching control strategy for grid-connected and islanding mode of microgrid based on linear active disturbance rejection controller | |
CN112583289B (zh) | 用于电流源型整流器并联运行上下母线电流协同控制方法 | |
CN110854905B (zh) | 开绕组双逆变器光伏发电系统的功率均分控制方法 | |
CN110912130A (zh) | 一种双交流母线并网变换器的电路结构及其谐波补偿方法 | |
Vongkoon et al. | Analysis and design of DC bus voltage control regarding third harmonic reduction and dynamic improvement for half-bridge microinverter | |
CN112491075A (zh) | 一种新型储能逆变器控制装置及其控制方法 | |
Kumar et al. | PV based Shunt Active Power Filter for harmonics mitigation using Decoupled DSRF theory | |
CN103812107B (zh) | 一种基于复合控制的混合级联七电平有源滤波器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 15307809 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14890503 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23.03.2017) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14890503 Country of ref document: EP Kind code of ref document: A1 |