WO2015165191A1 - 一种三相双模式逆变器的稳态控制方法 - Google Patents

一种三相双模式逆变器的稳态控制方法 Download PDF

Info

Publication number
WO2015165191A1
WO2015165191A1 PCT/CN2014/086501 CN2014086501W WO2015165191A1 WO 2015165191 A1 WO2015165191 A1 WO 2015165191A1 CN 2014086501 W CN2014086501 W CN 2014086501W WO 2015165191 A1 WO2015165191 A1 WO 2015165191A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid
phase
inverter
circuit
voltage
Prior art date
Application number
PCT/CN2014/086501
Other languages
English (en)
French (fr)
Inventor
罗安
陈燕东
王明玥
钟庆昌
周乐明
黄媛
陈智勇
周小平
匡慧敏
李鸣慎
Original Assignee
湖南大学
长沙博立电气有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南大学, 长沙博立电气有限公司 filed Critical 湖南大学
Priority to US15/307,809 priority Critical patent/US9837931B2/en
Publication of WO2015165191A1 publication Critical patent/WO2015165191A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to the field of distributed power generation in a micro-grid, in particular to a steady-state control method for a three-phase dual-mode inverter.
  • the adoption and utilization of distributed power sources (photovoltaics, wind power, fuel cells, etc.) through the microgrid is an effective way to solve the current energy crisis and environmental degradation.
  • the inverter in the microgrid serves as the interface between the distributed power source and the microgrid, and will be distributed energy. Turning into high-quality electrical energy, it is of great significance to study inverters suitable for microgrid operation.
  • the existing research mainly focuses on the control method in which the inverter works alone in the grid-connected mode or off-grid (island) mode, but for the inverter that can work in the grid-connected and off-grid dual mode, and the corresponding smoothing
  • the research on switching control is not perfect.
  • the inverter In a highly flexible microgrid, the inverter should have the ability to simultaneously supply power to the local load and the grid, and in exceptional circumstances, the inverter can disconnect from the grid and directly supply power to the local load.
  • the micro-source and the grid cannot be strictly synchronized, and the control schemes are different, which will generate instantaneous overvoltage or overcurrent.
  • the three phases of the thyristor (SCR) or solid state relay (SSR) cannot be simultaneously Turning off, causing voltage or current imbalance, so that the active or reactive power increases and fluctuates, and finally the DC side voltage cannot be stabilized.
  • the technical problem to be solved by the present invention is to provide a steady-state control method for a three-phase dual-mode inverter according to the deficiencies of the prior art, overcome the shortcomings of the existing dual-mode inverter control, and solve the inverter in the micro-grid.
  • the energy backflow phenomenon due to the phase error ensures the stability of the system operation.
  • the technical solution adopted by the present invention is: a steady-state control method for a three-phase dual-mode inverter, which is suitable for a micro-grid dual-mode inverter parallel system, the micro-grid dual-mode inverter
  • the parallel system includes a plurality of dual mode inverters, a parallel/off-grid switch, a three-phase power grid and an inverter control circuit
  • the dual mode inverter includes a DC storage capacitor, a three-phase inverter circuit, and an inverter control circuit
  • the LC filter circuit, the DC storage capacitor, the three-phase inverter circuit, and the LC filter circuit are sequentially connected, and the LC filter circuit is connected to the line impedance, and the line resistance is
  • the anti-internal switch is connected to the parallel/off-grid switch, and the parallel/off-grid switch is connected to the three-phase power grid
  • the inverter control circuit includes a sampling and conditioning circuit, a phase-locked loop circuit, a controller, and
  • the off-grid mode steady state control method is:
  • the sampling conditioning circuit pairs the three-phase grid voltage u sa , the DC storage capacitor voltage u dc , the LC filter circuit capacitor voltage u oa , u ob , u oc , the line current i oa , i Ob , i oc , incoming current i sa , i sb , and i sc are respectively sampled, and then the sampled data is sent to the controller for processing, the effective value of each sampled value is calculated, and the LC filter circuit capacitor voltage u oa , u ob , u oc and line currents i oa , i ob , i oc are respectively converted into LC filter circuit capacitor voltages u o ⁇ , u o ⁇ and line currents i o ⁇ , i o ⁇ in ⁇ coordinates;
  • K is the control quantity constant, the value range is 0 ⁇ K ⁇ 1, L f is the LC filter circuit inductance value, T c is the PWM carrier period; u dc (k) is the DC side of the dual mode inverter sampled at time k The voltage, u o ⁇ (k), u o ⁇ (k) is the LC filter circuit capacitor voltage at the ⁇ coordinate at time k, i o ⁇ (k), i o ⁇ (k) is the line current at the ⁇ coordinate at time k, a predicted reference value of the line current at the ⁇ coordinate of the k+1 time;
  • the d a , d b , d c and the triangular carrier are bipolarly modulated to obtain the duty cycle signal of the three-phase inverter circuit switch tube, and the driving protection circuit is used to control the opening and closing of the three-phase inverter circuit switch tube.
  • the grid-connected mode steady state control method is:
  • I o1 and I s1 are the output current RMS value and the grid current RMS value of the dual-mode inverter after the power change
  • I o2 and I s2 are the output current RMS and the grid current of the dual-mode inverter before the power change.
  • R', X' are the line impedance and inductive reactance of the dual-mode inverter to the AC bus, respectively, and R" and X" are the line impedance and the inductive reactance of the local load to the AC bus, respectively.
  • the present invention has the beneficial effects that the present invention proposes a steady state control strategy for a dual mode inverter, the steady state control is controlled by the outer loop droop, the voltage quasi-resonant control, and the current inner loop.
  • the beat control is constructed to achieve steady state control in the on/off mode. Since the output voltage of the inverter in the grid-connected mode is always slightly ahead of the grid voltage, the invention introduces phase lead control, which avoids the energy backflow phenomenon caused by the phase error of the inverter in the grid-connected mode, and ensures the micro-inversion.
  • the source can continuously deliver energy to the grid, achieving stable operation in the grid-connected mode.
  • the invention can be widely applied in the microgrid control system, and the effect in the high power system is particularly remarkable.
  • FIG. 1 is a schematic diagram of a parallel structure of a micro-grid dual-mode inverter according to an embodiment of the present invention
  • FIG. 2 is a block diagram of steady state control of a dual mode inverter according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing changes in output frequency of an inverter according to an embodiment of the present invention
  • FIG. 3(a) is a change in a droop curve when power is changed
  • FIG. 3(b) is a change in frequency and phase.
  • FIG. 1 is a schematic diagram of a parallel structure of a micro-grid dual-mode inverter according to an embodiment of the present invention, which mainly includes: a full-bridge inverter circuit, a filter, a local load, a parallel/off-grid switch, a power grid, and the like.
  • the distributed power is converted to a constant voltage DC with a voltage of U dc ; the DC is converted to AC by a three-phase PWM inverter circuit; the filter is used to filter out glitch caused by the high frequency switch, u o , i o is a filter
  • the rear inverter outputs voltage and current; the output AC power supplies power to the local load Z load , and the / off-grid switch S is used to connect the micro source to the grid.
  • the voltage of the common connection point (PCC) is u s
  • the grid voltage mentioned in the present invention refers to the voltage at the PCC.
  • FIG. 2 is a block diagram of steady state control of a dual mode inverter according to an embodiment of the present invention.
  • k U is the voltage feedback coefficient
  • k F is the reference voltage feed forward coefficient
  • is the inverter leading the grid voltage phase.
  • the dual mode steady state control method is:
  • the sampling conditioning circuit pairs the three-phase grid voltage u sa , the DC storage capacitor voltage u dc , the LC filter circuit capacitor voltage u oa , u ob , u oc , the line current i oa , i Ob , i oc , incoming current i sa , i sb , and i sc are respectively sampled, and then the sampled data is sent to the controller for processing, the effective value of each sampled value is calculated, and the LC filter circuit capacitor voltage u oa , u ob , u oc and line currents i oa , i ob , i oc are respectively converted into LC filter circuit capacitor voltages u o ⁇ , u o ⁇ and line currents i o ⁇ , i o ⁇ in ⁇ coordinates;
  • ⁇ * and U * are the real-time values of the grid voltage angular frequency and amplitude, which vary according to the change of the grid voltage; in the off-grid mode, ⁇ * and U * are set values;
  • Inverter output voltage phase in off-grid mode Zero.
  • the phase of the grid voltage is detected by the phase-locked loop circuit.
  • the leading phase angle is ⁇ , then the output voltage phase equal:
  • K is the control quantity constant, the value range is 0 ⁇ K ⁇ 1, L f is the filter inductance value, T c is the PWM carrier period;
  • u dc (k) is the sampling DC side voltage value at time k, u o ⁇ (k ), u o ⁇ (k) is the value of the grid voltage sampled at time k at the ⁇ coordinate,
  • i o ⁇ (k), i o ⁇ (k) are the values of the output current of the sampled inverter at the time ⁇ at the ⁇ coordinate.
  • i o ⁇ (k+1), i o ⁇ (k+1) are the values of the reference current of the k+1 time at the ⁇ coordinate, respectively;
  • the SPWM modulated wave signals d a , d b , d c are bipolarly modulated with the triangular carrier to obtain the duty cycle signal of the fully controlled power device, and the driving protection circuit is used to control the opening of the fully controlled power device. And shut down.
  • the steady state control of the grid connection mode increases the phase advance control link.
  • the inverter In order to ensure the normal energy flow between the micro-source and the grid, and avoid the energy backflow caused by the phase error of the inverter, the inverter should lead the grid to a small phase ⁇ . When the output power changes, the phase ⁇ also needs to change. Adjusting the phase ⁇ ensures the accuracy of the control and enhances the stability of the inverter in the grid-connected operating mode.
  • the phase ⁇ calculation formula is:
  • the initial value ⁇ 0 ranges from 0.0001 to 0.15, which is related to the rated power of the dual mode inverter.
  • is the phase compensation parameter, which is related to the inverter output power.
  • I o1 and I s1 are the output current rms value and the grid-connected current RMS value of the dual-mode inverter after the power change
  • I o2 and I s2 are the output current RMS value and the grid-connected current of the dual-mode inverter before the power change.
  • the effective values, R', X' are the line impedance and inductive reactance of the dual-mode inverter to the AC bus, respectively
  • R" and X" are the line impedance and inductive reactance of the local load to the AC bus, respectively.
  • FIG. 3 is a schematic diagram showing changes in output frequency of an inverter according to an embodiment of the present invention.
  • Fig. 3(a) shows the change in the droop curve when the power changes
  • Fig. 3(b) shows the frequency and phase change.
  • the output voltage of the inverter must be ahead of the grid voltage due to the impedance of the transmission line. Therefore, in order to ensure that the micro-source continuously delivers energy to the grid without causing backflow, it is necessary to ensure that the phase of the micro-source always leads the grid.
  • the phase of the micro-source slightly exceeds the phase of the grid to facilitate the flow of power.
  • the phase-locked loop does not act on the droop control and only provides real-time frequency and phase reference.
  • the increase in output power is taken as an example.
  • the droop characteristic curve needs to change from point a to point d under the condition of constant frequency.
  • the phase difference between the micro-source and the power grid needs to be increased due to the increase in current. If a delay strategy is used to change the phase angle, it takes a delay of nearly one cycle, during which a large number of harmonics are introduced, and the phase angle cannot be changed frequently by delay.
  • the present invention changes the phase angle by changing the frequency.
  • the adjustment process always keeps the droop coefficient constant.
  • the droop characteristic curve shown in Fig. 3(a) when the frequency of the micro source increases, the operating point changes from a to b, and the control only needs to change the rated frequency, and the output power does not change; when the frequency is maintained at the maximum value, Increase the rated power, the working point changes from b to c; the last working point changes from c to d, only changing the rated frequency, the output power of the micro-source can be increased, the phase adjustment is completed, and the frequency before and after the adjustment phase is guaranteed to be constant.
  • This adjustment does not introduce harmonics.
  • the frequency changes it is guaranteed to be in the range of 49.8 ⁇ 50.2Hz.
  • the vector relationship analysis shows that the leading phase ⁇ needs to be adjusted.
  • the phase to be adjusted is set to ⁇ , and in order to avoid system oscillation caused by direct frequency change, the present invention performs phase advance adjustment by means of frequency adjustment.
  • the instantaneous frequency output varies according to the following formula:
  • T a is the adjustment time and f o is the system output frequency before adjustment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

一种三相双模式逆变器的稳态控制方法,离网模式稳态控制由外环功率下垂控制、电压前馈的准谐振控制以及电流内环无差拍控制构成,加快了逆变器的响应速度,抑制了微电网负荷波动的影响;并网模式稳态控制在离网模式稳态控制的基础上,通过引入相位超前控制到功率下垂控制环节中,使得逆变器的输出电压始终略超前于电网电压,避免了逆变器因相位误差造成的能量倒灌现象,实现了并网模式下的稳定可靠运行。

Description

一种三相双模式逆变器的稳态控制方法 技术领域
本发明涉及微电网分布式发电领域,特别是一种三相双模式逆变器的稳态控制方法。
背景技术
通过微电网接纳与利用分布式电源(光伏、风力、燃料电池等)是解决当前能源危机与环境恶化的有效途径,微电网中逆变器作为分布式电源与微电网的接口,将分布式能源转变成高质量的电能,因此研究适合微电网运行的逆变器意义重大。现有研究主要集中在逆变器单独工作在并网模式或离网(孤岛)模式下的控制方法,但对于能够在并网、离网双模式下工作的逆变器,及其相应的平滑切换控制的研究尚不完善。
在一个高度灵活的微电网中,逆变器应该具备同时向本地负载和电网提供电能的能力,且在异常情况下,逆变器能够断开与电网的连接,直接向本地负载供电。并网切换时,由于微源与电网不能严格同步,以及控制方案存在差异,会产生瞬间的过压或过流;离网切换时,由于晶闸管(SCR)或固态继电器(SSR)三相不能同时关断,引起电压或电流不平衡,使得有功或无功功率加大波动,最终导致直流侧电压不能稳定。这些均影响负载正常工作,破坏了供电的可靠性和稳定性。现有的双模式逆变器通常在并网模式采用P/Q控制,在离网模式采用V/f控制。虽然采取了过渡控制,在切换过程中抑制了逆变器输出电流冲击,但其往往只关注逆变器的输出电压、电流以及功率的波动,没有兼顾减小入网电流冲击。而并网和离网模式下的下垂控制,能够实现系统的稳态控制,保证负载和功率的均分。但对于其双模式的切换控制,却只能依赖以往已有的平滑切换方式,不能根据下垂控制的特性进行平滑切换,缺乏针对性。
发明内容
本发明所要解决的技术问题是,针对现有技术不足,提供一种三相双模式逆变器的稳态控制方法,克服现有双模式逆变器控制的缺点,解决微电网中逆变器在并网模式下,因相位误差出现的能量倒灌现象,保证系统运行的稳定性。
为解决上述技术问题,本发明所采用的技术方案是:一种三相双模式逆变器的稳态控制方法,适用于微电网双模式逆变器并联系统,所述微电网双模式逆变器并联系统包括多个双模式逆变器、并/离网开关、三相电网和逆变控制电路;所述双模式逆变器包括直流储能电容、三相逆变电路、逆变控制电路、LC滤波电路,所述直流储能电容、三相逆变电路、LC滤波电路依次连接,所述LC滤波电路与线路阻抗连接,所述线路阻 抗通过交流母线与并/离网开关连接,所述并/离网开关接入三相电网;所述逆变控制电路包括采样调理电路、锁相环电路、控制器、驱动保护电路;所述采样调理电路输入端与所述LC滤波电路连接;所述控制器与所述驱动保护电路输入端、采样调理电路输出端、锁相环电路输出端连接;所述锁相环电路输入端与所述交流母线连接;该方法包括离网模式稳态控制方法和并网模式稳态控制方法;
所述离网模式稳态控制方法为:
1)在每个采样周期的起始点,采样调理电路对三相电网电压usa、直流储能电容电压udc、LC滤波电路电容电压uoa、uob、uoc、线路电流ioa、iob、ioc、入网电流isa、isb、isc分别进行采样,然后将采样数据送给控制器进行处理,计算各采样值的有效值,并将LC滤波电路电容电压uoa、uob、uoc和线路电流ioa、iob、ioc分别转换为在αβ坐标下的LC滤波电路电容电压u、u和线路电流i、i
2)将LC滤波电路电容电压uoa、uob、uoc与线路电流ioa、iob、ioc分别相乘,得到双模式逆变器的有功功率P和无功功率Q;
3)对双模式逆变器输出电压幅值参考值U*、角频率参考值ω*、有功功率参考值P*、无功功率参考值Q*,以及上述有功功率平P、无功功率Q进行下垂控制运算,得到双模式逆变器的输出电压幅值Uo和角频率ωo;其中,并网模式下,ω*、U*为电网电压角频率和幅值的实时值,根据电网电压的变化而变化;离网模式下,ω*、U*为设定值;
4)由双模式逆变器输出电压有效值Uo、角频率ωo,以及电压输出相位
Figure PCTCN2014086501-appb-000001
合成αβ坐标下的参考电压urefα、urefβ,其中t为采样时间:
Figure PCTCN2014086501-appb-000002
5)将urefα、urefβ分别减去u与反馈系数kU的乘积、u与反馈系数kU的乘积, 得到的差值作为准谐振QPR控制器的输入,其中反馈系数kU的取值范围为0.1~2;
6)引入参考电压前馈环节kF·urefα *、kF·urefβ *,将kF·urefα *、kF·urefβ *与准谐振QPR控制器的输出相加,得到线路电流的参考值irefα、irefβ,其中kF为电压前馈系数,取值范围为0.01~5;
7)对线路电流参考值irefα、irefβ,LC滤波电路电容电压u、u,直流储能电容电压udc进行电流无差拍控制,得到三相逆变电路开关管控制量dα、dβ
Figure PCTCN2014086501-appb-000003
其中,K为控制量常数,取值范围0<K<1,Lf为LC滤波电路电感值,Tc为PWM载波周期;udc(k)为k时刻采样的双模式逆变器直流侧电压,u(k)、u(k)为k时刻的αβ坐标下的LC滤波电路电容电压,i(k)、i(k)为k时刻αβ坐标下线路电流,
Figure PCTCN2014086501-appb-000004
为k+1时刻αβ坐标下的线路电流的预测参考值;
8)对dα、dβ进行坐标变化,得到稳态控制时abc坐标下的三相逆变电路开关管控制量da、db、dc
9)将da、db、dc与三角载波进行双极性调制,得到三相逆变电路开关管的占空比信号,经驱动保护电路,控制三相逆变电路开关管的开通与关断;
所述并网模式稳态控制方法为:
将上述离网模式稳态控制方法步骤4)中的电压输出相位调整为
Figure PCTCN2014086501-appb-000005
然后根据上述步骤1)~步骤9)的方法控制三相逆变电路开关管的开通与关断;其中,
Figure PCTCN2014086501-appb-000006
表示锁相环电路检测到的三相电网电压相位,δ=δ0±Δδ,δ0取值范围为0.0001~0.15;Δδ为相位补偿参数,
Figure PCTCN2014086501-appb-000007
其中, Io1、Is1分别为功率变化后双模式逆变器的输出电流有效值和入网电流有效值,Io2、Is2为功率变化前双模式逆变器的输出电流有效值和入网电流有效值,R'、X'分别为双模式逆变器到交流母线的线路阻抗和感抗,R"、X"分别为本地负载到交流母线的线路阻抗和感抗。
与现有技术相比,本发明所具有的有益效果为:本发明提出了一种双模式逆变器稳态控制策略,稳态控制由外环下垂控制、电压准谐振控制以及电流内环无差拍控制构成,实现了并网/离网模式下的稳态控制。由于逆变器在并网模式下的输出电压始终略超前于电网电压,本发明引入了相位超前控制,避免了逆变器在并网模式下,因相位误差出现的能量倒灌现象,保证了微源能够持续不断向电网输送能量,实现了并网模式下的稳定运行。本发明可广泛应用在微电网控制系统中,在大功率系统中的效果尤为显著。
附图说明
图1为本发明一实施例微电网双模式逆变器并联结构示意图;
图2为本发明一实施例双模式逆变器稳态控制框图;
图3为本发明一实施例逆变器输出频率变化示意图;图3(a)为功率变化时下垂曲线变化;图3(b)为频率及相位变化。
具体实施方式
图1为本发明一实施例微电网双模式逆变器并联结构示意图,主要包括:全桥逆变电路、滤波器、本地负载、并/离网开关、电网等。分布式电源被转换为电压恒定的直流电,电压为Udc;直流电通过三相PWM逆变电路转换为交流电;滤波器用于滤除由高频开关引起的毛刺,uo、io为经过滤波器后的逆变器输出电压和电流;输出交流电向本地负载Zload提供电能,并/离网开关S用于连接微源与电网。其中,公共连接点(PCC)的电压为us,本发明中提到的电网电压均指PCC处电压。
图2为本发明一实施例双模式逆变器稳态控制框图。图中kU为电压反馈系数,kF为参考电压前馈系数;
Figure PCTCN2014086501-appb-000008
为输出电压相位,δ为逆变器超前电网电压相位。所述双模式稳态控制方法为:
1)在每个采样周期的起始点,采样调理电路对三相电网电压usa、直流储能电容电压udc、LC滤波电路电容电压uoa、uob、uoc、线路电流ioa、iob、ioc、入网电流isa、isb、isc分别进行采样,然后将采样数据送给控制器进行处理,计算各采样值的有效值,并将 LC滤波电路电容电压uoa、uob、uoc和线路电流ioa、iob、ioc分别转换为在αβ坐标下的LC滤波电路电容电压u、u和线路电流i、i
2)将LC滤波电路电容电压uoa、uob、uoc,与线路电流ioa、iob、ioc分别相乘,得到逆变器的有功功率P、无功功率Q;
3)将逆变器输出电压幅值参考值U*、角频率参考值ω*、有功功率参考值P*、无功功率参考值Q*,以及上述有功功率P、无功功率Q,进行下垂控制运算,得到逆变器输出电压幅值Uo和角频率ωo。其中,并网模式下,ω*、U*为电网电压角频率和幅值的实时值,根据电网电压的变化而变化;离网模式下,ω*、U*为设定值;
4)离网模式下,逆变器输出电压相位
Figure PCTCN2014086501-appb-000009
为零。并网模式下,通过锁相环电路检测到电网电压相位为
Figure PCTCN2014086501-appb-000010
通过相位超前控制取超前相位角为δ,则此时输出电压相位
Figure PCTCN2014086501-appb-000011
等于:
Figure PCTCN2014086501-appb-000012
5)由双模式逆变器输出电压有效值Uo、角频率ωo,以及电压输出相位
Figure PCTCN2014086501-appb-000013
合成αβ坐标下的参考电压urefα、urefβ,其中t为采样时间:
Figure PCTCN2014086501-appb-000014
6)将urefα、urefβ分别减去u与反馈系数kU的乘积、u与反馈系数kU的乘积,得到的差值作为准谐振QPR控制器的输入,其中反馈系数kU的取值范围为0.1~2;
7)引入参考电压前馈环节kF·urefα *、kF·urefβ *,将kF·urefα *、kF·urefβ *与准谐振QPR控制器的输出相加,得到线路电流的参考值irefα、irefβ,其中kF为电压前馈系数,取值范围为0.01~5;
8)对线路电流参考值irefα、irefβ,LC滤波电路电容电压u、u,直流储能电容电压udc进行电流无差拍控制,得到三相逆变电路开关管控制量dα、dβ
Figure PCTCN2014086501-appb-000015
其中,K为控制量常数,取值范围0<K<1,Lf为滤波器电感值,Tc为PWM载波周期;udc(k)为k时刻采样直流侧电压值,u(k)、u(k)分别为k时刻所采样电网电压在αβ坐标下的值,i(k)、i(k)分别为k时刻所采样逆变器输出电流在αβ坐标下的值,i(k+1)、i(k+1)分别为k+1时刻参考电流在αβ坐标下的值;
9)将dα、dβ进行坐标变化,得到稳态控制时abc坐标下的开关管控制量da、db、dc
10)将SPWM调制波信号da、db、dc,与三角载波进行双极性调制,得到全控型功率器件的占空比信号,经驱动保护电路,控制全控型功率器件的开通与关断。
所述的双模式逆变器稳态控制策略,步骤4)中,并网模式稳态控制增加了相位超前控制环节。为保证微源和电网之间正常的能量流动,避免逆变器因相位误差造成能量倒灌现象,逆变器要超前电网一个很小的相位δ。当输出功率变化时,相位δ也需要变化。调节相位δ能够保证控制的精准性,增强并网运行模式下逆变器的稳定性。相位δ计算公式为:
δ=δ0±Δδ
当输出功率需要增大时,上式取“+”;当输出功率需要减小时,上式取“-”。其中,初始值δ0取值范围为0.0001~0.15,该值与双模式逆变器的额定功率大小有关。Δδ为相位补偿参数,其与逆变器输出功率有关,计算公式为:
Figure PCTCN2014086501-appb-000016
其中,Io1、Is1分别为功率变化后双模式逆变器的输出电流有效值和入网电流有效值,Io2、Is2为功率变化前双模式逆变器的输出电流有效值和入网电流有效值,R'、 X'分别为双模式逆变器到交流母线的线路阻抗和感抗,R"、X"分别为本地负载到交流母线的线路阻抗和感抗。
图3为本发明一实施例逆变器输出频率变化示意图。图3(a)为功率变化时下垂曲线变化,图3(b)为频率及相位变化。无论本地负载呈感性还是容性,由于输电线路阻抗等原因,逆变器的输出电压都要超前于电网电压。因此,为保证微源持续不断地向电网输送能量,而不导致倒灌,就要保证微源的相位始终超前于电网。
在并网情况下,微源相位略超前电网相位有利于功率的流动,锁相环不作用于下垂控制,仅提供实时频率和相位参考。如图3(a)所示,以输出功率增大为例。当输出功率需要增大时,在频率不变的条件下,下垂特性曲线需要从a点变化到d点。由图3(b)可知,输出电压不变时,由于电流增大,微源与电网的相位差也需要增大。如果采用延时策略来改变相角,需要延时近一个周期,期间会引入大量谐波,且不能频繁通过延时来改变相角。本发明通过改变频率来改变相角。
调整过程始终保持下垂系数不变。根据图3(a)所示的下垂特性曲线,当微源频率增大时,工作点由a变为b,控制上只需改变额定频率,输出功率不变;当频率维持在最大值时,增大额定功率,工作点由b变为c;最后工作点由c变为d,只改变额定频率,即可使微源的输出功率增大,完成相位调节,保证调节相位前后频率不变。这样调节不会引入谐波。频率变化时,保证其始终在49.8~50.2Hz范围内。
当逆变器在并网模式下的功率需要变化时,由矢量关系分析得出,超前相位δ需要调节。设待调节相位为Δδ,为避免频率直接变化引起的系统振荡,本发明通过频率调节的方式进行相位超前调节。瞬时频率输出根据下式变化:
Figure PCTCN2014086501-appb-000017
其中,Ta为调节时间,fo为调节前系统输出频率。当输出功率需要增大时,上式取“+”;当输出功率需要减小时,上式取“-”。

Claims (1)

  1. 一种三相双模式逆变器的稳态控制方法,适用于微电网双模式逆变器并联系统,所述微电网双模式逆变器并联系统包括多个双模式逆变器、并/离网开关、三相电网和逆变控制电路;所述双模式逆变器包括直流储能电容、三相逆变电路、逆变控制电路、LC滤波电路,所述直流储能电容、三相逆变电路、LC滤波电路依次连接,所述LC滤波电路与线路阻抗连接,所述线路阻抗通过交流母线与并/离网开关连接,所述并/离网开关接入三相电网;所述逆变控制电路包括采样调理电路、锁相环电路、控制器、驱动保护电路;所述采样调理电路输入端与所述LC滤波电路连接;所述控制器与所述驱动保护电路输入端、采样调理电路输出端、锁相环电路输出端连接;所述锁相环电路输入端与所述交流母线连接;其特征在于,该方法包括离网模式稳态控制方法和并网模式稳态控制方法;
    所述离网模式稳态控制方法为:
    1)在每个采样周期的起始点,采样调理电路对三相电网电压usa、直流储能电容电压udc、LC滤波电路电容电压uoa、uob、uoc、线路电流ioa、iob、ioc、入网电流isa、isb、isc分别进行采样,然后将采样数据送给控制器进行处理,计算各采样值的有效值,并将LC滤波电路电容电压uoa、uob、uoc和线路电流ioa、iob、ioc分别转换为在αβ坐标下的LC滤波电路电容电压u、u和线路电流i、i
    2)将LC滤波电路电容电压uoa、uob、uoc与线路电流ioa、iob、ioc分别相乘,得到双模式逆变器的有功功率P和无功功率Q;
    3)对双模式逆变器输出电压幅值参考值U*、角频率参考值ω*、有功功率参考值P*、无功功率参考值Q*,以及上述有功功率平P、无功功率Q进行下垂控制运算,得到双模式逆变器的输出电压幅值Uo和角频率ωo;其中,并网模式下,ω*、U*为电网电压角频率和幅值的实时值,根据电网电压的变化而变化;离网模式下,ω*、U*为设定值;
    4)由双模式逆变器输出电压有效值Uo、角频率ωo,以及电压输出相位
    Figure PCTCN2014086501-appb-100001
    合成αβ 坐标下的参考电压urefα、urefβ,其中t为采样时间:
    Figure PCTCN2014086501-appb-100002
    5)将urefα、urefβ分别减去u与反馈系数kU的乘积、u与反馈系数kU的乘积,得到的差值作为准谐振QPR控制器的输入;其中反馈系数kU的取值范围为0.1~2;
    6)引入参考电压前馈环节kF·urefα *、kF·urefβ *,将kF·urefα *、kF·urefβ *与准谐振QPR控制器的输出相加,得到线路电流的参考值irefα、irefβ;其中kF为电压前馈系数,取值范围为0.01~5;
    7)对线路电流参考值irefα、irefβ,LC滤波电路电容电压u、u,直流储能电容电压udc进行电流无差拍控制,得到三相逆变电路开关管控制量dα、dβ
    Figure PCTCN2014086501-appb-100003
    其中,K为控制量常数,取值范围0<K<1,Lf为LC滤波电路电感值,Tc为PWM载波周期;udc(k)为k时刻采样的双模式逆变器直流侧电压,u(k)、u(k)为k时刻的αβ坐标下的LC滤波电路电容电压,i(k)、i(k)为k时刻αβ坐标下线路电流,
    Figure PCTCN2014086501-appb-100004
    为k+1时刻αβ坐标下的线路电流的预测参考值;
    8)对dα、dβ进行坐标变化,得到稳态控制时abc坐标下的三相逆变电路开关管控制量da、db、dc
    9)将da、db、dc与三角载波进行双极性调制,得到三相逆变电路开关管的占空比信号,经驱动保护电路,控制三相逆变电路开关管的开通与关断;
    所述并网模式稳态控制方法为:
    将上述离网模式稳态控制方法步骤4)中的电压输出相位调整为
    Figure PCTCN2014086501-appb-100005
    然后根据 上述步骤1)~步骤9)的方法控制三相逆变电路开关管的开通与关断;其中,
    Figure PCTCN2014086501-appb-100006
    表示锁相环电路检测到的三相电网电压相位,δ=δ0±Δδ,δ0取值范围为0.0001~0.15;Δδ为相位补偿参数,
    Figure PCTCN2014086501-appb-100007
    其中,Io1、Is1分别为功率变化后双模式逆变器的输出电流有效值和入网电流有效值,Io2、Is2为功率变化前双模式逆变器的输出电流有效值和入网电流有效值,R'、X'分别为双模式逆变器到交流母线的线路阻抗和感抗,R"、X"分别为本地负载到交流母线的线路阻抗和感抗。
PCT/CN2014/086501 2014-04-30 2014-09-15 一种三相双模式逆变器的稳态控制方法 WO2015165191A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/307,809 US9837931B2 (en) 2014-04-30 2014-09-15 Phased lock loop control for multiple inverters connected to a polyphase grid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410181861.4A CN103944190B (zh) 2014-04-30 2014-04-30 一种三相双模式逆变器的稳态控制方法
CN201410181861.4 2014-04-30

Publications (1)

Publication Number Publication Date
WO2015165191A1 true WO2015165191A1 (zh) 2015-11-05

Family

ID=51191740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086501 WO2015165191A1 (zh) 2014-04-30 2014-09-15 一种三相双模式逆变器的稳态控制方法

Country Status (3)

Country Link
US (1) US9837931B2 (zh)
CN (1) CN103944190B (zh)
WO (1) WO2015165191A1 (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108683205A (zh) * 2018-04-09 2018-10-19 湖南大学 一种海上高压直流远供系统的阻抗稳定控制方法
CN109638863A (zh) * 2018-12-29 2019-04-16 南京工程学院 基于双重偏差补偿控制算法的多功能储能变流器设计方法
CN109902347A (zh) * 2019-01-24 2019-06-18 合肥工业大学 基于基波阻抗辨识的并网系统短路比测量方法及装置
CN110048455A (zh) * 2019-04-24 2019-07-23 湖南大学 具有弱电网故障穿越能力的下垂控制逆变器及其控制方法
CN110112772A (zh) * 2019-04-24 2019-08-09 张锐明 一种能源逆变并网控制装置及控制方法
CN110460112A (zh) * 2019-09-18 2019-11-15 东北大学 一种基于功率偏差量一致性控制的微电网下垂控制方法
CN111342487A (zh) * 2020-02-28 2020-06-26 国充充电科技江苏股份有限公司 一种储能变换器的并联控制方法、系统及电子设备
CN112583044A (zh) * 2020-11-10 2021-03-30 西安理工大学 一种三电平并网变换器的自适应电流分岔控制方法
CN113572147A (zh) * 2021-07-22 2021-10-29 中国船舶重工集团公司第七一一研究所 直流供配电系统
CN113759184A (zh) * 2020-06-03 2021-12-07 台达电子企业管理(上海)有限公司 逆变器的孤岛检测方法及装置
CN113889999A (zh) * 2021-10-25 2022-01-04 国网山西省电力公司电力科学研究院 一种抑制直流微电网电压波动的自抗扰控制方法及系统
CN113890073A (zh) * 2021-09-29 2022-01-04 内蒙古科技大学 不等容的多逆变器并联飞轮储能系统改进模型预测方法
CN114006451A (zh) * 2021-11-18 2022-02-01 中车大连电力牵引研发中心有限公司 一种轨道车辆充电机输出电流控制系统及控制方法
CN114156935A (zh) * 2021-11-10 2022-03-08 国网山西省电力公司电力科学研究院 一种下垂控制逆变器并网系统的多参数稳定域分析法
CN114285081A (zh) * 2022-01-04 2022-04-05 河北工业大学 基于自适应虚拟电阻的广域电力系统稳定方法
CN114336788A (zh) * 2021-12-30 2022-04-12 西安交通大学 一种交流微电网的免通讯母线电压二次控制方法
CN116526481A (zh) * 2022-09-21 2023-08-01 华中科技大学 一种并网逆变器和并网逆变器中数字滤波器的参数确定方法

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9867931B2 (en) 2013-10-02 2018-01-16 Cook Medical Technologies Llc Therapeutic agents for delivery using a catheter and pressure source
CN103944190B (zh) 2014-04-30 2016-02-10 湖南大学 一种三相双模式逆变器的稳态控制方法
CN104300581B (zh) * 2014-10-31 2016-08-24 东南大学 一种带并网点动态电压补偿的无缝并网逆变器及其方法
DE102014119502B3 (de) * 2014-12-23 2016-03-24 Sma Solar Technology Ag Netzgekoppelter Wechselrichter, Wechselrichteranordnung und Betriebsverfahren für eine Wechselrichteranordnung
JP6289675B2 (ja) * 2014-12-24 2018-03-07 三菱電機株式会社 電力変換装置
WO2017062034A1 (en) * 2015-10-09 2017-04-13 Ge Aviation Systems Llc Control of ac source inverter to reduce total harmonic distortation and output voltage unbalance
CN106099899B (zh) 2016-05-30 2018-08-28 浙江大学 一种基于电压基准节点的带死区直流电网电压下垂控制策略
CN107147150A (zh) * 2017-07-19 2017-09-08 云南电网有限责任公司电力科学研究院 一种光纤智慧小区微电网的互联系统
CN107546998B (zh) * 2017-07-25 2019-12-10 华南理工大学 一种基于双环预测控制的切换型控制方法
GB2570151B (en) * 2018-01-14 2020-07-15 Zhong Qingchang Reconfiguration of inertia, damping, and fault ride-through for a virtual synchronous machine
CN108173258B (zh) * 2018-02-08 2021-02-02 哈尔滨工业大学 一种三端口变换器的虚拟电感和虚拟电容功率分配方法
FR3077938B1 (fr) * 2018-02-14 2020-01-10 Schneider Toshiba Inverter Europe Sas Procede de commande d'un convertisseur connecte a une machine electrique
CN108494109B (zh) * 2018-03-16 2020-03-20 清华大学 一种不依赖实时无线通讯的双向无线充电系统的控制策略
GB2574645B (en) * 2018-06-14 2020-07-15 Zhong Qingchang Passive virtual synchronous machine with bounded frequency and virtual flux
DE102018115490A1 (de) * 2018-06-27 2020-01-02 Vacon Oy Verfahren zur Reduzierung des Gleichtaktstroms in Leistungselektronik-Ausrüstung
CN109103925B (zh) * 2018-07-31 2022-01-28 国网江苏省电力有限公司淮安供电分公司 一种基于光伏发电的微电网
CN108880317B (zh) * 2018-09-12 2024-01-09 珠海泰通电气技术有限公司 一种换流器的三环控制装置及方法
CN109450267B (zh) * 2018-10-23 2021-02-02 南京航空航天大学 一种基于混合有源三次谐波注入变换器的升压控制方法
CN109256817B (zh) * 2018-11-27 2021-11-16 南方电网科学研究院有限责任公司 控制直流微电网接口逆变器进行频率调节的方法及装置
CN109494767A (zh) * 2018-12-14 2019-03-19 易事特集团股份有限公司 微网频率控制方法和微网系统
CN109713726B (zh) * 2019-02-25 2023-04-21 福州大学 用于阻抗源逆变器孤岛和并网双模式运行的自适应模型预测控制方法
CN109888829B (zh) * 2019-03-21 2022-10-11 哈尔滨工业大学 基于改进感性下垂控制的光伏微网系统离并网无缝切换系统
CN111852788B (zh) * 2019-04-30 2022-07-15 北京金风科创风电设备有限公司 风电机组的功率损耗异常的诊断方法和装置
CN110311407B (zh) * 2019-06-12 2022-09-27 合肥工业大学 基于电压闭环的级联型逆变器双模式无缝切换控制方法
CN110635499B (zh) * 2019-10-16 2023-02-21 中天储能科技有限公司 基于并离网暂态过程分段控制的储能变流器平滑切换方法
CN110932309A (zh) * 2019-10-30 2020-03-27 东北大学 一种基于acsf-mpc和pi双模式切换的逆变器控制系统及方法
CN111082453A (zh) * 2019-12-04 2020-04-28 中国电力科学研究院有限公司 一种基于V-f控制光伏逆变器调节的方法及系统
CN112003319B (zh) * 2020-07-09 2021-12-17 西安理工大学 一种应用于双向并网变换器的双电流反馈控制方法
CN112713608B (zh) * 2020-12-16 2023-04-14 福州大学 一种逆变器的准定频多阈值区间滞环控制方法
CN112615557B (zh) * 2020-12-21 2022-08-16 上海交通大学 三电平并网逆变器有限控制集模型预测定频方法
CN112952902B (zh) * 2021-02-25 2023-04-07 云南电网有限责任公司电力科学研究院 一种新型光伏并网配电网侧控制系统及方法
CN113410904B (zh) * 2021-03-29 2023-01-24 广东电网有限责任公司电力科学研究院 一种多模块并联型应急电源及控制方法
CN112993998B (zh) * 2021-04-16 2022-08-16 南方电网科学研究院有限责任公司 一种基于lcc闭环阻抗模型的系统谐波稳定性判断方法
CN113452305A (zh) * 2021-05-12 2021-09-28 武汉华海通用电气有限公司 多台共母线三相逆变器输出并联带异步电机变频调速装置
CN113255485B (zh) * 2021-05-13 2022-05-17 云南电网有限责任公司 一种水力发电机组并网模式的识别方法及装置
CN113241796B (zh) * 2021-06-03 2022-05-27 合肥工业大学 极弱电网下光伏并网逆变器功率控制方法
CN115693731A (zh) * 2021-07-30 2023-02-03 华为数字能源技术有限公司 一种储能系统、并离网切换的方法及储能变流器
CN113612402A (zh) * 2021-08-09 2021-11-05 山特电子(深圳)有限公司 一种三相逆变控制系统和控制方法
CN113964879B (zh) * 2021-11-23 2022-12-02 合肥工业大学 一种新能源并网逆变器自同步电压源控制方法
CN114172181B (zh) * 2021-11-29 2024-03-12 国网福建省电力有限公司电力科学研究院 基于两级式混合储能的冲击功率和脉冲功率快速平抑方法
CN114142760B (zh) * 2021-12-15 2023-04-28 西南交通大学 一种三相全桥逆变器的离散控制方法及装置
CN114696320B (zh) * 2022-03-25 2024-04-19 国网湖北省电力有限公司电力科学研究院 一种新能源发电装备自同步电压源控制及低电压穿越控制双模式切换控制方法
CN116111867B (zh) * 2022-12-01 2024-04-12 浙江巨磁智能技术有限公司 基于虚拟瞬时功率的构网型储能变换器预同步控制方法
CN115955002B (zh) * 2022-12-19 2023-08-01 广州明德电力技术有限公司 一种应用于电压暂态治理的dvr实时控制系统及方法
CN117060446B (zh) * 2023-08-22 2024-02-13 湖南工商大学 一种用于三相串联型储能系统的分散主从自同步控制方法
CN117498710A (zh) * 2023-10-13 2024-02-02 江苏科曜能源科技有限公司 并网逆变器的控制方法及系统
CN117277421B (zh) * 2023-11-17 2024-02-02 合肥工业大学 一种并网逆变器多模型控制方法
CN117970781B (zh) * 2024-03-22 2024-06-25 东莞市茂腾电子科技有限公司 一种逆变器智能控制方法及系统
CN118275761B (zh) * 2024-06-03 2024-10-11 青岛鼎信通讯股份有限公司 一种电流检测装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6122184A (en) * 1997-06-19 2000-09-19 The Texas A&M University System Method and system for an improved converter output filter for an induction drive system
CN102185341A (zh) * 2011-04-14 2011-09-14 天津大学 基于主从控制策略微网的主电源双模式运行控制方法
CN102222931A (zh) * 2011-04-19 2011-10-19 吉林省电力有限公司电力科学研究院 一种微电网三相并网逆变系统及其控制方法
CN102447268A (zh) * 2011-12-19 2012-05-09 湖南大学 一种基于功率前馈的鲁棒双环光伏并网控制方法
CN103078545A (zh) * 2013-01-15 2013-05-01 东华大学 一种独立或并网双模逆变器的控制电路及切换方法
CN103944190A (zh) * 2014-04-30 2014-07-23 湖南大学 一种三相双模式逆变器的稳态控制方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757099A (en) * 1996-03-01 1998-05-26 Wisconsin Alumni Research Foundation Hybrid parallel active/passive filter system with dynamically variable inductance
US7333352B2 (en) * 2004-07-01 2008-02-19 Northern Power Systems, Inc. Frequency control and power balancing in disturbed power inverter system and method thereof
CN1710771A (zh) * 2005-07-08 2005-12-21 湖南大学 谐振阻抗型混合有源电力滤波器及控制方法
US8482947B2 (en) * 2009-07-31 2013-07-09 Solarbridge Technologies, Inc. Apparatus and method for controlling DC-AC power conversion
CN102545238B (zh) * 2012-01-11 2015-05-06 云南电力试验研究院(集团)有限公司电力研究院 一种微网svg多目标配置的控制方法
CN103199720B (zh) * 2013-04-17 2014-01-08 湖南大学 一种三相功率变流器的综合控制方法
CN103427700B (zh) * 2013-09-02 2015-07-01 湖南大学 一种三相四开关功率变流器的不平衡补偿控制方法
EP2894523A1 (fr) * 2014-01-10 2015-07-15 ETA SA Manufacture Horlogère Suisse Objet portable pour la gestion d'une activité annexe
US9608352B2 (en) * 2015-05-11 2017-03-28 Microsoft Technology Licensing, Llc Interface for multiple connectors
US9923485B2 (en) * 2015-11-05 2018-03-20 Futurewei Technologies, Inc. Multi-channel inverter systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6122184A (en) * 1997-06-19 2000-09-19 The Texas A&M University System Method and system for an improved converter output filter for an induction drive system
CN102185341A (zh) * 2011-04-14 2011-09-14 天津大学 基于主从控制策略微网的主电源双模式运行控制方法
CN102222931A (zh) * 2011-04-19 2011-10-19 吉林省电力有限公司电力科学研究院 一种微电网三相并网逆变系统及其控制方法
CN102447268A (zh) * 2011-12-19 2012-05-09 湖南大学 一种基于功率前馈的鲁棒双环光伏并网控制方法
CN103078545A (zh) * 2013-01-15 2013-05-01 东华大学 一种独立或并网双模逆变器的控制电路及切换方法
CN103944190A (zh) * 2014-04-30 2014-07-23 湖南大学 一种三相双模式逆变器的稳态控制方法

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108683205A (zh) * 2018-04-09 2018-10-19 湖南大学 一种海上高压直流远供系统的阻抗稳定控制方法
CN108683205B (zh) * 2018-04-09 2021-06-18 湖南大学 一种海上高压直流远供系统的阻抗稳定控制方法
CN109638863A (zh) * 2018-12-29 2019-04-16 南京工程学院 基于双重偏差补偿控制算法的多功能储能变流器设计方法
CN109638863B (zh) * 2018-12-29 2022-04-29 南京工程学院 基于双重偏差补偿控制算法的多功能储能变流器设计方法
CN109902347A (zh) * 2019-01-24 2019-06-18 合肥工业大学 基于基波阻抗辨识的并网系统短路比测量方法及装置
CN109902347B (zh) * 2019-01-24 2022-10-04 合肥工业大学 基于基波阻抗辨识的并网系统短路比测量方法及装置
CN110048455A (zh) * 2019-04-24 2019-07-23 湖南大学 具有弱电网故障穿越能力的下垂控制逆变器及其控制方法
CN110048455B (zh) * 2019-04-24 2021-06-01 湖南大学 具有弱电网故障穿越能力的下垂控制逆变器及其控制方法
CN110112772A (zh) * 2019-04-24 2019-08-09 张锐明 一种能源逆变并网控制装置及控制方法
CN110460112A (zh) * 2019-09-18 2019-11-15 东北大学 一种基于功率偏差量一致性控制的微电网下垂控制方法
CN110460112B (zh) * 2019-09-18 2023-02-28 东北大学 一种基于功率偏差量一致性控制的微电网下垂控制方法
CN111342487A (zh) * 2020-02-28 2020-06-26 国充充电科技江苏股份有限公司 一种储能变换器的并联控制方法、系统及电子设备
CN113759184A (zh) * 2020-06-03 2021-12-07 台达电子企业管理(上海)有限公司 逆变器的孤岛检测方法及装置
CN112583044B (zh) * 2020-11-10 2023-05-23 西安理工大学 一种三电平并网变换器的自适应电流分岔控制方法
CN112583044A (zh) * 2020-11-10 2021-03-30 西安理工大学 一种三电平并网变换器的自适应电流分岔控制方法
CN113572147A (zh) * 2021-07-22 2021-10-29 中国船舶重工集团公司第七一一研究所 直流供配电系统
CN113572147B (zh) * 2021-07-22 2024-03-19 中国船舶集团有限公司第七一一研究所 直流供配电系统
CN113890073B (zh) * 2021-09-29 2023-07-14 内蒙古科技大学 不等容的多逆变器并联飞轮储能系统改进模型预测方法
CN113890073A (zh) * 2021-09-29 2022-01-04 内蒙古科技大学 不等容的多逆变器并联飞轮储能系统改进模型预测方法
CN113889999A (zh) * 2021-10-25 2022-01-04 国网山西省电力公司电力科学研究院 一种抑制直流微电网电压波动的自抗扰控制方法及系统
CN113889999B (zh) * 2021-10-25 2023-07-25 国网山西省电力公司电力科学研究院 一种抑制直流微电网电压波动的自抗扰控制方法及系统
CN114156935B (zh) * 2021-11-10 2023-08-04 国网山西省电力公司电力科学研究院 一种下垂控制逆变器并网系统的多参数稳定域分析法
CN114156935A (zh) * 2021-11-10 2022-03-08 国网山西省电力公司电力科学研究院 一种下垂控制逆变器并网系统的多参数稳定域分析法
CN114006451A (zh) * 2021-11-18 2022-02-01 中车大连电力牵引研发中心有限公司 一种轨道车辆充电机输出电流控制系统及控制方法
CN114006451B (zh) * 2021-11-18 2024-04-19 中车大连电力牵引研发中心有限公司 一种轨道车辆充电机输出电流控制系统及控制方法
CN114336788A (zh) * 2021-12-30 2022-04-12 西安交通大学 一种交流微电网的免通讯母线电压二次控制方法
CN114285081A (zh) * 2022-01-04 2022-04-05 河北工业大学 基于自适应虚拟电阻的广域电力系统稳定方法
CN114285081B (zh) * 2022-01-04 2023-06-02 河北工业大学 基于自适应虚拟电阻的广域电力系统稳定方法
CN116526481A (zh) * 2022-09-21 2023-08-01 华中科技大学 一种并网逆变器和并网逆变器中数字滤波器的参数确定方法

Also Published As

Publication number Publication date
CN103944190A (zh) 2014-07-23
US9837931B2 (en) 2017-12-05
CN103944190B (zh) 2016-02-10
US20170047862A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
WO2015165191A1 (zh) 一种三相双模式逆变器的稳态控制方法
CN104953606B (zh) 一种孤岛微网公共耦合点电压不平衡网络化分层补偿方法
JP5580147B2 (ja) 安定化制御方法
CN107863785B (zh) 电压电流协同控制的微电网无缝切换控制系统及方法
CN103928946B (zh) 一种三相双模式逆变器的平滑切换控制方法
TWI522767B (zh) 太陽光能發電系統
CN106684918A (zh) 一种lcl逆变器弱阻尼谐振抑制与功率快速调节方法
CN109103935B (zh) 一种三相储能变流器的离并网无缝切换控制方法
CN111740454B (zh) 一种基于母线接口变换器的混合微电网交直流电压统一控制方法
WO2024078198A1 (zh) 一种储能系统控制方法、装置及储能系统
CN111371120A (zh) 基于lcl并网逆变器的微电网平滑切换控制系统及方法
CN106921170B (zh) 一种多变流器型三相不平衡负荷综合调节系统结构及控制策略
CN111786396A (zh) 基于储能型链式statcom的高压直流输电系统换相失败抑制方法
TWI488415B (zh) Three - phase feedforward inductor current control device and its control method
CN109861284B (zh) 一种新能源微电网的线路阻抗矫正装置
CN109524970B (zh) 一种基于分布式光储系统的配电网电压控制系统及方法
CN106533238A (zh) 一种基于电压补偿的船舶电气系统并网逆变器的控制方法
Li et al. Smooth switching control strategy for grid-connected and islanding mode of microgrid based on linear active disturbance rejection controller
CN112583289B (zh) 用于电流源型整流器并联运行上下母线电流协同控制方法
CN110854905B (zh) 开绕组双逆变器光伏发电系统的功率均分控制方法
CN110912130A (zh) 一种双交流母线并网变换器的电路结构及其谐波补偿方法
Vongkoon et al. Analysis and design of DC bus voltage control regarding third harmonic reduction and dynamic improvement for half-bridge microinverter
CN112491075A (zh) 一种新型储能逆变器控制装置及其控制方法
Kumar et al. PV based Shunt Active Power Filter for harmonics mitigation using Decoupled DSRF theory
CN103812107B (zh) 一种基于复合控制的混合级联七电平有源滤波器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15307809

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890503

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23.03.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14890503

Country of ref document: EP

Kind code of ref document: A1