WO2015162980A1 - チェーン - Google Patents

チェーン Download PDF

Info

Publication number
WO2015162980A1
WO2015162980A1 PCT/JP2015/054237 JP2015054237W WO2015162980A1 WO 2015162980 A1 WO2015162980 A1 WO 2015162980A1 JP 2015054237 W JP2015054237 W JP 2015054237W WO 2015162980 A1 WO2015162980 A1 WO 2015162980A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
water
group
chain
resin
Prior art date
Application number
PCT/JP2015/054237
Other languages
English (en)
French (fr)
Inventor
愛子 有馬
裕二 福池
Original Assignee
株式会社椿本チエイン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社椿本チエイン filed Critical 株式会社椿本チエイン
Priority to CN201580003314.XA priority Critical patent/CN105849437B/zh
Priority to DE112015002010.1T priority patent/DE112015002010T5/de
Priority to KR1020167014804A priority patent/KR101903868B1/ko
Priority to US15/305,936 priority patent/US20170037935A1/en
Publication of WO2015162980A1 publication Critical patent/WO2015162980A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/10Anti-corrosive paints containing metal dust
    • C09D5/106Anti-corrosive paints containing metal dust containing Zn
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G13/00Chains
    • F16G13/02Driving-chains
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/6505Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen the low-molecular compounds being compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6511Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen the low-molecular compounds being compounds of group C08G18/32 or polyamines of C08G18/38 compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/48Stabilisers against degradation by oxygen, light or heat
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/18Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using inorganic inhibitors
    • C23F11/182Sulfur, boron or silicon containing compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G13/00Chains
    • F16G13/02Driving-chains
    • F16G13/06Driving-chains with links connected by parallel driving-pins with or without rollers so called open links
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica

Definitions

  • the present invention is used in a corrosive atmosphere such as acid, alkali, salt water, etc., and an alloy film containing zinc is formed on the surface, and a coating film is formed on the alloy film using a paint containing zinc and a resin.
  • the present invention relates to a chain such as a bush chain and a roller chain.
  • the iron base surface of each part of the chain is covered with a metal that is baser than iron such as zinc, or from iron such as nickel.
  • a metal that is baser than iron such as zinc
  • iron such as nickel
  • coating with a noble metal is performed.
  • the former galvanization include electrogalvanization and powder impact galvanization
  • nickel plating include electronickel plating and electroless nickel plating.
  • a coating film is also formed on the surface using a water-based anticorrosive paint containing zinc, aluminum or the like as a metal pigment.
  • Patent Document 1 a zinc coating is formed on an iron base in a non-hydrogen atmosphere, and a water-based anticorrosion paint containing aluminum powder and a silicone resin is baked and coated on the zinc coating.
  • An invention of an anticorrosive chain component having a film formed thereon is disclosed.
  • a zinc-iron alloy undercoating film is formed by projecting a blast material made of a zinc-iron alloy onto an iron base, and the zinc-iron alloy undercoating film is made of a base metal mainly composed of zinc.
  • An invention of a chain in which a coating film is formed by applying a water-based anticorrosive paint containing powder, an organic compound containing a mercapto group and covering a base metal powder, and nitrate is disclosed.
  • the material which consists of polyetheretherketone resin is insert-molded so that the axial direction center part may become thick on the inner peripheral surface of the bush of a chain, it is excellent in chemical resistance, a chemical
  • medical agent Also disclosed is a chain invention that can reduce the initial wear elongation and improve the wear resistance even in applications in which cleaning is performed.
  • Patent Document 1 when assembling a chain component that has undergone anticorrosion processing, when the bushing is press-fitted to the inner plate and the connecting pin is press-fitted to the outer plate, the coating film peels off at the clamping part. It is easy to rust from that part at an early stage, and the chemical resistance is deteriorated, so that repair may be required after the chain is assembled.
  • the water-based anticorrosive paint of Patent Document 2 has good storage stability and good antirust properties of the chain, but further improvement in chemical resistance is required.
  • the resin material is interposed between the bush and the pin of the chain, and the wear resistance and chemical resistance of the sliding portion between the bush and the pin are good. There was a problem that the chemical resistance could not be obtained on the surface.
  • the present invention has been made in view of such circumstances, and an alloy coating that suppresses the reaction of iron is formed on the surface, the adhesion of the coating formed on the alloy coating is good, and the strength is
  • An object of the present invention is to provide a chain that is strong and uniform, requires no repair after assembly, and maintains good chemical resistance.
  • the present inventors formed an alloy coating containing zinc on the surface of the iron base of the chain, and an aqueous rust preventive containing zinc and barium sulfate and / or colloidal silica on the alloy coating.
  • a paint and forming a coating film formed by curing at least one resin selected from the group consisting of urethane resin, epoxy resin, and acrylic resin the chain has good chemical resistance and adhesion As a result, the present invention has been completed.
  • the chain according to the first invention is made of an iron-based material, in which a pair of outer plates and a pair of inner plates are alternately connected, and has a coating film formed using a water-based anticorrosive paint.
  • the water-based anticorrosive paint is applied, and at least one resin selected from the group consisting of a urethane resin, an epoxy resin, and an acrylic resin is cured.
  • the chain according to the second invention is characterized in that, in the first invention, a mass ratio of the barium sulfate to the zinc is 7 or less.
  • the chain according to a third aspect of the present invention is the first or second aspect, wherein the water-based anticorrosive paint further comprises colloidal silica, and the mass ratio of the solid content of the colloidal silica to the total mass of the zinc and barium sulfate is: It is 0.04 or less.
  • the chain according to a fourth aspect of the present invention is the chain according to any one of the first to third aspects, wherein the zinc and the barium sulfate in the case where the total mass of the zinc and the barium sulfate or the colloidal silica is included.
  • the mass ratio of the total mass of the solid content of the colloidal silica to the total mass of the total mass and the solid content of the resin when cured is 0.2 or more and 0.7 or less. It is characterized by.
  • a chain according to a fifth aspect of the present invention is a chain made of an iron-based material, in which a pair of outer plates and a pair of inner plates are alternately connected, and has a coating film formed using a water-based anticorrosive paint.
  • the water-based anticorrosive paint contains zinc and colloidal silica, and the paint film is formed on the zinc-aluminum-magnesium alloy film.
  • a rust paint is applied, and at least one resin selected from the group consisting of urethane resin, epoxy resin, and acrylic resin is cured, and the mass ratio of the solid content of the colloidal silica to the zinc is 0.00. It is 02 or less.
  • a chain according to a sixth aspect of the present invention is a chain made of an iron-based material, in which a pair of outer plates and a pair of inner plates are alternately connected, and has a coating film formed using a water-based anticorrosive paint.
  • the water-based anti-corrosion paint contains zinc, does not contain barium sulfate and colloidal silica, and the coating film contains the zinc-aluminum-magnesium alloy coating film.
  • the water-based anti-corrosion paint is applied, and at least one resin selected from the group consisting of urethane resin, epoxy resin, and acrylic resin is cured, and the mass of the zinc and the curing
  • the mass ratio of the resin to the total mass with respect to the total mass of the resin is 0.2 or more and 0.7 or less.
  • a chain according to a seventh aspect of the present invention is a chain made of an iron-based material, in which a pair of outer plates and a pair of inner plates are alternately connected, and has a coating film formed using a water-based anticorrosive paint.
  • the water-based anticorrosive paint contains zinc as a first pigment and a second pigment containing barium sulfate, and the paint film contains the zinc-iron alloy coating
  • the water-based anti-corrosion paint is applied, and at least one resin selected from the group consisting of urethane resin, epoxy resin, and acrylic resin is cured, and the solids of the zinc and the second pigment are solidified.
  • the mass ratio of the total mass of the resin to the total mass of the total mass of the resin and the solid content of the resin when cured is 0.2 or more and 0.42 or less.
  • the chain according to the eighth invention is the chain according to any one of the first to seventh inventions, wherein the water-based anticorrosive paint contains a part or all of alkyl groups, phenyl groups, or hydrogen atoms in the molecule.
  • Silane compound having a haloalkyl group substituted with a halogen atom and a hydrolyzable silicon group polyoxyethylene alkylamine, polyoxyethylene alkyl ether, polyoxyethylene distyrenated phenyl ether, sorbitan fatty acid ester, polyoxyethylene sorbitan
  • a surfactant which is at least one selected from the group consisting of fatty acid esters and alkyl ether phosphate salts.
  • the chain according to the ninth invention is characterized in that, in the eighth invention, a mass ratio of the silane compound to the zinc is 0.005 or more and 0.8 or less.
  • the chain according to the tenth invention is characterized in that, in the eighth invention or the ninth invention, a mass ratio of the surfactant to the zinc is 0.005 or more and 0.8 or less.
  • the chain according to an eleventh aspect of the present invention is the chain according to any one of the eighth to tenth aspects, wherein the water-based anticorrosive paint comprises an epoxy group, a methacryloxy group, an acryloxy group, an amino group, and a vinyl group in the molecule. It further comprises a silane coupling agent having at least one functional group selected from the group consisting of and a hydrolyzable silicon group.
  • the chain according to the twelfth invention is characterized in that, in the eleventh invention, the mass ratio of the silane coupling agent to the zinc is 0.005 or more and 1 or less.
  • an alloy film containing zinc, aluminum, and magnesium which has a higher ionization tendency than iron and is oxidized prior to iron in the presence of an alkaline aqueous solution, for example, is formed. Therefore, iron oxidation is suppressed satisfactorily.
  • a water-based anticorrosive paint containing zinc and barium sulfate and / or colloidal silica is applied onto the alloy film, and selected from the group consisting of urethane resin, epoxy resin, and acrylic resin.
  • a coating film formed by curing at least one kind of resin is formed. When the coating film contains barium sulfate, the coating film strength and adhesion are improved.
  • the chain according to the present invention has good adhesion to the alloy film of the coating film, and the strength of the coating film is strong and uniform, so that the generation of coating powder during assembly and use is suppressed, and after the assembly No repair is required and chemical resistance is maintained well.
  • the silane compound becomes familiar with water by the surfactant and is easily hydrolyzed, and zinc binds to the silanol group generated by the hydrolysis and is contained in the paint. Disperses well and stabilizes. Therefore, the coating is easily cured during baking, and a coating film can be uniformly formed by the chain.
  • a zinc-aluminum-magnesium alloy coating is formed on the surface of the iron base of the chain, and zinc, barium sulfate and / or colloidal silica are formed on the zinc-aluminum-magnesium alloy coating.
  • the coating film is formed by coating the water-based anti-corrosion paint to be contained and curing at least one resin selected from the group consisting of urethane resin, epoxy resin, and acrylic resin, the adhesion of the coating film , Strength and uniformity are good, and good chemical resistance is maintained in the long term.
  • the chain has good chemical resistance by adjusting the PWC.
  • a pair of inner plates made of an iron-based material, spaced apart from a bushing that is press-fitted into a bushing press-fitting hole, and arranged on the outside of the inner plate
  • a bush chain composed of a pair of outer plates connected to the inner plate and a connecting pin loosely fitted on the inner peripheral surface of the bush and press-fitted into a pin press-fitting hole of the outer plate.
  • the present invention can be applied to a roller chain in which a roller is further loosely fitted to the outer peripheral surfaces of the connecting pin and the bush.
  • inner and outer plates used in the chain of the present invention include an oval plate, a gourd plate, and the like.
  • a zinc-aluminum-magnesium alloy coating (Zn-Al-Mg alloy coating) is formed on the surface of the above-described component of the chain of the present invention.
  • the Zn—Al—Mg alloy coating is formed by projecting a blast material containing a Zn—Al—Mg alloy onto the surface using a mechanical plating projection device or the like (by impact plating).
  • the alloy composition ranges include Al: 1 to 5% by mass, Mg: 5.5 to 15% by mass, and Zn: balance.
  • Al 3% by mass
  • Mg 6% by mass
  • Zn and impurities 91% by mass.
  • the chain according to the present invention has a first coating film formed on a Zn—Al—Mg alloy coating film using a water-based anticorrosive coating material.
  • the water-based rust preventive paint contains zinc as the first pigment.
  • Zinc is preferably in the form of powder, and more preferably in the form of flakes. By making it into flakes, the specific surface area increases, the contact between metal powders becomes close, and in addition to the active anticorrosive property of the metal itself, a protective barrier effect (passive anticorrosive property) based on the flake shape is also obtained. It can suppress that a crack generate
  • Zinc may be made into a slurry form with a water-soluble solvent.
  • the water-soluble solvent examples include glycol solvents such as propylene glycol and ethylene glycol, alcohol solvents such as ethanol and isopropanol, glycol ether solvents such as dipropylene glycol monomethyl ether, and the like.
  • the water-based anticorrosive paint can contain aluminum powder or a powdered alloy containing zinc and aluminum, magnesium, tin, cobalt, manganese, or the like.
  • the water-based anti-corrosion paint is applied to the Zn—Al—Mg alloy film, and when baked, at least one resin selected from the group consisting of a urethane resin, an epoxy resin, and an acrylic resin is cured to cause the first coating. Contains ingredients that can form a film.
  • a water-system antirust coating contains a polyisocyanate compound and a polyol compound.
  • the polyisocyanate compound include polyisocyanate compounds described in Japanese Patent Application Laid-Open No. 2014-25062, and specific examples include aliphatic polyisocyanates such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, dimer acid diisocyanate, and lysine diisocyanate.
  • Isocyanates ; burette type adducts, isocyanurate cycloadducts, allophanate type adducts, uretdione type adducts of the aliphatic polyisocyanates; isophorone diisocyanate, 4,4′-methylenebis (cyclohexyl isocyanate), methylcyclohexane-2, Alicyclic diisocyanates such as 4- or -2,6-diisocyanate; burette-type adducts of the alicyclic diisocyanates, isocyanurate rings Additives; aromatic diisocyanate compounds such as xylylene diisocyanate, tetramethylxylylene diisocyanate, tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate (MDI), 1,5-naphthalene diisocyanate, 1,4-naphthalene diisocyanate; -Type diiso
  • a blocked polyisocyanate compound obtained by adding a blocking agent to the isocyanate group of the polyisocyanate compound described above may be used.
  • the blocking agent include blocking agents such as phenol, lactam, alcohol, ether, oxime, active methylene, mercaptan, acid amide, imide, amine, imidazole and pyrazole. It is done.
  • polyol compound examples include epoxy resins described in JP-A-2014-19752, and specific examples include polyester polyol, acrylic polyol, polyether polyol, polyolefin polyol, fluorine polyol, and polycarbonate polyol.
  • polyester polyol examples include a polyester polyol obtained by a condensation reaction between a dibasic acid and a polyhydric alcohol, and polycaprolactones obtained by, for example, ring-opening polymerization of ⁇ -caprolactone using a polyhydric alcohol.
  • acrylic polyol a single compound or mixture of an ethylenically unsaturated bond-containing monomer having a hydroxyl group and a single compound or mixture of another ethylenically unsaturated bond-containing monomer copolymerizable therewith are used.
  • a polymer is mentioned.
  • polyether polyol polyether polyols obtained by adding a single compound or mixture of alkylene oxide to a single compound of a polyvalent hydroxy compound or a mixture thereof in the presence of a strongly basic catalyst; a polyfunctional compound such as ethylenediamine And polyether polyols obtained by reacting with alkylene oxides; and so-called polymer polyols obtained by polymerizing acrylamide or the like using these polyethers as a medium.
  • the fluorine polyol is a polyol containing fluorine in its molecule.
  • fluoroolefins, cyclovinyl ethers, hydroxyalkyl vinyl ethers, and mono-alkyls disclosed in JP-A-57-34107 and JP-A-61-275311 are disclosed.
  • copolymers such as carboxylic acid vinyl esters.
  • polycarbonate polyol include those obtained by polycondensation of a low
  • a water-system antirust coating contains an epoxy resin and a hardening
  • the epoxy resin include epoxy resins described in JP-A-2014-19752, specifically, novolak type epoxy resins, glycidyl ether type epoxy resins, glycol ether type epoxy resins, aliphatic unsaturated compounds. Epoxy resin, epoxy fatty acid ester, polycarboxylic acid ester epoxy resin, aminoglycidyl epoxy resin, ⁇ -methyl epichloro epoxy resin, cyclic oxirane epoxy resin, halogen epoxy resin, resorcin epoxy resin, etc. It is done.
  • Examples of the curing agent include those described in Japanese Patent No. 5071602, and specific examples include amine compounds, amide compounds, acid anhydride compounds, phenol compounds, and the like.
  • Examples of the amine compounds include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, BF3 amine complex, and guanidine derivatives.
  • Examples of the amide compounds include polyamide resins synthesized from dimer of dicyandiamide and linolenic acid and ethylenediamine.
  • Acid anhydride compounds include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexahydro And phthalic anhydride.
  • Phenol compounds include phenol novolac resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin modified phenol resin, dicyclopentadiene phenol addition type resin, phenol aralkyl resin, naphthol aralkyl resin, trimethylol methane resin, tetraphenylol ethane resin. , Naphthol novolak resin, naphthol-phenol co-condensed novolak resin, naphthol-cresol co-condensed novolak resin, biphenyl-modified phenol resin, biphenyl-modified naphthol resin, aminotriazine-modified phenol resin, alkoxy group-containing aromatic ring-modified novolak resin, etc. Compounds. Moreover, you may use the above-mentioned polyisocyanate compound or a blocked polyisocyanate compound as a hardening
  • the epoxy resin is cured by applying a water-based anticorrosive paint containing the above-described epoxy resin and a curing agent to the chain and then baking it.
  • a water-system antirust coating contains an acrylic resin.
  • the acrylic resin is obtained by emulsion polymerization of a monomer containing an acrylic monomer as a main component in an aqueous system using an emulsifier.
  • the acrylic monomer is a monomer having a (meth) acryl group.
  • a monomer containing no active hydrogen group is preferable.
  • acrylic monomers include the following monomers described in Japanese Patent No. 5379946.
  • (meth) acrylic acid alkyl esters among (meth) acrylic monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, Butyl (meth) acrylate, isobutyl (meth) acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, s-pentyl (meth) acrylate, (meta ) 1-ethylpropyl acrylate, 2-methylbutyl (meth) acrylate, isopentyl (meth) acrylate, t-pentyl (meth) acrylate, 3-methylbutyl (meth) acrylate, neopentyl (meth) acrylate,
  • Examples of the monomer having a hydrophilic group include the following monomers.
  • Examples of the monomer having a carboxyl group include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, and 2-acryloyloxypropionic acid.
  • Examples of the monomer having a hydroxyl group include hydroxylethyl (meth) acrylate, 2-hydroxyisopropyl (meth) acrylate, hydroxybutyl (meth) acrylate, ethylene glycol mono (meth) acrylate, glycerin mono (meth) acrylate, polyethylene glycol Examples thereof include hydroxyl group-containing (meth) acrylic monomers such as mono (meth) acrylate and polypropylene glycol mono (meth) acrylate.
  • Examples of the ether group-containing monomer include glycerin monoallyl ether, trimethylolpropane monoallyl ether, and allyl alcohol.
  • the polymerization may be carried out by including other monomers having a polymerizable double bond together with the (meth) acrylic monomer.
  • examples of such other monomers include ester group-containing vinyl monomers, styrene derivatives, and vinyl ether monomers.
  • the mass obtained by adding the solid content of the second pigment to the mass of zinc is preferably 0.2 or more and 0.7 or less. In this case, chemical resistance and adhesion are good.
  • the lower limit of the mass ratio is more preferably 0.25, the upper limit of the mass ratio is more preferably 0.68, still more preferably 0.65, and particularly 0.6. preferable.
  • the water-based rust preventive paint can contain a silane compound and a surfactant.
  • the silane compound preferably has an alkyl group, a phenyl group, or a haloalkyl group in which some or all of the hydrogen atoms are substituted with a halogen atom and a hydrolyzable silicon group in the molecule.
  • the hydrolyzable silicon group is not particularly limited, but an alkoxysilyl group is preferable from the viewpoint of handleability, and a methoxysilyl group and an ethoxysilyl group are particularly preferable from the viewpoint of reactivity.
  • silane compound examples include methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, and decyltrimethoxysilane. And trifluoropropyltrimethoxysilane.
  • This silane compound is easily hydrolyzed to form a silanol group, and the silanol group is bonded to zinc, so that zinc is well dispersed and stabilized in the paint.
  • the silanol group is also bonded to the lower layer coating film, so that the adhesion between the coating films is also improved.
  • zinc of the silane compound solid content: when zinc is prepared in zinc paste, zinc content in the zinc paste
  • the mass ratio with respect to (amount) is preferably 0.005 or more and 0.8 or less.
  • the lower limit of the mass ratio is more preferably 0.02, still more preferably 0.04, and the upper limit of the mass ratio is more preferably 0.6.
  • This silane compound is a silane described later having at least one functional group selected from the group consisting of an epoxy group, a methacryloxy group, an acryloxy group, an amino group, a mercapto group, and a vinyl group in the molecule and a hydrolyzable silicon group. Unlike the coupling agent, since it does not have the functional group, gelation of the paint is suppressed.
  • the water-based rust preventive paint can contain a surfactant.
  • the surfactant is at least selected from the group consisting of polyoxyethylene alkylamine, polyoxyethylene alkyl ether, polyoxyethylene distyrenated phenyl ether, polyoxyethylene sorbitan fatty acid ester, sorbitan fatty acid ester, and alkyl ether phosphate salt.
  • One type is preferred.
  • Polyoxyethylene alkylamine is represented by the following general formula (1).
  • the polyoxyethylene alkyl ether is represented by the general formula of the following formula (2).
  • Polyoxyethylene distyrenated phenyl ether is represented by the following general formula (3).
  • n 1, 2, ...
  • Polyoxyethylene sorbitan fatty acid ester is represented by the following general formula (4).
  • Sorbitan fatty acid ester is represented by the following general formula (5).
  • the silane compound By containing the surfactant, the silane compound is easily adapted to water, the hydrolysis of the silane compound is promoted, and the generated silanol group is bonded to zinc. Accordingly, zinc is well dispersed in the water-based anticorrosive paint, and the storage stability is improved. Since zinc is well dispersed and stabilized in the paint, the paint can be easily cured during baking, and a coating film having a uniform component and thickness can be formed without loss.
  • the HLB is considered when determining the type and combination of the surfactant, the preferred HLB range varies depending on the type and combination of the surfactant. Therefore, an interface having an HLB corresponding to the type and combination of the surfactant. Select the active agent.
  • the mass ratio of surfactant to zinc (solid content: zinc content in zinc paste when zinc is prepared in zinc paste) Is preferably 0.005 or more and 0.8 or less.
  • the lower limit of the mass ratio is more preferably 0.02, still more preferably 0.04, and the upper limit of the mass ratio is more preferably 0.6.
  • the water-based anti-corrosion paint comprises a silane coupling agent having at least one functional group selected from the group consisting of an epoxy group, a methacryloxy group, an acryloxy group, an amino group, and a vinyl group in the molecule and a hydrolyzable silicon group.
  • a silane coupling agent having at least one functional group selected from the group consisting of an epoxy group, a methacryloxy group, an acryloxy group, an amino group, and a vinyl group in the molecule and a hydrolyzable silicon group.
  • the hydrolyzable silicon group is not particularly limited, but an alkoxysilyl group is preferable from the viewpoint of handleability, and a methoxysilyl group and an ethoxysilyl group are particularly preferable from the viewpoint of reactivity.
  • silane coupling agent when an epoxy group is included as a functional group, for example, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxy Examples thereof include silane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropyltriethoxysilane.
  • the silanol group is generated by hydrolysis of the silane coupling agent, and the silanol group is bonded to zinc. Therefore, it is considered that zinc is stabilized in the paint.
  • the silanol group is also bonded to the object to be coated, and the coating component is crosslinked or chemically bonded by the functional group, so that the adhesion of the coating film is improved.
  • the mass ratio of the silane coupling agent to zinc is preferably 0.005 or more and 1 or less from the viewpoint of the dispersibility and stability of the paint in water, the storage stability, and the good adhesion of the coating film.
  • the lower limit of the mass ratio is more preferably 0.02, still more preferably 0.12, and the upper limit of the mass ratio is more preferably 0.8, still more preferably 0.6.
  • the water-based rust preventive paint can contain barium sulfate as the second pigment.
  • barium sulfate precipitated barium sulfate is preferred.
  • the mass ratio (BaSO 4 / Zn) of barium sulfate to zinc is preferably 7 or less. In this case, the coating film strength and adhesion are good, the chemical resistance is good, and the concealability is good.
  • the lower limit of BaSO 4 / Zn is more preferably 0.15, still more preferably 0.3, and the upper limit of BaSO 4 / Zn is more preferably 6.
  • the water-based anticorrosive paint can contain colloidal silica as the second pigment in addition to barium sulfate.
  • the mass ratio [(solid content of colloidal silica) / (Zn + BaSO 4 )] relative to the total mass of zinc and barium sulfate in the solid content of the colloidal silica is preferably 0.04 or less.
  • the upper limit of (solid content of colloidal silica) / (Zn + BaSO 4 ) is more preferably 0.02.
  • the mass ratio [(solid content of colloidal silica) / (Zn)] of the solid content of colloidal silica to zinc is 0.02 or less. Is preferred. In this case, the chemical resistance is good and the storage stability of the water-based anticorrosive paint is good.
  • the upper limit of the mass ratio is more preferably 0.01.
  • the water-based anticorrosive paint may contain a water-soluble solvent and paint additives such as a wetting agent, a wetting and dispersing agent, an antifoaming agent, a thickening agent, and a pH adjusting agent.
  • a water-soluble solvent include glycol solvents such as propylene glycol and ethylene glycol, alcohol solvents such as ethanol and isopropanol, glycol ether solvents such as dipropylene glycol monomethyl ether, and the like.
  • wetting and dispersing agents such as polycarboxylic acids, wetting agents such as organic phosphate esters, diester sulfosuccinates such as sodium bistridecyl sulfosuccinate, silicone or acrylic antifoaming agents, Examples include hydroxyethyl cellulose, methyl cellulose, methyl hydroxypropyl cellulose, ethyl hydroxyethyl cellulose, and ethers of methyl ethyl cellulose, and thickeners of mixtures of these substances.
  • the water-based anti-corrosion paint is applied to the Zn—Al—Mg alloy coating by dipping treatment such as immersion drain (dip drain) and immersion rotation (dip spin), brush coating, spraying, and the like.
  • the paint of the present invention is preferably baked at 180 ° C. or lower for 30 to 40 minutes. In this case, the chain components are not reduced in hardness, and the chain strength and chain life are prevented from being reduced.
  • the paint of the present invention may be applied a plurality of times on the Zn—Al—Mg alloy coating.
  • the coating amount is 5 mg / dm 2 to 400 mg / dm 2 and the total film thickness of the coating film is preferably 1 ⁇ m to 30 ⁇ m.
  • the total film thickness of both coating films is 5 to 30 ⁇ m.
  • the coating amount is preferably 50 mg / dm 2 to 400 mg / dm 2 .
  • the chain according to the present invention has a zinc-iron alloy coating (Zn-Fe alloy coating) formed on the surface thereof, and the second pigment containing zinc as the first pigment and barium sulfate on the zinc-iron alloy coating.
  • Zn-Fe alloy coating zinc-iron alloy coating
  • the second pigment containing zinc as the first pigment and barium sulfate on the zinc-iron alloy coating.
  • a water-based anticorrosive paint containing which may further contain colloidal silica as a second pigment
  • the resin may be cured to form the first coating film.
  • the mass ratio of the total mass of the solid content of the first pigment and the second pigment to the total mass of the total mass and the solid content of the cured resin is 0.2 or more and 0.42 or less. In this case, chemical resistance and adhesion are good.
  • the upper limit of the mass ratio is preferably 0.4.
  • the water-based anticorrosive paint configured as described above has good storage stability. Then, a Zn—Al—Mg alloy coating or a Zn—Fe alloy coating is formed on the surface of the iron-based substrate, and is coated on the Zn—Al—Mg alloy coating or the Zn—Fe alloy coating using the water-based anticorrosion paint.
  • the chain of the present invention in which the film is formed has good adhesion of the coating film, and the chemical resistance is well maintained for a long time.
  • colloidal silica ("PL-3-D", Fuso Chemical Industry Co., Ltd.), polyoxyethylene alkyl ether, n-hexyltrimethoxysilane, wetting and dispersing agent, polyol compound, polyisocyanate compound, water , Propylene glycol, silicone-based antifoaming agent (“BYK018”, manufactured by Big Chemie Japan Co., Ltd.), and a wetting agent were blended to obtain paints of Formulation Examples 1 to 35.
  • FIG. 1 is a cross-sectional view showing a chain 10 according to the first embodiment
  • FIG. 2 is an enlarged cross-sectional view showing a surface of a part of the chain of FIG.
  • the chain 10 includes a pair of inner plates 11 and 11 that are spaced apart from each other, and a bush 12 that is press-fitted into the bush press-fitting holes 11 a and 11 a of the inner plates 11 and 11.
  • a pair of left and right outer plates 13, 13 disposed on the outer side of the inner plates 11, 11 and connected to the front and rear inner plates 11, 11 and loosely fitted to the inner peripheral surface of the bush 12,
  • the connecting pin 14 is press-fitted into the pin press-fitting holes 13a and 13a, and the roller 15 is loosely fitted to the outer peripheral surface of the bush 12.
  • FIG. 2 shows a state in which a Zn—Al—Mg alloy coating 17, a first coating 18, and a second coating 19 are laminated on the surface of the outer plate 13.
  • ZR # 50S DOWA IP Creation Co., Ltd.
  • ZR # 50S DOWA IP Creation Co., Ltd.
  • the Zn—Al—Mg alloy film 17 is formed by projecting a product made by the company.
  • the surface of the Zn—Al—Mg alloy coating 17 was coated with the water-based anticorrosive paint of Formulation Example 1 in Table 1 by the dip spin method, and baked at 180 ° C. for 40 minutes to form a first coating film 18 having a thickness of 5 ⁇ m.
  • the water-based anticorrosive paint of Formulation Example 1 was applied to the surface of the first coating film 18 by the dip spin method, and baked at 180 ° C. for 40 minutes to form a second coating film 19 having a thickness of 3 ⁇ m.
  • Example 1 a chain 10 according to Example 1 was obtained.
  • the coating and the composition of the coating are shown in Table 4 below.
  • “first coating” represents a Zn—Al—Mg alloy coating.
  • Examples 2 to 28 In the same manner as in Example 1, the coatings and coating films having the structures shown in Table 4 and Table 5 were formed, and the chains of Examples 2 to 28 were produced.
  • Example 29 to 32 A blasting material made of a Zn—Fe alloy is projected onto the surface of the chain to form a Zn—Fe alloy coating, and the aqueous anticorrosion paint of the formulation example shown in Table 5 is applied twice on the Zn—Fe alloy coating. Thus, the chains of Examples 29 to 32 were produced.
  • “second coating” represents a Zn—Fe alloy coating.
  • Comparative Example 39 The chain of Comparative Example 39 does not have an alloy coating and a coating on the surface.
  • a Zn—Fe alloy coating (second coating) is formed on the surface of the chain and does not have a coating.
  • the evaluation of concealability, adhesion, and chemical resistance was performed on the chains of the examples and comparative examples.
  • the evaluation method is as follows.
  • the chains of Examples 1 to 28 have a Zn—Al—Mg alloy film formed as a base film
  • the chains of Comparative Examples 1 to 31 have a Zn—Fe alloy film formed as a base film.
  • Tables 4-8 when the coating film using the same water-based anticorrosive paint is formed on the base coating, the chemical resistance of the example chain is significantly improved compared to the comparative example chain. I understand that.
  • Example 25 with a PWC of 25% has very good chemical resistance.
  • the PWC exceeds 70, it has been confirmed that the adhesion is slightly deteriorated, and therefore, the PWC is preferably 20% or more and 70% or less.
  • the upper limit of PWC is more preferably 68%, still more preferably 65%, particularly preferably 60%, and most preferably 40%.
  • the mass ratio [(solid content of colloidal silica) / (Zn)] of the solid content of colloidal silica to zinc is preferably 2% or less.
  • the upper limit of the mass ratio is more preferably 1%.
  • the mass ratio [(solid content of colloidal silica) / (Zn + BaSO 4 )] of the solid content of the colloidal silica to the total mass of zinc and barium sulfate is 4% or less. Is preferred.
  • the upper limit of (solid content of colloidal silica) / (Zn + BaSO 4 ) is more preferably 2%.
  • the chemical resistance is good when the PWC is 20% or more and 42% or less.
  • the upper limit of PWC is preferably 40%.
  • the water-based anticorrosive paint according to the embodiment of the present invention has good storage stability, and the chains according to the examples of the present invention have good adhesion and concealment properties of the coating film and chemical resistance. Was confirmed to be good.
  • water-based anti-corrosion paint used for the coating film of the chain of the present invention under water when the blending amount of silane compound, surfactant, and silane coupling agent is changed. It shows about the result of having evaluated stability in.
  • composition Examples A to G Zinc flakes ("STANDART (registered trademark) ZINC FLAKE AT", polyoxyethylene alkyl ether as a surfactant, n-hexyltrimethoxysilane as a silane compound, according to the blending amount (in parts by mass) shown in Table 9 below
  • a wetting and dispersing agent and water paints of Formulation Examples A to G were obtained.
  • Zinc flakes (“STANDART (registered trademark) ZINC FLAKE AT", polyoxyethylene alkyl ether as a surfactant, n-hexyltrimethoxysilane as a silane compound, according to the blending amount (in parts by mass) shown in Table 10 below.
  • a wetting and dispersing agent 3-glycidoxypropyltotimethoxysilane as a silane coupling agent, acetic acid, and water
  • paints of Formulation Examples H to L were obtained.
  • the mass ratio of surfactant to zinc and the mass ratio of silane compound to zinc are 0.5% to 80%, respectively.
  • the lower limit of the mass ratio of the surfactant to zinc and the lower mass ratio of the silane compound to zinc is preferably 2%, more preferably 4%, and the upper limit is preferably 60%.
  • the mass ratio of the silane coupling agent to zinc is preferably 0.5% to 100%.
  • the lower limit of the mass ratio is more preferably 2%, still more preferably 12%, and the upper limit of the mass ratio is more preferably 80%, still more preferably 60%.
  • the water-based anticorrosive paint contains a silane compound and a surfactant, or when it contains a silane coupling agent in addition to this, stability in water and storage stability are good.
  • distributes well in a coating material, while coating a coating surface on the surface of a chain and baking it, it becomes easy to harden

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

 表面に鉄の反応を抑制する合金被膜が形成されており、該合金被膜上に形成する塗膜の付着性が良好であり、強度が強く、均一であるので、組み立て後の補修が不要であるとともに、耐薬品性が良好に維持されるチェーンを提供する。チェーン(10)は、内プレート(11)、ブシュ(12)、外プレート(13)、連結ピン(14)、及びローラ(15)を備える。各構成部品は、鉄系素地上に衝撃めっきにより形成された亜鉛-アルミニウム-マグネシウム合金被膜と、該亜鉛-アルミニウム-マグネシウム合金被膜上に、亜鉛と、硫酸バリウムとを含み、ウレタン樹脂、エポキシ樹脂、及びアクリル樹脂からなる群から選択される少なくとも1種の樹脂とが硬化してなる塗膜とを有する。

Description

チェーン
 本発明は、酸、アルカリ、塩水等の腐食雰囲気下で使用され、表面に亜鉛を含む合金被膜が形成されており、該合金被膜上に、亜鉛及び樹脂を含む塗料を用いて塗膜が形成されたブシュチェーン、ローラチェーン等のチェーンに関する。
 従来、塩水等の腐食雰囲気下で使用されるチェーンを防食するために、チェーンの各部品の鉄系素地表面を、亜鉛等の鉄より卑である金属で被覆すること、又はニッケル等の鉄より貴である金属で被覆すること等が行われている。前者の亜鉛めっきとして、電気亜鉛めっき及び粉末衝撃亜鉛めっき等が挙げられ、後者のニッケルめっきとして、電気ニッケルめっき及び無電解ニッケルめっき等が挙げられる。
 また、亜鉛及びアルミニウムの犠牲防食作用(これらの金属が鉄よりもイオン化傾向が大きいため、鉄より先に溶出して鉄の腐食を抑制する作用)を利用し、チェーンの各部品の鉄系素地表面に、亜鉛及びアルミニウム等を金属顔料として含む水系防錆塗料を用いて塗膜を形成することも行われている。
 特許文献1には、鉄素地上に非水素雰囲気下で亜鉛被膜を形成し、該亜鉛被膜上に、アルミニウム粉末及びシリコーン樹脂を含有する水系防錆塗料を焼付け塗装して、白錆防止焼付け塗膜を形成した防食性チェーン用部品の発明が開示されている。
 特許文献2には、鉄素地上に、亜鉛-鉄合金からなるブラスト材を投射して亜鉛-鉄合金下地被膜を形成し、該亜鉛-鉄合金下地被膜に、亜鉛を主成分とする卑金属の粉末と、メルカプト基を含み、卑金属の粉末を被覆する有機化合物と、硝酸塩とを含有する水系防錆塗料を塗装して塗膜を形成してあるチェーンの発明が開示されている。
 そして、特許文献3には、チェーンのブシュの内周面に軸方向中央部が肉厚になるように、ポリエーテルエーテルケトン樹脂からなる材料をインサート成形してあり、耐薬品性に優れ、薬剤を用いた洗浄を行う用途においても初期摩耗伸びを低減することができるとともに耐摩耗性を向上させることができるチェーンの発明が開示されている。
特許第3122037号公報 特許第4869349号公報 特開2010-1914号公報
 しかし、特許文献1の場合、防食加工を施されたチェーン構成部品を組み立てる場合、内プレートにブシュが、外プレートに連結ピンが圧入嵌合される際に、締鋲部に塗膜剥離が生じやすく、その部分から早期に発錆しやすくなり、耐薬品性が悪くなるため、チェーンの組み立て後に補修を必要とすることがあった。
 そして、特許文献2の水系防錆塗料は貯蔵安定性が良好であり、チェーンの防錆性も良好であるが、耐薬品性のさらなる向上が求められている。
 また、特許文献3の場合、チェーンのブシュとピンとの間に樹脂材料が介在し、ブシュとピンとの摺動部の耐摩耗性及び耐薬品性は良好であるが、チェーンの内プレート及び外プレートの表面においては、耐薬品性が得られないという問題があった。
 本発明は斯かる事情に鑑みてなされたものであり、表面に鉄の反応を抑制する合金被膜が形成されており、該合金被膜上に形成する塗膜の付着性が良好であり、強度が強く、均一であるので、組み立て後の補修が不要であるとともに、耐薬品性が良好に維持されるチェーンを提供することを目的とする。
 本発明者等は鋭意研究の結果、チェーンの鉄系素地の表面に亜鉛を含む合金被膜を形成し、該合金被膜上に、亜鉛と、硫酸バリウム及び/又はコロイダルシリカとを含有する水系防錆塗料を塗装して、ウレタン樹脂、エポキシ樹脂、及びアクリル樹脂からなる群から選択される少なくとも1種の樹脂が硬化してなる塗膜を形成することにより、チェーンが良好な耐薬品性、及び付着性を有することを見出し、本発明を完成するに至った。
 すなわち、第1発明に係るチェーンは、鉄系材料からなり、一対の外プレートと一対の内プレートとを交互に連結してあり、水系防錆塗料を用いて形成された塗膜を有するチェーンにおいて、表面に形成された亜鉛-アルミニウム-マグネシウム合金被膜を有し、前記水系防錆塗料は、亜鉛と、硫酸バリウムとを含有し、前記塗膜は、前記亜鉛-アルミニウム-マグネシウム合金被膜上に、前記水系防錆塗料を塗装し、ウレタン樹脂、エポキシ樹脂、及びアクリル樹脂からなる群から選択される少なくとも1種の樹脂が硬化してなることを特徴とする。
 第2発明に係るチェーンは、第1発明において、前記硫酸バリウムの前記亜鉛に対する質量比率は、7以下であることを特徴とする。
 第3発明に係るチェーンは、第1又は第2発明において、前記水系防錆塗料は、コロイダルシリカをさらに含み、該コロイダルシリカの固形分の、前記亜鉛及び硫酸バリウムの合計質量に対する質量比率は、0.04以下であることを特徴とする。
 第4発明に係るチェーンは、第1発明から第3発明までのいずれか1つの発明において、前記亜鉛と前記硫酸バリウムとの合計質量の、又は前記コロイダルシリカを含む場合における前記亜鉛と前記硫酸バリウムと前記該コロイダルシリカの固形分との合計質量の、該合計質量と、硬化したときの前記樹脂の固形分の質量との総質量に対する質量比率は、0.2以上0.7以下であることを特徴とする。
 第5発明に係るチェーンは、鉄系材料からなり、一対の外プレートと一対の内プレートとを交互に連結してあり、水系防錆塗料を用いて形成された塗膜を有するチェーンにおいて、表面に形成された亜鉛-アルミニウム-マグネシウム合金被膜を有し、前記水系防錆塗料は、亜鉛と、コロイダルシリカとを含有し、前記塗膜は、亜鉛-アルミニウム-マグネシウム合金被膜上に、前記水系防錆塗料を塗装し、ウレタン樹脂、エポキシ樹脂、及びアクリル樹脂からなる群から選択される少なくとも1種の樹脂が硬化してなり、前記コロイダルシリカの固形分の、前記亜鉛に対する質量比率は、0.02以下であることを特徴とする。
 第6発明に係るチェーンは、鉄系材料からなり、一対の外プレートと一対の内プレートとを交互に連結してあり、水系防錆塗料を用いて形成された塗膜を有するチェーンにおいて、表面に形成された亜鉛-アルミニウム-マグネシウム合金被膜を含有し、前記水系防錆塗料は、亜鉛を含有し、硫酸バリウム及びコロイダルシリカは含有せず、前記塗膜は、前記亜鉛-アルミニウム-マグネシウム合金被膜上に、前記水系防錆塗料を塗装し、ウレタン樹脂、エポキシ樹脂、及びアクリル樹脂からなる群から選択される少なくとも1種の樹脂が硬化してなり、前記亜鉛の質量の、該質量と、硬化したときの前記樹脂の固形分の質量との合計質量に対する質量比率は、0.2以上0.7以下であることを特徴とする。
 第7発明に係るチェーンは、鉄系材料からなり、一対の外プレートと一対の内プレートとを交互に連結してあり、水系防錆塗料を用いて形成された塗膜を有するチェーンにおいて、表面に形成された亜鉛-鉄合金被膜を有し、前記水系防錆塗料は、第1顔料としての亜鉛と、硫酸バリウムを含む第2顔料とを含有し、前記塗膜は、前記亜鉛-鉄合金被膜上に、前記水系防錆塗料を塗装し、ウレタン樹脂、エポキシ樹脂、及びアクリル樹脂からなる群から選択される少なくとも1種の樹脂が硬化してなり、前記亜鉛と、前記第2顔料の固形分との合計質量の、該合計質量と、硬化したときの前記樹脂の固形分の質量との総質量に対する質量比率は、0.2以上0.42以下であることを特徴とする。
 第8発明に係るチェーンは、第1発明から第7発明までのいずれか1つの発明において、前記水系防錆塗料は、分子中に、アルキル基、フェニル基、又は水素原子の一部若しくは全部をハロゲン原子で置換したハロアルキル基と、加水分解性ケイ素基とを有するシラン化合物と、ポリオキシエチレンアルキルアミン、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンジスチレン化フェニルエーテル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、及びアルキルエーテルホスフェート塩からなる群から選択される少なくとも1種である界面活性剤とをさらに含むことを特徴とする。
 第9発明に係るチェーンは、第8発明において、前記シラン化合物の前記亜鉛に対する質量比率は、0.005以上0.8以下であることを特徴とする。
 第10発明に係るチェーンは、第8発明又は第9発明において、前記界面活性剤の前記亜鉛に対する質量比率は、0.005以上0.8以下であることを特徴とする。
 第11発明に係るチェーンは、第8発明から第10発明までのいずれか1つの発明において、前記水系防錆塗料は、分子中にエポキシ基、メタクリロキシ基、アクリロキシ基、アミノ基、及びビニル基からなる群より選ばれる少なくとも1個の官能基と加水分解性ケイ素基とを有するシランカップリング剤をさらに含むことを特徴とする。
 第12発明に係るチェーンは、第11発明において、前記シランカップリング剤の前記亜鉛に対する質量比率は、0.005以上1以下であることを特徴とする。
 本発明においては、チェーンの鉄系素地の表面に、鉄よりイオン化傾向が大きく、例えばアルカリ性水溶液の存在下で、鉄より先に酸化する亜鉛、アルミニウム、及びマグネシウムを含む合金被膜が形成されているので、鉄の酸化が良好に抑制される。そして、本発明においては、該合金被膜上に、亜鉛と、硫酸バリウム及び/又はコロイダルシリカとを含有する水系防錆塗料を塗装し、ウレタン樹脂、エポキシ樹脂、及びアクリル樹脂からなる群から選択される少なくとも1種の樹脂が硬化してなる塗膜が形成されている。塗膜が硫酸バリウムを含むことにより、塗膜強度及び付着性が良好になる。塗膜がコロイダルシリカを含むことにより、塩水存在下における防錆性も向上する。
 従って、本発明に係るチェーンは、塗膜の合金皮膜に対する付着性が良好であり、塗膜の強度が強く、均一であるので、組み立て時及び使用時に塗膜粉の発生が抑制され、組み立て後の補修が不要であるとともに、耐薬品性が良好に維持される。
 水系防錆塗料がシラン化合物と界面活性剤とを含む場合、シラン化合物が界面活性剤により水と馴染んで加水分解されやすくなり、亜鉛が、加水分解により生じたシラノール基と結合して塗料中で良好に分散して安定化する。従って、塗料が焼き付け時に硬化しやすくなるとともに、チェーンにより均一に塗膜が形成され得る。
 本発明のチェーンによれば、チェーンの鉄系素地の表面に亜鉛-アルミニウム-マグネシウム合金被膜が形成され、該亜鉛-アルミニウム-マグネシウム合金被膜上に、亜鉛と、硫酸バリウム及び/又はコロイダルシリカとを含有する水系防錆塗料を塗装し、ウレタン樹脂、エポキシ樹脂、及びアクリル樹脂からなる群から選択される少なくとも1種の樹脂が硬化してなる塗膜が形成されているので、塗膜の付着性、強度、及び均一性が良好であり、良好な耐薬品性が長期的に維持される。
 また、チェーンの鉄系素地の表面に亜鉛-鉄合金被膜を形成する場合、PWCを調整することで、チェーンは良好な耐薬品性を有する。
本発明の実施例に係るチェーンを示す断面図である。 図1のチェーンの一部分の表面を示す拡大断面図である。
 本発明に係るチェーンとして、鉄系材料からなり、離間配置される一対の内プレートと、該内プレートのブシュ圧入孔に圧入嵌合されるブシュと、前記内プレートの外側に配置されて前後の内プレートに連結される一対の外プレートと、ブシュの内周面に遊嵌して外プレートのピン圧入孔に圧入嵌合される連結ピンとで構成されるブシュチェーンが挙げられる。また、本発明は、前記連結ピン及びブシュの外周面にローラをさらに遊嵌させるローラチェーンに適用することができる。
 本発明のチェーンに用いられる内プレート及び外プレートの具体的な形状として、小判型プレート、ヒョウタン型プレート等が挙げられる。
 本発明のチェーンの上述の構成部品の表面には、亜鉛-アルミニウム-マグネシウム合金被膜(Zn-Al-Mg合金被膜)が形成されている。Zn-Al-Mg合金被膜は、Zn-Al-Mg合金を含むブラスト材料を、メカニカルプレーティング用投射機器等を用いて前記表面に投射することにより(衝撃めっきにより)形成される。
 合金の組成の範囲として、Al:1~5質量%、Mg:5.5~15質量%、Zn:残部が挙げられる。前記ブラスト材料の組成の一例として、Al:3質量%、Mg:6質量%、Zn及び不純物:91質量%の場合が挙げられる。
 本発明に係るチェーンは、Zn-Al-Mg合金被膜上に、水系防錆塗料を用いて形成された第1塗膜を有する。
 水系防錆塗料は、第1顔料としての亜鉛を含有する。
 亜鉛は粉末状であるのが好ましく、フレーク状であるのがより好ましい。フレーク状にすることにより、比表面積が大きくなり、金属粉末同士の接触が密になり、金属自体の能動的な防食性に加えて、フレーク形状に基づく保護バリア効果(受動的防食性)も得られ、塗膜に割れが発生するのを抑制することができる。
 また、亜鉛は水溶性溶媒によりスラリー状にしてもよい。水溶性溶媒としては、プロピレングリコール、エチレングリコール等のグリコール系溶媒、エタノール、イソプロパノール等のアルコール系溶媒、ジプロピレングリコールモノメチルエーテル等のグリコールエーテル系溶媒等が挙げられる。
 水系防錆塗料は、亜鉛以外に、アルミニウム粉末、又は亜鉛と、アルミニウム,マグネシウム,錫,コバルト,マンガン等とを含む粉末状の合金等を含むことができる。
 水系防錆塗料は、Zn-Al-Mg合金被膜に塗装し、焼き付けたときに、ウレタン樹脂、エポキシ樹脂、及びアクリル樹脂からなる群から選択される少なくとも1種の樹脂が硬化して第1塗膜が形成され得る成分を含有する。
 ウレタン樹脂が硬化して第1塗膜が形成される場合、水系防錆塗料は、ポリイソシアネート化合物とポリオール化合物とを含む。
 ポリイソシアネート化合物としては、例えば特開2014-25062号公報に記載されているポリイソシアネート化合物が挙げられ、具体的にはヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ダイマー酸ジイソシアネート、リジンジイソシアネート等の脂肪族ポリイソシアネート類;該脂肪族ポリイソシアネートのビューレットタイプ付加物、イソシアヌレート環付加物、アロファネートタイプ付加物、ウレトジオンタイプ付加物;イソホロンジイソシアネート、4,4´-メチレンビス(シクロヘキシルイソシアネート)、メチルシクロヘキサン-2,4-又は-2,6-ジイソシアネート等の脂環族ジイソシアネート類;該脂環族ジイソシアネートのビューレットタイプ付加物、イソシアヌレート環付加物;キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、トリレンジイソシアネート、4,4´-ジフェニルメタンジイソシアネート(MDI)、1,5-ナフタレンジイソシアネート、1,4-ナフタレンジイソシアネート等の芳香族ジイソシアネート化合物;該芳香族ジイソシアネートのビューレットタイプ付加物、イソシアヌレート環付加物;水添MDI及び水添MDIの誘導体;エチレングリコール、プロピレングリコール、1,4-ブチレングリコール、ジメチロールプロピオン酸、ポリアルキレングリコール、トリメチロールプロパン、ヘキサントリオール等のポリオールの水酸基にイソシアネート基が過剰量となる比率でポリイソシアネート化合物を反応させてなるウレタン化付加物;該ウレタン化付加物のビューレットタイプ付加物、イソシアヌレート環付加物等が挙げられる。
 ポリイソシアネート化合物として、上述のポリイソシアネート化合物のイソシアネート基にブロック剤を付加させてなるブロック化ポリイソシアネート化合物を用いてもよい。ブロック剤としては、例えば、フェノール系、ラクタム系、アルコール系、エーテル系、オキシム系、活性メチレン系、メルカプタン系、酸アミド系、イミド系、アミン系、イミダゾール系、ピラゾール系等のブロック剤が挙げられる。
 ポリオール化合物としては、例えば特開2014-19752号公報に記載されているエポキシ樹脂が挙げられ、具体的にはポリエステルポリオール、アクリルポリオール、ポリエーテルポリオール、ポリオレフィンポリオール、フッ素ポリオール、ポリカーボネートポリオール等が挙げられる。
 ポリエステルポリオールとしては、二塩基酸と多価アルコールと縮合反応によって得られるポリエステルポリオール、及び例えば多価アルコールを用いたε-カプロラクトンの開環重合により得られるポリカプロラクトン類等が挙げられる。
 アクリルポリオールとしては、ヒドロキシル基を有するエチレン性不飽和結合含有単量体の単独化合物又は混合物と、これと共重合可能な他のエチレン性不飽和結合含有単量体の単独化合物又は混合物との共重合体が挙げられる。
 ポリエーテルポリオールとしては、多価ヒドロキシ化合物の単独化合物又はその混合物に、強塩基性触媒存在下、アルキレンオキサイドの単独化合物又は混合物を添加して得られるポリエーテルポリオール類;エチレンジアミン類等の多官能化合物にアルキレンオキサイドを反応させて得られるポリエーテルポリオール類;及びこれらポリエーテル類を媒体としてアクリルアミド等を重合して得られる、いわゆるポリマーポリオール類等が挙げられる。
 ポリオレフィンポリオールとしては、水酸基を2個以上有する、ポリブタジエン、水素添加ポリブタジエン、ポリイソプレン、及び水素添加ポリイソプレン等が挙げられる。
 フッ素ポリオールとしては、分子内にフッ素を含むポリオールであり、例えば特開昭57-34107号公報、特開昭61-275311号公報で開示されているフルオロオレフィン、シクロビニルエーテル、ヒドロキシアルキルビニルエーテル、及びモノカルボン酸ビニルエステル等の共重合体が挙げられる。
 ポリカーボネートポリオールとしては、低分子カーボネート化合物と、多価アルコールとを縮重合して得られるものが挙げられる。
 上述のポリイソシアネート化合物とポリオール化合物とを含む水系防錆塗料をチェーンに塗装した後、焼き付けたときに、ポリイソシアネート化合物のイソシアネート基と、ポリオール化合物の活性水素とが反応して硬化する。ブロック化ポリイソシアネート化合物を用いた場合は、ブロック剤が解離して、ブロック剤と結合していたイソシアネート基が、前記活性水素と反応する。
 なお、水系防錆塗料にポリイソシアネート化合物とポリオール化合物とを配合するのではなく、水系防錆塗料に最初からウレタン樹脂を配合することにしてもよい。
 エポキシ樹脂が硬化して第1塗膜が形成される場合、水系防錆塗料は、エポキシ樹脂と、硬化剤とを含有する。
 エポキシ樹脂としては、例えば特開2014-19752号公報に記載されているエポキシ樹脂が挙げられ、具体的にはノボラック型エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、グリコールエーテル型エポキシ樹脂、脂肪族不飽和化合物のエポキシ型樹脂、エポキシ型脂肪酸エステル、多価カルボン酸エステル型エポキシ樹脂、アミノグリシジル型エポキシ樹脂、β-メチルエピクロ型エポキシ樹脂、環状オキシラン型エポキシ樹脂、ハロゲン型エポキシ樹脂、レゾルシン型エポキシ樹脂等が挙げられる。
 硬化剤としては、例えば特許第5071602号公報に記載されている硬化剤が挙げられ、具体的にはアミン系化合物、アミド系化合物、酸無水物系化合物、フェノ-ル系化合物等が挙げられる。
 アミン系化合物としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ-ル、BF3 アミン錯体、グアニジン誘導体等が挙げられる。
 アミド系化合物としては、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等が挙げられる。
 酸無水物系化合物としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられる。
 フェノール系化合物としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂、ビフェニル変性ナフトール樹脂、アミノトリアジン変性フェノール樹脂やアルコキシ基含有芳香環変性ノボラック樹脂等の多価フェノール化合物が挙げられる。
 また、硬化剤として、上述のポリイソシアネート化合物、又はブロック化ポリイソシアネート化合物を用いてもよい。
 上述のエポキシ樹脂と硬化剤とを含む水系防錆塗料をチェーンに塗装した後、焼き付けることにより、エポキシ樹脂が硬化する。
 アクリル樹脂が硬化して第1塗膜が形成される場合、水系防錆塗料は、アクリル樹脂を含有する。
 アクリル樹脂は、アクリル系単量体を主成分とする単量体を水系で乳化剤を用いて乳化重合させたものである。アクリル系単量体は、(メタ)アクリル基を有する単量体である。主成分として用いる単量体としては、活性水素基を含まない単量体が好ましい。他方、乳化重合の安定化のために、親水性基(水酸基、カルボキシル基、エーテル基等)を有する単量体を併用することが好ましい。
 アクリル系単量体としては、例えば特許第5397946号公報に記載されている下記の単量体が挙げられる。
 (メタ)アクリル系単量体のうち(メタ)アクリル酸アルキルエステルの例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸s-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸s-ペンチル、(メタ)アクリル酸1-エチルプロピル、(メタ)アクリル酸2-メチルブチル、(メタ)アクリル酸イソペンチル、(メタ)アクリル酸t-ペンチル、(メタ)アクリル酸3-メチルブチル、(メタ)アクリル酸ネオペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸2-メチルペンチル、(メタ)アクリル酸4-メチルペンチル、(メタ)アクリル酸2-エチルブチル、(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-ヘプチル、(メタ)アクリル酸3-ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸3,3,5-トリメチルヘキシル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸セチル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸エイコシル、(メタ)アクリル酸ドコシル、(メタ)アクリル酸テトラコシル、(メタ)アクリル酸メチルシクロヘキシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ノルボルニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェネチルが挙げられる。これらの中でも、アルキル基の炭素原子数が1~24の(メタ)アクリル酸アルキルエステルが好ましい。
 前記親水性基を有する単量体としては、以下の単量体を例示することができる。カルボキシル基を有する単量体としては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、2-アクリロイルオキシプロピオン酸等が挙げられる。
 前記水酸基を有する単量体としては、ヒドロキシルエチル(メタ)アクリレート、2-ヒドロキシイソプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、エチレングリコールモノ(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等の水酸基含有(メタ)アクリル系単量体等が挙げられる。
 前記エーテル基含有単量体としては、グリセリンモノアリルエーテル、トリメチロールプロパンモノアリルエーテル、アリルアルコール等が挙げられる。
 また、(メタ)アクリル系単量体とともに、重合性二重結合を有するその他の単量体を含んで重合することにしてもよい。このようなその他の単量体としては、エステル基含有ビニル単量体、スチレン誘導体、ビニルエーテル系単量体が挙げられる。
 亜鉛の質量の(後述する硫酸バリウム及び/又はコロイダルシリカを第2顔料としてさらに含む場合は亜鉛の質量に該第2顔料の固形分を加算した質量の)、顔料の合計質量と、硬化したときの前記樹脂の固形分との総質量に対する質量比率は、0.2以上0.7以下であるのが好ましい。この場合、耐薬品性及び付着性が良好である。前記質量比率の下限は0.25であるのがより好ましく、前記質量比率の上限は0.68であるのがより好ましく、0.65であるのがさらに好ましく、0.6であるのが特に好ましい。
 水系防錆塗料は、シラン化合物と、界面活性剤とを含むことができる。
 シラン化合物は、分子中に、アルキル基、フェニル基、又は水素原子の一部若しくは全部をハロゲン原子で置換したハロアルキル基と、加水分解性ケイ素基とを有するのが好ましい。
 加水分解性ケイ素基としては特に限定されないが、取扱い性の観点から、アルコキシシリル基が好ましく、反応性の観点から、メトキシシリル基、エトキシシリル基が特に好ましい。
 このシラン化合物としては、例えばメチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デシルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン等が挙げられる。
 このシラン化合物は加水分解してシラノール基が生じやすく、シラノール基は亜鉛と結合するので、亜鉛が塗料中で良好に分散して安定化する。塗膜の形成時に、シラノール基は下層の塗膜とも結合するので、塗膜間の付着性も向上する。
 この効果の発現、塗料の水中での分散性及び安定性、貯蔵安定性の観点から、シラン化合物の亜鉛(固形分:亜鉛が亜鉛ペーストに調製されている場合、該亜鉛ペースト中の亜鉛の含有量)に対する質量比率は、0.005以上0.8以下であるのが好ましい。前記質量比率の下限は、より好ましくは0.02、さらに好ましくは0.04、前記質量比率の上限は、より好ましくは0.6である。
 このシラン化合物は、分子中にエポキシ基、メタクリロキシ基、アクリロキシ基、アミノ基、メルカプト基、及びビニル基からなる群より選ばれる少なくとも1個の官能基と加水分解性ケイ素基とを有する後述のシランカップリング剤と異なり、前記官能基を有さないので、塗料のゲル化が抑制される。
 水系防錆塗料は、界面活性剤を含むことができる。
 界面活性剤は、ポリオキシエチレンアルキルアミン、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンジスチレン化フェニルエーテル、ポリオキシエチレンソルビタン脂肪酸エステル、ソルビタン脂肪酸エステル、及びアルキルエーテルホスフェート塩からなる群から選択される少なくとも1種であるのが好ましい。
 ポリオキシエチレンアルキルアミンは下記式(1)の一般式で表される。
Figure JPOXMLDOC01-appb-C000001
 但し、a=1,2,~
    b=1,2,~
    R=C2n+1
      n=1,2,~
 ポリオキシエチレンアルキルエーテルは下記式(2)の一般式で表される。
 RO-(CHCHO)-H      ・・・(2)
    n=1,2,~
    R=CH2m+1
      m=1,2,~
 ポリオキシエチレンジスチレン化フェニルエーテルは下記式(3)の一般式で表される。
Figure JPOXMLDOC01-appb-C000002
 但し、n=1,2,~
 ポリオキシエチレンソルビタン脂肪酸エステルは下記式(4)の一般式で表される。
Figure JPOXMLDOC01-appb-C000003
 但し、a=1,2,~
    b=1,2,~
    c=1,2,~
    R=C2n+1
      n=1,2,~
 ソルビタン脂肪酸エステルは下記式(5)の一般式で表される。
Figure JPOXMLDOC01-appb-C000004
 但し、R=C2n+1
      n=1,2,~
 界面活性剤を含有することにより、シラン化合物が水に馴染みやすくなり、シラン化合物の加水分解が促進され、生じたシラノール基が亜鉛と結合する。従って、亜鉛が水系防錆塗料中で良好に分散し、貯蔵安定性が向上する。亜鉛が塗料中で良好に分散して安定化しているので、塗料は焼き付け時に硬化しやすくなるとともに、ロスなく、成分及び厚みともに均一である塗膜が形成され得る。
 界面活性剤の種類及び組み合わせを決定する際にHLBが考慮されるが、界面活性剤の種類及び組み合わせにより好適なHLBの範囲は異なるので、界面活性剤の種類及び組み合わせに対応したHLBを有する界面活性剤を選択する。
 塗料の水中での分散性及び安定性、貯蔵安定性の観点から、界面活性剤の亜鉛(固形分:亜鉛が亜鉛ペーストに調製されている場合は亜鉛ペースト中の亜鉛の含有量)に対する質量比率は、0.005以上0.8以下であるのが好ましい。前記質量比率の下限は、より好ましくは0.02、さらに好ましくは0.04、前記質量比率の上限は、より好ましくは0.6である。
 水系防錆塗料は、分子中にエポキシ基、メタクリロキシ基、アクリロキシ基、アミノ基、及びビニル基からなる群より選ばれる少なくとも1個の官能基と加水分解性ケイ素基とを有するシランカップリング剤を含むことができる。加水分解性ケイ素基としては特に限定されないが、取扱い性の観点から、アルコキシシリル基が好ましく、反応性の観点から、メトキシシリル基、エトキシシリル基が特に好ましい。
 シランカップリング剤としては、官能基としてエポキシ基を含む場合、例えば2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等が挙げられる。
 シランカップリング剤が加水分解することによりシラノール基が生じ、シラノール基は亜鉛と結合するので、亜鉛が塗料中で安定化すると考えられる。シラノール基は金属である被塗物とも結合し、また、前記官能基により塗料成分が架橋又は化学結合するので、塗膜の付着性が向上する。
 塗料の水中での分散性及び安定性、貯蔵安定性、並びに塗膜の良好な付着性の発現観点から、シランカップリング剤の亜鉛に対する質量比率は、好ましくは0.005以上1以下である。前記質量比率の下限は、より好ましくは0.02、さらに好ましくは0.12、前記質量比率の上限は、より好ましくは0.8、さらに好ましくは0.6である。
 水系防錆塗料は、第2顔料として硫酸バリウムを含むことができる。硫酸バリウムとしては、沈降性硫酸バリウムが好ましい。
 硫酸バリウムの亜鉛に対する質量比率(BaSO/Zn)は、7以下であるのが好ましい。この場合、塗膜強度及び付着性が良好であり、耐薬品性が良好であるとともに、隠蔽性が良好である。BaSO/Znの下限は、より好ましくは0.15、さらに好ましくは0.3、BaSO/Znの上限は、より好ましくは6である。硫酸バリウムを含有することにより、塩水存在下における防錆性も良好になる。
 水系防錆塗料は、硫酸バリウムに加えて、第2顔料としてコロイダルシリカを含むことができる。コロイダルシリカの固形分の、亜鉛及び硫酸バリウムの合計質量に対する質量比率[(コロイダルシリカの固形分)/(Zn+BaSO)]は、0.04以下であるのが好ましい。この場合、耐薬品性が良好であり、水系防錆塗料の貯蔵安定性が良好である。(コロイダルシリカの固形分)/(Zn+BaSO4 )の上限は、より好ましくは0.02である。コロイダルシリカを含有することにより、塩水存在下における防錆性も良好になる。
 水系防錆塗料が硫酸バリウムを含有せず、コロイダルシリカのみを含有する場合、コロイダルシリカの固形分の亜鉛に対する質量比率[(コロイダルシリカの固形分)/(Zn)]は0.02以下であるのが好ましい。この場合、耐薬品性が良好であり、水系防錆塗料の貯蔵安定性が良好である。前記質量比率の上限は、より好ましくは0.01である。
 水系防錆塗料は、水溶性溶媒、及び湿潤剤、湿潤分散剤,消泡剤,増粘剤,pH調整剤等の塗料用添加剤を配合し得る。水溶性溶媒としては、プロピレングリコール、エチレングリコール等のグリコール系溶媒、エタノール、イソプロパノール等のアルコール系溶媒、ジプロピレングリコールモノメチルエーテル等のグリコールエーテル系溶媒等が挙げられる。
 塗料用添加剤としては、ポリカルボン酸系等の湿潤分散剤、有機ホスフェートエステル,ナトリウムビストリデシルスルホスクシネート等のジエステルスルホスクシネート等の湿潤剤、シリコーン系又はアクリル系の消泡剤、ヒドロキシエチルセルロース、メチルセルロース、メチルヒドロキシプロピルセルロース、エチルヒドロキシエチルセルロース、及びメチルエチルセルロースのエーテル類、これら物質の混合物の増粘剤が挙げられる。
 水系防錆塗料は、Zn-Al-Mg合金被膜に、浸漬ドレン(ディップドレン)及び浸漬回転(ディップスピン)等の浸漬処理、はけ塗り、噴霧等を行うことにより塗装される。
 本発明の塗料は、180℃以下で、30~40分間、焼き付けるのが好ましい。この場合、チェーン構成部品に硬さ低下が生じず、チェーン強度及びチェーン寿命が低下するのが抑制される。
 本発明の塗料は、Zn-Al-Mg合金被膜上に複数回塗装することにしてもよい。
 良好な耐食性の発現及びコストの観点から、塗着量が5mg/dm~400mg/dm、塗膜の合計膜厚が1μm~30μmとなるように塗装するのが好ましい。そして、被塗物に第1塗膜と第2塗膜(第1塗膜上に前記塗料を用いて形成する塗膜)とを形成させる場合、両塗膜の合計の膜厚が5~30μm、塗着量が50mg/dm~400mg/dmであるのが好ましい。
 本発明に係るチェーンは、表面に、亜鉛-鉄合金被膜(Zn-Fe合金被膜)が形成され、該亜鉛-鉄合金被膜上に、第1顔料としての亜鉛と、硫酸バリウムを含む第2顔料(第2顔料としてさらにコロイダルシリカを含んでもよい)とを含有する水系防錆塗料を塗装し、焼き付けたときに、ウレタン樹脂、エポキシ樹脂、及びアクリル樹脂からなる群から選択される少なくとも1種の樹脂が硬化して第1塗膜が形成されたものであってもよい。第1顔料及び第2顔料の固形分の合計質量の、該合計質量と、硬化した前記樹脂の固形分との総質量に対する質量比率は、0.2以上0.42以下である。この場合、耐薬品性及び付着性が良好である。前記質量比率の上限は、好ましくは0.4である。
 以上のように構成された前記水系防錆塗料は、貯蔵安定性が良好である。そして、鉄系素地の表面にZn-Al-Mg合金被膜又はZn-Fe合金被膜が形成され、Zn-Al-Mg合金被膜上又はZn-Fe合金被膜上に前記水系防錆塗料を用いて塗膜が形成された本発明のチェーンは、塗膜の付着性が良好であり、耐薬品性が良好に長期的に維持される。
 以下、本発明の実施例及び比較例につき具体的に説明するが、本発明はこの実施例に限定されるものではない。
1.チェーンの耐薬品性の評価
[配合例1~35]
 下記表1~表3の配合量(質量部で示す)に従って、亜鉛フレーク(「STANDART(登録商標) ZINC FLAKE AT」、エカルト株式会社製)、沈降性硫酸バリウム(「B-35」、堺化学工業株式会社製)、コロイダルシリカ(「PL-3-D」、扶桑化学工業株式会社製)、ポリオキシエチレンアルキルエーテル、n-ヘキシルトリメトキシシラン、湿潤分散剤、ポリオール化合物、ポリイソシアネート化合物、水、プロピレングリコール、シリコーン系消泡剤(「BYK018」、ビッグケミー・ジャパン株式会社製)、湿潤剤を配合することにより、配合例1~35の塗料を得た。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表1~表3中に、沈降性硫酸バリウム/亜鉛フレーク(以下、BaSO/Znと表す)、[(コロイダルシリカの固形分)]/[亜鉛フレーク+沈降性硫酸バリウム][%][表中では、コロイダルシリカ/(亜鉛+硫酸バリウム)と表す]、及びPWC(Pigment Weight Concentration)[%]を示す。
 PWCは、形成された塗膜中での[亜鉛フレーク+(沈降性硫酸バリウム)及び/又は(コロイダルシリカの固形分)]と[亜鉛フレーク+(沈降性硫酸バリウム)及び/又は(コロイダルシリカの固形分)+(樹脂が硬化した場合の硬化物の質量(樹脂の固形分の質量))]との質量比率で表す。
[実施例1]
 図1は実施例1に係るチェーン10を示す断面図であり、図2は図1のチェーンの一部分の表面を示す拡大断面図である。
 チェーン10は、図1及び図2に示すように、左右一対に離間配置される内プレート11,11と、この内プレート11,11のブシュ圧入孔11a,11aに圧入嵌合されるブシュ12と、内プレート11,11の外側に配置され、前後の内プレート11,11に連結される左右一対の外プレート13,13と、ブシュ12の内周面に遊嵌され、外プレート13,13のピン圧入孔13a,13aに圧入嵌合される連結ピン14と、ブシュ12の外周面に遊嵌されるローラ15とからなる。
 内プレート11と、ブシュ12と、外プレート13と、連結ピン14と、ローラ15とは、それぞれ、表面上に、Zn-Al-Mg合金被膜17、前記水系防錆塗料を用いて形成された第1塗膜18、並びに前記水系防錆塗料を用いて形成された第2塗膜19を有する。図2においては、外プレート13の表面上に、Zn-Al-Mg合金被膜17、第1塗膜18、及び第2塗膜19が積層されている状態を示す。
 チェーン10の構成部品(内プレート11、ブシュ12、外プレート13、連結ピン14、及びローラ15)の表面に、Zn-Al-Mg合金からなるブラスト材(「ZR#50S」、DOWA IP クリエイション株式会社製)を投射することにより、Zn-Al-Mg合金被膜17は形成される。そして、該Zn-Al-Mg合金被膜17の表面に、前記表1の配合例1の水系防錆塗料をディップスピン法により塗装し、180℃で40分間焼き付けて厚み5μmの第1塗膜18を形成した。さらに、第1塗膜18の表面に、配合例1の水系防錆塗料をディップスピン法により塗装し、180℃で40分間焼き付けて厚み3μmの第2塗膜19を形成した。
 以上のようにして、実施例1に係るチェーン10を得た。被膜及び塗膜の構成を下記の表4に示す。下記の表4において、「第1被膜」とは、Zn-Al-Mg合金被膜を表す。
Figure JPOXMLDOC01-appb-T000008
[実施例2~28]
 実施例1と同様にして、上記表4及び下記表5に示す構成の被膜及び塗膜を形成して、実施例2~実施例28のチェーンを作製した。
Figure JPOXMLDOC01-appb-T000009
[実施例29~32]
 チェーンの表面にZn-Fe合金からなるブラスト材を投射してZn-Fe合金被膜を形成し、該Zn-Fe合金被膜上に、上記表5に示す配合例の水系防錆塗料を2回塗装して、実施例29~32のチェーンを作製した。表5において、「第2被膜」とは、Zn-Fe合金被膜を表す。
[比較例1~31]
 チェーンの表面にZn-Fe合金被膜(第2被膜)を形成し、該第2被膜上に、下記表6及び表7に示す配合例の水系防錆塗料を2回塗装して、比較例1~31のチェーンを作製した。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
[比較例32~38]
 チェーンの表面にZn-Al-Mg合金被膜(第1被膜)を形成し、該第1被膜上に、前記表7及び下記表8に示す配合例の水系防錆塗料を2回塗装して、比較例32~38のチェーンを作製した。
Figure JPOXMLDOC01-appb-T000012
[比較例39]
 比較例39のチェーンは、表面に合金被膜及び塗膜を有しない。
[比較例40]
 チェーンの表面にZn-Fe合金被膜(第2被膜)を形成しており、塗膜は有しない。
[比較例41]
 チェーンの表面にZn-Al-Mg合金被膜(第1被膜)を形成しており、塗膜は有しない。
 前記実施例及び比較例のチェーンにつき、隠蔽性、付着性、及び耐薬品性の評価を行った。評価方法は下記の通りである。
[隠蔽性の評価]
 目視で、下地被膜が透けて見えるか否かを評価した。評価は以下の通りである。
 ○…下地が透けていない。
 △…下地が少し透けている。
 ×…下地が透けている。
[耐薬品性試験]
 前記実施例及び比較例のチェーンにつき、耐薬品性試験を行った。試験は、チェーンを各薬品に浸漬し、経時的に状態を確認した。下記の各時間において、赤錆発生又は塗膜の剥離が生じたか否かを確認した。評価及び経過時間は以下の通りである。
 A…3000時間
 B…2000時間
 C…1000時間
 D…700時間
 E…300時間
 F…100時間
 上述したように、実施例1~28のチェーンは下地被膜としてZn-Al-Mg合金被膜を形成してあり、比較例1~31のチェーンは下地被膜としてZn-Fe合金被膜を形成してある。表4~8より、下地被膜上に同一の水系防錆塗料を用いた塗膜が形成してある場合、実施例のチェーンは比較例のチェーンに対して、耐薬品性が著しく向上していることが分かる。
 比較例39~41より、合金被膜及び塗膜を形成しない場合、第1被膜又は第2被膜を形成しても塗膜を形成しない場合においては、耐薬品性が非常に悪いことが分かる。
 PWCが25%である実施例25は、耐薬品性が非常に良好である。PWCが70を超えた場合、付着性がやや悪くなることが確認されているので、PWCは20%以上70%以下であるのが好ましい。PWCの上限は68%であるのがより好ましく、65%であるのがさらに好ましく、60%であるのが特に好ましく、40%であるのが最も好ましい。
 水系防錆塗料が硫酸バリウムを含む場合、耐薬品性はより良好である。実施例18、19及び比較例25、26より、BaSO4 /Znが7.3である場合、すなわち7を超えた場合、隠蔽性が少し悪くなるので、BaSO/Znは7以下であるのが好ましい。BaSO/Znの下限は、より好ましくは0.15、さらに好ましくは0.3、BaSO/Znの上限は、より好ましくは6である。
 水系防錆塗料がコロイダルシリカのみを含む場合、コロイダルシリカの固形分の亜鉛に対する質量比率[(コロイダルシリカの固形分)/(Zn)]は2%以下であるのが好ましい。前記質量比率の上限は、より好ましくは1%である。
 水系防錆塗料が硫酸バリウム及びコロイダルシリカを含む場合、コロイダルシリカの固形分の、亜鉛及び硫酸バリウムの合計質量に対する質量比率[(コロイダルシリカの固形分)/(Zn+BaSO)]は、4%以下であるのが好ましい。(コロイダルシリカの固形分)/(Zn+BaSO4 )の上限は、より好ましくは2%である。
 表面に、亜鉛-鉄合金被膜(Zn-Fe合金被膜)が形成されているチェーンの場合、PWCが20%以上42%以下であるとき、耐薬品性が良好であることが分かる。PWCの上限は、好ましくは40%である。
 以上より、本発明の実施の形態に係る水系防錆塗料は貯蔵安定性が良好であり、本発明の実施例に係るチェーンは、塗膜の付着性及び隠蔽性が良好であり、耐薬品性が良好であることが確認された。
2.水系防錆塗料の水中での安定性の評価
 以下、本発明のチェーンの塗膜に用いる水系防錆塗料について、シラン化合物、界面活性剤、及びシランカップリング剤の配合量を変えた場合の水中での安定性を評価した結果について示す。
[配合例A~G]
 下記表9の配合量(質量部で示す)に従って、亜鉛フレーク(「STANDART(登録商標) ZINC FLAKE AT」、界面活性剤としてのポリオキシエチレンアルキルエーテル、シラン化合物としてのn-ヘキシルトリメトキシシラン、湿潤分散剤、及び水を配合することにより、配合例A~Gの塗料を得た。
Figure JPOXMLDOC01-appb-T000013
 表9中に、ポリオキシエチレンアルキルエーテル(界面活性剤)/亜鉛[%]、n-ヘキシルトリメトキシシラン(シラン化合物)/亜鉛[%]、並びに水中での安定性及び貯蔵安定性を評価した結果を示す。
 水中での安定性は、塗料を調製し、室温で3日間放置したときのガスの発生の有無を確認した。評価は以下の通りである。
 ○:ガスの発生なし
 △:極僅かにガスの発生あり
 ×:ガスの発生あり
 貯蔵安定性は、40℃で放置し、以下の評価を行った。
 ○:3日でゲル化
 △:1日でゲル化
 ×:3時間でゲル化
 -:評価せず
[配合例H~L]
 下記表10の配合量(質量部で示す)に従って、亜鉛フレーク(「STANDART(登録商標) ZINC FLAKE AT」、界面活性剤としてのポリオキシエチレンアルキルエーテル、シラン化合物としてのn-ヘキシルトリメトキシシラン、湿潤分散剤、シランカップリング剤としての3-グリシドキシプロピルトチメトキシシラン、酢酸、及び水を配合することにより、配合例H~Lの塗料を得た。
Figure JPOXMLDOC01-appb-T000014
 表10中に、ポリオキシエチレンアルキルエーテル(界面活性剤)/亜鉛[%]、n-ヘキシルトリメトキシシラン(シラン化合物)/亜鉛[%]、3-グリシドキシプロピルトチメトキシシラン(シランカップリング剤)/亜鉛[%]、並びに水中での安定性及び貯蔵安定性を評価した結果を示す。
[配合例M、N、P、Q、R]
 下記表11の配合量(質量部で示す)に従って、亜鉛フレーク(「STANDART(登録商標) ZINC FLAKE AT」、界面活性剤としてのポリオキシエチレンアルキルエーテル、シラン化合物としてのn-ヘキシルトリメトキシシラン、湿潤分散剤、及び水を配合することにより、配合例M、N、P、Q、Rの塗料を得た。
Figure JPOXMLDOC01-appb-T000015
 表11中に、表9と同様に、ポリオキシエチレンアルキルエーテル(界面活性剤)/亜鉛[%]、n-ヘキシルトリメトキシシラン(シラン化合物)/亜鉛[%]、並びに水中での安定性及び貯蔵安定性を評価した結果を示す。
 配合例M、N、P、Q、Rより、塗料中に界面活性剤及びシラン化合物を含まない場合、界面活性剤及びシラン化合物のうちの一方を亜鉛に対し10%含む場合、界面活性剤及びシラン化合物をそれぞれ亜鉛に対し0.4%ずつ含む場合、界面活性剤及びシラン化合物をそれぞれ亜鉛に対し100%ずつ含む場合のいずれにおいても、水中での安定性が悪いことが分かる。
 配合例A~Gと配合例M、N、P、Q、Rとを比較することにより、界面活性剤の亜鉛に対する質量比率、及びシラン化合物の亜鉛に対する質量比率がそれぞれ0.5%以上80%以下である場合、水中での安定性及び貯蔵安定性が良好であることが分かる。界面活性剤の亜鉛に対する質量比率、及びシラン化合物の亜鉛に対する質量比率の下限は、好ましくは2%、より好ましくは4%、上限は、好ましくは60%である。
 配合例H~Lより、塗料がシランカップリング剤をさらに含むことにより、水中での安定性がより良好になることが分かる。
 配合例A~Lと、配合例M、N、P、Q、Rとを比較することにより、シランカップリング剤の亜鉛に対する質量比率は、0.5%以上100%以下であるのが好ましいことが分かる。質量比率の下限は、より好ましくは2%、さらに好ましくは12%、前記質量比率の上限は、より好ましくは80%、さらに好ましくは60%である。
 以上のように、水系防錆塗料が、シラン化合物と、界面活性剤とを含む場合、又はこれに加えてシランカップリング剤を含む場合、水中での安定性及び貯蔵安定性が良好であることが確認された。そして、シラノール基と結合した亜鉛が塗料中で良好に分散するので、塗料をチェーンの表面に塗装して焼き付けるときに硬化しやすくなるとともに、被塗物に均一に塗膜が形成され得る。従って、チェーンが鉄系材料からなる場合に、亜鉛の犠牲防食作用が塗膜の面方向に均一に得られるとともに、チェーンの耐薬品性がより良好になると考えられる。
 今回開示された実施の形態は、全ての点で例示であって、制限的なものではないと考えるべきである。本発明の範囲は、上述した意味ではなく、特許請求の範囲と均等の意味及び特許請求の範囲内での全ての変更が含まれることが意図される。
 10  チェーン
 11  内プレート
 11a ブシュ圧入孔
 12  ブシュ
 13  外プレート
 13a ピン圧入孔
 14  連結ピン
 15 ローラ
 17 Zn-Al-Mg合金被膜
 18 第1塗膜
 19 第2塗膜

Claims (12)

  1.  鉄系材料からなり、一対の外プレートと一対の内プレートとを交互に連結してあり、水系防錆塗料を用いて形成された塗膜を有するチェーンにおいて、
     表面に形成された亜鉛-アルミニウム-マグネシウム合金被膜を有し、
     前記水系防錆塗料は、亜鉛と、硫酸バリウムとを含有し、
     前記塗膜は、前記亜鉛-アルミニウム-マグネシウム合金被膜上に、前記水系防錆塗料を塗装し、ウレタン樹脂、エポキシ樹脂、及びアクリル樹脂からなる群から選択される少なくとも1種の樹脂が硬化してなることを特徴とするチェーン。
  2.  前記硫酸バリウムの前記亜鉛に対する質量比率は、7以下であることを特徴とする請求項1に記載のチェーン。
  3.  前記水系防錆塗料は、コロイダルシリカをさらに含み、
     該コロイダルシリカの固形分の、前記亜鉛及び硫酸バリウムの合計質量に対する質量比率は、0.04以下であることを特徴とする請求項1又は2に記載のチェーン。
  4.  前記亜鉛と前記硫酸バリウムとの合計質量の、又は前記コロイダルシリカを含む場合における前記亜鉛と前記硫酸バリウムと前記該コロイダルシリカの固形分との合計質量の、該合計質量と、硬化したときの前記樹脂の固形分の質量との総質量に対する質量比率は、0.2以上0.7以下であることを特徴とする請求項1から3までのいずれか1項に記載のチェーン。
  5.  鉄系材料からなり、一対の外プレートと一対の内プレートとを交互に連結してあり、水系防錆塗料を用いて形成された塗膜を有するチェーンにおいて、
     表面に形成された亜鉛-アルミニウム-マグネシウム合金被膜を有し、
     前記水系防錆塗料は、亜鉛と、コロイダルシリカとを含有し、
     前記塗膜は、亜鉛-アルミニウム-マグネシウム合金被膜上に、前記水系防錆塗料を塗装し、ウレタン樹脂、エポキシ樹脂、及びアクリル樹脂からなる群から選択される少なくとも1種の樹脂が硬化してなり、
     前記コロイダルシリカの固形分の、前記亜鉛に対する質量比率は、0.02以下であることを特徴とするチェーン。
  6.  鉄系材料からなり、一対の外プレートと一対の内プレートとを交互に連結してあり、水系防錆塗料を用いて形成された塗膜を有するチェーンにおいて、
     表面に形成された亜鉛-アルミニウム-マグネシウム合金被膜を含有し、
     前記水系防錆塗料は、亜鉛を含有し、硫酸バリウム及びコロイダルシリカは含有せず、
     前記塗膜は、前記亜鉛-アルミニウム-マグネシウム合金被膜上に、前記水系防錆塗料を塗装し、ウレタン樹脂、エポキシ樹脂、及びアクリル樹脂からなる群から選択される少なくとも1種の樹脂が硬化してなり、
     前記亜鉛の質量の、該質量と、硬化したときの前記樹脂の固形分の質量との合計質量に対する質量比率は、0.2以上0.7以下であることを特徴とするチェーン。
  7.  鉄系材料からなり、一対の外プレートと一対の内プレートとを交互に連結してあり、水系防錆塗料を用いて形成された塗膜を有するチェーンにおいて、
     表面に形成された亜鉛-鉄合金被膜を有し、
     前記水系防錆塗料は、第1顔料としての亜鉛と、硫酸バリウムを含む第2顔料とを含有し、
     前記塗膜は、前記亜鉛-鉄合金被膜上に、前記水系防錆塗料を塗装し、ウレタン樹脂、エポキシ樹脂、及びアクリル樹脂からなる群から選択される少なくとも1種の樹脂が硬化してなり、
     前記亜鉛と、前記第2顔料の固形分との合計質量の、該合計質量と、硬化したときの前記樹脂の固形分の質量との総質量に対する質量比率は、0.2以上0.42以下であることを特徴とするチェーン。
  8.  前記水系防錆塗料は、
     分子中に、アルキル基、フェニル基、又は水素原子の一部若しくは全部をハロゲン原子で置換したハロアルキル基と、加水分解性ケイ素基とを有するシラン化合物と、
     ポリオキシエチレンアルキルアミン、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンジスチレン化フェニルエーテル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、及びアルキルエーテルホスフェート塩からなる群から選択される少なくとも1種である界面活性剤と
     をさらに含むことを特徴とする請求項1から7までのいずれか1項に記載のチェーン。
  9.  前記シラン化合物の前記亜鉛に対する質量比率は、0.005以上0.8以下であることを特徴とする請求項8に記載のチェーン。
  10.  前記界面活性剤の前記亜鉛に対する質量比率は、0.005以上0.8以下であることを特徴とする請求項8又は9に記載のチェーン。
  11.  前記水系防錆塗料は、分子中にエポキシ基、メタクリロキシ基、アクリロキシ基、アミノ基、及びビニル基からなる群より選ばれる少なくとも1個の官能基と加水分解性ケイ素基とを有するシランカップリング剤をさらに含むことを特徴とする請求項8から10までのいずれか1項に記載のチェーン。
  12.  前記シランカップリング剤の前記亜鉛に対する質量比率は、0.005以上1以下であることを特徴とする請求項11に記載のチェーン。
PCT/JP2015/054237 2014-04-25 2015-02-17 チェーン WO2015162980A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580003314.XA CN105849437B (zh) 2014-04-25 2015-02-17 链条
DE112015002010.1T DE112015002010T5 (de) 2014-04-25 2015-02-17 Kette
KR1020167014804A KR101903868B1 (ko) 2014-04-25 2015-02-17 체인
US15/305,936 US20170037935A1 (en) 2014-04-25 2015-02-17 Chain

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-091801 2014-04-25
JP2014091801A JP5843917B2 (ja) 2014-04-25 2014-04-25 チェーン

Publications (1)

Publication Number Publication Date
WO2015162980A1 true WO2015162980A1 (ja) 2015-10-29

Family

ID=54332154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054237 WO2015162980A1 (ja) 2014-04-25 2015-02-17 チェーン

Country Status (7)

Country Link
US (1) US20170037935A1 (ja)
JP (1) JP5843917B2 (ja)
KR (1) KR101903868B1 (ja)
CN (1) CN105849437B (ja)
DE (1) DE112015002010T5 (ja)
TW (1) TWI579348B (ja)
WO (1) WO2015162980A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110055482B (zh) * 2019-04-29 2021-01-26 亚星(镇江)系泊链有限公司 链环托举转动装置及方法
JP7467848B2 (ja) * 2019-09-13 2024-04-16 堺化学工業株式会社 鱗片状亜鉛末含有組成物及び鱗片状亜鉛末の製造方法
KR102164573B1 (ko) * 2020-06-02 2020-10-13 한선경 강 구조물 표면보호용 강재 도장재 조성물 및 이를 이용한 강 구조물의 보수도장공법
CN114718989A (zh) * 2020-12-22 2022-07-08 株式会社椿本链条 链条

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053769A (ja) * 2000-05-29 2002-02-19 Mitsui Kinzoku Toryo Kagaku Kk 腐食防止被覆組成物用顔料及びそれを用いた腐食防止被覆組成物
JP2007298056A (ja) * 2006-04-27 2007-11-15 Tsubakimoto Chain Co 防食性ローラチェーン
JP2008175241A (ja) * 2007-01-16 2008-07-31 Tsubakimoto Chain Co 耐食性チェーン
JP2013023542A (ja) * 2011-07-19 2013-02-04 Tsubakimoto Chain Co 防錆塗料、塗膜形成方法、及び塗装物品

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2639411B2 (ja) 1989-09-29 1997-08-13 中国電力株式会社 セメント二次製品の遠心締め固め成形方法
TWI303652B (ja) * 2001-07-18 2008-12-01 Dainippon Ink & Chemicals
WO2007069783A1 (ja) * 2005-12-15 2007-06-21 Nihon Parkerizing Co., Ltd. 金属材料用表面処理剤、表面処理方法及び表面処理金属材料
TWI405917B (zh) 2006-09-06 2013-08-21 Tsubakimoto Chain Co Water rust paint, water rust coating and high corrosion resistant surface treatment chain
JP2010001914A (ja) 2008-06-18 2010-01-07 Tsubakimoto Custom Chain Co チェーン
CN102300943B (zh) * 2009-01-30 2013-12-04 株式会社椿本链条 面饰层涂料、防蚀表面处理链条及防蚀表面处理链轮

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053769A (ja) * 2000-05-29 2002-02-19 Mitsui Kinzoku Toryo Kagaku Kk 腐食防止被覆組成物用顔料及びそれを用いた腐食防止被覆組成物
JP2007298056A (ja) * 2006-04-27 2007-11-15 Tsubakimoto Chain Co 防食性ローラチェーン
JP2008175241A (ja) * 2007-01-16 2008-07-31 Tsubakimoto Chain Co 耐食性チェーン
JP2013023542A (ja) * 2011-07-19 2013-02-04 Tsubakimoto Chain Co 防錆塗料、塗膜形成方法、及び塗装物品

Also Published As

Publication number Publication date
CN105849437A (zh) 2016-08-10
KR20160082587A (ko) 2016-07-08
US20170037935A1 (en) 2017-02-09
TW201600570A (zh) 2016-01-01
CN105849437B (zh) 2017-12-01
JP2015209912A (ja) 2015-11-24
KR101903868B1 (ko) 2018-10-02
TWI579348B (zh) 2017-04-21
DE112015002010T5 (de) 2017-01-26
JP5843917B2 (ja) 2016-01-13

Similar Documents

Publication Publication Date Title
JP5843917B2 (ja) チェーン
TW201033307A (en) Top-coating material, chain having a surface treated with an anti-corrosion agent, and a chain sprocket having a surface treated with an anti-corrosion agent
NL8304296A (nl) Werkwijze voor de vorming van een tegen corrosie bestand zijnde deklaag.
JP2009174051A (ja) 金属表面処理用組成物及び該金属表面処理用組成物から得られる金属表面処理膜を有する表面処理金属材
JP5871990B2 (ja) チェーン
CA2857309C (en) Primer composition
EP2617784B1 (en) Primer composition
JPH06235071A (ja) 有機複合被覆鋼板
JP2003239081A (ja) プレス成形性と耐食性に優れた表面処理鋼板およびその製造方法
JP2009174050A (ja) 金属表面処理用組成物及び該金属表面処理用組成物から得られる金属表面処理層を有する表面処理金属材
KR20210070732A (ko) 우수한 내식성 및 표면색상을 부여하는 삼원계 용융아연합금 도금강판용 표면처리 조성물, 이를 이용하여 표면처리된 삼원계 용융아연합금도금 강판 및 이의 제조방법
JP2521462B2 (ja) 高耐食性複層被覆鋼板
WO2018123996A1 (ja) 亜鉛系メッキ鋼板用表面処理剤
JP6511599B1 (ja) カチオン電着塗料組成物と塗膜形成方法
JPH09221595A (ja) 金属表面処理組成物及びこの組成物による処理被膜を形成した亜鉛系メッキ鋼板
JPH05117558A (ja) 有機系コーテイング組成物
JPH07145225A (ja) 接着性エポキシ樹脂組成物
JPS58133872A (ja) 防食被覆方法
JP2015101711A (ja) プライマー組成物
JPH10219482A (ja) 油面塗布型防錆剤組成物および硬化方法
JPH07224268A (ja) 接着性エポキシ樹脂組成物
JP2016033238A (ja) 電着塗装方法
JP2007009231A (ja) 表面処理鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15782750

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167014804

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15305936

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 112015002010

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15782750

Country of ref document: EP

Kind code of ref document: A1