WO2015162954A1 - 双極板、レドックスフロー電池、及び双極板の製造方法 - Google Patents

双極板、レドックスフロー電池、及び双極板の製造方法 Download PDF

Info

Publication number
WO2015162954A1
WO2015162954A1 PCT/JP2015/051778 JP2015051778W WO2015162954A1 WO 2015162954 A1 WO2015162954 A1 WO 2015162954A1 JP 2015051778 W JP2015051778 W JP 2015051778W WO 2015162954 A1 WO2015162954 A1 WO 2015162954A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
bipolar plate
width
electrolyte
opening
Prior art date
Application number
PCT/JP2015/051778
Other languages
English (en)
French (fr)
Inventor
慶 花房
伊藤 賢一
宗一郎 奥村
岳見 寺尾
勇人 藤田
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US15/305,768 priority Critical patent/US10218007B2/en
Priority to CN201580019212.7A priority patent/CN106165176B/zh
Priority to EP15783369.0A priority patent/EP3136490B1/en
Publication of WO2015162954A1 publication Critical patent/WO2015162954A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0013Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fillers dispersed in the moulding material, e.g. metal particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0053Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2459Comprising electrode layers with interposed electrolyte compartment with possible electrolyte supply or circulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0005Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3468Batteries, accumulators or fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a bipolar plate used in a fluid flow type battery such as a redox flow battery, a redox flow battery using the bipolar plate, and a method of manufacturing the bipolar plate.
  • a typical example of a fluid flow type battery is a redox flow battery (RF battery).
  • An RF battery is a battery that charges and discharges using a difference in oxidation-reduction potential between ions contained in a positive electrode electrolyte and ions contained in a negative electrode electrolyte.
  • FIG. 5 is an operation principle diagram of the RF battery 100 using vanadium ions as positive and negative active materials.
  • the RF battery 100 includes a battery cell 100 ⁇ / b> C separated into a positive electrode cell 102 and a negative electrode cell 103 by a diaphragm 101 that transmits hydrogen ions (protons).
  • a positive electrode 104 is built in the positive electrode cell 102, and a positive electrode electrolyte tank 106 for storing a positive electrode electrolyte is connected via conduits 108 and 110.
  • the negative electrode cell 103 contains a negative electrode 105 and is connected to a negative electrolyte tank 107 for storing a negative electrolyte through conduits 109 and 111.
  • the electrolyte stored in the tanks 106 and 107 is circulated in the cells 102 and 103 by the pumps 112 and 113 during charging and discharging.
  • the battery cell 100C is usually formed inside a structure called a cell stack 200 as shown in the lower diagram of FIG.
  • the cell stack 200 includes a bipolar plate 121 in which a battery cell 100 ⁇ / b> C in which a positive electrode 104, a diaphragm 101, and a negative electrode 105 are stacked is integrated with a frame-shaped frame body 122.
  • a structure in which a plurality of layers are sandwiched between frames 120 is provided. That is, one battery cell 100C is formed between the bipolar plates 121 of the adjacent cell frames 120, and the positive electrode 104 (positive electrode cell 102) of the adjacent battery cell 100C is placed on both sides of the bipolar plate 121. ) And the negative electrode 105 (negative electrode cell 103). In this configuration, the gap between the cell frames 120 is sealed with the seal structure 127.
  • the distribution of the electrolyte solution to the battery cell 100 ⁇ / b> C in the cell stack 200 is performed by the liquid supply manifolds 123 and 124 and the drainage manifolds 125 and 126 formed in the frame body 122.
  • the positive electrode electrolyte is supplied from the liquid supply manifold 123 to the positive electrode 104 disposed on the one surface side of the bipolar plate 121 through a groove formed on one surface side (the front surface side of the paper) of the frame body 122.
  • the positive electrode electrolyte is discharged to the drainage manifold 125 through a groove formed in the upper portion of the frame body 122.
  • the negative electrode electrolyte is supplied from the liquid supply manifold 124 to the negative electrode 105 disposed on the other surface side of the bipolar plate 121 through a groove formed on the other surface side (the back surface of the paper) of the frame body 122. Is done.
  • the negative electrode electrolyte is discharged to the drainage manifold 126 through a groove formed in the upper part of the frame body 122.
  • Each of the electrodes 104 and 105 constituting the battery cell 100C may be made of a porous conductive material so that the flow of the electrolyte, which is a fluid, does not hinder the flow of the electrolyte from the supply side to the drain side.
  • a porous conductive material so that the flow of the electrolyte, which is a fluid, does not hinder the flow of the electrolyte from the supply side to the drain side.
  • carbon felt is used (Patent Document 1).
  • the present invention has been made in view of the above circumstances, and one of the objects of the present invention is to provide a bipolar plate that can reduce the pressure loss of the electrolyte in the fluid flow type battery. Another object of the present invention is to provide a redox flow battery using the bipolar plate of the present invention. Furthermore, the other object of this invention is to provide the manufacturing method of the bipolar plate which can be manufactured with sufficient productivity.
  • a bipolar plate according to an aspect of the present invention is a bipolar plate sandwiched between a positive electrode through which a positive electrode electrolyte is circulated and a negative electrode through which a negative electrode electrolyte is circulated.
  • Each surface on the negative electrode side includes a flow path having a plurality of grooves through which the positive electrode electrolyte and the negative electrode electrolyte flow.
  • the flow path includes an introduction path for introducing the electrolyte solutions to the electrodes and a discharge path for discharging the electrolyte solutions from the electrodes, and the introduction path and the discharge path are not in communication and are independent. is doing.
  • the groove includes a wide portion in which the width inside the groove is larger than the width of the opening.
  • a method for producing a bipolar plate according to one aspect of the present invention is a method for producing a bipolar plate sandwiched between a positive electrode through which a positive electrode electrolyte is circulated and a negative electrode through which a negative electrode electrolyte is circulated,
  • a base plate preparation step, a split piece preparation step, and a joining step are provided.
  • a base plate made of a material containing a conductive dispersion material and a matrix resin is prepared.
  • the split piece preparation step is a long material having a predetermined cross-sectional shape made of the material, and prepares a split piece that becomes a part of a groove portion through which each of the electrolytes flows.
  • the divided pieces are joined to both surfaces of the base plate at a predetermined interval, and the groove portion is formed in a space surrounded by the base plate and the divided pieces.
  • the split pieces are joined so as to include a wide portion in which the width inside the groove is larger than the width of the opening.
  • the bipolar plate can reduce the pressure loss of the electrolyte in the fluid flow type battery. Moreover, the manufacturing method of the said bipolar plate can manufacture the bipolar plate which can reduce the pressure loss of the electrolyte solution in a fluid flow type battery with sufficient productivity.
  • FIG. 3 is a schematic plan view illustrating opposed comb-shaped flow paths provided in the bipolar plate according to Embodiment 1.
  • FIG. 3 is a schematic cross-sectional view illustrating opposed comb-shaped channels provided on the bipolar plate according to the first embodiment.
  • 3 is a schematic explanatory diagram illustrating the shape of a groove provided in the bipolar plate according to Embodiment 1.
  • FIG. 6 is a schematic enlarged cross-sectional view showing the shape of a groove provided in a bipolar plate according to Embodiment 2.
  • FIG. It is a schematic principle diagram of a redox flow battery. It is a schematic block diagram of the cell stack with which a redox flow battery is provided.
  • the bipolar plate of the embodiment is a bipolar plate sandwiched between a positive electrode through which a positive electrode electrolyte is circulated and a negative electrode through which a negative electrode electrolyte is circulated, the positive electrode side and the negative electrode
  • Each surface on the electrode side is provided with a flow path having a plurality of grooves through which the positive electrode electrolyte and the negative electrode electrolyte flow.
  • the flow path includes an introduction path for introducing the electrolyte solutions to the electrodes and a discharge path for discharging the electrolyte solutions from the electrodes, and the introduction path and the discharge path are not in communication and are independent. is doing.
  • the groove includes a wide portion in which the width inside the groove is larger than the width of the opening.
  • the flow of the electrolyte along the channel can be promoted compared to the case without the channel, and the flow of the electrolyte flowing through the electrode can be adjusted. .
  • the pressure loss of the electrolytic solution can be reduced.
  • the groove part forming the flow path includes the wide part, so that the electrolyte can easily flow and the pressure loss of the electrolyte can be further reduced as compared with the uniform width groove part having the same opening width and no wide part. it can.
  • the groove portion having the wide portion has a groove compared to the bipolar plate having the same width of the opening portion and the groove portion having the uniform width.
  • the bipolar plate can be made thin while keeping the flow rate in the groove portion substantially the same.
  • the inter-groove distance between the side edges of the opening portions of the adjacent groove portions is more than 1 times the width of the opening portions.
  • the contact area with the electrode of the bipolar plate increases, the battery reaction in the electrode performed between the introduction path and the discharge path is more activated, and the internal resistance is more likely to be reduced.
  • the groove has a trapezoidal shape in which the cross-sectional shape extends from the opening toward the bottom of the groove.
  • the cross-sectional shape of the groove portion is trapezoidal, the shape is easy, so the groove portion is easy to form.
  • the groove portion includes a narrow portion having a constant width from the opening portion toward the bottom portion of the groove portion, and the wide portion having a constant width connected to the narrow portion to the bottom portion. A part.
  • the groove portion between the narrow portion and the wide portion By forming the groove portion between the narrow portion and the wide portion, it is easy to adjust the flow of the electrolytic solution, and it is easy to reduce the pressure loss of the electrolytic solution. For example, by making the vicinity of the opening of the groove part a narrow part and making the inside of the groove part a wide part having a constant width, the cross-sectional area of the groove part is increased compared to a groove part having the same opening width and a uniform width. The flow rate of the electrolytic solution can be secured more and pressure loss can be easily reduced.
  • the cross-sectional area of the groove include not less than 10 times the x 2.
  • cross-sectional area of the groove is more than 10 times x 2, since the depth of the width and the groove of the opening portion can be sufficiently secured flow of the electrolyte in comparison with the same groove, it can be further reduced pressure loss.
  • the introduction path and the discharge path are provided with comb-shaped regions, and the introduction path and the discharge path are opposed to each other with each comb-shaped region meshing with each other. Is arranged.
  • the introduction path and the discharge path are arranged so that the respective comb-shaped regions are opposed to each other so that the comb-shaped regions of the introduction path and the discharge path are arranged in parallel.
  • the amount of electrolyte flowing so as to cross the electrodes between the comb-shaped regions further increases as compared with the case where the comb-shaped regions are not engaged. Therefore, the battery reaction at the electrode is further activated and the internal resistance of the battery can be further reduced.
  • the flow of the electrolytic solution is easily generated regardless of the location of the electrode, the battery reaction is easily performed in a wide range of the electrode, and the internal resistance can be reduced.
  • the redox flow battery according to the embodiment includes the bipolar plate according to any of the embodiments (1) to (6).
  • the redox flow battery of the embodiment is excellent in battery performance. This is because by providing the bipolar plate of the embodiment, the pressure loss of the electrolyte is reduced, and the internal resistance of the battery due to activation of the battery reaction at the electrode is reduced.
  • a bipolar plate manufacturing method is a bipolar plate manufacturing method sandwiched between a positive electrode through which a positive electrode electrolyte is circulated and a negative electrode through which a negative electrode electrolyte is circulated.
  • a plate preparation step, a split piece preparation step, and a joining step are provided.
  • the base plate preparation step a base plate made of a material containing a conductive dispersion material and a matrix resin is prepared.
  • the split piece preparation step is a long material having a predetermined cross-sectional shape made of the material, and prepares a split piece that becomes a part of a groove portion through which each of the electrolytes flows.
  • the divided pieces are joined to both surfaces of the base plate at a predetermined interval, and the groove portion is formed in a space surrounded by the base plate and the divided pieces.
  • the split pieces are joined so as to include a wide portion in which the width inside the groove is larger than the width of the opening.
  • the base plate and the divided piece are prepared independently, and the two are joined so that the space formed by the base plate and the divided piece becomes a groove of a predetermined shape.
  • the bipolar plate of the embodiment can be easily manufactured. Since the groove is formed by joining the divided pieces to the base plate, it is possible to form a groove having a complicated shape.
  • a bipolar plate 1 used for a redox flow battery (hereinafter referred to as an RF battery), which is a typical example of a fluid flow battery, will be described with reference to FIGS. Since the configuration other than the bipolar plate 1 can adopt the same configuration as the conventional RF battery 100 described with reference to FIGS. 5 and 6, detailed description thereof is omitted.
  • the bipolar plate 1 shown in FIG. 2 is thicker than the positive electrode 104 and the negative electrode 105 for convenience of explanation.
  • the bipolar plate 1 is a plate that partitions each battery cell 100C (see FIG. 6), and the positive electrode 104 and the negative electrode 105 of the adjacent battery cell 100C are arranged on the front and back with the bipolar plate 1 interposed therebetween.
  • the main feature of the bipolar plate 1 of the present embodiment is that the flow path 10 having a plurality of groove portions 11 through which the electrolyte solution for the positive electrode and the electrolyte solution for the negative electrode circulate on each surface on the positive electrode 104 side and the negative electrode 105 side. It is to prepare.
  • the flow path 10 is provided in order to adjust the flow in each battery cell 100C of the electrolyte solution which distribute
  • the flow of the electrolytic solution can be adjusted by the shape and size of the flow path 10.
  • the flow path 10 includes an introduction path 10 i for introducing each electrolytic solution into each electrode, and a discharge path 10 o for discharging each electrolytic solution from each electrode.
  • the introduction path 10i is connected to the liquid supply manifold 123 (124), and the discharge path 10o is connected to the drainage manifold 125 (126).
  • the introduction path 10i and the discharge path 10o do not communicate with each other and are independent.
  • the flow path 10 is formed by a groove 11 described later. Hereinafter, the shape of the flow path 10 will be described, and then the groove 11 that forms the flow path 10 will be described.
  • the flow path 10 of the bipolar plate 1 shown in FIG. 1 is a fitting in which the introduction path 10i and the discharge path 10o are each provided with comb-shaped regions, and the respective comb-shaped regions mesh with each other and face each other. It is a combined opposing comb tooth shape.
  • the introduction path 10i discharge path 10o
  • the horizontal groove portion 11x is connected to the liquid supply manifolds 123 and 124 (discharge manifolds 125 and 126), and the vertical groove portion 11y is arranged in parallel so as to alternately mesh with the introduction path 10i and the discharge path 10o.
  • the flow of the electrolytic solution is a portion ( ⁇ ) located between the flow along the flow path 10 provided in the bipolar plate 1 (in the direction of the solid line arrow shown in FIG. 1) and the vertical groove portions 11y of the introduction path 10i and the discharge path 10o. And a flow (in the direction of the wavy arrow shown in FIGS. 1 and 2) extending in the width direction (left and right direction in the figure). That is, when each electrolytic solution introduced from the introduction passage 10i flows through the electrodes 104 and 105 to the discharge passage 10o, the electrolytic solution performs a battery reaction at the electrode at the collar portion. Since the introduced electrolytic solution is discharged by crossing the buttock, the electrolytic solution discharged without being reacted is reduced. Therefore, the amount of current of the RF battery increases, and as a result, the internal resistance of the RF battery can be reduced.
  • the amount of the electrolyte flowing across the collar portion can be expected to increase, and the length of the bipolar plate 1 ( 80% or more of the vertical direction in the figure), and further 90% or more.
  • the mating comb shape is not limited to the above arrangement.
  • the introduction path 10i discharge path 10o
  • the introduction path 10i discharge path 10o
  • the vertical groove part extends from the vertical groove part to the right direction (left direction) in the figure.
  • a plurality of transverse grooves extending in the direction.
  • the non-fitting type opposed comb tooth shape is a shape in which the introduction path 10i and the discharge path 10o do not mesh with each other.
  • it is provided with one horizontal groove portion provided on the lower side (upper side) of the bipolar plate and a plurality of vertical groove portions extending upward (downward) from the horizontal groove portion, and each vertical direction of the introduction path 10i and the discharge path 10o.
  • the grooves are arranged symmetrically in the vertical direction. Even if it is a non-fitting type comb-teeth shape, the electrolyte solution undergoes a battery reaction at the electrode between the upper and lower adjacent flow paths, thereby reducing the amount of electrolyte solution that remains unreacted. However, the amount of current of the RF battery is expected to increase.
  • Each channel 10 exemplified above may be intermittently formed at least partially.
  • the longitudinal groove 11y shown in FIG. 1 is formed intermittently (discontinuously). By doing so, it becomes easier for the electrolyte to flow through the electrodes so as to cross not only the widthwise ridges but also the ridges between adjacent longitudinal groove portions divided in the length direction, so the amount of reaction current is reduced. It is expected to increase.
  • the groove 11 has a cross-sectional shape having a portion where the internal width is larger than the width of the opening 11 a.
  • it has a trapezoidal shape extending from the opening 11a toward the bottom 11b.
  • the groove portion 11 includes a narrow portion 11n in the opening 11a having the narrowest width and a wide portion 11m having a width larger than the narrow portion 11n toward the bottom portion 11b.
  • the bottom part 11b is the wide part 11m having the widest width. Since the groove part 11 is provided with the wide part 11m, it is easy to distribute
  • the cross-sectional shape of the groove part 11 is a shape provided with the wide part 11m, it will not be limited to the said trapezoid shape. That is, for example, a substantially trapezoidal shape in which the side surface and the bottom surface of the groove portion are curved surfaces is also defined as a trapezoidal shape.
  • the cross-sectional shape of the groove 11 may be a circular shape, a semicircular shape, a convex shape, or the like as long as it has a wide portion 11m.
  • the groove part 11 provided with the wide part 11m may be a part of several groove part 11 (flow path 10). For example, it is possible to alternately arrange a square or rectangular groove having a constant width and a groove 11 having a wide portion 11m.
  • the inter-groove distance 11c between the side edges of the opening 11a of the adjacent groove 11 is more than 1 times the width of at least one opening 11a of the two adjacent grooves 11. It is preferable. As the inter-groove distance 11c increases, the contact area with the electrode increases, and it can be expected that the amount of reaction current in the electrode at the collar increases. Therefore, the width of the opening 11a is 3 times or more, and further 7 times or more. Is preferred.
  • the inter-groove distance 11c is large, the number of the groove portions 11 (channels 10) in the unit length of the bipolar plate 1 in the groove portion parallel direction is reduced, so the inter-groove distance 11c is 30 times the width of the opening portion 11a.
  • 20 times or less is preferable.
  • the depth d of the groove part 11 is 10% or more and 45% or less of the thickness of the bipolar plate 1.
  • the groove portions 11 are provided on both surfaces of the bipolar plate 1, it is preferable to provide the groove portions 11 at positions overlapping with each other when viewed in a plan view (see FIG. 2). At this time, if the thickness between the pair of grooves 11 facing in the thickness direction of the bipolar plate 1 is thin, the mechanical strength may not be sufficient.
  • a more preferable depth d of the groove 11 is 10% or more and 35% or less of the thickness of the bipolar plate 1.
  • the groove 11 may be provided at a position that does not overlap when the bipolar plate 1 is seen through in plane.
  • the groove 11 provided in the bipolar plate 1 can reduce the pressure loss of the electrolyte flowing through the groove 11 as the cross-sectional area thereof increases. Therefore, when forming the groove 11 in the bipolar plate 1, the square groove 11 that is easy to mold is considered.
  • a square-shaped groove portion 11 (p 1 -p 2 -r 2 -r 1 in FIG. 3) having a cross-sectional area d 2 in which the width of the opening portion 11 a is the same as the depth (d) of the groove portion 11.
  • the inter-groove distance 11c is the distance between the side edges p 2 -p 1 of the opening 11a of the adjacent groove 11.
  • the inter-groove distance 11c increases, the contact area between the bipolar plate 1 and the electrode increases, and it can be expected that the amount of reaction current in the electrode at the collar increases. Then, next consider increasing the amount of reaction current at the electrodes, and increasing the inter-groove distance 11c. For example, when the width of the opening portion 11a of each groove portion 11 is reduced, the inter-groove distance 11c is the distance between the side edges q 2 -q 1 of the opening portions 11a of the adjacent groove portions 11 and is between 2 ⁇ (q 2 -p 2 ) Distance).
  • the width of the opening 11a when the width of the opening 11a is reduced, the area of the groove 11 is reduced by 2 ⁇ (portion surrounded by p 2 -q 2 -r 2 ). That is, in this embodiment, the width of the opening 11a and the cross-sectional area (wide portion) of the groove 11 are determined in consideration of the balance between the pressure loss of the electrolyte flowing through the groove 11 and the amount of reaction current in the electrode. do it. For example, when the width of the opening 11a was set to x, the groove 11 cross-sectional area x 2 10 times or more, and to determine the wide portion so as to further the 15 times or more.
  • the cross-sectional area of the groove 11 is less than 30 times the x 2, to determine the wide portion so as to further the 20 times or less, it is possible to make the mechanical strength of the bipolar plate 1 with sufficient.
  • the width of the opening 11a is 0.1 mm to 1 mm, preferably 0.1 mm to 0.8 mm, and more preferably 0.1 mm to 0.5 mm.
  • a conductive material that allows electric current to pass but not electrolyte can be used.
  • a material having acid resistance and moderate rigidity is more preferable. This is because the cross-sectional shape and dimensions of the groove (channel) are difficult to change over a long period of time, and the effect of the channel is easily maintained.
  • An example of such a material is a conductive material containing carbon. More specifically, a conductive plastic formed from graphite and a polyolefin-based organic compound or a chlorinated organic compound can be used. Further, a conductive plastic in which a part of graphite is substituted with at least one of carbon black and diamond-like carbon may be used.
  • Examples of the polyolefin organic compound include polyethylene, polypropylene, polybutene and the like.
  • Examples of the chlorinated organic compound include vinyl chloride, chlorinated polyethylene, and chlorinated paraffin.
  • the bipolar plate manufacturing method of this embodiment includes the following base plate preparation step, divided piece preparation step, and joining step. Hereinafter, each process is demonstrated in order.
  • a base plate made of a material (composite conductive plastic) containing a conductive dispersion material and a matrix resin is prepared.
  • a flat base plate is prepared.
  • the conductive dispersion material include powders and fibers of inorganic materials such as graphite, carbon black, and diamond-like carbon.
  • Suitable examples of the conductive carbon black include acetylene black and furnace black.
  • metal powder and fiber, such as aluminum are mentioned.
  • the matrix resin include polyethylene, polypropylene, polybutene, vinyl chloride, chlorinated polyethylene, and chlorinated paraffin.
  • a long piece of a predetermined cross-sectional shape made of the above-described material is prepared, and a divided piece that becomes a part of a groove portion through which the electrolyte flows is prepared.
  • a trapezoidal divided piece corresponding to a portion between adjacent grooves 11 shown in FIG. 2 is prepared.
  • the material constituting the divided pieces is preferably the same as the material of the base plate, but may be different by, for example, different types of the conductive dispersion material and the matrix resin.
  • the divided pieces may be compression-molded by mixing the powder materials of the conductive dispersion material and the thermoplastic resin, or may be injection-molded with a liquid material in which the conductive dispersion material is mixed into a molten thermoplastic resin.
  • the desired shape can be obtained.
  • the divided pieces are joined to both surfaces of the base plate at a predetermined interval, and the above-described groove portion 11 (see FIG. 2) is formed in a space surrounded by the base plate and the divided pieces.
  • the divided pieces are joined to the base plate so that the wide portion 11m whose inner width is larger than the width of the opening 11a is formed in the groove 11 to be formed.
  • the upper side surface of the split piece having a trapezoidal cross section is joined to the surface of the base plate.
  • Each part joined becomes a part arrange
  • the bipolar plate 2 provided with the grooves 11 can be easily manufactured.
  • the RF battery of this embodiment includes a battery cell in which a positive electrode, a diaphragm, and a negative electrode are stacked, and a cell frame having a bipolar plate integrated with a frame-like frame, and the battery cell is sandwiched between the cell frames.
  • a bipolar plate 1 having a plurality of laminated layers and including the groove portion 11 of the present embodiment described above is used as the bipolar plate. That is, one battery cell is formed between the bipolar plates 1 of the adjacent cell frames, and the positive electrode and the negative electrode of adjacent battery cells are arranged on the front and back sides of the bipolar plate 1.
  • a vanadium-based electrolytic solution using vanadium ions as each active material can be suitably used as the electrolytic solution.
  • a manganese (Mn 2+ / Mn 3+ ) -titanium (Ti 4+ / Ti 3+ ) -based electrolyte using manganese (Mn) ions for the anode and titanium (Ti) ions for the negative electrode electrolyte can be suitably used.
  • the bipolar plate 2 of Embodiment 2 is demonstrated with reference to FIG.
  • the basic configuration of the bipolar plate 2 is the same as that of the bipolar plate 1 of the first embodiment, and only the form of the groove portion 11 (cross-sectional shape) is different. Here, this difference will be described, and description of other configurations will be omitted.
  • the bipolar plate 2 shown in FIG. 4 is thicker than the positive electrode 104 and the negative electrode 105 for convenience of explanation.
  • the groove portion 11 is a convex shape including a narrow portion 11n having a constant width from the opening portion 11a toward the bottom portion 11b, and a wide portion 11m having a constant width from the narrow portion 11n to the bottom portion 11b.
  • the depth of the narrow portion 11n may be 20% or more and 50% or less of the depth of the groove portion 11.
  • the depth of the narrow portion 11n is 20% or more of the depth of the groove portion 11, the mechanical strength in the vicinity of the opening portion 11a can be secured, and when the depth is 50% or less, the groove portion 11 is formed.
  • the pressure loss of the circulating electrolyte can be sufficiently reduced. More preferably, the depth of the narrow portion 11n is 25% or more and 40% or less.
  • the bipolar plate 2 of the second embodiment can be manufactured by the same manufacturing method as that of the first embodiment (preparation of base plate and divided piece ⁇ joining base plate and divided piece).
  • the first pattern is a flat base plate, a divided piece A corresponding to the region portion of the wide portion 11m between the adjacent groove portions 11, and a divided piece corresponding to the region portion of the narrow portion 11n between the adjacent groove portions 11.
  • B is prepared, the segment A is joined to the base plate, and the segment B is joined to the surface of the segment A facing the base plate.
  • the divided piece A has a substantially rectangular shape
  • the divided piece B has a flat plate shape that is wider than the divided piece A and thin.
  • the second pattern is a method of preparing a flat base plate and a divided piece C having a T-shaped cross section in which the divided piece A and the divided piece B are integrally formed, and joining the base plate and the divided piece C together. It is. At this time, a narrow piece (part corresponding to the above-described divided piece A) of the divided piece C having a T-shaped cross section is joined to the surface of the base plate.
  • the third pattern is a method in which a base plate in which a portion corresponding to the divided piece A is formed by press molding as a base plate and the divided piece B are prepared, and the base plate and the divided piece B are joined. At this time, the surface of the flat divided piece B is joined to the protruding portion of the base plate so as to be orthogonal. Even if it is any pattern, the bipolar plate 2 provided with the groove part 11 can be manufactured by joining a base plate and a division
  • ⁇ Analysis example 1> In Analysis Example 1, a fluid simulation was performed assuming four models of RF batteries provided with comb-shaped flow channels meshing with each other, and the pressure loss of the RF battery was obtained.
  • Width of groove opening width of narrow portion: 0.3 (mm)
  • the width of the bottom of the groove width of the wide portion: 1.3 (mm)
  • Groove depth 1.3 (mm) Height of narrow part: 0.3 (mm), Height of wide part: 1.0 (mm)
  • Distance between grooves: 2.3 (mm) Only the grooves at both ends in the width direction, the width of the opening: 0.3 (mm), the width of the bottom: 0.8 (mm), the depth of 1.3 (mm), the height of the narrow portion: 0.3 (Mm), the height of the wide portion: 1.0 (mm), and a shape that is convex when the grooves at both ends are combined (not shown)
  • -Electrode, electrolyte Same as model 1
  • the pressure loss obtained from the pressure distribution in the electrode was model 1: 118 Pa, model 2: 100 Pa, model 3: 2 kPa, model 4:62 Pa. Comparing models 1, 2 and 3 where the width of the opening of the groove is small, even if the width of the opening is small, the pressure inside the groove is larger than the width of the opening. It was found that it can be reduced.
  • models 1 and 2 with a small groove width are compared with models 4 with a wide groove opening and a square cross section, models 1 and 2 have a slight increase in pressure loss. It was found that the pressure loss was.
  • Test Example 1 battery cells were actually fabricated for the four models of RF batteries used in Analysis Example 1, and the internal resistance of the RF battery was examined.
  • the internal resistance of the RF battery is synonymous with the cell resistivity. Therefore, the internal resistance of the RF battery is expressed as cell resistivity.
  • the test conditions other than the conditions shown in Analysis Example 1 are shown below.
  • the cell resistivity of the above four models is as follows: Model 1: 0.86 ⁇ ⁇ cm 2 , Model 2: 0.86 ⁇ ⁇ cm 2 , Model 3: 0.90 ⁇ ⁇ cm 2 , Model 4: 0.98 ⁇ ⁇ cm 2 there were. From this result, it was found that the cell resistivity can be reduced when the inter-groove distance is larger than the width of the opening. In Model 3, the reason why the cell resistivity is large even though the distance between the grooves is larger than the width of the opening is that the cross-sectional area of the groove is small, so that the distribution of the electrolyte is non-uniform and the field of the battery reaction is locally This is probably because the cell resistivity increased due to the presence.
  • the bipolar plate of the present invention can be suitably used as a bipolar plate of a fluid flow type battery such as a redox flow battery.
  • the redox flow battery of the present invention can be suitably used as a battery for load leveling or for measures against instantaneous voltage drop and power failure.

Abstract

流体流通型電池の内部抵抗を低減させることができる双極板、レドックスフロー電池、及び双極板の製造方法を提供する。正極用電解液が流通される正極電極と負極用電解液が流通される負極電極との間に挟まれる双極板であって、前記正極電極側及び前記負極電極側の各面に前記正極用電解液及び前記負極用電解液が流通する複数の溝部を有する流路を備え、前記流路は、前記各電解液を前記各電極に導入する導入路と、前記各電解液を前記各電極から排出する排出路とを備え、前記導入路と前記排出路とが連通せず独立しており、前記溝部は、該溝部の内部の幅が開口部の幅よりも大きい幅広部を備える双極板。

Description

双極板、レドックスフロー電池、及び双極板の製造方法
 本発明は、レドックスフロー電池などの流体流通型電池に用いられる双極板、この双極板を用いたレドックスフロー電池、及び双極板の製造方法に関する。
 流体流通型電池の代表例としてレドックスフロー電池(RF電池)が挙げられる。RF電池は、正極用電解液に含まれるイオンと負極用電解液に含まれるイオンの酸化還元電位の差を利用して充放電を行う電池である。
 図5は、正負の活物質としてバナジウムイオンを利用したRF電池100の動作原理図である。図5に示すように、RF電池100は、水素イオン(プロトン)を透過させる隔膜101で正極セル102と負極セル103とに分離された電池セル100Cを備える。
正極セル102には正極電極104が内蔵され、かつ正極用電解液を貯留する正極電解液用タンク106が導管108、110を介して接続されている。同様に、負極セル103には負極電極105が内蔵され、かつ負極用電解液を貯留する負極電解液用タンク107が導管109、111を介して接続されている。各タンク106、107に貯留される電解液は、充放電の際にポンプ112、113により各セル102、103内に循環される。
 上記電池セル100Cは通常、図6の下図に示すように、セルスタック200と呼ばれる構造体の内部に形成される。セルスタック200は、図6の上図に示すように、正極電極104、隔膜101、負極電極105を重ねた電池セル100Cを、額縁状の枠体122に一体化された双極板121を備えるセルフレーム120で挟んで複数積層した構成を備える。つまり、隣接する各セルフレーム120の双極板121の間に一つの電池セル100Cが形成されることになり、双極板121を挟んで表裏に、隣り合う電池セル100Cの正極電極104(正極セル102)と負極電極105(負極セル103)とが配置されることになる。この構成では、各セルフレーム120間の隙間がシール構造127で封止される。
 セルスタック200における電池セル100Cへの電解液の流通は、枠体122に形成される給液用マニホールド123,124と、排液用マニホールド125,126により行われる。正極用電解液は、給液用マニホールド123から枠体122の一面側(紙面表側)に形成される溝を介して双極板121の一面側に配置される正極電極104に供給される。そして、その正極用電解液は、枠体122の上部に形成される溝を介して排液用マニホールド125に排出される。同様に、負極用電解液は、給液用マニホールド124から枠体122の他面側(紙面裏側)に形成される溝を介して双極板121の他面側に配置される負極電極105に供給される。その負極用電解液は、枠体122の上部に形成される溝を介して排液用マニホールド126に排出される。
 電池セル100Cを構成する各電極104,105は、流体である電解液の流通が給液側から排液側に向かう電解液の流通を阻害しないように多孔質の導電材で構成されることが多い。例えばカーボンフェルトなどが利用される(特許文献1)。
特開2002-367659号公報
 近年、自然環境に配慮したエネルギーシステムの構築が期待されており、RF電池などの流体流通型電池の電池性能の向上が期待されている。例えば、RF電池などの蓄電池であれば充放電効率の向上が期待されており、電池の内部抵抗を低減させることが求められている。この内部抵抗に影響を及ぼす原因の一つとして電解液の流通状態、例えば、電解液の流通抵抗などが挙げられる。しかし、従来では、電解液の流通抵抗による圧力損失を十分に考慮した上で内部抵抗を低減させることについては、必ずしも十分な検討がなされているとは言えなかった。
 本発明は上記事情に鑑みてなされたもので、本発明の目的の一つは、流体流通型電池における電解液の圧力損失を低減させることができる双極板を提供することにある。また、本発明の別の目的は、本発明の双極板を用いたレドックスフロー電池を提供することにある。さらに、本発明の他の目的は、生産性よく製造できる双極板の製造方法を提供することにある。
 本発明の一態様に係る双極板は、正極用電解液が流通される正極電極と負極用電解液が流通される負極電極との間に挟まれる双極板であって、前記正極電極側及び前記負極電極側の各面に前記正極用電解液及び前記負極用電解液が流通する複数の溝部を有する流路を備える。前記流路は、前記各電解液を前記各電極に導入する導入路と、前記各電解液を前記各電極から排出する排出路とを備え、前記導入路と前記排出路とが連通せず独立している。前記溝部は、該溝部の内部の幅が開口部の幅よりも大きい幅広部を備える。
 本発明の一態様に係る双極板の製造方法は、正極用電解液が流通される正極電極と負極用電解液が流通される負極電極との間に挟まれる双極板の製造方法であって、ベース板準備工程と、分割片準備工程と、接合工程とを備える。ベース板準備工程は、導電性分散材とマトリックス樹脂とを含む材料で構成されるベース板を準備する。分割片準備工程は、前記材料で構成される所定断面形状の長尺材であり、前記各電解液が流通する溝部の一部となる分割片を準備する。接合工程は、前記ベース板の両面に前記分割片を所定の間隔で接合し、前記ベース板と前記分割片とで囲まれる空間で前記溝部を形成する。前記接合工程は、前記溝部の内部の幅が開口部の幅よりも大きい幅広部を備えるように分割片を接合する。
 上記双極板は、流体流通型電池における電解液の圧力損失を低減させることができる。
また、上記双極板の製造方法は、流体流通型電池における電解液の圧力損失を低減させることができる双極板を生産性よく製造できる。
実施形態1に係る双極板に設けられた対向櫛歯形状の流路を表す概略平面図である。 実施形態1に係る双極板に設けられた対向櫛歯形状の流路を表す概略断面図である。 実施形態1に係る双極板に設けられた溝部の形状を説明する概略説明図である。 実施形態2に係る双極板に設けられた溝部の形状を表す概略拡大断面図である。 レドックスフロー電池の概略原理図である。 レドックスフロー電池が備えるセルスタックの概略構成図である。
 [本発明の実施形態の説明]
 最初に本発明の実施形態の内容を列記して説明する。
 (1)実施形態の双極板は、正極用電解液が流通される正極電極と負極用電解液が流通される負極電極との間に挟まれる双極板であって、前記正極電極側及び前記負極電極側の各面に前記正極用電解液及び前記負極用電解液が流通する複数の溝部を有する流路を備える。前記流路は、前記各電解液を前記各電極に導入する導入路と、前記各電解液を前記各電極から排出する排出路とを備え、前記導入路と前記排出路とが連通せず独立している。
前記溝部は、該溝部の内部の幅が開口部の幅よりも大きい幅広部を備える。
 溝部を有する流路を備える双極板を用いることで、流路に沿った電解液の流通を流路のない場合に比べて促進し、電極に流通される電解液の流れを調整することができる。この電解液の流れの調整によって、電解液の圧力損失を低減できる。特に、流路を形成する溝部が上記幅広部を備えることで、開口部の幅が同じで幅広部のない均一幅の溝部に比べて電解液が流通し易く、電解液の圧力損失をより低減できる。また、幅広部によって電解液の流量を確保できるため、溝部の横断面積を一定とした場合、開口部の幅が同じで均一幅の溝部を有する双極板に比べて、幅広部を備える溝部では溝の深さを小さくでき、溝部での流量を実質的に同一としながら双極板を薄くできる。双極板を薄くすることで、流体流通型電池の内部抵抗を低減させることができる。流路において導入路と排出路とが連通せず独立していることで、電解液が導入路と排出路との間を渡るように電極を介して流通し易いため、電極における電池反応が活性化されて電池の内部抵抗を低減できる。
 (2)実施形態の双極板として、隣接する前記溝部の前記開口部の側縁間の溝間距離は、前記開口部の幅の1倍超であることが挙げられる。
 上記構成によれば、双極板の電極との接触面積が増加し、導入路と排出路との間で行う電極における電池反応がより活性化されて、より内部抵抗を低減し易い。
 (3)実施形態の双極板として、前記溝部は、断面形状が前記開口部から該溝部の底部に向かって広がる台形状であることが挙げられる。
 溝部の断面形状が台形状であることで、形状が容易であるため、溝部を形成し易い。
 (4)実施形態の双極板として、前記溝部は、前記開口部から該溝部の底部に向かって一定の幅の幅狭部と、前記幅狭部に繋がって前記底部まで一定の幅の前記幅広部とを備えることが挙げられる。
 幅狭部と幅広部とで溝部を形成することで、電解液の流れを調整し易く、電解液の圧力損失を低減し易い。例えば、溝部の開口部近傍を幅狭部とし、溝部の内部を一定の幅の幅広部とすることで、開口部の幅が同じで均一幅の溝部に比べて溝部の横断面積が増加するため、電解液の流量をより確保でき、圧力損失を低減し易い。
 (5)実施形態の双極板として、前記開口部の幅をxとしたとき、前記溝部の横断面積は、xの10倍以上であることが挙げられる。
 溝部の断面積がxの10倍以上であることで、開口部の幅と溝部の深さとが同一の溝部に比べて電解液の流量を十分に確保できるため、圧力損失をより低減できる。
 (6)実施形態の双極板として、前記導入路及び前記排出路が櫛歯形状の領域を備え、前記導入路と前記排出路とは、それぞれの櫛歯形状の領域が互いに噛み合って対向するように配置されていることが挙げられる。
 導入路と排出路とが、それぞれの櫛歯形状の領域が互いに噛み合って対向するように配置されていることで、導入路と排出路の各櫛歯形状の領域が並列される。それに伴い、各櫛歯形状の領域同士の間の電極を渡るように流通する電解液の量が、櫛歯形状の領域が噛み合っていない場合に比べてさらに増加する。よって、電極における電池反応がより活性化されて電池の内部抵抗をさらに低減できる。また、電解液の流れが、電極の場所によらず一様に発生し易く、電極の広範囲で電池反応が均一に行われやすく、内部抵抗が低減できる。
 (7)実施形態のレドックスフロー電池として、上記(1)~(6)の実施形態の双極板を備えることが挙げられる。
 実施形態のレドックスフロー電池は、電池性能に優れる。それは、実施形態の双極板を備えることで、電解液の圧力損失が低減され、電極における電池反応の活性化による電池の内部抵抗が低減するからである。
 (8)実施形態の双極板の製造方法は、正極用電解液が流通される正極電極と負極用電解液が流通される負極電極との間に挟まれる双極板の製造方法であって、ベース板準備工程と、分割片準備工程と、接合工程とを備える。ベース板準備工程は、導電性分散材とマトリックス樹脂とを含む材料で構成されるベース板を準備する。分割片準備工程は、前記材料で構成される所定断面形状の長尺材であり、前記各電解液が流通する溝部の一部となる分割片を準備する。接合工程は、前記ベース板の両面に前記分割片を所定の間隔で接合し、前記ベース板と前記分割片とで囲まれる空間で前記溝部を形成する。前記接合工程は、前記溝部の内部の幅が開口部の幅よりも大きい幅広部を備えるように分割片を接合する。
 上記の双極板の製造方法によれば、ベース板と分割片とを独立して準備し、ベース板と分割片とで形成される空間を所定の形状の溝部となるように両者を接合することで、実施形態の双極板を容易に製造できる。ベース板に対して分割片を接合して溝部を形成するため、複雑な形状の溝部とすることも可能である。
 [本発明の実施形態の詳細]
 本発明の実施形態の詳細を、以下に説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 <実施形態1>
 実施形態1では、流体流通型電池の代表例であるレドックスフロー電池(以下、RF電池)に用いる双極板1を図1及び図2に基づいて説明する。双極板1以外の構成は、図5及び図6を参照して説明した従来のRF電池100と同様の構成を採用できるため、その詳しい説明は省略する。図2に示す双極板1は、説明の便宜上、正極電極104及び負極電極105よりも厚みを厚くしている。
 《双極板》
 双極板1は、各電池セル100C(図6を参照)を仕切る板であり、双極板1を挟んで表裏に、隣り合う電池セル100Cの正極電極104と負極電極105とが配置される。
本実施形態の双極板1の主たる特徴とするところは、正極電極104側及び負極電極105側の各面に正極用電解液及び負極用電解液が流通する複数の溝部11を有する流路10を備えることにある。
 〔流路〕
 流路10は、ポンプにより各電極104,105に流通される電解液の各電池セル100C内での流れを調整するために設けられる。この電解液の流れは、流路10の形状や寸法などによって調整することができる。流路10は、図1に示すように、各電解液を各電極に導入する導入路10iと、各電解液を各電極から排出する排出路10oとを備える。
導入路10iは、給液用マニホールド123(124)に繋がっており、排出路10oは、排液用マニホールド125(126)に繋がっている。導入路10iと排出路10oとは連通せず独立している。流路10は、後述する溝部11で形成される。以下、流路10の形状について説明し、その後に流路10を形成する溝部11について説明する。
 〈流路の形状〉
 図1に示す双極板1の流路10は、導入路10iと排出路10oとがそれぞれ櫛歯形状の領域を備え、それぞれの櫛歯形状の領域が互いに噛み合って対向するように配置される嵌合型の対向櫛歯形状である。導入路10i(排出路10o)は、一本の横溝部11xとこの横溝部11xから伸びる複数本の縦溝部11yとを備える。横溝部11xが給液用マニホールド123,124(排出用マニホールド125,126)に繋がっており、縦溝部11yが導入路10iと排出路10oとで交互に噛み合うように並列している。
 電解液の流れは、双極板1が備える流路10に沿った流れ(図1で示す実線矢印の方向)と、導入路10i及び排出路10oの各縦溝部11yの間に位置する部分(畝部)を介して幅方向(図の左右方向)に渡るような流れ(図1,2で示す波線矢印の方向)とを形成する。つまり、導入路10iから導入された各電解液は、各電極104,105を経て排出路10oへ流通する際に、畝部で電解液が電極において電池反応を行う。導入された電解液が畝部を渡ることで排出されるため、未反応のまま排出される電解液が減少する。
よって、RF電池の電流量が増加し、ひいてはRF電池の内部抵抗を低減することができる。
 導入路10i及び排出路10oの各櫛歯形状の領域の噛み合う部分の長さは、長いほど畝部を渡るように流れる電解液の量が増加することが期待でき、双極板1の長さ(図の上下方向)の80%以上、さらに90%以上であることが挙げられる。
 嵌合型の櫛歯形状は上記の配置に限られない。例えば、導入路10i(排出路10o)は、双極板1の図の左側(右側)に設けられ、長さ方向に伸びる一本の縦溝部と、この縦溝部から図の右方向(左方向)に伸びる複数本の横溝部とを備えてもよい。
 他に、非嵌合型の櫛歯形状が挙げられる。非嵌合型の対向櫛歯形状は、導入路10iと排出路10oとが互いに噛み合わない形状である。例えば、双極板の下側(上側)に設けられる一本の横溝部と、この横溝部から上方向(下方向)に伸びる複数の縦溝部とを備え、導入路10i及び排出路10oの各縦溝部が上下に対称配置されている。非嵌合型の櫛歯形状であっても、上下に隣り合う流路の間に位置する畝部で電解液が電極において電池反応を行うことで、未反応のまま排出される電解液が減少し、RF電池の電流量が増加すると期待される。
 上記に例示した各流路10は、その少なくとも一部を断続的に形成してもよい。例えば、図1に示す縦溝部11yを断続的に(非連続的に)形成する。そうすることで、電解液が幅方向の畝部だけでなく、長さ方向に分断された隣り合う縦溝部間の畝部を渡るように電極を介して流通し易くなるため、反応電流量が増加することが期待される。
 〈溝部〉
 溝部11は、図2,3に示すように、断面形状が、内部の幅が開口部11aの幅よりも大きい部分を有する形状である。ここでは、開口部11aから底部11bに向かって広がる台形状である。溝部11は、図3に示すように、最も幅が狭い開口部11aにおける幅狭部11nと、底部11bに向かって幅狭部11nよりも幅が大きくなる幅広部11mとを備える。ここでは、底部11bが最も幅が広い幅広部11mである。溝部11が幅広部11mを備えることで、電解液が流通し易く、電解液の圧力損失をより低減できる。溝部11の横断面形状は、幅広部11mを備える形状であれば上記台形状に限定されない。すなわち、たとえば、溝部の側面や底面が曲面となっているような略台形状も、台形状と定義される。また、溝部11の横断面形状は、幅広部11mを備える形状であれば、円形状や半円形状、凸状などでもよい。また、幅広部11mを備える溝部11は、複数本の溝部11(流路10)の一部であってもよい。例えば、一定幅の正方形状や矩形状の溝部と、幅広部11mを有する溝部11とを交互に配置することが挙げられる。
 隣接する溝部11の開口部11aの側縁間の溝間距離11c(上述した畝部の幅に相当)は、隣接する二つの溝部11の少なくとも一方の開口部11aの幅の1倍超であることが好ましい。溝間距離11cは、大きいほど電極との接触面積が増加して、畝部での電極における反応電流量が増加することが期待できるため、開口部11aの幅の3倍以上、さらに7倍以上が好ましい。一方、溝間距離11cが大きいと、双極板1の溝部並列方向の単位長さにおける溝部11(流路10)の本数が少なくなるため、溝間距離11cは、開口部11aの幅の30倍以下、さらに20倍以下が好ましい。
 以下、溝部11の大きさについて、図3を参照して説明する。溝部11の深さdは、双極板1の厚みの10%以上45%以下が挙げられる。双極板1の両面に溝部11を備える場合、RF電池の構造上、平面透視した場合に重なる位置に溝部11を設ける(図2を参照)ことが好ましい。このとき、双極板1の厚み方向に対向する一対の溝部11間の厚みが薄いと機械的強度が十分とできない虞がある。より好ましい溝部11の深さdは、双極板1の厚みの10%以上35%以下である。溝部11は、双極板1を平面透視した場合に重ならない位置に設けてもよい。
 双極板1に設ける溝部11は、その横断面積が大きいほど溝部11を流通する電解液の圧力損失を低減できると期待できる。そこで、まず双極板1に溝部11を形成するにあたり、成形し易い正方形状の溝部11を考える。例えば、開口部11aの幅を上記溝部11の深さ(dとする)と同じとする断面積dの正方形状の溝部11(図3のp-p-r-rで囲まれる部分)とすると、溝間距離11cは隣接する溝部11の開口部11aの側縁p-p間の距離となる。一方、溝間距離11cは、大きいほど双極板1と電極との接触面積が増加して、畝部での電極における反応電流量が増加することが期待できる。そこで、次に電極における反応電流量を増加することを考え、溝間距離11cを大きくすることを考える。例えば、各溝部11の開口部11aの幅を小さくすると、溝間距離11cは隣接する溝部11の開口部11aの側縁q-q間の距離となり、2×(q-p間の距離)分大きくなる。しかし、開口部11aの幅が小さくなると、溝部11の面積は、2×(p-q-rで囲まれる部分)分減少する。つまり、本実施形態では、溝部11を流通する電解液の圧力損失と、電極における反応電流量とのバランスを考慮して、開口部11aの幅と、溝部11の横断面積(幅広部)を決定すればよい。例えば開口部11aの幅をxとしたとき、溝部11の横断面積がxの10倍以上、さらに15倍以上となるように幅広部を決定することが挙げられる。一方、溝部11の横断面積がxの30倍以下、さらに20倍以下となるように幅広部を決定することで、双極板1の機械的強度を十分とすることができる。開口部11aの幅は、0.1mm以上1mm以下、好ましくは0.1mm以上0.8mm以下、さらに好ましくは0.1mm以上0.5mm以下であることが挙げられる。
 双極板1の材質には、電流は通すが電解液は通さない導電性材料を用いることができる。加えて、耐酸性および適度な剛性を有する材料であることがより好ましい。長期に亘って溝部(流路)の断面形状や寸法が変化し難く、流路の効果を維持し易いからである。このような材料としては、例えば、炭素を含有する導電性材料が挙げられる。より具体的には、黒鉛およびポリオレフィン系有機化合物または塩素化有機化合物から形成される導電性プラスチックが挙げられる。また、黒鉛の一部をカーボンブラックおよびダイヤモンドライクカーボンの少なくとも一方に置換した導電性プラスチックでもよい。ポリオレフィン系有機化合物としては、ポリエチレン、ポリプロピレン、ポリブテンなどが挙げられる。塩素化有機化合物としては、塩化ビニル、塩素化ポリエチレン、塩素化パラフィンなどが挙げられる。双極板がこのような材料から形成されることで、双極板の電気抵抗を小さくすることができる上に、耐酸性に優れる。
 〔双極板の製造方法〕
 本実施形態の双極板の製造方法は、以下のベース板準備工程と、分割片準備工程と、接合工程とを備える。以下、各工程を順に説明する。
 〈ベース板準備工程〉
 導電性分散材とマトリックス樹脂とを含む材料(複合導電性プラスチック)で構成されるベース板を準備する。ここでは、平板状のベース板を準備する。導電性分散材としては、黒鉛やカーボンブラック、ダイヤモンドライクカーボンなど無機材料の粉末や繊維が挙げられる。導電性カーボンブラックとして適しているのは、アセチレンブラックとファーネスブラックが挙げられる。また、アルミニウムなどの金属の粉末や繊維が挙げられる。
マトリックス樹脂としては、ポリエチレン、ポリプロピレン、ポリブテン、塩化ビニル、塩素化ポリエチレン、塩素化パラフィンなどが挙げられる。
 〈分割片準備工程〉
 上述した材料で構成される所定断面形状の長尺材であり、電解液が流通する溝部の一部となる分割片を準備する。ここでは、図2で示される隣接する溝部11間の部分に相当する断面台形状の分割片を準備する。分割片を構成する材料は、ベース板の材料と同一であることが好ましいが、例えば、導電性分散材やマトリックス樹脂の種類を異ならせて相違させてもよい。分割片は、例えば、上記導電性分散材と熱可塑性樹脂の各粉末原料を混合して圧縮成形したり、溶融した熱可塑性樹脂に導電性分散材を混合した液状材料を射出成形したりすることで所望の形状とすることができる。
 〈接合工程〉
 上記ベース板の両面に上記分割片を所定の間隔で接合し、ベース板と分割片とで囲まれる空間で上述した溝部11(図2を参照)を形成する。このとき、形成される溝部11において、内部の幅が開口部11aの幅よりも大きい幅広部11mが形成されるように分割片をベース板に接合する。このとき、断面台形状の分割片の上辺側の面をベース板の表面に接合する。接合された各部は、図2で示される双極板1のうち、ベース板が両面に形成された溝部11の対向する底部11b間に配設される部分となり、分割片が隣接する溝部11間に配設される部分となり、溝部11を備える双極板2を容易に製造することができる。
 《双極板以外のRF電池の構成》
 上記双極板1の説明にあたり、双極板1以外のRF電池100(図5,6を参照)の構成は従来と同じものを採用することができると述べた。本実施形態のRF電池は、正極電極、隔膜、負極電極を重ねた電池セルと、額縁状の枠体に一体化された双極板を有するセルフレームとを備え、電池セルをセルフレームで挟んで複数積層しており、双極板に上述した本実施形態の溝部11を備える双極板1を用いている。つまり、隣接する各セルフレームの双極板1の間に一つの電池セルが形成されており、双極板1を挟んで表裏に、隣り合う電池セルの正極電極と負極電極とが配置されている。
 電解液には、図5に示すように、バナジウムイオンを各極活物質としたバナジウム系電解液が好適に利用できる。その他、正極活物質として鉄(Fe)イオンを、負極活物質としてクロム(Cr)イオンを用いた鉄(Fe2+/Fe3+)-クロム(Cr3+/Cr2+)系電解液や、正極電解液にマンガン(Mn)イオン、負極電解液にチタン(Ti)イオンを用いるマンガン(Mn2+/Mn3+)-チタン(Ti4+/Ti3+)系電解液が好適に利用できる。
 <実施形態2>
 図4を参照して実施形態2の双極板2を説明する。双極板2の基本的構成は、実施形態1の双極板1と同様であり、溝部11の形態(横断面形状)のみが異なる。ここでは、この相違点を説明し、その他の構成については説明を省略する。図4に示す双極板2は、説明の便宜上、正極電極104及び負極電極105よりも厚みを厚くしている。
 溝部11は、開口部11aから底部11bに向かって一定の幅の幅狭部11nと、この幅狭部11nに続いて底部11bまで一定の幅の幅広部11mとを備える凸状である。幅狭部11nと幅広部11mとの比率を調整することで、電解液の流れを調整し易く、溝部11を流通する電解液の圧力損失を低減し易い。幅狭部11nの深さは、溝部11の深さの20%以上50%以下が挙げられる。上記幅狭部11nの深さが、溝部11の深さの20%以上であることで、開口部11a近傍の機械的強度を確保することができ、50%以下であることで、溝部11を流通する電解液の圧力損失を十分に低減できる。上記幅狭部11nの深さは、さらに好ましくは25%以上40%以下が挙げられる。
 本実施形態2の双極板2は、実施形態1と同様の製造方法(ベース板及び分割片の準備⇒ベース板と分割片とを接合)によって製造することができる。この場合、以下の3パターンが挙げられる。1パターン目は、平板状のベース板と、隣接する溝部11間における幅広部11mの領域部分に相当する分割片Aと、隣接する溝部11間における幅狭部11nの領域部分に相当する分割片Bとを準備し、ベース板に分割片Aを接合し、この分割片Aのベース板と対向する面に分割片Bをそれぞれ接合する方法である。分割片Aは、略矩形状であり、分割片Bは、分割片Aに対して幅が大きく、厚みが薄い平板状である。分割片Aに分割片Bを接合することで、断面T字状となる。このとき、ベース板の表面に略矩形状の分割片Aの表面を接合し、この分割片Aの上記表面の対向面に平板状の分割片Bの表面を接合する。2パターン目は、平板状のベース板と、上記分割片Aと分割片Bとが一体成形された断面T字状の分割片Cとを準備し、ベース板と分割片Cとを接合する方法である。このとき、断面T字状の分割片Cの幅が狭い片(上記分割片Aに相当する部分)をベース板の表面に接合する。3パターン目は、ベース板としてプレス成形によって上記分割片Aに相当する部分を形成したベース板と、上記分割片Bとを準備し、ベース板と分割片Bとを接合する方法である。このとき、ベース板の突出した部分に平板状の分割片Bの表面を直交するように接合する。いずれのパターンであっても、ベース板と分割片とを所定の間隔で接合することで、溝部11を備える双極板2を製造することができる。
 <解析例1>
 解析例1では、双極板に互いに噛み合う櫛歯形状の流路を設けた4つのモデルのRF電池を想定した流体シミュレーションを行い、RF電池の圧力損失を求めた。本解析例では、正極電極-隔膜-負極電極を重ねた電池セルを、双極板を備えるセルフレームで挟んだ単セル構造のRF電池とした。以下に、溝の形態が異なる4つのモデルの詳細な条件を示す。
 〔モデル1〕
 ・双極板
  長さ:31.5(mm)、幅:28.9(mm)、厚み:3.0(mm)
  流路形状:嵌合型の対向櫛歯形状
  流路(縦溝)数:導入路6本×排出路6本
  流路(縦溝)長さ:26.2(mm)
  流路(横溝)長さ:28.9(mm)
  溝部の断面形状:蟻溝状(図2及び図3を参照)
  溝部の開口部の幅:0.3(mm)
  溝部の底部の幅:1.3(mm)
  溝部の深さ:1.3(mm)
  溝間距離:2.3(mm)
  幅方向両端部の溝のみ、開口部の幅:0.3(mm)、底部の幅:0.8(mm)、深さ1.3(mm)で、開口部から底部に繋がる辺の一辺と底部の辺とのなす角が直角である直角台形状である(図示せず)
 ・電極
  長さ:31.5(mm)、幅:28.9(mm)、厚み:0.4(mm)
 ・電解液
  硫酸V水溶液(V濃度:1.7mol/L、硫酸濃度:4.3mol/L)
  充電状態(State of Charge):50%
  電解液の入口流量:5.4(ml/min)
  電解液の出口流量:自由流出
  流れモデル:層流モデル
 〔モデル2〕
 ・双極板
  長さ:31.5(mm)、幅:28.9(mm)、厚み:3.0(mm)
  流路形状:嵌合型の対向櫛歯形状
  流路(縦溝)数:導入路6本×排出路6本
  流路(縦溝)長さ:26.2(mm)
  流路(横溝)長さ:28.9(mm)
  溝部の断面形状:幅狭部と幅広部からなる凸状(図4を参照)
  溝部の開口部の幅(幅狭部の幅):0.3(mm)
  溝部の底部の幅(幅広部の幅):1.3(mm)
  溝部の深さ:1.3(mm)
  幅狭部の高さ:0.3(mm)、幅広部の高さ:1.0(mm)
  溝間距離:2.3(mm)
  幅方向両端部の溝のみ、開口部の幅:0.3(mm)、底部の幅:0.8(mm)、深さ1.3(mm)、幅狭部の高さ:0.3(mm)、幅広部の高さ:1.0(mm)で、両端部の溝を合わせたときに凸状となる形状である(図示せず)
 ・電極、電解液:モデル1と同じ
 〔モデル3〕
 ・双極板
  長さ:31.5(mm)、幅:28.9(mm)、厚み:3.0(mm)
  流路形状:嵌合型の対向櫛歯形状
  流路(縦溝)数:導入路6本×排出路6本
  流路(縦溝)長さ:26.2(mm)
  流路(横溝)長さ:28.9(mm)
  溝部の断面形状:正方形状
  溝部の開口部(底部)の幅:0.3(mm)
  溝部の深さ:0.3(mm)
  溝間距離:2.3(mm)
 ・電極、電解液:モデル1と同じ
 〔モデル4〕
 ・双極板
  長さ:31.5(mm)、幅:28.9(mm)、厚み:3.0(mm)
  流路形状:嵌合型の対向櫛歯形状
  流路(縦溝)数:導入路6本×排出路6本
  流路(縦溝)長さ:26.2(mm)
  流路(横溝)長さ:28.9(mm)
  溝部の断面形状:正方形状
  溝部の開口部(底部)の幅:1.3(mm)
  溝部の深さ:1.3(mm)
  溝間距離:1.3(mm)
  幅方向両端部の溝のみ、開口部の幅:0.8(mm)、底部の幅:0.8(mm)、深さ1.3(mm)の長方形状である
 ・電極、電解液:モデル1と同じ
 上記4つのモデルにおいて、電極内での圧力分布から得られる圧力損失は、モデル1:118Pa、モデル2:100Pa、モデル3:2kPa、モデル4:62Paであった。溝部の開口部の幅が小さいモデル1,2,3を比べると、開口部の幅が小さい場合でも、溝部の内部の幅が開口部の幅よりも大きい部分を有することで、圧力損失を大幅に低減できることがわかった。溝部の幅が小さいモデル1,2と、溝部の開口部の幅が大きく、かつ横断面が正方形状のモデル4とを比べると、モデル1,2では若干圧力損失が増大するが、許容できる範囲の圧力損失であることがわかった。
 <試験例1>
 試験例1では、解析例1で用いた4つのモデルのRF電池について、実際に電池セルを作製し、RF電池の内部抵抗を調べた。試験例1では、解析例1で述べたように単セル構造のRF電池としているので、RF電池の内部抵抗はセル抵抗率と同義となる。よって、RF電池の内部抵抗は、セル抵抗率として表す。以下に、解析例1で示した条件以外の試験条件を示す。
 (試験条件)
 ・双極板
  黒鉛80%とマトリックス樹脂としてポリプロピレン20%とを圧粉成形した双極板 ・電極
  カーボン電極(SGLカーボンジャパン株式会社製、GDL10AA)
 ・隔膜
  デュポン社製ナフィオン212
 上記解析例1のシミュレーションと同様の条件で電解液を送液した際の開放電圧Vと、0.9Aの充電電流を通電し20秒経過した後のセル電圧Vとを用いて、(V-V)/0.9の式によって、RF電池のセル抵抗率を求めた。
 上記4つのモデルのセル抵抗率は、モデル1:0.86Ω・cm、モデル2:0.86Ω・cm、モデル3:0.90Ω・cm、モデル4:0.98Ω・cmであった。この結果から、溝間距離が開口部の幅よりも大きいことで、セル抵抗率を低減できることがわかった。モデル3について、溝間距離が開口部の幅よりも大きいにもかかわらずセル抵抗率が大きい理由は、溝部の横断面積が小さいため、電解液の流通が不均一となり、電池反応の場が局在化することでセル抵抗率が増大したためであると考えられる。
 本発明の双極板は、レドックスフロー電池といった流体流通型電池の双極板として好適に利用可能である。また、本発明のレドックスフロー電池は、負荷平準用途や瞬低・停電対策用の電池として好適に利用することができる。
 100 レドックスフロー電池(RF電池)
 100C 電池セル
 101 隔膜  102 正極セル  103 負極セル
 104 正極電極  105 負極電極
 106 正極電解液用タンク  107 負極電解液用タンク
 108~111 導管
 112,113 ポンプ
 200 セルスタック
 120 セルフレーム  121 双極板  122 枠体
 123,124 給液用マニホールド  125,126 排液用マニホールド
 127 シール構造
 1,2 双極板
 10 流路  10i 導入路  10o 排出路
 11 溝部  11x 横溝部  11y 縦溝部
 11a 開口部  11b 底部  11c 溝間距離
 11m 幅広部  11n 幅狭部

Claims (8)

  1.  正極用電解液が流通される正極電極と負極用電解液が流通される負極電極との間に挟まれる双極板であって、
     前記正極電極側及び前記負極電極側の各面に前記正極用電解液及び前記負極用電解液が流通する複数の溝部を有する流路を備え、
     前記流路は、
      前記各電解液を前記各電極に導入する導入路と、前記各電解液を前記各電極から排出する排出路とを備え、
      前記導入路と前記排出路とが連通せず独立しており、
     前記溝部は、該溝部の内部の幅が開口部の幅よりも大きい幅広部を備える双極板。
  2.  隣接する前記溝部の前記開口部の側縁間の溝間距離は、前記開口部の幅の1倍超である請求項1に記載の双極板。
  3.  前記溝部は、断面形状が前記開口部から該溝部の底部に向かって広がる台形状である請求項1又は請求項2に記載の双極板。
  4.  前記溝部は、前記開口部から該溝部の底部に向かって一定の幅の幅狭部と、前記幅狭部に繋がって前記底部まで一定の幅の前記幅広部とを備える請求項1又は請求項2に記載の双極板。
  5.  前記開口部の幅をxとしたとき、
     前記溝部の横断面積は、xの10倍以上である請求項1~請求項4のいずれか1項に記載の双極板。
  6.  前記導入路及び前記排出路が櫛歯形状の領域を備え、
     前記導入路と前記排出路とは、それぞれの櫛歯形状の領域が互いに噛み合って対向するように配置されている請求項1~請求項5のいずれか1項に記載の双極板。
  7.  請求項1に記載の双極板を備えるレドックスフロー電池。
  8.  正極用電解液が流通される正極電極と負極用電解液が流通される負極電極との間に挟まれる双極板の製造方法であって、
     導電性分散材とマトリックス樹脂とを含む材料で構成されるベース板を準備するベース板準備工程と、
     前記材料で構成される所定断面形状の長尺材であり、前記各電解液が流通する溝部の一部となる分割片を準備する分割片準備工程と、
     前記ベース板の両面に前記分割片を所定の間隔で接合し、前記ベース板と前記分割片とで囲まれる空間で前記溝部を形成する接合工程とを備え、
     前記接合工程は、前記溝部の内部の幅が開口部の幅よりも大きい幅広部を備えるように分割片を接合する双極板の製造方法。
PCT/JP2015/051778 2014-04-23 2015-01-23 双極板、レドックスフロー電池、及び双極板の製造方法 WO2015162954A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/305,768 US10218007B2 (en) 2014-04-23 2015-01-23 Bipolar plate, redox flow battery, and method for producing bipolar plate
CN201580019212.7A CN106165176B (zh) 2014-04-23 2015-01-23 双极板、氧化还原液流电池及用于制作双极板的方法
EP15783369.0A EP3136490B1 (en) 2014-04-23 2015-01-23 Bipolar plate, redox flow battery, and method for producing bipolar plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014089678A JP6201876B2 (ja) 2014-04-23 2014-04-23 双極板、レドックスフロー電池、及び双極板の製造方法
JP2014-089678 2014-04-23

Publications (1)

Publication Number Publication Date
WO2015162954A1 true WO2015162954A1 (ja) 2015-10-29

Family

ID=54332128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051778 WO2015162954A1 (ja) 2014-04-23 2015-01-23 双極板、レドックスフロー電池、及び双極板の製造方法

Country Status (5)

Country Link
US (1) US10218007B2 (ja)
EP (1) EP3136490B1 (ja)
JP (1) JP6201876B2 (ja)
CN (1) CN106165176B (ja)
WO (1) WO2015162954A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018069996A1 (ja) * 2016-10-12 2018-04-19 住友電気工業株式会社 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
CN108701853A (zh) * 2016-02-29 2018-10-23 住友电气工业株式会社 电极和电解液循环型电池
US20190237791A1 (en) * 2017-09-08 2019-08-01 Sumitomo Electric Industries, Ltd. Redox flow battery cell, redox flow battery cell stack, and redox flow battery
CN110970632A (zh) * 2018-09-29 2020-04-07 中国科学院大连化学物理研究所 一种适用于梯形液流电池的双极板及应用

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6819885B2 (ja) * 2015-06-23 2021-01-27 住友電気工業株式会社 双極板、セルフレーム及びセルスタック、並びにレドックスフロー電池
WO2017142042A1 (ja) * 2016-02-16 2017-08-24 京セラ株式会社 フロー電池
KR102169179B1 (ko) 2016-03-31 2020-10-21 주식회사 엘지화학 바이폴라 플레이트 및 이를 포함하는 레독스 흐름 전지
JP6108008B1 (ja) 2016-05-30 2017-04-05 住友電気工業株式会社 双極板、セルフレーム及びセルスタック、並びにレドックスフロー電池
EP3544104A4 (en) * 2016-11-16 2019-12-04 Sumitomo Electric Industries, Ltd. CELL FRAME, CELL STACK AND REDOX FLOW BATTERY
WO2018092215A1 (ja) * 2016-11-16 2018-05-24 住友電気工業株式会社 セルフレーム、セルスタック、及びレドックスフロー電池
EP3553864B1 (en) * 2016-12-07 2023-05-10 Sumitomo Electric Industries, Ltd. Bipolar plate, cell stack, and redox flow battery
US20180294486A1 (en) * 2016-12-22 2018-10-11 Sumitomo Electric Industries, Ltd. Cell frame, cell stack, and redox flow battery
WO2018134956A1 (ja) 2017-01-19 2018-07-26 住友電気工業株式会社 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
WO2018183222A1 (en) * 2017-03-27 2018-10-04 Danzi Angelo Multipoint electrolyte flow field embodiment for vanadium redox flow battery
WO2018235419A1 (ja) 2017-06-21 2018-12-27 住友電気工業株式会社 レドックスフロー電池
KR20200035908A (ko) 2017-07-27 2020-04-06 스미토모덴키고교가부시키가이샤 셀프레임, 셀스택, 및 레독스 플로우 전지
CN109841867B (zh) * 2017-11-28 2023-12-22 中国科学院大连化学物理研究所 一种适用于梯形液流电池电堆的液流框
CN111819722B (zh) 2018-02-27 2023-11-21 住友电气工业株式会社 电池组以及氧化还原液流电池
WO2019234868A1 (ja) * 2018-06-06 2019-12-12 住友電気工業株式会社 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
WO2019234867A1 (ja) * 2018-06-06 2019-12-12 住友電気工業株式会社 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
JP7068613B2 (ja) 2018-08-13 2022-05-17 住友電気工業株式会社 レドックスフロー電池セル及びレドックスフロー電池
CN111224144B (zh) * 2018-11-26 2024-04-16 中国科学院大连化学物理研究所 一种液流电池电堆结构及其应用
EP3926720A4 (en) 2019-02-14 2022-06-15 Sumitomo Electric Industries, Ltd. BIPOLAR PLATE, CELL FRAME, CELL STACK AND REDOX FLOW BATTERY
US11701826B2 (en) * 2020-08-31 2023-07-18 Nissan North America, Inc. 3-D printer apparatus
CN116235325A (zh) 2020-10-06 2023-06-06 住友电气工业株式会社 电池堆和氧化还原液流电池
TWI767579B (zh) * 2021-02-22 2022-06-11 財團法人工業技術研究院 尾端封閉式燃料電池及其陽極雙極板
GB2610372A (en) 2021-07-26 2023-03-08 Invinity Energy Systems Ireland Ltd Bipolar plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305339A (ja) * 2006-05-09 2007-11-22 Sumitomo Electric Ind Ltd 電解液循環型電池用セル
US20120244395A1 (en) * 2009-12-18 2012-09-27 Perry Michael L Flow battery with interdigitated flow field
JP2013518362A (ja) * 2010-01-25 2013-05-20 ラモット アット テル−アヴィヴ ユニヴァーシテイ リミテッド バイポーラプレート及び該バイポーラプレートを含む再生型燃料電池積層体
WO2013095378A1 (en) * 2011-12-20 2013-06-27 United Technologies Corporation Flow battery with mixed flow

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2786027B1 (fr) * 1998-11-12 2006-04-28 Commissariat Energie Atomique Plaques bipolaires pour pile a combustible et pile a combustible comprenant ces plaques
JP3682244B2 (ja) 2001-06-12 2005-08-10 住友電気工業株式会社 レドックスフロー電池用セルフレーム及びレドックスフロー電池
JP4231399B2 (ja) 2003-02-12 2009-02-25 新日本製鐵株式会社 固体高分子型燃料電池用セパレータ製造装置及び製造方法
JP4291020B2 (ja) 2003-03-13 2009-07-08 本田技研工業株式会社 燃料電池用セパレータ及びそれの製造方法
JP5381647B2 (ja) 2009-11-26 2014-01-08 トヨタ紡織株式会社 燃料電池用セパレータ及びその製造方法
US20130029196A1 (en) * 2011-07-29 2013-01-31 Pratt & Whitney Rocketdyne, Inc. Flow battery cells arranged between an inlet manifold and an outlet manifold
CN102938468A (zh) 2012-12-03 2013-02-20 新源动力股份有限公司 一种燃料电池强化密封方法
CN103413956A (zh) 2013-08-14 2013-11-27 天津大学 一种质子交换膜燃料电池流道

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305339A (ja) * 2006-05-09 2007-11-22 Sumitomo Electric Ind Ltd 電解液循環型電池用セル
US20120244395A1 (en) * 2009-12-18 2012-09-27 Perry Michael L Flow battery with interdigitated flow field
JP2013518362A (ja) * 2010-01-25 2013-05-20 ラモット アット テル−アヴィヴ ユニヴァーシテイ リミテッド バイポーラプレート及び該バイポーラプレートを含む再生型燃料電池積層体
WO2013095378A1 (en) * 2011-12-20 2013-06-27 United Technologies Corporation Flow battery with mixed flow

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108701853A (zh) * 2016-02-29 2018-10-23 住友电气工业株式会社 电极和电解液循环型电池
EP3425715A4 (en) * 2016-02-29 2019-02-20 Sumitomo Electric Industries, Ltd. ELECTRODE AND BATTERY OF ELECTROLYTIC SOLUTION CIRCULATION TYPE
WO2018069996A1 (ja) * 2016-10-12 2018-04-19 住友電気工業株式会社 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
CN108370056A (zh) * 2016-10-12 2018-08-03 住友电气工业株式会社 双极板、单元框架、单元堆和氧化还原液流单元
JPWO2018069996A1 (ja) * 2016-10-12 2019-08-15 住友電気工業株式会社 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
US20190237791A1 (en) * 2017-09-08 2019-08-01 Sumitomo Electric Industries, Ltd. Redox flow battery cell, redox flow battery cell stack, and redox flow battery
US10608275B2 (en) * 2017-09-08 2020-03-31 Sumitomo Electric Industries, Ltd. Redox flow battery cell, redox flow battery cell stack, and redox flow battery
CN110970632A (zh) * 2018-09-29 2020-04-07 中国科学院大连化学物理研究所 一种适用于梯形液流电池的双极板及应用
CN110970632B (zh) * 2018-09-29 2023-07-28 中国科学院大连化学物理研究所 一种适用于梯形液流电池的双极板及应用

Also Published As

Publication number Publication date
EP3136490A1 (en) 2017-03-01
US20170047594A1 (en) 2017-02-16
EP3136490B1 (en) 2018-12-26
JP2015210849A (ja) 2015-11-24
JP6201876B2 (ja) 2017-09-27
CN106165176B (zh) 2019-05-14
EP3136490A4 (en) 2017-05-03
US10218007B2 (en) 2019-02-26
CN106165176A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
JP6201876B2 (ja) 双極板、レドックスフロー電池、及び双極板の製造方法
EP3098888B1 (en) Redox flow battery
US10593964B2 (en) Bipolar plate, cell frame, cell stack and redox-flow battery
CN107507993B (zh) 质子交换膜燃料电池金属双极板
KR20190015170A (ko) 쌍극판, 셀 프레임, 셀 스택, 및 레독스 플로우 전지
CN104051772B (zh) 用于冲压板燃料电池的密封设计
WO2016072192A1 (ja) 電池セル、およびレドックスフロー電池
CN107634241B (zh) 用于液流电池的液流框
CN103094600B (zh) 一种液流半电池和具有其的液流电池堆
KR101807378B1 (ko) 부식을 제어하기 위한 전기화학 장치 및 방법
WO2018134956A1 (ja) 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
JP2015195153A (ja) 燃料電池
JP2017532733A (ja) 電気化学反応器のための流体フロー案内プレート及び当該プレートを備える接合体
CN108550885A (zh) 一种全钒液流电池用电极框
CA2985594C (en) Fuel cell stack
TWI524585B (zh) 電化學液流電池單元組件及其雙極板
US10218025B2 (en) Flow-guiding plate for a fuel cell
TW202036970A (zh) 電池單元、單元堆及氧化還原電池
TW202036971A (zh) 電池單元、單元堆及氧化還原電池
JPWO2020012617A1 (ja) 電池セル、セルスタック、及びレドックスフロー電池
JP2020107481A (ja) 集電板ユニットおよびレドックスフロー電池
KR20200055311A (ko) 후면 유로를 포함하는 매니폴드 및 레독스 흐름 전지
CN213936254U (zh) 一种多腔室液流电池板框及单电池
US20140057195A1 (en) Device of Charging/Discharging Electricity by Using Two Flows
WO2020136721A1 (ja) 電池セル、セルスタック、及びレドックスフロー電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15783369

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015783369

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015783369

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15305768

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE