WO2015161659A1 - 一种同时制备高纯钒和杂多酸催化剂的方法 - Google Patents

一种同时制备高纯钒和杂多酸催化剂的方法 Download PDF

Info

Publication number
WO2015161659A1
WO2015161659A1 PCT/CN2014/093864 CN2014093864W WO2015161659A1 WO 2015161659 A1 WO2015161659 A1 WO 2015161659A1 CN 2014093864 W CN2014093864 W CN 2014093864W WO 2015161659 A1 WO2015161659 A1 WO 2015161659A1
Authority
WO
WIPO (PCT)
Prior art keywords
extractant
vanadium
magnetic
amine
neutral
Prior art date
Application number
PCT/CN2014/093864
Other languages
English (en)
French (fr)
Inventor
宁朋歌
曹宏斌
张懿
Original Assignee
中国科学院过程工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院过程工程研究所 filed Critical 中国科学院过程工程研究所
Publication of WO2015161659A1 publication Critical patent/WO2015161659A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/22Obtaining vanadium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the field of hydrometallurgy and metallurgical material preparation, and particularly relates to a method for simultaneously preparing high-purity vanadium and heteropoly acid catalysts.
  • Vanadium, rare earth and titanium are listed as national first-level strategic reserve resources and are widely used. They are called “industrial MSG”. In recent years, the price of vanadium resources has been fluctuated by the impact of the steel market. The manufacturers of related enterprises are suffering. In order to get out of the economic crisis, many manufacturers have turned their attention to the high-end product market and intend to gain market competitiveness by increasing the added value of products.
  • the market demand for vanadium batteries, vanadium-aluminum alloys and vanadium catalysts continues to expand, further increasing the requirements for high-purity vanadium, which brings an opportunity for the development of high-purity vanadium/spectral pure vanadium pentoxide.
  • the preparation of high-purity vanadium is generally purchased from the market with 98.5% of ordinary vanadium products, and after several times vanadium removal and crystallization, a high-purity vanadium product with a purity greater than 99.5% is obtained, but the vanadium loss is large and the precipitation is repeated. Crystallization, the preparation process is complicated.
  • CN 102764897A discloses a preparation method of high-purity vanadium powder, which aims to solve the problem of high impurity content of vanadium powder, especially high content of O and N, and meets the requirements of powder metallurgy technology in terms of raw material purity, and the preparation steps include:
  • the surface of the vanadium block is activated by using alkali liquor, distilled water and ethanol or acetone, and then placed in a closed container.
  • the closed vessel containing the vanadium block is charged into a hydrogenation hydrogen absorption system, dried and degassed, and the vanadium block is removed after degassing.
  • High-purity hydrogenated vanadium particles are obtained by hydrogenation at 200-500 ° C; the vanadium hydride vanadium is ground and dehydrogenated in a closed vessel to obtain submicron vanadium powder, wherein the oxygen content is controlled below 600 ppm, and the nitrogen content is controlled at Below 250ppm.
  • CN 101538652A discloses a combination of alkali leaching, alkali immersion liquid adsorption, acid leaching, ion exchange, desorption vanadium removal, and vanadium precipitation. The process can produce ordinary vanadium.
  • CN 1073414A discloses a method for recovering vanadium chromium from a waste liquid containing vanadium and chromium by chemical method, which has practical significance only for a dilute solution containing low chromium and vanadium, and is more suitable for factory drainage treatment, and is not suitable for high concentration tail liquid. Recycling.
  • US 4,344,924 uses a quaternary amine extractant to extract vanadium chromium from water in one step under alkaline conditions and separate it by pH adjustment.
  • the technical process is relatively simple, and high purity vanadium and chromium products can be obtained, but due to the limited capacity of the extractant, it is difficult to obtain a high concentration of vanadium solution.
  • CN 101121962A is a vanadium and chromium separation method proposed by the applicant for an aqueous solution containing a high concentration of vanadium and chromium, and can produce up to 99.5% vanadium.
  • the patented technology has good separation effect on vanadium and chromium, and has been industrially implemented. And stable operation, but this technology is suitable for the new process of vanadium and chromium solution treatment, and is not suitable for the transformation of existing process.
  • CN 201310377023.X discloses a method for preparing high-purity vanadium by extracting heteropoly acid with an amine, which can obtain 99.9% of high-purity vanadium pentoxide product, but is easy to produce high chemical oxygen demand due to dissolution of the extractant in the aqueous phase.
  • wastewater is measured and high-purity vanadium pentoxide is extracted from a high-concentration vanadium solution containing trace impurities, the vanadium loss is large.
  • the invention aims at the current economic decline of the vanadium industry, the purity of the vanadium product is not high, and the reality that the vanadium flow battery, the demanding catalyst, the pharmaceutical raw material, some luminescent materials and the like are required to meet the purity requirements of the vanadium product cannot be satisfied.
  • the method for simultaneously preparing high-purity vanadium and heteropoly acid catalysts can prepare high-purity vanadium pentoxide products by simple operation, has low requirements on equipment, and is not easy to produce organic wastewater, has low vanadium loss, and can prepare heteropoly acid.
  • the catalyst is used as desulfurization and denitration.
  • Ordinary vanadium solution is usually doped with impurities such as chromium, silicon, phosphorus, tungsten, molybdenum, arsenic, etc.
  • impurities such as chromium, silicon, phosphorus, tungsten, molybdenum, arsenic, etc.
  • acid is added to the solution, phosphorus tungsten, phosphotungstic vanadium, silicon tungsten, phosphomolybdenum tungsten, silicon molybdenum tungsten are formed.
  • molybdenum, vanadium, arsenic, tungsten Polyacid, preparing magnetic nanoparticles of grafted amines and neutral extractants, extracting impurities contained in the heteropolyacid removal solution in the ordinary vanadium solution, and removing most impurities, thereby obtaining high-purity pentoxide Vanadium products.
  • a method for simultaneously preparing a high-purity vanadium and heteropolyacid catalyst wherein an amine-based extractant and a neutral extractant are grafted on a surface of a magnetic porous composite to prepare magnetic nanoparticles for extracting heteropolyacids in a vanadium-containing solution, and The raffinate is subjected to vanadium precipitation to obtain high-purity vanadium pentoxide.
  • the invention extracts the heteropoly acid in the vanadium-containing solution by using the magnetic nanoparticles of the graft amine extracting agent and the neutral extracting agent, and separates the magnetic nanoparticles after extracting the heteropoly acid by using a magnet to obtain the magnetic nanometer loaded with the heteropoly acid.
  • the granules and the purified vanadium-containing raffinate, the magnetic nanoparticles supporting the heteropoly acid can be used as a desulfurization and denitration catalyst after being simply washed with water and dried, and then the vanadium-containing raffinate is concentrated, and then the ammonium salt is added to the concentrate to obtain a partial deviation.
  • the ammonium vanadate solid is washed with pure water, dried, and calcined in an oxygen atmosphere to obtain high-purity vanadium pentoxide having a purity greater than 99.9%.
  • the magnetic porous composite may be a magnetic porous composite prepared using magnetic nanoparticles and a silica sol; preferably prepared by using a dispersion polymerization method.
  • the magnetic nanoparticles are Fe 3 O 4 magnetic nanoparticles, preferably the magnetic nanoparticles are synthesized using a precipitation method.
  • the magnetic porous composite is a SiO 2 @Fe 3 O 4 magnetic porous composite.
  • the silica sol is prepared by a hydrolysis polymerization process.
  • the magnetic porous composite is grafted with an amine extractant and a neutral extractant prior to activation and introduction of a silane coupling agent.
  • the amine extractant is a fatty amine having a carbon number greater than or equal to 10, preferably a primary amine One or a combination of two or more of an amine, a secondary amine, a tertiary amine, and a quaternary ammonium salt; more preferably a trimethylalkylamine, a trialkyl tertiary amine or a halogenated dimethyl tertiary amine
  • One type or a combination of two or more types is particularly preferably one or a combination of two or more of N236, N235, Alamine 336, Aliquat 336, N1923, Primene 81R, Primene JMT, 7203, and 7301.
  • the neutral extractant is one or a combination of two or more of a neutral phosphorus extractant, a neutral oxygen-containing extractant, a neutral sulfur-containing extractant, and a chelate extractant; further preferably three One or a combination of two or more kinds of alkylphosphine oxides, ketones, sulfoxides, anthraquinones, and hydroxyquinolines, particularly preferably TRPO, MIBK, dioctyl sulfoxide, 7-enalkyl- One or a combination of two or more of octahydroxyquinoline, LIX64, LIX63, LIX65N, and N530.
  • the method of the present invention includes the following steps:
  • vanadium raffinate is concentrated, the pH of the aqueous phase is adjusted to 7-9, and ammonium salt is added thereto to precipitate ammonium metavanadate, and the precipitate is washed and dried, and then calcined to obtain high-purity vanadium pentoxide.
  • the magnetic nanoparticles in the step (1) may be Fe 3 O 4 magnetic nanoparticles, preferably the magnetic nanoparticles are synthesized by a precipitation method, and the precipitation method is synthesized as a prior art.
  • the precipitation method comprises the steps of: dissolving ferric chloride and ferrous chloride in a nitrogen-containing water at a mass ratio of 1-5:1, followed by vigorously stirring at 40-80 ° C for 1-3 h, Then add 2-4mol/L aqueous ammonia solution to adjust the pH value of the solution to 10.5-11.5. After 1-3h reaction, collect the product Fe 3 O 4 magnetic nanoparticles, and wash the obtained product to a pH of 6-8, preferably about 7 .
  • the collection is performed by centrifugation.
  • the magnetic porous composite is a SiO 2 @Fe 3 O 4 magnetic porous composite.
  • the silica sol of the step (1) can be produced by a hydrolysis polymerization method, and the hydrolysis polymerization method is a prior art.
  • the preparation step is: mixing ethanol and ethyl orthosilicate in a mass ratio of 3-5:1, for example, 3.5:1, 4.2:1, 4.9:1, etc., and placing at 10-20 ° C 5- After 50 min, magnetic stirring was carried out at 40-70 ° C for 1-3 h, then an aqueous solution of nitric acid was added, and the mixture was cooled to reflux for 1-4 h to obtain a silica sol.
  • the mass ratio of the orthosilicate to nitric acid is from 10 to 30:1, for example, 12:1, 15:1, 22:1, 28:1, and the like.
  • the aqueous solution of nitric acid is added in such a manner that it is added dropwise.
  • the mass ratio of nitric acid to water in the aqueous solution of nitric acid is 1:50-75, for example, 1:55, 1:60, 1:66, 1:72, and the like.
  • the magnetic porous composite prepared by the step (1) can be prepared by a dispersion polymerization method, preferably by reacting urea and formaldehyde to form a urethane resin-coated SiO 2 @Fe 3 O 4 magnetic porous composite. .
  • the step of dispersing the polymerization is: dissolving 40-80 g of urea in 200-300 ml, preferably 250 mL of SiO 2 sol, then adding 10-30 g of Fe 3 O 4 magnetic particles, adjusting the pH of the solution to 2-3, and then adding Formaldehyde 50-60 mL, stirred for 5 h or more, preferably 10-15 h, after which the particles are separated, dried, and calcined to remove the resin template to obtain a magnetic porous composite.
  • the agitation is magnetic stirring.
  • the separation is carried out by centrifugation.
  • the drying temperature is from 90 to 120 ° C, for example, 95 ° C, 102 ° C, 108 ° C, 115 ° C, etc., preferably 105 ° C.
  • the calcination temperature is 250 ° C or higher, for example, 260 ° C, 290 ° C, 330 ° C, 360 ° C, 420 ° C, etc., preferably 300-400 ° C; the calcination time is 3 h or more, for example, 3.5 h, 4.2h, 5.5h, 7.6h, 8.5h, etc., preferably 5-8h.
  • step (2) can be carried out by methanesulfonic acid.
  • the activation is for introducing a Si-OH group to the surface of the magnetic porous composite, and introducing a silane coupling agent for the purpose of reacting the extracting agent with the silane coupling agent to graft into the magnetic porous composite, the specific steps
  • the reaction is carried out by using methanesulfonic acid to activate the magnetic porous composite, and adding a silane coupling agent to heat the reaction in a water bath. After the completion of the reaction, the activated magnetic porous composite is separated and washed by a magnet.
  • the methanesulfonic acid has a mass concentration of from 0.5 to 3%, preferably 1%.
  • the temperature of the heating reaction is 40-80 ° C, preferably 60 ° C; the time of the heating reaction is 1 h or more, preferably 3 h.
  • the silane coupling agent used is ⁇ -chloropropyltrimethoxysilane.
  • the amine extractant of step (2) may be a fatty amine having a carbon number of greater than or equal to 10, preferably a primary amine, a secondary amine, a tertiary amine or a quaternary ammonium salt.
  • a primary amine preferably a primary amine, a secondary amine, a tertiary amine or a quaternary ammonium salt.
  • the neutral extractant is one or a combination of two or more of a neutral phosphorus extractant, a neutral oxygen-containing extractant, a neutral sulfur-containing extractant, and a chelate extractant; further preferably three Alkylphosphine oxide One or a combination of two or more of the ketones, ketones, sulfoxides, anthraquinones, and hydroxyquinolines, particularly preferably TRPO, MIBK, dioctyl sulfoxide, 7-enalkyl-8 hydroxyquinoline One or a combination of two or more of LIX64, LIX63, LIX65N, and N530.
  • the amine extractant and the neutral extractant are grafted on the surface of the magnetic porous composite to prepare magnetic nanoparticles, and the impurities in the vanadium solution are separated by the extraction of the heteropoly acid by the amine and the neutral extractant, and the extraction is carried out.
  • the heteropoly acid is supported on the magnetic nanoparticles to prepare a heteropoly acid magnetic nanoparticle catalyst containing vanadium, tungsten, molybdenum, silicon, phosphorus and the like.
  • the method of grafting the amine extractant and the neutral extractant in step (2) may employ a chemical modification method.
  • the method of grafting an amine extractant and a neutral extractant comprises the steps of: adding a magnetic porous composite activated and introduced into a coupling agent to an amine extractant and a neutral extractant solution, and heating the reaction, The magnetic porous composite is separated and dried.
  • the heating temperature is 50-120 ° C, for example 55 ° C, 67 ° C, 80 ° C, 100 ° C, 115 ° C, etc., preferably 70-90 ° C; heating time is 3 h or more, for example 3.5 h 4.2h, 5.5h, 7.6h, 8.5h, etc., preferably 6-8h.
  • the drying temperature is 50-100 ° C, for example 55 ° C, 67 ° C, 80 ° C, 90 ° C, 99 ° C, etc., preferably 80 ° C.
  • the amine extractant and the neutral extractant have a mass of from 1 to 10:1, such as from 2:1, 6:1, 9:1, etc., preferably from 3-5:1.
  • the amine extractant and the neutral extractant have a mass concentration of 10-15%. Means two kinds The concentration of the sum of the agents in the solution.
  • the pH in step (3) may be from 2 to 6, preferably from 3 to 5.
  • the agitation time is from 20 to 80 min, preferably from 30 to 60 min.
  • the standing time is 15 minutes or more, preferably 30-60 minutes.
  • the concentration in the step (4) is to evaporate and concentrate the vanadium raffinate to a vanadium concentration of 20 g/L or more, for example, 25 g/L, 30 g/L, 38 g/L, 46 g/L, etc., preferably 40 g/ L.
  • the solid-liquid ratio of the added ammonium salt to the vanadium solution is 20 g/L or more, for example, 25 g/L, 30 g/L, 38 g/L, 46 g/L, etc., preferably 40-60 g/L.
  • the calcination temperature is 400-800 ° C, for example 420 ° C, 500 ° C, 550 ° C, 610 ° C, 700 ° C, 770 ° C, and the like.
  • the present invention uses a magnetic nanoparticle solid phase extraction method prepared by a grafted amine and a neutral extractant to extract a heteropoly acid from a vanadium solution containing impurities to remove impurities to a maximum extent to prepare a high purity vanadium product.
  • a magnetic nanoparticle solid phase extraction method prepared by a grafted amine and a neutral extractant to extract a heteropoly acid from a vanadium solution containing impurities to remove impurities to a maximum extent to prepare a high purity vanadium product.
  • the vanadium-containing heteropoly acid catalyst prepared in situ has significant advantages for desulfurization and denitrification.
  • the invention has low requirements on equipment, simple operation, and is not easy to produce waste water containing organic matter, and the loss of vanadium is small, and a heteropoly acid catalyst can be prepared at the same time.
  • the solution containing the chromium-containing vanadium slag leaching solution is a vanadium-containing solution.
  • the composition of the solution is: 16 g / liter of vanadium, 0.5 g / liter of chromium, 0.5 g / liter of tungsten, 0.05 g / liter of silicon, 0.05 g / Phosphorus, 0.5 g / liter of molybdenum, 0.1 g / liter of arsenic.
  • Ethyl alcohol and tetraethyl orthosilicate were mixed at a ratio of 3.5:1, placed at 15 ° C for 10 min, then magnetically stirred at 60 ° C for 2 h, added dropwise to an aqueous solution of nitric acid, and cooled to reflux for 3 h to obtain a silica sol;
  • Dissolve 40g urea in 250mL SiO 2 sol then add 20g Fe 3 O 4 magnetic particles, adjust the pH value of the solution to 3.0 interval, then quickly add 50mL of formaldehyde, magnetically stir for 10h, then centrifuge the particles to dry at 105 ° C, and Calcination at 300 ° C for 5 h to obtain a magnetic porous composite;
  • the raffinate is heated to 105 ° C, evaporated to about 40 g / L, the dosage of ammonium chloride and the solid-liquid ratio of the vanadium solution after evaporation is 50 g / L solution, divided into two, stirred and sink Vanadium 120min, washing 3 times, partial
  • the solid-liquid ratio of ammonium vanadate to the total washing liquid was 35 g/L of washing water, dried in an oven for 7 hours, placed in a muffle furnace and heated to 600 degrees, and dried in an oxygen atmosphere for 5 hours.
  • the obtained vanadium pentoxide was analyzed by XRF to be 99.958%.
  • the solution containing the chromium-containing vanadium slag leaching solution is a vanadium-containing solution.
  • the composition of the solution is: 16 g / liter of vanadium, 0.5 g / liter of chromium, 0.5 g / liter of tungsten, 0.05 g / liter of silicon, 0.05 g / Phosphorus, 0.5 g / liter of molybdenum, 0.1 g / liter of arsenic.
  • Ethanol and ethyl orthosilicate were mixed in a ratio of 3:1, placed at 10 ° C for 5 min, then magnetically stirred at 40 ° C for 1 h, dropwise added aqueous solution of nitric acid, and cooled to reflux for 1 h to obtain a silica sol;
  • the raffinate is heated to 105 ° C, evaporated to about 40 g / L, the dosage of ammonium chloride and the solid-liquid ratio of the vanadium solution after evaporation is 40 g / L solution, divided into two, stirred and sink Vanadium for 120min, washing 3 times, the ratio of solid to liquid of ammonium metavanadate and total washing liquid is 35g / L washing water, dried in an oven for 7h, placed in a muffle furnace and heated to 600 ° C, dried in an oxygen atmosphere for 5h .
  • the obtained vanadium pentoxide was analyzed by XRF to be 99.93%.
  • the solution containing the chromium-containing vanadium slag leaching solution is a vanadium-containing solution.
  • the composition of the solution is: 16 g / liter of vanadium, 0.5 g / liter of chromium, 0.5 g / liter of tungsten, 0.05 g / liter of silicon, 0.05 g / Phosphorus, 0.5 g / liter of molybdenum, 0.1 g / liter of arsenic.
  • Ethanol and ethyl orthosilicate were mixed in a ratio of 5:1, placed at 20 ° C for 50 min, then magnetically stirred at 70 ° C for 3 h, dropwise added aqueous solution of nitric acid, and cooled to reflux for 4 h to obtain a silica sol;
  • the raffinate is heated to 105 ° C, evaporated to about 40 g / L, the dosage of ammonium chloride and the solid-liquid ratio of the vanadium solution after evaporation is 60 g / L solution, divided into two, stirred and sink Vanadium for 120min, washing 3 times, the ratio of solid to liquid of ammonium metavanadate and total washing liquid is 35g / L washing water, drying in oven for 7h, placed in muffle furnace to 800 ° C, drying in oxygen atmosphere for 5h .
  • the obtained vanadium pentoxide was analyzed by XRF to be 99.98%.
  • the solution containing the chromium-containing vanadium slag leaching solution is a vanadium-containing solution.
  • the composition of the solution is: 16 g / liter of vanadium, 0.5 g / liter of chromium, 0.5 g / liter of tungsten, 0.05 g / liter of silicon, 0.05 g / Phosphorus, 0.5 g / liter of molybdenum, 0.1 g / liter of arsenic.
  • Ethanol and ethyl orthosilicate were mixed in a ratio of 5:1, placed at 20 ° C for 50 min, then magnetically stirred at 70 ° C for 3 h, dropwise added aqueous solution of nitric acid, and cooled to reflux for 4 h to obtain a silica sol;
  • the raffinate is heated to 105 ° C, evaporated to about 40 g / L, the dosage of ammonium chloride and the solid-liquid ratio of the vanadium solution after evaporation is 60 g / L solution, divided into two, stirred and sink Vanadium for 120min, washing 3 times, the ratio of solid to liquid of ammonium metavanadate and total washing liquid is 35g / L washing water, drying in oven for 7h, placed in muffle furnace to 800 ° C, drying in oxygen atmosphere for 5h .
  • the obtained vanadium pentoxide was analyzed by XRF to be 99.98%.
  • the solution containing the chromium-containing vanadium slag leaching solution is a vanadium-containing solution.
  • the composition of the solution is: 16 g / liter of vanadium, 0.5 g / liter of chromium, 0.5 g / liter of tungsten, 0.05 g / liter of silicon, 0.05 g / Phosphorus, 0.5 g / liter of molybdenum, 0.1 g / liter of arsenic.
  • Ethanol and ethyl orthosilicate were mixed in a ratio of 5:1, placed at 20 ° C for 50 min, then magnetically stirred at 70 ° C for 3 h, dropwise added aqueous solution of nitric acid, and cooled to reflux for 4 h to obtain a silica sol;
  • the heteropolyacid catalyst Using 0.4 g of the heteropolyacid catalyst, mixing with 3 mL of 35% hydrogen peroxide and 50 mL of diesel oil in a constant temperature water bath at 60 ° C, and vigorously stirring with a stirring slurry for 30 min, then washing with 5 wt% NaOH solution, and extracting with methanol, the desulfurization rate of the diesel oil was measured. 93%, which is 35% higher than that of the vanadium-free heteropolyacid catalyst under the same conditions;
  • the raffinate is heated to 105 ° C, evaporated to about 40 g / L, the dosage of ammonium chloride and the solid-liquid ratio of the vanadium solution after evaporation is 60 g / L solution, divided into two, stirred and sink Vanadium for 120min, washing 3 times, the ratio of solid to liquid of ammonium metavanadate and total washing liquid is 35g / L washing water, drying in oven for 7h, placed in muffle furnace to 800 ° C, drying in oxygen atmosphere for 5h .
  • the obtained vanadium pentoxide was analyzed by XRF to be 99.98%.
  • the present invention can prepare high-purity vanadium by extracting magnetic nanoparticles from amines and neutral extractants by solid phase extraction from a vanadium solution containing impurities to remove impurities to the utmost extent. Products, increase the added value of products, and have significant economic benefits. At the same time, it can reduce the generation of organic wastewater and reduce the loss of vanadium, and prepare a heteropolyacid extractant which can be used for desulfurization and denitrification.
  • the present invention illustrates the detailed process equipment and process flow of the present invention by the above embodiments, but the present invention is not limited to the above detailed process equipment and process flow, that is, does not mean that the present invention must rely on the above detailed process equipment and The process can only be implemented. It should be apparent to those skilled in the art that any modifications of the present invention, equivalent substitution of the various materials of the products of the present invention, addition of auxiliary components, selection of specific means, and the like, are all within the scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

一种同时制备高纯钒和杂多酸催化剂的方法,使用接枝萃取剂的磁性纳米颗粒萃取含钒溶液中的杂多酸,利用纳米颗粒的磁性,采用磁铁将负载杂多酸的磁颗粒回收用作脱硫脱硝的杂多酸催化剂,并将萃余液进行沉钒处理得到纯度大于99.9%的高纯五氧化二钒。

Description

一种同时制备高纯钒和杂多酸催化剂的方法 技术领域
本发明属于湿法冶金与冶金材料制备领域,具体涉及一种同时制备高纯钒和杂多酸催化剂的方法。
背景技术
钒与稀土、钛等被列为国家一级战略储备资源,用途十分广泛,被称为“工业味精”。近年来钒资源价格受钢铁市场的影响震荡下行,相关企业厂家苦不堪言,为了从该经济危机中走出,众多厂家纷纷将目光转向高端产品市场,拟通过提高产品的附加值来赢得市场竞争力。钒电池、钒铝合金以及钒催化剂市场需求的不断扩大,进一步提高高纯钒的要求,给高纯钒/光谱纯五氧化二钒的发展带来了契机。
目前制备高纯钒一般是从市场上购买到98.5%的普通钒产品,再经过多次沉钒除杂结晶获得纯度大于99.5%的高纯度钒产品,但该法钒损失大,且多次沉淀结晶,制备工序复杂。如CN 102764897A公开了一种高纯钒粉的制备方法,其目的是解决钒粉杂质含量特别是O、N含量高的问题,满足粉末冶金技术在原材料纯度方面的要求,其制备步骤包括:先采用碱液、蒸馏水及乙醇或丙酮对钒块进行表面活化,再将其装入密闭容器将上述放有钒块的密闭容器装入氢化吸氢系统,干燥除气,将除气后钒块在200-500摄氏度下进行氢化制得高纯氢化钒颗粒;并将该氢化钒研磨,放入密闭容器脱氢,可制得亚微米级钒粉,其中氧含量控制在600ppm以下,氮含量控制在250ppm以下。
另外,也有专利直接从含钒废料中回收钒,但未制得高纯钒钒产品,CN 101538652A公开碱浸、碱浸液吸附、酸浸、离子交换、解吸脱钒、沉钒的组合 工艺,可制得普通钒。CN 1073414A公开了用化学法从含钒、铬废液中回收钒铬的方法,该工艺只对含铬、钒低的稀溶液具有实际意义,更适合工厂排水处理,而不适合高浓尾液的再生利用。US 4344924采用季胺萃取剂在碱性条件下从水中一步萃取钒铬,再用调pH值洗涤法进行分离。该技术工艺比较简单,而且可以得到较高纯度的钒和铬产品,但由于萃取剂容量有限,难以得到高浓度的钒液。
CN 101121962A是申请人针对含高浓度钒和铬的水溶液提出的一种钒、铬分离方法,最高可制得99.5%的钒,该专利技术对钒和铬分离效果好,并已进行了工业实施和稳定运行,但该技术适合于含钒、铬溶液处理的新建工艺,不太适合对现有工艺流程的改造。CN 201310377023.X公开了一种胺类萃取杂多酸制备高纯钒的方法,可以制得99.9%的高纯五氧化二钒产品,但因萃取剂在水相的溶解容易产生高化学需氧量废水,并且从含微量杂质的高浓度钒溶液中萃取制备高纯五氧化二钒时,钒损失较大。
发明内容
本发明针对目前钒产业经济下滑,钒产品纯度不高,无法满足现阶段钒液流电池、要求较高的催化剂、医药原料、某些发光材料等对钒产品纯度的要求这一现实,提供一种同时制备高纯钒和杂多酸催化剂的方法,能够通过简单的操作制备高纯五氧化二钒产品,对设备要求低,且不易产生含有机物废水,钒损失小,同时可制备杂多酸催化剂用作脱硫脱硝。
普通钒的溶液中通常会掺杂铬、硅、磷、钨、钼、砷等杂质,在此溶液中加入酸,则会形成磷钨、磷钨钒、硅钨、磷钼钨、硅钼钨、钼钒砷、钨砷等杂 多酸,制备接枝胺类和中性萃取剂的磁性纳米颗粒,萃取普通钒溶液中的杂多酸除去溶液所含杂质,可去除绝大部分杂质,从而可制得高纯度的五氧化二钒产品。
为达到上述目的,本发明采用如下技术方案:
一种同时制备高纯钒和杂多酸催化剂的方法,在磁性多孔复合物表面接枝胺类萃取剂和中性萃取剂制备磁性纳米颗粒,用于萃取含钒溶液中的杂多酸,并将萃余液进行沉钒处理得到高纯五氧化二钒。
本发明使用接枝胺类萃取剂和中性萃取剂的磁性纳米颗粒萃取含钒溶液中的杂多酸,采用磁铁将萃取杂多酸后的磁性纳米颗粒分离,得到负载杂多酸的磁性纳米颗粒和纯化的含钒萃余液,负载杂多酸的磁性纳米颗粒经简单水洗和干燥后即可作为脱硫脱硝催化剂,然后将含钒萃余液浓缩,再在浓缩液中加入铵盐获得偏钒酸铵固体,再通过纯水洗涤、干燥、氧气气氛煅烧得到纯度大于99.9%的高纯五氧化二钒。
对与本发明所述的方法,所述磁性多孔复合物可以使用磁性纳米粒子和二氧化硅溶胶制备的磁性多孔复合物;优选通过使用分散聚合法制备。
优选地,所述磁性纳米粒子为Fe3O4磁性纳米粒子,优选所述磁性纳米粒子使用沉淀法合成。
优选地,所述磁性多孔复合物为SiO2@Fe3O4磁性多孔复合物。
优选地,所述二氧化硅溶胶通过水解聚合法制备。
优选地,所述磁性多孔复合物接枝胺类萃取剂和中性萃取剂之前经过活化并引入硅烷偶联剂。
优选地,所述胺类萃取剂为含碳原子数大于或等于10的脂肪胺,优选为伯 胺、仲胺、叔胺、季铵盐类中的1种或2种以上的组合;进一步优选为三甲基烷胺类、三烷基叔胺类、卤代二甲基叔胺类中的1种或2种以上的组合,特别优选为N236、N235、Alamine 336、Aliquat 336、N1923、Primene 81R、Primene JMT、7203、7301中的1种或2种以上的组合。
优选地,所述中性萃取剂为中性磷类萃取剂、中性含氧萃取剂、中性含硫萃取剂、螯合萃取剂中的1种或2种以上的组合;进一步优选为三烷基氧化磷类、酮类、亚砜类、肟类、羟基喹啉类中的1种或2种以上的组合,特别优选为TRPO、MIBK、二辛基亚砜、7-烯烷基-8羟基喹啉、LIX64、LIX63、LIX65N、N530的1种或2种以上的组合。
作为优选技术方案,本发明所述的方法,包括如下步骤:
(1)使用磁性纳米粒子和二氧化硅溶胶制备磁性多孔复合物;
(2)将步骤(1)所得磁性多孔复合物活化并引入偶联剂后接枝胺类萃取剂和中性萃取剂,制得接枝胺类萃取剂和中性萃取剂的磁性纳米颗粒;
(3)调节溶液pH值,采用步骤(2)制得的接枝胺类萃取剂和中性萃取剂的磁性纳米颗粒萃取含钒溶液中的杂多酸,搅拌,萃取平衡并静置后将磁性纳米颗粒回收,可使用磁铁进行回收,洗涤干燥后即得杂多酸催化剂;
(4)将钒萃余液浓缩,调节水相pH值至7-9,并向其中加入铵盐沉淀出偏钒酸铵,再将沉淀洗涤干燥后,煅烧即得高纯五氧化二钒。
对与本发明所述的方法,步骤(1)所述磁性纳米粒子可以为Fe3O4磁性纳米粒子,优选所述磁性纳米粒子使用沉淀法合成,沉淀法合成为已有技术。
优选地,所述沉淀法合成包括如下步骤:将氯化铁和氯化亚铁按照质量比为1-5∶1溶解于充过氮气的水中,而后在40-80℃剧烈搅拌1-3h,再加入2-4mol/L 的氨水溶液调节溶液pH值至10.5-11.5,反应1-3h后收集产物Fe3O4磁性纳米粒子,清洗所得产物至洗涤液pH为6-8,优选为大约7。
优选地,所述收集通过离心进行。
优选地,所述磁性多孔复合物为SiO2@Fe3O4磁性多孔复合物。
对与本发明所述的方法,步骤(1)所述二氧化硅溶胶可通过水解聚合法制备,水解聚合法为已有技术。
优选地,所述制备步骤为:将乙醇和正硅酸乙酯按照质量比为3-5∶1,例如为3.5∶1、4.2∶1、4.9∶1等混合,10-20℃下放置5-50min,然后在40-70℃下磁力搅拌1-3h后加入硝酸的水溶液,冷却回流1-4h,即得二氧化硅溶胶。
优选地,所述正硅酸乙酯和硝酸的质量比为10-30∶1,例如为12∶1、15∶1、22∶1、28∶1等。
优选地,所述硝酸的水溶液的加入方式为逐滴加入。
优选地,所述硝酸水溶液中硝酸与水的质量比为1∶50-75,例如为1∶55、1∶60、1∶66、1∶72等。
对与本发明所述的方法,步骤(1)所述制备磁性多孔复合物可采用分散聚合法制得,优选采用尿素和甲醛反应生成尿醛树脂包裹的SiO2@Fe3O4磁性多孔复合物。
优选地,所述分散聚合法步骤为:溶解40-80g尿素于200-300ml,优选250mLSiO2溶胶中,然后加入10-30g Fe3O4磁性颗粒,调节溶液pH值至2-3,之后加入甲醛50-60mL,搅拌5h以上,优选10-15h,之后将颗粒物分离,干燥,煅烧去除树脂模版,制得磁性多孔复合物。
优选地,所述搅拌为磁力搅拌。
优选地,所述分离通过离心进行。
优选地,所述干燥的温度为90-120℃,例如为95℃、102℃、108℃、115℃等,优选为105℃。
优选地,所述煅烧的温度为250℃以上,例如为260℃、290℃、330℃、360℃、420℃等,优选为300-400℃;煅烧的时间为3h以上,例如为3.5h、4.2h、5.5h、7.6h、8.5h等,优选为5-8h。
对与本发明所述的方法,步骤(2)所述的活化可通过甲磺酸进行。
优选地,所述活化是为了引入Si-OH基到磁性多孔复合物表面,并引入硅烷偶联剂,目的是使萃取剂与硅烷偶联剂反应接枝嵌段入磁性多孔复合物,具体步骤为:使用甲磺酸对磁性多孔复合物活化,加入硅烷偶联剂在水浴中加热反应,反应结束后采用磁铁将活化后的磁性多孔复合物分离并进行洗涤。
优选地,所述甲磺酸的质量浓度为0.5-3%,优选为1%。
优选地,所述加热反应的温度为40-80℃,优选为60℃;加热反应的时间为1h以上,优选为3h。
优选地,所用硅烷偶联剂为γ-氯丙基三甲氧基硅烷。
对与本发明所述的方法,步骤(2)所述胺类萃取剂可为含碳原子数大于或等于10的脂肪胺,优选为伯胺、仲胺、叔胺、季铵盐类中的1种或2种以上的组合;进一步优选为三甲基烷胺类、三烷基叔胺类、卤代二甲基叔胺类中的1种或2种以上的组合,特别优选为N236、N235、Alamine 336、Aliquat 336、N1923、Primene 81R、Primene JMT、7203、7301中的1种或2种以上的组合。
优选地,所述中性萃取剂为中性磷类萃取剂、中性含氧萃取剂、中性含硫萃取剂、螯合萃取剂中的1种或2种以上的组合;进一步优选为三烷基氧化磷 类、酮类、亚砜类、肟类、羟基喹啉类中的1种或2种以上的组合,特别优选为TRPO、MIBK、二辛基亚砜、7-烯烷基-8羟基喹啉、LIX64、LIX63、LIX65N、N530的1种或2种以上的组合。
胺类萃取剂和中性萃取剂被接枝嵌段在磁性多孔复合物表面制备成磁性纳米颗粒,利用胺类和中性萃取剂协同萃取杂多酸分离钒溶液中的杂质,同时采用萃取的方法将杂多酸负载在磁性纳米颗粒上面,制成含钒、钨、钼、硅、磷等的杂多酸磁性纳米颗粒催化剂。通过固载胺类萃取剂和中性萃取剂可减少萃取剂在萃余液中的损失,减少含有机物废水的产生,并且固载的少量萃取剂可实现选择性萃取杂多酸而极少量萃取钒,减少钒损失。
对与本发明所述的方法,步骤(2)接枝胺类萃取剂和中性萃取剂的方法可采用化学修饰法。
优选地,接枝胺类萃取剂和中性萃取剂的方法包括如下步骤:将活化并引入偶联剂后的磁性多孔复合物加入到胺类萃取剂和中性萃取剂溶液中,加热反应,分离磁性多孔复合物,干燥即得。
优选地,所述加热的温度为50-120℃,例如为55℃、67℃、80℃、100℃、115℃等,优选为70-90℃;加热的时间为3h以上,例如为3.5h、4.2h、5.5h、7.6h、8.5h等,优选为6-8h。
优选地,所述干燥的温度为50-100℃,例如为55℃、67℃、80℃、90℃、99℃等,优选为80℃。
优选地,所述胺类萃取剂和中性萃取剂的质量为1-10∶1,例如为2∶1、6∶1、9∶1等,优选为3-5∶1。
优选地,所述胺类萃取剂和中性萃取剂的质量浓度为10-15%。是指两种萃 取剂之和在溶液中的浓度。
对与本发明所述的方法,步骤(3)中pH值可为2-6,优选为3-5。
优选地,所述搅拌的时间为20-80min,优选为30-60min。
优选地,所述静置的时间为15min以上,优选为30-60min。
优选地,步骤(4)中的浓缩为将钒萃余液蒸发浓缩至钒浓度为20g/L以上,例如为25g/L、30g/L、38g/L、46g/L等,优选为40g/L。
优选地,所述加入铵盐与钒溶液的固液比为20g/L以上,例如为25g/L、30g/L、38g/L、46g/L等,优选为40-60g/L。
优选地,所述煅烧的温度为400-800℃,例如为420℃、500℃、550℃、610℃、700℃、770℃等。
本发明与现有技术相比的优点在于:
(1)本发明采用通过制备的接枝胺类和中性萃取剂的磁性纳米颗粒固相萃取法从含有杂质的钒溶液中萃取杂多酸,使杂质以最大程度去除,制备高纯钒产品,提高产品的附加值,具有显著经济效益;同时原位制备的含钒杂多酸催化剂,对脱硫脱硝具有显著优势。
(2)本发明对设备要求低,操作简单,且不易产生含有机物废水,钒损失小,同时可制备杂多酸催化剂。
具体实施方式
为便于理解本发明,本发明列举实施例如下。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
实施例1
以含铬钒渣浸出液深度除杂后的料液为含钒溶液,溶液成分为:16克/升的钒、0.5克/升铬、0.5克/升钨、0.05克/升硅、0.05克/升磷、0.5克/升钼、0.1克/升砷。
(1)将氯化铁和氯化亚铁按照2∶1的比例溶解于充过氮气的水中,而后在80℃剧烈搅拌2h,再加入一定浓度的氨水溶液调节溶液pH值至11,反应2h后离心收集并反复清洗合成的Fe3O4磁性纳米粒子至洗涤液pH为7左右;
将乙醇和正硅酸乙酯按照3.5∶1的比例混合,15℃下放置10min,然后在60℃下磁力搅拌2h,逐滴加入硝酸的水溶液,冷却回流3h,可得到二氧化硅溶胶;
溶解40g尿素于250mL SiO2溶胶中,然后加入20g Fe3O4磁性颗粒,调节溶液pH值至3.0区间,之后迅速加入甲醛50mL,采用磁力搅拌10h,之后将颗粒物离心分离105℃干燥,并在300℃煅烧5h,制得磁性多孔复合物;
(2)使用1%的甲磺酸对磁性多孔复合物活化,加入硅烷偶联剂在60℃的水浴中反应3h,采用磁铁将活化后的磁性颗粒分离并进行洗涤;配制70mL伯胺N1923、20mL肟类萃取剂LIX63萃取剂组合的溶液,之后将活化的纳米颗粒加入到10%的萃取剂溶液中,在70℃反应6h,分离纳米颗粒,并在80℃烘干,即可制得接枝萃取剂的磁性纳米颗粒;
(3)调整料液pH值为6.00,将接枝萃取剂的磁性纳米颗粒置于含杂质的高浓度钒溶液中,磁力搅拌萃取45min,静置分层40min,将磁铁吸附分离负载杂多酸的磁性纳米颗粒,之后将纳米颗粒洗涤3次,在80℃干燥即制得杂多酸催化剂;
(4)将萃余液加热至105℃,蒸发至约40g/L,氯化铵的投加量与蒸发后的钒溶液的固液比为50g/L溶液,分两次投加,搅拌沉钒120min,洗涤3次,偏 钒酸铵与总的洗涤液的固液比范围为35g/L洗涤水,在烘箱中干燥7小时,放置于马弗炉升温至600度,在氧气气氛下干燥5h。
所得五氧化二钒经过XRF分析为99.958%。
实施例2
以含铬钒渣浸出液深度除杂后的料液为含钒溶液,溶液成分为:16克/升的钒、0.5克/升铬、0.5克/升钨、0.05克/升硅、0.05克/升磷、0.5克/升钼、0.1克/升砷。
(1)将氯化铁和氯化亚铁按照2∶1的比例溶解于充过氮气的水中,而后在40℃剧烈搅拌1h,再加入一定浓度的氨水溶液调节溶液pH值至10,反应1h后离心收集并反复清洗合成的Fe3O4磁性纳米粒子至洗涤液pH为7左右;
将乙醇和正硅酸乙酯按照3∶1的比例混合,10℃下放置5min,然后在40℃下磁力搅拌1h,逐滴加入硝酸的水溶液,冷却回流1h,可得到二氧化硅溶胶;
溶解40g尿素于250mL SiO2溶胶中,然后加入10g Fe3O4磁性颗粒,调节溶液pH值至2.0区间,之后迅速加入甲醛50mL,采用磁力搅拌10h,之后将颗粒物离心分离105℃干燥,并在300℃煅烧5h,制得磁性多孔复合物;
(2)使用1%的甲磺酸对磁性多孔复合物活化,加入硅烷偶联剂在60℃的水浴中反应3h,采用磁铁将活化后的磁性颗粒分离并进行洗涤;配制60mL伯胺N1923、20mL磷氧类萃取剂TBP萃取剂组合的溶液,之后将活化的纳米颗粒加入到10%的萃取剂溶液中,在70℃反应6h,分离纳米颗粒,并在80℃烘干,即可制得接枝萃取剂的磁性纳米颗粒;
(3)调整料液pH值为3.00,将接枝萃取剂的磁性纳米颗粒置于含杂质的高浓度钒溶液中,磁力搅拌萃取40min,静置分层30min,将磁铁吸附分离负载 杂多酸的磁性纳米颗粒,之后将纳米颗粒洗涤3次,在80℃干燥即制得杂多酸催化剂;
(4)将萃余液加热至105℃,蒸发至约40g/L,氯化铵的投加量与蒸发后的钒溶液的固液比为40g/L溶液,分两次投加,搅拌沉钒120min,洗涤3次,偏钒酸铵与总的洗涤液的固液比范围为35g/L洗涤水,在烘箱中干燥7h,放置于马弗炉升温至600℃,在氧气气氛下干燥5h。
所得五氧化二钒经过XRF分析为99.93%。
实施例3
以含铬钒渣浸出液深度除杂后的料液为含钒溶液,溶液成分为:16克/升的钒、0.5克/升铬、0.5克/升钨、0.05克/升硅、0.05克/升磷、0.5克/升钼、0.1克/升砷。
(1)将氯化铁和氯化亚铁按照2∶1的比例溶解于充过氮气的水中,而后在80℃剧烈搅拌3h,再加入一定浓度的氨水溶液调节溶液pH值至11.5,反应3h后离心收集并反复清洗合成的Fe3O4磁性纳米粒子至洗涤液pH为7左右;
将乙醇和正硅酸乙酯按照5∶1的比例混合,20℃下放置50min,然后在70℃下磁力搅拌3h,逐滴加入硝酸的水溶液,冷却回流4h,可得到二氧化硅溶胶;
溶解80g尿素于250mL SiO2溶胶中,然后加入30g Fe3O4磁性颗粒,调节溶液pH值至3.0,之后迅速加入甲醛60mL,采用磁力搅拌15h,之后将颗粒物离心分离105℃干燥,并在400℃煅烧8h,制得磁性多孔复合物;
(2)使用1%的甲磺酸对磁性多孔复合物活化,加入硅烷偶联剂在80℃的水浴中反应4h,采用磁铁将活化后的磁性颗粒分离并进行洗涤;配制100mL伯胺TOA、20mL磷氧类萃取剂TBP萃取剂组合的溶液,之后将活化的纳米颗粒 加入到10%的萃取剂溶液中,在90℃反应8h,分离纳米颗粒,并在80℃烘干,即可制得接枝萃取剂的磁性纳米颗粒;
(3)调整料液pH值为6.00,将接枝萃取剂的磁性纳米颗粒置于含杂质的高浓度钒溶液中,磁力搅拌萃取80min,静置分层60min,将磁铁吸附分离负载杂多酸的磁性纳米颗粒,之后将纳米颗粒洗涤5次,在80℃干燥即制得杂多酸催化剂;
(4)将萃余液加热至105℃,蒸发至约40g/L,氯化铵的投加量与蒸发后的钒溶液的固液比为60g/L溶液,分两次投加,搅拌沉钒120min,洗涤3次,偏钒酸铵与总的洗涤液的固液比范围为35g/L洗涤水,在烘箱中干燥7h,放置于马弗炉升温至800℃,在氧气气氛下干燥5h。
所得五氧化二钒经过XRF分析为99.98%。
实施例4
以含铬钒渣浸出液深度除杂后的料液为含钒溶液,溶液成分为:16克/升的钒、0.5克/升铬、0.5克/升钨、0.05克/升硅、0.05克/升磷、0.5克/升钼、0.1克/升砷。
(1)将氯化铁和氯化亚铁按照2∶1的比例溶解于充过氮气的水中,而后在80℃剧烈搅拌3h,再加入一定浓度的氨水溶液调节溶液pH值至11.5,反应3h后离心收集并反复清洗合成的Fe3O4磁性纳米粒子至洗涤液pH为7左右;
将乙醇和正硅酸乙酯按照5∶1的比例混合,20℃下放置50min,然后在70℃下磁力搅拌3h,逐滴加入硝酸的水溶液,冷却回流4h,可得到二氧化硅溶胶;
溶解80g尿素于250mL SiO2溶胶中,然后加入30g Fe3O4磁性颗粒,调节溶液pH值至3.0,之后迅速加入甲醛60mL,采用磁力搅拌15h,之后将颗粒物离 心分离105℃干燥,并在400℃煅烧8h,制得磁性多孔复合物;
(2)使用1%的甲磺酸对磁性多孔复合物活化,加入硅烷偶联剂在80℃的水浴中反应4h,采用磁铁将活化后的磁性颗粒分离并进行洗涤;配制100mL伯胺N235、20mL磷氧类萃取剂TBP萃取剂组合的溶液,之后将活化的纳米颗粒加入到10%的萃取剂溶液中,在90℃反应8h,分离纳米颗粒,并在80℃烘干,即可制得接枝萃取剂的磁性纳米颗粒;
(3)调整料液pH值为6.00,将接枝萃取剂的磁性纳米颗粒置于含杂质的高浓度钒溶液中,磁力搅拌萃取80min,静置分层60min,将磁铁吸附分离负载杂多酸的磁性纳米颗粒,之后将纳米颗粒洗涤5次,在80℃干燥即制得杂多酸催化剂;
(4)将萃余液加热至105℃,蒸发至约40g/L,氯化铵的投加量与蒸发后的钒溶液的固液比为60g/L溶液,分两次投加,搅拌沉钒120min,洗涤3次,偏钒酸铵与总的洗涤液的固液比范围为35g/L洗涤水,在烘箱中干燥7h,放置于马弗炉升温至800℃,在氧气气氛下干燥5h。
所得五氧化二钒经过XRF分析为99.98%。
实施例5
以含铬钒渣浸出液深度除杂后的料液为含钒溶液,溶液成分为:16克/升的钒、0.5克/升铬、0.5克/升钨、0.05克/升硅、0.05克/升磷、0.5克/升钼、0.1克/升砷。
(1)将氯化铁和氯化亚铁按照2∶1的比例溶解于充过氮气的水中,而后在80℃剧烈搅拌3h,再加入一定浓度的氨水溶液调节溶液pH值至11.5,反应3h后离心收集并反复清洗合成的Fe3O4磁性纳米粒子至洗涤液pH为7左右;
将乙醇和正硅酸乙酯按照5∶1的比例混合,20℃下放置50min,然后在70℃下磁力搅拌3h,逐滴加入硝酸的水溶液,冷却回流4h,可得到二氧化硅溶胶;
溶解80g尿素于250mL SiO2溶胶中,然后加入30g Fe3O4磁性颗粒,调节溶液pH值至3.0,之后迅速加入甲醛60mL,采用磁力搅拌15h,之后将颗粒物离心分离105℃干燥,并在400℃煅烧8h,制得磁性多孔复合物;
(2)使用1%的甲磺酸对磁性多孔复合物活化,加入硅烷偶联剂在80℃的水浴中反应4h,采用磁铁将活化后的磁性颗粒分离并进行洗涤;配制100mL伯胺TOA、20mL酮类MIBK萃取剂组合的溶液,之后将活化的纳米颗粒加入到10%的萃取剂溶液中,在90℃反应8h,分离纳米颗粒,并在80℃烘干,即可制得接枝萃取剂的磁性纳米颗粒;
(3)调整料液pH值为6.00,将接枝萃取剂的磁性纳米颗粒置于含杂质的高浓度钒溶液中,磁力搅拌萃取80min,静置分层60min,将磁铁吸附分离负载杂多酸的磁性纳米颗粒,之后将纳米颗粒洗涤5次,在80℃干燥即制得杂多酸催化剂;
采用0.4g该杂多酸催化剂,与3mL35%的双氧水和50mL柴油在60℃恒温水浴混合,并用搅拌浆剧烈搅拌30min,然后用5wt%的NaOH溶液洗涤,甲醇萃取,测得柴油的脱硫率为93%,比同条件下不含钒的杂多酸催化剂脱硫提高35%;
(4)将萃余液加热至105℃,蒸发至约40g/L,氯化铵的投加量与蒸发后的钒溶液的固液比为60g/L溶液,分两次投加,搅拌沉钒120min,洗涤3次,偏钒酸铵与总的洗涤液的固液比范围为35g/L洗涤水,在烘箱中干燥7h,放置于马弗炉升温至800℃,在氧气气氛下干燥5h。
所得五氧化二钒经过XRF分析为99.98%。
从上可以看出,本发明能通过制备接胺类和中性萃取剂的磁性纳米颗粒,固相萃取从含有杂质的钒溶液中萃取杂多酸,使杂质以最大程度去除,制备高纯钒产品,提高产品的附加值、具有显著经济效益。同时能够减少产生含有机物废水和降低钒损失,制备可用于脱硫脱硝的杂多酸萃取剂。
申请人声明,本发明通过上述实施例来说明本发明的详细工艺设备和工艺流程,但本发明并不局限于上述详细工艺设备和工艺流程,即不意味着本发明必须依赖上述详细工艺设备和工艺流程才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

  1. 一种同时制备高纯钒和杂多酸催化剂的方法,其特征在于,在磁性多孔复合物表面接枝胺类萃取剂和中性萃取剂制备磁性纳米颗粒,并用于萃取含钒溶液中的杂多酸,并将萃余液进行沉钒处理得到高纯五氧化二钒。
  2. 根据权利要求1所述的方法,其特征在于,所述磁性多孔复合物为使用磁性纳米粒子和二氧化硅溶胶制备的磁性多孔复合物;优选通过使用分散聚合法制备;
    优选地,所述磁性纳米粒子为Fe3O4磁性纳米粒子,优选所述磁性纳米粒子使用沉淀法合成;
    优选地,所述磁性多孔复合物为SiO2@Fe3O4磁性多孔复合物;
    优选地,所述二氧化硅溶胶通过水解聚合法制备;
    优选地,所述磁性多孔复合物接枝胺类和中性萃取剂之前经过活化并引入硅烷偶联剂;
    优选地,所述胺类萃取剂为含碳原子数大于或等于10的脂肪胺,优选为伯胺、仲胺、叔胺、季铵盐类中的1种或2种以上的组合;进一步优选为三甲基烷胺类、三烷基叔胺类、卤代二甲基叔胺类中的1种或2种以上的组合,特别优选为N236、N235、Alamine 336、Aliquat 336、N1923、Primene 81R、PrimeneJMT、7203、7301中的1种或2种以上的组合;
    优选地,所述中性萃取剂为中性磷类萃取剂、中性含氧萃取剂、中性含硫萃取剂、螯合萃取剂中的1种或2种以上的组合;进一步优选为三烷基氧化磷类、酮类、亚砜类、肟类、羟基喹啉类中的1种或2种以上的组合,特别优选为TRPO、MIBK、二辛基亚砜、7-烯烷基-8羟基喹啉、LIX64、LIX63、LIX65N、N530的1种或2种以上的组合。
  3. 根据权利要求1或2所述的方法,其特征在于,包括如下步骤:
    (1)使用磁性纳米粒子和二氧化硅溶胶制备磁性多孔复合物;
    (2)将步骤(1)所得磁性多孔复合物活化并引入偶联剂后接枝胺类萃取剂和中性萃取剂,制得接枝胺类萃取剂和中性萃取剂的磁性纳米颗粒;
    (3)调节溶液pH值,采用步骤(2)制得的接枝胺类萃取剂和中性萃取剂的磁性纳米颗粒萃取含钒溶液中的杂多酸,搅拌,萃取平衡并静置后将磁性纳米颗粒回收,洗涤干燥后即得杂多酸催化剂;
    (4)将钒萃余液浓缩,调节水相pH值为7-9,并向其中加入铵盐沉淀出偏钒酸铵,再将沉淀洗涤干燥后,煅烧即得高纯五氧化二钒。
  4. 根据权利要求3所述的方法,其特征在于,步骤(1)所述磁性纳米粒子为Fe3O4磁性纳米粒子,优选所述磁性纳米粒子使用沉淀法合成;
    优选地,所述沉淀法合成包括如下步骤:将氯化铁和氯化亚铁按照质量比为1-5∶1溶解于充过氮气的水中,而后在40-80℃剧烈搅拌1-3h,再加入2-4mol/L的氨水溶液调节溶液pH值至10.5-11.5,反应1-3h后收集产物Fe3O4磁性纳米粒子,清洗所得产物至洗涤液pH为6-8,优选为大约7;
    优选地,所述收集通过离心进行;
    优选地,所述磁性多孔复合物为SiO2@Fe3O4磁性多孔复合物。
  5. 根据权利要求3所述的方法,其特征在于,步骤(1)所述二氧化硅溶胶通过水解聚合法制备;
    优选地,所述制备步骤为:将乙醇和正硅酸乙酯按照质量比为3-5∶1混合,10-20℃下放置5-50min,然后在40-70℃下磁力搅拌1-3h后加入硝酸的水溶液,冷却回流1-4h,即得二氧化硅溶胶;
    优选地,所述正硅酸乙酯和硝酸的质量比为10-30∶1;
    优选地,所述硝酸的水溶液的加入方式为逐滴加入;
    优选地,所述硝酸水溶液中硝酸与水的质量比为1∶50-75。
  6. 根据权利要求3所述的方法,其特征在于,步骤(1)所述制备的磁性多孔复合物采用分散聚合法制得,优选采用尿素和甲醛反应生成尿醛树脂包裹的SiO2@Fe3O4磁性多孔复合物;
    优选地,所述分散聚合法步骤为:溶解40-80g尿素于200-300ml,优选250mLSiO2溶胶中,然后加入10-30g Fe3O4磁性颗粒,调节溶液pH值至2-3,之后加入甲醛50-60mL,搅拌5h以上,优选10-15h,之后将颗粒物分离,干燥,煅烧,制得磁性多孔复合物;
    优选地,所述搅拌为磁力搅拌;
    优选地,所述分离通过离心进行;
    优选地,所述干燥的温度为90-120℃,优选为105℃;
    优选地,所述煅烧的温度为250℃以上,优选为300-400℃;煅烧的时间为3h以上,优选为5-8h。
  7. 根据权利要求3所述的方法,其特征在于,步骤(2)所述的活化通过甲磺酸进行;
    优选地,所述活化并引入偶联剂步骤为:使用甲磺酸对磁性多孔复合物活化,加入硅烷偶联剂在水浴中加热反应,反应结束后采用磁铁将活化后的磁性多孔复合物分离并进行洗涤;
    优选地,所述甲磺酸的质量浓度为0.5-3%,优选为1%;
    优选地,所述加热反应的温度为40-80℃,优选为60℃;加热反应的时间为1h以上,优选为3h;
    优选地,所用硅烷偶联剂为γ-氯丙基三甲氧基硅烷。
  8. 根据权利要求3所述的方法,其特征在于,步骤(2)所述胺类萃取剂为含碳原子数大于或等于10的脂肪胺,优选为伯胺、仲胺、叔胺、季铵盐类中的1种或2种以上的组合;进一步优选为三甲基烷胺类、三烷基叔胺类、卤代二甲基叔胺类中的1种或2种以上的组合,特别优选为N236、N235、Alamine 336、Aliquat 336、N1923、Primene 81R、Primene JMT、7203、7301中的1种或2种以上的组合;
    优选地,所述中性萃取剂为中性磷类萃取剂、中性含氧萃取剂、中性含硫萃取剂、螯合萃取剂中的1种或2种以上的组合;进一步优选为三烷基氧化磷类、酮类、亚砜类、肟类、羟基喹啉类中的1种或2种以上的组合,特别优选为TRPO、MIBK、二辛基亚砜、7-烯烷基-8羟基喹啉、LIX64、LIX63、LIX65N、N530的1种或2种以上的组合。
  9. 根据权利要求3-8任一项所述的方法,其特征在于,步骤(2)接枝胺类萃取剂和中性萃取剂的方法采用化学修饰法;
    优选地,接枝胺类萃取剂和中性萃取剂的方法包括如下步骤:将活化并引入偶联剂后的磁性多孔复合物加入到胺类萃取剂和中性萃取剂溶液中,加热反应,分离磁性纳米颗粒,干燥即得;
    优选地,所述加热的温度为50-120℃,优选为70-90℃;加热的时间为3h以上,优选为6-8h;
    优选地,所述干燥的温度为50-100℃,优选为80℃;
    优选地,所述胺类萃取剂和中性萃取剂的质量为1-10∶1,优选为3-5∶1;
    优选地,所述胺类萃取剂和中性萃取剂的质量浓度为10-15%。
  10. 根据权利要求1所述的方法,其特征在于,步骤(3)中pH值为2-6,优选为3-5;
    优选地,所述搅拌的时间为20-80min,优选为30-60min;
    优选地,所述静置的时间为15min以上,优选为30-60min;
    优选地,步骤(4)中的浓缩为将钒萃余液蒸发浓缩至钒浓度20g/L以上,优选为40g/L;
    优选地,所述加入铵盐与钒溶液的固液比为20g/L以上,优选为40-60g/L;
    优选地,所述煅烧的温度为400-800℃。
PCT/CN2014/093864 2014-04-21 2014-12-15 一种同时制备高纯钒和杂多酸催化剂的方法 WO2015161659A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410160201.8A CN103937981B (zh) 2014-04-21 2014-04-21 一种同时制备高纯钒和杂多酸催化剂的方法
CN201410160201.8 2014-04-21

Publications (1)

Publication Number Publication Date
WO2015161659A1 true WO2015161659A1 (zh) 2015-10-29

Family

ID=51185846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093864 WO2015161659A1 (zh) 2014-04-21 2014-12-15 一种同时制备高纯钒和杂多酸催化剂的方法

Country Status (2)

Country Link
CN (1) CN103937981B (zh)
WO (1) WO2015161659A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112239806A (zh) * 2020-10-29 2021-01-19 攀枝花市山青钒业有限公司 一种酸性高磷钒液提钒的方法
CN113732297A (zh) * 2021-09-04 2021-12-03 湖南众鑫新材料科技股份有限公司 一种高纯钒提纯工艺
CN113842955A (zh) * 2021-11-03 2021-12-28 西安石油大学 一种贵金属纳米颗粒复合材料及其制备方法
CN114405542A (zh) * 2022-01-28 2022-04-29 万华化学集团股份有限公司 一种负载型磁性纳米金属催化剂及其制备方法和应用
CN114984957A (zh) * 2022-07-06 2022-09-02 东北电力大学 一种可磁调控的杂多酸光催化剂的制备方法
CN115212858A (zh) * 2022-08-31 2022-10-21 燕山大学 一种净化水体重金属的固定化杂多酸离子液体复合材料及其制备方法与应用
CN115305357A (zh) * 2022-08-17 2022-11-08 四川省银河化学股份有限公司 一种以钒铬还原渣为原料制备铬酸钠的方法
CN117660767A (zh) * 2024-01-31 2024-03-08 中国科学院过程工程研究所 一种采用多段微气泡从镍铝渣中回收钒酸钠的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103937981B (zh) * 2014-04-21 2016-08-17 中国科学院过程工程研究所 一种同时制备高纯钒和杂多酸催化剂的方法
CN112142031A (zh) * 2020-08-12 2020-12-29 江苏大学 一种在低能耗条件下高硫石油焦的脱硫方法
CN112320847B (zh) * 2020-10-29 2021-07-06 攀枝花市山青钒业有限公司 一种高磷酸性钒液提钒和废水回收利用的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101274777A (zh) * 2007-03-26 2008-10-01 吉首大学 一种从含钒液体中提取五氧化二钒的方法
CN102206624A (zh) * 2011-04-15 2011-10-05 北京师范大学 一种磁性复合微球固定化漆酶及其制备方法
CN102974314A (zh) * 2012-12-04 2013-03-20 天津大学 一种磁性金纳米粒子复合材料及其制备方法和应用
CN103540745A (zh) * 2013-08-26 2014-01-29 中国科学院过程工程研究所 一种胺类萃取杂多酸杂质制备高纯钒的方法
CN103937981A (zh) * 2014-04-21 2014-07-23 中国科学院过程工程研究所 一种同时制备高纯钒和杂多酸催化剂的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100429325C (zh) * 2007-03-08 2008-10-29 北京化工大学 一种从石油中脱除和回收金属的方法
CN102964542A (zh) * 2012-12-10 2013-03-13 天津工业大学 磁性介孔分子印迹杂化硅球的raft聚合制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101274777A (zh) * 2007-03-26 2008-10-01 吉首大学 一种从含钒液体中提取五氧化二钒的方法
CN102206624A (zh) * 2011-04-15 2011-10-05 北京师范大学 一种磁性复合微球固定化漆酶及其制备方法
CN102974314A (zh) * 2012-12-04 2013-03-20 天津大学 一种磁性金纳米粒子复合材料及其制备方法和应用
CN103540745A (zh) * 2013-08-26 2014-01-29 中国科学院过程工程研究所 一种胺类萃取杂多酸杂质制备高纯钒的方法
CN103937981A (zh) * 2014-04-21 2014-07-23 中国科学院过程工程研究所 一种同时制备高纯钒和杂多酸催化剂的方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112239806A (zh) * 2020-10-29 2021-01-19 攀枝花市山青钒业有限公司 一种酸性高磷钒液提钒的方法
CN113732297A (zh) * 2021-09-04 2021-12-03 湖南众鑫新材料科技股份有限公司 一种高纯钒提纯工艺
CN113842955A (zh) * 2021-11-03 2021-12-28 西安石油大学 一种贵金属纳米颗粒复合材料及其制备方法
CN114405542B (zh) * 2022-01-28 2024-02-27 万华化学集团股份有限公司 一种负载型磁性纳米金属催化剂及其制备方法和应用
CN114405542A (zh) * 2022-01-28 2022-04-29 万华化学集团股份有限公司 一种负载型磁性纳米金属催化剂及其制备方法和应用
CN114984957A (zh) * 2022-07-06 2022-09-02 东北电力大学 一种可磁调控的杂多酸光催化剂的制备方法
CN114984957B (zh) * 2022-07-06 2023-09-01 东北电力大学 一种可磁调控的杂多酸光催化剂的制备方法
CN115305357A (zh) * 2022-08-17 2022-11-08 四川省银河化学股份有限公司 一种以钒铬还原渣为原料制备铬酸钠的方法
CN115305357B (zh) * 2022-08-17 2023-09-05 四川省银河化学股份有限公司 一种以钒铬还原渣为原料制备铬酸钠的方法
CN115212858A (zh) * 2022-08-31 2022-10-21 燕山大学 一种净化水体重金属的固定化杂多酸离子液体复合材料及其制备方法与应用
CN115212858B (zh) * 2022-08-31 2024-04-12 燕山大学 一种净化水体重金属的固定化杂多酸离子液体复合材料及其制备方法与应用
CN117660767A (zh) * 2024-01-31 2024-03-08 中国科学院过程工程研究所 一种采用多段微气泡从镍铝渣中回收钒酸钠的方法
CN117660767B (zh) * 2024-01-31 2024-04-26 中国科学院过程工程研究所 一种采用多段微气泡从镍铝渣中回收钒酸钠的方法

Also Published As

Publication number Publication date
CN103937981A (zh) 2014-07-23
CN103937981B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
WO2015161659A1 (zh) 一种同时制备高纯钒和杂多酸催化剂的方法
CN108298581B (zh) 一种从含钒铬硅的浸出液中提钒并制备五氧化二钒的系统及其处理方法
CN103540745B (zh) 一种胺类萃取杂多酸杂质制备高纯钒的方法
WO2015161660A1 (zh) 一种从含钒铬硅溶液制备低硅五氧化二钒的方法
CN104831075B (zh) 一种废钒钼系scr催化剂的钒、钼分离和提纯方法
AU2019310942B2 (en) Method for homogeneous precipitation separation of iron and aluminum from laterite nickel ore acid leaching solution
CN110092419B (zh) 一种制备高纯多钒酸铵的方法
CN114058853B (zh) 一种从废旧scr脱硝催化剂中回收钛、钒、钨的方法
CN105349803A (zh) 一种从含钼的磷钨酸/磷钨酸盐溶液分离钨钼的方法
CN114959261B (zh) 全湿法流程从多金属合金中回收钨、钼、镍、钴的方法
CN111778398A (zh) 一种从废scr脱硝催化剂中提取钒、钨的方法
CN110592401A (zh) 一种从含铼钼精矿氧化液中分离钼和铼的方法
CN102345020A (zh) 分离并回收溶液中的钒和铬的方法
CN112342399B (zh) 一种同时提取钒渣中钒、钛、铬的方法
CN116143174B (zh) 一种白钨矿短流程制备仲钨酸铵的方法
CN104862503A (zh) 从红土镍矿中提取钪的方法
CN107233884B (zh) 一种用于催化三价铁水解沉淀的铁磁性催化剂及其制备方法和应用
Han et al. Preparation of V 2 O 5 from converter slag containing vanadium
CN114645140A (zh) 一种制取镍中间品的方法
CN112575207A (zh) 低浓度酸性钒液萃取制备氧化钒的方法
CN113801997A (zh) 一种低钼萃余液钼回收生产钼酸铵及沉钼剂循环再利用的方法
CN113800566B (zh) 一种从粗制钼酸制备钼酸铵的方法
CN114921649B (zh) 一种回收含钨废料中可溶性钨酸盐的方法
CN111057856B (zh) 一种浸出回收催化剂中钴、镍、钼的方法
CN115747529B (zh) 一种钼焙砂的处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14890193

Country of ref document: EP

Kind code of ref document: A1