WO2015161513A1 - 一种用于液晶显示的goa电路及液晶显示装置 - Google Patents

一种用于液晶显示的goa电路及液晶显示装置 Download PDF

Info

Publication number
WO2015161513A1
WO2015161513A1 PCT/CN2014/076273 CN2014076273W WO2015161513A1 WO 2015161513 A1 WO2015161513 A1 WO 2015161513A1 CN 2014076273 W CN2014076273 W CN 2014076273W WO 2015161513 A1 WO2015161513 A1 WO 2015161513A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
gate
drain
tft
source
Prior art date
Application number
PCT/CN2014/076273
Other languages
English (en)
French (fr)
Inventor
戴超
肖军城
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/376,127 priority Critical patent/US9454940B1/en
Publication of WO2015161513A1 publication Critical patent/WO2015161513A1/zh

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/18Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages
    • G11C19/182Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages in combination with semiconductor elements, e.g. bipolar transistors, diodes
    • G11C19/184Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages in combination with semiconductor elements, e.g. bipolar transistors, diodes with field-effect transistors, e.g. MOS-FET
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0267Details of drivers for scan electrodes, other than drivers for liquid crystal, plasma or OLED displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0204Compensation of DC component across the pixels in flat panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0223Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits

Definitions

  • the present invention relates to the field of liquid crystal display technology, and in particular to a GOA (gate driver on Array) circuit and a liquid crystal display device for liquid crystal display.
  • GOA gate driver on Array
  • each pixel has a thin film transistor (TFT) whose gate is connected to a horizontal scanning line, a drain (Drain) is connected to a vertical data line, and a source (Source) is connected.
  • TFT thin film transistor
  • Drain Drain
  • Source Source
  • the driving of the horizontal scanning line of the active liquid crystal display panel is mainly completed by the external IC of the panel, and the external IC can control the stepwise charging and discharging of the horizontal scanning lines of each level.
  • the array substrate scanning drive (GOA) technology can use the original process of the liquid crystal display panel to make the horizontal scanning line driving circuit on the substrate around the display area, so that it can replace the external IC to complete the horizontal scanning line driving.
  • GOA technology can reduce the bonding process of external ICs, which has the potential to increase productivity and reduce product cost, and can make LCD panels more suitable for narrow-frame or borderless display products.
  • GOA circuits typically include a plurality of cascaded GOA units, each stage of which corresponds to driving a level one horizontal scan line.
  • the GOA unit mainly includes a pull-up part, a pull-up control part, a transfer part, a key pull-down part, and a pull-down sustain circuit (Pull). -down Holding Part), and the bootstrap (Boast) capacitor responsible for potential lift.
  • the pull-up circuit is mainly responsible for the clock signal (Clock)
  • the output is a gate signal
  • the pull-up control circuit is responsible for controlling the opening time of the pull-up circuit, generally connecting the downlink signal or the Gate signal transmitted by the GOA unit of the previous stage
  • the pull-down circuit is responsible for pulling the Gate signal low at the first time.
  • the Gate signal is turned off
  • the pull-down sustain circuit is responsible for maintaining the Gate output signal and the Gate signal of the pull-up circuit (commonly referred to as the Q point) in the off state (ie, the negative potential), usually with two pull-downs.
  • the module is maintained alternately; the bootstrap capacitor (C boast ) is responsible for the secondary rise of the Q point, which facilitates the G (N) output of the pull-up circuit.
  • the GOA unit includes: a pull-up control circuit 100, a pull-up circuit 200, a downlink circuit 300, a pull-down circuit 400, and The capacitor 500, the first pull-down maintaining circuit 600, the second pull-down maintaining circuit, and the bridge circuit 800, wherein the first pull-down maintaining circuit 600, the second pull-down maintaining circuit, and the three-stage resistor divider design are formed.
  • the bridge circuit 800 is mainly responsible for adjusting the potentials of the terminals P (N) and K ( N ) through the thin film transistor T55.
  • the gate of the T55 is connected to Q (N), and the drain and the source are respectively connected to P ( N ) and K. (N), the gate of T55 is turned on during the action period so that the potentials of P(N) and K(N) are close, and since the low potential of the low-frequency signals LC1 and LC2 is less than VSS, the action period P (N) can be adjusted.
  • the first pull-down maintaining circuit 600 and the second pull-down maintaining circuit 700 use a symmetric design, mainly to achieve the following functions: One is: during the active period, the first pull-down maintaining circuit 600 (or the second pull-down maintaining circuit 700) In the off state of the large resistance, the second pull-down maintaining circuit 700 (or the first pull-down maintaining circuit 600) is in the open state of the small resistor, and the bridge circuit 800 is in the open state of the small resistor, so that P (N And K (N) are in a low state to ensure Q (N) point uplift and gate G (N) output; the second is: during the inactive period, the first pull-down sustain circuit 600 and the second pull-down sustain circuit 700 is in the open state of the small resistance, and the bridge circuit 800 is in the closed state of the large resistance, so that the high and low potentials and alternating effects of P (N) and K (N) can be realized; and the gate of T54 is connected to the drain of LC2, and the drain thereof Connected to LC1, its source is
  • the use of the low-frequency signal makes full use of the switching of P (N) and K (N) and pulls the potentials P (N) and K (N) to a lower potential to ensure the maximum reduction of Q (N) Leakage of point and G(N), while at least one of P(N) and K(N) during low-activity period is close to the low potential of LC, since the low potential of LC is less than VSS, then T32/T42 or T33 /T43 can be in the negative pressure recovery state for half of the time.
  • the potential of the negative voltage can be controlled, which can effectively reduce the risk of failure of the pull-down maintenance circuit.
  • FIG. 2 is a waveform diagram of a key node of the GOA circuit of FIG. 1 in actual operation; it can be seen that the potential at the Q (N) point is divided into two phases, and the potential of the first phase (tl ⁇ t2) is QV1, the potential of the second stage (t2 ⁇ t3) is QV2; and G(N) will be output in the second stage of Q(N); and P(N) and K(N) mainly pass T52, ⁇ 62, ⁇ 55 These three TFTs are controlled by the Q (N) point. When Q (N) is at a low potential, P (N) and K (N) are at a high potential.
  • the technical problem to be solved by the present invention is to provide a GOA circuit and a liquid crystal display device for liquid crystal display, which can reduce the delay of the gate signal output.
  • an aspect of an embodiment of the present invention provides a GOA circuit for liquid crystal display, wherein a plurality of GOA units including cascades are controlled, and an Nth level of a display area is controlled according to an Nth stage GOA unit.
  • the Nth stage GOA unit includes a pull-up circuit, a pull-down circuit, a first pull-down maintaining circuit, a second pull-down maintaining circuit, a bridge circuit, a pull-up control circuit, a downlink circuit, and a bootstrap capacitor;
  • a pull-up circuit, a pull-down circuit, a first pull-down sustain circuit, a second pull-down sustain circuit, and a bootstrap capacitor are respectively connected to the gate signal point and the Nth horizontal scan line;
  • the pull-up control circuit and the downlink transmission circuit are respectively connected to the gate signal point;
  • the bridge circuit is connected to the first pull-down maintaining circuit and the second pull-down maintaining circuit
  • the first pull-down maintenance circuit includes:
  • a first TFT having a gate connected to the first circuit point, and a drain and a source respectively connected to the Nth horizontal scanning line and the input DC low voltage;
  • a second TFT having a gate connected to the first circuit point, and a drain and a source connected to the gate signal point and the input DC voltage;
  • a third TFT having a gate connected to the gate signal point, the drain and the source being respectively connected to the source signal point and the input DC voltage;
  • the fourth TFT has a source connected to the source signal point, and a gate and a drain thereof are connected to the first clock signal; a fifth TFT having a gate connected to the source signal point, and a drain and a source thereof respectively connected to the first clock Signal and first circuit point;
  • a sixth TFT having a gate connected to the second clock signal, the drain and the source being respectively connected to the first clock signal and the first circuit point;
  • a seventh TFT having a gate connected to an activation signal from the N-1 stage GOA unit or an N-1th horizontal scanning line, wherein the drain and the source are respectively connected to the source signal point and the input DC low voltage;
  • the second pull-down maintenance circuit includes:
  • the eighth TFT has a gate connected to the second circuit point, and the drain and the source are respectively connected to the Nth level Scan line and input DC low voltage;
  • a ninth TFT having a gate connected to the second circuit point, the drain and the source being respectively connected to the gate signal point and the input DC voltage;
  • the gate is connected to the gate signal point, and the drain and the source thereof are respectively connected to the drain signal point and the input DC voltage;
  • the eleventh TFT has a source connected to the drain signal point, and a gate and a drain thereof are connected to the second clock signal;
  • the twelfth TFT has a gate connected to the drain signal point, and a drain and a source thereof are respectively connected to the second clock signal and the second circuit point;
  • a thirteenth TFT the gate thereof is connected to the first clock signal, and the drain and the source thereof are respectively connected to the second clock signal and the second circuit point;
  • the fourteenth TFT has a gate connected to the gate of the seventh TFT, and a drain and a source thereof are respectively connected to the drain signal point and the input DC low voltage;
  • the bridge circuit includes a fifteenth TFT, the gate of which is connected to the gate signal point, and the drain and the source thereof are respectively connected to the first circuit point and the second circuit point;
  • the first clock signal and the second clock signal have a lower frequency than the Nth stage clock signal, and the charging of the first circuit point by the first clock signal and the charging of the second circuit point by the second clock signal alternate.
  • the pull-up circuit includes:
  • the gate is connected to the gate signal point, and the drain and the source are respectively input to the Nth clock signal and the Nth horizontal scanning line is connected.
  • the pull-down circuit includes:
  • the eighteenth TFT has a gate connected to the N+1th horizontal scanning line, and a drain and a source thereof are respectively connected to the Nth horizontal scanning line and the input DC low voltage;
  • the nineteenth TFT has a gate connected to the N+1th horizontal scanning line, and a drain and a source thereof are respectively connected to the gate signal point and the input DC low voltage.
  • the downstream circuit includes:
  • the twentieth TFT has a gate connected to the gate signal point, and a drain and a source thereof respectively input an Nth stage clock signal and an output Nth stage start signal.
  • the pull-up control circuit comprises:
  • the twenty-first TFT has a gate connected to the start signal from the N-1 stage GOA unit, and a drain and a source thereof are respectively connected to the N-1th horizontal scan line and the gate signal point.
  • the bridge circuit further includes a sixteenth TFT having a gate connected to the gate of the seventh TFT, and a drain and a source connected to the first circuit point and the second circuit point, respectively.
  • the embodiment of the present invention further provides a GOA circuit for liquid crystal display, wherein: comprising a plurality of cascaded GOA units, controlling, according to the Nth stage GOA unit, charging the Nth horizontal scanning line of the display area, the first
  • the N-level GOA unit includes a pull-up circuit, a pull-down circuit, a first pull-down maintaining circuit, a second pull-down maintaining circuit, a bridge circuit, a pull-up control circuit, a downlink circuit, and a bootstrap capacitor;
  • a pull-up circuit, a pull-down circuit, a first pull-down sustain circuit, a second pull-down sustain circuit, and a bootstrap capacitor are respectively connected to the gate signal point and the Nth horizontal scan line;
  • the pull-up control circuit and the downlink transmission circuit are respectively connected to the gate signal point;
  • the bridge circuit is connected to the first pull-down maintaining circuit and the second pull-down maintaining circuit
  • the first pull-down maintenance circuit includes:
  • a first TFT having a gate connected to the first circuit point, and a drain and a source respectively connected to the Nth horizontal scanning line and the input DC low voltage;
  • a second TFT having a gate connected to the first circuit point, and a drain and a source connected to the gate signal point and the input DC voltage;
  • a third TFT having a gate connected to the gate signal point, the drain and the source being respectively connected to the source signal point and the input DC voltage;
  • the fourth TFT has a source connected to the source signal point, and a gate and a drain thereof are connected to the first clock signal; a fifth TFT having a gate connected to the source signal point, and a drain and a source thereof respectively connected to the first clock Signal and first circuit point;
  • a sixth TFT having a gate connected to the second clock signal, the drain and the source being respectively connected to the first clock signal and the first circuit point;
  • the second pull-down maintenance circuit includes:
  • the eighth TFT has a gate connected to the second circuit point, and a drain and a source thereof are respectively connected to the Nth horizontal scanning line and the input DC low voltage; a ninth TFT having a gate connected to the second circuit point, the drain and the source being respectively connected to the gate signal point and the input DC voltage;
  • the gate is connected to the gate signal point, and the drain and the source thereof are respectively connected to the drain signal point and the input DC voltage;
  • the eleventh TFT has a source connected to the drain signal point, and a gate and a drain thereof are connected to the second clock signal;
  • the twelfth TFT has a gate connected to the drain signal point, and a drain and a source thereof are respectively connected to the second clock signal and the second circuit point;
  • a thirteenth TFT the gate thereof is connected to the first clock signal, and the drain and the source thereof are respectively connected to the second clock signal and the second circuit point;
  • the bridge circuit includes:
  • the fifteenth TFT has a gate connected to the gate signal point, and a drain and a source thereof are respectively connected to the first circuit point and the second circuit point;
  • the gate is connected to the start signal from the N-1 stage GOA unit or the N-1th horizontal scan line, and the drain and the source are respectively connected to the first circuit point and the second circuit point;
  • the first clock signal and the second clock signal have a lower frequency than the Nth stage clock signal, and the charging of the first circuit point by the first clock signal and the charging of the second circuit point by the second clock signal alternate.
  • the pull-up circuit includes:
  • the gate is connected to the gate signal point, and the drain and the source are respectively input to the Nth clock signal and the Nth horizontal scanning line is connected.
  • the pull-down circuit includes:
  • the eighteenth TFT has a gate connected to the N+1th horizontal scanning line, and a drain and a source thereof are respectively connected to the Nth horizontal scanning line and the input DC low voltage;
  • the nineteenth TFT has a gate connected to the N+1th horizontal scanning line, and a drain and a source thereof are respectively connected to the gate signal point and the input DC low voltage.
  • the downstream circuit includes:
  • the twentieth TFT has a gate connected to the gate signal point, and a drain and a source thereof respectively input an Nth stage clock signal and an output Nth stage start signal.
  • the pull-up control circuit comprises:
  • the twenty-first TFT has a gate connected to the start signal from the N-1 stage GOA unit, and a drain and a source thereof are respectively connected to the N-1th horizontal scan line and the gate signal point.
  • a further aspect of the embodiments of the present invention further provides a liquid crystal display device including a GOA circuit, wherein the GOA circuit includes a plurality of cascaded GOA units, and controls a display area according to an Nth-level GOA unit.
  • the Nth horizontal scanning line is charged, and the Nth stage GOA unit includes a pull-up circuit, a pull-down circuit, a first pull-down maintaining circuit, a second pull-down maintaining circuit, a bridge circuit, a pull-up control circuit, a downlink circuit, and a bootstrap capacitor ;
  • a pull-up circuit, a pull-down circuit, a first pull-down sustain circuit, a second pull-down sustain circuit, and a bootstrap capacitor are respectively connected to the gate signal point and the Nth horizontal scan line;
  • the pull-up control circuit and the downlink transmission circuit are respectively connected to the gate signal point;
  • the bridge circuit is connected to the first pull-down maintaining circuit and the second pull-down maintaining circuit
  • the first pull-down maintenance circuit includes:
  • a first TFT having a gate connected to the first circuit point, and a drain and a source respectively connected to the Nth horizontal scanning line and the input DC low voltage;
  • a second TFT having a gate connected to the first circuit point, and a drain and a source connected to the gate signal point and the input DC voltage;
  • a third TFT having a gate connected to the gate signal point, the drain and the source being respectively connected to the source signal point and the input DC voltage;
  • the fourth TFT has a source connected to the source signal point, and a gate and a drain thereof are connected to the first clock signal; a fifth TFT having a gate connected to the source signal point, and a drain and a source thereof respectively connected to the first clock Signal and first circuit point;
  • a sixth TFT having a gate connected to the second clock signal, the drain and the source being respectively connected to the first clock signal and the first circuit point;
  • a seventh TFT having a gate connected to an activation signal from the N-1 stage GOA unit or an N-1th horizontal scanning line, wherein the drain and the source are respectively connected to the source signal point and the input DC low voltage;
  • the second pull-down maintenance circuit includes:
  • the eighth TFT has a gate connected to the second circuit point, and a drain and a source thereof are respectively connected to the Nth horizontal scanning line and the input DC low voltage; a ninth TFT having a gate connected to the second circuit point, the drain and the source being respectively connected to the gate signal point and the input DC voltage;
  • the gate is connected to the gate signal point, and the drain and the source thereof are respectively connected to the drain signal point and the input DC voltage;
  • the eleventh TFT has a source connected to the drain signal point, and a gate and a drain thereof are connected to the second clock signal;
  • the twelfth TFT has a gate connected to the drain signal point, and a drain and a source thereof are respectively connected to the second clock signal and the second circuit point;
  • a thirteenth TFT the gate thereof is connected to the first clock signal, and the drain and the source thereof are respectively connected to the second clock signal and the second circuit point;
  • the fourteenth TFT has a gate connected to the gate of the seventh TFT, and a drain and a source thereof are respectively connected to the drain signal point and the input DC low voltage;
  • the bridge circuit includes a fifteenth TFT, the gate of which is connected to the gate signal point, and the drain and the source thereof are respectively connected to the first circuit point and the second circuit point;
  • the first clock signal and the second clock signal have a lower frequency than the Nth stage clock signal, and the charging of the first circuit point by the first clock signal and the charging of the second circuit point by the second clock signal alternate.
  • the pull-up circuit includes:
  • the gate is connected to the gate signal point, and the drain and the source are respectively input to the Nth clock signal and the Nth horizontal scanning line is connected.
  • the pull-down circuit includes:
  • the eighteenth TFT has a gate connected to the N+1th horizontal scanning line, and a drain and a source thereof are respectively connected to the Nth horizontal scanning line and the input DC low voltage;
  • the nineteenth TFT has a gate connected to the N+1th horizontal scanning line, and a drain and a source thereof are respectively connected to the gate signal point and the input DC low voltage.
  • the downstream circuit includes:
  • the twentieth TFT has a gate connected to the gate signal point, and a drain and a source thereof respectively input an Nth clock signal and an Nth stage start signal.
  • the pull-up control circuit comprises:
  • the 21st TFT has a gate connected to the start signal from the N-1 stage G0A unit, and a drain and a source thereof are respectively connected to the N-1th horizontal scan line and the gate signal point.
  • the bridge circuit further includes a sixteenth TFT having a gate connected to the gate of the seventh TFT, and a drain and a source connected to the first circuit point and the second circuit point, respectively.
  • the seventh TFT and the fourteenth TFT are respectively connected in parallel to the third TFT and the tenth TFT which are responsible for pulling down the source signal point and the drain signal point, and the seventh TFT and the fourteenth TFT are respectively connected
  • the gate is connected to the start signal from the N-1 stage GOA unit or the N-1th horizontal scan line, which can make up for the problem that the potential of the first stage is lower and the pull-down potential is higher, and the first circuit is also corrected.
  • Point the pull-down potential of the second circuit point;
  • a sixteenth TFT is connected in parallel on the fifteenth TFT included in the bridge circuit for the first circuit point and the second circuit point, and the gate connection of the sixteenth TFT is started from the N-1 stage GOA unit.
  • the signal or the N-1 level horizontal scanning line can effectively compensate for the problem caused by the low potential of the first stage.
  • the size of the controlled third TFT, the tenth TFT, and the fifteenth TFT can be reduced, and since the ST (N-1) and G(N-1) signals are less than the ripple current (Ripple) during the inactive period Q ( N ), thereby solving the problem of volatility of the source signal point/drain signal point and the first circuit point/second circuit point.
  • 1 is a schematic diagram of a conventional GOA circuit
  • FIG. 2 is a schematic diagram of a waveform of a key node of the GOA circuit of FIG. 1 in actual operation
  • FIG. 3 is a circuit diagram of a first embodiment of a GOA circuit for liquid crystal display provided by the present invention
  • FIG. 4 is a circuit diagram of a second embodiment of a GOA circuit for liquid crystal display provided by the present invention.
  • FIG. 5 is a circuit diagram showing a third embodiment of a GOA circuit for liquid crystal display provided by the present invention. Intention
  • Figure 6 is a waveform diagram of the key nodes of the GOA circuit of Figure 5 in actual operation.
  • the GOA circuit includes a plurality of cascaded GOA units, and the N-th horizontal scanning line G ( N ) is charged according to the N-th stage GOA unit control, and the N-th stage GOA unit includes a pull-up circuit 200, pull-down circuit 400, first pull-down maintaining circuit 600, second pull-down maintaining circuit 700, bridge circuit 800, pull-up control circuit 100, downlink circuit 300 and bootstrap capacitor Cb; wherein, pull-up circuit 200, pull-down circuit 400.
  • the first pull-down maintaining circuit 600, the second pull-down maintaining circuit 700, and the bootstrap capacitor Cb are respectively connected to the gate signal point Q(N) and the Nth horizontal scanning line G(N); the pull-up control circuit 100 and The downlink circuit 300 is respectively connected to the gate signal point Q ( N ); the bridge circuit 800 is connected to the first pull-down maintaining circuit 600 and the second pull-down maintaining circuit 700;
  • the first pull-down maintaining circuit 600 includes:
  • the first TFT that is, T32, has a gate connected to the first circuit point ⁇ ( ⁇ ), and a drain and a source thereof are respectively connected to the first horizontal scanning line G ( ⁇ ) and the input DC low voltage VSS;
  • the second TFT that is, T42, has a gate connected to the first circuit point ⁇ ( ⁇ ), and a drain and a source thereof are respectively connected to the gate signal point Q ( ⁇ ) and the input DC low voltage VSS;
  • the third TFT that is, T52, has a gate connected to the gate signal point Q ( ⁇ ), and its drain and source are respectively connected to the source signal point S ( ⁇ ) and the input DC low voltage VSS;
  • the fourth TFT that is, T51, has a source connected to the source signal point S ( ⁇ ), and the gate and the drain thereof are connected to the first clock signal LC1;
  • the fifth TFT that is, T53, has a gate connected to the source signal point S ( ⁇ ), and a drain and a source thereof are respectively connected to the first clock signal LC1 and the first circuit point ⁇ ( ⁇ );
  • the sixth TFT that is, T54
  • T54 has its gate connected to the second clock signal LC2, and its drain and source are respectively connected to the first clock signal LC1 and the first circuit point P(N);
  • the seventh TFT that is, T56, has a gate connected to the start signal ST(N-1) or the N-1th horizontal scan line G(N-1) from the N-1 stage GOA unit, and the drain and the source thereof are respectively Connect source signal point S ( N ) And input DC low voltage VSS;
  • the second pull-down maintaining circuit 700 includes:
  • the eighth TFT that is, T33, has a gate connected to the second circuit point ⁇ ( ⁇ ), and a drain and a source thereof are respectively connected to the first horizontal scanning line G ( ⁇ ) and the input DC low voltage VSS;
  • the ninth TFT that is, T43, has a gate connected to the second circuit point ⁇ ( ⁇ ), and its drain and source are respectively connected to the gate signal point Q ( ⁇ ) and the input DC low voltage VSS;
  • the tenth TFT that is, T62, has a gate connected to the gate signal point Q ( ⁇ ), and its drain and source are respectively connected to the drain signal point ⁇ ( ⁇ ) and the input DC low voltage VSS;
  • the eleventh TFT that is, T61, has a source connected to the drain signal point ⁇ ( ⁇ ), and the gate and the drain thereof are connected to the second clock signal LC2;
  • the twelfth TFT that is, T63, has a gate connected to the drain signal point ⁇ ( ⁇ ), the drain and the source are respectively connected to the second clock signal, that is, LC2) and the second circuit point ⁇ ( ⁇ );
  • the thirteenth TFT that is, T64, has a gate connected to the first clock signal LCI, and a drain and a source thereof are respectively connected to the second clock signal LC2 and the second circuit point K(N);
  • the fourteenth TFT that is, T66, has its gate connected to the gate of the seventh TFT ( ⁇ 56), and its drain and source are respectively connected to the drain signal point T (N) and the input DC low voltage VSS;
  • the bridge circuit 800 includes a fifteenth TFT, that is, T55, whose gate is connected to the gate signal point Q( ⁇ ), and the drain and the source thereof are respectively connected to the first circuit point P (N) and the second circuit point K (N) ;
  • the frequencies of the first clock signal LC1 and the second clock signal LC2 are lower than the Nth stage clock signal CK(N), and the first clock signal LC1 charges the first circuit point P(N) and the second clock signal The charging of the second circuit point K (N) by LC2 alternates.
  • the pull-up circuit 200 includes:
  • the seventeenth TFT that is, T21, has a gate connected to the gate signal point Q ( ⁇ ), and the drain and the source thereof are respectively input with the second-order clock signal CK ( ⁇ ) and the third-order horizontal scanning line G ( ⁇ ) .
  • the pull-down circuit 400 includes:
  • the eighteenth TFT that is, T31, has its gate connected to the N+1th horizontal scanning line G (N+1 ), and its drain and source are respectively connected to the second horizontal scanning line G ( ⁇ ) and the input DC low voltage.
  • VSS the nineteenth TFT, T41, whose gate is connected to the N+1th horizontal scanning line G (N+1 ), whose drain and source are respectively connected to the gate signal point Q ( ⁇ ) and the input DC low voltage VSS.
  • the downlink circuit 300 includes:
  • the twentieth TFT that is, T22, has its gate connected to the gate signal point Q ( ⁇ ), and its drain and source are input to the first-order clock signal CK ( ⁇ ) and the output first-stage start signal ST ( ⁇ ).
  • the pull-up control circuit 100 includes:
  • the twenty-first TFT that is, T11, has a gate connected to the start signal ST (N-1) from the N-1 stage GOA unit, and the drain and the source thereof are respectively connected to the N-1th horizontal scanning line G (N- 1) and the gate signal point Q ( ⁇ ).
  • the ⁇ 56 is connected in parallel with the ⁇ 52
  • the ⁇ 66 is connected in parallel with the ⁇ 62
  • the gate of the ⁇ 66 is connected to the gate of the ⁇ 56, and is connected to the start signal ST(N-1) from the N-1 stage GOA unit.
  • the N-1th horizontal scanning line G(N-1) signal this can use the signal of ST(N-1) or G(N-1) to compensate for the insufficient potential of G(N) in the first stage.
  • the problem, and the size of the T52 and T62 can also be reduced by design.
  • the GOA circuit includes a plurality of cascaded GOA units, wherein the Nth-level GOA unit differs from the GOA unit shown in FIG. 3 in that, in the present embodiment, there is no seventh TFT T56 And the fourteenth TFT T66, but in the bridge circuit 800 further includes:
  • the sixteenth TFT that is, T57, whose gate is connected to the start signal ST (N-1 ) or the N-1th horizontal scan line G (N-1 ) from the N-1 stage GOA unit, the drain and the source thereof Connect the first circuit point ⁇ ( ⁇ ) and the second circuit point ⁇ ( ⁇ ), respectively.
  • the ⁇ 57 is connected in parallel with the ⁇ 55, and the gate of the ⁇ 57 is connected to the start signal ST(N-1) from the N-1 stage GOA unit or the N-1th horizontal scanning line G (N-1).
  • ST(N-1) or G (N-1) can be used to compensate for the problem of insufficient potential of the first stage of G ( ⁇ ), and the size of ⁇ 55 can also be reduced by design.
  • the ripple current (Ripple) of the ST (N-1 ) and 0 (N-1 ) signals during the inactive period is smaller than Q (N), P (N) and K (N) can also be reduced by reducing the size of T55. The fluctuation of the potential during non-action.
  • FIG. 5 it is a circuit diagram of a third embodiment of a GOA circuit for liquid crystal display provided by the present invention.
  • the GOA circuit includes a plurality of cascaded GOA units, The difference between the Nth stage GOA unit and the GOA unit shown in FIG. 3 is that, in the embodiment, based on the GOA unit shown in FIG. 3, the bridge circuit 800 further includes: a sixteenth TFT. , that is, T57, whose gate is connected to the start signal ST (N-1 ) or the N-1th horizontal scan line G (N-1 ) from the N-1 stage GOA unit, and the drain and the source are respectively connected to the first Circuit point ⁇ ( ⁇ ) and second circuit point ⁇ ( ⁇ ).
  • a sixteenth TFT that is, T57, whose gate is connected to the start signal ST (N-1 ) or the N-1th horizontal scan line G (N-1 ) from the N-1 stage GOA unit, and the drain and the source are respectively connected to the first Circuit point ⁇ ( ⁇ ) and
  • Figure 6 is a waveform diagram of the key nodes of the GOA circuit of Figure 5 in actual operation.
  • ST (N-1) or G (N-1) signals to control the pull-down of Q ( N ) can ensure that the first phase of P ( N ) and K ( N ) can be pulled down from PV1 to PV2 (as indicated by the dotted line), the same is true for S (N) and T (N) signals, which can improve Q (N) and reduce the delay of its output waveform (such as the dotted line). Also shown; and will also reduce the delay of the G (N) output waveform (as indicated by the dashed line).
  • an embodiment of the present invention further provides a liquid crystal display device including the GOA circuit for liquid crystal display shown in the foregoing FIGS. 3 to 6.
  • the seventh TFT is connected in parallel to the third TFT (ie, T52) and the tenth TFT (ie, T62), which are responsible for pulling down the source signal point S(N) and the drain signal point T(N), respectively.
  • the seventh TFT and the fourteenth TFT (the gate is connected to ST (N-1) or G(N-1), which can make up for the Q (N) point
  • the lower potential of one stage results in a higher pull-down potential at the S (N) and T (N) points, and also corrects the pull-down potential of the first circuit point P (N) and the second circuit point K (N);
  • the bridge circuit responsible for the first circuit point P (N) and the second circuit point K (N) The fifteenth TFT (ie, T55) included is connected in parallel with the sixteenth TFT (ie, T57), and the gate of the sixteenth TFT is connected to ST (N-1) or G(N-1), which can effectively compensate Q (N) The problem caused by the low potential of the first stage.
  • the size of the third TFT (i.e., T52), the tenth TFT (i.e., T62), and the fifteenth TFT (i.e., T55) controlled by Q(N) can be reduced, and since ST (N-1) and 0 (N) -1)
  • the ripple current (Ripple) of the signal during inactive period is less than Q(N), thereby solving the source signal point S(N)/drain signal point T(N) and the first circuit point P(N)/ The volatility problem of the second circuit point K ( N ).

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Shift Register Type Memory (AREA)

Abstract

一种用于液晶显示的GOA电路,包括级联的多个GOA单元,按照第N级GOA单元控制对显示区域第N级水平扫描线(G(N))充电,该第N级GOA单元包括上拉电路(200)、下拉电路(400)、第一下拉维持电路(600)、第二下拉维持电路(700)、桥接电路(800)、上拉控制电路(100)、下传电路(300)及自举电容(Cb);其中在第一下拉维持电路(600)中的第三TFT(T52)上并联有第七TFT(T56),在第二下拉维持电路(700)中的第十TFT(T62)上并联有第十四TFT(T66),且第七TFT(T56)与第十四TFT(T66)的栅极相互连接,并均连接来自N-1级GOA单元的开动信号(ST(N-1))或第N-1级水平扫描线(G(N-1))。还公开了一种液晶显示装置。该GOA电路可以减少栅极信号输出的延迟。

Description

一种用于液晶显示的 GOA电路及液晶显示装置 本申请要求于 2014 年 4 月 21 日提交中国专利局、 申请号为 201410159672.7 , 发明名称为 "一种用于液晶显示的 GOA 电路及液晶显示 装置" 的中国专利申请的优先权, 上述专利的全部内容通过引用结合在本申 请中。 技术领域
本发明涉及液晶显示技术领域, 特别是涉及一种用于液晶显示的 GOA ( Gate Driver on Array, 阵列基板行扫描驱动) 电路及液晶显示装置。
背景技术
在主动式液晶显示器中, 每个像素具有一个薄膜晶体管(TFT ), 其栅极 ( Gate )连接至水平扫描线, 漏极(Drain )连接至垂直方向的数据线, 源极 ( Source ) 则连接至像素电极。 在水平扫描线上施加足够的电压, 会使得该 条线上的所有 TFT打开,此时该水平扫描线会与垂直方向的数据线连接,从 而将数据线上的显示信号电压写入像素,控制不同液晶的透光度进而达到控 制色彩的效果。
目前主动式液晶显示面板水平扫描线的驱动主要由面板外接的 IC来完 成, 外接的 IC可以控制各级水平扫描线的逐级充电和放电。
而阵列基板行扫描驱动(GOA )技术, 可以运用液晶显示面板的原有制 程将水平扫描线的驱动电路制作在显示区周围的基板上,使之能替代外接 IC 来完成水平扫描线的驱动。 GOA技术能减少外接 IC的绑定( bonding )工序, 有机会提升产能并降低产品成本, 而且可以使液晶显示面板更适合制作窄边 框或无边框的显示产品。
现有的 GOA电路通常包括级联的多个 GOA单元,每一级 GOA单元对 应驱动一级水平扫描线。 GOA单元主要包括有上拉电路(Pull-up part )、 上 拉控制电路 ( Pull-up control part ), 下传电路( Transfer Part )、 下拉电路( Key Pull-down Part )和下拉维持电路 ( Pull-down Holding Part ), 以及负责电位 抬升的自举(Boast ) 电容。 其中, 上拉电路主要负责将时钟信号 (Clock ) 输出为栅极(Gate)信号; 上拉控制电路负责控制上拉电路的打开时间, 一 般连接前面级 GOA单元传递过来的下传信号或者 Gate信号; 下拉电路负责 在第一时间将 Gate信号拉低为低电位, 即关闭 Gate信号; 下拉维持电路则 负责将 Gate输出信号和上拉电路的 Gate信号(通常称为 Q点)维持( Holding ) 在关闭状态(即负电位), 通常有两个下拉维持模块交替作用; 自举电容(C boast )则负责 Q点的二次抬升, 这样有利于上拉电路的 G (N)输出。
如图 1所示,示出了现有的一种 GOA电路的示意图;在图 1中,该 GOA 单元包括:上拉控制电路 100、上拉电路 200 、下传电路 300、下拉电路 400 、 自举电容 500、第一下拉维持电路 600、第二下拉维持电路以及桥接电路 800, 其中第一下拉维持电路 600、 第二下拉维持电路以及构成三段式电阻分压设 计。
其中, 桥接电路 800主要通过薄膜晶体管 T55来负责调节两端 P (N) 和 K ( N ) 的电位, 该 T55栅极连接 Q (N), 漏极和源极分别接 P ( N )和 K ( N ), 在作用期间 T55的栅极打开使得 P ( N )和 K ( N )的电位相近处于 关闭状态, 且由于低频信号 LC1和 LC2的低电位小于 VSS, 这样可以调节 作用期间 P (N)和 K (N)的电位小于 VSS, 从而保证下拉 G (N)点的薄 膜晶体管 Τ32、 Τ33和下拉 Q点的 Τ42、 Τ43的 Vgs<0, 能够更好的防止作 用期间的 G ( N ) 点和 Q点漏电;
第一下拉维持电路 600和第二下拉维持电路 700釆用的是对称式设计, 主要实现以下功能: 其一是: 当作用期间第一下拉维持电路 600 (或第二下 拉维持电路 700 )处于大电阻的关闭状态,则此时第二下拉维持电路 700 (或 第一下拉维持电路 600)就处于小电阻的打开状态, 而桥接电路 800处于小 电阻的打开状态, 故使得 P (N)和 K (N)处于低电位状态, 以确保 Q (N) 点抬升和栅极 G(N)输出; 其二是: 在非作用期间, 第一下拉维持电路 600 和第二下拉维持电路 700均处于小电阻的打开状态, 而桥接电路 800处于大 电阻的关闭状态, 这样可以实现 P (N)和 K (N) 的高低电位和交替作用; 而 T54的栅极连接 LC2, 其漏极连接 LC1, 其源极连接 P ( N ); T64的 栅极连接 LC1, 其漏极连接 LC2, 其源极连接 L (N); 这两颗 TFT称之为 平衡 TFT ( Balance TFT ), 主要实现调节电阻分压作用和信号切换时的迅速 放电作用; 而 T52 的栅极连接 Q(N),其漏极连接 S ( N ),其源极连接 VSS; 而 T62 的栅极连接 Q (N), 其漏极连接 T ( N ), 其源极连接 VSS, 这两颗 TFT的主要实现保证在作用期间拉低 S (N)和 T (N) 的作用。
通过釆用釆用第一下拉维持电路 600、 第二下拉维持电路以及桥接电路 800的三段式分压原理的 GOA单元, 可以增加下拉维持电路的高温稳定性 和长时间操作的可靠性, 而且充分利用了低频信号的作用实现了 P (N)和 K (N) 的切换以及使得作用期间 P (N)和 K (N)拉到更低的电位确保作 用最大限度的降低 Q (N) 点和 G (N) 的漏电, 同时在非作用期间 P (N) 和 K ( N )其中一个处于低电位时基本接近 LC的低电位, 由于 LC的低电位 小于 VSS,那么 T32/T42或者 T33/T43能够有一半的时间处于负压恢复状态, 通过调节低频信号的低电位可以控制负压的电位, 这样可以有效降低下拉维 持电路的失效风险。
图 2是图 1中的 GOA电路在实际操作时关键节点的波形示意图; 从中 可以看出, 在 Q (N) 点的电位会分为两个阶段, 第一阶段 (tl~t2) 的电位 为 QV1, 第二阶段( t2~t3 ) 的电位为 QV2; 而 G ( N )会在 Q ( N ) 的第二 阶段输出; 而 P (N)和 K (N)主要是通过 T52、 Τ62、 Τ55这三颗 TFT来 受到 Q (N)点控制, 当 Q (N)处于低电位时, P (N)和 K (N) 则处于 高电位, 相反当 Q (N)处于高电位时, P (N)和 K (N)则处于低电位, 那么从图中就可以看出, 由于 Q (N)第一阶段的电位 QV1—般较低, 那么 P ( N )和 K ( N ) 的第一阶段的电位也较高, 即 PV1>PV2, 这样的话 T43、 Τ42、 Τ33、 Τ32就关闭的不好, 也就是说 Q (Ν)和 G (Ν)存在着较高的 漏电, 这样也会把 Q (Ν)第一阶段的电位 QV1拉低, Q (Ν) 第二阶段的 电位 QV2也会随之变低,那么下拉维持电路就存在着较高的失效风险,且 G (Ν)输出就会产生严重的延迟(Delay)现象。
同样的道理, 由于 S (N)和 T (N)点也是受到 Q (N)控制的, 那么 其也会存在着和 P (N)和 K (N) 同样的问题。 那么为了弥补 Q (N)第一 阶段的电位不足, 同样需要在设计上将 T52、 Τ62、 Τ55这三颗 TFT设计得 比较高, 那么 S (N)和 T (N)、 P (N)和 K (N)在非作用期间的高电位 波动尤比较大。
发明内容
本发明所要解决的技术问题在于, 提供一种用于液晶显示的 GOA电路 及液晶显示装置, 可以及减少栅极信号输出的延迟。
为解决上述技术问题, 本发明的实施例的一方面提供了一种用于液晶显 示的 GOA电路, 其中, 包括级联的多个 GOA单元, 按照第 N级 GOA单元 控制对显示区域第 N级水平扫描线充电,该第 N级 GOA单元包括上拉电路、 下拉电路、 第一下拉维持电路、 第二下拉维持电路、 桥接电路、 上拉控制电 路、 下传电路及自举电容;
上拉电路、 下拉电路、 第一下拉维持电路、 第二下拉维持电路及自举电 容分别与栅极信号点和第 N级水平扫描线连接;
上拉控制电路和下传电路分别与栅极信号点连接;
桥接电路连接第一下拉维持电路和第二下拉维持电路;
第一下拉维持电路包括:
第一 TFT,其栅极连接第一电路点,其漏极和源极分别连接第 N级水平 扫描线和输入直流低电压;
第二 TFT, 其栅极连接第一电路点, 其漏极和源极分别连接栅极信号点 和输入直流氏电压;
第三 TFT, 其栅极连接栅极信号点, 其漏极和源极分别连接源极信号点 和输入直流氏电压;
第四 TFT,其源极连接源极信号点,其栅极和漏极均连接第一时钟信号; 第五 TFT, 其栅极连接源极信号点, 其漏极和源极分别连接第一时钟信 号和第一电路点;
第六 TFT, 其栅极连接第二时钟信号, 其漏极和源极分别连接第一时钟 信号和第一电路点;
第七 TFT, 其栅极连接来自 N-1级 GOA单元的开动信号或第 N-1级水 平扫描线, 其漏极和源极分别连接源极信号点和输入直流低电压;
第二下拉维持电路包括:
第八 TFT,其栅极连接第二电路点,其漏极和源极分别连接第 N级水平 扫描线和输入直流低电压;
第九 TFT, 其栅极连接第二电路点, 其漏极和源极分别连接栅极信号点 和输入直流氏电压;
第十 TFT, 其栅极连接栅极信号点, 其漏极和源极分别连接漏极信号点 和输入直流氏电压;
第十一 TFT, 其源极连接漏极信号点, 其栅极和漏极均连接第二时钟信 号;
第十二 TFT, 其栅极连接漏极信号点, 其漏极和源极分别连接第二时钟 信号和第二电路点;
第十三 TFT, 其栅极连接第一时钟信号, 其漏极和源极分别连接第二时 钟信号和第二电路点;
第十四 TFT, 其栅极连接第七 TFT的栅极, 其漏极和源极分别连接漏 极信号点和输入直流低电压;
桥接电路包括第十五 TFT, 其栅极连接栅极信号点, 其漏极和源极分别 连接第一电路点和第二电路点;
工作时, 第一时钟信号和第二时钟信号的频率低于第 N级时钟信号, 并 且第一时钟信号对第一电路点的充电和第二时钟信号对第二电路点的充电 交替进行。
其中, 上拉电路包括:
第十七 TFT,其栅极连接栅极信号点,其漏极和源极分别输入第 N级时 钟信号和连接第 N级水平扫描线。
其中, 下拉电路包括:
第十八 TFT, 其栅极连接第 N+1级水平扫描线, 其漏极和源极分别连 接第 N级水平扫描线和输入直流低电压;
第十九 TFT, 其栅极连接第 N+1级水平扫描线, 其漏极和源极分别连 接栅极信号点和输入直流低电压。
其中, 下传电路包括:
第二十 TFT,其栅极连接栅极信号点,其漏极和源极分别输入第 N级时 钟信号和输出第 N级开动信号。 其中, 上拉控制电路包括:
第二十一 TFT, 其栅极连接来自 N-1级 GOA单元的开动信号, 其漏极 和源极分别连接第 N-1级水平扫描线和栅极信号点。
其中, 桥接电路进一步包括第十六 TFT, 其栅极连接第七 TFT的栅极, 其漏极和源极分别连接第一电路点和第二电路点。
相应地, 本发明实施例还提供一种用于液晶显示的 GOA电路, 其中, 包括级联的多个 GOA单元, 按照第 N级 GOA单元控制对显示区域第 N级 水平扫描线充电, 该第 N级 GOA单元包括上拉电路、 下拉电路、 第一下拉 维持电路、 第二下拉维持电路、 桥接电路、 上拉控制电路、 下传电路及自举 电容;
上拉电路、 下拉电路、 第一下拉维持电路、 第二下拉维持电路及自举电 容分别与栅极信号点和第 N级水平扫描线连接;
上拉控制电路和下传电路分别与栅极信号点连接;
桥接电路连接第一下拉维持电路和第二下拉维持电路;
第一下拉维持电路包括:
第一 TFT,其栅极连接第一电路点,其漏极和源极分别连接第 N级水平 扫描线和输入直流低电压;
第二 TFT, 其栅极连接第一电路点, 其漏极和源极分别连接栅极信号点 和输入直流氏电压;
第三 TFT, 其栅极连接栅极信号点, 其漏极和源极分别连接源极信号点 和输入直流氏电压;
第四 TFT,其源极连接源极信号点,其栅极和漏极均连接第一时钟信号; 第五 TFT, 其栅极连接源极信号点, 其漏极和源极分别连接第一时钟信 号和第一电路点;
第六 TFT, 其栅极连接第二时钟信号, 其漏极和源极分别连接第一时钟 信号和第一电路点;
第二下拉维持电路包括:
第八 TFT,其栅极连接第二电路点,其漏极和源极分别连接第 N级水平 扫描线和输入直流低电压; 第九 TFT, 其栅极连接第二电路点, 其漏极和源极分别连接栅极信号点 和输入直流氏电压;
第十 TFT, 其栅极连接栅极信号点, 其漏极和源极分别连接漏极信号点 和输入直流氏电压;
第十一 TFT, 其源极连接漏极信号点, 其栅极和漏极均连接第二时钟信 号;
第十二 TFT, 其栅极连接漏极信号点, 其漏极和源极分别连接第二时钟 信号和第二电路点;
第十三 TFT, 其栅极连接第一时钟信号, 其漏极和源极分别连接第二时 钟信号和第二电路点;
桥接电路包括:
第十五 TFT, 其栅极连接栅极信号点, 其漏极和源极分别连接第一电路 点和第二电路点;
第十六 TFT, 其栅极连接来自 N-1级 GOA单元的开动信号或第 N-1级 水平扫描线, 其漏极和源极分别连接第一电路点和第二电路点;
工作时, 第一时钟信号和第二时钟信号的频率低于第 N级时钟信号, 并 且第一时钟信号对第一电路点的充电和第二时钟信号对第二电路点的充电 交替进行。
其中, 上拉电路包括:
第十七 TFT,其栅极连接栅极信号点,其漏极和源极分别输入第 N级时 钟信号和连接第 N级水平扫描线。
其中, 下拉电路包括:
第十八 TFT, 其栅极连接第 N+1级水平扫描线, 其漏极和源极分别连 接第 N级水平扫描线和输入直流低电压;
第十九 TFT, 其栅极连接第 N+1级水平扫描线, 其漏极和源极分别连 接栅极信号点和输入直流低电压。
其中, 下传电路包括:
第二十 TFT,其栅极连接栅极信号点,其漏极和源极分别输入第 N级时 钟信号和输出第 N级开动信号。 其中, 上拉控制电路包括:
第二十一 TFT, 其栅极连接来自 N-1级 GOA单元的开动信号, 其漏极 和源极分别连接第 N-1级水平扫描线和栅极信号点。
相应地, 本发明实施例的再一方面还提供一种液晶显示装置, 其包括有 GOA电路, 其中, 所述 GOA电路包括级联的多个 GOA单元, 按照第 N级 GOA单元控制对显示区域第 N级水平扫描线充电, 该第 N级 GOA单元包 括上拉电路、 下拉电路、 第一下拉维持电路、 第二下拉维持电路、桥接电路、 上拉控制电路、 下传电路及自举电容;
上拉电路、 下拉电路、 第一下拉维持电路、 第二下拉维持电路及自举电 容分别与栅极信号点和第 N级水平扫描线连接;
上拉控制电路和下传电路分别与栅极信号点连接;
桥接电路连接第一下拉维持电路和第二下拉维持电路;
第一下拉维持电路包括:
第一 TFT,其栅极连接第一电路点,其漏极和源极分别连接第 N级水平 扫描线和输入直流低电压;
第二 TFT, 其栅极连接第一电路点, 其漏极和源极分别连接栅极信号点 和输入直流氏电压;
第三 TFT, 其栅极连接栅极信号点, 其漏极和源极分别连接源极信号点 和输入直流氏电压;
第四 TFT,其源极连接源极信号点,其栅极和漏极均连接第一时钟信号; 第五 TFT, 其栅极连接源极信号点, 其漏极和源极分别连接第一时钟信 号和第一电路点;
第六 TFT, 其栅极连接第二时钟信号, 其漏极和源极分别连接第一时钟 信号和第一电路点;
第七 TFT, 其栅极连接来自 N-1级 GOA单元的开动信号或第 N-1级水 平扫描线, 其漏极和源极分别连接源极信号点和输入直流低电压;
第二下拉维持电路包括:
第八 TFT,其栅极连接第二电路点,其漏极和源极分别连接第 N级水平 扫描线和输入直流低电压; 第九 TFT, 其栅极连接第二电路点, 其漏极和源极分别连接栅极信号点 和输入直流氏电压;
第十 TFT, 其栅极连接栅极信号点, 其漏极和源极分别连接漏极信号点 和输入直流氏电压;
第十一 TFT, 其源极连接漏极信号点, 其栅极和漏极均连接第二时钟信 号;
第十二 TFT, 其栅极连接漏极信号点, 其漏极和源极分别连接第二时钟 信号和第二电路点;
第十三 TFT, 其栅极连接第一时钟信号, 其漏极和源极分别连接第二时 钟信号和第二电路点;
第十四 TFT, 其栅极连接第七 TFT的栅极, 其漏极和源极分别连接漏 极信号点和输入直流低电压;
桥接电路包括第十五 TFT, 其栅极连接栅极信号点, 其漏极和源极分别 连接第一电路点和第二电路点;
工作时, 第一时钟信号和第二时钟信号的频率低于第 N级时钟信号, 并 且第一时钟信号对第一电路点的充电和第二时钟信号对第二电路点的充电 交替进行。
其中, 上拉电路包括:
第十七 TFT,其栅极连接栅极信号点,其漏极和源极分别输入第 N级时 钟信号和连接第 N级水平扫描线。
其中, 下拉电路包括:
第十八 TFT, 其栅极连接第 N+1级水平扫描线, 其漏极和源极分别连 接第 N级水平扫描线和输入直流低电压;
第十九 TFT, 其栅极连接第 N+1级水平扫描线, 其漏极和源极分别连 接栅极信号点和输入直流低电压。
其中, 下传电路包括:
第二十 TFT,其栅极连接栅极信号点,其漏极和源极分别输入第 N级时 钟信号和输出第 N级开动信号。
其中, 上拉控制电路包括: 第二十一 TFT, 其栅极连接来自 N-1级 G0A单元的开动信号, 其漏极 和源极分别连接第 N-1级水平扫描线和栅极信号点。
其中, 桥接电路进一步包括第十六 TFT, 其栅极连接第七 TFT的栅极, 其漏极和源极分别连接第一电路点和第二电路点。
实施本发明的实施例, 具有如下的有益效果:
首先, 在下拉维持电路中, 在负责下拉源极信号点和漏极信号点的第三 TFT和第十 TFT上分别并联第七 TFT和第十四 TFT, 且第七 TFT和第十四 TFT的栅极连接来自 N-1级 GOA单元的开动信号或第 N-1级水平扫描线, 这样可以弥补点第一阶段电位较低导致、 点下拉电位较高的问题, 而且也会 修正第一电路点、 第二电路点的下拉电位;
另外, 在负责第一电路点和第二电路点的桥接电路中所包含的第十五 TFT 上并联有第十六 TFT, 同时第十六 TFT的栅极连接来自 N-1级 GOA单元的 开动信号或第 N-1级水平扫描线,这样能够有效地弥补点第一阶段电位过低 带来的问题。 从而可以减小所控制的第三 TFT、 第十 TFT和第十五 TFT的 尺寸,并且由于 ST ( N-1 )和 G ( N-1 )信号在非作用期间的波纹电流( Ripple ) 要小于 Q ( N ), 从而解决源极信号点 /漏极信号点和第一电路点 /第二电路点 的波动性问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其它的附图。
图 1是现有的一种 GOA电路的示意图;
图 2是图 1中的 GOA电路在实际操作时关键节点的波形示意图; 图 3是本发明提供的用于液晶显示的 GOA电路的第一实施例的电路示 意图;
图 4是本发明提供的用于液晶显示的 GOA电路的第二实施例的电路示 意图;
图 5是本发明提供的用于液晶显示的 GOA电路的第三实施例的电路示 意图;
图 6是图 5中的 GOA电路在实际操作时关键节点的波形示意图。
具体实施方式
下面参考附图对本发明的优选实施例进行描述。
如图 3所示, 是本发明提供的用于液晶显示的 GOA电路的第一实施例 的电路示意图。 在该实施例中, 该 GOA电路包括级联的多个 GOA单元, 按照第 N级 GOA单元控制对显示区域第 N级水平扫描线 G ( N ) 充电, 该 第 N级 GOA单元包括上拉电路 200、下拉电路 400、第一下拉维持电路 600、 第二下拉维持电路 700、 桥接电路 800、 上拉控制电路 100、 下传电路 300 及自举电容 Cb;其中,上拉电路 200、下拉电路 400、第一下拉维持电路 600、 第二下拉维持电路 700及自举电容 Cb分别与栅极信号点 Q ( N )和第 N级 水平扫描线 G ( N )连接; 上拉控制电路 100和下传电路 300分别与栅极信 号点 Q ( N )连接; 桥接电路 800连接第一下拉维持电路 600和第二下拉维 持电路 700;
其中, 第一下拉维持电路 600包括:
第一 TFT, 即 T32, 其栅极连接第一电路点 Ρ ( Ν ), 其漏极和源极分别 连接第 Ν级水平扫描线 G ( Ν )和输入直流低电压 VSS;
第二 TFT, 即 T42, 其栅极连接第一电路点 Ρ ( Ν ), 其漏极和源极分别 连接栅极信号点 Q ( Ν )和输入直流低电压 VSS;
第三 TFT, 即 T52, 其栅极连接栅极信号点 Q ( Ν ), 其漏极和源极分别 连接源极信号点 S ( Ν )和输入直流低电压 VSS;
第四 TFT, 即 T51, 其源极连接源极信号点 S ( Ν ), 其栅极和漏极均连 接第一时钟信号 LC1;
第五 TFT, 即 T53, 其栅极连接源极信号点 S ( Ν ), 其漏极和源极分别 连接第一时钟信号 LC1和第一电路点 Ρ ( Ν );
第六 TFT, 即 T54 )其栅极连接第二时钟信号 LC2, 其漏极和源极分别 连接第一时钟信号 LC1和第一电路点 P ( N );
第七 TFT,即 T56,其栅极连接来自 N-1级 GOA单元的开动信号 ST( N-1 ) 或第 N-1级水平扫描线 G ( N-1 ), 其漏极和源极分别连接源极信号点 S ( N ) 和输入直流低电压 VSS;
第二下拉维持电路 700包括:
第八 TFT, 即 T33, 其栅极连接第二电路点 Κ (Ν), 其漏极和源极分别 连接第 Ν级水平扫描线 G ( Ν )和输入直流低电压 VSS;
第九 TFT, 即 T43, 其栅极连接第二电路点 Κ (Ν), 其漏极和源极分别 连接栅极信号点 Q (Ν)和输入直流低电压 VSS;
第十 TFT, 即 T62, 其栅极连接栅极信号点 Q (Ν), 其漏极和源极分别 连接漏极信号点 Τ ( Ν )和输入直流低电压 VSS;
第十一 TFT, 即 T61, 其源极连接漏极信号点 Τ (Ν), 其栅极和漏极均 连接第二时钟信号 LC2;
第十二 TFT, 即 T63, 其栅极连接漏极信号点 Τ (Ν), 其漏极和源极分 别连接第二时钟信号, 即 LC2 )和第二电路点 Κ ( Ν );
第十三 TFT, 即 T64, 其栅极连接第一时钟信号 LCI, 其漏极和源极分 别连接第二时钟信号 LC2和第二电路点 K ( N );
第十四 TFT, 即 T66,, 其栅极连接第七 TFT (Τ56)的栅极, 其漏极和 源极分别连接漏极信号点 T (N)和输入直流低电压 VSS;
桥接电路 800包括第十五 TFT, 即 T55,其栅极连接栅极信号点 Q( Ν ), 其漏极和源极分别连接第一电路点 P (N)和第二电路点 K (N);
工作时, 第一时钟信号 LC1和第二时钟信号 LC2的频率低于第 N级时 钟信号 CK (N), 并且第一时钟信号 LC1对第一电路点 P (N) 的充电和第 二时钟信号 LC2对第二电路点 K (N) 的充电交替进行。
具体地, 上拉电路 200包括:
第十七 TFT, 即 T21, 其栅极连接栅极信号点 Q (Ν), 其漏极和源极分 别输入第 Ν级时钟信号 CK ( Ν )和连接第 Ν级水平扫描线 G ( Ν )。
下拉电路 400包括:
第十八 TFT, 即 T31, 其栅极连接第 N+1级水平扫描线 G (N+1 ), 其 漏极和源极分别连接第 Ν级水平扫描线 G ( Ν )和输入直流低电压 VSS; 第十九 TFT, 即 T41, 其栅极连接第 N+1级水平扫描线 G (N+1 ), 其 漏极和源极分别连接栅极信号点 Q (Ν)和输入直流低电压 VSS。 下传电路 300包括:
第二十 TFT, 即 T22, 其栅极连接栅极信号点 Q (Ν), 其漏极和源极分 别输入第 Ν级时钟信号 CK ( Ν )和输出第 Ν级开动信号 ST ( Ν )。
上拉控制电路 100包括:
第二十一 TFT, 即 Tll, 其栅极连接来自 N-1级 GOA单元的开动信号 ST ( N-1 ), 其漏极和源极分别连接第 N-1级水平扫描线 G ( N-1 )和栅极信 号点 Q (Ν)。
在本实施例中, 釆用 Τ56与 Τ52并联, 釆用 Τ66与 Τ62并联, 且 Τ66 的栅极与 Τ56的栅极相连,并连接来自 N-1级 GOA单元的开动信号 ST( N-1 ) 或者第 N-1级水平扫描线 G(N-1 )信号;这样可以利用 ST(N-1 )或 G(N-1 ) 的信号来弥补 G (N)在第一阶段电位不足带来的问题, 并且从设计上来说 也可以减小 T52和 T62的尺寸。
如图 4所示, 是本发明提供的用于液晶显示的 GOA电路的第二实施例 的电路示意图。 在该实施例中, 该 GOA电路包括级联的多个 GOA单元, 其中, 该第 N级 GOA单元与图 3中示出的 GOA单元的区别在于, 在本实 施例中, 没有第七 TFT T56 以及第十四 TFT T66 , 而是在桥接电路 800进 一步包括:
第十六 TFT, 即 T57, 其栅极连接来自 N-1级 GOA单元的开动信号 ST (N-1 )或第 N-1级水平扫描线 G (N-1 ), 其漏极和源极分别连接第一电路 点 Ρ ( Ν )和第二电路点 Κ ( Ν )。
在本发明实施例中, 釆用 Τ57与 Τ55并联, 且 Τ57的栅极连接来自 N-1 级 GOA单元的开动信号 ST ( N-1 )或者第 N-1级水平扫描线 G ( N-1 )信号, 这样可以利用 ST (N-1)或 G (N-1)的信号来弥补 G (Ν)的第一阶段电位 不足带来的问题, 而且从设计上来说也可以减小 Τ55的尺寸。 并且由于 ST (N-1 )和0 (N-1 )信号在非作用期间的波纹电流(Ripple)要小于 Q (N), 通过减小 T55的尺寸也可以降低 P (N)和 K (N)在非作用期间电位的波 动。
如图 5所示, 是本发明提供的用于液晶显示的 GOA电路的第三实施例 的电路示意图。 在该实施例中, 该 GOA电路包括级联的多个 GOA单元, 其中, 该第 N级 GOA单元与图 3中示出的 GOA单元的区别在于, 在本实 施例中, 在图 3示出的 GOA单元的基础上, 进一步在桥接电路 800包括: 第十六 TFT, 即 T57, 其栅极连接来自 N-1级 GOA单元的开动信号 ST (N-1 )或第 N-1级水平扫描线 G (N-1 ), 其漏极和源极分别连接第一电路 点 Ρ ( Ν )和第二电路点 Κ ( Ν )。
在该实施例中, 通过增加 Τ56、 Τ66以及 Τ57, 且三者的栅极相互连接, 并均连接来自 N-1级 GOA单元的开动信号 ST ( N-1 )或者第 N-1级水平扫 描线 G ( N-1 )信号。 这样可以使 S ( Ν )和 Τ ( Ν ) /Ρ ( Ν )和 Κ ( Ν ) 四点 是相互联动的, 可以确保电路的稳定性。 同样, 在本发明的该实施例中, 可 以利用 ST (N-1)和 G (N-1)的信号来弥补 G (Ν)的第一阶段电位不足带 来的问题, 而且从设计上来说也可以减小 Τ55的尺寸。 并且由于 ST (N-l) 和 G (N-1 )信号在非作用期间的波纹电流(Ripple)要小于 Q (N), 通过 减小 T55的尺寸也可以降低 P (N)和 K (N)在非作用期间电位的波动。
图 6是图 5中的 GOA电路在实际操作时关键节点的波形示意图。 其中 由于利用了 ST ( N-1 )或 G ( N-1 )信号辅助对 Q ( N )的下拉进行控制, 可 以确保 P ( N )和 K ( N )的第一阶段能够从 PV1拉低到 PV2 (如虚线所示), 同样 S (N)和 T (N) 的信号也是一样, 这样可以使 Q (N)得到一定的提 升, 且使其输出波形的延迟(Delay)减小 (如虚线所示); 并且也会减小 G (N)输出波形的延迟(Delay)减小 (如虚线所示)。
相应地, 本发明实施例还提供了一种液晶显示装置, 其包括前述图 3至 图 6示出的用于液晶显示的 GOA电路。
实施本发明的实施例, 具有如下的有益效果:
首先, 在下拉维持电路中, 在负责下拉源极信号点 S (N)和漏极信号 点 T ( N )的第三 TFT (即 T52 )和第十 TFT (即 T62 )上分别并联第七 TFT (即 T56 )和第十四 TFT ( T66 ), 且第七 TFT和第十四 TFT (的栅极连接 ST ( N-1 )或者 G ( N-1 ), 这样可以弥补 Q ( N )点第一阶段电位较低导致 S (N)、 T (N)点下拉电位较高的问题, 而且也会修正第一电路点 P (N)、 第二电路点 K (N) 的下拉电位;
另外, 在负责第一电路点 P (N)和第二电路点 K (N)的桥接电路中所 包含的第十五 TFT (即 T55 )之外并联第十六 TFT (即 T57 ), 同时第十六 TFT的栅极连接 ST ( N-1 )或者 G ( N-1 ), 这样能够有效地弥补 Q ( N )点 第一阶段电位过低带来的问题。从而可以减小 Q ( N )所控制的第三 TFT (即 T52 )、 第十 TFT (即 T62 )和第十五 TFT (即 T55 ) 的尺寸, 并且由于 ST ( N-1 )和0 ( N-1 )信号在非作用期间的波纹电流(Ripple )要小于 Q ( N ), 从而解决源极信号点 S ( N ) /漏极信号点 T ( N )和第一电路点 P ( N ) /第二 电路点 K ( N ) 的波动性问题。
以上所揭露的仅为本发明较佳实施例而已, 当然不能以此来限定本发明 之权利范围, 因此等同变化, 仍属本发明所涵盖的范围。

Claims

权 利 要 求
1、一种用于液晶显示的 GOA电路, 其中, 包括级联的多个 GOA单元, 按照第 N级 GOA单元控制对显示区域第 N级水平扫描线充电, 该第 N级 GOA单元包括上拉电路、 下拉电路、 第一下拉维持电路、 第二下拉维持电 路、 桥接电路、 上拉控制电路、 下传电路及自举电容;
所述上拉电路、 下拉电路、 第一下拉维持电路、 第二下拉维持电路及自 举电容分别与栅极信号点和所述第 N级水平扫描线连接;
所述上拉控制电路和下传电路分别与所述栅极信号点连接;
所述桥接电路连接所述第一下拉维持电路和第二下拉维持电路; 所述第一下拉维持电路包括:
第一 TFT,其栅极连接第一电路点,其漏极和源极分别连接第 N级水平 扫描线和输入直流低电压;
第二 TFT, 其栅极连接第一电路点, 其漏极和源极分别连接栅极信号点 和输入直流氏电压;
第三 TFT, 其栅极连接栅极信号点, 其漏极和源极分别连接源极信号点 和输入直流氏电压;
第四 TFT,其源极连接源极信号点,其栅极和漏极均连接第一时钟信号; 第五 TFT, 其栅极连接源极信号点, 其漏极和源极分别连接第一时钟信 号和第一电路点;
第六 TFT, 其栅极连接第二时钟信号, 其漏极和源极分别连接第一时钟 信号和第一电路点;
第七 TFT, 其栅极连接来自 N-1级 GOA单元的开动信号或第 N-1级水 平扫描线, 其漏极和源极分别连接源极信号点和输入直流低电压;
所述第二下拉维持电路包括:
第八 TFT,其栅极连接第二电路点,其漏极和源极分别连接第 N级水平 扫描线和输入直流低电压;
第九 TFT, 其栅极连接第二电路点, 其漏极和源极分别连接栅极信号点 和输入直流氏电压;
第十 TFT, 其栅极连接栅极信号点, 其漏极和源极分别连接漏极信号点 和输入直流氏电压;
第十一 TFT, 其源极连接漏极信号点, 其栅极和漏极均连接第二时钟信 号;
第十二 TFT, 其栅极连接漏极信号点, 其漏极和源极分别连接第二时钟 信号和第二电路点;
第十三 TFT, 其栅极连接第一时钟信号, 其漏极和源极分别连接第二时 钟信号和第二电路点;
第十四 TFT, 其栅极连接第七 TFT的栅极, 其漏极和源极分别连接漏 极信号点和输入直流低电压;
所述桥接电路包括第十五 TFT, 其栅极连接栅极信号点, 其漏极和源极 分别连接第一电路点和第二电路点;
工作时,所述第一时钟信号和所述第二时钟信号的频率低于所述第 N级 时钟信号, 并且所述第一时钟信号对所述第一电路点的充电和所述第二时钟 信号对所述第二电路点的充电交替进行。
2、 如权利要求 1所述的用于液晶显示的 GOA电路, 其中, 所述上拉电 路包括:
第十七 TFT, 其栅极连接所述栅极信号点, 其漏极和源极分别输入第 N 级时钟信号和连接所述第 N级水平扫描线。
3、 如权利要求 2所述的用于液晶显示的 GOA电路, 其中, 所述下拉电 路包括:
第十八 TFT, 其栅极连接第 N+1 级水平扫描线, 其漏极和源极分别连 接所述第 N级水平扫描线和输入所述直流低电压;
第十九 TFT, 其栅极连接第 N+1级水平扫描线, 其漏极和源极分别连 接所述栅极信号点和输入所述直流低电压。
4、 如权利要求 3所述的用于液晶显示的 GOA电路, 其中, 所述下传电 路包括:
第二十 TFT, 其栅极连接所述栅极信号点, 其漏极和源极分别输入第 N 级时钟信号和输出第 N级开动信号。
5、 如权利要求 4所述的用于液晶显示的 GOA电路, 其中, 所述上拉控 制电路包括:
第二十一 TFT, 其栅极连接来自 N-1级 GOA单元的开动信号, 其漏极 和源极分别连接第 N-1级水平扫描线和栅极信号点。
6、 如权利要求 5所述的用于液晶显示的 GOA电路, 其中, 所述桥接电 路进一步包括第十六 TFT, 其栅极连接第七 TFT的栅极, 其漏极和源极分 别连接第一电路点和第二电路点。
7、一种用于液晶显示的 GOA电路, 其中, 包括级联的多个 GOA单元, 按照第 N级 GOA单元控制对显示区域第 N级水平扫描线充电, 该第 N级 GOA单元包括上拉电路、 下拉电路、 第一下拉维持电路、 第二下拉维持电 路、 桥接电路、 上拉控制电路、 下传电路及自举电容;
所述上拉电路、 下拉电路、 第一下拉维持电路、 第二下拉维持电路及自 举电容分别与栅极信号点和所述第 N级水平扫描线连接;
所述上拉控制电路和下传电路分别与所述栅极信号点连接;
所述桥接电路连接所述第一下拉维持电路和第二下拉维持电路; 所述第一下拉维持电路包括:
第一 TFT,其栅极连接第一电路点,其漏极和源极分别连接第 N级水平 扫描线和输入直流低电压;
第二 TFT, 其栅极连接第一电路点, 其漏极和源极分别连接栅极信号点 和输入直流氏电压;
第三 TFT, 其栅极连接栅极信号点, 其漏极和源极分别连接源极信号点 和输入直流氏电压;
第四 TFT,其源极连接源极信号点,其栅极和漏极均连接第一时钟信号; 第五 TFT, 其栅极连接源极信号点, 其漏极和源极分别连接第一时钟信 号和第一电路点;
第六 TFT, 其栅极连接第二时钟信号, 其漏极和源极分别连接第一时钟 信号和第一电路点;
所述第二下拉维持电路包括:
第八 TFT,其栅极连接第二电路点,其漏极和源极分别连接第 N级水平 扫描线和输入直流低电压; 第九 TFT, 其栅极连接第二电路点, 其漏极和源极分别连接栅极信号点 和输入直流氏电压;
第十 TFT, 其栅极连接栅极信号点, 其漏极和源极分别连接漏极信号点 和输入直流氏电压;
第十一 TFT, 其源极连接漏极信号点, 其栅极和漏极均连接第二时钟信 号;
第十二 TFT, 其栅极连接漏极信号点, 其漏极和源极分别连接第二时钟 信号和第二电路点;
第十三 TFT, 其栅极连接第一时钟信号, 其漏极和源极分别连接第二时 钟信号和第二电路点;
所述桥接电路包括:
第十五 TFT, 其栅极连接栅极信号点, 其漏极和源极分别连接第一电路 点和第二电路点;
第十六 TFT, 其栅极连接来自 N-1级 GOA单元的开动信号或第 N-1级 水平扫描线, 其漏极和源极分别连接第一电路点和第二电路点;
工作时,所述第一时钟信号和所述第二时钟信号的频率低于所述第 N级 时钟信号, 并且所述第一时钟信号对所述第一电路点的充电和所述第二时钟 信号对所述第二电路点的充电交替进行。
8、 如权利要求 7所述的用于液晶显示的 GOA电路, 其中, 所述上拉电 路包括:
第十七 TFT, 其栅极连接所述栅极信号点, 其漏极和源极分别输入第 N 级时钟信号和连接所述第 N级水平扫描线。
9、 如权利要求 8所述的用于液晶显示的 GOA电路, 其中, 所述下拉电 路包括:
第十八 TFT, 其栅极连接第 N+1 级水平扫描线, 其漏极和源极分别连 接所述第 N级水平扫描线和输入所述直流低电压;
第十九 TFT, 其栅极连接第 N+1级水平扫描线, 其漏极和源极分别连 接所述栅极信号点和输入所述直流低电压。
10、 如权利要求 9所述的用于液晶显示的 GOA电路, 其中, 所述下传 电路包括:
第二十 TFT, 其栅极连接所述栅极信号点, 其漏极和源极分别输入第 N 级时钟信号和输出第 N级开动信号。
11、 如权利要求 10所述的用于液晶显示的 GOA电路, 其中, 所述上拉 控制电路包括:
第二十一 TFT, 其栅极连接来自 N-1级 GOA单元的开动信号, 其漏极 和源极分别连接第 N-1级水平扫描线和栅极信号点。
12、 一种液晶显示装置, 其包括有 GOA电路, 其中, 所述 GOA电路 包括级联的多个 GOA单元, 按照第 N级 GOA单元控制对显示区域第 N级 水平扫描线充电, 该第 N级 GOA单元包括上拉电路、 下拉电路、 第一下拉 维持电路、 第二下拉维持电路、 桥接电路、 上拉控制电路、 下传电路及自举 电容;
所述上拉电路、 下拉电路、 第一下拉维持电路、 第二下拉维持电路及自 举电容分别与栅极信号点和所述第 N级水平扫描线连接;
所述上拉控制电路和下传电路分别与所述栅极信号点连接;
所述桥接电路连接所述第一下拉维持电路和第二下拉维持电路; 所述第一下拉维持电路包括:
第一 TFT,其栅极连接第一电路点,其漏极和源极分别连接第 N级水平 扫描线和输入直流低电压;
第二 TFT, 其栅极连接第一电路点, 其漏极和源极分别连接栅极信号点 和输入直流氏电压;
第三 TFT, 其栅极连接栅极信号点, 其漏极和源极分别连接源极信号点 和输入直流氏电压;
第四 TFT,其源极连接源极信号点,其栅极和漏极均连接第一时钟信号; 第五 TFT, 其栅极连接源极信号点, 其漏极和源极分别连接第一时钟信 号和第一电路点;
第六 TFT, 其栅极连接第二时钟信号, 其漏极和源极分别连接第一时钟 信号和第一电路点;
第七 TFT, 其栅极连接来自 N-1级 GOA单元的开动信号或第 N-1级水 平扫描线, 其漏极和源极分别连接源极信号点和输入直流低电压; 所述第二下拉维持电路包括:
第八 TFT,其栅极连接第二电路点,其漏极和源极分别连接第 N级水平 扫描线和输入直流低电压;
第九 TFT, 其栅极连接第二电路点, 其漏极和源极分别连接栅极信号点 和输入直流氏电压;
第十 TFT, 其栅极连接栅极信号点, 其漏极和源极分别连接漏极信号点 和输入直流氏电压;
第十一 TFT, 其源极连接漏极信号点, 其栅极和漏极均连接第二时钟信 号;
第十二 TFT, 其栅极连接漏极信号点, 其漏极和源极分别连接第二时钟 信号和第二电路点;
第十三 TFT, 其栅极连接第一时钟信号, 其漏极和源极分别连接第二时 钟信号和第二电路点;
第十四 TFT, 其栅极连接第七 TFT的栅极, 其漏极和源极分别连接漏 极信号点和输入直流低电压;
所述桥接电路包括第十五 TFT, 其栅极连接栅极信号点, 其漏极和源极 分别连接第一电路点和第二电路点;
工作时,所述第一时钟信号和所述第二时钟信号的频率低于所述第 N级 时钟信号, 并且所述第一时钟信号对所述第一电路点的充电和所述第二时钟 信号对所述第二电路点的充电交替进行。
13、 如权利要求 12所述的液晶显示装置, 其中, 所述上拉电路包括: 第十七 TFT, 其栅极连接所述栅极信号点, 其漏极和源极分别输入第 N 级时钟信号和连接所述第 N级水平扫描线。
14、 如权利要求 13所述的液晶显示装置, 其中, 所述下拉电路包括: 第十八 TFT, 其栅极连接第 N+1 级水平扫描线, 其漏极和源极分别连 接所述第 N级水平扫描线和输入所述直流低电压;
第十九 TFT, 其栅极连接第 N+1级水平扫描线, 其漏极和源极分别连 接所述栅极信号点和输入所述直流低电压。
15、 如权利要求 14所述的液晶显示装置, 其中, 所述下传电路包括: 第二十 TFT, 其栅极连接所述栅极信号点, 其漏极和源极分别输入第 N 级时钟信号和输出第 N级开动信号。
16、 如权利要求 15所述的液晶显示装置, 其中, 所述上拉控制电路包 括:
第二十一 TFT, 其栅极连接来自 N-1级 GOA单元的开动信号, 其漏极 和源极分别连接第 N-1级水平扫描线和栅极信号点。
17、 如权利要求 16所述的液晶显示装置, 其中, 所述桥接电路进一步 包括第十六 TFT, 其栅极连接第七 TFT的栅极, 其漏极和源极分别连接第 一电路点和第二电路点。
PCT/CN2014/076273 2014-04-21 2014-04-25 一种用于液晶显示的goa电路及液晶显示装置 WO2015161513A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/376,127 US9454940B1 (en) 2014-04-21 2014-04-25 Gate driver on array (GOA) circuit and LCD device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410159672.7 2014-04-21
CN201410159672.7A CN103928007B (zh) 2014-04-21 2014-04-21 一种用于液晶显示的goa电路及液晶显示装置

Publications (1)

Publication Number Publication Date
WO2015161513A1 true WO2015161513A1 (zh) 2015-10-29

Family

ID=51146208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076273 WO2015161513A1 (zh) 2014-04-21 2014-04-25 一种用于液晶显示的goa电路及液晶显示装置

Country Status (3)

Country Link
US (1) US9454940B1 (zh)
CN (1) CN103928007B (zh)
WO (1) WO2015161513A1 (zh)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103745700B (zh) 2013-12-27 2015-10-07 深圳市华星光电技术有限公司 自修复型栅极驱动电路
CN104008739B (zh) 2014-05-20 2017-04-12 深圳市华星光电技术有限公司 一种扫描驱动电路和一种液晶显示装置
CN104078021B (zh) 2014-07-17 2016-05-04 深圳市华星光电技术有限公司 具有自我补偿功能的栅极驱动电路
CN104078022B (zh) * 2014-07-17 2016-03-09 深圳市华星光电技术有限公司 具有自我补偿功能的栅极驱动电路
CN104064160B (zh) * 2014-07-17 2016-06-15 深圳市华星光电技术有限公司 具有自我补偿功能的栅极驱动电路
CN104064158B (zh) * 2014-07-17 2016-05-04 深圳市华星光电技术有限公司 具有自我补偿功能的栅极驱动电路
CN104269152B (zh) * 2014-10-22 2017-01-18 深圳市华星光电技术有限公司 用于氧化物半导体薄膜晶体管的行驱动电路
CN104464663B (zh) * 2014-11-03 2017-02-15 深圳市华星光电技术有限公司 低温多晶硅薄膜晶体管goa电路
CN104464658B (zh) * 2014-11-03 2016-11-16 深圳市华星光电技术有限公司 基于低温多晶硅半导体薄膜晶体管的goa电路
CN104332144B (zh) 2014-11-05 2017-04-12 深圳市华星光电技术有限公司 液晶显示面板及其栅极驱动电路
CN104376824A (zh) * 2014-11-13 2015-02-25 深圳市华星光电技术有限公司 用于液晶显示的goa电路及液晶显示装置
CN104409056B (zh) 2014-11-14 2017-01-11 深圳市华星光电技术有限公司 一种扫描驱动电路
CN104537987B (zh) * 2014-11-25 2017-02-22 深圳市华星光电技术有限公司 充电扫描与电荷共享扫描双输出goa电路
CN104464665B (zh) * 2014-12-08 2017-02-22 深圳市华星光电技术有限公司 一种扫描驱动电路
CN104517575B (zh) * 2014-12-15 2017-04-12 深圳市华星光电技术有限公司 移位寄存器及级传栅极驱动电路
CN104505033A (zh) * 2014-12-18 2015-04-08 深圳市华星光电技术有限公司 栅极驱动电路、阵列基板及显示装置
CN104517577B (zh) * 2014-12-30 2016-10-12 深圳市华星光电技术有限公司 液晶显示装置及其栅极驱动器
CN104537991B (zh) * 2014-12-30 2017-04-19 深圳市华星光电技术有限公司 正反向扫描的栅极驱动电路
CN104537992B (zh) * 2014-12-30 2017-01-18 深圳市华星光电技术有限公司 用于液晶显示装置的goa电路
CN104505048A (zh) * 2014-12-31 2015-04-08 深圳市华星光电技术有限公司 一种goa电路及液晶显示装置
CN104505050B (zh) * 2014-12-31 2017-02-01 深圳市华星光电技术有限公司 用于氧化物半导体薄膜晶体管的扫描驱动电路
US9780082B2 (en) * 2015-03-12 2017-10-03 Samsung Electronics Co., Ltd. Semiconductor device, layout system, and standard cell library
CN104795034B (zh) * 2015-04-17 2018-01-30 深圳市华星光电技术有限公司 一种goa电路及液晶显示器
CN104851403B (zh) * 2015-06-01 2017-04-05 深圳市华星光电技术有限公司 基于氧化物半导体薄膜晶体管的goa电路
CN104882108B (zh) * 2015-06-08 2017-03-29 深圳市华星光电技术有限公司 基于氧化物半导体薄膜晶体管的goa电路
CN105139816B (zh) * 2015-09-24 2017-12-19 深圳市华星光电技术有限公司 栅极驱动电路
CN105405382B (zh) * 2015-12-24 2018-01-12 深圳市华星光电技术有限公司 阵列栅极驱动电路与显示面板
US9972261B2 (en) 2015-12-24 2018-05-15 Shenzhen China Star Optoelectronics Technology Co. Ltd. Liquid crystal display device and GOA circuit
CN105390115B (zh) * 2015-12-24 2018-10-16 深圳市华星光电技术有限公司 液晶显示设备及goa电路
CN105869593B (zh) * 2016-06-01 2018-03-13 深圳市华星光电技术有限公司 一种显示面板及其栅极驱动电路
CN105931611B (zh) * 2016-07-08 2018-03-27 深圳市华星光电技术有限公司 一种阵列基板行驱动电路
CN106128401A (zh) * 2016-08-31 2016-11-16 深圳市华星光电技术有限公司 一种双边阵列基板行驱动电路、液晶显示面板、驱动方法
CN106157916A (zh) * 2016-08-31 2016-11-23 深圳市华星光电技术有限公司 一种栅极驱动单元及驱动电路
CN106128409B (zh) * 2016-09-21 2018-11-27 深圳市华星光电技术有限公司 扫描驱动电路及显示装置
CN106652947A (zh) * 2016-12-27 2017-05-10 深圳市华星光电技术有限公司 栅极驱动电路以及液晶显示装置
US10431135B2 (en) 2017-04-21 2019-10-01 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Scanning driving circuit
CN106898290B (zh) * 2017-04-21 2019-08-02 深圳市华星光电半导体显示技术有限公司 扫描驱动电路
US10386663B2 (en) * 2017-08-14 2019-08-20 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. GOA circuit and liquid crystal display device
CN107808650B (zh) * 2017-11-07 2023-08-01 深圳市华星光电半导体显示技术有限公司 Goa电路
CN107799083B (zh) * 2017-11-17 2020-02-07 武汉华星光电技术有限公司 一种goa电路
CN110223649A (zh) * 2019-05-16 2019-09-10 深圳市华星光电技术有限公司 Goa电路及液晶显示器
CN111081196B (zh) * 2019-12-24 2021-06-01 深圳市华星光电半导体显示技术有限公司 Goa电路及显示面板
CN111312146B (zh) * 2020-03-04 2021-07-06 Tcl华星光电技术有限公司 Goa电路及显示面板
US11151959B2 (en) 2020-03-04 2021-10-19 Tcl China Star Optoelectronics Technology Co., Ltd. GOA circuit and display device
CN115512672B (zh) * 2022-10-25 2023-10-27 业成科技(成都)有限公司 扫描驱动电路及其操作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100164854A1 (en) * 2008-12-26 2010-07-01 Kyung-Wook Kim Gate Drive Circuit, Display Device Having the Same and Method of Manufacturing the Gate Drive Circuit
US20100309191A1 (en) * 2009-06-04 2010-12-09 Je-Hao Hsu Shift register and a liquid crystal display device having the same
CN103325354A (zh) * 2013-02-25 2013-09-25 友达光电股份有限公司 栅极驱动电路
CN103680453A (zh) * 2013-12-20 2014-03-26 深圳市华星光电技术有限公司 阵列基板行驱动电路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101341909B1 (ko) * 2009-02-25 2013-12-13 엘지디스플레이 주식회사 쉬프트 레지스터
CN103280196B (zh) * 2012-09-19 2016-02-24 上海中航光电子有限公司 一种移位寄存器及薄膜晶体管液晶显示器
CN103226979B (zh) * 2013-02-18 2016-03-09 合肥京东方光电科技有限公司 一种双向移位寄存器单元、双向移位寄存器及显示装置
CN103258494B (zh) * 2013-04-16 2015-10-14 合肥京东方光电科技有限公司 一种移位寄存器、栅极驱动装置和液晶显示装置
CN104517575B (zh) * 2014-12-15 2017-04-12 深圳市华星光电技术有限公司 移位寄存器及级传栅极驱动电路
CN104505036B (zh) * 2014-12-19 2017-04-12 深圳市华星光电技术有限公司 一种栅极驱动电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100164854A1 (en) * 2008-12-26 2010-07-01 Kyung-Wook Kim Gate Drive Circuit, Display Device Having the Same and Method of Manufacturing the Gate Drive Circuit
US20100309191A1 (en) * 2009-06-04 2010-12-09 Je-Hao Hsu Shift register and a liquid crystal display device having the same
CN103325354A (zh) * 2013-02-25 2013-09-25 友达光电股份有限公司 栅极驱动电路
CN103680453A (zh) * 2013-12-20 2014-03-26 深圳市华星光电技术有限公司 阵列基板行驱动电路

Also Published As

Publication number Publication date
CN103928007A (zh) 2014-07-16
US9454940B1 (en) 2016-09-27
US20160275886A1 (en) 2016-09-22
CN103928007B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
WO2015161513A1 (zh) 一种用于液晶显示的goa电路及液晶显示装置
KR101817027B1 (ko) 액정 디스플레이용 goa회로 및 디스플레이 장치
US9483990B2 (en) Gate driver on array (GOA) circuit and LCD device using the same
KR102044547B1 (ko) 액정 표시 장치를 위한 goa 회로 및 액정 표시 장치
US10235958B2 (en) Gate driving circuits and liquid crystal devices
CN104766584B (zh) 具有正反向扫描功能的goa电路
WO2020019426A1 (zh) 包括goa电路的液晶面板及其驱动方法
US9905182B2 (en) GOA driving circuits, TFT display panels and display devices
US10121442B2 (en) Driving methods and driving devices of gate driver on array (GOA) circuit
US10032424B2 (en) Gate driving circuit and driving method
WO2016106830A1 (zh) 一种goa电路及液晶显示装置
WO2015100813A1 (zh) Goa电路结构
JP2017037298A (ja) 表示装置
US10714041B2 (en) Gate driver on array circuit
CN102779494A (zh) 一种栅极驱动电路、方法及液晶显示器
WO2016161694A1 (zh) 基于p型薄膜晶体管的goa电路
US20190019470A1 (en) GATE DRIVER ON ARRAY (GOA) CIRCUITS AND LIQUID CRYSTAL DISPLAYS (LCDs)
WO2018040484A1 (zh) 一种栅极驱动电路
WO2015158015A1 (zh) 一种显示面板驱动电路、显示装置及一种驱动方法
WO2019033492A1 (zh) Goa电路及液晶显示装置
WO2019075792A1 (zh) 一种goa电路及液晶面板、显示装置
CN106683624A (zh) Goa电路及液晶显示装置
US20200035180A1 (en) Liquid crystal panel including goa circuit and driving method thereof
WO2021103164A1 (zh) 一种 goa 电路及液晶显示面板
WO2020077924A1 (zh) 栅极驱动电路以及使用该栅极驱动电路的液晶显示器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14376127

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14889829

Country of ref document: EP

Kind code of ref document: A1