WO2015159797A1 - 型、型の製造方法、反射防止膜および反射防止膜の製造方法 - Google Patents

型、型の製造方法、反射防止膜および反射防止膜の製造方法 Download PDF

Info

Publication number
WO2015159797A1
WO2015159797A1 PCT/JP2015/061119 JP2015061119W WO2015159797A1 WO 2015159797 A1 WO2015159797 A1 WO 2015159797A1 JP 2015061119 W JP2015061119 W JP 2015061119W WO 2015159797 A1 WO2015159797 A1 WO 2015159797A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
aluminum
film
etching
substrate
Prior art date
Application number
PCT/JP2015/061119
Other languages
English (en)
French (fr)
Inventor
隆裕 中原
美穂 山田
箕浦 潔
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US15/303,049 priority Critical patent/US10549458B2/en
Priority to JP2016513746A priority patent/JP6309081B2/ja
Publication of WO2015159797A1 publication Critical patent/WO2015159797A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3828Moulds made of at least two different materials having different thermal conductivities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/60Releasing, lubricating or separating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/76Cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • B29C59/046Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts for layered or coated substantially flat surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/20Acidic compositions for etching aluminium or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/32Alkaline compositions
    • C23F1/36Alkaline compositions for etching aluminium or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/16Pretreatment, e.g. desmutting
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • B29C2033/426Stampers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/08Polymers of acrylic acid esters, e.g. PMA, i.e. polymethylacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/20Inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2667/00Use of polyesters or derivatives thereof for preformed parts, e.g. for inserts
    • B29K2667/003PET, i.e. poylethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2905/00Use of metals, their alloys or their compounds, as mould material
    • B29K2905/02Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent

Definitions

  • the present invention relates to a mold, a method for manufacturing the mold, an antireflection film manufactured using the mold, and a method for manufacturing the antireflection film.
  • the “mold” here includes molds used in various processing methods (stamping and casting), and is sometimes referred to as a stamper. It can also be used for printing (including nanoprinting).
  • An optical element such as a display device or a camera lens used for a television or a mobile phone is usually provided with an antireflection technique in order to reduce surface reflection and increase light transmission.
  • an antireflection technique in order to reduce surface reflection and increase light transmission. For example, when light passes through the interface of a medium with a different refractive index, such as when light enters the interface between air and glass, the amount of transmitted light is reduced due to Fresnel reflection, and visibility is reduced. is there.
  • the two-dimensional size of the convex portions constituting the concavo-convex pattern exhibiting the antireflection function is 10 nm or more and less than 500 nm.
  • the “two-dimensional size” of the convex portion refers to the area equivalent circle diameter of the convex portion when viewed from the normal direction of the surface. For example, when the convex portion has a conical shape, The two-dimensional size corresponds to the diameter of the bottom surface of the cone. The same applies to the “two-dimensional size” of the recess.
  • This method utilizes the principle of a so-called moth-eye structure, and the refractive index for light incident on the substrate is determined from the refractive index of the incident medium along the depth direction of the irregularities. By continuously changing the refractive index, reflection in the wavelength region where reflection is desired to be prevented is suppressed.
  • the moth-eye structure has an advantage that it can exhibit an antireflection effect with a small incident angle dependency over a wide wavelength range, can be applied to many materials, and can form an uneven pattern directly on a substrate. As a result, a low-cost and high-performance antireflection film (or antireflection surface) can be provided.
  • the present applicant has developed a method using an anodized porous alumina layer obtained by anodizing aluminum as a method for producing an antireflection film (or antireflection surface) having a moth-eye structure (Patent Documents 2 and 3). ).
  • a mold for forming a moth-eye structure on the surface (hereinafter referred to as “moth-eye mold”) can be easily manufactured.
  • the surface of the anodized aluminum film is used as a mold as it is, the effect of reducing the manufacturing cost is great.
  • the surface structure of the moth-eye mold that can form the moth-eye structure is referred to as an “inverted moth-eye structure”.
  • Patent Documents 1 to 4 in addition to the moth-eye structure (microstructure), an uneven structure (macrostructure) larger than the moth-eye structure is provided, so that the antireflection film (antireflection surface) is provided.
  • An anti-glare (anti-glare) function can be imparted.
  • the two-dimensional size of the convex part or the concave part constituting the concavo-convex structure exhibiting the anti-glare function (sometimes referred to as “anti-glare structure”) is 200 nm or more and less than 100 ⁇ m.
  • the surface structure of the mold that can form an antiglare structure is referred to as an “inverted antiglare structure”.
  • the entire disclosure of Patent Documents 1 to 4 is incorporated herein by reference.
  • the unevenness constituting the moth-eye structure is referred to as micro unevenness
  • the unevenness constituting the antiglare structure is referred to as macro unevenness.
  • the range of the two-dimensional size of the macro unevenness partially overlaps the range of the two-dimensional size of the micro unevenness, but in the antireflection film (antireflection surface) having the antiglare function, the antiglare
  • the concavo-convex structure constituting the structure is larger than the concavo-convex structure constituting the moth-eye structure that exhibits the antireflection function.
  • the surface reflecting the continuous macro uneven structure without the flat portion of the resin layer formed by electrodeposition described in Patent Document 4 has a problem that the image is blurred.
  • an antireflection film having an appropriate antiglare function in which blurring of an image is suppressed there is a demand for an antireflection film having an appropriate antiglare function in which blurring of an image is suppressed.
  • the present invention provides an antireflection film (or antireflection surface) having an appropriate antiglare function and an appropriate specular reflectivity, a method for producing such an antireflection film, and such reflection. It is an object of the present invention to provide a mold for forming a prevention film and to provide a method capable of efficiently manufacturing such a mold.
  • a mold manufacturing method includes: (a) a cylindrical aluminum substrate formed of an Al—Mg—Si-based aluminum alloy, which has been subjected to mechanical mirror finishing (B) a step of treating the surface of the aluminum substrate with an aqueous solution containing a salt of hydrogen fluoride and ammonium, and (c) after the step (b), the aluminum substrate.
  • the aluminum substrate is an aluminum substrate that has been cold drawn.
  • the aluminum substrate is an aluminum substrate formed by a hot extrusion method.
  • the hot extrusion method may be a mandrel method or a boathole method.
  • Cold drawing can be omitted.
  • the method for manufacturing the mold further includes a degreasing step and a water washing step before the step (b).
  • the step (b) is performed after 15 minutes after the rinsing step.
  • the mold manufacturing method further includes a substrate surface etching step of etching the surface of the aluminum substrate using an alkaline etching solution before the step (b).
  • the substrate surface etching step also serves as the degreasing step.
  • the alkaline etching solution contains 0.03 mass% or more of an inorganic base or an organic base.
  • the pH of the alkaline etching solution is 10 or more and 12 or less.
  • the alkaline etching solution contains potassium hydroxide.
  • the alkaline etching solution contains an organic compound having an amino group.
  • the arithmetic average roughness Ra of the surface of the aluminum base material is 50 nm or more and 300 nm or less by the base material surface etching step and the step (b).
  • At least 1.4 ⁇ m is removed from the surface of the aluminum substrate in the substrate surface etching step.
  • an anodizing step for pretreatment and an etching step are further included.
  • the anodizing step for the pretreatment uses an aqueous sulfuric acid solution as an electrolytic solution.
  • the etching step for the pretreatment uses a phosphoric acid aqueous solution as an etchant.
  • the salt of hydrogen fluoride and ammonium in the step (b) is ammonium hydrogen fluoride.
  • the aqueous solution containing a salt of hydrogen fluoride and ammonium contains 4 mass% or more of ammonium hydrogen fluoride.
  • the step (b) is performed at about 10 ° C., for example.
  • the satin treatment time is preferably in the range of 2 minutes 30 seconds to 8 minutes.
  • the mold according to the embodiment of the present invention is a mold manufactured by any one of the mold manufacturing methods described above.
  • the mold according to another embodiment of the present invention includes a plurality of convex portions having a two-dimensional size of 200 nm to 30 ⁇ m when viewed from the normal direction of the surface, and 2 when viewed from the normal direction of the surface.
  • An antireflection film manufacturing method includes a step of preparing any of the above molds, a step of preparing a workpiece, and photocuring between the mold and the surface of the workpiece.
  • the antireflection film according to the embodiment of the present invention is an antireflection film manufactured by the above-described method for manufacturing an antireflection film.
  • An antireflection film has a plurality of recesses having a two-dimensional size of 200 nm or more and 30 ⁇ m or less when viewed from the surface normal direction and a surface when viewed from the surface normal direction. It has a surface structure that has a plurality of micro-projections with a two-dimensional size of 10 nm or more and less than 500 nm, an incident angle of 5 °, a light receiving angle on the horizontal axis, and a maximum value of diffuse reflected light intensity of 80%.
  • the point where the slope of the light distribution curve with the common logarithm of the relative diffuse reflectance (%) as the vertical axis changes discontinuously is within the range where the light receiving angle is over 0 ° and below 10 °.
  • the relative diffuse reflectance (%) is in the range of 1% to 10%.
  • the antireflection film has a haze value of about 7 or more and about 24 or less.
  • a mold for forming an antireflection film (or an antireflection surface) having an appropriate antiglare function and an appropriate specular reflectivity and a method capable of efficiently manufacturing such a mold.
  • the mold according to the embodiment of the present invention can form an antireflection film (antireflection surface) having an appropriate antiglare function, an appropriate specular reflectivity, and an excellent antireflection function.
  • the antireflection film according to the embodiment of the present invention has a surface structure that exhibits an appropriate antiglare function, an appropriate specular reflectivity, and an excellent antireflection function.
  • (A)-(d) is typical sectional drawing for demonstrating the manufacturing method of the mold 100 for moth eyes by embodiment of this invention
  • (a) is the aluminum base material 12 of the mold 100 for moth eyes. It is typical sectional drawing
  • (b) is sectional drawing which shows typically the surface structure of the aluminum base material 12 which has the inverted anti-glare structure
  • (c) is inorganic on the surface of the aluminum base material 12
  • (d) is the inverted anti-glare structure and the inverted moth-eye structure superimposed on the inverted anti-glare structure.
  • FIG. 1 is a schematic cross-sectional view of a moth-eye mold 100 having It is a flowchart explaining the manufacturing method of the type
  • (A) is a laser microscope image (full scale 15 ⁇ m in the microscopic image) of the surface of the aluminum substrate 12 having an inverted antiglare structure formed by the satin treatment, and (b) is formed by the satin treatment.
  • FIG. 6 is an SEM image (full scale 10 ⁇ m in the SEM image) when the surface of the aluminum substrate 12 having an inverted antiglare structure is observed from the vertical direction, and (c) is a schematic diagram of the inverted antiglare structure.
  • (d) is a typical perspective view of the inverted anti-glare structure.
  • (A) is an SEM image (full scale 10 ⁇ m in the SEM image) when the surface of the aluminum film 18 of the mold base 10 is observed from the vertical direction
  • (b) is an inversion of the moth-eye mold 100. It is a SEM image (full scale 10 micrometers in a SEM image) when the surface of the porous alumina layer 14 which has a moth-eye structure is observed from a perpendicular direction. It is a figure for demonstrating the manufacturing method of the anti-reflective film using the type
  • (A) and (b) are SEM images of an antireflection film having an antiglare function according to an embodiment of the present invention, and (a) is an SEM image (SEM image) when the surface of the antireflection film is observed from the vertical direction. (B) is an SEM image (full scale 3 ⁇ m in the SEM image) when the cross section and surface of the antireflection film are observed from an oblique direction.
  • (A) ⁇ (c) is a schematic diagram of an antireflection film having an antiglare function according to an embodiment of the present invention
  • (a) is a schematic diagram when the surface of the antireflection film is observed from the vertical direction
  • (B) is a schematic diagram when the surface of an antireflection film is observed from an oblique direction
  • (c) is a schematic diagram of a cross section of the antireflection film.
  • (A) is a graph which shows the measurement result of the light distribution distribution of the diffuse reflection light by the antireflection film which has an anti-glare function
  • (b) is a schematic diagram which shows the measurement system of the light distribution distribution of a diffuse reflection light.
  • (A) to (c) are SEM images (5000 times, full scale 10 ⁇ m in SEM image) of the surface of an aluminum base material that has been satin-treated with an aqueous solution containing ammonium hydrogen fluoride. It is a figure which shows the light distribution of the diffusely reflected light of the sample film produced using the aluminum base material (mold base material which carried out cold drawing processing) from which the time of a satin processing (process temperature of 35 degreeC) differs. It is a figure which shows the model calculation result which evaluated the anti-glare function and specular reflectivity.
  • FIG. 1 It is a figure which shows the light distribution of the diffuse reflected light of the sample film produced using the aluminum base material (mold base material which carried out cold drawing processing) from which the time of a satin processing (treatment temperature of 10 degreeC) differs.
  • (A) And (b) is a figure which shows the SEM image of the surface of the aluminum base material (mold base material which is not cold-drawn) which performed the anodic oxidation and etching as pre-processing of a satin processing, ( a) shows the case where an aqueous oxalic acid solution is used as the electrolytic solution, and (b) shows the case where an aqueous sulfuric acid solution is used as the electrolytic solution.
  • (A) to (d) are SEM images of the surface of a sample with different etching times using an aqueous phosphoric acid solution after anodizing with an aqueous sulfuric acid solution as a pretreatment for the satin treatment.
  • (A) is a SEM image of the surface after performing a satin treatment for 37 seconds to the aluminum base material of the mold base material produced using the aluminum base material subjected to cold drawing
  • (b) After performing anodic oxidation (sulfuric acid aqueous solution) and etching as pretreatment on the aluminum substrate of the mold substrate produced using an aluminum substrate that has not been subjected to cold drawing, a satin treatment is performed for 120 seconds. It is a SEM image of the surface after performing.
  • (b) is a figure which shows typically the relationship of the magnitude
  • (A) It is sectional drawing which shows typically the structure of a macro unevenness
  • (b) is a typical cross section which shows the inverted moth eye structure superimposed on the macro unevenness
  • (C) is a schematic cross-sectional view enlarging an inverted moth-eye structure.
  • 16 (a) and 16 (b) are diagrams schematically showing the relationship between the macro uneven structure constituting the conventional anti-glare structure and the dot pitch Px in the row direction. Indicates a case where the macro uneven structure is larger than the dot pitch Px, and FIG. 16B shows a case where the macro uneven structure is smaller than the dot pitch Px.
  • the dots refer to R, G, and B dots that constitute pixels in a typical color liquid crystal display panel.
  • the pixel pitch in the row direction is the dot pitch Px in the row direction. Tripled. Note that the pixel pitch in the column direction is equal to the dot pitch Py in the column direction.
  • the surface 28s having a macro uneven structure constituting the conventional anti-glare structure has a continuous corrugated surface shape having no flat portion.
  • the macro uneven structure having such a continuous corrugated surface shape is characterized by the average value of the distance between adjacent macro concave portions (average inter-adjacent distance AD int ) or the two-dimensional size AD p of the concave portions.
  • AD int average inter-adjacent distance
  • AD p two-dimensional size
  • an average distance AD int between the recesses (considered to be equal to the two-dimensional size AD p of the recesses) is, for example, a dot pitch Px in the row direction (pixels having three dots ( In the case of R, G, B), if the pixel pitch in the row direction is larger than 3 times the dot pitch), a sufficient anti-glare function cannot be obtained.
  • the average adjacent distance AD int (two-dimensional size AD p of the recess) is substantially equal to each other and the dot pitch Is preferably smaller.
  • the two-dimensional size of the recess means a two-dimensional expansion when viewed from the normal direction of the surface, and the recess is typically conical and when viewed from the normal direction of the surface.
  • the shape of is substantially circular. At this time, the two-dimensional size corresponds to the diameter of the circle.
  • the average distance AD int between two adjacent concave portions is substantially equal to the two-dimensional size AD p of the concave portions.
  • the pixel pitch is 254 ⁇ m for a display with a relatively low resolution, for example, a 100 ppi display.
  • the average distance AD int between adjacent surfaces is preferably about 85 ⁇ m (254/3) or less.
  • Patent Document 4 discloses a method for manufacturing an antireflection film in which a moth-eye structure is superimposed on an antiglare structure having a continuous corrugated surface 28s without a flat portion.
  • mold for forming the anti-reflective film which has the anti-glare function described in patent document 4 is demonstrated.
  • FIG. 17A is a cross-sectional view schematically showing an inverted antiglare structure for forming an antiglare structure
  • FIG. 17B shows an inverted moth-eye structure superimposed on the inverted antiglare structure
  • FIG. 17C is a schematic cross-sectional view in which the inverted moth-eye structure is enlarged.
  • the surface 18cs having an inverted antiglare structure for forming the antiglare structure having the continuous corrugated surface 28s having no flat portion shown in FIG. 17A is an outer peripheral surface of a cylindrical metal substrate. It is obtained by forming an insulating layer with an electrodeposition resin containing a matting agent and forming an aluminum film 18c on the insulating layer. That is, the surface of the insulating layer formed of an electrodeposition resin containing a matting agent has a continuous corrugated surface shape without a flat portion, and the surface 18cs of the aluminum film 18c formed on the insulating layer is: Reflecting the shape of the surface of the insulating layer, it has a continuous corrugated surface shape without a flat portion.
  • the macro unevenness of the surface 18cs of the aluminum film 18c is opposite to the macro unevenness of the surface 28s constituting the antiglare structure. is there.
  • anodization and etching are alternately repeated on the surface of the aluminum film 18c having an inverted antiglare structure, so that an anodized porous film having micro concave portions 14p is obtained.
  • An alumina layer 14c is formed.
  • the moth-eye mold 200 having a surface in which the inverted moth-eye structure is superimposed on the inverted anti-glare structure is obtained.
  • the porous alumina layer 14c is densely filled with micro concave portions 14p.
  • the micro concave portion 14p is generally conical and may have stepped side surfaces.
  • the two-dimensional size (opening diameter: D p ) of the micro concave portion 14p is preferably 10 nm or more and less than 500 nm, and the depth (D depth ) is preferably about 10 nm or more and less than 1000 nm (1 ⁇ m).
  • D p opening diameter
  • D depth depth
  • the bottom part of the micro recessed part 14p is pointed (the bottom part is a point).
  • the micro concave portions 14p are closely packed, and assuming that the shape of the micro concave portions 14p when viewed from the normal direction of the porous alumina layer 14c is a circle, adjacent circles overlap each other, It is preferable that a flange is formed between the adjacent micro concave portions 14p.
  • the substantially conical micro concave portions 14p are adjacent so as to form a collar portion, the two-dimensional size D p of the micro concave portions 14p is assumed to be equal to the average inter-adjacent distance D int .
  • the arrangement of the micro concave portions does not need to be completely random, and may be irregular so that light interference and diffraction do not substantially occur. Since the shape of the opening of the micro concave portion 14p is not strictly a circle, D p is preferably obtained from the SEM image of the surface.
  • the thickness t p of the porous alumina layer 14c is about 1 ⁇ m or less.
  • the antireflection film formed by using the mold manufactured by the mold manufacturing method described in Patent Document 4 has a problem that the image is blurred (described later with reference to FIG. 10B). This is because the inverted antiglare structure of the mold manufactured by the method described in Patent Document 4 has relatively large AD int and AD p . Therefore, in the manufacturing method described in Patent Document 4, it is difficult to form an antiglare structure that is suitably used for a high-definition display exceeding 300 ppi, for example.
  • an antiglare structure having an appropriate antiglare function for example, a haze value of about 7 or more and about 24 or less
  • an appropriate specular reflectivity for example, a haze value of about 7 or more and about 24 or less
  • an appropriate specular reflectivity for example, a specular reflectivity
  • an excellent antireflection effect are exhibited.
  • An antireflective film (or antireflective surface) having a moth-eye structure is provided.
  • a mold for forming such an antireflection film is provided, and further, a method for efficiently manufacturing such a mold is provided.
  • the mold manufactured by the mold manufacturing method according to the embodiment of the present invention is not limited to the illustrated example, and an antireflection film having a diffuse reflection performance with a small haze value (for example, about 1 to about 5) is formed. Can also be used.
  • FIGS. 1A to 1D are schematic cross-sectional views for explaining a method for manufacturing a moth-eye mold 100 according to an embodiment of the present invention.
  • FIG. 2 is a moth-eye mold according to an embodiment of the present invention.
  • 10 is a flowchart for explaining a manufacturing method 100.
  • the method for manufacturing the moth-eye mold 100 includes the following steps (a) to (f) as shown in FIG.
  • a step of preparing a cylindrical aluminum base material formed of an Al—Mg—Si based aluminum alloy and subjected to mechanical mirror finishing (b) Surface of the aluminum base material
  • D) A step of forming a porous alumina layer having a plurality of microscopic recesses by anodizing the surface of the aluminum film after the step (c).
  • step (d) the porous alumina layer is brought into contact with the etching solution to enlarge a plurality of micro concave portions of the porous alumina layer.
  • step (F) Step ( After), by further anodization, growing a plurality of microscopic recesses
  • the mold base means an object to be anodized and etched in the mold manufacturing process.
  • the aluminum substrate means bulk aluminum that can be self-supported.
  • FIG. 1A is a schematic cross-sectional view of the aluminum base 12 of the moth-eye mold 100
  • FIG. 1B schematically shows the surface structure of the aluminum base 12 having an inverted antiglare structure
  • FIG. 1C is a schematic cross-sectional view of the mold base 10 in which the inorganic material layer 16 and the aluminum film 18 are formed on the surface of the aluminum base 12
  • FIG. 3 is a schematic cross-sectional view of a moth-eye mold 100 having an inverted antiglare structure and an inverted motheye structure superimposed on the inverted antiglare structure.
  • FIG. 1 shows an enlarged part of the moth-eye mold 100, but the moth-eye mold 100 according to the embodiment of the present invention is cylindrical (roll-shaped).
  • the moth-eye mold 100 is cylindrical (roll-shaped).
  • an antireflection film can be efficiently produced by a roll-to-roll method.
  • the entire disclosure of WO 2011/105206 is incorporated herein by reference.
  • Byte cutting is preferred as the mechanical mirror finish. If, for example, abrasive grains remain on the surface of the aluminum base 12, electrical conduction between the aluminum film 18 and the aluminum base 12 is facilitated in a portion where the abrasive grains exist. In addition to the abrasive grains, where there are irregularities, local conduction between the aluminum film 18 and the aluminum substrate 12 is likely to occur. When local conduction is made between the aluminum film 18 and the aluminum base 12, there is a possibility that a battery reaction occurs locally between the impurities in the aluminum base 12 and the aluminum film 18.
  • the effect of the subsequent chemical matte treatment differs depending on the material of the aluminum substrate 12, and in order to obtain the above macro uneven structure, an Al—Mg—Si based aluminum
  • An aluminum substrate 12 made of an alloy for example, JIS A6063
  • the cylindrical aluminum substrate 12 is typically formed by a hot extrusion method.
  • the hot extrusion method includes a mandrel method and a boathole method, and it is preferable to use an aluminum substrate 12 formed by the mandrel method.
  • a seam (weld line) is formed on the outer peripheral surface of the cylindrical aluminum base material 12 formed by the boat hole method, and the seam is reflected in the moth-eye mold 100. Therefore, depending on the accuracy required for the moth-eye mold 100, it is preferable to use the aluminum substrate 12 formed by the mandrel method.
  • the problem of a seam can be eliminated by performing cold drawing processing with respect to the aluminum base material 12 formed by the boat hall method.
  • cold drawing may be applied to the aluminum substrate 12 formed by the mandrel method.
  • the surface of the aluminum base 12 is treated with an aqueous solution containing a salt of hydrogen fluoride and ammonium, so that the surface is inverted to the surface 12s of the aluminum base 12 as shown in FIG.
  • An anti-glare structure is formed.
  • the inverted anti-glare structure formed by the satin treatment has a plurality of macro convex portions 12p and a plurality of macro concave portions 12g.
  • the macro convex portion 12p is substantially surrounded by the macro concave portion 12g, and the macro concave portion 12g exists as a groove that defines the outer periphery of the macro convex portion 12p.
  • An aqueous solution containing a salt of hydrogen fluoride and ammonium causes pitting corrosion.
  • the salt of hydrogen fluoride and ammonium include ammonium fluoride (normal salt or neutral salt) and ammonium hydrogen fluoride (hydrogen salt or acidic salt).
  • An aqueous solution containing a salt of hydrogen fluoride and ammonium has an advantage that it has less adverse effects on the human body and the environment than an aqueous solution of hydrogen fluoride.
  • the concentration of ammonium hydrogen fluoride is, for example, 4 mass% or more.
  • ammonium dihydrogen phosphate and / or ammonium sulfate may be added.
  • an etching solution for treating aluminum with a satin finish was used in which a small amount of ammonium dihydrogen phosphate and ammonium sulfate was added to ammonium hydrogen fluoride.
  • This etching solution is referred to as an aqueous solution containing ammonium hydrogen fluoride for the sake of simplicity.
  • Such an etchant can be prepared using a chemi-cleaner manufactured by Nippon CB Chemical Co., Ltd.
  • the time for the satin treatment with the aqueous solution containing ammonium hydrogen fluoride is, for example, 15 seconds or more and 180 seconds or less when the treatment temperature is 35 ° C. Since an aqueous solution containing ammonium fluoride has a weaker etching ability of aluminum than an aqueous solution containing ammonium hydrogen fluoride, an aqueous solution containing ammonium hydrogen fluoride is used by appropriately adjusting the concentration, processing temperature, and time. The same effect can be obtained.
  • a degreasing process and a water washing process are performed as needed before the satin treatment with an aqueous solution containing a salt of hydrogen fluoride and ammonium. Moreover, it is preferable to perform a satin treatment before 15 minutes pass after a washing process. Moreover, it is preferable to wash with water as needed between the steps using different treatment liquids.
  • cutting trace might be formed on the surface of the aluminum base material 12.
  • the cut marks formed on the surface of the aluminum substrate 12 were also reflected in the aluminum film 18 formed on the aluminum substrate 12.
  • cutting trace not only the surface of the aluminum base 12 but also the trace caused by the cutting formed on the aluminum film 18 formed on the aluminum base 12 is referred to as “cutting trace”.
  • cutting traces can be reduced. That is, cutting traces can be reduced by once anodizing the surface of the aluminum base 12 and removing the formed anodized film by etching.
  • an aqueous sulfuric acid solution is preferably used as the electrolytic solution
  • an aqueous phosphoric acid solution is preferably used as the etching solution.
  • an anodizing process and an etching process for pretreatment are performed, so that the cutting traces are formed on the surface of the aluminum base material 12. Can be more reliably suppressed.
  • the above-described cutting trace is considered to be etching unevenness caused by a work-affected layer formed on the surface of the aluminum base 12 by mirror finishing by cutting with a bite. Therefore, the problem that the cut mark is formed by the satin treatment is not limited to the cutting by cutting, and is a common problem when using the aluminum base material 12 that has been subjected to mirror finishing accompanied by the formation of a work-affected layer. This can be solved by performing an anodizing process and an etching process for pretreatment.
  • mechanical polishing such as cutting and grinding (Mechanical Polishing: MP), and chemical mechanical polishing (CMP) that uses both chemical polishing and mechanical polishing, form a work-affected layer.
  • MP cutting and grinding
  • CMP chemical mechanical polishing
  • a step of etching the surface of the aluminum base 12 using an alkaline etching solution may be further performed.
  • base surface etching step By the substrate surface etching process using an alkaline etching solution, at least a part of the work-affected layer of the aluminum substrate 12 that may cause cutting marks can be removed.
  • the alkaline etching solution contains, for example, an inorganic base (inorganic alkali) or an organic base (organic alkali).
  • Inorganic bases include, for example, potassium hydroxide, sodium hydroxide, calcium hydroxide, magnesium hydroxide and the like.
  • the organic base includes, for example, a compound having an amino group.
  • Organic bases include, for example, 2-aminoethanol (ethanolamine), primary alkanolamine, dimethylbis (2-hydroxy) ethyl, and the like.
  • the pH of the alkaline etching solution is, for example, 10 or more and 12 or less.
  • the alkaline etching liquid is not limited to the above, and for example, a known alkaline cleaning liquid may be used.
  • the substrate surface etching step may be performed, for example, before the anodizing step and the etching step for pretreatment.
  • the substrate surface etching step may be performed, for example, instead of the anodizing step and the etching step for pretreatment. Since the substrate surface etching step uses an alkaline etching solution, it can also serve as a degreasing step.
  • the number of steps can be reduced by performing the substrate surface etching step in place of the anodizing step and the etching step for pretreatment.
  • the number of steps can also be reduced when the substrate surface etching step also serves as a degreasing step.
  • An aluminum substrate having a surface with less unevenness can be obtained with fewer steps.
  • a mold for forming an antireflection film having an appropriate antiglare function can be efficiently produced. The production yield of the antireflection film having an appropriate antiglare function can be improved.
  • an inorganic material layer 16 is formed on the surface of the aluminum substrate 12, and an aluminum film 18 is formed on the inorganic material layer 16, thereby producing the mold substrate 10. To do.
  • the structure formed in the aluminum film 18 is also called an inverted antiglare structure.
  • the inverted antiglare structure formed on the surface of the aluminum film 18 has substantially the same structure as the inverted antiglare structure formed on the surface of the aluminum substrate 12. Therefore, the inverted anti-glare structure formed on the surface of the aluminum film 18 has a plurality of macro convex portions 18p and a plurality of macro concave portions 18g.
  • the macro convex portion 18p is substantially surrounded by the macro concave portion 18g, and the macro concave portion 18g exists like a groove that defines the outer periphery of the macro convex portion 18p.
  • the inorganic material layer 16 for example, tantalum oxide (Ta 2 O 5 ) or silicon dioxide (SiO 2 ) can be used.
  • the inorganic material layer 16 can be formed by sputtering, for example.
  • the thickness of the tantalum oxide layer is, for example, 200 nm.
  • the thickness of the inorganic material layer 16 is preferably 100 nm or more and less than 500 nm. If the thickness of the inorganic material layer 16 is less than 100 nm, defects (mainly voids, that is, gaps between crystal grains) may occur in the aluminum film 18 in some cases. Further, when the thickness of the inorganic material layer 16 is 500 nm or more, the aluminum base 12 and the aluminum film 18 are easily insulated from each other depending on the surface state of the aluminum base 12. In order to anodize the aluminum film 18 by supplying current to the aluminum film 18 from the aluminum substrate 12 side, it is necessary that a current flow between the aluminum substrate 12 and the aluminum film 18.
  • the aluminum film 18 can be uniformly anodized over the entire surface without causing a problem that it is difficult to be supplied.
  • the thick inorganic material layer 16 it is generally necessary to lengthen the film formation time.
  • the film formation time is lengthened, the surface temperature of the aluminum base 12 is unnecessarily increased. As a result, the film quality of the aluminum film 18 is deteriorated, and defects (mainly voids) may occur. If the thickness of the inorganic material layer 16 is less than 500 nm, the occurrence of such a problem can be suppressed.
  • the aluminum film 18 is, for example, a film formed of aluminum having a purity of 99.99 mass% or more (hereinafter, also referred to as “high-purity aluminum film”) as described in Patent Document 3.
  • the aluminum film 18 is formed using, for example, a vacuum deposition method or a sputtering method.
  • the thickness of the aluminum film 18 is preferably in the range of about 500 nm or more and about 1500 nm or less, for example, about 1 ⁇ m.
  • an aluminum alloy film described in International Publication No. 2013/0183576 may be used instead of the high-purity aluminum film.
  • the aluminum alloy film described in International Publication No. 2013/0183576 contains aluminum, a metal element other than aluminum, and nitrogen.
  • the “aluminum film” includes not only a high-purity pure aluminum film but also an aluminum alloy film described in International Publication No. 2013/0183576.
  • the entire disclosure of WO2013 / 0183576 is incorporated herein by reference.
  • the average grain size of the crystal grains constituting the aluminum alloy film as viewed from the normal direction of the aluminum alloy film is, for example, 100 nm or less, and the maximum surface roughness Rmax of the aluminum alloy film is 60 nm or less.
  • the content rate of nitrogen contained in the aluminum alloy film is, for example, not less than 0.5 mass% and not more than 5.7 mass%.
  • the absolute value of the difference between the standard electrode potential of a metal element other than aluminum contained in the aluminum alloy film and the standard electrode potential of aluminum is 0.64 V or less, and the content of the metal element in the aluminum alloy film is 1.0 mass. % Or more and 1.9 mass% or less is preferable.
  • the metal element is, for example, Ti or Nd.
  • the metal element is not limited to this, and other metal elements whose absolute value of the difference between the standard electrode potential of the metal element and the standard electrode potential of aluminum is 0.64 V or less (for example, Mn, Mg, Zr, V, and Pb).
  • the metal element may be Mo, Nb, or Hf.
  • the aluminum alloy film may contain two or more of these metal elements.
  • the aluminum alloy film is formed by, for example, a DC magnetron sputtering method.
  • the thickness of the aluminum alloy film is also preferably in the range of about 500 nm to about 1500 nm, for example, about 1 ⁇ m.
  • FIG. 3A is a laser microscope image (full scale 15 ⁇ m in the microscopic image) of the surface of the aluminum substrate 12 having an inverted antiglare structure formed by the satin treatment
  • FIG. It is a SEM image (full scale 10 micrometers in a SEM image) when the surface of the aluminum base material 12 which has the inverted anti-glare structure formed by the process is observed from a perpendicular direction.
  • FIG. 3 (a) is an observation of the surface of the aluminum substrate 12 subjected to a matte treatment under conditions of an anodic oxidation temperature of 10 ° C.
  • FIG. 3C is a schematic plan view of the inverted antiglare structure
  • FIG. 3D is a schematic perspective view of the inverted antiglare structure.
  • the inverted anti-glare structure formed by the satin treatment has a plurality of macro convex portions 18p and a plurality of macro concave portions 18g.
  • the macro convex portion 18p is substantially surrounded by the macro concave portion 18g, and the macro concave portion 18g exists like a groove that defines the outer periphery of the macro convex portion 18p.
  • the plurality of macro convex portions 18p When viewed from the normal direction of the surface, the plurality of macro convex portions 18p have a substantially polygonal outer shape, but regularity is not seen in the arrangement.
  • the two-dimensional size (area circle equivalent diameter) when viewed from the normal direction of the surface of the macro convex portion 18p is about 200 nm or more and 30 ⁇ m or less. From the microscopic image of FIG. 3A and the SEM image of FIG. 3B, the two-dimensional size when viewed from the normal direction of the surface of the macro convex portion 18p is about 1 ⁇ m or more and about 5 ⁇ m or less. It can be estimated. Further, the upper surface of the macro convex portion 18p is substantially flat.
  • the width of the macro concave portion (groove) 18g that substantially surrounds the macro convex portion 18p is about one-tenth to one-fifth of the two-dimensional size of the macro convex portion 18p. .
  • the average value of the distance between adjacent macro concave portions 18g is approximately equal to the average value of the two-dimensional size when viewed from the normal direction of the surface of the macro convex portion 18p. Can think.
  • the adjacent macro concave portion 18g defines the two-dimensional size of the macro convex portion 18p.
  • the macro concave portions 18g adjacent in the cross section in the direction are meant. Therefore, the average distance AD int between the adjacent portions is approximately equal to the sum of the average value of the two-dimensional size of the macro-shaped convex portion 18p and the average value of the width of the macro-shaped concave portion 18g.
  • the depth AD depth of the macro concave portion 18g is, for example, 20 nm or more and 500 nm or less, but may be 20 nm or more and less than 5 ⁇ m.
  • anodic oxidation and etching are alternately repeated to form the inverted moth-eye structure, whereby the moth-eye mold 100 shown in FIG. 1D is obtained. That is, in the process of forming the inverted moth-eye structure, the surface of the aluminum film 18 is anodized to form a porous alumina layer 14 having a plurality of micro recesses 14p, and then the porous alumina layer 14 Including a step of expanding a plurality of micro concave portions 14p of the porous alumina layer 14 by contacting with an etching solution, and a step of growing a plurality of micro concave portions 14p by further anodizing thereafter. To do.
  • the electrolytic solution used for anodization is, for example, an aqueous solution containing an acid selected from the group consisting of oxalic acid, tartaric acid, phosphoric acid, sulfuric acid, chromic acid, citric acid, and malic acid.
  • an aqueous solution of an organic acid such as formic acid, acetic acid, or citric acid or an aqueous solution of sulfuric acid, a mixed aqueous solution of chromic phosphoric acid, or an aqueous solution of an alkali such as sodium hydroxide or potassium hydroxide can be used.
  • the series of steps of repeating anodization and etching end with the anodization step.
  • the subsequent etching step is not performed
  • the bottom of the micro concave portion 14p can be reduced.
  • a method for forming such an inverted moth-eye structure is disclosed, for example, in WO 2006/059686 by the applicant.
  • the entire disclosure of WO 2006/059686 is incorporated herein by reference.
  • an anodic oxidation step electrolytic solution: oxalic acid aqueous solution (concentration 0.3 mass%, liquid temperature 10 ° C.), applied voltage: 80 V, application time: 55 seconds
  • etching step etching solution: phosphoric acid aqueous solution (10 mass%, 30 ° C.)
  • etching time 20 minutes
  • a plurality of times for example, 5 times: anodization is 5 times and etching is 4 times
  • the micro concave portion 14p has a substantially conical shape and is adjacent to form a collar portion.
  • the inverted moth-eye structure composed of the micro recesses 14p is formed so as to be superimposed on the antiglare structure. Therefore, as schematically shown in FIG. 1 (d), the micro concave portion 14p formed in the macro convex portion 18p constituting the antiglare structure and the micro concave portion 14p formed in the macro concave portion 18g are provided. Exists.
  • the micro concave portion 14p formed in the macro concave portion 18g is deeper than the micro concave portion 14p formed in the macro convex portion 18p.
  • a barrier layer is formed under the micro concave portion 14p.
  • the porous alumina layer 14 includes a porous layer having the micro concave portion 14p and a barrier layer (under the aluminum film side) (on the aluminum film side). The bottom of the recess 14p). It is known that the interval between the adjacent micro concave portions 14p (center-to-center distance) corresponds to approximately twice the thickness of the barrier layer and is approximately proportional to the voltage during anodization. Under the porous alumina layer 14, an aluminum remaining layer 18 r that has not been anodized in the aluminum film 18 is present.
  • FIG. 4A shows an SEM image (full scale 10 ⁇ m in the SEM image) when the surface of the aluminum film 18 of the mold base 10 is observed from the vertical direction
  • FIG. 4B shows a moth-eye mold 100
  • 2 shows an SEM image (full scale 10 ⁇ m in the SEM image) when the surface of the porous alumina layer 14 having an inverted moth-eye structure is observed from the vertical direction.
  • the mold base 10 in FIG. 4A has a thickness on an aluminum base 12 having an inverted antiglare structure formed by a satin treatment under the same conditions as the aluminum base 12 shown in FIG. 3B.
  • the Ti content of the aluminum film 18 is about 1.0 mass%
  • the N content is about 1.2 mass% or more and about 2.0 mass% or less
  • the remainder is Al and inevitable impurities.
  • the moth-eye mold 100 in FIG. 4B uses the mold base 10 manufactured under the same conditions as the mold base 10 shown in FIG.
  • the moth-eye mold 100 is produced by alternately repeating the above (anodization is repeated 5 times and etching is repeated 4 times).
  • a structure reflecting the inverted anti-glare structure of the surface of the aluminum base 12 is formed on the surface of the aluminum film 18. Further, as apparent from comparison between FIG. 4B and FIG. 4A, the porous alumina layer 14 of the moth-eye mold 100 has a surface structure in which the inverted moth-eye structure is superimposed on the inverted anti-glare structure. have.
  • the moth-eye mold 100 capable of forming the antireflection film having the antiglare function can be manufactured.
  • the antiglare function of the antireflection film formed using the moth-eye mold 100 will be described in detail later by showing experimental examples.
  • FIG. 5 is a schematic cross-sectional view for explaining a method for producing an antireflection film by a roll-to-roll method.
  • a cylindrical moth-eye mold 100 is prepared.
  • the cylindrical moth-eye mold 100 is manufactured by the above-described manufacturing method.
  • ultraviolet light is irradiated to the ultraviolet curable resin 32 ′ while the workpiece 42 having the ultraviolet curable resin 32 ′ applied to the surface thereof is pressed against the moth-eye mold 100.
  • the cured resin 32 ′ is cured.
  • an acrylic resin can be used.
  • the workpiece 42 is, for example, a TAC (triacetyl cellulose) film.
  • the workpiece 42 is unwound from an unillustrated unwinding roller, and then an ultraviolet curable resin 32 ′ is applied to the surface by, for example, a slit coater.
  • the workpiece 42 is supported by support rollers 46 and 48 as shown in FIG.
  • the support rollers 46 and 48 have a rotation mechanism and convey the workpiece 42.
  • the cylindrical moth-eye mold 100 is rotated in the direction indicated by the arrow in FIG. 5 at a rotational speed corresponding to the conveying speed of the workpiece 42.
  • a cured product layer 32 to which the uneven structure (inverted moth-eye structure) of the moth-eye mold 100 is transferred is formed on the surface of the workpiece 42.
  • the workpiece 42 having the cured product layer 32 formed on the surface is wound up by a winding roller (not shown).
  • 6 (a) and 6 (b) show SEM images of the antireflection film produced as described above.
  • 6A and 6B are SEM images of an antireflection film having an antiglare function according to an embodiment of the present invention
  • FIG. 6A is an SEM when the surface of the antireflection film is observed from the vertical direction.
  • FIG. 6B is an SEM image (full scale 3 ⁇ m in the SEM image) when the cross section and the surface of the antireflection film are observed from an oblique direction.
  • the moth-eye structure is formed so as to overlap the anti-glare structure.
  • the anti-glare structure is constituted by a macro concave portion and a macro convex portion obtained by inverting the macro convex portion 18p and the macro concave portion 18g formed by the satin treatment.
  • the two-dimensional size when viewed from the normal direction of the surface of the macro concave portion constituting the antiglare structure exemplified here is about 1 ⁇ m or more and about 5 ⁇ m or less, and the macro convex portion constituting the antiglare structure is The size is about 1/10 to 1/5 of the two-dimensional size.
  • the height of the macro convex part which comprises an anti-glare structure is about 200 nm or more and about 500 nm or less.
  • FIGS. 7A to 7C are schematic views of the antireflection film 32 having an antiglare function according to the embodiment of the present invention.
  • FIG. 7A is a view when the surface of the antireflection film 32 is observed from the vertical direction.
  • FIG. 7B is a schematic diagram when the surface of the antireflection film 32 is observed from an oblique direction, and
  • FIG. 7C is a schematic diagram of a cross section of the antireflection film 32.
  • the plurality of micro convex portions constituting the moth-eye structure includes micro convex portions 32p and 32g.
  • the micro convex portion 32p is formed in a macro concave portion constituting the anti-glare structure
  • the micro convex portion 32g is formed in a macro convex portion constituting the anti-glare structure. Therefore, the micro convex portion 32g is higher than the micro convex portion 32p, and is arranged so as to substantially surround the micro convex portion 32p formed in the macro convex portion.
  • FIG. 8A is a graph showing the measurement result of the light distribution of diffuse reflection by the antireflection film having the antiglare function
  • FIG. 8B is a schematic diagram showing the measurement system of the light distribution of diffuse reflection.
  • the diffuse reflected light does not specifically exclude scattered light.
  • EX. 1 shows a light distribution of diffuse reflection light of an antireflection film having an antiglare function according to an embodiment of the present invention.
  • This antireflection film is formed by using an aluminum substrate 12 that has been subjected to a satin treatment at 10 ° C. for 4 minutes with an aqueous solution containing ammonium hydrogen fluoride (the concentration of ammonium hydrogen fluoride is 4 mass%) as in the experimental examples described later. It is an anti-glare film formed by using.
  • CNV. 1 shows the distribution of diffusely reflected light of an antireflection film having an antiglare structure having a continuous corrugated surface without a flat portion, which is formed by using an electrodeposition resin containing a matting agent described above with reference to FIG. The light distribution is shown.
  • One antiglare structure has a two-dimensional size of 10 ⁇ m to 30 ⁇ m and a height of 500 nm to 1000 nm.
  • the light distribution of the diffuse reflected light is irradiated with light at an incident angle of 5 ° and the diffuse reflected light is distributed at a light receiving angle of 0 ° to 25 °. Distribution was measured. Specifically, each sample film was attached to a glass plate, and the light distribution was measured with a goniophotometer. As a goniophotometer, GP-200 manufactured by Murakami Color Research Laboratory was used. Here, the light distribution with the common logarithm of relative diffuse reflectance (%) normalized with the incident angle of 5 °, the light receiving angle on the horizontal axis, and the maximum value of diffuse reflected light intensity at 80% is plotted on the vertical axis. A distribution curve is shown. The same applies to the orientation distribution curves shown below unless otherwise specified.
  • CNV The light distribution of 1 takes a peak value at a light receiving angle of 5 °, and falls within a range of 0 ° to 10 °.
  • the light distribution distribution curve of 1 is relatively steep as a whole, and the relative diffuse reflectance (%) decreases monotonously as it deviates from the light receiving angle of 5 °.
  • the conventional antireflection film (CNV.1) has a low haze value of about 3, the specular reflectivity is low and the image is blurred. Therefore, in particular, when used for a high-definition image display panel, the impression of lowering the display quality is given.
  • EX. 1 has a peak value at a light receiving angle of 5 °, EX. In a range of a light receiving angle of about 3 ° to about 4 ° and a light receiving angle of about 6 ° to about 7 °. No. 1 relative diffuse reflectance (%) changes in CNV. EX. At a light receiving angle of less than about 3 ° and a light receiving angle of more than about 7 °. No. 1 relative diffuse reflectance (%) changes in CNV. It is more gradual than the change in relative diffuse reflectance (%) of 1. EX. 1 has a haze value of about 15, CNV. Although it is higher than 1, it has excellent specular reflectivity.
  • the antireflection film (EX.1) having the antiglare structure according to the embodiment of the present invention has a light receiving angle of 0 ° in that the slope of the light distribution curve changes discontinuously. Since it has a characteristic diffuse reflection characteristic that it is in the range of 10 ° or less and the relative diffuse reflectance (%) is in the range of 1% or more and 10% or less, the conventional antireflection film (CNV) .1) has higher specular reflectivity and moderate diffuse reflection performance (for example, a haze value of about 7 or more and about 24 or less).
  • the antireflection film (EX.1) according to the embodiment of the present invention suppresses the image from being blurred more than necessary even when used for a high-definition display exceeding 300 ppi, for example, and the reflection is suppressed with high display quality. An indication can be provided.
  • Al—Mg-based aluminum alloy JIS A5052 was used as the Al—Mg-based aluminum alloy.
  • JIS A5052 has the following composition (mass%). Si: 0.25% or less, Fe: 0.40% or less, Cu: 0.10% or less, Mn: 0.10% or less, Mg: 2.2 to 2.8%, Cr: 0.15 to 0 .35%, Zn: 0.10% or less, others: individual 0.05% or less, overall 0.15% or less, balance: Al
  • a mold base was prepared using a cylindrical aluminum base formed of an aluminum alloy of JIS A5052.
  • the aluminum base material which performed the mirror surface process by a bite cutting was used, without performing cold drawing processing to the aluminum base material produced by the boat hall method.
  • the mold base was produced by the method described above with reference to FIG.
  • a tantalum oxide layer having a thickness of 200 nm was formed as the inorganic material layer, and an aluminum alloy film containing Ti and N having a thickness of 800 nm was formed as the aluminum film.
  • the Ti content of the aluminum alloy film is about 1.0 mass%, the N content is about 1.2 mass% or more and about 2.0 mass% or less, and the remainder is Al and inevitable impurities. The same applies to the experimental examples shown below unless otherwise specified.
  • ⁇ Chemical finish was applied to the aluminum substrate.
  • an aqueous solution containing ammonium hydrogen fluoride (a concentration of ammonium hydrogen fluoride was 4 mass%) was used.
  • the obtained macro uneven structure was rougher than necessary, had high diffuse reflection performance, and could not obtain an appropriate antiglare function.
  • Al—Mg—Si based aluminum alloy JIS A6063 was used as the Al—Mg—Si based aluminum alloy.
  • JIS A6063 has the following composition (mass%). Si: 0.20 to 0.60%, Fe: 0.35% or less, Cu: 0.10% or less, Mn: 0.10% or less, Mg: 0.45 to 0.9%, Cr: 0. 10% or less, Zn: 0.10% or less, Ti: 0.10% or less, Other: Individual is 0.05% or less, the whole is 0.15% or less, the balance: Al
  • a mold base material was prepared using a cylindrical aluminum base material formed of an aluminum alloy of JIS A6063.
  • the aluminum base material which performed the mirror surface process by a bite cutting was used, without performing cold drawing processing to the aluminum base material produced by the boat hall method.
  • the satin treatment was carried out with an aqueous solution containing ammonium hydrogen fluoride on this aluminum base material. Except for the seam portion of the aluminum base material produced by the boat hole method, there was no unevenness in the surface, and a macro uneven structure having an appropriate anti-glare function could be obtained.
  • the aluminum base material is preferably an Al—Mg—Si based aluminum alloy, particularly one formed of JIS A6063.
  • an aluminum base material that has been subjected to cold drawing is preferable because the joints are not noticeable.
  • the aluminum base material produced by the mandrel method has no seam, it can be used suitably similarly to the aluminum base material produced by the cold drawing method.
  • FIGS. 9A to 9C show SEM images (5,000 times, full scale 10 ⁇ m in the SEM image) of the surface of the aluminum base material treated with an aqueous solution containing ammonium hydrogen fluoride.
  • the SEM image was acquired using a field emission scanning electron microscope (Hitachi S-4700). The same applies to the following SEM images.
  • FIG. 9A is an SEM image of the surface of a JIS A6063 aluminum substrate that has been cold drawn
  • FIG. 9B is an aluminum base of JIS A6063 that has not been cold drawn
  • FIG. 9C is an SEM image of the surface of the material
  • FIG. 9C is an SEM image of the surface of the aluminum substrate of JIS A5052 that has not been cold drawn.
  • the time for the satin treatment with the aqueous solution containing ammonium hydrogen fluoride is 45 seconds.
  • degreasing and washing were performed as pretreatment.
  • 9B and 9C anodization and etching were performed as pretreatment. The effects of these preprocessing will be described later.
  • the surface of the aluminum substrate of JIS A5052 (FIG. 9C) is the surface of the aluminum substrate of JIS A6063.
  • a very rough uneven structure is formed.
  • an Al—Mg—Si based aluminum alloy, particularly JIS A6063 is preferable.
  • an aqueous solution having a concentration of 3% by mass of an inorganic alkaline detergent (LG manufactured by Yokohama Oil & Fat Co., Ltd.) was used, and the sample was immersed in this aqueous solution at 40 ° C. for 10 minutes. Thereafter, the sample was washed with water by immersing it in pure water for 10 minutes. Samples with different times for leaving the samples after washing in the atmosphere (0 minutes, 5 minutes, 15 minutes, 22 hours) were prepared, and then subjected to a satin treatment.
  • a surfactant Nikkasan Clean manufactured by Nikka Chemical Co., Ltd.
  • sulfuric acid sulfuric acid
  • a mold sample was produced in which the matte treatment time for the aluminum substrate was changed from 5 seconds to 3 minutes.
  • the satin treatment temperature was 35 ° C.
  • it degreased degreased using surfactant and performed the satin process until 15 minutes passed after water washing.
  • an acrylic UV curable resin is applied and UV light is transferred to the PET film. Irradiated to cure.
  • the light distribution was measured by the method described with reference to FIG. 8B using the obtained sample film having a macro uneven structure.
  • a film that does not have a moth-eye structure and has only an antiglare structure is sometimes referred to as an antiglare film.
  • the light distribution of various anti-glare films (REF_No. 1 to No. 4) used by the applicant for television applications was also evaluated as a sample film for reference.
  • the anti-glare film used here is formed by applying a coating agent (resin) in which fine particles are dispersed on the surface of the film, and depends on the surface having macro unevenness formed by the fine particles.
  • the antiglare function is exhibited by diffuse reflection and diffuse reflection (including scattering) at the interface between the coating agent and the fine particles.
  • the antireflection film (EX.1) of the embodiment according to the present invention described with reference to FIG. 8A and the antiglare film described below exhibit an antiglare function only by a surface structure having macro unevenness. To do.
  • FIG. 10A shows the measurement result of the light distribution of diffuse reflected light. Similarly to FIG. 8A, FIG. 10A shows the relative diffuse reflectance (%) normalized by setting the incident angle to 5 °, the light receiving angle to the horizontal axis, and the maximum value of diffuse reflected light intensity to 80%. The light distribution curve is shown with the common logarithm on the vertical axis.
  • the ratio of the diffuse reflected light having a large light receiving angle increases as the time of the satin treatment increases. That is, the antiglare function becomes higher as the pear-finishing time becomes longer.
  • the haze value when the processing time is 37 seconds is about 7, the haze value when about 45 seconds is about 10, the haze value when about 75 seconds is about 24, and the haze value when about 90 seconds is about 40. .
  • REF_No. The haze value of 1 is 2, and no.
  • the haze value of 3 is about 40, which is the largest among the REFs.
  • the haze value was determined from (diffuse transmittance / total light transmittance) ⁇ 100 using a haze meter NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd.
  • the satin treatment time is 30 seconds or less, the change in the light distribution of the diffuse reflected light is small, and there is almost no anti-glare effect. Further, even if the satin processing time is 90 seconds or longer, there is almost no change in the light distribution of diffuse reflected light, and the antiglare effect does not increase beyond this time. From the viewpoint of the antiglare function, it can be said that the satin treatment time is preferably more than 30 seconds and less than 90 seconds.
  • the light distribution of the diffusely reflected light of the sample film with a satin processing time in the range of 37 seconds to 75 seconds is that the slope of the light distribution curve changes discontinuously, and the light reception angle is 0 ° to 10 °.
  • the relative diffuse reflectance (%) is in the range of 1% or more and 10% or less. Specifically, the slopes of the light distribution curves of these sample films change discontinuously when the light receiving angle is about 2 ° to about 3 ° and about 7 ° to about 8 ° (the absolute value of the slope is Discontinuously smaller).
  • These sample films were found to have an appropriate anti-glare function (having a haze value of about 7 or more and about 24 or less) and moderate specular reflectivity.
  • FIG. 10B shows a result obtained by simple model calculation of a state in which the black and white pattern indicated by ORG is observed through each sample film based on the measurement result of the light distribution of diffuse reflection light described above. . That is, this corresponds to obtaining the light distribution of diffuse reflected light in the state where the above-described black and white pattern is arranged at the position of the glass plate in FIG.
  • CNV. 1 is a result calculated using the light distribution of diffuse reflected light shown in FIG. 8A
  • E30, E45, E60, and E90 are the light distribution of diffuse reflected light shown in FIG. 10A, respectively.
  • the number is the result of calculation using, and the number indicates the satin processing time.
  • Each area of the black and white pattern indicated by ORG in FIG. 10B is composed of 233 cells (corresponding to pixels).
  • the intensity of light reaching the observer's eyes when each cell was observed was determined as follows.
  • the intensity of light reaching the observer's eye when observing the nth cell is equal to the intensity of light exiting the nth cell, relative diffuse reflectance (%) at 0.0 ° of the light distribution curve.
  • the intensity of the light emitted from the (n ⁇ 2) th and (n + 2) th cells is added to a value obtained by multiplying the light distribution distribution curve by the relative diffuse reflectance (%) at 0.2 °, so that It calculated
  • CNV CNV.
  • the boundary line between black and white is blurred and cannot be clearly recognized.
  • CNV CNV.
  • the antireflection film with diffuse reflection function 1 has a small haze value of 3, the specular reflectivity is low and the image is blurred.
  • the boundary line between black and white can be clearly recognized.
  • the width of the gray area that has entered the black area is CNV. It is larger than 1, and it can be said that the antiglare function is high.
  • the specular reflectivity is too high, so that the boundary line between black and white is clearly recognized. Further, in the E90 sample film, the specular reflectivity is too low, so that the boundary line between black and white cannot be clearly recognized.
  • the above-mentioned satin treatment time is used. It is preferably more than 30 seconds and less than 90 seconds.
  • the sample film having a satin processing time in the range of more than 30 seconds and less than 90 seconds has an appropriate anti-glare function and an appropriate specular reflectivity. For example, even when used for a high-definition display exceeding 300 ppi, The image is prevented from blurring more than necessary.
  • the preferable time for the satin treatment can be optimized as appropriate depending on the concentration and temperature of the treatment liquid.
  • an aqueous solution containing 5% by mass of ammonium fluoride is used as an aqueous solution containing hydrogen fluoride and ammonium
  • an aqueous solution containing 4% by mass of the above ammonium fluoride is obtained by performing a matte treatment at 25 ° C. for 120 seconds.
  • a result equivalent to the used example processing time 45 to 60 seconds) can be obtained.
  • the matte processing time is short, there is a possibility of causing a problem in the mass production stability. Therefore, it is preferable to improve the mass production stability (controllability) within a range in which the throughput is not lowered more than necessary. Therefore, it was examined to increase the time of the satin treatment by lowering the temperature of the satin treatment.
  • the light distribution of the diffuse reflected light of the sample film in the processing time range of 2 minutes 30 seconds to 8 minutes is REF_No. 1-No. 4 is within the range of the light distribution of diffuse reflected light, and has an anti-glare performance that almost covers the anti-glare performance of various anti-glare films currently in use by extending the processing time even if the processing temperature is lowered. It was found that a surface (antiglare structure) can be formed. That is, by reducing the processing temperature from 35 ° C. to 10 ° C., the appropriate processing time can be expanded from the range of more than 30 seconds to less than 90 seconds to the range of 2 minutes 30 seconds to 8 minutes. By lowering the treatment temperature in this way, there is an advantage that it is possible to increase the margin of the matte treatment time.
  • the concentration of the ammonium hydrogen fluoride aqueous solution used for the satin treatment is preferably 4 mass% or more.
  • the upper limit of the concentration of the aqueous ammonium fluoride solution is not particularly limited, but if it exceeds 19 mass%, there is a possibility that a surface having appropriate diffuse reflection may not be formed. Therefore, the concentration of the aqueous ammonium hydrogen fluoride solution is preferably 19 mass% or less.
  • cutting marks can be reduced by performing an anodizing step and an etching step for pretreatment before a satin treatment with an aqueous solution containing a salt of hydrogen fluoride and ammonium. . That is, by removing the formed anodic oxide film by etching by anodizing the mirror-finished surface by cutting by cutting, cutting traces formed on the surface of the aluminum substrate can be reduced.
  • an aqueous sulfuric acid solution is preferably used as the electrolytic solution.
  • a sulfuric acid aqueous solution is used, a softer anodic oxide film can be obtained than when oxalic acid is used, and therefore, it can be easily removed by using, for example, a phosphoric acid aqueous solution.
  • Anodization using an aqueous sulfuric acid solution is preferably performed at 20 ° C. and a constant current of 115 A / m 2 for 24 minutes and 30 seconds, for example. If the anodic oxidation time is shorter than this, cutting traces may be formed.
  • FIG. 12A shows anodization (80 V, 5 ° C., 10 minutes) using an oxalic acid aqueous solution (concentration: 0.3 mass%), and then etching (30 ° C., using a phosphoric acid aqueous solution (concentration: 10 mass%)).
  • FIG. 12B is a diagram showing an SEM image (5,000 times, full scale 10 ⁇ m in the SEM image) of the aluminum substrate after 90 minutes), and FIG. 12B is anodized using an aqueous sulfuric acid solution (concentration: 17 mass%).
  • a large number of recesses are formed on the surface of the aluminum base anodized with oxalic acid. This is because the oxide film formed by anodic oxidation using oxalic acid is hard and difficult to etch, so that the etching proceeds slowly with a portion of the oxide film remaining. At this time, it is considered that galvanic corrosion progressed on the surface from which the oxide film was removed, and as a result, a large number of recesses were formed. Galvanic corrosion occurs between Ti and Al contained in the aluminum film.
  • the etching time required for removing the oxide film formed by anodic oxidation using sulfuric acid was examined.
  • the conditions for anodization are the same as the above conditions (constant current 115 A / m 2 , 20 ° C., 24 minutes 30 seconds), and using phosphoric acid aqueous solution (concentration: 0.3 mass%), the etching time is 30 ° C. It was changed to 1 minute, 3 minutes, 5 minutes, 10 minutes, and 12 minutes, and the presence or absence of the oxide film was examined. As a result, it was found that the oxide film can be removed by etching for 5 minutes or more. Examples of experimental results are shown below.
  • FIGS. 13A to 13D show SEM images (10,000 times, full scale 200 nm in the SEM image) of the surfaces of the samples having different etching times with phosphoric acid after anodizing with sulfuric acid under the above conditions.
  • Show. 13 (a) shows an etching time of 12 minutes
  • FIG. 13 (b) shows an etching time of 10 minutes
  • FIG. 13 (c) shows an etching time of 5 minutes
  • FIG. 13 (d) shows an etching time of 3 minutes.
  • the etching time is preferably set to 10 minutes or more because unevenness may be visually confirmed in the etching for 5 minutes.
  • the time for the satin treatment to be performed after the anodization and etching as the above-mentioned pretreatment were examined on an aluminum base material (JIS A6063) that had been mirror-finished by cutting with a bit without performing cold drawing. This is because the state of the surface of the aluminum base material varies depending on the presence or absence of the pretreatment, so that it is possible that the preferred satin treatment time may be different.
  • FIG. 14 also shows the relative diffuse reflectance (%) normalized by setting the incident angle to 5 °, the light receiving angle to the horizontal axis, and the maximum value of diffuse reflected light intensity to 80%.
  • the light distribution curve is shown with the common logarithm on the vertical axis.
  • the light distribution of the sample film with a satin treatment time of 30 seconds is REF_No. It is narrower than 1, and does not have a sufficient anti-glare function.
  • the light distribution of the sample with a satin treatment time of 60 seconds and 120 seconds has a point where the slope of the light distribution curve changes discontinuously within the range of the light receiving angle of 0 ° to 10 °, and
  • the relative diffuse reflectance (%) is in the range of 1% to 10%.
  • the satin treatment performed after performing the above-described anodization and etching as the above-mentioned pre-treatment on a mold base produced using an aluminum base material that has been mirror-finished by cutting without performing cold drawing This time is preferably 60 seconds or more when an aqueous solution containing ammonium hydrogen fluoride (concentration: 4 mass%, temperature: 20 ° C.) is used.
  • FIG. 15 (a) shows a SEM image of the surface of the aluminum base material that has been subjected to cold drawing and then mirror-finished by cutting with a bite for 37 seconds (see FIG. 10A). ) After anodizing and etching as a pretreatment on an aluminum base material that has been mirror-finished by bite cutting without performing cold drawing on the aluminum base material produced by the boat hole method, The SEM image of the surface which performed the satin processing for a second (refer FIG. 14) is shown. Each SEM image is 10,000 times, and the full scale in the SEM image is 5 ⁇ m.
  • FIGS. 15 (a) and 15 (b) 2 when viewed from the normal direction of the surface of the macro convex portion (see macro convex portion 18p in FIG. 1 (c)) formed by the satin treatment. It can be seen that the dimensional size (area circle equivalent diameter) is about 1 ⁇ m or more and 5 ⁇ m or less. The average of the two-dimensional size of the macro convex portions is slightly smaller than the average distance between adjacent macro concave portions (AD int , see FIG. 1B).
  • moth-eye molds were prepared in the same manner as described above, and sample films were prepared in the same manner as described above with reference to FIG. Observation of the obtained antireflection film having an antiglare function on a liquid crystal display panel (diagonal 4.97 inches, dot pitch (Px in FIG. 16) is 19.1 ⁇ m, pixel pitch is about 57.3 ⁇ m, about 440 ppi) When it was pasted on the surface of the user and visually evaluated, it was found that glare on the display surface was suppressed and blurring of the image was suppressed.
  • Step of etching surface of aluminum substrate As a pretreatment for the satin treatment, a result of studying a step of etching the surface of the aluminum substrate using an alkaline etching solution (sometimes referred to as a substrate surface etching step) will be described.
  • cutting marks can be reduced by etching the surface of the aluminum base material using an alkaline etching solution before the satin treatment with an aqueous solution containing a salt of hydrogen fluoride and ammonium. I understood.
  • Examples 1 to 3 and Reference Examples 1 to 4 were performed using a mold base material that was manufactured using an aluminum base material (JIS A6063) that was subjected to cold drawing and then mirror-finished by bite cutting.
  • the alkaline etching solution E1 used in Example 1 is an aqueous solution having an organic alkaline cleaning agent (LC-2 manufactured by Yokohama Oil & Fat Co., Ltd.) having a concentration of 8 mass%.
  • LC-2 manufactured by Yokohama Oil & Fat Co., Ltd. has the following composition: 2-aminoethanol (12 mass%), chelating agent (2 mass% to 6 mass%), and surfactant (2 mass% to 6 mass%). Therefore, the concentration of 2-aminoethanol in the alkaline etching solution E1 is 0.96 mass%.
  • the pH of the alkaline etching solution E1 is 10.3.
  • each alkaline etching solution was measured using a handy pH meter (product name: D-25, manufactured by HORIBA).
  • D-25 a handy pH meter
  • the alkaline etching solution contains a surfactant, the substrate surface can be etched more uniformly.
  • the alkaline etching solution E3 used in Example 3 is an aqueous solution having a concentration of 3% by mass of an inorganic alkaline detergent (LG, manufactured by Yokohama Oil & Fat Co., Ltd.). Manufactured by Yokohama Oil & Fat Co., Ltd. G. L includes the following composition: potassium hydroxide (1 mass% to 3 mass%), chelating agent (5 mass% to 15 mass%), surfactant (5 mass% to 15 mass%). Therefore, the concentration of potassium hydroxide in the alkaline etching solution E3 is 0.03 mass% to 0.09 mass%. The pH of the alkaline etching solution E3 is 11.7.
  • the alkaline etching solution E2 used in Example 2 is a solution obtained by leaving the alkaline etching solution E3 in contact with air for more than one month.
  • the alkaline etching solution E2 has weaker alkalinity than the alkaline etching solution E3.
  • the pH of the alkaline etching solution E2 is 9.92.
  • Example 1 to 3 after immersing the sample in each alkaline etching solution (40 ° C.) for a predetermined time, the sample was washed with water by immersing the sample in pure water. After washing with water, the satin treatment was performed without drying completely.
  • an aqueous solution containing ammonium hydrogen fluoride (concentration: 4 mass%, temperature: 10 ° C.) was used, and the treatment time was 5 minutes.
  • the alkaline etching solution E4 used in Reference Example 4 is an aqueous solution having a concentration of 0.10 mass% of an inorganic alkaline detergent (LG, manufactured by Yokohama Oil & Fat Co., Ltd.). Therefore, the concentration of potassium hydroxide in the alkaline etching solution E4 is 0.001 mass% to 0.003 mass%.
  • the alkaline etching solution E4 is prepared using the same inorganic alkaline cleaning agent as the alkaline etching solution E3, but differs in its concentration.
  • the pH of the alkaline etching solution E4 is 10.38.
  • a satin treatment was performed after the substrate surface etching step.
  • an antiglare film was formed using an aluminum base material subjected to the base material surface etching step and the matte finish (or base material surface etching step) as a mold.
  • the anti-glare film is formed by applying a release agent (Optool DSX manufactured by Daikin Industries, Ltd.) to the surface of the aluminum base material, then applying an acrylic UV curable resin, and irradiating the UV light in a state of being transferred onto the TAC film. And then cured.
  • Table 3 shows the results of evaluating the antiglare function using an aluminum base material and an antiglare film (sample film) obtained from the aluminum base material.
  • Ra in Table 3 indicates the result of measuring the arithmetic average roughness Ra of the surface of the aluminum substrate.
  • the arithmetic average roughness Ra was measured using an optical profiling system (Wyko NT1100) manufactured by Veeco. It is preferable that the arithmetic average roughness Ra of the surface of the aluminum substrate is, for example, 50 nm or more and 300 nm or less by the substrate surface etching step and the satin treatment.
  • “Unevenness” in Table 3 is a result of visual evaluation on whether or not unevenness occurs on the surface of the aluminum base material. It was evaluated whether or not the satin finish on the surface of the aluminum substrate was performed uniformly. Regarding “unevenness” in Table 3, “ ⁇ ” indicates that there is no unevenness, and “x” indicates that there is unevenness. In Reference Example 4, it is considered that the work-affected layer could not be sufficiently removed because the concentration of the base contained in the alkaline etching solution used in the substrate surface etching step was low. As will be described later, when unevenness did not occur (when the satin treatment was performed uniformly), for example, about 1.4 ⁇ m was removed from the surface of the aluminum base material. In Reference Example 4, since the thickness of the aluminum base material etched in the base material surface etching step was small, it was considered that the satin treatment was not performed uniformly and unevenness occurred.
  • the alkaline etching solution E4 used in Reference Example 4 is prepared using the same inorganic alkaline cleaning agent as the alkaline etching solution E3 used in Example 3, but differs in that the concentration is low. Therefore, in Reference Example 4, compared with Example 3, the concentration of the base contained in the alkaline etching solution is low, and it is considered that the action of etching the surface of the aluminum base material is weak.
  • the concentration of the chelating agent contained in the alkaline etching solution is also low, but depending on the amount of other metals and impurities contained in the aluminum substrate, the function of adsorbing and sequestering these ions is Compared with the case of Example 3, it may not decrease much. In such a case, it is considered that the non-uniformity of the etching of the surface of the aluminum substrate by the alkaline etching solution can be increased by the function of the chelating agent. This leads to an increase in the non-uniformity of the satin treatment, and as a result, unevenness may have occurred.
  • the concentration of the base contained in the alkaline etching solution is preferably 0.01% by mass or more, for example.
  • the concentration of the inorganic base contained in the alkaline etching solution is preferably 0.03 mass% or more, for example.
  • the concentration of the organic base contained in the alkaline etching solution is preferably 0.96 mass% or more, for example.
  • the “pattern” in Table 3 is a result of visual evaluation of whether or not a pattern is formed on the surface of the aluminum base material.
  • the pattern refers to a concavo-convex shape that is several hundred to several thousand times larger than the antiglare structure, for example.
  • “ ⁇ ” indicates that a pattern is not generated, and “ ⁇ ” indicates that a pattern is generated.
  • the surface of the aluminum base material of Reference Example 3 had an uneven shape on the order of about 1 mm. Due to the pattern (uneven shape) on the surface of the aluminum substrate, the pattern was conspicuous even when the antiglare film was attached to the surface of the black acrylic plate. Since this pattern is several hundred to several thousand times larger than the antiglare structure, it does not have an antiglare function.
  • This surface pattern (uneven shape) of the aluminum substrate is considered to have occurred because, for example, the pH of the alkaline etching solution E3 used in Reference Example 3 is 11.7 and the alkalinity is strong. It is considered that the surface of the aluminum substrate was roughened more than necessary by the strong alkaline base, and the pattern was generated. In the substrate surface etching step, the possibility of a concentration gradient in the alkaline etchant can also be considered as one of the causes of the pattern. Moreover, it is thought that the pattern of the surface of an aluminum base material originates in the process deterioration layer formed in the surface of the aluminum base material by the mirror surface process by a bite cutting, for example. For example, if the aluminum base material has non-uniform composition, it may be one of the causes of pattern generation.
  • “Haze value” in Table 3 indicates the result of measuring the haze value of the antiglare film.
  • the haze value was obtained from (diffuse transmittance / total light transmittance) ⁇ 100 using a haze meter NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd.
  • “Moire” in Table 3 is a result of visual evaluation of whether or not moire occurs by attaching an antiglare film to the surface of a display panel of a liquid crystal television (AQUAS UD1, manufactured by Sharp Corporation). Regarding “moire” in Table 3, “ ⁇ ” indicates that moire did not occur.
  • Anti-glare property in Table 3 is a result of judging the presence or absence of anti-glare property by attaching an anti-glare film to the surface of a black acrylic plate and visually observing the reflection of a fluorescent lamp.
  • Anti-Glare in Table 3, “ ⁇ ” indicates that it is determined that there is anti-glare, and “X” indicates that it is determined that there is no anti-glare.
  • an antiglare film having a large haze value is excellent in antiglare function and antiglare property.
  • “White-brown” in Table 3 has an anti-glare film attached to the surface of the display panel of a liquid crystal television (AQUOS UD1, manufactured by Sharp Corporation). It is a result. Interviews were conducted with 5 people, and “ ⁇ ” in Table 3 indicates that 0 out of 5 people answered “I ’m worried about white tea”. Indicates that the number of people is 3 or more. In general, an antiglare film having a large haze value is likely to appear whitish due to its antiglare function.
  • the evaluation of “anti-glare” and “white-brown” may vary depending on the degree of anti-glare function that the evaluator wants to realize.
  • the evaluation in Table 3 above is a case where a haze value of about 7 or more and about 24 or less is set as an appropriate antiglare function.
  • the mold manufactured by the mold manufacturing method according to the embodiment of the present invention is not limited to the example, and an antireflection film having a higher antiglare function (having a larger haze value (for example, about 7 or more and about 28 or less)) is provided. It can also be used to form. Of course, it can be used to form an antireflection film having a lower antiglare function (having a smaller haze value (for example, about 1 to about 5)).
  • the substrate surface etching step for example, about 1.4 ⁇ m was removed from the surface of the aluminum substrate.
  • the thickness etched in the substrate surface etching step can be appropriately adjusted by adjusting the etching time, the temperature of the etching solution, and the like.
  • the thickness that is preferably etched in the substrate surface etching step varies depending on, for example, the state of the surface of the aluminum substrate.
  • the thickness to be etched is not limited to the above example, and it is preferable to perform the etching so that the work-affected layer on the surface of the aluminum base material is sufficiently removed.
  • the pH of the alkaline etching solution used in the substrate surface etching step is, for example, 10 It is preferably 12 or less.
  • the pH of the alkaline etching solution is 9 or less, there is a possibility that the work-affected layer on the surface of the aluminum substrate cannot be sufficiently removed.
  • the pH of the alkaline etching solution is 13 or more, there is a possibility that the surface of the aluminum substrate is roughened more than necessary and / or may cause unevenness.
  • the preferable range of the pH of the alkaline etching solution used in the substrate surface etching step may vary depending on the surface state of the aluminum substrate.
  • the surface state of the aluminum substrate may vary depending on, for example, the type of aluminum substrate, the production method, and / or the processing method.
  • the moth-eye that can provide an antireflection function and an antiglare function can be obtained by forming the inverted moth-eye structure using the thus-obtained cylindrical aluminum substrate subjected to the satin treatment.
  • a mold is obtained.
  • the antireflection film can be formed by the roll-to-roll method as described above. At this time, in order to improve the adhesion between the film base material (TAC film or PET film) on which the antireflection film is formed and the antireflection film, it is preferable to undergo the following steps.
  • a UV curable resin containing a solvent for example, acrylic resin
  • a solvent for example, acrylic resin
  • a solvent that dissolves the surface of the TAC film for example, a ketone
  • the solvent dissolves the surface of the TAC film, a region where TAC and the ultraviolet curable resin are mixed is formed.
  • the solvent is removed, and the TAC film is wound so that the ultraviolet curable resin is in close contact with the outer peripheral surface of the moth-eye mold.
  • ultraviolet rays are irradiated to cure the ultraviolet curable resin.
  • the temperature of the ultraviolet curable resin is maintained at 30 ° C. to 70 ° C.
  • the TAC film is peeled off from the moth-eye mold, and again irradiated with ultraviolet rays as necessary.
  • the material for forming the hard coat layer may contain a solvent that dissolves the surface of the TAC film. In this case, it is not necessary to add a solvent to the ultraviolet curable resin for forming the antireflection film.
  • an aqueous primer for example, a polyester resin or an acrylic resin
  • the mold manufacturing method according to the present invention is used for manufacturing a mold suitably used for forming an antireflection film (antireflection surface) or the like.
  • the antireflection film according to the present invention has a surface structure that exhibits an appropriate antiglare function and an excellent antireflection function, and is suitably used for, for example, a high-definition display panel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • ing And Chemical Polishing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

 型(100)の製造方法は、Al-Mg-Si系のアルミニウム合金で形成された円筒状のアルミニウム基材(12)であって、機械的な鏡面加工が施されたアルミニウム基材(12)を用意する工程と、アルミニウム基材(12)の表面をフッ化水素とアンモニウムとの塩を含む水溶液によって梨地処理する工程と、その後で、アルミニウム基材(12)の表面に無機材料層(16)を形成し、無機材料層(16)の上にアルミニウム膜(18)を形成することによって、型基材(10)を作製する工程と、型基材(10)のアルミニウム膜(18)の表面に対して、陽極酸化とエッチングとを交互に繰り返し、複数のミクロな凹部(14p)を有する反転されたモスアイ構造を形成する工程とを包含する。

Description

型、型の製造方法、反射防止膜および反射防止膜の製造方法
 本発明は、型、型の製造方法、型を用いて製造される反射防止膜、および反射防止膜の製造方法に関する。ここでいう「型」は、種々の加工方法(スタンピングやキャスティング)に用いられる型を包含し、スタンパということもある。また、印刷(ナノプリントを含む)にも用いられ得る。
 テレビや携帯電話などに用いられる表示装置やカメラレンズなどの光学素子には、通常、表面反射を低減して光の透過量を高めるために反射防止技術が施されている。例えば、空気とガラスとの界面を光が入射する場合のように屈折率が異なる媒体の界面を光が通過する場合、フレネル反射などによって光の透過量が低減し、視認性が低下するからである。
 近年、反射防止技術として、凹凸の周期が可視光(λ=380nm~780nm)の波長以下に制御されたミクロな凹凸パターンを基板表面に形成する方法が注目されている(特許文献1から3を参照)。反射防止機能を発現する凹凸パターンを構成する凸部の2次元的な大きさは10nm以上500nm未満である。ここで、凸部の「2次元的な大きさ」とは、表面の法線方向から見たときの凸部の面積円相当径を指し、例えば、凸部が円錐形の場合、凸部の2次元的な大きさは、円錐の底面の直径に相当する。凹部の「2次元的な大きさ」も同様である。
 この方法は、いわゆるモスアイ(Moth-eye、蛾の目)構造の原理を利用したものであり、基板に入射した光に対する屈折率を凹凸の深さ方向に沿って入射媒体の屈折率から基板の屈折率まで連続的に変化させることによって反射を防止したい波長域の反射を抑えている。
 モスアイ構造は、広い波長域にわたって入射角依存性の小さい反射防止作用を発揮できるほか、多くの材料に適用でき、凹凸パターンを基板に直接形成できるなどの利点を有している。その結果、低コストで高性能の反射防止膜(または反射防止表面)を提供できる。
 本出願人は、モスアイ構造を有する反射防止膜(または反射防止表面)の製造方法として、アルミニウムを陽極酸化することによって得られる陽極酸化ポーラスアルミナ層を用いる方法を開発してきた(特許文献2および3)。
 陽極酸化ポーラスアルミナ膜を利用することによって、モスアイ構造を表面に形成するための型(以下、「モスアイ用型」という。)を容易に製造することができる。特に、特許文献2および3に記載されているように、アルミニウムの陽極酸化膜の表面をそのまま型として利用すると、製造コストを低減する効果が大きい。モスアイ構造を形成することができるモスアイ用型の表面の構造を「反転されたモスアイ構造」ということにする。
 また、特許文献1から4に記載されているように、モスアイ構造(ミクロ構造)に加えて、モスアイ構造よりも大きな凹凸構造(マクロ構造)を設けることによって、反射防止膜(反射防止表面)にアンチグレア(防眩)機能を付与することができる。アンチグレア機能を発揮する凹凸構造(「アンチグレア構造」ということがある。)を構成する凸部または凹部の2次元的な大きさは200nm以上100μm未満である。また、アンチグレア構造を形成することができる型の表面の構造を「反転されたアンチグレア構造」ということにする。特許文献1から4の開示内容の全てを参考のために本明細書に援用する。
 なお、本明細書においては、モスアイ構造(または反転されたモスアイ構造)を構成する凹凸をミクロな凹凸と呼び、アンチグレア構造(または反転されたアンチグレア構造)を構成する凹凸をマクロな凹凸と呼ぶことにする。マクロな凹凸の2次元的な大きさの範囲は、ミクロな凹凸の2次元的な大きさの範囲と部分的に重なっているが、アンチグレア機能を有する反射防止膜(反射防止表面)において、アンチグレア構造を構成する凹凸構造は、反射防止機能を発現するモスアイ構造を構成する凹凸構造よりも大きい。
特表2001-517319号公報 特表2003-531962号公報 国際公開第2011/055757号 国際公開第2013/146656号
 しかしながら、適度なアンチグレア機能を有する反射防止膜(または反射防止表面)を形成するための型を効率よく製造する方法は確立されたとは言い難い。
 例えば、特許文献1に記載のサンドブラスト法は、アンチグレア機能を付与する所望のマクロな凹凸構造を再現性良く形成することが難しい。また、特許文献3に記載の陰極電解法では、アンチグレア機能を十分に発揮できるマクロな凹凸構造を形成できないことがある。
 さらに、特許文献4に記載されている電着によって形成された樹脂層の平坦部のない連続的なマクロな凹凸構造を反映した表面は、画像がぼやけるという問題がある。近年、表示装置の高精細化が進むにつれて、画像のぼやけが抑制された適度なアンチグレア機能を有する反射防止膜が求められている。
 本発明は、適度なアンチグレア機能と適度な鏡面反射性とを有する反射防止膜(または反射防止表面)を提供すること、そのような反射防止膜を製造する方法を提供すること、そのような反射防止膜を形成するための型を提供すること、およびそのような型を効率よく製造できる方法を提供することを目的とする。
 本発明の実施形態による型の製造方法は、(a)Al-Mg-Si系のアルミニウム合金で形成された円筒状のアルミニウム基材であって、機械的な鏡面加工が施されたアルミニウム基材を用意する工程と、(b)前記アルミニウム基材の表面をフッ化水素とアンモニウムとの塩を含む水溶液によって梨地処理する工程と、(c)前記工程(b)の後で、前記アルミニウム基材の前記表面に無機材料層を形成し、前記無機材料層の上にアルミニウム膜を形成することによって、型基材を作製する工程と、(d)前記工程(c)の後で、前記アルミニウム膜の表面を陽極酸化することによって、複数のミクロな凹部を有するポーラスアルミナ層を形成する工程と、(e)前記工程(d)の後に、前記ポーラスアルミナ層を、エッチング液に接触させることによって、前記ポーラスアルミナ層の前記複数のミクロな凹部を拡大させる工程と、(f)前記工程(e)の後に、さらに陽極酸化することによって、前記複数のミクロな凹部を成長させる工程とを包含する。
 ある実施形態において、前記アルミニウム基材は、冷間引抜き加工が施されたアルミニウム基材である。前記アルミニウム基材は、熱間押出し法によって形成されたアルミニウム基材である。熱間押出し法は、マンドレル法であっても、ボートホール法であってもよい。冷間引抜き加工は省略され得る。冷間引抜き加工を行わない場合には、マンドレル法で形成されたアルミニウム基材を用いることが好ましい。
 ある実施形態において、前記型の製造方法は、前記工程(b)の前に、脱脂工程および水洗工程をさらに包含する。
 ある実施形態において、前記工程(b)は、前記水洗工程の後、15分を経過する前に行われる。
 ある実施形態において、前記型の製造方法は、前記工程(b)の前に、アルカリ性のエッチング液を用いて、前記アルミニウム基材の前記表面をエッチングする基材表面エッチング工程をさらに包含する。
 ある実施形態において、前記基材表面エッチング工程は、前記脱脂工程を兼ねる。
 ある実施形態において、前記アルカリ性のエッチング液は、無機塩基または有機塩基を0.03mass%以上含む。
 ある実施形態において、前記アルカリ性のエッチング液のpHは、10以上12以下である。
 ある実施形態において、前記アルカリ性のエッチング液は、水酸化カリウムを含む。
 ある実施形態において、前記アルカリ性のエッチング液は、アミノ基を有する有機化合物を含む。
 ある実施形態において、前記基材表面エッチング工程および前記工程(b)によって、前記アルミニウム基材の前記表面の算術平均粗さRaは50nm以上300nm以下となる。
 ある実施形態において、前記基材表面エッチング工程において、前記アルミニウム基材の表面から少なくとも1.4μmが除去される。
 ある実施形態において、前記工程(b)の前に、前処理のための陽極酸化工程およびエッチング工程をさらに包含する。
 ある実施形態において、前記前処理のための前記陽極酸化工程は、電解液として硫酸水溶液を用いる。
 ある実施形態において、前記前処理のための前記エッチング工程は、エッチング液として燐酸水溶液を用いる。
 ある実施形態において、前記工程(b)における、前記フッ化水素とアンモニウムとの塩は、フッ化水素アンモニウムである。ある実施形態において、フッ化水素とアンモニウムとの塩を含む水溶液は、4mass%以上のフッ化水素アンモニウムを含む。前記工程(b)は、例えば、約10℃で行われる。このとき、梨地処理の時間は、2分30秒以上8分以下の範囲にあることが好ましい。
 本発明の実施形態による型は、上記のいずれかに記載の型の製造方法によって製造された型である。
 本発明の他の実施形態による型は、表面の法線方向から見たときの2次元的な大きさが200nm以上30μm以下の複数の凸部と、表面の法線方向から見たときの2次元的な大きさが10nm以上500nm未満の複数のミクロな凹部とを有する、表面構造を備えたポーラスアルミナ層を有する。
 本発明の実施形態による反射防止膜の製造方法は、上記のいずれかの型を用意する工程と、被加工物を用意する工程と、前記型と前記被加工物の表面との間に光硬化樹脂を付与した状態で、前記光硬化樹脂に光を照射することによって前記光硬化樹脂を硬化させる工程と、前記型を硬化させられた光硬化樹脂で形成された反射防止膜から剥離する工程とを包含する。
 本発明の実施形態による反射防止膜は、上記の反射防止膜の製造方法によって製造された反射防止膜である。
 本発明の他の実施形態による反射防止膜は、表面の法線方向から見たときの2次元的な大きさが200nm以上30μm以下の複数の凹部と、表面の法線方向から見たときの2次元的な大きさが10nm以上500nm未満の複数のミクロな凸部とを有する表面構造を備え、入射角を5°とし、受光角を横軸にとり、拡散反射光強度の最大値を80%として規格化した、相対拡散反射率(%)の常用対数を縦軸にとった配光分布曲線の傾きが不連続に変化する点が、受光角が0°超10°以下の範囲内にあり、かつ、前記相対拡散反射率(%)が1%以上10%以下の範囲内に存在する。
 ある実施形態において、前記反射防止膜のヘイズ値が約7以上約24以下である。
 本発明の実施形態によると、適度なアンチグレア機能と適度な鏡面反射性とを有する反射防止膜(または反射防止表面)を形成するための型およびそのような型を効率よく製造できる方法が提供される。本発明の実施形態による型は、適度なアンチグレア機能および適度な鏡面反射性と優れた反射防止機能とを備える反射防止膜(反射防止表面)を形成することができる。本発明の実施形態による反射防止膜は、適度なアンチグレア機能および適度な鏡面反射性と、優れた反射防止機能とを発現する表面構造を有している。
(a)~(d)は、本発明の実施形態によるモスアイ用型100の製造方法を説明するための模式的な断面図であり、(a)は、モスアイ用型100のアルミニウム基材12の模式的な断面図であり、(b)は、反転されたアンチグレア構造を有するアルミニウム基材12の表面構造を模式的に示す断面図であり、(c)は、アルミニウム基材12の表面に無機材料層16およびアルミニウム膜18を形成した型基材10の模式的な断面図であり、(d)は、反転されたアンチグレア構造と、反転されたアンチグレア構造に重畳された反転されたモスアイ構造とを有するモスアイ用型100の模式的な断面図である。 本発明の実施形態によるモスアイ用型100の製造方法を説明するフローチャートである。 (a)は、梨地処理によって形成された反転されたアンチグレア構造を有するアルミニウム基材12の表面のレーザー顕微鏡像(顕微鏡像中のフルスケール15μm)であり、(b)は、梨地処理によって形成された反転されたアンチグレア構造を有するアルミニウム基材12の表面を垂直方向から観察したときのSEM像(SEM像中のフルスケール10μm)であり、(c)は、反転されたアンチグレア構造の模式的な平面図であり、(d)は、反転されたアンチグレア構造の模式的な斜視図である。 (a)は、型基材10のアルミニウム膜18の表面を垂直方向から観察したときのSEM像(SEM像中のフルスケール10μm)であり、(b)は、モスアイ用型100の反転されたモスアイ構造を有するポーラスアルミナ層14の表面を垂直方向から観察したときのSEM像(SEM像中のフルスケール10μm)である。 モスアイ用型100を用いた反射防止膜の製造方法を説明するための図である。 (a)および(b)は、本発明の実施形態によるアンチグレア機能を有する反射防止膜のSEM像であり、(a)は反射防止膜の表面を垂直方向から観察したときのSEM像(SEM像中のフルスケール10μm)であり、(b)は反射防止膜の断面および表面を斜め方向から観察したときのSEM像(SEM像中のフルスケール3μm)である。 (a)~(c)は、本発明の実施形態によるアンチグレア機能を有する反射防止膜の模式図であり、(a)は反射防止膜の表面を垂直方向から観察したときの模式図であり、(b)は反射防止膜の表面を斜め方向から観察したときの模式図であり、(c)は反射防止膜の断面の模式図である。 (a)は、アンチグレア機能を有する反射防止膜による拡散反射光の配光分布の測定結果を示すグラフであり、(b)は拡散反射光の配光分布の測定系を示す模式図である。 (a)~(c)は、フッ化水素アンモニウムを含む水溶液で梨地処理を行ったアルミニウム基材の表面のSEM像(5000倍、SEM像中のフルスケール10μm)である。 梨地処理(処理温度35℃)の時間が異なるアルミニウム基材(冷間引抜き加工された型基材)を型として用いて作製した試料フィルムの拡散反射光の配光分布を示す図である。 アンチグレア機能と鏡面反射性とを評価したモデル計算結果を示す図である。 梨地処理(処理温度10℃)の時間が異なるアルミニウム基材(冷間引抜き加工された型基材)を型として用いて作製した試料フィルムの拡散反射光の配光分布を示す図である。 (a)および(b)は、梨地処理の前処理としての陽極酸化およびエッチングを行ったアルミニウム基材(冷間引抜き加工されていない型基材)の表面のSEM像を示す図であり、(a)は電解液として蓚酸水溶液を用いた場合、(b)は電解液として硫酸水溶液を用いた場合を示す。 (a)~(d)は、梨地処理の前処理として硫酸水溶液を用いて陽極酸化した後の燐酸水溶液を用いたエッチングの時間が異なる試料の表面のSEM像である。 梨地処理の前処理として陽極酸化(硫酸水溶液)およびエッチングを行った後、処理の時間を異ならせて梨地処理を行ったアルミニウム基材を型として用いて作製されたフィルムの拡散反射光の配光分布を示す図である。 (a)は、冷間引抜き加工が施されたアルミニウム基材を用いて作製された型基材のアルミニウム基材に37秒間梨地処理を行った後の表面のSEM像であり、(b)は、冷間引抜き加工が施されていないアルミニウム基材を用いて作製された型基材のアルミニウム基材に、前処理としての陽極酸化(硫酸水溶液)およびエッチングを行った後、120秒間梨地処理を行った後の表面のSEM像である。 (a)および(b)は、従来のアンチグレア構造を形成するためのマクロな凹凸構造と、行方向のドットピッチPxとの大きさの関係を模式的に示す図である。 (a)従来のアンチグレア構造を形成するためのマクロな凹凸の構造を模式的に示す断面図であり、(b)は、マクロな凹凸に重畳された反転されたモスアイ構造を示す模式的な断面図であり、(c)は、反転されたモスアイ構造を拡大した模式的な断面図である。
 以下、図面を参照して、本発明の実施形態による型および型の製造方法を説明する。
 まず、図16を参照して、従来のアンチグレア構造を構成するマクロな凹凸構造と、行方向のドットピッチPxとの大きさの関係を説明する。図16(a)および(b)は、従来のアンチグレア構造を構成するマクロな凹凸構造と、行方向のドットピッチPxとの大きさの関係を模式的に示す図であり、図16(a)は、マクロな凹凸構造がドットピッチPxよりも大きい場合を示し、図16(b)は、マクロな凹凸構造がドットピッチPxよりも小さい場合を示している。ここで、ドットとは、典型的なカラー液晶表示パネルにおける画素を構成するR、G、Bの各ドットを指す。すなわち、カラー液晶表示パネルにおける画素は、行方向に配列された3つのドット(Rドット、GドットおよびBドット)で構成されている場合、行方向の画素ピッチは、行方向のドットピッチPxの3倍となる。なお、列方向の画素ピッチは、列方向のドットピッチPyと等しい。
 図16(a)および(b)に模式的に示すように、従来のアンチグレア構造を構成するマクロな凹凸構造を有する表面28sは、平坦部を有しない連続した波形の表面形状を有する。このような連続した波形の表面形状を有するマクロな凹凸構造は、隣接するマクロな凹部間距離の平均値(平均隣接間距離ADint)または凹部の2次元的な大きさADpで特徴付けられる。ここでは、マクロな凹部に着目するが、凸部に着目しても同様に特徴づけることができる。
 図16(a)に示すように、凹部の平均隣接間距離ADint(凹部の2次元的な大きさADpと等しいと考える)が、例えば行方向のドットピッチPx(画素が3つのドット(R、G、B)で構成されている場合、行方向の画素ピッチはドットピッチの3倍)よりも大きいと、十分なアンチグレア機能を得ることができない。アンチグレア機能を十分に発揮させるためには、図16(b)に示すように、凹部の平均隣接間距離ADint(凹部の2次元的な大きさADp)が互いにほぼ等しく、かつ、ドットピッチよりも小さいことが好ましい。なお、凹部の2次元的な大きさとは、表面の法線方向から見たときの2次元的な広がりをいい、凹部は典型的には円錐形であり、表面の法線方向から見たときの形状は、ほぼ円形である。このとき、2次元的な大きさは、円の直径に相当する。また、凸部が十分に高い密度で形成されていれば、互いに隣接する2つの凹部の平均隣接間距離ADintは、凹部の2次元的な大きさADpとほぼ等しい。画素ピッチは、比較的解像度の低いディスプレイ、例えば、100ppiのディスプレイでは、254μmである。このディスプレイに用いられる反射防止膜の場合の平均隣接間距離ADintは、約85μm(254/3)以下であることが好ましい。
 このような平坦部のない連続した波形の表面28sを有するアンチグレア構造に、モスアイ構造を重畳させた反射防止膜の製造方法は、例えば、特許文献4に記載されている。図17を参照して、特許文献4に記載されているアンチグレア機能を有する反射防止膜を形成するためのモスアイ用型の製造方法を説明する。
 図17(a)は、アンチグレア構造を形成するための反転されたアンチグレア構造を模式的に示す断面図であり、図17(b)は、反転されたアンチグレア構造に重畳された反転されたモスアイ構造を示す模式的な断面図であり、図17(c)は、反転されたモスアイ構造を拡大した模式的な断面図である。
 図17(a)に示す、上述の平坦部のない連続した波形の表面28sを有するアンチグレア構造を形成するための、反転されたアンチグレア構造を有する表面18csは、円筒状の金属基材の外周面上に、艶消し剤を含む電着樹脂で絶縁層を形成し、絶縁層上にアルミニウム膜18cを形成することによって得られる。すなわち、艶消し剤を含む電着樹脂で形成された絶縁層の表面は、平坦部のない連続した波形の表面形状を有し、絶縁層の上に形成されたアルミニウム膜18cの表面18csは、絶縁層の表面の形状を反映して、平坦部のない連続した波形の表面形状を有することになる。なお、アルミニウム膜18cの表面18csの形状は反転されたアンチグレア構造を構成するので、アルミニウム膜18cの表面18csのマクロな凹凸は、アンチグレア構造を構成する表面28sのマクロな凹凸とは逆の関係にある。
 次に、図17(b)に示すように、反転されたアンチグレア構造を有するアルミニウム膜18cの表面に対して、陽極酸化とエッチングとを交互に繰り返すことによって、ミクロな凹部14pを有する陽極酸化ポーラスアルミナ層14cを形成する。このようにして、反転されたアンチグレア構造に反転されたモスアイ構造が重畳された表面を有するモスアイ用型200が得られる。
 ポーラスアルミナ層14cは、図17(c)に模式的に示すように、ミクロな凹部14pが密に充填されている。ミクロな凹部14pは概ね円錐状であり、階段状の側面を有してもよい。ミクロな凹部14pの2次元的な大きさ(開口部径:Dp)は10nm以上500nm未満で、深さ(Ddepth)は10nm以上1000nm(1μm)未満程度であることが好ましい。また、ミクロな凹部14pの底部は尖っている(最底部は点になっている)ことが好ましい。さらに、ミクロな凹部14pは密に充填されていることが好ましく、ポーラスアルミナ層14cの法線方向から見たときのミクロな凹部14pの形状を円と仮定とすると、隣接する円は互いに重なり合い、隣接するミクロな凹部14pの間に鞍部が形成されることが好ましい。なお、略円錐状のミクロな凹部14pが鞍部を形成するように隣接しているときは、ミクロな凹部14pの2次元的な大きさDpは平均隣接間距離Dintと等しいとする。したがって、反射防止膜を製造するためのモスアイ用型のポーラスアルミナ層14cは、Dp=Dintが10nm以上500nm未満で、Ddepthが10nm以上1000nm(1μm)未満程度のミクロな凹部14pが密に不規則に配列した構造を有していることが好ましい。ミクロな凹部の配列は、完全にランダムである必要はなく、光の干渉や回折が実質的に起こらない程度に不規則であればよい。なお、ミクロな凹部14pの開口部の形状は厳密には円ではないので、Dpは表面のSEM像から求めることが好ましい。ポーラスアルミナ層14cの厚さtpは約1μm以下である。ポーラスアルミナ層14cが有する反転されたモスアイ構造についての上記の説明は、本発明の実施形態によるモスアイ用型についても妥当する。
 特許文献4に記載された型の製造方法で製造された型を用いて形成された反射防止膜は、画像がぼやけるという問題がある(後に、図10Bを参照して説明する。)。これは、特許文献4に記載の方法で製造された型が有する反転されたアンチグレア構造は、比較的大きなADintおよびADpを有するためである。したがって、特許文献4に記載の製造方法では、例えば、300ppiを超える高精細のディスプレイ用に好適に用いられるアンチグレア構造を形成することは難しかった。
 以下に説明する本発明の実施形態によると、適度なアンチグレア機能(例えばヘイズ値が約7以上約24以下)と、適度な鏡面反射性とを有するアンチグレア構造と、優れた反射防止効果を発揮するモスアイ構造とを有する反射防止膜(または反射防止表面)が提供される。また、本発明の実施形態によると、そのような反射防止膜を形成するための型が提供され、さらには、そのような型を効率よく製造する方法が提供される。なお、本発明の実施形態による型の製造方法によって製造される型は、例示するものに限られず、小さなヘイズ値(例えば約1以上約5以下)の拡散反射性能を有する反射防止膜を形成するためにも用いられ得る。
 まず、図1~図4を参照して、本発明の実施形態による型の製造方法およびそのような製造方法によって製造される型の構造を説明する。
 図1(a)~(d)は、本発明の実施形態によるモスアイ用型100の製造方法を説明するための模式的な断面図であり、図2は、本発明の実施形態によるモスアイ用型100の製造方法を説明するフローチャートである。
 本発明の実施形態によるモスアイ用型100の製造方法は、図2に示すように、下記の工程(a)~(f)を包含する。
 (a)Al-Mg-Si系のアルミニウム合金で形成された円筒状のアルミニウム基材であって、機械的な鏡面加工が施されたアルミニウム基材を用意する工程
 (b)アルミニウム基材の表面をフッ化水素とアンモニウムとの塩を含む水溶液によって梨地処理する工程
 (c)工程(b)の後で、アルミニウム基材の表面に無機材料層を形成し、無機材料層の上にアルミニウム膜を形成することによって、型基材を作製する工程
 (d)工程(c)の後で、アルミニウム膜の表面を陽極酸化することによって、複数のミクロな凹部を有するポーラスアルミナ層を形成する工程
 (e)工程(d)の後に、ポーラスアルミナ層を、エッチング液に接触させることによって、ポーラスアルミナ層の複数のミクロな凹部を拡大させる工程
 (f)工程(e)の後に、さらに陽極酸化することによって、複数のミクロな凹部を成長させる工程
 本明細書において、型基材とは、型の製造工程において、陽極酸化およびエッチングされる対象をいう。また、アルミニウム基材とは、自己支持が可能なバルク状のアルミニウムをいう。
 次に、図1(a)~(d)を参照する。図1(a)は、モスアイ用型100のアルミニウム基材12の模式的な断面図であり、図1(b)は、反転されたアンチグレア構造を有するアルミニウム基材12の表面構造を模式的に示す断面図であり、図1(c)は、アルミニウム基材12の表面に無機材料層16およびアルミニウム膜18を形成した型基材10の模式的な断面図であり、図1(d)は、反転されたアンチグレア構造と、反転されたアンチグレア構造に重畳された反転されたモスアイ構造とを有するモスアイ用型100の模式的な断面図である。
 図1には、モスアイ用型100の一部を拡大して示すが、本発明の実施形態によるモスアイ用型100は、円筒状(ロール状)である。本出願人による国際公開第2011/105206号に開示されているように、円筒状のモスアイ用型を用いると、ロール・ツー・ロール方式により反射防止膜を効率良く製造することができる。参考のために、国際公開第2011/105206号の開示内容の全てを本明細書に援用する。
 まず、図1(a)に示すように、Al-Mg-Si系のアルミニウム合金で形成された円筒状のアルミニウム基材12であって、機械的な鏡面加工が施されたアルミニウム基材12を用意する。
 機械的な鏡面加工としては、バイト切削が好ましい。アルミニウム基材12の表面に、例えば砥粒が残っていると、砥粒が存在する部分において、アルミニウム膜18とアルミニウム基材12との間で導通しやすくなる。砥粒以外にも、凹凸が存在するところでは、アルミニウム膜18とアルミニウム基材12との間で局所的に導通しやすくなる。アルミニウム膜18とアルミニウム基材12との間で局所的に導通すると、アルミニウム基材12内の不純物とアルミニウム膜18との間で局所的に電池反応が起こる可能性がある。
 後に実験例を示して説明するように、アルミニウム基材12の材質によって、後の化学的な梨地処理の効果が異なり、上述のマクロな凹凸構造を得るために、Al-Mg-Si系のアルミニウム合金(例えば、JIS A6063)で形成されたアルミニウム基材12を用いる。
 円筒状のアルミニウム基材12は、典型的には、熱間押出し法によって形成される。熱間押出し法には、マンドレル法とボートホール法があるが、マンドレル法で形成されたアルミニウム基材12を用いることが好ましい。ボートホール法で形成された円筒状のアルミニウム基材12には外周面に継ぎ目(ウェルドライン)が形成され、継ぎ目がモスアイ用型100に反映される。したがって、モスアイ用型100に求められる精度によっては、マンドレル法で形成されたアルミニウム基材12を用いることが好ましい。
 なお、ボートホール法で形成されたアルミニウム基材12に対して、冷間引抜き加工を施すことにより、継ぎ目の問題を解消することができる。もちろん、マンドレル法で形成されたアルミニウム基材12に対しても、冷間引抜き加工を施してもよい。
 次に、アルミニウム基材12の表面をフッ化水素とアンモニウムとの塩を含む水溶液を用いて梨地処理することによって、図1(b)に示すように、アルミニウム基材12の表面12sに反転されたアンチグレア構造が形成される。梨地処理によって形成される反転されたアンチグレア構造は、複数のマクロな凸部12pと複数のマクロな凹部12gとを有する。マクロな凸部12pは、マクロな凹部12gによって実質的に包囲されており、マクロな凹部12gは、マクロな凸部12pの外周を規定する溝のように存在している。
 フッ化水素とアンモニウムとの塩を含む水溶液は、ピッティングコロージョン(点食)を引き起こす。フッ化水素とアンモニウムとの塩としては、フッ化アンモニウム(正塩または中性塩)と、フッ化水素アンモニウム(水素塩または酸性塩)とがある。フッ化水素とアンモニウムとの塩を含む水溶液は、フッ化水素の水溶液に比べて、人体や環境に与える悪影響が少ないという利点を有している。フッ化水素とアンモニウムとの塩として、フッ化水素アンモニウムを用いる場合、フッ化水素アンモニウムの濃度は、例えば、4mass%以上である。フッ化水素アンモニウムに加えて、りん酸二水素アンモニウムおよび/または硫酸アンモニウムを加えてもよい。ここでは、以下の実験例を含め、アルミニウムを梨地処理するためのエッチング液として、フッ化水素アンモニウムに少量のりん酸二水素アンモニウムおよび硫酸アンモニウムを添加したものを用いた。このエッチング液を簡単のためにフッ化水素アンモニウムを含む水溶液という。このようなエッチング液は、日本シー・ビー・ケミカル株式会社のケミクリーナーを用いて調製することができる。フッ化水素アンモニウムを含む水溶液による梨地処理の時間は、例えば、処理温度が35℃のとき、15秒以上180秒以下である。フッ化アンモニウムを含む水溶液は、フッ化水素アンモニウムを含む水溶液よりもアルミニウムのエッチング力が弱いので、濃度、処理温度、時間を適宜調整することによって、フッ化水素アンモニウムを含む水溶液を用いた場合と同等の効果を得ることができる。
 なお、フッ化水素とアンモニウムとの塩を含む水溶液による梨地処理の前に、必要に応じて、脱脂工程および水洗工程を行う。また、梨地処理は、水洗工程の後、15分を経過する前に行うことが好ましい。また、異なる処理液を用いる工程の間に、必要に応じて、水洗を行うことが好ましい。
 なお、冷間引抜き加工を施すことなく、バイト切削による鏡面加工を行ったアルミニウム基材12に梨地処理を施すと、アルミニウム基材12の表面に切削痕が形成されることがあった。アルミニウム基材12の表面に形成された切削痕は、アルミニウム基材12の上に形成されたアルミニウム膜18にも反映された。本明細書では、アルミニウム基材12の表面だけでなく、アルミニウム基材12の上に形成されたアルミニウム膜18に形成された、切削に起因した痕も、「切削痕」ということにする。
 梨地処理の前に、前処理のための陽極酸化工程およびエッチング工程を行うことによって、切削痕を低減させることができる。すなわち、アルミニウム基材12の表面を一旦陽極酸化し、形成された陽極酸化膜をエッチングにより除去することによって、切削痕を低減させることができる。この前処理のための陽極酸化工程では、電解液として硫酸水溶液を用いることが好ましく、前処理のためのエッチング工程では、エッチング液として燐酸水溶液を用いることが好ましい。もちろん、冷間引抜き加工を施した後にバイト切削による鏡面加工を行ったアルミニウム基材12についても、前処理のための陽極酸化工程およびエッチング工程を行うことによって、アルミニウム基材12の表面に切削痕が発生することをさらに確実に抑制することができる。
 なお、上記の切削痕は、バイト切削による鏡面加工によって、アルミニウム基材12の表面に形成された加工変質層に起因した、エッチングのむらであると考えられる。したがって、梨地処理によって切削痕が形成されるという問題は、バイト切削に限られず、加工変質層の形成を伴う鏡面加工が施されたアルミニウム基材12を用いる場合に共通の問題であり、上記の前処理のための陽極酸化工程およびエッチング工程を行うことによって解決することができる。鏡面加工の内、切削加工と、研削加工などの機械研磨(Mechanical Polishing:MP)と、化学研磨と機械研磨とを併用する化学機械研磨(Chemical Mechanical Polishing:CMP)は、加工変質層の形成を伴う。本明細書において、「機械的な鏡面加工」は、MPおよびCMPを包含する。
 梨地処理の前に、アルカリ性のエッチング液を用いて、アルミニウム基材12の表面をエッチングする工程(以下、「基材表面エッチング工程」ということがある。)をさらに行ってもよい。アルカリ性のエッチング液を用いた基材表面エッチング工程によって、切削痕の原因となり得る、アルミニウム基材12の加工変質層の少なくとも一部を除去することができる。
 アルカリ性のエッチング液は、例えば、無機塩基(無機アルカリ)または有機塩基(有機アルカリ)を含む。無機塩基は、例えば、水酸化カリウム、水酸化ナトリウム、水酸化カルシウム、水酸化マグネシウム等を含む。有機塩基は、例えば、アミノ基を有する化合物を含む。有機塩基は、例えば、2-アミノエタノール(エタノールアミン)、1級アルカノールアミン、ジメチルビス(2-ヒドロキシ)エチル等を含む。アルカリ性のエッチング液のpHは、例えば、10以上12以下である。アルカリ性のエッチング液は、上記に限られず、例えば公知のアルカリ性の洗浄液を用いてもよい。
 上記の基材表面エッチング工程は、例えば、前処理のための陽極酸化工程およびエッチング工程の前に行ってもよい。上記の基材表面エッチング工程は、例えば、前処理のための陽極酸化工程およびエッチング工程に代えて、行ってもよい。上記の基材表面エッチング工程は、アルカリ性のエッチング液を用いるので、脱脂工程を兼ねることができる。
 基材表面エッチング工程を、前処理のための陽極酸化工程およびエッチング工程に代えて行うことで、工程数を減らすことができる。基材表面エッチング工程が脱脂工程を兼ねる場合も工程数を減らすことができる。より少ない工程で、むらの少ない表面を有するアルミニウム基材を得ることができる。適度なアンチグレア機能を有する反射防止膜を形成するための型を効率よく製造することができる。適度なアンチグレア機能を有する反射防止膜の製造歩留りが向上し得る。
 次に、図1(c)に示すように、アルミニウム基材12の表面に無機材料層16を形成し、無機材料層16の上にアルミニウム膜18を形成することによって、型基材10を作製する。
 アルミニウム膜18の表面には、アルミニウム基材12の表面を梨地処理することによって形成された反転されたアンチグレア構造を反映した構造が形成されている。ここでは、アルミニウム膜18に形成された構造も反転されたアンチグレア構造という。アルミニウム膜18の表面に形成された反転されたアンチグレア構造は、アルミニウム基材12の表面に形成された反転されたアンチグレア構造と実質的に同じ構造を有している。したがって、アルミニウム膜18の表面に形成された反転されたアンチグレア構造は、複数のマクロな凸部18pと複数のマクロな凹部18gとを有する。マクロな凸部18pは、マクロな凹部18gによって実質的に包囲されており、マクロな凹部18gは、マクロな凸部18pの外周を規定する溝のように存在している。
 無機材料層16の材料としては、例えば酸化タンタル(Ta25)または二酸化シリコン(SiO2)を用いることができる。無機材料層16は、例えばスパッタ法により形成することができる。無機材料層16として、酸化タンタル層を用いる場合、酸化タンタル層の厚さは、例えば、200nmである。
 無機材料層16の厚さは、100nm以上500nm未満であることが好ましい。無機材料層16の厚さが100nm未満であると、アルミニウム膜18に欠陥(主にボイド、すなわち結晶粒間の間隙)が生じることがある。また、無機材料層16の厚さが500nm以上であると、アルミニウム基材12の表面状態によって、アルミニウム基材12とアルミニウム膜18との間が絶縁されやすくなる。アルミニウム基材12側からアルミニウム膜18に電流を供給することによってアルミニウム膜18の陽極酸化を行うためには、アルミニウム基材12とアルミニウム膜18との間に電流が流れる必要がある。円筒状のアルミニウム基材12の内面から電流を供給する構成を採用すると、アルミニウム膜18に電極を設ける必要がないので、アルミニウム膜18を全面にわたって陽極酸化できるとともに、陽極酸化の進行に伴って電流が供給され難くなるという問題も起こらず、アルミニウム膜18を全面にわたって均一に陽極酸化することができる。
 また、厚い無機材料層16を形成するためには、一般的には成膜時間を長くする必要がある。成膜時間が長くなると、アルミニウム基材12の表面温度が不必要に上昇し、その結果、アルミニウム膜18の膜質が悪化し、欠陥(主にボイド)が生じることがある。無機材料層16の厚さが500nm未満であれば、このような不具合の発生を抑制することもできる。
 アルミニウム膜18は、例えば、特許文献3に記載されているように、純度が99.99mass%以上のアルミニウムで形成された膜(以下、「高純度アルミニウム膜」ということがある。)である。アルミニウム膜18は、例えば、真空蒸着法またはスパッタ法を用いて形成される。アルミニウム膜18の厚さは、約500nm以上約1500nm以下の範囲にあることが好ましく、例えば、約1μmである。
 また、アルミニウム膜18として、高純度アルミニウム膜に代えて、国際公開第2013/0183576号に記載されている、アルミニウム合金膜を用いてもよい。国際公開第2013/0183576号に記載のアルミニウム合金膜は、アルミニウムと、アルミニウム以外の金属元素と、窒素とを含む。本明細書において、「アルミニウム膜」は、高純度純アルミニウム膜だけでなく、国際公開第2013/0183576号に記載のアルミニウム合金膜を含むものとする。参考のために、国際公開第2013/0183576号の開示内容の全てを本明細書に援用する。
 上記アルミニウム合金膜を用いると、反射率が80%以上の鏡面を得ることができる。アルミニウム合金膜を構成する結晶粒の、アルミニウム合金膜の法線方向から見たときの平均粒径は、例えば、100nm以下であり、アルミニウム合金膜の最大表面粗さRmaxは60nm以下である。アルミニウム合金膜に含まれる窒素の含有率は、例えば、0.5mass%以上5.7mass%以下である。アルミニウム合金膜に含まれるアルミニウム以外の金属元素の標準電極電位とアルミニウムの標準電極電位との差の絶対値は0.64V以下であり、アルミニウム合金膜中の金属元素の含有率は、1.0mass%以上1.9mass%以下であることが好ましい。金属元素は、例えば、TiまたはNdである。但し、金属元素はこれに限られず、金属元素の標準電極電位とアルミニウムの標準電極電位との差の絶対値が0.64V以下である他の金属元素(例えば、Mn、Mg、Zr、VおよびPb)であってもよい。さらに、金属元素は、Mo、NbまたはHfであってもよい。アルミニウム合金膜は、これらの金属元素を2種類以上含んでもよい。アルミニウム合金膜は、例えば、DCマグネトロンスパッタ法で形成される。アルミニウム合金膜の厚さも約500nm以上約1500nm以下の範囲にあることが好ましく、例えば、約1μmである。
 ここで、図3(a)~(d)を参照して、反転されたアンチグレア構造を詳細に説明する。図3(a)は、梨地処理によって形成された反転されたアンチグレア構造を有するアルミニウム基材12の表面のレーザー顕微鏡像(顕微鏡像中のフルスケール15μm)であり、図3(b)は、梨地処理によって形成された反転されたアンチグレア構造を有するアルミニウム基材12の表面を垂直方向から観察したときのSEM像(SEM像中のフルスケール10μm)である。図3(a)は、後述の実験例の陽極酸化温度10℃、陽極酸化時間5minの条件で梨地処理を行ったアルミニウム基材12の表面を観察したものであり、図3(b)は、後述の実験例の陽極酸化温度10℃、陽極酸化時間3minの条件で梨地処理を行ったアルミニウム基材12の表面を観察したものである。図3(c)は、反転されたアンチグレア構造の模式的な平面図であり、図3(d)は、反転されたアンチグレア構造の模式的な斜視図である。
 図3(a)~(d)に示すように、梨地処理によって形成される反転されたアンチグレア構造は、複数のマクロな凸部18pと複数のマクロな凹部18gとを有する。マクロな凸部18pは、マクロな凹部18gによって実質的に包囲されており、マクロな凹部18gは、マクロな凸部18pの外周を規定する溝のように存在している。
 複数のマクロな凸部18pは、表面の法線方向から見たとき、概ね多角形の外形を有しているが、配置に規則性は見られない。マクロな凸部18pの表面の法線方向から見たときの2次元的な大きさ(面積円相当径)は、約200nm以上30μm以下である。図3(a)の顕微鏡像および図3(b)のSEM像からは、マクロな凸部18pの表面の法線方向から見たときの2次元的な大きさは、約1μm以上約5μm以下と見積もれる。また、マクロな凸部18pの上面は、実質的に平坦である。
 マクロな凸部18pを実質的に包囲するマクロな凹部(溝)18gの幅は、マクロな凸部18pの2次元的な大きさの10分の1~5分の1程度の大きさである。隣接するマクロな凹部18g間距離の平均値(平均隣接間距離ADint)は、マクロな凸部18pの表面の法線方向から見たときの2次元的な大きさの平均値とほぼ等しいと考えることができる。ここで、マクロな凹部18gはマクロな凸部18pを実質的に包囲するように形成されているので、隣接するマクロな凹部18gは、マクロな凸部18pの2次元的な大きさを規定する方向における断面において隣接するマクロな凹部18gを意味することにする。したがって、平均隣接間距離ADintは、マクロな凸部18pの2次元的な大きさの平均値とマクロな凹部18gの幅の平均値との和にほぼ等しい。なお、マクロな凹部18gの深さADdepthは、例えば20nm以上500nm以下であるが、20nm以上5μm未満であればよい。
 反転されたアンチグレア構造を形成した後、陽極酸化とエッチングとを交互に繰り返し、反転されたモスアイ構造を形成することによって、図1(d)に示すモスアイ用型100が得られる。すなわち、反転されたモスアイ構造を形成するプロセスは、アルミニウム膜18の表面を陽極酸化することによって、複数のミクロな凹部14pを有するポーラスアルミナ層14を形成する工程と、その後に、ポーラスアルミナ層14を、エッチング液に接触させることによって、ポーラスアルミナ層14の複数のミクロな凹部14pを拡大させる工程と、その後に、さらに陽極酸化することによって、複数のミクロな凹部14pを成長させる工程とを包含する。陽極酸化に用いる電解液は、例えば、蓚酸、酒石酸、燐酸、硫酸、クロム酸、クエン酸、リンゴ酸からなる群から選択される酸を含む水溶液である。エッチング液として、蟻酸、酢酸、クエン酸などの有機酸や硫酸の水溶液、クロム酸燐酸混合水溶液、または水酸化ナトリウム、水酸化カリウムなどのアルカリの水溶液を用いることができる。
 陽極酸化とエッチングとを繰り返す一連の工程は、陽極酸化工程で終わることが好ましい。陽極酸化工程で終わる(その後のエッチング工程を行わない)ことによって、ミクロな凹部14pの底部を小さくすることができる。このような反転されたモスアイ構造を形成する方法は、例えば、本出願人による国際公開第2006/059686号に開示されている。参考のために、国際公開第2006/059686号の開示内容の全てを本明細書に援用する。
 例えば、陽極酸化工程(電解液:蓚酸水溶液(濃度0.3mass%、液温10℃)、印加電圧:80V、印加時間:55秒間)とエッチング工程(エッチング液:燐酸水溶液(10mass%、30℃)、エッチング時間:20分間)とを交互に複数回(例えば5回:陽極酸化を5回とエッチングを4回)繰り返すことによって、図1(d)に示すように、ミクロな凹部14pを有するポーラスアルミナ層14を有するモスアイ用型100が得られる。ここで例示した条件で形成されたポーラスアルミナ層14は、図17(c)を参照して説明したように、Dp=Dintが10nm以上500nm未満で、Ddepthが10nm以上1000nm(1μm)未満程度のミクロな凹部14pが密に不規則に配列した構造を有している。ミクロな凹部14pは略円錐状であり、鞍部を形成するように隣接している。
 ミクロな凹部14pで構成される反転されたモスアイ構造は、アンチグレア構造に重畳されて形成される。したがって、図1(d)に模式的に示したように、アンチグレア構造を構成するマクロな凸部18pに形成されたミクロな凹部14pと、マクロな凹部18gに形成されたミクロな凹部14pとが存在する。マクロな凹部18gに形成されたミクロな凹部14pの方が、マクロな凸部18pに形成されたミクロな凹部14pよりも深い。
 なお、ミクロな凹部14pの下には、バリア層が形成されており、ポーラスアルミナ層14は、ミクロな凹部14pを有するポーラス層と、ポーラス層の下(アルミニウム膜側)に存在するバリア層(凹部14pの底部)とから構成されている。隣接するミクロな凹部14pの間隔(中心間距離)は、バリア層の厚さのほぼ2倍に相当し、陽極酸化時の電圧にほぼ比例することが知られている。また、ポーラスアルミナ層14の下には、アルミニウム膜18のうち、陽極酸化されなかったアルミニウム残存層18rが存在している。
 図4(a)に、型基材10のアルミニウム膜18の表面を垂直方向から観察したときのSEM像(SEM像中のフルスケール10μm)を示し、図4(b)に、モスアイ用型100の反転されたモスアイ構造を有するポーラスアルミナ層14の表面を垂直方向から観察したときのSEM像(SEM像中のフルスケール10μm)を示す。図4(a)の型基材10は、図3(b)に示したアルミニウム基材12と同じ条件の梨地処理によって形成された反転されたアンチグレア構造を有するアルミニウム基材12上に、厚さが約200nmの酸化タンタル層および、厚さが約800nmでTiおよびNを含むアルミニウム膜(アルミニウム合金膜)18を形成した型基材10である。アルミニウム膜18のTi含有率は約1.0mass%で、N含有率は約1.2mass%以上約2.0mass%以下であり、残りはAlおよび不可避不純物である。図4(b)のモスアイ用型100は、図4(a)に示した型基材10と同じ条件で作製された型基材10を用いて、先に例示した条件で、陽極酸化とエッチングとを交互(陽極酸化を5回とエッチングを4回)に繰り返すことによって作製されたモスアイ用型100である。
 図4(a)と図3(b)とを比較すると明らかなように、アルミニウム膜18の表面に、アルミニウム基材12の表面の反転されたアンチグレア構造が反映された構造が形成されている。さらに、図4(b)と図4(a)とを比較すると明らかなように、モスアイ用型100のポーラスアルミナ層14は、反転されたアンチグレア構造に反転されたモスアイ構造が重畳された表面構造を有している。
 このように、本発明の実施形態によるモスアイ用型100の製造方法によると、アンチグレア機能を有する反射防止膜を形成することが可能なモスアイ用型100を製造することができる。モスアイ用型100を用いて形成される反射防止膜が有するアンチグレア機能については、実験例を示して後に詳述する。
 続いて、図5を参照して、モスアイ用型100を用いた反射防止膜の製造方法を説明する。図5は、ロール・ツー・ロール方式により反射防止膜を製造する方法を説明するための模式的な断面図である。
 まず、円筒状のモスアイ用型100を用意する。なお、円筒状のモスアイ用型100は、上述の製造方法で製造される。
 図5に示すように、紫外線硬化樹脂32’が表面に付与された被加工物42を、モスアイ用型100に押し付けた状態で、紫外線硬化樹脂32’に紫外線(UV)を照射することによって紫外線硬化樹脂32’を硬化する。紫外線硬化樹脂32’としては、例えばアクリル系樹脂を用いることができる。被加工物42は、例えば、TAC(トリアセチルセルロース)フィルムである。被加工物42は、図示しない巻き出しローラから巻き出され、その後、表面に、例えばスリットコータ等により紫外線硬化樹脂32’が付与される。被加工物42は、図5に示すように、支持ローラ46および48によって支持されている。支持ローラ46および48は、回転機構を有し、被加工物42を搬送する。また、円筒状のモスアイ用型100は、被加工物42の搬送速度に対応する回転速度で、図5に矢印で示す方向に回転される。
 その後、被加工物42からモスアイ用型100を分離することによって、モスアイ用型100の凹凸構造(反転されたモスアイ構造)が転写された硬化物層32が被加工物42の表面に形成される。表面に硬化物層32が形成された被加工物42は、図示しない巻き取りローラにより巻き取られる。
 図6(a)および(b)に、上述のようにして製造された反射防止膜のSEM像を示す。図6(a)および(b)は、本発明の実施形態によるアンチグレア機能を有する反射防止膜のSEM像であり、図6(a)は反射防止膜の表面を垂直方向から観察したときのSEM像(SEM像中のフルスケール10μm)であり、図6(b)は反射防止膜の断面および表面を斜め方向から観察したときのSEM像(SEM像中のフルスケール3μm)である。
 図6(a)および(b)からわかるように、アンチグレア構造にモスアイ構造が重畳して形成されている。アンチグレア構造は、梨地処理によって形成されたマクロな凸部18pおよびマクロな凹部18gがそれぞれ反転されたマクロな凹部およびマクロな凸部によって構成される。ここで例示するアンチグレア構造を構成するマクロな凹部の表面の法線方向から見たときの2次元的な大きさは、約1μm以上約5μm以下であり、アンチグレア構造を構成するマクロな凸部の2次元的な大きさの10分の1~5分の1程度の大きさである。また、アンチグレア構造を構成するマクロな凸部の高さは、約200nm以上約500nm以下である。モスアイ構造を構成するミクロな凸部については、2次元的な大きさおよび隣接間距離(Dp=Dintに対応)は約200nmで、高さ(Ddepthに対応)は約200nmである。
 図7(a)~(c)を参照して、本発明の実施形態によるアンチグレア機能を有する反射防止膜32の構造を説明する。図7(a)~(c)は、本発明の実施形態によるアンチグレア機能を有する反射防止膜32の模式図であり、図7(a)は反射防止膜32の表面を垂直方向から観察したときの模式図であり、図7(b)は反射防止膜32の表面を斜め方向から観察したときの模式図であり、図7(c)は反射防止膜32の断面の模式図である。
 図7(a)~(c)において、モスアイ構造を構成する複数のミクロな凸部は、ミクロな凸部32pおよび32gを含んでいる。ミクロな凸部32pは、アンチグレア構造を構成するマクロな凹部に形成されており、ミクロな凸部32gは、アンチグレア構造を構成するマクロな凸部に形成されている。したがって、ミクロな凸部32gは、ミクロな凸部32pよりも高く、マクロな凸部に形成されたミクロな凸部32pを実質的に包囲するように配置されている。これは、モスアイ用型100を製造する過程で、梨地処理によって形成された反転されたアンチグレア構造において、マクロな凸部18pがマクロな凹部18gによって実質的に包囲されていたことに対応している。図6(a)および(b)の顕微鏡像を見ると、多数のミクロな凸部を包囲するように、それらよりも高いミクロな凸部が形成されていることが認められる。
 次に、図8を参照して、本発明の実施形態によるアンチグレア機能を有する反射防止膜の拡散反射特性を説明する。図8(a)は、アンチグレア機能を有する反射防止膜による拡散反射光の配光分布の測定結果を示すグラフであり、図8(b)は拡散反射光の配光分布の測定系を示す模式図である。なお、拡散反射光は、散乱光を特に排除するものではない。
 図8(a)において、EX.1は、本発明の実施形態によるアンチグレア機能を有する反射防止膜の拡散反射光の配光分布を示す。この反射防止膜は、後述の実験例と同様にフッ化水素アンモニウムを含む水溶液(フッ化水素アンモニウムの濃度は4mass%)で、10℃、4分間、梨地処理を行ったアルミニウム基材12を型として用いて形成したアンチグレア膜である。CNV.1は、図17を参照して上述した、艶消し剤を含む電着樹脂を用いて形成した、平坦部のない連続した波形の表面を有するアンチグレア構造を備える反射防止膜の拡散反射光の配光分布を示す。CNV.1のアンチグレア構造は、2次元的な大きさが10μm~30μm、高さが500nm~1000nmである。
 拡散反射光の配光分布は、図8(b)に示すように、試料フィルムに対して、入射角5°で光を照射し、0°~25°の受光角で拡散反射光の配光分布を測定した。具体的には、各試料フィルムをガラス板に貼り、ゴニオフォトメーターで、配光分布を測定した。ゴニオフォトメーターとしては、村上色彩技術研究所製のGP-200を用いた。ここでは、入射角を5°とし、受光角を横軸にとり、拡散反射光強度の最大値を80%として規格化した、相対拡散反射率(%)の常用対数を縦軸にとった配光分布曲線を示す。以下に示す配向分布曲線も特に説明しない限り、同様とする。
 CNV.1の配光分布は、受光角5°においてピーク値をとり、受光角0°から10°の範囲内に収まっている。CNV.1の配光分布曲線は、全体的に比較的急峻であり、相対拡散反射率(%)は、受光角5°からずれるにつれて単調に低下している。従来の反射防止膜(CNV.1)は、ヘイズ値が約3と低いにも拘わらず、鏡面反射性が低く、画像がぼやける。したがって、特に、高精細な画像表示パネルに用いると、表示品位を低下させる印象を与える。
 一方、EX.1の配光分布曲線は、受光角5°にピーク値をとり、受光角約3°~約4°および受光角約6°~約7°の範囲におけるEX.1の相対拡散反射率(%)の変化は、CNV.1の相対拡散反射率(%)の変化よりも急峻であるが、受光角約3°未満および受光角約7°超におけるEX.1の相対拡散反射率(%)の変化は、CNV.1の相対拡散反射率(%)の変化よりも緩やかである。EX.1は、ヘイズ値が約15と、CNV.1よりも高いにも拘わらず、鏡面反射性に優れている。実験例を示して後述するように、本発明の実施形態によるアンチグレア構造を有する反射防止膜(EX.1)は、配光分布曲線の傾きが不連続に変化する点が、受光角が0°以上10°以下の範囲内にあり、かつ、相対拡散反射率(%)が1%以上10%以下の範囲内に存在するという特徴的な拡散反射特性を有するので、従来の反射防止膜(CNV.1)に比べて、鏡面反射性が高く、かつ、適度な拡散反射性能(例えばヘイズ値が約7以上約24以下)を有する。本発明の実施形態による反射防止膜(EX.1)は、例えば、300ppiを超える高精細のディスプレイに用いても、画像が必要以上にぼやけることが抑制され、高い表示品位で反射が抑制された表示を提供することができる。
 以下に、実験例を示して、本発明の実施形態によるモスアイ用型およびモスアイ用型の製造方法をさらに詳細に説明する。
 [アルミニウム基材の選択]
 Al-Mg系のアルミニウム合金
 Al-Mg系のアルミニウム合金として、JIS A5052を用いた。JIS A5052は、下記の組成(mass%)を有している。
 Si:0.25%以下、Fe:0.40%以下、Cu:0.10%以下、Mn:0.10%以下、Mg:2.2~2.8%、Cr:0.15~0.35%、Zn:0.10%以下、その他:個々は0.05%以下、全体は0.15%以下、残部:Al
 JIS A5052のアルミニウム合金で形成された円筒状のアルミニウム基材を用いて型基材を作製した。ここでは、ボートホール法で作製されたアルミニウム基材に冷間引抜き加工を施すことなく、バイト切削による鏡面加工を行ったアルミニウム基材を用いた。なお、型基材は、図1(a)を参照して上述した方法によって作製した。無機材料層として、厚さが200nmの酸化タンタル層を形成し、アルミニウム膜としては、厚さが800nmの、TiおよびNを含むアルミニウム合金膜を形成した。アルミニウム合金膜のTi含有率は約1.0mass%で、N含有率は約1.2mass%以上約2.0mass%以下であり、残りはAlおよび不可避不純物である。特に記載しない限り、下記に示す実験例についても同様である。
 アルミニウム基材に化学的な梨地処理を行った。梨地処理のためのエッチング液として、フッ化水素アンモニウムを含む水溶液(フッ化水素アンモニウムの濃度は4mass%)を用いた。得られたマクロな凹凸構造は、必要以上に粗く、拡散反射性能が高く、適度なアンチグレア機能を得ることができなかった。
 そこで、梨地処理の条件をマイルド(処理の短時間化、処理液の低濃度化、処理温度の低温化)にしたところ、表面にむらが観察された。具体的には、拡散反射性能が低い領域と高い領域とが数cmオーダーで発生した。
 以上のことから、Al-Mg系のアルミニウム合金で形成されたアルミニウム基材は、不適であると判断した。
 Al-Mg-Si系のアルミニウム合金
 Al-Mg-Si系のアルミニウム合金として、JIS A6063を用いた。JIS A6063は、下記の組成(mass%)を有している。
 Si:0.20~0.60%、Fe:0.35%以下、Cu:0.10%以下、Mn:0.10%以下、Mg:0.45~0.9%、Cr:0.10%以下、Zn:0.10%以下、Ti:0.10%以下、その他:個々は0.05%以下で、全体は0.15%以下、残部:Al
 JIS A6063のアルミニウム合金で形成された円筒状のアルミニウム基材を用いて型基材を作製した。ここでは、ボートホール法で作製されたアルミニウム基材に冷間引抜き加工を施すことなく、バイト切削による鏡面加工を行ったアルミニウム基材を用いた。
 このアルミニウム基材にフッ化水素アンモニウムを含む水溶液で梨地処理を行った。ボートホール法で作製されたアルミニウム基材の継ぎ目部分を除き、面内にむらがなく、適度なアンチグレア機能を有するマクロな凹凸構造を得ることができた。
 次に、冷間引抜き加工を施した後バイト切削による鏡面加工を行ったアルミニウム基材にフッ化水素アンモニウムを含む水溶液で梨地処理を行ったところ、継ぎ目部分も目立たず、面内にむらがなく、適度なアンチグレア機能を有するマクロな凹凸構造を得ることができた。
 これらのことから、アルミニウム基材としては、Al-Mg-Si系のアルミニウム合金、特に、JIS A6063で形成されているものが好ましい。特に、冷間引抜き加工が施されたアルミニウム基材は、継ぎ目が目立たないので好ましい。なお、熱間押出し法であっても、マンドレル法で作製されたアルミニウム基材には継ぎ目がないので、冷間引抜き法で作製されたアルミニウム基材と同様に、好適に用いることができる。
 図9(a)~(c)に、フッ化水素アンモニウムを含む水溶液で梨地処理を行ったアルミニウム基材の表面のSEM像(5000倍、SEM像中のフルスケール10μm)を示す。SEM像は、電界放出型走査電子顕微鏡(日立製S-4700)を用いて取得した。以下のSEM像も同様である。
 図9(a)は、冷間引抜き加工が施されたJIS A6063のアルミニウム基材の表面のSEM像であり、図9(b)は、冷間引抜き加工が施されていないJIS A6063のアルミニウム基材の表面のSEM像であり、図9(c)は、冷間引抜き加工が施されていないJIS A5052のアルミニウム基材の表面のSEM像である。いずれも、フッ化水素アンモニウムを含む水溶液による梨地処理の時間は、45秒である。但し、図9(a)については、前処理として、脱脂および水洗を行った。図9(b)および図9(c)については、前処理として、陽極酸化およびエッチングを行った。これら前処理の効果については後述する。
 図9(a)および(b)と、図9(c)とを比較すると明らかなように、JIS A5052のアルミニウム基材の表面(図9(c))は、JIS A6063のアルミニウム基材の表面(図9(a)および(b))に比べて、非常に粗い凹凸構造が形成されている。したがって、アルミニウム基材としては、Al-Mg-Si系のアルミニウム合金、特に、JIS A6063が好ましい。
 [脱脂・水洗]
 冷間引抜き加工が施されたJIS A6063のアルミニウム基材に梨地処理を行うと、アルミニウム基材の表面にマクロなむらが発生することがあった。このマクロなむらの発生を防止するために、梨地処理の前処理として、脱脂と水洗の検討を行った。
 脱脂には、無機アルカリ性洗浄剤(横浜油脂工業株式会社製のL.G.L)の濃度が3mass%の水溶液を用い、試料をこの水溶液に40℃で、10分間浸漬した。その後、試料を純水中に10分間浸漬することによって水洗した。水洗後の試料を大気中に放置する時間を異ならせた(0分、5分、15分、22時間)試料を用意し、その後に梨地処理を行った。
 水洗後に完全に乾燥させずに梨地処理を行ったアルミニウム基材の表面にはむらが発生しなかったが(下記表1の条件C1とC2)、水洗後に一度乾燥させてから梨地処理を行ったアルミニウム基材の表面の全体にむらが見られた(条件C4)。放置時間15分のときはわずかにむらが観察された(条件C3)。
 脱脂をした後に水洗をして乾燥させると、アルミニウム基材の表面に、固体の水酸化アルミニウムが析出し、固着してしまう。この水酸化アルミニウムによって、処理液がアルミニウム基材の表面に作用するのが阻害される結果、むらが発生すると考えられる。したがって、水洗後、アルミニウム基材の表面が乾燥する前に、梨地処理を行うことが好ましい。もちろん、乾燥した後にもう一度水洗して、その後乾燥する前に梨地処理を行えば、むらの発生を防止することができる。水洗工程の後、15分を経過する前に梨地処理を行うことが好ましい。
 なお、脱脂の薬剤としては、界面活性剤(日華化学株式会社製のニッカサンクリーン)や硫酸などを用いてもよい。
Figure JPOXMLDOC01-appb-T000001
 [梨地処理の時間]
 アンチグレア機能を有する反射防止膜を形成するためのモスアイ用型を作製するために、梨地処理の時間と拡散反射性能の程度との関係を検討した結果を説明する。以下の実験では、冷間引抜き加工が施されたJIS A6063のアルミニウム基材を用いた。梨地処理のためのエッチング液として、フッ化水素アンモニウムを含む水溶液(フッ化水素アンモニウムの濃度は4mass%)を用いた。
 アルミニウム基材に対する梨地処理の時間を5秒~3分で変化させた型試料を作製した。梨地処理温度は35℃とした。なお、梨地処理を行う前に、界面活性剤を用いて脱脂を行い、水洗後15分を経過するまでに梨地処理を行った。
 梨地処理が施されたアルミニウム基材の表面に離型剤(ダイキン工業株式会社製のオプツールDSX)を塗布した後、アクリル系の紫外線硬化樹脂を塗布し、PETフィルム上に転写した状態で紫外線を照射して硬化させた。得られたマクロな凹凸構造を有する試料フィルムを用いて、図8(b)を参照して説明した方法で、配光分布を測定した。ここで用いた試料フィルムのように、このように、モスアイ構造を有さず、アンチグレア構造だけを有する膜を、アンチグレア膜ということがある。
 また、参照用の試料フィルムとして、出願人がテレビ用途に用いている種々のアンチグレアフィルム(REF_No.1~No.4)の配光分布も併せて評価した。ここで用いたアンチグレアフィルムは、微細な粒子が分散されたコート剤(樹脂)をフィルムの表面に塗布することによって形成されたものであり、微細な粒子によって形成されるマクロな凹凸を有する表面による拡散反射と、コート剤と微粒子との界面における拡散反射(散乱を含む)とによって、アンチグレア機能を発現する。一方、図8(a)を参照して説明した本発明による実施形態の反射防止膜(EX.1)や、以下で説明するアンチグレア膜は、マクロな凹凸を有する表面構造のみによってアンチグレア機能を発現する。
 図10Aに拡散反射光の配光分布の測定結果を示す。図10Aも、図8(a)と同様に、入射角を5°とし、受光角を横軸にとり、拡散反射光強度の最大値を80%として規格化した、相対拡散反射率(%)の常用対数を縦軸にとった配光分布曲線を示す。
 図10Aの結果から、梨地処理の時間が長くなるにつれて、受光角の大きい拡散反射光の割合が増加していることが分る。すなわち、梨地処理の時間が長くなるにつれて、アンチグレア機能は高くなる。処理時間が37秒のときのヘイズ値は約7、45秒のときのヘイズ値は約10で、75秒のときのヘイズ値は約24で、90秒のときのヘイズ値は約40である。REF_No.1のヘイズ値は2、No.3のヘイズ値が約40で、REFの中で最も大きい。なお、ヘイズ値は、日本電色工業株式会社製のヘーズメーターNDH2000を用いて、(拡散透過率/全光線透過率)×100から求めた。
 梨地処理の時間が30秒以下では、拡散反射光の配光分布の変化が小さく、アンチグレアの効果がほとんどない。また、梨地処理の時間を90秒以上にしても、拡散反射光の配光分布にほとんど変化がなく、これ以上は、アンチグレアの効果が増大しない。アンチグレア機能の観点からは、梨地処理の時間は30秒超90秒未満が好ましいと言える。
 梨地処理時間が37秒以上75秒以下の範囲の試料フィルムの拡散反射光の配光分布は、配光分布曲線の傾きが不連続に変化する点が、受光角が0°以上10°以下の範囲内にあり、かつ、相対拡散反射率(%)が1%以上10%以下の範囲内に存在するという特徴を有している。具体的には、これらの試料フィルムの配光分布曲線の傾きは、受光角が約2°~約3°および約7°~約8°において不連続に変化している(傾きの絶対値が不連続に小さくなっている)。これらの試料フィルムは、適度なアンチグレア機能(ヘイズ値が約7以上約24以下)を有するとともに、適度な鏡面反射性を有していることが分かった。
 図10Bを参照して、アンチグレア機能と鏡面反射性とを評価した結果を説明する。図10Bは、上述の拡散反射光の配光分布の測定結果に基づいて、ORGで示した白黒のパターンを各試料フィルムを介して観察したときの様子を簡単なモデル計算によって求めた結果を示す。すなわち、図8(b)のガラス板の位置に上記の白黒のパターンが配置された状態における、拡散反射光の配光分布を求めたことに相当する。
 CNV.1は、図8(a)に示した拡散反射光の配光分布を用いて計算した結果であり、E30、E45、E60およびE90は、それぞれ、図10Aに示した拡散反射光の配光分布を用いて計算した結果であり、数字は梨地処理時間を示している。
 図10BのORGで示した白黒のパターンの各領域は、233個のセル(ピクセルに相当)で構成されている。各セルを観察したときに観察者の眼に届く光の強度を以下のようにして求めた。
 例えば、n番目のセルを考える。n番目のセルを観察したときに観察者の眼に届く光の強度は、n番目のセルを出射する光の強度に、上記配光分布曲線の0.0°における相対拡散反射率(%)を掛けた値に、n-1番目およびn+1番目のセルを出射する光の強度に、上記配光分布曲線の0.1°における相対拡散反射率(%)を掛けた値を加え、さらに、n-2番目およびn+2番目のセルを出射する光の強度に、上記配光分布曲線の0.2°における相対拡散反射率(%)を掛けた値を加えるというように、n番目のセルの両側の50個のセルから出射される光の強度を加えた値として求めた。
 図10BのCNV.1を見るとわかるように、黒と白との境界線はぼやけて明確に認識することができない。このように、CNV.1の拡散反射機能つき反射防止膜は、ヘイズ値が3と小さいにも拘わらず、鏡面反射性は低く、画像がぼやけてしまう。
 一方、図10BのE45~E60の試料フィルム(アンチグレアフィルム)については、黒と白との境界線を明確に認識することができる。また、アンチグレア機能という点では、黒の領域に侵入したグレーの領域の幅は、CNV.1よりも大きく、アンチグレア機能は高いと言える。
 E30の試料フィルムでは、鏡面反射性が高すぎる結果、黒と白との境界線が明確に認識される。また、E90の試料フィルムでは、鏡面反射性が低すぎる結果、黒と白との境界線を明確に認識することができない。これは、目視観察による主観評価の結果とよく対応しており、適度なアンチグレア機能と適度な鏡面反射性とを備える反射防止膜(反射防止表面)を得るためには、上記の梨地処理時間が30秒超90秒未満が好ましい。
 したがって、梨地処理時間が30秒超90秒未満の範囲の試料フィルムは、適度なアンチグレア機能と適度な鏡面反射性とを備えているので、例えば、300ppiを超える高精細のディスプレイに用いても、画像が必要以上にぼやけることが抑制される。
 なお、梨地処理の好ましい時間は、処理液の濃度や温度によって、適宜、最適化され得る。例えば、フッ化水素とアンモニウムとを含む水溶液として、フッ化アンモニウムを5mass%含む水溶液を用いた場合、25℃で、120秒間、梨地処理することによって、上記のフッ化アンモニウムを4mass%含む水溶液を用いた例(処理時間45~60秒)と同等の結果を得ることができる。
 梨地処理時間が短いと、量産安定性に問題を生じる可能性があるので、スループットを必要以上に低下させない範囲で、量産安定性(制御性)を向上させることが好ましい。そこで、梨地処理の温度を下げることによって、梨地処理の時間を長くすることを検討した。
 図11を参照して、濃度が4mass%のフッ化水素アンモニウムを含む水溶液を用いて10℃において梨地処理したときの、梨地処理の時間と拡散反射光の配光分布との関係を説明する。
 図11からわかるように、処理時間が2分30秒以上8分以下の範囲の試料フィルムの拡散反射光の配光分布は、REF_No.1~No.4の拡散反射光の配光分布の範囲内にあり、処理温度を下げても、処理時間を長くすることによって、現在使用している種々のアンチグレアフィルムのアンチグレア性能をほぼカバーするアンチグレア性能を有する表面(アンチグレア構造)を形成できることが分かった。すなわち、処理温度を35℃から10℃に下げることによって、適切な処理時間を、30秒超90秒未満の範囲から、2分30秒以上8分以下の範囲に拡大することができる。このように処理温度を下げることによって、梨地処理の時間のマージンを大きくすることができるという利点が得られる。
 なお、フッ化水素アンモニウム水溶液の濃度が4mass%よりも低いと、結晶粒が目立つようになり、適度なアンチグレア機能を付与することができない場合があった。したがって、梨地処理に用いるフッ化水素アンモニウム水溶液の濃度は4mass%以上であることが好ましい。
 フッ化アンモニウム水溶液の濃度の上限は特に制限されないが、19mass%を超えると適度な拡散反射をもつ表面ができないおそれがあるので、フッ化水素アンモニウム水溶液の濃度は19mass%以下であることが好ましい。
 [アルミニウム基材の切削痕の影響の抑制]
 冷間引抜き加工を施すことなく、バイト切削による鏡面加工を行ったアルミニウム基材に梨地処理を施すと、アルミニウム基材の表面に切削痕が形成されることがあった。この切削痕は、バイト切削による鏡面加工によって、アルミニウム基材の表面に形成された加工変質層に起因した、エッチングのむらであると考えられる。したがって、梨地処理によって切削痕が形成されるという問題は、バイト切削に限られず、加工変質層の形成を伴う鏡面加工が施されたアルミニウム基材を用いる場合に共通の問題である。なお、冷間引抜き加工を施すと、アルミニウム基材の全体にわたって塑性変形による加工変質層が形成されるので、その後の鏡面加工による影響が低減されると考えられる。
 種々検討した結果、フッ化水素とアンモニウムとの塩を含む水溶液による梨地処理の前に、前処理のための陽極酸化工程およびエッチング工程を行うことによって、切削痕を低減させることができることがわかった。すなわち、バイト切削による鏡面加工が施された表面を陽極酸化し、形成された陽極酸化膜をエッチングによって除去することによって、アルミニウム基材の表面に形成される切削痕を低減させることができる。
 なお、陽極酸化は、電解液として硫酸水溶液を用いることが好ましい。硫酸水溶液を用いると、蓚酸を用いる場合よりも、柔らかい陽極酸化膜が得られるので、例えば燐酸水溶液によって、容易に除去することができる。硫酸水溶液を用いた陽極酸化は、例えば、20℃で、定電流115A/m2で、24分30秒間にわたって行うことが好ましい。これよりも陽極酸化の時間が短いと、切削痕が形成されることがある。
 冷間引抜き加工を施すことなく、バイト切削による鏡面加工を行ったアルミニウム基材(JIS A6063)を用いて作製した型基材を用いて行った実験例の結果を以下に示す。
 図12(a)は、蓚酸水溶液(濃度:0.3mass%)を用いて陽極酸化(80V、5℃、10分)した後、燐酸水溶液(濃度:10mass%)を用いてエッチング(30℃、90分)した後のアルミニウム基材のSEM像(5000倍、SEM像中のフルスケール10μm)を示す図であり、図12(b)は、硫酸水溶液(濃度:17mass%)を用いて陽極酸化(定電流115A/m2、20℃、24分30秒)した後、燐酸水溶液(濃度:10mass%)を用いてエッチング(30℃、12分)した後のアルミニウム基材の表面のSEM像(5000倍、SEM像中のフルスケール10μm)を示す図である。
 図12(a)からわかるように、蓚酸を用いて陽極酸化したアルミニウム基材の表面には、多数の凹部が形成されている。これは、蓚酸を用いた陽極酸化によって形成された酸化膜は硬く、エッチングされ難いので、酸化膜が一部残存した状態で、ゆっくりとエッチングが進行する。このとき、酸化膜が除去された表面にガルバニック腐食が進行し、その結果、多数の凹部が形成されたと考えられる。なお、ガルバニック腐食は、アルミニウム膜に含まれるTiとAlとの間で起こる。
 一方、図12(b)からわかるように、硫酸を用いて陽極酸化したアルミニウム基材の表面にはガルバニック腐食によって形成される凹部は見られない。硫酸を用いた陽極酸化によって形成された酸化膜は柔らかく、エッチングによって容易に除去されたためと考えられる。ここで例示したように、硫酸を用いて陽極酸化すると、その後に12分間にわたってエッチングを行うだけで、陽極酸化膜を除去できる。
 硫酸を用いた陽極酸化によって形成された酸化膜を除去するために必要なエッチング時間を検討した。陽極酸化の条件は上記の条件(定電流115A/m2、20℃、24分30秒)と同じとし、燐酸水溶液(濃度:0.3mass%)を用いて、30℃で、エッチング時間を、1分、3分、5分、10分および12分と変化させ、酸化膜の残存の有無を調べた。その結果、エッチングを5分以上行うことによって、酸化膜を除去できることが分かった。実験結果の例を以下に示す。
 図13(a)~(d)に、硫酸を用いて上記の条件で陽極酸化した後の燐酸によるエッチングの時間が異なる試料の表面のSEM像(10000倍、SEM像中のフルスケール200nm)を示す。図13(a)はエッチング時間が12分、図13(b)はエッチング時間が10分、図13(c)はエッチング時間が5分、図13(d)はエッチング時間が3分の試料のSEM像である。エッチング時間が3分の試料(図13(d)参照)以外は、酸化膜が除去されている。但し、5分のエッチングでは目視でむらが確認される場合があったので、エッチング時間は10分以上に設定することが好ましい。
 冷間引抜き加工を施すことなく、バイト切削による鏡面加工を行ったアルミニウム基材(JIS A6063)に上述の前処理としての陽極酸化およびエッチングを施した後に行う梨地処理の時間について検討した。前処理の有無によって、アルミニウム基材の表面の状態が異なるので、好ましい梨地処理の時間も違う可能性が考えられるからである。
 上述したように陽極酸化およびエッチングを行った後、フッ化水素アンモニウムを含む水溶液(濃度:4mass%、温度:20℃)で、処理時間を30秒、60秒、120秒で梨地処理を行った。得られた型基材を用いて、試料フィルムを作製し、図8(b)を参照して上述したのと同様の方法で、配光特性を評価した結果を図14に示す。図14も、図8(a)と同様に、入射角を5°とし、受光角を横軸にとり、拡散反射光強度の最大値を80%として規格化した、相対拡散反射率(%)の常用対数を縦軸にとった配光分布曲線を示す。
 図14からわかるように、梨地処理の時間が30秒の試料フィルムの配光分布は、REF_No.1より狭く、十分なアンチグレア機能を有していない。梨地処理の時間が60秒および120秒の試料の配光分布は、配光分布曲線の傾きが不連続に変化する点が、受光角が0°以上10°以下の範囲内にあり、かつ、相対拡散反射率(%)が1%以上10%以下の範囲内に存在するという特徴を有している。
 したがって、冷間引抜き加工を施すことなく、バイト切削による鏡面加工を行ったアルミニウム基材を用いて作製された型基材に、上述の前処理としての陽極酸化およびエッチングを施した後に行う梨地処理の時間は、フッ化水素アンモニウムを含む水溶液(濃度:4mass%、温度:20℃)を用いたとき、60秒以上が好ましいと言える。
 図15(a)に、冷間引抜き加工を施した後にバイト切削による鏡面加工を行ったアルミニウム基材に37秒間(図10A参照)梨地処理を行った表面のSEM像を示し、図15(b)に、ボートホール法で作製されたアルミニウム基材に冷間引抜き加工を施すことなく、バイト切削による鏡面加工を行ったアルミニウム基材に、前処理としての陽極酸化およびエッチングを行った後、120秒間(図14参照)梨地処理を行った表面のSEM像を示す。いずれのSEM像も10000倍、SEM像中のフルスケールは5μmである。
 図15(a)および(b)からわかるように、梨地処理によって形成されたマクロな凸部(図1(c)のマクロな凸部18p参照)の表面の法線方向から見たときの2次元的な大きさ(面積円相当径)は、いずれも、約1μm以上5μm以下であることがわかる。マクロな凸部の2次元的な大きさの平均は、マクロな凹部の平均隣接間距離(ADint、図1(b)参照)よりもわずかに小さい。
 これらのアルミニウム基材を用いて上述と同様にしてモスアイ用型を作製し、図5を参照して上述したのと同様に、試料フィルムを作製した。得られたアンチグレア機能を備える反射防止膜を、液晶表示パネル(対角4.97インチ、ドットピッチ(図16中のPx)が19.1μm、画素ピッチが約57.3μm、約440ppi)の観察者側の表面に貼りつけ、目視で評価したところ、表示面のぎらつきが抑制され、かつ、画像のぼやけが抑制されていることが分かった。
 [アルミニウム基材の表面をエッチングする工程]
 梨地処理の前処理として、アルカリ性のエッチング液を用いて、アルミニウム基材の表面をエッチングする工程(基材表面エッチング工程ということがある)について検討した結果を説明する。
 バイト切削による鏡面加工を行ったアルミニウム基材に梨地処理を施すと、アルミニウム基材の表面に切削痕が形成されることがあった。この切削痕は、バイト切削による鏡面加工によって、アルミニウム基材の表面に形成された加工変質層に起因した、エッチングのむらであると考えられる。また、切削痕を有する型を用いて形成された反射防止膜を液晶表示パネルに貼ると、モアレが発生することがあった。このモアレは、反射防止膜に転写された切削痕の縞と、液晶表示パネルのドットピッチ(図16中のPx)または画素ピッチで配列された周期構造(例えば画素列)とが互いに干渉することにより生じると考えられる。
 種々検討した結果、フッ化水素とアンモニウムとの塩を含む水溶液による梨地処理の前に、アルカリ性のエッチング液を用いて、アルミニウム基材の表面をエッチングすることによって、切削痕を低減させることができることが分かった。
 下記の表2に示すように、梨地処理の前に、条件を変えて基材表面エッチング工程を行った。実施例1~3および参考例1~4は、冷間引抜き加工を施した後バイト切削による鏡面加工を行ったアルミニウム基材(JIS A6063)を用いて作製した型基材を用いて行った。
Figure JPOXMLDOC01-appb-T000002
 実施例1で用いたアルカリ性のエッチング液E1は、有機アルカリ性洗浄剤(横浜油脂工業株式会社製のLC-2)の濃度が8mass%の水溶液である。横浜油脂工業株式会社製のLC-2は、以下の組成を含む:2-アミノエタノール(12mass%)、キレート剤(2mass%~6mass%)、界面活性剤(2mass%~6mass%)。従って、アルカリ性のエッチング液E1中の2-アミノエタノールの濃度は0.96mass%である。アルカリ性のエッチング液E1のpHは、10.3である。
 各アルカリ性のエッチング液のpHは、ハンディpHメータ(製品名:D-25、HORIBA社製)を用いて測定した。アルカリ性のエッチング液がキレート剤を含むことによって、エッチングにより溶け出した、アルミニウム基材に含まれる他の金属や不純物が、アルミニウム基材の表面に付着することを防ぐことができる。アルカリ性のエッチング液が界面活性剤を含むことによって、基材表面のエッチングがより均一に行われ得る。
 実施例3で用いたアルカリ性のエッチング液E3は、無機アルカリ性洗浄剤(横浜油脂工業株式会社製のL.G.L)の濃度が3mass%の水溶液である。横浜油脂工業株式会社製のL.G.Lは、以下の組成を含む:水酸化カリウム(1mass%~3mass%)、キレート剤(5mass%~15mass%)、界面活性剤(5mass%~15mass%)。従って、アルカリ性のエッチング液E3中の水酸化カリウムの濃度は0.03mass%~0.09mass%である。アルカリ性のエッチング液E3のpHは、11.7である。
 実施例2で用いたアルカリ性のエッチング液E2は、アルカリ性のエッチング液E3を空気に触れる状態で1月以上放置したものである。アルカリ性のエッチング液E2は、アルカリ性のエッチング液E3よりも弱いアルカリ性を有する。アルカリ性のエッチング液E2のpHは、9.92である。
 実施例1~3において、それぞれのアルカリ性のエッチング液(40℃)に試料を所定時間浸漬した後、試料を純水中に浸漬することによって水洗した。水洗後、完全に乾燥させずに梨地処理を行った。梨地処理には、フッ化水素アンモニウムを含む水溶液(濃度:4mass%、温度:10℃)を用い、処理時間は5分とした。
 参考例1~3においては、基材表面エッチング工程の後に梨地処理を行わない。参考例1~3においては、実施例1~3で用いたアルカリ性のエッチング液E1~E3と同じものを用いて、基材表面エッチング工程を行った。
 参考例4で用いたアルカリ性のエッチング液E4は、無機アルカリ性洗浄剤(横浜油脂工業株式会社製のL.G.L)の濃度が0.10mass%の水溶液である。従って、アルカリ性のエッチング液E4中の水酸化カリウムの濃度は0.001mass%~0.003mass%である。アルカリ性のエッチング液E4は、アルカリ性のエッチング液E3と同じ無機アルカリ性洗浄剤を用いて調製したものであるが、その濃度において異なる。アルカリ性のエッチング液E4のpHは、10.38である。参考例4においては、実施例1~3と同様に、基材表面エッチング工程の後に梨地処理を行った。
 実施例1~3および参考例1~4について、それぞれの基材表面エッチング工程および梨地処理(または、基材表面エッチング工程)を行ったアルミニウム基材を型として用いて、アンチグレア膜を形成した。アンチグレア膜は、アルミニウム基材の表面に離型剤(ダイキン工業株式会社製のオプツールDSX)を塗布した後、アクリル系の紫外線硬化樹脂を塗布し、TACフィルム上に転写した状態で紫外線を照射して硬化させることで、形成した。
 アルミニウム基材およびアルミニウム基材から得られたアンチグレア膜(試料フィルム)を用いて、アンチグレア機能を評価した結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3において、「Ra」、「むら」および「模様」は、アルミニウム基材を評価した結果であり、「ヘイズ値」、「モアレ」、「防眩性」および「白茶け」は、アンチグレア膜を評価した結果である。「ヘイズ値」および「Ra」は、測定結果であり、「モアレ」、「むら」、「模様」、「防眩性」および「白茶け」は、目視による主観評価である。以下、それぞれについて説明する。
 表3の「Ra」は、アルミニウム基材の表面の算術平均粗さRaを測定した結果を示す。算術平均粗さRaは、Veeco製のOptical profiling system(Wyko NT1100)を用いて測定した。基材表面エッチング工程および梨地処理によって、アルミニウム基材の表面の算術平均粗さRaは、例えば50nm以上300nm以下となることが好ましい。
 表3の「むら」は、アルミニウム基材の表面にむらが発生しているか否かについて目視で評価した結果である。アルミニウム基材の表面の梨地処理が均一に行われているか否かを評価した。表3の「むら」について、「○」はむらがないことを示し、「×」はむらがあることを示す。参考例4においては、基材表面エッチング工程に用いたアルカリ性のエッチング液に含まれる塩基の濃度が低いので、加工変質層を十分に除去することができなかったと考えられる。あとで説明するように、むらが発生しなかった場合(梨地処理が均一に行われた場合)は、アルミニウム基材の表面から例えば約1.4μmが除去された。参考例4においては、基材表面エッチング工程でエッチングされたアルミニウム基材の厚さが小さかったことにより、梨地処理が均一に行われず、むらが発生したと考えられる。
 また、参考例4においてむらが発生した理由として、以下のことも考えられる。参考例4において用いたアルカリ性のエッチング液E4は、実施例3において用いたアルカリ性のエッチング液E3と同じ無機アルカリ性洗浄剤を用いて調製したものであるが、その濃度が低い点において異なる。従って、参考例4においては、実施例3と比較して、アルカリ性のエッチング液に含まれる塩基の濃度が低く、アルミニウム基材の表面をエッチングする作用が弱いと考えられる。参考例4においては、アルカリ性のエッチング液に含まれるキレート剤の濃度も同様に低いが、アルミニウム基材に含まれる他の金属や不純物の量によっては、これらのイオンを吸着・封鎖する機能は、実施例3の場合と比較してあまり低下しないこともある。このような場合には、キレート剤の機能により、アルカリ性のエッチング液によるアルミニウム基材の表面のエッチングの不均一性が増大され得ると考えられる。これが梨地処理の不均一性の増大につながり、結果としてむらが発生したとも考えられる。
 アルカリ性のエッチング液に含まれる塩基の濃度は、例えば0.01mass%以上であることが好ましい。アルカリ性のエッチング液に含まれる無機塩基の濃度は、例えば0.03mass%以上であることが好ましい。アルカリ性のエッチング液に含まれる有機塩基の濃度は、例えば0.96mass%以上であることが好ましい。
 表3の「模様」は、アルミニウム基材の表面に、模様が形成されているか否かを目視で評価した結果である。ここで、模様とは、例えばアンチグレア構造の数百倍から数千倍の大きさの凹凸形状をいう。表3の「模様」について、「○」は模様が生じていないことを示し、「×」は模様が生じていることを示す。参考例3のアルミニウム基材の表面には、約1mmのオーダーの凹凸形状が生じていた。このアルミニウム基材の表面の模様(凹凸形状)によって、アンチグレア膜を黒いアクリル板の表面に貼りつけたときにも、模様が目立って見えた。この模様は、アンチグレア構造よりも数百倍から数千倍大きいので、アンチグレア機能を有するものではない。
 このアルミニウム基材の表面の模様(凹凸形状)は、例えば、参考例3で用いたアルカリ性のエッチング液E3のpHが11.7であり、アルカリ性が強いために生じたと考えられる。強いアルカリ性の塩基によってアルミニウム基材の表面が必要以上に荒らされ、模様が発生したと考えられる。基材表面エッチング工程において、アルカリ性のエッチング液に濃度勾配が生じる可能性も、模様が発生する原因の一つとして考えられ得る。また、アルミニウム基材の表面の模様は、例えば、バイト切削による鏡面加工によって、アルミニウム基材の表面に形成された加工変質層に起因しているとも考えられる。加工変質層に限られず、例えばアルミニウム基材が組成の不均一性を有すると、それが模様発生の原因の一つになることも考えられ得る。
 実施例3のアルミニウム基材の表面には、模様が生じていなかった。基材表面エッチング工程後のフッ化水素アンモニウムを含む水溶液を用いた梨地処理によって、アルミニウム基材の表面の加工変質層が部分的に除去された、および/または、アルミニウム基材の表面の模様が目立たなくなったと考えられる。
 表3の「ヘイズ値」は、アンチグレア膜のヘイズ値を測定した結果を示す。ヘイズ値は、日本電色工業株式会社製のヘーズメーターNDH2000を用いて、(拡散透過率/全光線透過率)×100から求めた。
 表3の「モアレ」は、アンチグレア膜を、液晶テレビ(AQUOS UD1、シャープ株式会社製)のディスプレイパネルの表面に貼りつけ、モアレが発生するか否かを目視で評価した結果である。表3の「モアレ」について「○」は、モアレが発生しなかったことを示す。
 表3の「防眩性」は、アンチグレア膜を、黒いアクリル板の表面に貼りつけ、蛍光灯の映り込みを目視で観察することによって、防眩性の有無を判断した結果である。表3の「防眩性」について「○」は、防眩性があると判断されたことを示し、「×」は、防眩性がないと判断されたことを示す。一般に、ヘイズ値の大きいアンチグレア膜は、アンチグレア機能に優れ、防眩性に優れている。
 表3の「白茶け」は、アンチグレア膜を、液晶テレビ(AQUOS UD1、シャープ株式会社製)のディスプレイパネルの表面に貼りつけ、膜を介した像について、白茶けが気になるかどうか聞き取りを行った結果である。聞き取りは5人に対して行い、表3の「白茶け」について「○」は、「白茶けが気になる」と答えた人数が5人中0人であることを示し、「△」は1人以上3人以下であることを示す。一般に、ヘイズ値の大きいアンチグレア膜は、そのアンチグレア機能によって、膜を介した像が白っぽく見えやすい。
 なお、上記のうち、「防眩性」および「白茶け」の評価は、評価者の実現したいアンチグレア機能の程度によって異なることが考えられる。例えば、上記表3の評価は、ヘイズ値が約7以上約24以下を適度なアンチグレア機能とした場合である。本発明の実施形態による型の製造方法によって製造される型は、例示するものに限られず、よりアンチグレア機能の高い(より大きなヘイズ値(例えば約7以上約28以下)を有する)反射防止膜を形成するためにも用いられ得る。よりアンチグレア機能の低い(より小さなヘイズ値(例えば約1以上約5以下)を有する)反射防止膜を形成するためにももちろん用いられ得る。
 基材表面エッチング工程において、アルミニウム基材の表面から例えば約1.4μmが除去された。基材表面エッチング工程でエッチングされる厚さは、例えばエッチング時間、エッチング液の温度等を調整することによって、適宜調整することができる。基材表面エッチング工程でエッチングされることが好ましい厚さは、例えばアルミニウム基材の表面の状態によって異なる。エッチングされる厚さは上記の例に限られず、アルミニウム基材の表面の加工変質層が十分に除去される程度に、エッチングを行うことが好ましい。
 上記の実験例より、適度なアンチグレア機能(例えばヘイズ値が約7以上約24以下)を有する反射防止膜を得るためには、基材表面エッチング工程に用いるアルカリ性のエッチング液のpHは、例えば10以上12以下が好ましい。アルカリ性のエッチング液のpHが9以下の場合は、アルミニウム基材の表面の加工変質層を十分に除去することができない可能性がある。アルカリ性のエッチング液のpHが13以上の場合は、アルミニウム基材の表面が必要以上に荒らされ、および/または、むらの原因となり得る可能性がある。
 ただし、基材表面エッチング工程に用いるアルカリ性のエッチング液のpHの好ましい範囲は、アルミニウム基材の表面状態によって異なり得る。アルミニウム基材の表面状態は、例えば、アルミニウム基材の種類、作製方法、および/または加工方法によって異なり得る。
 このようにして得られた梨地処理が施された円筒状のアルミニウム基材を用いて、上述したように、反転されたモスアイ構造を形成することによって、反射防止機能とアンチグレア機能とを付与できるモスアイ用型が得られる。円筒状のモスアイ用型を用いると、上述したようにロール・ツー・ロール方式で反射防止膜を形成することができる。このとき、反射防止膜を形成するフィルム基材(TACフィルムまたはPETフィルム)と、反射防止膜との密着性を向上させるために、以下のような工程を経ることが好ましい。
 TACフィルム上に、溶剤を含む紫外線硬化性樹脂(例えばアクリル樹脂)を付与する(厚さは例えば2μm~20μm)。このとき、溶剤は、TACフィルムの表面を溶解するもの(例えばケトン系)を選択する。溶剤がTACフィルムの表面を溶解することによって、TACと紫外線硬化性樹脂とが混合した領域が形成される。
 この後、溶剤を除去し、モスアイ用型の外周面に、紫外線硬化性樹脂が密着するように、TACフィルムを巻きつける。
 続いて、紫外線を照射し、紫外線硬化性樹脂を硬化させる。この時、紫外線硬化性樹脂の温度を30℃から70℃に保持する。
 その後、TACフィルムをモスアイ用型から剥離し、必要に応じて、紫外線を再度照射する。
 TACフィルム上にハードコート層を形成する場合には、ハードコート層を形成する材料に、TACフィルムの表面を溶解する溶剤を含有させておいてもよい。この場合、反射防止膜を形成するための紫外線硬化性樹脂に溶剤を含有させる必要はない。
 また、PETフィルムを用いる場合には、紫外線硬化性樹脂を付与する前に、水系のプライマー(例えば、ポリエステル系樹脂やアクリル系樹脂)の層(厚さ2μm~20μm)を形成することが好ましい。この場合も、反射防止膜を形成するための紫外線硬化性樹脂に溶剤を含有させる必要はない。
 本発明による型の製造方法は、反射防止膜(反射防止表面)などの形成に好適に用いられる型の製造に用いられる。本発明による反射防止膜は、適度なアンチグレア機能と、優れた反射防止機能とを発現する表面構造を有し、例えば、高精細な表示パネルに好適に用いられる。
 10  型基材
 12  アルミニウム基材
 14  ポーラスアルミナ層
 14p ミクロな凹部
 16  無機材料層
 18  アルミニウム膜
 18r アルミニウム残存層
 100  モスアイ用型

Claims (20)

  1.  (a)Al-Mg-Si系のアルミニウム合金で形成された円筒状のアルミニウム基材であって、機械的な鏡面加工が施されたアルミニウム基材を用意する工程と、
     (b)前記アルミニウム基材の表面をフッ化水素とアンモニウムとの塩を含む水溶液によって梨地処理する工程と、
     (c)前記工程(b)の後で、前記アルミニウム基材の前記表面に無機材料層を形成し、前記無機材料層の上にアルミニウム膜を形成することによって、型基材を作製する工程と、
     (d)前記工程(c)の後で、前記アルミニウム膜の表面を陽極酸化することによって、複数のミクロな凹部を有するポーラスアルミナ層を形成する工程と、
     (e)前記工程(d)の後に、前記ポーラスアルミナ層を、エッチング液に接触させることによって、前記ポーラスアルミナ層の前記複数のミクロな凹部を拡大させる工程と、
     (f)前記工程(e)の後に、さらに陽極酸化することによって、前記複数のミクロな凹部を成長させる工程と
    を包含する、型の製造方法。
  2.  前記アルミニウム基材は、冷間引抜き加工が施されたアルミニウム基材である、請求項1に記載の型の製造方法。
  3.  前記工程(b)の前に、脱脂工程および水洗工程をさらに包含する、請求項1または2に記載の型の製造方法。
  4.  前記工程(b)は、前記水洗工程の後、15分を経過する前に行われる、請求項3に記載の型の製造方法。
  5.  前記工程(b)の前に、アルカリ性のエッチング液を用いて、前記アルミニウム基材の前記表面をエッチングする基材表面エッチング工程をさらに包含する、請求項1から4のいずれかに記載の型の製造方法。
  6.  前記基材表面エッチング工程は、前記脱脂工程を兼ねる、請求項3または4を引用する請求項5に記載の型の製造方法。
  7.  前記アルカリ性のエッチング液は、無機塩基または有機塩基を0.03mass%以上含む、請求項5または6に記載の型の製造方法。
  8.  前記アルカリ性のエッチング液のpHは、10以上12以下である、請求項5から7のいずれかに記載の型の製造方法。
  9.  前記アルカリ性のエッチング液は、水酸化カリウムを含む、請求項5から8のいずれかに記載の型の製造方法。
  10.  前記アルカリ性のエッチング液は、アミノ基を有する有機化合物を含む、請求項5から9のいずれかに記載の型の製造方法。
  11.  前記基材表面エッチング工程および前記工程(b)によって、前記アルミニウム基材の前記表面の算術平均粗さRaは50nm以上300nm以下となる、請求項5から10のいずれかに記載の型の製造方法。
  12.  前記基材表面エッチング工程において、前記アルミニウム基材の表面から少なくとも1.4μmが除去される、請求項5から11のいずれかに記載の型の製造方法。
  13.  前記工程(b)の前に、前処理のための陽極酸化工程およびエッチング工程をさらに包含する、請求項1から12のいずれかに記載の型の製造方法。
  14.  前記工程(b)における、前記フッ化水素とアンモニウムとの塩は、フッ化水素アンモニウムである、請求項1から13のいずれかに記載の型の製造方法。
  15.  請求項1から14のいずれかに記載の型の製造方法によって製造された型。
  16.  表面の法線方向から見たときの2次元的な大きさが200nm以上30μm以下の複数のマクロな凸部と、表面の法線方向から見たときの2次元的な大きさが10nm以上500nm未満の複数のミクロな凹部とを有する、表面構造を備えたポーラスアルミナ層を有する型。
  17.  請求項15または16に記載の型を用意する工程と、
     被加工物を用意する工程と、
     前記型と前記被加工物の表面との間に光硬化樹脂を付与した状態で、前記光硬化樹脂に光を照射することによって前記光硬化樹脂を硬化させる工程と、
     前記型を硬化させられた光硬化樹脂で形成された反射防止膜から剥離する工程とを包含する、反射防止膜の製造方法。
  18.  請求項17に記載の反射防止膜の製造方法によって製造された反射防止膜。
  19.  表面の法線方向から見たときの2次元的な大きさが200nm以上30μm以下の複数のマクロな凹部と、表面の法線方向から見たときの2次元的な大きさが10nm以上500nm未満の複数のミクロな凸部とを有する表面構造を備え、
     入射角を5°とし、受光角を横軸にとり、拡散反射光強度の最大値を80%として規格化した、相対拡散反射率(%)の常用対数を縦軸にとった配光分布曲線の傾きが不連続に変化する点が、受光角が0°超10°以下の範囲内にあり、かつ、前記相対拡散反射率(%)が1%以上10%以下の範囲内に存在する、反射防止膜。
  20.  ヘイズ値が約7以上約24以下である、請求項18または19に記載の反射防止膜。
PCT/JP2015/061119 2014-04-14 2015-04-09 型、型の製造方法、反射防止膜および反射防止膜の製造方法 WO2015159797A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/303,049 US10549458B2 (en) 2014-04-14 2015-04-09 Mold, method for producing mold, anti-reflection film and method for producing anti-reflection film
JP2016513746A JP6309081B2 (ja) 2014-04-14 2015-04-09 型の製造方法および反射防止膜の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-083171 2014-04-14
JP2014083171 2014-04-14
JP2014237161 2014-11-21
JP2014-237161 2014-11-21

Publications (1)

Publication Number Publication Date
WO2015159797A1 true WO2015159797A1 (ja) 2015-10-22

Family

ID=54324006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061119 WO2015159797A1 (ja) 2014-04-14 2015-04-09 型、型の製造方法、反射防止膜および反射防止膜の製造方法

Country Status (3)

Country Link
US (1) US10549458B2 (ja)
JP (1) JP6309081B2 (ja)
WO (1) WO2015159797A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150335A1 (ja) * 2016-03-02 2017-09-08 シャープ株式会社 レンズ用型の製造方法およびレンズ用型
JP2019077038A (ja) * 2017-10-19 2019-05-23 三井化学株式会社 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2543514B (en) * 2015-10-20 2020-04-01 Ecorenew Dmcc A Method for Preserving a Mark on a Metallic Workpiece
JP6631637B2 (ja) * 2015-10-26 2020-01-15 日本軽金属株式会社 冷却器の製造方法
US20230176475A1 (en) * 2020-04-07 2023-06-08 Smart Material Solutions, Inc. Conformal micro- or nanopatterned nanoimprint lithography master and methods of making and using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125795A1 (ja) * 2009-04-30 2010-11-04 シャープ株式会社 型およびその製造方法
WO2011125486A1 (ja) * 2010-03-31 2011-10-13 シャープ株式会社 型および型の製造方法ならびに反射防止膜の製造方法
JP2013147583A (ja) * 2012-01-20 2013-08-01 Taiyo Holdings Co Ltd サンドブラストレジスト組成物、及びそれを用いた表面加工方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3448055A (en) * 1965-03-31 1969-06-03 Diversey Corp Aluminum alloy deoxidizing-desmutting composition and method
JPH04187788A (ja) * 1990-11-20 1992-07-06 Nippon Parkerizing Co Ltd アルミニウムまたはアルミニウム合金の洗浄方法
DE19708776C1 (de) 1997-03-04 1998-06-18 Fraunhofer Ges Forschung Entspiegelungsschicht sowie Verfahren zur Herstellung derselben
DE10020877C1 (de) 2000-04-28 2001-10-25 Alcove Surfaces Gmbh Prägewerkzeug, Verfahren zum Herstellen desselben, Verfahren zur Strukturierung einer Oberfläche eines Werkstücks und Verwendung einer anodisch oxidierten Oberflächenschicht
US7066234B2 (en) 2001-04-25 2006-06-27 Alcove Surfaces Gmbh Stamping tool, casting mold and methods for structuring a surface of a work piece
JP4368384B2 (ja) 2004-12-03 2009-11-18 シャープ株式会社 反射防止材、光学素子、および表示装置ならびにスタンパの製造方法およびスタンパを用いた反射防止材の製造方法
JPWO2011055757A1 (ja) 2009-11-06 2013-03-28 シャープ株式会社 型の製造方法および型
JP5053465B2 (ja) 2010-02-24 2012-10-17 シャープ株式会社 型および型の製造方法ならびに反射防止膜の製造方法
JP5856286B2 (ja) 2012-03-26 2016-02-09 シャープ株式会社 離型処理方法および反射防止膜の製造方法
US9914243B2 (en) 2012-06-06 2018-03-13 Sharp Kabushiki Kaisha Mold base material, production method for mold base material, mold production method, and mold
US9587298B2 (en) * 2013-02-19 2017-03-07 Arconic Inc. Heat treatable aluminum alloys having magnesium and zinc and methods for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125795A1 (ja) * 2009-04-30 2010-11-04 シャープ株式会社 型およびその製造方法
WO2011125486A1 (ja) * 2010-03-31 2011-10-13 シャープ株式会社 型および型の製造方法ならびに反射防止膜の製造方法
JP2013147583A (ja) * 2012-01-20 2013-08-01 Taiyo Holdings Co Ltd サンドブラストレジスト組成物、及びそれを用いた表面加工方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150335A1 (ja) * 2016-03-02 2017-09-08 シャープ株式会社 レンズ用型の製造方法およびレンズ用型
CN108699721A (zh) * 2016-03-02 2018-10-23 夏普株式会社 透镜用模具的制造方法及透镜用模具
JPWO2017150335A1 (ja) * 2016-03-02 2018-12-13 シャープ株式会社 レンズ用型の製造方法およびレンズ用型
CN108699721B (zh) * 2016-03-02 2021-02-19 夏普株式会社 透镜用模具的制造方法及透镜用模具
JP2019077038A (ja) * 2017-10-19 2019-05-23 三井化学株式会社 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP7088655B2 (ja) 2017-10-19 2022-06-21 三井化学株式会社 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法

Also Published As

Publication number Publication date
JPWO2015159797A1 (ja) 2017-04-13
US10549458B2 (en) 2020-02-04
US20170028591A1 (en) 2017-02-02
JP6309081B2 (ja) 2018-04-11

Similar Documents

Publication Publication Date Title
JP6322294B2 (ja) 型の製造方法および反射防止膜の製造方法
JP6309081B2 (ja) 型の製造方法および反射防止膜の製造方法
JP5027346B2 (ja) 型および型の製造方法ならびに反射防止膜の製造方法
WO2011046114A1 (ja) 型および型の製造方法ならびに反射防止膜
JP4916597B2 (ja) 型および型の製造方法ならびに反射防止膜
CN110268102B (zh) 防反射膜、防反射膜的制造方法、模具及模具的制造方法
JP5615971B2 (ja) 型の製造方法
WO2011055757A1 (ja) 型の製造方法および型
WO2010073636A1 (ja) 型の製造方法および型を用いた反射防止膜の製造方法
WO2011135976A1 (ja) 型および型の製造方法
JP6458051B2 (ja) 型および型の製造方法ならびに反射防止膜
JP5833763B2 (ja) 型の製造方法
JP6415590B2 (ja) 型の製造方法および反射防止膜の製造方法
JP6626898B2 (ja) 基材の表面処理方法および型の製造方法
JP6322721B2 (ja) 型の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15780133

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016513746

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15303049

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15780133

Country of ref document: EP

Kind code of ref document: A1