WO2015159537A1 - シリコン結晶の洗浄方法および多結晶シリコン塊の粉砕方法。 - Google Patents

シリコン結晶の洗浄方法および多結晶シリコン塊の粉砕方法。 Download PDF

Info

Publication number
WO2015159537A1
WO2015159537A1 PCT/JP2015/002065 JP2015002065W WO2015159537A1 WO 2015159537 A1 WO2015159537 A1 WO 2015159537A1 JP 2015002065 W JP2015002065 W JP 2015002065W WO 2015159537 A1 WO2015159537 A1 WO 2015159537A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon crystal
silicon
cleaning
washing
molecules
Prior art date
Application number
PCT/JP2015/002065
Other languages
English (en)
French (fr)
Inventor
秀一 宮尾
祢津 茂義
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2015159537A1 publication Critical patent/WO2015159537A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification

Definitions

  • the present invention relates to a technique for obtaining silicon crystals having a clean surface, and more particularly to a method of cleaning silicon crystals and a method of grinding polycrystalline silicon lumps.
  • etching silicon materials such as silicon wafers and polycrystalline silicon blocks
  • an acid mixture of hydrofluoric acid (HF) and nitric acid (HNO 3 ) or an acid mixture obtained by adding hydrogen peroxide (H 2 O 2 ) thereto A solution is used.
  • the mixing ratio of the acid mixture (etchant) is appropriately set in accordance with the type, concentration and the like of the contaminants adhering to the surface of the silicon crystal to be cleaned.
  • the acid component used in the etching is washed away from the surface of the silicon crystal, but if the etchant contains high concentration of hydrofluoric acid or nitric acid, In the pure water washing, the acid component may not be removed sufficiently and may remain on the surface of the silicon crystal, and even if the silicon crystal after washing is sealed in a polyethylene bag, the silicon crystal Spots may occur on the surface.
  • the etchant component remains on the silicon crystal surface, its adsorption or adhesion is strong, and it is possible to remove even if using a large amount of pure water or performing ultrasonic cleaning for cleaning after etching. Have difficulty. Therefore, in order to obtain a silicon crystal having a clean surface, it is desirable to use a new method for reducing the strength of adsorption or adhesion of the etchant component to the silicon crystal surface and facilitating the removal in the subsequent cleaning step.
  • the present invention has been made in view of such problems, and the objective is to obtain the strength of adsorption or adhesion without lowering the concentration of the etchant component to obtain a silicon crystal having a clean surface. To provide a means to weaken
  • the surface of the silicon crystal is coated with a layer of molecules whose dipole moment ( ⁇ ) is ⁇ ⁇ 0 before the etching step of silicon crystal.
  • the adsorption of the molecules in the surface treatment step is carried out by contacting the surface of the silicon crystal with hydrochloric acid (HCl) gas.
  • HCl hydrochloric acid
  • the silicon crystal is washed in the washing tank in which a water flow having a linear velocity of 2 cm / sec or more going upward from below is formed to wash the silicon crystal to remove the acid component on the surface. ing.
  • the washing step is a container for containing the silicon crystal, and a plurality of round holes are formed in the bottom plate of the container so that the opening ratio of the bottom plate surface is 50% or less. It is carried out using a container.
  • polycrystalline silicon is ground into a polycrystalline silicon block in the presence of molecules having a dipole moment ( ⁇ ) of ⁇ ⁇ 0.
  • the molecule whose dipole moment ( ⁇ ) is ⁇ ⁇ 0 is a water molecule or a hydrochloric acid (HCl) molecule, and the grinding is carried out in water or an atmosphere containing HCl gas.
  • HCl hydrochloric acid
  • the surface of the silicon crystal when cleaning the surface of the silicon crystal, the surface of the silicon crystal is covered with a layer of molecules with a dipole moment ( ⁇ ) of 0 before the etching step, so nitrate ions in the etchant are removed. Even if a component such as nitrite ion or hydrofluoric acid ion remains on the surface of the silicon crystal, the strength of adsorption or adhesion of the component is weakened and it is easily removed by washing with pure water.
  • dipole moment
  • the simplest method among the experiments conducted by the inventors is that the silicon crystal surface is covered with water molecules before etching. If etching is performed in a state where the silicon crystal surface is dry, it is difficult to sufficiently remove components such as nitrate ions in the etchant even if the silicon crystal after etching is washed with a large amount of pure water for a long time. However, when the surface of the silicon crystal before etching is wetted with water, the components remaining on the surface can be significantly reduced only by washing for a short time with a relatively small amount of pure water. .
  • a component such as nitrate ion in the etchant is silicon due to the presence of a water layer on the surface of the silicon crystal when the surface of the silicon crystal and the etchant cause a chemical reaction. It was thought that the strength of adsorption or adhesion to the crystal surface would be reduced.
  • the layer covering the silicon crystal surface is not limited to one composed of water molecules, but is a layer of molecules that cause polarization when adsorbed on the silicon crystal surface, in other words
  • the surface of the silicon crystal is coated in advance with a layer of molecules in which the dipole moment ( ⁇ ) is ⁇ ⁇ 0.
  • a surface treatment step is provided in which the surface of the silicon crystal is coated with a layer of molecules whose dipole moment ( ⁇ ) is ⁇ ⁇ 0.
  • HCl, HF, HNO 3 , ethanol, isopropyl alcohol, acetic acid, etc. are also included as those containing molecules having a dipole moment ( ⁇ ) of ⁇ ⁇ 0 when adsorbed on the silicon crystal surface.
  • the method of supplying HCl gas and adsorbing HCl molecules on the silicon surface to form the above-mentioned coating layer is capable of forming a layer by an extremely simple method, and after supplying HCl gas, nitrogen gas is used.
  • the replacement has the advantage that the extra adsorbed HCl molecules can be easily removed.
  • FIG. 1 is a flow chart for explaining the process of the cleaning method of silicon crystal according to the present invention.
  • an example of a cleaning process for producing a crystalline silicon block for producing single crystal silicon by the CZ method is shown by crushing polycrystalline silicon grown by the Siemens method.
  • polycrystalline silicon is crushed (S100).
  • the ground surface of the crushed and nugged crystalline silicon mass is in a very chemically active state. Therefore, in the above-described surface treatment step (S101), the surface of the silicon crystal is coated with a layer of molecules whose dipole moment ( ⁇ ) is ⁇ ⁇ 0. Following this surface treatment step, the silicon crystal is etched with an acid mixture (S102).
  • step S100 polycrystalline silicon is used with a dipole moment ( ⁇ ) of ⁇ ⁇ 0. It may be crushed into a polycrystalline silicon mass in the presence of the molecules of.
  • polycrystalline silicon is pulverized in an environment in which water molecules or hydrochloric acid (HCl) molecules are present, for example, in an atmosphere containing water or HCl gas.
  • the present invention can be applied not only to the method of cleaning silicon crystals but also as a method of grinding polycrystalline silicon lumps.
  • the water flow in the cleaning tank is necessary to supply pure water uniformly to the surface of the silicon crystal. Need to be appropriate.
  • the water flow is from the bottom to the top in the washing tank.
  • the silicon crystal to be cleaned is placed in a container in which a plurality of round holes are formed in the bottom plate so that the open area ratio of the bottom plate surface (ratio of openings per area) is 50% or less. It is introduced into the cleaning tank.
  • FIG. 2 is a view for conceptually explaining the appearance of round holes provided in the bottom plate of the storage container for storing the silicon crystal to be cleaned.
  • the round hole provided in the bottom plate of the storage container acts to accelerate the flow (linear velocity) of pure water in the vicinity of the silicon crystal surface.
  • a plurality of round holes may be formed in the side plates of the storage container.
  • a water flow with a linear velocity of 0.2 cm / sec was formed from the bottom to the top of the washing tank with a volume of about 70 liters, and a plurality of round holes were formed with an opening ratio of 3.5%.
  • the silicon crystal is put in the container of the bottom plate and the linear velocity of the flowing water spouted from the round hole is 0.35 cm / sec, and by devising that the water flow is concentrated on the bottom plate of the container, the round hole It was possible to increase the linear velocity of the water spouted from the to 7 cm / sec.
  • a water flow with a linear velocity of 7 cm / sec can supply pure water uniformly to the entire surface area even if the shape of the silicon crystal is complicated, and can be washed 2-3 times with pure water for 3-5 minutes. By doing this, the total concentration of the remaining components on the silicon crystal surface could be reduced to 0.2 ppbw or less.
  • the detection lower limit (sample weight base) of the fluorine ion, the nitrate ion, and the nitrite ion in normal ion chromatography is about 4 ppbw
  • the present inventors use a concentration column for the measurement of ion chromatography, and 20 ml The sample solution of the above was injected and concentrated, and 1 ml of the solution was eluted to the separation column side to perform a 20-fold concentration for evaluation.
  • Example 1 In Example 1, the relationship between the concentration of all components (residual concentration: ppbw) of the fluoride ion, nitrate ion and nitrite ion remaining on the surface of the treatment liquid used in the surface treatment step and the silicon crystal after pure water washing was examined.
  • the treatment solutions used in Examples 1-1 to 6 are all molecules having a dipole moment of ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ 0 (HCl gas (10 vol%), water, HF / HCl 3 aqueous solution, ethanol, isopropyl alcohol).
  • the surface treatment time for the samples of Examples 1-1 to 6 was 1 minute, and for Comparative Examples 1-1, 1-2, and 1-3, 168 hours, 60 minutes, and 1 minute, respectively. did.
  • treatment for 3 minutes was performed using a mixed acid aqueous solution of HF (4.3 wt%) and HNO 3 (63.9 wt%) for all samples. Further, the pure water cleaning period after etching was 9 minutes, and the flow rate at that time was 2 cm / s.
  • Example 2 In Example 2, the above-mentioned aperture ratio (%) of the bottom plate of the storage container used for cleaning the silicon crystal, the linear velocity (cm / s) of the flowing water spouted from the round hole, and the surface of the silicon crystal after pure water cleaning The relationship with the concentration of all the components of fluoride ion, nitrate ion and nitrite ion remaining in (residual concentration: ppbw) was examined.
  • treatment is performed for 1 minute using a mixed acid aqueous solution of HF (0.4 wt%) and HNO 3 (6.4 wt%) as a treatment liquid, and the subsequent etching is performed.
  • the etching was performed for 3 minutes using a mixed acid aqueous solution of HF (4.3 wt%) and HNO 3 (63.9 wt%).
  • the residual concentration is less than 0.2 ppbw under the condition that the aperture ratio of the bottom plate is 50% or less.
  • the surface of the silicon crystal when cleaning the surface of the silicon crystal, the surface of the silicon crystal is coated with a layer of molecules whose dipole moment ( ⁇ ) is ⁇ ⁇ 0 prior to the etching step.
  • dipole moment
  • the strength of adsorption or adhesion of the component is weakened and easily removed by washing with pure water. It will be.
  • the present invention provides an approach for reducing the strength of adsorption or adhesion of etchant components in order to obtain silicon crystals having a clean surface.

Abstract

 本発明においては、シリコン結晶の表面清浄化に際し、エッチング工程に先立ち、シリコン結晶の表面を双極子モーメント(μ)がμ≠0の分子の層で被覆する。この処理に、エッチャント中の硝酸イオン、亜硝酸イオン、フッ酸イオンといった成分がシリコン結晶表面に残留したとしても当該成分の吸着ないし付着の強度が弱められ、純水による洗浄により容易に除去されることとなる。これにより、清浄表面を有するシリコン結晶が得られる。

Description

シリコン結晶の洗浄方法および多結晶シリコン塊の粉砕方法。
 本発明は、清浄表面を有するシリコン結晶を得るための技術に関し、より具体的には、シリコン結晶の洗浄方法および多結晶シリコン塊の粉砕方法に関する。
 シリコンウエハや多結晶シリコン塊等のシリコン材料のエッチングには、一般に、フッ酸(HF)と硝酸(HNO)の酸混合液やこれに過酸化水素(H)を加えた酸混合液が用いられる。これらの酸混合液(エッチャント)の混合比は、洗浄対象であるシリコン結晶の表面に付着している汚染物の種類や濃度等に応じて適宜設定される。
 シリコン結晶をフッ酸と硝酸を含む酸混合液でエッチングすると、下記の化学反応が進行するが、エッチング後のシリコン結晶表面に残存し易い成分は、硝酸イオン、亜硝酸イオン、フッ酸イオンの3種類である。
 1)Si+2HNO→SiO+2NO↑+H
 2)SiO+4HF→SiF↑+2H
   SiO+6HF→HSiF
 3)HSiF→SiF↑+2HF
   HSiF+HO→HSiO+6HF
 シリコン結晶を酸混合液でエッチングした後は純水洗浄を行い、エッチングで用いた酸の成分をシリコン結晶の表面から洗い流すが、エッチャントが高濃度のフッ酸や硝酸を含んでいる場合には、上記純水洗浄では上記の酸成分が十分に除去されずにシリコン結晶の表面に残存することがあり、洗浄後のシリコン結晶をポリエチレン袋内に密封しておいても、保存中にシリコン結晶の表面にシミが生じることがある。
 また、酸成分が十分に除去されていない多結晶シリコン塊を原料としてCZ法により単結晶シリコンの育成を行うと、結晶線が消失する等のトラブルが発生することがある。その原因は必ずしも明らかではないが、エッチャント中の窒素(N)の成分がシリコン結晶表面に残留し、これが原因となっている可能性がある。
特開2011-68554号公報 特開2012-211073号公報 特開2012-224541号公報
 上記エッチャント成分が一旦シリコン結晶表面に残存してしまうと、その吸着ないし付着は強固であり、エッチング後の洗浄に多量の純水を用いたり超音波洗浄を行ったりしても、除去することは困難である。従って、清浄表面を有するシリコン結晶を得るためには、シリコン結晶表面へのエッチャント成分の吸着ないし付着の強度を弱め、その後の洗浄工程での除去を容易なものとするための新たな手法が望まれる。
 本発明は、このような問題に鑑みてなされたもので、その目的とするところは、清浄表面を有するシリコン結晶を得るために、上記エッチャント成分の濃度を低下させることなく、吸着ないし付着の強度を弱めるための手法を提供することにある。
 上記課題を解決するために、本発明に係るシリコン結晶の洗浄方法は、シリコン結晶のエッチング工程の前に、前記シリコン結晶の表面を双極子モーメント(μ)がμ≠0の分子の層で被覆する表面処理工程を備えている。
 好ましくは、前記表面処理工程での前記分子の吸着は、前記シリコン結晶の表面に塩酸(HCl)ガスを接触させることにより実行される。
 また、好ましくは、前記エッチング工程に続き、下方から上方に向かう2cm/秒以上の線速度の水流を形成した洗浄槽内で前記シリコン結晶を水洗して表面の酸成分を除去する水洗工程を備えている。
 さらに、好ましくは、前記水洗工程は、前記シリコン結晶を収容する容器であって、該容器の底板には複数の丸型穴が底板面の開口率50%以下となるように形成されている洗浄容器を用いて実行される。
 本発明に係る多結晶シリコン塊の粉砕方法では、多結晶シリコンを、双極子モーメント(μ)がμ≠0の分子が存在する環境下で粉砕して多結晶シリコン塊とする。
 好ましくは、前記双極子モーメント(μ)がμ≠0の分子は水分子若しくは塩酸(HCl)分子であり、前記粉砕は、水中若しくはHClガスを含む雰囲気中で実行される。
 本発明においては、シリコン結晶の表面清浄化に際し、エッチング工程に先立ち、シリコン結晶の表面を双極子モーメント(μ)がμ≠0の分子の層で被覆することとしたので、エッチャント中の硝酸イオン、亜硝酸イオン、フッ酸イオンといった成分がシリコン結晶表面に残留したとしても当該成分の吸着ないし付着の強度が弱められ、純水による洗浄により容易に除去されることとなる。
本発明に係るシリコン結晶の洗浄方法のプロセスを説明するためのフロー図である。 洗浄対象のシリコン結晶を収容するための洗浄容器の底板に設けられる丸型穴の様子を概念的に説明するための図である。
 シーメンス法で育成された多結晶シリコンを粉砕してナゲット状の結晶シリコン塊とするような場合、粉砕面は極めて化学的に活性な状態にあり、粉砕により生じたシリコン微粒子等を強く吸着してしまう。このような化学的に活性な表面のままシリコン結晶をエッチングすると、エッチャント中の硝酸イオン、亜硝酸イオン、フッ酸イオンといった成分がシリコン結晶表面に強く吸着ないし付着してしまい、その後の洗浄工程で除去することは困難である。
 従来の方法では、一旦吸着ないし付着してしまった成分をその後の洗浄工程で如何に除去するかという観点からの検討が進められてきた(例えば、特許文献1~3を参照)。これに対し、本発明者らは、仮にエッチング工程でエッチャント中の硝酸イオン等の成分がシリコン結晶表面に吸着ないし付着しても、その強度を弱めることさえできれば、エッチング工程後の純水洗浄により残存成分を容易に除去することができるはずであるという観点から検討を進めた。
 発明者らが行った実験の中で最も簡単な方法は、エッチング前にシリコン結晶表面を水分子で被覆しておくというものである。シリコン結晶表面が乾いた状態でエッチングを行うと、エッチング後のシリコン結晶を大量の純水で長時間洗浄しても、エッチャント中の硝酸イオン等の成分を十分に除去することは難しい。しかし、エッチング前のシリコン結晶の表面を水に濡れた状態にしておくと、それだけで、比較的少量の純水で短時間の洗浄を行うだけで、表面に残存する成分が有意に低減される。
 本発明者らは、このような事実から、シリコン結晶の表面とエッチャントが化学反応を起こす際にシリコン結晶表面に水の層が存在していることで、エッチャント中の硝酸イオン等の成分がシリコン結晶表面に吸着ないし付着する強度が低減するのであろうと考えた。
 化学的に極めて活性な状態にあるシリコン結晶の粉砕面(活性面)に吸着した水分子は分極しており、その吸着強度は強く、常温では分子数n=8~20程度のポリマーを形成していると考えられる。本発明者らは、このような水分子は上記活性面の全体を被覆する薄い層を形成し、この層が、エッチャント中の硝酸イオン等の成分のシリコン結晶表面への吸着ないし付着の強度を低減する効果を奏するものと理解している。
 なお、このような効果を奏するためには、シリコン結晶表面を被覆する層は、水分子からなるものには限定されず、シリコン結晶表面に吸着した際に分極を生じる分子の層、換言すれば、双極子モーメント(μ)がμ≠0となる分子の層で、予めシリコン結晶の表面を被覆しておく。
 つまり、本発明では、シリコン結晶をエッチングする工程の前に、シリコン結晶の表面を双極子モーメント(μ)がμ≠0の分子の層で被覆する表面処理工程を設ける。
 シリコン結晶表面に吸着した際に双極子モーメント(μ)がμ≠0となる分子を含むものとしては、水以外にも、HCl、HF、HNO、エタノール、イソプロピルアルコール、酢酸等がある。
 このうち、HClガスを供給してシリコン表面にHCl分子を吸着させて上記被覆層を形成する方法は、極めて簡易な方法で層形成が可能であること、また、HClガスの供給後に窒素ガスで置換することで、余分に吸着したHCl分子は簡単に除去できること等の利点がある。
 その場合には、エッチング工程に先立ち、シリコン結晶の表面に塩酸(HCl)ガスを接触させるだけでよい。
 図1は、本発明に係るシリコン結晶の洗浄方法のプロセスを説明するためのフロー図である。ここでは、シーメンス法で育成された多結晶シリコンを粉砕して、CZ法により単結晶シリコンを製造するための結晶シリコン塊を製造する際の洗浄プロセスの例を示した。
 先ず、多結晶シリコンを粉砕する(S100)。上述のように、粉砕されてナゲット状となった結晶シリコン塊の粉砕面は極めて化学的に活性な状態にある。そこで、上述の表面処理工程(S101)で、シリコン結晶の表面を双極子モーメント(μ)がμ≠0の分子の層で被覆する。この表面処理工程に続き、シリコン結晶を酸混合液でエッチングする(S102)。
 このエッチング工程後のシリコン結晶表面には、エッチャント中に含まれていた硝酸イオン、亜硝酸イオン、フッ酸イオンといった成分が吸着ないし付着している。しかし、表面処理工程で形成された双極子モーメント(μ)がμ≠0の分子の層の存在により、その吸着ないし付着の強度は弱められている。そのため、エッチング工程後の水洗工程(S103)において、比較的少量の純水で短時間の純水洗浄を行うだけで、表面残存成分は比較的簡単に除去される。
 なお、上述の説明では、多結晶シリコンの粉砕工程(S100)と表面処理工程(S101)を別個の工程としたが、ステップS100において、多結晶シリコンを、双極子モーメント(μ)がμ≠0の分子が存在する環境下で粉砕して多結晶シリコン塊とするようにしてもよい。この場合、多結晶シリコンは、水分子若しくは塩酸(HCl)分子の存在する環境下、例えば、水中若しくはHClガスを含む雰囲気中で粉砕される。
 このようにすれば、粉砕後の多結晶シリコン塊の表面は、双極子モーメント(μ)がμ≠0の分子の層で被覆されているから、その層が失われない状態で保管しておけばよい。
 つまり、本発明は、シリコン結晶の洗浄方法に留まらず、多結晶シリコン塊の粉砕方法としても応用が可能である。
 上述の表面処理工程(S101)を設けることにより、エッチング工程(S102)後の水洗工程(S103)において、表面残存成分の除去は容易なものとなっている。本発明では、エッチング工程(S102)に続く水洗工程(S103)において表面残存成分の除去を効率的に行うべく、例えば、下記のような条件を選択する。
 粉砕により得られた多結晶シリコン塊のように、洗浄対象のシリコン結晶の形状が複雑なものである場合、シリコン結晶の表面に万遍なく純水を供給するためには、洗浄槽内の水流を適切なものとする必要がある。
 本発明では、洗浄槽内で下方から上方へと向かう水流とする。洗浄対象のシリコン結晶は、底板に複数の丸型穴が底板面の開口率(面積当りの開口部の割合)が50%以下となるように形成されている収容容器内に入れられて、この洗浄槽内に投入される。
 図2は、洗浄対象のシリコン結晶を収容するための収容容器の底板に設けられる丸型穴の様子を概念的に説明するための図である。
 収容容器の底板に設けられた丸型穴は、シリコン結晶表面近傍の純水の流れ(線速度)を速めるように作用する。なお、収容容器の横板にも、底板と同様に、複数の丸型穴を形成してもよい。
 本発明者らの実験では、容積が約70リットルの洗浄槽の下方から上方へ線速度0.2cm/秒の水流を形成し、開口率3.5%で複数の丸型穴が形成された底板の収容容器にシリコン結晶を入れて丸型穴から噴出する流水の線速度を調べると0.35cm/秒であり、収容容器の底板に水流が集中するように工夫することにより、丸型穴から噴出する流水の線速度を7cm/秒まで高めることができた。
 線速度7cm/秒の水流は、仮にシリコン結晶の形状が複雑であっても、全表面領域に万遍なく純水を供給することができ、3~5分の純水洗浄を2~3回行うことで、シリコン結晶表面の残存成分の総濃度を0.2ppbw以下とすることもできた。
 なお、通常のイオンクロマトグラフィのフッ素イオン、硝酸イオン、亜硝酸イオンの検出下限値(試料重量ベース)は4ppbw程度であるが、本発明者らは、イオンクロマトグラフィの測定に濃縮カラムを使用し、20mlの試料液を注入して濃縮し、1ml分を分離カラム側に溶出させることで、20倍の濃縮を行って評価している。
 残存成分の総濃度が0.2ppbw以下であれば、そのシリコン結晶を5年間(シリコン材料製品の保証期間に相当)保存しても、シミなどの表面汚染は発生しない。
 [実施例1]
 実施例1では、表面処理工程で用いた処理液と純水洗浄後のシリコン結晶の表面に残存していたフッ素イオン、硝酸イオン、亜硝酸イオンの全成分濃度(残存濃度:ppbw)との関係について検討した。
 実施例1-1~6で用いた処理液等は何れも双極子モーメントがμ≠0の分子のもの(HClガス(10vol%)、水、HF/HCl水溶液、エタノール、イソプロピルアルコール)であり、比較例1-1~3で用いた処理液等は何れも双極子モーメントがμ=0の分子のもの(湿度50%の空気、大気、四塩化炭素)である。
 なお、実施例1-1~6の試料に対しての表面処理の時間は1分とし、比較例1-1、1-2、1-3についてはそれぞれ、168時間、60分、1分とした。これら表面処理に続くエッチングには、何れの試料についても、HF(4.3wt%)とHNO(63.9wt%)の混合酸水溶液を用いて3分の処理を行った。また、エッチング後の純水洗浄期間は9分とし、その際の流速は2cm/sとした。
 実験結果を表1に纏めた。イオンクロマトグラフィによる分析により、シリコン結晶の表面を双極子モーメント(μ)がμ≠0の分子の層で被覆する条件(実施例1-1~6)において、残存濃度が2ppbw以下という結果が得られた。
Figure JPOXMLDOC01-appb-T000001
 [実施例2]
 実施例2では、シリコン結晶の洗浄に用いる収容容器の底板の上述の開口率(%)および丸型穴から噴出する流水の線速度(cm/s)と、純水洗浄後のシリコン結晶の表面に残存していたフッ素イオン、硝酸イオン、亜硝酸イオンの全成分濃度(残存濃度:ppbw)との関係について検討した。
 なお、何れの試料に対しても、表面処理工程では処理液としてHF(0.4wt%)とHNO(6.4wt%)の混合酸水溶液を用い1分の処理を行い、これに続くエッチングにはHF(4.3wt%)とHNO(63.9wt%)の混合酸水溶液を用いて3分のエッチングを行った。
 実験結果を表2に纏めた。イオンクロマトグラフィによる分析により、純水洗浄(9分)を行った際の純水の流速が2cm/秒以上の条件において、残存濃度が0.2ppbw未満という結果が得られた。つまり、エッチング工程に続き、下方から上方に向かう2cm/秒以上の線速度の水流を形成した洗浄槽内でシリコン結晶を水洗して表面の酸成分を除去することが効果的である。
 また、底面板の開口率が50%以下の条件において、残存濃度が0.2ppbw未満という結果となっている。
Figure JPOXMLDOC01-appb-T000002
 上述のように、本発明においては、シリコン結晶の表面清浄化に際し、エッチング工程に先立ち、シリコン結晶の表面を双極子モーメント(μ)がμ≠0の分子の層で被覆する。この処理に、エッチャント中の硝酸イオン、亜硝酸イオン、フッ酸イオンといった成分がシリコン結晶表面に残留したとしても当該成分の吸着ないし付着の強度が弱められ、純水による洗浄により容易に除去されることとなる。
 本発明は、清浄表面を有するシリコン結晶を得るための、エッチャント成分の吸着ないし付着の強度を弱めるための手法を提供する。

Claims (6)

  1.  シリコン結晶のエッチング工程の前に、前記シリコン結晶の表面を双極子モーメント(μ)がμ≠0の分子の層で被覆する表面処理工程を備えている、シリコン結晶の洗浄方法。
  2.  前記表面処理工程での前記分子の吸着は、前記シリコン結晶の表面に塩酸(HCl)ガスを接触させることにより実行される、請求項1に記載のシリコン結晶の洗浄方法。
  3.  前記エッチング工程に続き、下方から上方に向かう2cm/秒以上の線速度の水流を形成した洗浄槽内で前記シリコン結晶を水洗して表面の酸成分を除去する水洗工程を備えている、請求項1又は2に記載のシリコン結晶の洗浄方法。
  4.  前記水洗工程は、前記シリコン結晶を収容する容器であって、該容器の底板には複数の丸型穴が底板面の開口率50%以下となるように形成されている洗浄容器を用いて実行される、請求項3に記載のシリコン結晶の洗浄方法。
  5.  多結晶シリコンを、双極子モーメント(μ)がμ≠0の分子が存在する環境下で粉砕して多結晶シリコン塊とする、多結晶シリコン塊の粉砕方法。
  6.  前記双極子モーメント(μ)がμ≠0の分子は水分子若しくは塩酸(HCl)分子であり、前記粉砕は、水中若しくはHClガスを含む雰囲気中で実行される、請求項5に記載の多結晶シリコン塊の粉砕方法。
PCT/JP2015/002065 2014-04-16 2015-04-14 シリコン結晶の洗浄方法および多結晶シリコン塊の粉砕方法。 WO2015159537A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014084970A JP2015202999A (ja) 2014-04-16 2014-04-16 シリコン結晶の洗浄方法および多結晶シリコン塊の粉砕方法。
JP2014-084970 2014-04-16

Publications (1)

Publication Number Publication Date
WO2015159537A1 true WO2015159537A1 (ja) 2015-10-22

Family

ID=54323761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002065 WO2015159537A1 (ja) 2014-04-16 2015-04-14 シリコン結晶の洗浄方法および多結晶シリコン塊の粉砕方法。

Country Status (2)

Country Link
JP (1) JP2015202999A (ja)
WO (1) WO2015159537A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272512A (ja) * 1985-09-25 1987-04-03 Mitsubishi Chem Ind Ltd 粉末中の鉄成分の除去方法
JP2010168255A (ja) * 2009-01-23 2010-08-05 Sharp Corp 金属含有物除去方法およびシリコン精製方法
WO2011033712A1 (ja) * 2009-09-16 2011-03-24 信越化学工業株式会社 多結晶シリコン塊および多結晶シリコン塊の製造方法
JP2011068554A (ja) * 2009-08-31 2011-04-07 Mitsubishi Materials Corp 多結晶シリコン塊の洗浄装置および洗浄方法
JP2011195356A (ja) * 2010-03-18 2011-10-06 Sumitomo Chemical Co Ltd 精製されたシリコンの製造方法
JP2012106914A (ja) * 2010-10-20 2012-06-07 Mitsubishi Materials Corp 多結晶シリコン洗浄装置
JP2013256445A (ja) * 2013-08-21 2013-12-26 Shin-Etsu Chemical Co Ltd 単結晶シリコンの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272512A (ja) * 1985-09-25 1987-04-03 Mitsubishi Chem Ind Ltd 粉末中の鉄成分の除去方法
JP2010168255A (ja) * 2009-01-23 2010-08-05 Sharp Corp 金属含有物除去方法およびシリコン精製方法
JP2011068554A (ja) * 2009-08-31 2011-04-07 Mitsubishi Materials Corp 多結晶シリコン塊の洗浄装置および洗浄方法
WO2011033712A1 (ja) * 2009-09-16 2011-03-24 信越化学工業株式会社 多結晶シリコン塊および多結晶シリコン塊の製造方法
JP2011195356A (ja) * 2010-03-18 2011-10-06 Sumitomo Chemical Co Ltd 精製されたシリコンの製造方法
JP2012106914A (ja) * 2010-10-20 2012-06-07 Mitsubishi Materials Corp 多結晶シリコン洗浄装置
JP2013256445A (ja) * 2013-08-21 2013-12-26 Shin-Etsu Chemical Co Ltd 単結晶シリコンの製造方法

Also Published As

Publication number Publication date
JP2015202999A (ja) 2015-11-16

Similar Documents

Publication Publication Date Title
JP5071611B2 (ja) 半導体材料用シリコンの洗浄方法とその多結晶シリコン塊、および洗浄装置
JP5925685B2 (ja) 半導体基板用アルカリ性処理液の精製方法及び精製装置
CA2247586A1 (en) Polycrystalline silicon
JPH08250460A (ja) 半導体基板の表面処理液、この処理液を用いた表面処理方法及び表面処理装置
CA2780401C (en) Process for cleaning polycrystalline silicon chunks
JP3678505B2 (ja) 半導体ウェーハをエッチングするためのアルカリ溶液の純化方法及び半導体ウェーハのエッチング方法
CN103111434A (zh) 一种蓝宝石加工最终清洗工艺
JP2000117208A (ja) 電子材料の洗浄方法
CN106605291A (zh) 氮化铝单结晶基板的洗净方法及层叠体
JP2005347737A (ja) シリコンウェハー用研磨組成物
JPH08111407A (ja) 半導体結晶表面汚染の湿式化学的除去方法
JPH085655B2 (ja) 多結晶シリコンの洗浄方法
WO2015159537A1 (ja) シリコン結晶の洗浄方法および多結晶シリコン塊の粉砕方法。
JP6630027B1 (ja) 多結晶シリコンの洗浄方法、製造方法および洗浄装置
JP2016222470A (ja) 多結晶シリコン片
JPH10436A (ja) 容器の洗浄方法
JP2001250807A (ja) エッチング液、エッチング方法及び半導体シリコンウェーハ
CN109860040B (zh) 硅蚀刻方法、硅块、直拉单晶的提拉方法及单晶
Asghar et al. Influence of Polishing Parameters on Abrasive Free Chemical Mechanical Planarization (AFCMP) of Non-Polar (11-20) and Semi-Polar (11-22) GaN Surfaces
US5913980A (en) Method for removing complex oxide film growth on silicon crystal
JP5195394B2 (ja) エッチング液の再生方法
JP5208658B2 (ja) 半導体ウェハの洗浄方法、および、半導体ウェハ
JPH01244622A (ja) シリコン基板の処理装置
JP2893493B2 (ja) シリコンウェーハの洗浄方法
JPH03254125A (ja) 半導体ウエーハの洗浄方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15779442

Country of ref document: EP

Kind code of ref document: A1