WO2015159531A1 - シート製造装置 - Google Patents

シート製造装置 Download PDF

Info

Publication number
WO2015159531A1
WO2015159531A1 PCT/JP2015/002058 JP2015002058W WO2015159531A1 WO 2015159531 A1 WO2015159531 A1 WO 2015159531A1 JP 2015002058 W JP2015002058 W JP 2015002058W WO 2015159531 A1 WO2015159531 A1 WO 2015159531A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
unit
sheet
web
fibers
Prior art date
Application number
PCT/JP2015/002058
Other languages
English (en)
French (fr)
Inventor
辻野 浄士
Original Assignee
セイコーエプソン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーエプソン株式会社 filed Critical セイコーエプソン株式会社
Priority to EP15779448.8A priority Critical patent/EP3133197B1/en
Priority to US15/300,568 priority patent/US10358752B2/en
Priority to CN201580019483.2A priority patent/CN106471170B/zh
Publication of WO2015159531A1 publication Critical patent/WO2015159531A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/736Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged characterised by the apparatus for arranging fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • B27N3/10Moulding of mats
    • B27N3/12Moulding of mats from fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/007Manufacture of substantially flat articles, e.g. boards, from particles or fibres and at least partly composed of recycled material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/04Manufacture of substantially flat articles, e.g. boards, from particles or fibres from fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/60Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in dry state, e.g. thermo-activatable agents in solid or molten state, and heat being applied subsequently

Definitions

  • the present invention relates to a sheet manufacturing apparatus.
  • Paper manufacturing paper making
  • paper strength enhancer starch glue, water-soluble resin, etc.
  • Patent Document 1 discloses a relatively small-scale paper making apparatus that produces recycled paper by making waste paper pulp.
  • recycled paper is produced by making a pulp suspension in which waste paper pulp is suspended in water and performing a drying process.
  • One of the objects according to some embodiments of the present invention is to provide a sheet manufacturing apparatus capable of manufacturing a sheet with a small amount of energy even when a sheet having a large basis weight is manufactured.
  • the present invention has been made to solve at least a part of the above problems, and can be realized as the following aspects or application examples.
  • One aspect of the sheet manufacturing apparatus is a sheet having a basis weight of 80 g / m 2 or more by heating and pressurizing a web including fibers and resin, and binding the plurality of fibers through the resin.
  • the web containing moisture having a mass equal to or greater than that of the fiber is dried to obtain a sheet having a basis weight of 80 g / m 2 or more, 0.014 times or more and 0.28 times the energy consumed. The following energy is input.
  • One aspect of the sheet manufacturing apparatus is a sheet having a basis weight of 80 g / m 2 or more by heating and pressurizing a web including fibers and resin, and binding the plurality of fibers through the resin.
  • the energy input when forming the sheet is 174 J or more and 3600 J or less per A4 size sheet of the sheet.
  • Such a sheet manufacturing apparatus can form a sheet having a basis weight of 80 g / m 2 or more with very little energy.
  • water Prior to heating and pressurizing the web, water may not be added to the fiber, and the energy may be 174 J or more and 2600 J or less.
  • Such a sheet manufacturing apparatus does not require heat for evaporating moisture and can manufacture a sheet with very little energy consumption.
  • the fiber may be conditioned before heating and pressurizing the web, and the energy may be 174 J or more and 3600 J or less.
  • Such a sheet manufacturing apparatus can manufacture a sheet with very little energy consumption even if moisture is added by adjusting the humidity.
  • a heating roller may be used for heating the web.
  • heat can be concentrated on the web. Therefore, the amount of energy to be used can be reduced as compared with the case where a wide range is heated, such as heating with a flat press or hot air.
  • the sheet manufacturing apparatus has at least a configuration for forming a web by airlaid, and a configuration for heating and pressing the web.
  • Airlaid is a broad concept that refers to a method of forming a web using air flow. More specifically, airlaid refers to an embodiment in which raw materials (including fibers and resin) are transferred using air as a medium and deposited on a mesh or the like.
  • FIG. 1 is a schematic diagram illustrating a sheet manufacturing apparatus 100 as an example of the sheet manufacturing apparatus of the present embodiment.
  • the loosening portion 70 and the sheet forming portion 75 constitute an airlaid mode.
  • the heating part 60 is employ
  • the sheet manufacturing apparatus 100 includes a loosening unit 70.
  • a loosening unit 70 and a sheet forming unit 75 are disposed downstream of the mixing unit 30.
  • the sheet forming unit 75 is provided with a suction mechanism 78.
  • the loosening unit 70 can introduce a mixture of fibers and resin through the pipe 86 (mixing unit 30) from the introduction port 71, and can drop the mixture while dispersing in the air.
  • the sheet manufacturing apparatus 100 includes a sheet forming unit 75, and the sheet forming unit 75 is configured to deposit the mixture falling from the loosening unit 70 in the air and form the web W into a shape. ing. A mixture of fibers and resin is deposited on the sheet forming portion 75 through the loosening portion 70.
  • the loosening unit 70 can loosen the intertwined fibers.
  • the loosening part 70 has an action of depositing the mixture uniformly on a sheet forming part 75 to be described later.
  • the term “unwind” includes the action of breaking up intertwined things and the action of depositing them uniformly.
  • the loosening part 70 has the effect of depositing uniformly if there is no entangled fiber or the like.
  • the loosening part 70 a sieve is used.
  • An example of the loosening unit 70 is a rotary sieve that can be rotated by a motor.
  • the “sieving” of the loosening unit 70 may not have a function of selecting a specific object.
  • the “sieving” used as the loosening part 70 means that a mesh (filter, screen) is provided, and the loosening part 70 is a mixture of fibers and resin introduced into the loosening part 70. May be dropped.
  • the sheet manufacturing apparatus 100 includes a sheet forming unit 75.
  • the fiber and resin mixture that has passed through the loosening portion 70 is deposited on the sheet forming portion 75.
  • the sheet forming unit 75 includes a mesh belt 76, a stretching roller 77, and a suction mechanism 78.
  • the sheet forming unit 75 may include a tension roller, a take-up roller, and the like (not shown).
  • the sheet forming portion 75 forms a web W in which the mixture falling from the loosening portion 70 is deposited in the air (corresponding to the web forming step together with the loosening portion 70).
  • the sheet forming unit 75 has a mechanism for depositing the mixture uniformly dispersed in the air by the loosening unit 70 on the mesh belt 76.
  • an endless mesh belt 76 in which a mesh stretched by a stretch roller 77 (four stretch rollers 77 in the present embodiment) is formed is disposed.
  • the mesh belt 76 moves in one direction by rotating at least one of the stretching rollers 77.
  • a suction mechanism 78 as a suction unit that generates an air flow directed downward in the vertical direction via a mesh belt 76 is provided below the loosening unit 70.
  • the suction mechanism 78 By the suction mechanism 78, the mixture dispersed in the air by the loosening unit 70 can be sucked onto the mesh belt 76. Thereby, the mixture disperse
  • uniformly deposited refers to a state where the deposited deposits are deposited with substantially the same thickness and substantially the same density. However, since not all the deposits are manufactured as a sheet, it is sufficient that the portion to be a sheet is uniform. “Non-uniform deposition” refers to a state in which deposition is not uniform.
  • the mesh belt 76 may be made of metal, resin, cloth, or non-woven fabric, and may be any material as long as the mixture can be deposited and an air stream can be passed through.
  • the hole diameter (diameter) of the mesh belt 76 is, for example, 60 ⁇ m or more and 250 ⁇ m or less. If the hole diameter of the mesh belt 76 is smaller than 60 ⁇ m, it may be difficult to form a stable airflow by the suction mechanism 78. When the hole diameter of the mesh belt 76 is larger than 250 ⁇ m, for example, fibers of the mixture may enter between the meshes, and the unevenness of the surface of the manufactured sheet may increase.
  • the suction mechanism 78 can be configured by forming a sealed box having a window of a desired size under the mesh belt 76 and sucking air from other than the window to make the inside of the box have a negative pressure from the outside air.
  • the web W in a soft and swelled state containing a large amount of air is formed.
  • the web W formed on the mesh belt 76 is conveyed by the rotational movement of the mesh belt 76. As described above, the web W is formed.
  • the web W formed on the mesh belt 76 is conveyed to the heating unit 60. Since the web W contains a resin, the fibers are bonded to each other by heating, and the web W can be made into a sheet S such as paper or nonwoven fabric.
  • the thickness of the web W to be formed is not particularly limited, and is determined by adjusting the rotational speed of the sieve of the loosening unit 70, the suction speed of the suction mechanism 78 of the sheet forming unit 75, the conveyance speed of the mesh belt 76, and the like.
  • the thickness can be as follows. Further, the basis weight of the web W can be adjusted in the same manner.
  • the basis weight is a weight per unit area of the web W or the sheet S, and is usually expressed using a unit of (g / m 2 ).
  • the volume of the web W may be reduced (pressurized), but since the mass does not change, the basis weight of the web W is almost the same as the basis weight of the sheet S. Therefore, the basis weight of the sheet S manufactured by the sheet manufacturing apparatus 100 is mainly adjusted by the loosening unit 70 and the sheet forming unit 75.
  • the sheet manufacturing apparatus 100 includes a heating unit 60.
  • the heating unit 60 is provided on the downstream side of the sheet forming unit 75 described above.
  • the heating unit 60 heats the web W formed in the above-described sheet forming unit 75 to form a state in which a plurality of fibers are bound to each other via a resin.
  • the heating unit 60 may have a function of forming the mixture into a predetermined shape.
  • the heating unit 60 has a function of forming the mixed fiber (defibrated material) and resin, that is, the mixture into a predetermined shape. In the molded article (sheet) of the fiber and resin molded in the heating unit 60, the fiber and the resin are bound.
  • the heating unit 60 may apply pressure.
  • the heating unit 60 has a function of forming the mixture into a predetermined shape.
  • size of the applied pressure is suitably adjusted with the kind of sheet
  • the mixture when the mixture is formed in a web shape, the mixture may be compressed to a thickness of about 1/5 to 1/100 of the thickness, and the porosity is adjusted depending on the degree of compression. May be.
  • the heating unit 60 by applying heat to the mixture of fibers and resin, the plurality of fibers in the mixture are bound to each other via the resin.
  • the resin is a thermoplastic resin
  • heating to a temperature above its glass transition temperature (softening point) or melting point (for crystalline polymers) will cause the resin to soften or melt, and then the temperature will drop. Then it solidifies.
  • the resin softens and comes into contact with the fibers so that they are intertwined, and the resin is solidified so that the fibers and the resin can be bound to each other. Further, when other fibers are bound when solidifying, the fibers are bound to each other.
  • the resin When the resin is a thermosetting resin, it may be heated to a temperature equal to or higher than the softening point, or the fiber and the resin are bound even when heated to a temperature higher than the curing temperature (temperature at which a curing reaction occurs). Can do.
  • the melting point, softening point, curing temperature, and the like of the resin are preferably lower than the melting point, decomposition temperature, and carbonization temperature of the fiber, and are preferably selected in combination of both types so as to have such a relationship. Note that the resin may remain without being melted or fluidized in the heating unit 60.
  • the heating unit 60 includes a heating roller (heater roller), a hot press molding machine, a hot plate, a hot air blower, an infrared heater, and a flash fixing device.
  • the heating unit 60 is configured by a heating roller 61. And by heating the web W, the fibers contained in the web W can be bound through the resin.
  • the heating roller 61 as shown in the figure is adopted as a specific configuration of the heating unit 60, the area of the web W is narrower than when a hot press molding machine, a warm air blower, an infrared heater, or the like is used. On the other hand, heat can be concentrated. Therefore, the amount of energy to be used can be reduced as compared with the case where a wide range is heated, such as heating with a press or warm air.
  • the heating unit 60 is configured to heat and pressurize the web W with rollers, and has a pair of heating rollers 61.
  • a buffer unit (not shown) is provided as needed to temporarily sag the web being conveyed during pressing. .
  • the heating unit 60 is configured as the heating roller 61, a sheet can be formed while the web W is continuously conveyed as compared with the case where the heating unit 60 is configured as a flat plate-shaped press unit.
  • the heating unit 60 of the sheet manufacturing apparatus 100 of the present embodiment includes a first heating unit 60a disposed on the upstream side in the conveyance direction of the web W and a second heating unit 60b disposed on the downstream side thereof, Each of the first heating unit 60 a and the second heating unit 60 b includes a pair of heating rollers 61.
  • a guide G for assisting the conveyance of the web W is arranged between the first heating unit 60a and the second heating unit 60b.
  • the heating roller 61 is made of, for example, a hollow metal core such as aluminum, iron, or stainless steel.
  • a fluorine-containing release layer such as a tube containing fluorine such as PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer) or PTFE (polytetrafluoroethylene) or PTFE is provided. Also good.
  • An elastic layer made of silicon rubber, urethane rubber, cotton or the like may be provided between the core metal and the release layer.
  • a heating material such as a halogen heater is provided as a heating means at the center of the cored bar.
  • Each temperature of the heating roller 61 and the heating material is acquired by a temperature detector (not shown), and the driving of the heating material is controlled based on the acquired temperature. Thereby, the surface temperature of the heating roller 61 can be maintained at a predetermined temperature. Then, by passing the web W between the heating rollers 61, the web W being conveyed can be heated and pressurized.
  • the heating means is not limited to a halogen heater or the like, and for example, a heating means using a non-contact heater or a heating means using hot air may be used.
  • the illustrated heating unit 60 is an example in which there are two pairs of heating rollers 61.
  • the heating roller 61 is adopted as the heating unit 60, the number and arrangement of the heating rollers 61 are not limited, and the above-described operation is performed. It can be arbitrarily configured as long as the above can be achieved.
  • the configuration of the heating roller 61 of each heating unit 60 (the thickness and material of the release layer, the elastic layer, the core, the outer diameter of the roller) and the load that presses the heating roller 61 are different depending on each heating unit 60. Also good.
  • the resin when the resin is contained in the functional material by passing through the heating unit 60 (heating step), the resin melts and becomes easily entangled with the fibers in the defibrated material, and the fibers are bound together.
  • the sheet S of this embodiment is manufactured.
  • the amount of heat (energy) given to the web W by the heating unit 60 may be such that the resin binds the fibers so that the strength required for the sheet S to be manufactured can be achieved. That is, the amount of heat (energy) may be given so that at least a part of the resin in the web W melts and softens. Further, the amount of heat (energy) may be given so that all of the resin in the web W can be melted and softened.
  • the heat of fusion is about 140 [J / g].
  • the mass of the web W of the basic weight 80 [g / m ⁇ 2 >] of 1 sheet of A4 size is about 4.97 [g].
  • content (after-mentioned) of resin (polyester) with respect to the web W shall be 25 mass%
  • the mass of the polyester contained in the web W of 1 sheet of A4 size is about 1.24 [g]. Therefore, in order to obtain the A4 size sheet S, it is sufficient if a heat amount (energy) of about 174 [J] can be supplied to the A4 size web W.
  • the web when the web is formed wet (making paper using water), for example, when forming a web by making a slurry-like pulp suspension, even if the web is mechanically squeezed to remove water
  • the web contains water having a mass approximately equal to or greater than that of the fiber (100% by mass or more of moisture with respect to the fiber). If it does so, about 5 [g] or more of water will be contained in the A4 size web of basic weight 80 [g / m ⁇ 2 >]. Then, for example, the sheet is heated by a heat roller or the like to evaporate the water and obtain a dried sheet.
  • this example is an example in which polyester is used as a resin. Even with other types of resins (including amorphous resins), the heat of fusion is 15 times greater per gram (in the transition from glass state to rubber state). It can be said that it has no necessary energy or energy necessary for softening. In this example, the amount of the resin is 25% by mass (based on the web W). However, even if a larger amount of resin is added to the fiber (for example, 100% by mass or more), the required amount of heat is It is about 15 times or less. Therefore, the amount of heat (energy) given (input) to the A4 size web W by the heating unit 60 is about 2600 [J] at most.
  • the heat conduction efficiency of the web W is not taken into consideration. However, in the dry type, the heat conduction efficiency is considered to be slightly lower than that in the wet type even if the pressure is applied. There is a case.
  • the web W may be given moisture by a humidity control mechanism (not shown) before reaching the heating unit 60.
  • a humidity control mechanism not shown
  • the energy given to the web W by the heating unit 60 is increased, when water is added using such a configuration, the A4 size single web W is used. 174 [J] or more and 3600 [J] or less.
  • the energy input into the web W having a basis weight of 80 g / m 2 or more by the heating unit 60 is such that the web containing moisture having a mass equal to or greater than that of the fiber is dried to have a basis weight of 80 g / m 2 or more.
  • the heating unit 60 in the sheet manufacturing apparatus 100 of the present embodiment, such a humidity control mechanism is not employed, and it is possible to prevent moisture from being added to the fibers before the web W is heated and pressurized. More preferred. In this way, it is not necessary to consume energy for evaporating moisture, and the sheet S can be manufactured with extremely small energy consumption as described above.
  • binding the fiber and the resin means that the fiber and the resin are not easily separated from each other, or that the resin is disposed between the fibers and the fibers are interposed between the fibers. It means that it is difficult to leave.
  • the binding is a concept including adhesion, and includes a state in which two or more kinds of objects are difficult to come into contact with each other.
  • the fiber and the fiber may be parallel or intersect, or a plurality of fibers may be bound to one fiber.
  • the sheet manufacturing apparatus 100 of the present embodiment has a crushing unit, a defibrating unit, a classifying unit, a mixing unit, a pressing unit, a selecting unit, and a cutting in addition to the above-described loosening unit, sheet forming unit, and heating unit. It can have various configurations such as a section. Further, a plurality of configurations such as a loosening unit, a sheet forming unit, a heating unit, a crushing unit, a defibrating unit, a classifying unit, a mixing unit, a pressurizing unit, a selecting unit, and a cutting unit may be provided as necessary. .
  • the defibrating unit The sheet manufacturing apparatus 100 may have a defibrating unit 20. Fibers are introduced into the loosening unit 70, but the fibers may be supplied by the defibrating unit 20. Further, another configuration may be provided between the defibrating unit 20 and the loosening unit 70. Further, another configuration may be provided on the upstream side of the defibrating unit 20.
  • the defibrating unit 20 defibrates the material to be defibrated.
  • the defibrating unit 20 generates a defibrated material that has been unraveled into a fibrous shape by defibrating the material to be defibrated.
  • a defibrated material may include a fiber, and the fiber may be supplied to the above-described loosening unit 70.
  • the defibrating unit 20 also has a function of separating particulate substances such as resin particles, ink, toner, and anti-bleeding agent attached to the material to be defibrated from the fibers.
  • defibration treatment refers to unraveling an object to be defibrated in which a plurality of fibers are bound into individual fibers. What has passed through the defibrating unit 20 is referred to as “defibrated material”.
  • the “defibrated material” includes resin particles separated from the fibers when unraveling the fibers (resin for binding multiple fibers), ink, toner, and anti-bleeding material. In some cases, the ink particles may be included.
  • the shape of the defibrated material that has been unraveled is a string shape or a ribbon shape.
  • the unraveled defibrated material may exist in an unentangled state (independent state) with other undisentangled fibers, or entangled with other undisentangled defibrated material to form a lump. It may exist in a state (a state forming a so-called “dama”).
  • the defibrated material is a fiber that is one of the components of the sheet S.
  • the sheet manufacturing apparatus with respect to the flow (including the conceptual flow) of the material of the sheet to be manufactured (raw material, defibrated material, defibrated material (fiber), web, etc.)
  • Expressions such as “upstream” and “downstream” are used.
  • the expression “upstream side (downstream side)” is used to relatively specify the position of the configuration. For example, when “A is on the upstream side (downstream side) of B”, A Is located upstream (downstream) with respect to the position B in the direction of flow of the sheet material.
  • the defibrating unit 20 is optional as long as it has a function of defibrating an object to be defibrated.
  • the defibrating unit 20 defibrates in a dry manner in the atmosphere (in the air).
  • the defibrated material introduced from the introduction port 21 is defibrated by the defibrating unit 20 to become a defibrated material (fiber), and the defibrated material discharged from the discharge port 22 is a tube 82,
  • the loosening unit 70 is supplied via the classification unit 50 and the pipe 86.
  • dry means not in a liquid but in the atmosphere (in the air).
  • the dry category includes a dry state and a state where a liquid present as an impurity or a liquid added intentionally exists.
  • the energy input (given) to the web W by the heating unit 60 is 2600 [J for an A4 size web W having a basis weight of 80 g / m 2 or more. ]
  • moisture content is given to the web W by the humidity control mechanism etc. before reaching the heating part 60, it will be about 3600 [J] or less with respect to the web W of A4 size one sheet
  • the configuration of the defibrating unit 20 is not particularly limited.
  • the defibrating unit 20 includes a rotating unit (rotor) and a fixing unit that covers the rotating unit, and a gap (gap) is formed between the rotating unit and the fixing unit. be able to.
  • the defibrating unit 20 is configured in this way, the defibrating process is performed by introducing the material to be defibrated into the gap while the rotating unit is rotated.
  • the number of rotations, the shape of the rotating part, the shape of the fixed part, and the like can be appropriately designed according to the requirements of the properties of the sheet to be manufactured and the overall apparatus configuration.
  • the rotation speed of the rotating part (number of rotations per minute (rpm)) is the throughput of the defibrating process, the residence time of the defibrated material, the degree of defibrating, the size of the gap, the rotating part, It can be set appropriately in consideration of conditions such as the shape and size of the fixed part and other members.
  • the defibrating unit 20 has a function of generating an air flow that sucks the defibrated material and / or discharges the defibrated material.
  • the defibrating unit 20 can suck the defibrated material together with the airflow from the introduction port 21 with the airflow generated by itself, perform the defibrating process, and transport the defibrated material to the discharge port 22.
  • a mechanism that generates an airflow that guides the material to be defibrated to the introduction port 21 and an airflow that sucks out the defibrated material from the discharge port 22 is removed. There is no problem even if it is provided.
  • the defibrated material refers to an article containing the raw material of the sheet manufacturing apparatus 100, for example, pulp sheet, paper, waste paper, tissue paper, kitchen paper, cleaner, filter, liquid An absorbent material, a sound absorber, a buffer material, a mat, a cardboard, or the like, in which fibers are intertwined or bound.
  • the material to be defibrated may be a sheet manufactured by the sheet manufacturing apparatus 100 or the used sheet (old sheet) after use.
  • rayon, lyocell, cupra, vinylon, acrylic, nylon, aramid, polyester, polyethylene, polypropylene, polyurethane, polyimide, carbon, glass, metal fibers (organic fiber, inorganic fiber, organic fiber, etc.) Inorganic composite fibers) may be included.
  • the classification part 50 mentioned later when the classification part 50 mentioned later is provided, especially used paper, an old sheet, etc. can be used effectively as a material to be defibrated.
  • the defibrated material is used as part of the material of the sheet to be manufactured.
  • the defibrated material includes fibers obtained by defibrating the above-described material to be defibrated, and as such fibers, natural fibers (animal fibers, plant fibers), chemical fibers (organic fibers, inorganic fibers, organic-inorganic composite fibers) ) And the like. More specifically, the fibers contained in the defibrated material include fibers made of cellulose, silk, wool, cotton, cannabis, kenaf, flax, ramie, jute, manila hemp, sisal hemp, conifer, hardwood, etc.
  • the defibrated material is a material for the sheet to be produced, but it is sufficient that it contains at least one of these fibers.
  • the defibrated material (fiber) may be dried, or may be contained or impregnated with a liquid such as water or an organic solvent.
  • the defibrated material (fiber) may be subjected to various surface treatments.
  • the average diameter (if the cross section is not a circle, the length in the direction perpendicular to the longitudinal direction)
  • the diameter of the circle when assuming the largest one or a circle having an area equal to the area of the cross section (equivalent circle diameter)) is 1 ⁇ m or more and 1000 ⁇ m or less on average, preferably 2 ⁇ m or more and 500 ⁇ m or less, More preferably, it is 3 ⁇ m or more and 200 ⁇ m or less.
  • the length of the fiber contained in the defibrated material used in the present embodiment is not particularly limited, but as an independent single fiber, the length along the longitudinal direction of the fiber is 1 ⁇ m or more and 5 mm or less, preferably Is 2 ⁇ m or more and 3 mm or less, more preferably 3 ⁇ m or more and 2 mm or less.
  • the length of the fiber is short, it is difficult to bind with the resin, so that the strength of the sheet may be insufficient. However, a sheet having sufficient strength can be obtained within the above range.
  • the average length of the fibers is 20 ⁇ m or more and 3600 ⁇ m or less, preferably 200 ⁇ m or more and 2700 ⁇ m or less, more preferably 300 ⁇ m or more and 2300 ⁇ m or less, as a length-length weighted average fiber length. Furthermore, the length of the fiber may have variation (distribution).
  • a fiber when referring to a fiber, it may refer to a single fiber and may refer to an aggregate of a plurality of fibers (for example, a state like cotton), and when referred to as a defibrated material, It refers to a material containing a plurality of fibers, and includes the meaning of a collection of fibers and the meaning of a material (powder or cotton-like object) that is a raw material of a sheet.
  • the defibrated material that has passed through the defibrating unit 20 is mixed with the resin before being formed into a sheet shape.
  • the mode of mixing is arbitrary, it can mix easily by providing the mixing part 30 which is mentioned later.
  • the sheet manufacturing apparatus may include a classification unit 50.
  • the classification unit 50 is disposed on the upstream side of the loosening unit 70 and on the downstream side of the defibrating unit 20.
  • the classification unit 50 separates and removes resin particles and ink particles from the defibrated material. Thereby, the ratio for which the fiber accounts for in a defibrated material can be raised.
  • an airflow classifier is preferably used as the classification unit 50.
  • the airflow classifier generates a swirling airflow and separates it by centrifugal force and the size and density of what is classified, and the classification point can be adjusted by adjusting the speed of the airflow and the centrifugal force.
  • a cyclone, elbow jet, eddy classifier, or the like is used as the classification unit 50.
  • a cyclone is used as the classification unit 50.
  • the classification unit 50 includes an inlet 51, a cylindrical part 52 to which the inlet 51 is connected, an inverted conical part 53 that is located below the cylindrical part 52 and continues to the cylindrical part 52, and a lower part of the inverted conical part 53 A lower discharge port 54 provided at the center and an upper discharge port 55 provided at the upper center of the cylindrical portion 52 are provided.
  • the airflow on which the defibrated material introduced from the introduction port 51 is placed is changed into a circumferential motion by the cylindrical part 52 having an outer diameter of about 100 mm to 300 mm.
  • the introduced defibrated material is subjected to centrifugal force and separated into fibers in the defibrated material and fine powder such as resin particles and ink particles in the defibrated material.
  • a component rich in fibers is discharged from the lower discharge port 54 and introduced into the pipe 86.
  • the fine powder is discharged from the upper discharge port 55 through the tube 84 to the outside of the classification unit 50.
  • the tube 84 is connected to the receiving portion 56, and fine powder is collected in the receiving portion 56.
  • fine powders such as resin particles and ink particles are discharged to the outside by the classification unit 50. Therefore, even if the resin is supplied downstream, the resin becomes excessive with respect to the defibrated material. Can be prevented.
  • the sheet manufacturing apparatus 100 may not include the classification unit 50.
  • the sheet manufacturing apparatus 100 is preferably configured to include the classification unit 50 in order to improve the color tone of the manufactured sheet.
  • the sheet manufacturing apparatus 100 may include the mixing unit 30.
  • a mixture of fibers and resin may be introduced into the above-described loosening portion 70, or the fibers and the resin may be mixed in the loosening portion 70.
  • the mixing unit 30 may be provided to mix the fiber and the resin, and then supplied to the loosening unit 70.
  • “mixing the fiber and the resin” means that the resin is positioned between the fiber and the fiber in a space (system) having a constant volume.
  • the mixing unit 30 has a function of mixing the fiber (fiber material) of the defibrated material that has passed through the defibrating unit 20 and the resin.
  • components other than fibers and resin may be mixed.
  • the resin may be a composite with other components.
  • a composite refers to particles that are formed integrally with another resin as a main component.
  • the “other” refers to a colorant, an aggregation inhibitor, and the like, and includes those having a shape, size, material, and function different from those of the main resin.
  • the mixing part 30 can mix a fiber (fiber material) and resin, the structure, a structure, a mechanism, etc. will not be specifically limited. Further, the mode of the mixing process in the mixing unit 30 may be batch processing (batch processing), sequential processing, or continuous processing. The mixing unit 30 may be operated manually or automatically. Furthermore, although the mixing part 30 mixes a fiber and resin at least, you may mix another component.
  • Examples of the mixing process in the mixing unit 30 include mechanical mixing and hydrodynamic mixing.
  • Mechanical mixing includes, for example, a method in which fibers (defibrated material) and a composite are introduced into a Henschel mixer and agitated, a method in which fibers and composites are enclosed in a bag, and the bag is shaken. Is mentioned.
  • Examples of the hydrodynamic mixing process include a method in which fibers (defibrated material) and a resin are introduced into an airflow such as the atmosphere and diffused in the airflow.
  • the resin may be introduced into a pipe or the like in which the fibers are flowed (transferred) by the airflow, or the resin particles are flowed (transferred) by the airflow.
  • the fiber may be put into a pipe or the like.
  • it is more preferable that the airflow in the pipe or the like is turbulent because mixing efficiency may be improved.
  • the mixing unit 30 When the mixing unit 30 is provided in the sheet manufacturing apparatus 100, the mixing unit 30 is downstream of the defibrating unit 20 in the flow direction of the raw material (a part of) in the sheet manufacturing apparatus 100, and the defibrated material is It is provided on the upstream side of the structure bound by the resin. Further, another configuration may be included between the mixing unit 30 and the defibrating unit 20. Note that the mixture mixed by the mixing unit 30 (this may be simply referred to as “mixture”) may be further mixed by another configuration such as the loosening unit 70.
  • the mixing unit 30 when the pipe 86 as described above is used for transferring fibers, there is a method of introducing a resin in a state where the fibers are flowed by an air current such as the atmosphere.
  • an air current such as the atmosphere.
  • a blower (not shown) or the like can be used, and can be appropriately used as long as the above function is obtained.
  • the resin can be introduced by opening / closing the valve or by the operator's hand, but the screw feeder or the disk feeder (not shown) as the resin supply unit 88 shown in FIG. Etc. can be used. Use of these feeders is more preferable because fluctuations in the resin content (addition amount) in the airflow direction can be reduced. The same applies to the case where the resin is transferred by an air flow and fibers (defibrated material) are introduced into the air flow.
  • the mixing unit 30 selects a dry type.
  • dry in mixing refers to a state of mixing in air (atmosphere) instead of underwater. That is, the mixing unit 30 may function in a dry state, or may function in a state where a liquid that exists as an impurity or a liquid that is intentionally added exists. In the case where the liquid is intentionally added, it is preferable to add the liquid in an amount that does not increase the energy and time for removing the liquid by heating or the like in the subsequent step.
  • the processing capacity of the mixing unit 30 is not particularly limited as long as the fiber (defibrated material) and the resin can be mixed, and can be appropriately designed and adjusted according to the manufacturing capacity (throughput) of the sheet manufacturing apparatus 100. .
  • the processing capacity of the mixing unit 30 can be adjusted by changing the size of the processing container, the amount charged, etc. in the case of batch processing. It can be carried out by changing the flow rate of gas for transferring fibers and resin, the amount of material introduced, the amount transferred, and the like.
  • Resin supply unit 88 supplies resin from the supply port 87 to the pipe 86 in the air. That is, the resin supply unit 88 supplies the resin to the path through which the defibrated material flows (between the classification unit 50 and the loosening unit 70 in the illustrated example).
  • the resin supply part 88 if a composite_body
  • the mixing unit 30 includes the resin supply unit 88 and the pipe 86.
  • the loosening unit 70 may be regarded as the mixing unit 30.
  • the type of the resin mixed with the resin fiber may be either a natural resin or a synthetic resin, and may be either a thermoplastic resin or a thermosetting resin, but the sheet S manufactured by the sheet manufacturing apparatus 100 of the present embodiment.
  • a fiber is obtained from the sheet S, and a sheet S including the fiber and a resin (functional material) (the sheet S may also be a sheet of this embodiment) is manufactured. That is, when manufacturing a recycled sheet, it is preferable to use a thermoplastic resin. This is because it is difficult for the thermosetting resin to exert the binding force again in the recycled sheet when the fibers are bound by the resin.
  • the resin is preferably a solid at room temperature, and the thermoplastic resin is also used from the viewpoint of binding the fiber by heat. More preferred.
  • the resin is supplied from the resin supply unit 88.
  • natural resins include rosin, dammar, mastic, copal, phlegm, shellac, phlebotomy, sandalac, colophonium, etc., and those that are used alone or as appropriate mixed. Also good.
  • thermosetting resin examples include thermosetting resins such as phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester resin, alkyd resin, polyurethane, and thermosetting polyimide resin.
  • thermoplastic resins include AS resin, ABS resin, polypropylene, polyethylene, polyvinyl chloride, polystyrene, acrylic resin, polyester resin, polyethylene terephthalate, polyphenylene ether, polybutylene terephthalate, nylon, polyamide, polycarbonate, Examples include polyacetal, polyphenylene sulfide, polyether ether ketone, and the like.
  • Such resins may be used alone or in combination as appropriate. Copolymerization or modification may also be performed.
  • Such resin systems include styrene resins, acrylic resins, styrene-acrylic copolymer resins, olefin resins, vinyl chloride resins, and polyester resins. Examples thereof include resins, polyamide resins, polyurethane resins, polyvinyl alcohol resins, vinyl ether resins, N-vinyl resins, and styrene-butadiene resins.
  • Resin may be in the form of fibers or powder.
  • the fiber length of the resin is preferably equal to or less than the fiber length of the defibrated material.
  • the fiber length of the resin is 3 mm or less, more preferably 2 mm or less. If the fiber length of the resin is greater than 3 mm, it may be difficult to mix with the defibrated material with good uniformity.
  • the particle size (diameter) of the resin is 1 ⁇ m or more and 50 ⁇ m or less, more preferably 2 ⁇ m or more and 20 ⁇ m or less. When the particle size of the resin is smaller than 1 ⁇ m, the binding force that binds the fibers in the defibrated material may decrease.
  • the particle size of the resin is larger than 20 ⁇ m, it may be difficult to mix with the defibrated material with good uniformity, and the adhesive force to the defibrated material will be reduced and will be detached from the defibrated material. The sheet may become uneven.
  • the above-described fibers (fiber material) and resin (composite) are mixed, and the mixing ratio thereof can be appropriately adjusted depending on the strength, application, and the like of the sheet to be manufactured.
  • the ratio of the resin to the fiber is 5% by mass or more and 70% by mass or less, and in view of obtaining good mixing in the mixing unit 30, and the mixture into a sheet form
  • the content is preferably 5% by mass or more and 60% by mass or less.
  • the amount of resin supplied from the resin supply unit 88 is appropriately set according to the type of sheet to be manufactured.
  • the supplied resin is mixed with the defibrated material in the pipe 86 constituting the mixing unit 30.
  • resin may be used as an additive with other components.
  • other components include aggregation inhibitors, colorants, organic solvents, surfactants, antifungal agents / preservatives, antioxidants / ultraviolet absorbers, oxygen absorbers, and the like.
  • the aggregation inhibitor and the colorant will be described in detail.
  • the resin may be an additive containing an aggregation inhibitor for inhibiting aggregation of fibers in the defibrated material or aggregation of the resins.
  • an aggregation inhibitor for inhibiting aggregation of fibers in the defibrated material or aggregation of the resins.
  • the aggregation inhibitor is included in the resin, it is preferable to integrate the resin and the aggregation inhibitor. That is, when the aggregation inhibitor is included in the resin, it is preferably a composite that integrally includes the resin and the aggregation inhibitor.
  • composite refers to a particle formed integrally with another resin as a component.
  • Others refer to aggregation inhibitors, coloring materials, and the like, but also include those having shapes, sizes, materials, and functions different from those of the main resin.
  • the aggregation inhibitor When the aggregation inhibitor is blended with the resin, it is possible to make it difficult for the composites integrally having the resin and the aggregation inhibitor to aggregate together compared to the case where the aggregation inhibitor is not blended.
  • Various aggregation inhibitors can be used, but in the sheet manufacturing apparatus 100 of the present embodiment, water is used or hardly used, so that it is disposed on the surface of the composite (coating (coating) or the like may be used). It is preferred to use seeds.
  • Examples of such an aggregation inhibitor include fine particles made of an inorganic substance, and by arranging this on the surface of the composite, a very excellent aggregation inhibitory effect can be obtained.
  • Aggregation refers to a state in which objects of the same kind or different kinds are physically in contact with each other by electrostatic force or van der Waals force.
  • an aggregate for example, powder
  • the state in which the aggregate is not included includes a state in which a part of the objects constituting the aggregate is aggregated, and the amount of the aggregated object is 10% by mass or less of the aggregate, preferably Even if it is about 5% by mass or less, this state is included in the “non-aggregated state” in the aggregate of a plurality of objects.
  • the particles of the powder are in contact with each other, but external force that does not destroy the particles such as gentle agitation, dispersion by airflow, free fall, etc. If the particles can be made into a discrete state by addition, they are included in the non-aggregated state.
  • the material of the aggregation inhibitor include silica, titanium oxide, aluminum oxide, zinc oxide, cerium oxide, magnesium oxide, zirconium oxide, strontium titanate, barium titanate, and calcium carbonate.
  • a part of the material of the aggregation inhibitor (for example, titanium oxide) is the same as the material of the colorant, but is different in that the particle diameter of the aggregation inhibitor is smaller than the particle diameter of the colorant. Therefore, the aggregation inhibitor does not greatly affect the color tone of the produced sheet and can be distinguished from the colorant. However, when adjusting the color tone of the sheet, even if the particle size of the aggregation inhibitor is small, an effect such as slight light scattering may occur, so it is more preferable to consider such an effect.
  • the average particle diameter (number average particle diameter) of the particles of the aggregation inhibitor is not particularly limited, but is preferably 0.001 to 1 ⁇ m, and more preferably 0.008 to 0.6 ⁇ m.
  • Aggregation inhibitor particles are generally in the category of so-called nanoparticles, and are generally primary particles because of their small particle size. However, the particles of the aggregation inhibitor may be higher-order particles by combining a plurality of primary particles. If the particle diameter of the primary particles of the aggregation inhibitor is within the above range, the surface of the resin can be satisfactorily coated, and a sufficient aggregation suppression effect of the composite can be imparted.
  • the aggregation inhibitor is present between a certain complex and another complex, and the aggregation of each other is suppressed.
  • the resin and the aggregation inhibitor are not integrated but separate, the aggregation inhibitor between the resin particles and other resin particles does not always exist. May be smaller than when integrated.
  • the content of the aggregation inhibitor in the composite in which the resin and the aggregation inhibitor are integrated is preferably 0.1 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the composite. If it is such content, the said effect can be acquired. Further, from the viewpoint of enhancing the above effect and / or suppressing the aggregation inhibitor from dropping off from the produced sheet S or web W, the content is preferably 0 with respect to 100 parts by mass of the composite. .2 to 4 parts by mass, more preferably 0.5 to 3 parts by mass.
  • the ratio of the aggregation inhibitor on the surface of the composite is 20% or more and 100% or less. If so, a sufficient aggregation suppressing effect can be obtained.
  • the coverage can be adjusted by charging into an apparatus such as an FM mixer.
  • the specific surface area of the aggregation inhibitor and the resin is known, it can be adjusted by the mass (weight) of each component at the time of preparation.
  • a coverage can also be measured with various electron microscopes.
  • positioned in the aspect which does not fall easily from resin it can be said that an aggregation inhibitor and resin are integral.
  • the composite When an aggregation inhibitor is blended in the composite, the composite can be hardly aggregated. Therefore, the resin (composite) and the fiber (defibrated material) are more easily mixed in the mixing unit 30. be able to. That is, when a complex of an aggregation inhibitor and a resin is blended, the complex diffuses rapidly into the space, and a more uniform mixture of fiber and additive resin is formed compared to when no aggregation inhibitor is blended. Can be formed.
  • the resin may be an additive containing a colorant.
  • the resin and the coloring material are preferably integrated. That is, when the resin contains a colorant, it is preferably a composite that integrally includes the resin and the colorant.
  • the composite having the resin and the colorant integrally refers to a state in which the colorant is unlikely to fall apart (or easily fall off) in the sheet manufacturing apparatus 100 and / or the sheet S to be manufactured. That is, the composite having the resin and the colorant integrally includes the state in which the colorant is adhered to the resin, the state in which the colorant is structurally (mechanically) fixed to the resin, the resin and the colorant, Are in a state where they are agglomerated due to electrostatic force, van der Waals force or the like, and in a state where the resin and the colorant are chemically bonded.
  • the state in which the composite has the resin and the colorant integrally may be a state in which the colorant is encapsulated in the resin or a state in which the colorant is attached to the resin, and a state in which the two states exist simultaneously. including.
  • the composite integrally including the resin and the colorant is in these aspects as long as the colorant is not easily detached from the resin when subjected to various treatments in the sheet manufacturing apparatus 100 or formed into a sheet.
  • the colorant is not limited, and it is only necessary that the colorant does not easily fall off from the resin particles even when the colorant is attached to the surface of the resin particles by electrostatic force or van der Waals force. Moreover, even if it is an aspect which mutually combined the several aspect illustrated above, all can be employ
  • the arrangement of the coloring material in the composite is conceptually the same as the preferable arrangement in the composite of the aggregation inhibitor described in the section “1.4.4.1. However, it should be noted that the aggregation inhibitor has a smaller particle size than the colorant.
  • the coloring material has a function of setting the color of the sheet S manufactured by the sheet manufacturing apparatus 100 of the present embodiment to a predetermined color.
  • a dye or a pigment can be used, and it is preferable to use a pigment from the viewpoint of obtaining better hiding power and color developability when the composite is integrated with a resin.
  • the color and type of the pigment are not particularly limited. For example, various colors (white, blue, red, yellow, cyan, magenta, yellow, black, special colors (pearl, metal, etc.) used in general inks. (Gloss) etc.) can be used.
  • the pigment may be an inorganic pigment or an organic pigment.
  • known pigments described in JP 2012-87309 A and JP 2004-250559 A can be used.
  • white pigments such as zinc white, titanium oxide, antimony white, zinc sulfide, clay, silica, white carbon, talc, and alumina white may be used. These pigments may be used singly or may be used in combination as appropriate.
  • a white pigment among those exemplified above, it is possible to use a pigment made of powder containing particles mainly composed of titanium oxide (pigment particles). From the viewpoint of easily increasing the whiteness of the sheet to be produced with a small blending amount, it is more preferable.
  • the sheet manufacturing apparatus may include a crushing section.
  • the crushing unit 10 is disposed on the upstream side of the defibrating unit 20.
  • the crushing unit 10 cuts raw materials such as pulp sheets and old sheets (for example, A4 size used paper) in the air, and supplies a defibrated material having a more appropriate size to the defibrating unit 20.
  • the shape and size of the material to be defibrated are not particularly limited, for example, the material to be defibrated is several cm square.
  • the crushing unit 10 has a crushing blade 11, and the charged raw material can be cut by the crushing blade 11.
  • the crushing unit 10 may be provided with an automatic input unit (not shown) for continuously supplying raw materials.
  • a specific example of the crushing unit 10 is a shredder.
  • the sheet cut by the crushing unit 10 is received by the hopper 15 and then conveyed to the defibrating unit 20 through the pipe 81 as a material to be defibrated.
  • the tube 81 communicates with the introduction port 21 of the defibrating unit 20.
  • the sheet manufacturing apparatus of the present embodiment may include a sorting unit.
  • the sorting unit sorts the defibrated material that has been defibrated in the defibrating unit 20 according to the length of the fiber. Therefore, the sorting unit is provided downstream of the defibrating unit 20 and upstream of the mixing unit 30.
  • the sorting unit has a net (filter, screen), and sorts one having a size that can pass through the net and one having a size that cannot pass through the net.
  • the sorting unit can be configured in the same manner as the unwinding unit 70 described above, but has a function of removing some components instead of allowing all of the introduced material to pass through like the unwinding unit 70.
  • An example of the sorting unit is a rotary sieve that can be rotated by a motor.
  • the mesh of the selection unit a metal mesh, an expanded metal obtained by extending a cut metal plate, or a punching metal in which a hole is formed in the metal plate by a press machine or the like can be used.
  • fibers or particles contained in the defibrated material or mixture which are smaller than the mesh size of the mesh, and fibers, undefibrated pieces, and lumps larger than the mesh size of the mesh can be separated. It can.
  • the selected substance can be selected and used according to the sheet to be manufactured. Further, the substance removed by the sorting unit may be returned to the defibrating unit 20.
  • the sheet manufacturing apparatus 100 of the present embodiment may include a pressure unit (not shown).
  • the pressurizing unit can be disposed downstream of the mixing unit 30 and upstream of the heating unit 60.
  • the pressurizing unit may press the web W formed in a sheet shape without heating through the loosening unit 70 and the sheet forming unit 75. Therefore, the pressurizing unit does not have heating means such as a heater. That is, the pressurizing unit is configured to perform calendar processing.
  • the pressurizing unit by pressing (compressing) the web W, the distance (distance) between the fibers in the web W is reduced, and the density of the web W can be increased.
  • the pressurizing unit can be configured to sandwich and pressurize the web W with a roller, and an embodiment having a pair of pressurizing rollers can be adopted.
  • the pressurizing section only the pressurization is performed without being heated, so that the resin does not melt when the resin is contained in the functional material.
  • the pressure unit has a function of increasing the density of the web W. In the pressure unit, the web W is compressed, and the distance (distance) between the fibers in the web W is reduced. That is, the densified web W is formed.
  • the pressurizing force of the pressurizing unit is preferably set to be larger than the pressurizing force by the heating unit 60.
  • the pressing force of the pressurizing unit is preferably set to 500 to 3000 kgf
  • the pressing force of the heating unit 60 is preferably set to 30 to 200 kgf.
  • the distance between the fibers contained in the web W can be sufficiently shortened by the pressurizing unit, and thinning by heating and pressurizing in that state.
  • a high-density and high-strength sheet S can be formed.
  • the diameter of the pressure roller may be set to be larger than the diameter of the heating roller 61.
  • the diameter of the pressure roller disposed on the upstream side may be larger than the diameter of the heating roller 61 disposed on the downstream side.
  • the diameter of the pressure roller is increased, the web W that has not yet been compressed can be bitten and conveyed efficiently.
  • the diameter of the heating roller 61 disposed downstream of the pressure roller can be reduced. Thereby, a device structure can be reduced in size. Note that the diameters of the heating roller 61 and the pressure roller are appropriately set according to the thickness of the web W to be manufactured.
  • the sheet manufacturing apparatus may include a cutting unit 90.
  • the sheet manufacturing apparatus 100 is a first cutting unit 90 that cuts a sheet in a direction that intersects the conveyance direction of the web W (sheet S) downstream of the heating unit 60.
  • the 1 cutting part 90a and the 2nd cutting part 90b are arrange
  • the cutting part 90 can be provided as needed.
  • the first cutting unit 90a includes a cutter, and cuts a continuous sheet into a sheet according to a cutting position set to a predetermined length.
  • a second cutting unit 90b that cuts the sheet S along the conveyance direction of the sheet S is disposed downstream of the first cutting unit 90a in the conveyance direction of the sheet S.
  • the second cutting unit 90b includes a cutter, and cuts (cuts) according to a predetermined cutting position in the conveyance direction of the sheet S. Thereby, a sheet S having a desired size is formed.
  • the cut sheets S are stacked on the stacker 95 or the like.
  • the above sheet can be formed. That is, when forming a sheet having a basis weight of 80 g / m 2 or more by the heating unit 60 of the sheet manufacturing apparatus 100 of the present embodiment, the energy input to the web W is water having a mass equal to or greater than that of the fiber. It becomes about 0.014 times or more and 0.28 times or less of the energy consumed when the web containing is dried to make a sheet having a basis weight of 80 g / m 2 or more. Thereby, the energy to input can be made small.
  • a fiber can be bound using resin.
  • the energy to be introduced in forming the basis weight 80 g / m 2 or more sheets the same as the energy needed in forming a basis weight 80 g / m 2 or more sheets.
  • the term “homogeneous” means that, in the case of uniform dispersion or mixing, in an object that can define two or more components or two or more components, one component is relative to another component. This means that the existing positions are uniform throughout the system, or the same or substantially equal to each other in each part of the system.
  • terms such as “uniform”, “same”, “equally spaced”, etc. mean that the density, distance, dimensions, etc. are equal. Although it is desirable that these are equal, it is difficult to make them completely equal. Therefore, it is assumed that the values do not become equal due to accumulation of errors and variations.
  • the present invention includes configurations that are substantially the same as the configurations described in the embodiments (configurations that have the same functions, methods, and results, or configurations that have the same objects and effects).
  • the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced.
  • the present invention includes a configuration that exhibits the same operational effects as the configuration described in the embodiment or a configuration that can achieve the same object.
  • the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.
  • suction mechanism 81, 82, 84, 86 ... pipe, 87 ... supply port, 88 ... resin supply , 90 ... cutting part, 90a ... first cutting part, 90b ... second cutting part, 95 ... stacker, 100 ... sheet manufacturing apparatus, G ... guide, W ... web, S ... sheet.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Textile Engineering (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

 坪量の大きなシートを製造する場合であっても、少ないエネルギーでシートを製造することのできるシート製造装置を提供すること。 本発明に係るシート製造装置は、繊維と樹脂とを含んで堆積したウェブを加熱加圧し、複数の前記繊維を前記樹脂を介して結着して坪量80g/m2以上のシートを形成する際に、前記繊維と等質量以上の質量の水分を含むウェブを乾燥させて坪量80g/m2以上のシートとする際に消費されるエネルギーの0.014倍以上0.28倍以下のエネルギーを投入することを特徴とする。

Description

シート製造装置
 本発明は、シート製造装置に関する。
 繊維状の物質を堆積させ、堆積させた繊維の相互間に結合力を働かせてシート状あるいはフィルム状の成形体を得ることは古くから行われている。その典型例として、水を用いた抄造(抄紙)によって紙を製造することが挙げられる。現在においても紙を製造する方法の一つとして抄造法が広く用いられている。抄造法で製造される紙は、一般に例えば木材等に由来するセルロースの繊維が互いに絡み合い、バインダー(紙力増強剤(デンプン糊、水溶性樹脂等))によって互いに部分的に結着されている構造を有するものが多い。
 一方、資源の有効活用等の要請から、古紙を再生利用する試みもなされている。例えば、特許文献1には、古紙パルプを抄紙して再生紙を製造する比較的小規模の抄紙装置が開示されている。係る装置では、水に古紙パルプを懸濁させたパルプ懸濁液を抄紙し、乾燥処理を行って再生紙を製造している。
特開2008-184700号公報
 抄紙に類する方法によって再生紙等のシートを製造する場合には、紙を抄いた後に水分を蒸発させ乾燥させる必要がある。水分を蒸発させるための熱は、電熱ヒーター等により供給される。特許文献1に記載の装置のように、オフィスに設置するような什器サイズの抄紙装置では、電気及び水道以外のユーティリティーを供給することは困難であり、熱を発生させるエネルギーとして電力以外のエネルギーを選択することはほとんどできない。
 また、特許文献1に記載の抄紙装置では、脱水ロール等によって水分をある程度少なくした状態で加熱乾燥されるものの、依然として大量の水を蒸発させる必要がある。また、製造される紙の坪量(単位面積あたりの質量)を大きくすると、蒸発させる水の量はさらに多くなる。水を蒸発させるためには、大量の熱(エネルギー)が必要であり、その熱を得るために消費される電力量は非常に大きく、装置全体の消費電力量の多くの部分を占めることになると推測される。
 本発明の幾つかの態様に係る目的の一つは、坪量の大きなシートを製造する場合であっても、少ないエネルギーでシートを製造することのできるシート製造装置を提供することにある。
 本発明は、上記課題の少なくとも一部を解決するために為されたものであり、以下の態様又は適用例として実現することができる。
 本発明に係るシート製造装置の一態様は、繊維と樹脂とを含んで堆積したウェブを加熱加圧し、複数の前記繊維を前記樹脂を介して結着して坪量80g/m2以上のシートを形成する際に、前記繊維と等質量以上の質量の水分を含むウェブを乾燥させて坪量80g/m2以上のシートとする際に消費されるエネルギーの0.014倍以上0.28倍以下のエネルギーを投入することを特徴とする。
 このようなシート製造装置は、80g/m2以上の大きな坪量のシートを形成する場合であっても、水を用いた抄き工程を経てシートを形成する場合に比較して、非常に少ないエネルギーでシートを形成することができる。
 本発明に係るシート製造装置の一態様は、繊維と樹脂とを含んで堆積したウェブを加熱加圧し、複数の前記繊維を前記樹脂を介して結着して坪量80g/m2以上のシートを形成する際に投入するエネルギーが、前記シートのA4サイズ1枚あたり、174J以上3600J以下であることを特徴とする。
 このようなシート製造装置は、非常に少ないエネルギーで坪量80g/m2以上のシートを形成することができる。
 前記ウェブを加熱加圧するより前に、前記繊維に水分を添加せず、前記エネルギーは、174J以上2600J以下としてもよい。
 このようなシート製造装置は、水分を蒸発させるための熱が不要であり、非常に小さい消費エネルギーでシートを製造することができる。
 本発明に係るシート製造装置において、前記ウェブを加熱加圧する前に、前記繊維を調湿し、前記エネルギーは、174J以上3600J以下としてもよい。
 このようなシート製造装置は、調湿することで水分を添加しても、非常に少ない消費エネルギーでシートを製造することができる。
 本発明に係るシート製造装置において、前記ウェブの加熱には、加熱ローラーを用いてもよい。
 このようなシート製造装置によれば、ウェブに対して熱を集中的に与えることができる。そのため、平板状のプレスや温風等による加熱のように広い範囲を加熱する場合に比較して使用するエネルギー量を低減することができる。
実施形態に係るシート製造装置の模式図。
 以下に本発明の幾つかの実施形態について説明する。以下に説明する実施形態は、本発明の例を説明するものである。本発明は以下の実施形態になんら限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形形態も含む。なお以下に説明される構成の全てが本発明の必須の構成であるとは限らない。
 1.シート製造装置
 本実施形態に係るシート製造装置は、少なくとも、エアレイドによりウェブを形成する構成、及び、該ウェブを加熱加圧する構成を有する。エアレイドとは、広い概念として、空気の流れを利用してウェブを形成する方法のことを指す。より具体的には、エアレイドとは、原料(繊維及び樹脂を含む)が空気を媒体として移送され、メッシュ等の上に堆積される態様のことを指す。図1は、本実施形態のシート製造装置の一例としてのシート製造装置100を示す模式図である。
 シート製造装置100では、ほぐし部70及びシート成形部75によって、エアレイドの態様が構成されている。また、シート製造装置100では、ウェブを加熱加圧して複数の繊維を樹脂を介して結着させる構成として、加熱部60が採用されている。
 1.1.ほぐし部
 シート製造装置100は、ほぐし部70を有する。図1に示すシート製造装置100では、混合部30の下流にほぐし部70及びシート成形部75が配置されている。また、シート成形部75には、サクション機構78が設けられている。
 ほぐし部70は、管86(混合部30)を通じて繊維と樹脂との混合物を導入口71から導入し、空気中で分散させながら降らせることができる。また、シート製造装置100は、シート成形部75を有しており、シート成形部75にて、ほぐし部70から降ってきた混合物を空気中で堆積してウェブWの形状に成形する態様となっている。ほぐし部70を通ってシート成形部75に繊維と樹脂との混合物が堆積される。
 ほぐし部70は、絡み合った繊維をほぐすことができる。ほぐし部70は、後述するシート成形部75に、混合物を均一に堆積させる作用を有する。つまり、「ほぐす」という言葉は、絡み合ったものをバラバラにする作用や均一に堆積させる作用を含むものである。なお、ほぐし部70は、絡み合った繊維等が無ければ均一に堆積させる効果を奏する。
 ほぐし部70としては、篩(ふるい)を用いる。ほぐし部70の例としては、モーターによって回転することができる回転式の篩である。ここでほぐし部70の「篩」は、特定の対象物を選別する機能を有していなくてもよい。すなわち、ほぐし部70として用いられる「篩」とは、網(フィルター、スクリーン)を備えたもの、という意味であり、ほぐし部70は、ほぐし部70に導入された繊維及び樹脂の混合物の全てを降らしてもよい。また、ほぐし部70において、繊維と樹脂とを混合してもよい。
 1.2.シート成形部
 シート製造装置100は、シート成形部75を有する。ほぐし部70を通過した繊維及び樹脂の混合物は、シート成形部75に堆積される。図1に示すように、シート成形部75は、メッシュベルト76、張架ローラー77、サクション機構78を有する。シート成形部75は、図示せぬテンションローラー、巻き取りローラー等を含んで構成されてもよい。
 シート成形部75は、ほぐし部70から降ってくる混合物を空気中で堆積させたウェブWを形成する(ほぐし部70と合わせてウェブ形成工程に相当する。)。シート成形部75は、ほぐし部70によって空気中に均一に分散された混合物を、メッシュベルト76上に堆積する機構を有している。
 ほぐし部70の下方には、張架ローラー77(本実施形態では、4つの張架ローラー77)によって張架されるメッシュが形成されているエンドレスのメッシュベルト76が配されている。そして、張架ローラー77のうちの少なくとも1つが自転することで、このメッシュベルト76が一方向に移動するようになっている。
 また、ほぐし部70の鉛直下方には、メッシュベルト76を介して、鉛直下方に向けた気流を発生させる吸引部としてのサクション機構78が設けられている。サクション機構78によって、ほぐし部70によって空気中に分散された混合物をメッシュベルト76上に吸引することができる。これにより、空気中に分散させた混合物を吸引することができ、ほぐし部70からの排出速度を大きくすることができる。その結果、シート製造装置100の生産性を高くすることができる。また、サクション機構78によって、混合物の落下経路にダウンフローを形成することができ、落下中に解繊物や機能材が絡み合うことを防ぐことができる。
 そして、メッシュベルト76を移動させながら、ほぐし部70から混合物を降らせることにより、混合物を均一に堆積させた長尺状のウェブWを形成することができる。ここで「均一に堆積」とは、堆積された堆積物が略同じ厚み、略同じ密度で堆積されている状態を言う。ただし、堆積物全てがシートとして製造される訳ではないため、シートになる部分が均一であればよい。「不均一に堆積」は均一に堆積していない状態をいう。
 メッシュベルト76は、金属製、樹脂製、布製、あるいは不織布等であることができ、混合物が堆積でき、気流を通過させることができれば、どのようなものでもあってもよい。メッシュベルト76の穴径(直径)は、例えば、60μm以上250μm以下である。メッシュベルト76の穴径が60μmより小さいと、サクション機構78によって安定した気流を形成することが困難な場合がある。メッシュベルト76の穴径が250μmより大きいと、メッシュの間に例えば混合物の繊維が入り込んで、製造されるシートの表面の凹凸が大きくなる場合がある。またサクション機構78はメッシュベルト76の下に所望のサイズの窓を開けた密閉箱を形成し、窓以外から空気を吸引し箱内を外気より負圧にすることで構成できる。
 以上のように、ほぐし部70及びシート成形部75(ウェブ形成工程)を経ることにより、空気を多く含み柔らかくふくらんだ状態のウェブWが形成される。次いで、図1に示すように、メッシュベルト76上に形成されたウェブWは、メッシュベルト76の回転移動により搬送される。以上のようにして、ウェブWが形成される。
 本実施形態のシート製造装置100では、メッシュベルト76上に形成されたウェブWは、加熱部60へと搬送される。ウェブWには樹脂が含まれているため、加熱されることによって、繊維と繊維とが結着され、ウェブWを紙や不織布等のシートSとすることができる。
 形成されるウェブWの厚さは、特に限定されず、ほぐし部70の篩の回転速度、シート成形部75のサクション機構78の吸引速度、メッシュベルト76の搬送速度等を調節することによって、所定の厚さとすることができる。また、ウェブWの坪量も同様にして調節することができる。
 坪量とは、ウェブWやシートSの単位面積あたりの重量であり、通常(g/m2)の単位を用いて表される。後述する加熱部60において、ウェブWの体積を小さくする(加圧する)場合があるが、質量は変化しないため、ウェブWの坪量は、シートSの坪量とほとんど同じである。したがって、シート製造装置100によって製造されるシートSの坪量は、主にほぐし部70及びシート成形部75によって調節されることになる。
 1.3.加熱部
 本実施形態のシート製造装置100は、加熱部60を備える。加熱部60は、上述のシート成形部75よりも下流側に設けられる。加熱部60は、上述のシート成形部75において形成されたウェブWを加熱し、複数の繊維を互いに樹脂を介して結着させた状態を形成する。また、加熱部60が、混合物を所定の形状に成形する機能を有してもよい。
 加熱部60は、混ぜ合された繊維(解繊物)及び樹脂、すなわち混合物を、所定の形状に成形する機能を有する。加熱部60において成形された繊維及び樹脂の成形体(シート)では、繊維と樹脂とが結着された状態となる。
 また加熱部60においては、混合物に熱を与えることの他に、圧力を加えてもよく、その場合には、加熱部60は、混合物を所定の形状に成形する機能を有することになる。加えられる圧力の大きさは、成形されるシートの種類により適宜調節されるが、例えば、100kPa以上1MPa以下とすることができる。加えられる圧力が小さければ、空隙率の大きいシートが得られ、大きければ空隙率の小さい(密度の高い)シートが得られることになる。また、混合物がウェブ状に形成された場合には、その厚さに対して1/5~1/100程度の厚さになるように圧縮してもよく、圧縮の程度により空隙率が調節されてもよい。
 加熱部60では、繊維及び樹脂の混合物に、熱を加えることにより、混合物中の複数の繊維を互いに樹脂を介して結着する。樹脂が熱可塑性樹脂である場合には、そのガラス転移温度(軟化点)又は融点(結晶性ポリマーの場合)付近以上の温度に加熱すると、樹脂が軟化したり溶けたりし、その後、温度が低下すると固化する。樹脂が軟化して繊維に絡み合うように接触し、樹脂が固化することで繊維と樹脂とを互いに結着することができる。また、固化する際に他の繊維が結着することで、繊維と繊維とが結着される。樹脂が、熱硬化性樹脂である場合には、軟化点以上の温度に加熱してもよいし、硬化温度(硬化反応を生じる温度)以上に加熱しても繊維と樹脂とを結着することができる。なお、樹脂の融点、軟化点、硬化温度等は、繊維の融点、分解温度、炭化温度よりも低いことが好ましく、そのような関係となるように両者の種類を組み合わせて選択することが好ましい。なお、樹脂は、加熱部60において溶融、流動されないまま残ってもよい。
 加熱部60の具体的な構成としては、加熱ローラー(ヒーターローラー)、熱プレス成形機、ホットプレート、温風ブロワー、赤外線加熱器、フラッシュ定着器などが挙げられる。図1に示す本実施形態のシート製造装置100では、加熱部60は、加熱ローラー61によって構成されている。そして、ウェブWを加熱することにより、ウェブWに含まれる繊維同士を樹脂を介して結着させることができる。なお、加熱部60の具体的な構成として、図示のような加熱ローラー61を採用すると、熱プレス成形機、温風ブロワー、赤外線加熱器等を用いた場合に比較して、ウェブWの狭い領域に対して、熱を集中的に与えることができる。そのため、プレスや温風等による加熱のように広い範囲を加熱する場合に比較して、使用するエネルギー量を低減することができる。
 図示の例では、加熱部60は、ローラーによりウェブWを挟み込んで加熱及び加圧するように構成されており、一対の加熱ローラー61を有している。加熱部60を平板状のプレス部によって構成する場合には、プレスをしている間、搬送されるウェブを一時的にたるませておくようなバッファー部(図示せず)を必要に応じて設ける。この例では、加熱部60を加熱ローラー61として構成したことにより、加熱部60を平板状のプレス部として構成した場合に比べてウェブWを連続的に搬送しながらシートを成形することができる。
 本実施形態のシート製造装置100の加熱部60は、ウェブWの搬送方向において上流側に配置された第1加熱部60aとその下流側に配置された第2加熱部60bとを備えており、第1加熱部60a及び第2加熱部60bがそれぞれ一対の加熱ローラー61を備えている。また、第1加熱部60aと第2加熱部60bとの間には、ウェブWの搬送を補助するガイドGが配置されている。
 加熱ローラー61は、例えば、アルミニウム、鉄、ステンレス等の中空の芯金で構成されている。加熱ローラー61の表面には、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)やPTFE(ポリテトラフルオロエチレン)等のフッ素を含むチューブやPTFE等のフッ素コーティングの離型層が設けられてもよい。なお、芯金と離型層との間にシリコンゴム、ウレタンゴムやコットン等による弾性層を設けてもよい。当該弾性層を設けることにより、一対の加熱ローラー61を高荷重で圧接する場合に、加熱ローラー61対が加熱ローラー61の軸方向において均一に接触させることができる。
 また、芯金の中心部には、加熱手段として、例えばハロゲンヒーター等の加熱材が設けられている。加熱ローラー61及び加熱材は図示しない温度検知部によって各温度が取得され、取得された温度に基づいて加熱材の駆動が制御される。これにより、加熱ローラー61の表面温度が所定の温度に維持することが可能となる。そして、加熱ローラー61間にウェブWを通過させることにより、搬送されるウェブWに対して加熱加圧することができる。なお、加熱手段として、ハロゲンヒーター等に限定されず、例えば、非接触ヒーターによる加熱手段や温風による加熱手段を用いてもよい。
 なお図示した加熱部60は、一対の加熱ローラー61が2組ある例であるが、加熱部60に加熱ローラー61を採用する場合には、加熱ローラー61の数や配置は限定されず、上記作用を達成できる範囲で任意に構成することができる。また、各加熱部60の加熱ローラー61の構成(離型層・弾性層・芯金の厚みや材質、ローラーの外径)や加熱ローラー61を圧接する荷重は、各加熱部60によって異なっていてもよい。
 上記したように、加熱部60(加熱工程)を経ることにより、機能材に樹脂が含まれる場合、該樹脂が溶融し、解繊物中の繊維と絡みやすくなるとともに繊維間が結着され、本実施形態のシートSが製造される。
 ここで、加熱部60によってウェブWに与えられる熱量(エネルギー)は、製造するシートSに求められる強度を達成できるように樹脂が繊維を結着する程度であればよい。すなわち、ウェブW中の樹脂の、少なくとも一部が溶融、軟化する程度の熱量(エネルギー)を与えればよい。また、ウェブW中の樹脂の全てが溶融、軟化できる程度の熱量(エネルギー)が与えられてもよい。
 樹脂として、結晶性高分子であるポリエステルを採用した場合、融解熱は140[J/g]程度である。また、A4サイズ1枚の坪量80[g/m2]のウェブWの質量は、約4.97[g]である。そして、ウェブWに対する樹脂(ポリエステル)の含有量(後述する)を、仮に25質量%とすると、A4サイズ1枚のウェブWに含まれるポリエステルの質量は、約1.24[g]である。そのため、A4サイズのシートSを得るためには、約174[J]の熱量(エネルギー)をA4サイズのウェブWに対して供給できれば十分である。
 一方、ウェブを湿式で(水を用いて抄いて)形成した場合、例えば、スラリー状のパルプ懸濁液を抄いてウェブを形成した場合、該ウェブを機械的に搾って水を取り除いたとしても、ウェブには繊維とほぼ等質量以上の質量の水(繊維に対して100質量%以上の水分)が含まれる。そうすると、坪量80[g/m2]のA4サイズのウェブには、約5[g]以上の水が含まれることになる。そして例えばヒートローラー等によって加熱して、当該水を蒸発させて乾燥したシートを得ることになる。加熱前の水の温度が仮に30[℃]であったとすると、5[g]の水を100[℃]にするためには1470[J]程度、蒸発させるためには11250[J]程度の熱量(エネルギー)が必要である。したがって、合計の熱量(エネルギー)として、12720[J]程度の熱量(エネルギー)をA4サイズ1枚のウェブWに対して供給しなければならないことになる。この場合、消費電力が大きくなるため、装置としてみると、コストが高くなる場合があった。
 したがって、この例では、本実施形態のシート製造装置100の加熱部60によって、坪量80g/m2以上のウェブWに対して投入するエネルギーは、繊維と等質量以上の質量の水分(繊維に対して100質量%以上の水分)を含むウェブを乾燥させて坪量80g/m2以上のシートとする際に消費されるエネルギーのおよそ(174/12720=)
0.014倍となる。
 なお、この例では、ウェブWを搾ってウェブに繊維とほぼ等質量の水が含まれる場合を想定しているが、脱水がより不十分である場合には、上述の0.014倍より小さくなる場合がある。
 さらに、この例は樹脂としてポリエステルを用いた例であり、その他の種類の樹脂(非晶性樹脂も含む)であっても、1gあたり15倍以上大きい融解熱(ガラス状態-ゴム状態の転移に必要なエネルギーや軟化に必要なエネルギーを含む)を有することはないといえる。また、この例では、樹脂の配合量は25質量%(ウェブWに対して)としたが、繊維に対してより多くの樹脂を配合(例えば100質量%以上)しても、必要な熱量は15倍以下程度である。したがって、加熱部60によって、A4サイズ1枚のウェブWに与える(投入する)熱量(エネルギー)は、多く見積もっても2600[J]程度である。
 したがって、他の樹脂を用いたり、樹脂の配合量を増したとしても、本実施形態のシート製造装置100の加熱部60によって、坪量80g/m2以上のウェブWに対して投入するエネルギーは、繊維と等質量以上の質量の水分を含むウェブを乾燥させて坪量80g/m2以上のシートとする際に消費されるエネルギーのおよそ(2600/12720=)0.20倍となる。なお、この例では、ウェブWの熱伝導効率等を考慮していないが、乾式では加圧されていても若干湿式よりも熱伝導効率は下がると考えられ、上述の約0.20倍より大きくなる場合がある。
 なお、ウェブWには、加熱部60に至る前に図示せぬ調湿機構等によって水分が付与されてもよい。ただし、この場合には、加熱部60によってウェブWに与えるエネルギーが増加することになるので、このような構成を採用して水分を添加する場合には、A4サイズ1枚のウェブWに対して174[J]以上3600[J]以下程度となるようにする。これにより、加熱部60によって、坪量80g/m2以上のウェブWに対して投入するエネルギーは、繊維と等質量以上の質量の水分を含むウェブを乾燥させて坪量80g/m2以上のシートとする際に消費されるエネルギーのおよそ0.014倍以上で(3600/12720=)0.28倍以下とすることができる。なお、調湿した際のウェブWに含まれる水分は、ウェブWの質量の8%を想定している。
 しかし、加熱部60において、本実施形態のシート製造装置100においては、このような調湿機構を採用せず、ウェブWを加熱加圧するより前に、繊維に水分を添加しないようにすることがより好ましい。このようにすれば、水分を蒸発させるためのエネルギーを消費する必要がなく、上記のような非常に小さい消費エネルギーでシートSを製造することができる。
 なお、本明細書において、「繊維と樹脂とを結着する」とは、繊維と樹脂とが離れにくい状態や、繊維と繊維との間に樹脂が配置され、繊維と繊維とが樹脂を介して離れ難くなっている状態をいう。また、結着とは、接着を含む概念であって2種以上の物体が接触して離れにくくなった状態を含む。また、繊維と繊維とが樹脂を介して結着した際に、繊維と繊維とが平行に又は交差してもよいし、1本の繊維に複数の繊維が結着してもよい。
 1.4.その他の構成
 本実施形態のシート製造装置100は、上述のほぐし部、シート成形部、加熱部の他に、粗砕部、解繊部、分級部、混合部、加圧部、選別部、切断部等の各種の構成を有することができる。また、ほぐし部、シート成形部、加熱部、粗砕部、解繊部、分級部、混合部、加圧部、選別部、切断部等の構成は、必要に応じて複数設けられてもよい。
 1.4.1.解繊部
 シート製造装置100は、解繊部20を有してもよい。ほぐし部70には、繊維が導入されるが、当該繊維は、解繊部20によって供給されてもよい。また、解繊部20とほぐし部70との間には他の構成が設けられてもよい。また、解繊部20よりも上流側にも他の構成が設けられてもよい。
 解繊部20は、被解繊物を解繊処理する。解繊部20は、被解繊物を解繊処理することにより、繊維状に解きほぐされた解繊物を生成する。係る解繊物は繊維を含み、この繊維を上述のほぐし部70に供給するように構成してもよい。また解繊部20は、被解繊物に付着した樹脂粒やインク、トナー、にじみ防止剤等の粒子状の物質を、繊維から分離させる機能をも有する。
 ここで、「解繊処理」とは、複数の繊維が結着されてなる被解繊物を、繊維1本1本に解きほぐすことをいう。解繊部20を通過したものを「解繊物」という。「解繊物」には、解きほぐされた繊維の他に、繊維を解きほぐす際に繊維から分離した樹脂(複数の繊維同士を結着させるための樹脂)粒や、インク、トナー、にじみ防止材等のインク粒を含んでいる場合もある。解きほぐされた解繊物の形状は、ひも(string)状や平ひも(ribbon)状である。解きほぐされた解繊物は、他の解きほぐされた繊維と絡み合っていない状態(独立した状態)で存在してもよいし、他の解きほぐされた解繊物と絡み合って塊状となった状態(いわゆる「ダマ」を形成している状態)で存在してもよい。解繊物は、シートSの構成の一つである繊維である。
 なお、本明細書では、シート製造装置において、製造されるシートの材料(原料、被解繊物、解繊物(繊維)、ウェブ等)の流れ(概念的な流れを含む)に対して、「上流」、「下流」等の表現を用いる。また、「上流側(下流側)」という表現は、構成の位置を相対的に特定する場合に用い、例えば、「AがBの上流側(下流側)にある」などという場合には、Aの位置がBの位置に対して、シートの材料の流通方向に照らして上流(下流)にあることを指す。
 解繊部20は、被解繊物を解繊処理する機能を有する限り任意である。解繊部20は、大気中(空気中)において乾式で解繊を行う。図示の例では、導入口21から導入された被解繊物が、解繊部20によって解繊され、解繊物(繊維)となり、排出口22から排出される解繊物が、管82、分級部50、管86を介してほぐし部70に供給される態様となっている。
 本明細書において、乾式とは、液体中ではなく大気中(空気中)でという意味である。乾式の範疇には、乾燥状態、及び不純物として存在する液体又は意図的に添加される液体が存在する状態、が含まれる。なお、意図的に液体を添加しない場合には、上述の加熱部60によってウェブWに投入する(与えられる)エネルギーが、坪量80g/m2以上のA4サイズのウェブWに対して2600[J]以下程度となるようにする。また、加熱部60に至る前にウェブWに調湿機構等によって水分を付与する場合は、坪量80g/m2以上のA4サイズ1枚のウェブWに対して3600[J]以下程度となるようにする。
 解繊部20の構成は特に限定されないが、例えば、回転部(回転子)とこれを覆う固定部とを含み、回転部と固定部との間に隙間(ギャップ)が形成されたものを挙げることができる。解繊部20がこのように構成される場合には、回転部が回転した状態で被解繊物がギャップに導入されることにより、解繊処理が行われる。また、この場合には、回転部の回転数、形状、固定部の形状等は、製造されるシートの性質や全体の装置構成等の要請に合わせて適宜に設計されることができる。また、この場合、回転部の回転速度(1分あたりの回転数(rpm))は、解繊処理のスループット、被解繊物の滞留時間、解繊の程度、ギャップの大きさ、回転部、固定部、その他の各部材の形状や大きさ等の条件を考慮して、適宜に設定することができる。
 なお、解繊部20は、被解繊物を吸引し、及び/又は、解繊物を排出するような気流を発生させる機能を有することがより好ましい。この場合、解繊部20は、自ら発生する気流によって、導入口21から、被解繊物を気流と共に吸引し、解繊処理して、排出口22へと搬送することができる。なお、気流発生機構を有していない解繊部20を用いる場合には、被解繊物を導入口21に導く気流や、排出口22から解繊物を吸出す気流を発生する機構を外付けで設けても差支えない。
 1.4.1.1.被解繊物
 本明細書において、被解繊物とは、シート製造装置100の原材料を含む物品のことを指し、例えば、パルプシート、紙、古紙、ティッシュペーパー、キッチンペーパー、クリーナー、フィルター、液体吸収材、吸音体、緩衝材、マット、段ボールなどの、繊維が絡み合い又は結着されたものを指す。また、本明細書において、被解繊物は、シート製造装置100によって製造されたシート若しくは使用後の該シート(古シート)であってもよい。また、被解繊物には、レーヨン、リヨセル、キュプラ、ビニロン、アクリル、ナイロン、アラミド、ポリエステル、ポリエチレン、ポリプロピレン、ポリウレタン、ポリイミド、炭素、ガラス、金属からなる繊維等(有機繊維、無機繊維、有機無機複合繊維)が含まれていてもよい。また、本実施形態のシート製造装置100において、後述する分級部50が備えられる場合には、被解繊物として、特に古紙、古シート等を有効に利用することができる。
 1.4.1.2.解繊物
 本実施形態のシート製造装置100において、解繊物は、製造されるシートの材料の一部として使用される。解繊物は、上述の被解繊物を解繊処理して得られる繊維を含み、係る繊維として、天然繊維(動物繊維、植物繊維)、化学繊維(有機繊維、無機繊維、有機無機複合繊維)などが挙げられる。解繊物に含まれる繊維として、更に詳しくは、セルロース、絹、羊毛、綿、大麻、ケナフ、亜麻、ラミー、黄麻、マニラ麻、サイザル麻、針葉樹、広葉樹等からなる繊維が挙げられ、これらを単独で用いてもよいし、適宜混合して用いてもよいし、精製などを行った再生繊維として用いてもよい。解繊物は、製造されるシートの材料となるが、これらの繊維の少なくとも1種を含んでいればよい。また、解繊物(繊維)は、乾燥されていてもよいし、水、有機溶剤等の液体が含有又は含浸されていてもよい。さらに解繊物(繊維)は、各種の表面処理が施されていてもよい。
 本実施形態で使用される解繊物に含まれる繊維は、独立した1本の繊維としたときに、その平均的な直径(断面が円でない場合には長手方向に垂直な方向の長さのうち、最大のもの、又は、断面の面積と等しい面積を有する円を仮定したときの当該円の直径(円相当径))が、平均で、1μm以上1000μm以下、好ましくは、2μm以上500μm以下、より好ましくは3μm以上200μm以下である。
 本実施形態で使用される解繊物に含まれる繊維の長さは、特に限定されないが、独立した1本の繊維として、その繊維の長手方向に沿った長さは、1μm以上5mm以下、好ましくは、2μm以上3mm以下、より好ましくは3μm以上2mm以下である。繊維の長さが短い場合は、樹脂によって結着されにくいため、シートの強度が不足する場合があるが、上記範囲であれば十分な強度のシートを得ることができる。また、繊維の平均の長さは、長さ-長さ加重平均繊維長として、20μm以上3600μm以下、好ましくは200μm以上2700μm以下、より好ましくは300μm以上2300μm以下である。さらに、繊維の長さは、ばらつき(分布)を有してもよい。
 本明細書では、繊維というときには、繊維1本のことを指す場合と、複数の繊維の集合体(例えば綿のような状態)のことを指す場合とがあり、また、解繊物というときには、複数の繊維が含まれる材料のことを指し、繊維の集合という意味及びシートの原料となる材料(粉体又は綿状の物体)という意味を含むものとする。
 解繊部20を通過した解繊物は、シート状に成形されるまでの間に、樹脂と混合される。混合の態様は任意であるが、後述するような混合部30を設けることにより、容易に混合することができる。
 1.4.2.分級部
 シート製造装置は分級部50を有してもよい。図1に示すシート製造装置100では、ほぐし部70の上流側であって、解繊部20の下流側に分級部50が配置されている。分級部50は、解繊物から、樹脂粒、インク粒を分離して除去する。これにより解繊物中の繊維の占める割合を高めることができる。分級部50としては、気流式分級機を用いることが好ましい。気流式分級機は、旋回気流を発生させ、遠心力と分級されるもののサイズと密度によって分離するものであり、気流の速度および遠心力の調整によって、分級点を調整することができる。具体的には、分級部50としては、サイクロン、エルボージェット、エディクラシファイヤーなどを用いる。特にサイクロンは、構造が簡便であるため、分級部50として好適に用いることができる。本実施形態では、分級部50として、サイクロンを用いている。
 分級部50は、導入口51と、導入口51が接続された円筒部52と、円筒部52の下方に位置し円筒部52と連続している逆円錐部53と、逆円錐部53の下部中央に設けられている下部排出口54と、円筒部52上部中央に設けられている上部排出口55と、を有している。
 分級部50において、導入口51から導入された解繊物をのせた気流は、外径100mm以上300mm以下程度の円筒部52で円周運動に変わる。これにより、導入された解繊物には、遠心力がかかって、解繊物のうちの繊維と、解繊物のうちの樹脂粒やインク粒などの微細な粉体と、に分離することができる。繊維が多い成分は、下部排出口54から排出され、管86に導入される。一方微細な粉体は、上部排出口55から管84を通って分級部50の外部に排出される。図示の例では管84は、受け部56に接続されており、微細な粉体は受け部56に回収される。このように、樹脂粒やインク粒などの微細な粉体は、分級部50によって外部に排出されるため、下流側で樹脂が供給されても、解繊物に対して樹脂が過剰になることを防ぐことができる。
 なお、分級部50により繊維と微粉とに分離すると記載したが、完全に分離できる訳ではない。例えば繊維のうち比較的小さいものや密度の低いものは微粉とともに外部に排出される場合がある。また微粉のうち比較的密度の高いものや繊維に絡まってしまったものは繊維とともに下流側へ排出される場合もある。
 また、原料が古紙や古シートでなくパルプシートのような場合は樹脂粒やインク粒などの微細な粉体が含まれていないため、シート製造装置100には分級部50が無くてもよい。逆に、原料が古紙や古シートである場合には、製造されるシートの色調を良好なものとするために、シート製造装置100は、分級部50を含んで構成することが好ましい。
 1.4.3.混合部
 本実施形態のシート製造装置100は混合部30を備えてもよい。上述のほぐし部70には、繊維と樹脂との混合物が導入されるか、ほぐし部70の中で繊維と樹脂とが混ぜ合わされればよい。しかし、混合部30を設けて繊維と樹脂とを混合し、これをほぐし部70に供給してもよい。なお本明細書において「繊維と樹脂とを混ぜ合せる」とは、一定容積の空間(系)内で、繊維と繊維との間に樹脂を位置させることをいう。
 混合部30は、解繊部20を通過した解繊物の繊維(繊維材)と、樹脂とを混合する機能を有する。混合部30においては、繊維及び樹脂以外の成分が混ぜ合されてもよい。また、樹脂は、他の成分との複合体であってもよい。複合体は、樹脂を主成分として他のものと一体に形成された粒子をいう。係る他のものとは、着色材や凝集抑制剤などをいうが、主成分となる樹脂と異なる形状や大きさや材質や機能を有するものも含まれる。
 混合部30は、繊維(繊維材)と樹脂とを混ぜ合せることができれば、その構成、構造及び機構等は特に限定されない。また、混合部30における混ぜ合せの処理の態様は、回分処理(バッチ処理)であっても、逐次処理、連続処理のいずれであってもよい。また、混合部30は、手動で動作されても自動で動作されてもよい。さらに、混合部30は、少なくとも繊維及び樹脂を混ぜ合せるが、その他の成分を混ぜ合せてもよい。
 混合部30における混ぜ合せの処理としては、機械的な混合、流体力学的な混合を例示することができる。機械的な混合としては、繊維(解繊物)及び複合体を、例えば、ヘンシェルミキサー等に導入して撹拌する方法や、袋に繊維及び複合体を封入して該袋を振とうする方法などが挙げられる。また、流体力学的な混ぜ合せの処理としては、例えば、大気等の気流中に繊維(解繊物)及び樹脂を導入して気流中で相互に拡散させる方法が挙げられる。係る大気等の気流中に繊維及び樹脂を導入する方法では、繊維が気流によって流動(移送)されている管等に樹脂を投入してもよいし、樹脂の粒子が気流によって流動(移送)されている管等に繊維を投入してもよい。なお、係る方法の場合には、管等の中の気流は、乱流であるほうが混ぜ合せの効率がよくなることがあるためより好ましい。
 シート製造装置100に混合部30を設ける場合には、混合部30は、シート製造装置100における原料(の一部)の流れ方向において、解繊部20の下流側であって、解繊物が樹脂によって結着される構成の上流側に設けられる。また、混合部30と解繊部20との間には、他の構成が含まれてもよい。なお、混合部30によって混ぜ合された混合物(これを単に「混合物」ということがある。)はほぐし部70等の他の構成によってさらに混ぜ合されてもよい。
 混合部30として、図1に示すように、繊維の移送のために上述のような管86を採用する場合、大気等の気流により繊維を流動させた状態で樹脂を導入する方法がある。混合部30に管86を採用する場合における気流の発生手段としては、図示せぬブロワーなどが挙げられ、上記の機能が得られる限り、適宜に使用することができる。
 混合部30に管86を採用する場合における樹脂の導入は、弁の開閉操作や作業者の手で行うこともできるが、図1に示す樹脂供給部88としてのスクリューフィーダーや図示せぬディスクフィーダーなどを用いて行うことができる。これらのフィーダーを用いることにより、気流の流れ方向における樹脂の含有量(添加量)の変動を小さくすることができるためより好ましい。また、樹脂を気流によって移送して、当該気流に繊維(解繊物)を導入する場合でも同様である。
 本実施形態のシート製造装置100では、混合部30は、乾式の態様のものを選択することが好ましい。ここで、混合における「乾式」とは、水中ではなく空気(大気)中で混合させる状態をいう。すなわち、混合部30は、乾燥状態で機能してもよいし、不純物として存在する液体又は意図的に添加される液体が存在する状態で機能してもよい。液体を意図的に添加する場合には、後の工程において、係る液体を加熱等により除去するためのエネルギーや時間が大きくなりすぎない程度に添加することが好ましい。
 混合部30の処理能力は、繊維(解繊物)及び樹脂を混ぜ合せることができる限り、特に限定されず、シート製造装置100の製造能力(スループット)に応じて適宜設計、調節することができる。混合部30の処理能力の調節は、バッチ処理の態様であれば、その処理容器の大きさや仕込み量などを変化させて行うことができ、また、管86を用いる場合には、管86内の繊維及び樹脂を移送するための気体の流量や、材料の導入量、移送量等を変化させることにより行うことができる。
 樹脂供給部88は、供給口87から管86に空気中で樹脂を供給する。すなわち、樹脂供給部88は、解繊物が流れる経路に(図示の例では分級部50とほぐし部70との間に)、樹脂を供給する。樹脂供給部88としては、管86に複合体を供給することができれば特に限定されないが、スクリューフィーダー、サークルフィーダーなどを用いる。管86を繊維及び樹脂が通過する結果、混合物が形成される。したがって本実施形態のシート製造装置100では、混合部30は、樹脂供給部88及び管86を含んで構成されている。なお、混合物は後述するほぐし部70においてさらに混ぜ合されてもよいため、ほぐし部70は混合部30とみなしてもよい。
 1.4.4.樹脂
 繊維に混合される樹脂の種類としては、天然樹脂、合成樹脂のいずれでもよく、熱可塑性樹脂、熱硬化性樹脂のいずれでもよいが、本実施形態のシート製造装置100で製造されたシートSを被解繊物として、当該シートSから繊維を得て、係る繊維と樹脂(機能材)とを含むシートS(当該シートSも本実施形態のシートであってもよい)を製造する場合、すなわち再生シートを製造する場合には、熱可塑性樹脂を用いることが好ましい。樹脂によって繊維間の結着を行う場合には、熱硬化性樹脂では、再生シート中で結着力を再度発揮させることが困難であるからである。本実施形態のシートに機能材として樹脂を用い、樹脂による繊維の結着を行う場合には、樹脂は、常温で固体である方が好ましく熱によって繊維を結着する点からも熱可塑性樹脂がより好ましい。
 本実施形態のシート製造装置100では、樹脂は、樹脂供給部88から供給される。天然樹脂としては、ロジン、ダンマル、マスチック、コーパル、琥珀、シェラック、麒麟血、サンダラック、コロホニウムなどが挙げられ、これらを単独又は適宜混合したものが挙げられ、また、これらは適宜変性されていてもよい。
 また、合成樹脂のうち熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン、熱硬化性ポリイミド樹脂などの熱硬化性樹脂が挙げられる。
 また、合成樹脂のうち熱可塑性樹脂としては、AS樹脂、ABS樹脂、ポリプロピレン、ポリエチレン、ポリ塩化ビニル、ポリスチレン、アクリル樹脂、ポリエステル樹脂、ポリエチレンテレフタレート、ポリフェニレンエーテル、ポリブチレンテレフタレート、ナイロン、ポリアミド、ポリカーボネート、ポリアセタール、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、などが挙げられる。
 これらの樹脂は、単独又は適宜混合して用いてもよい。また、共重合体化や変性を行ってもよく、このような樹脂の系統としては、スチレン系樹脂、アクリル系樹脂、スチレン-アクリル系共重合樹脂、オレフィン系樹脂、塩化ビニル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂、ポリビニルアルコール系樹脂、ビニルエーテル系樹脂、N-ビニル系樹脂、スチレン-ブタジエン系樹脂等が挙げられる。
 樹脂は、繊維状であってもよく、粉末状であってもよい。樹脂が繊維状である場合、樹脂の繊維長は、解繊物の繊維長以下であることが好ましい。具体的には、樹脂の繊維長は、3mm以下、より好ましくは2mm以下である。樹脂の繊維長が3mmより大きいと、解繊物と均一性よく混合することが困難となる場合がある。樹脂が粉末状である場合、樹脂の粒径(直径)は、1μm以上50μm以下、より好ましくは2μm以上20μm以下である。樹脂の粒径が1μmより小さいと、解繊物中の繊維同士を結着させる結着力が低下する場合がある。樹脂の粒径が20μmより大きいと、解繊物と均一性よく混合することが困難な場合があり、また解繊物への付着力が低下して解繊物から離脱してしまい、製造されるシートにムラ等を生じる場合がある。
 混合部30において、上述の繊維(繊維材)と樹脂(複合体)とが混ぜ合されるが、それらの混合比率は、製造されるシートの強度、用途等により適宜調節されることができる。製造されるシートがコピー用紙等の事務用途であれば、繊維に対する樹脂の割合は、5質量%以上70質量%以下であり、混合部30において良好な混合を得る観点、及び混合物をシート状に成形した場合に、重力による影響を受けにくくする観点からは、5質量%以上60質量%以下が好ましい。
 樹脂供給部88から供給される樹脂の量は、製造されるシートの種類に応じて、適切に設定される。図示の例では、供給された樹脂は、混合部30を構成する管86内で解繊物と混合される。なお、樹脂は、その他の成分とともに添加物として用いられてもよい。その他の成分としては、凝集抑制剤、着色材、有機溶剤、界面活性剤、防黴剤・防腐剤、酸化防止剤・紫外線吸収剤、酸素吸収剤等が挙げられる。以下、凝集抑制剤、着色材について詳述する。
 1.4.4.1.凝集抑制剤
 樹脂は、解繊物中の繊維同士の凝集や樹脂同士の凝集を抑制するための凝集抑制剤を含む添加物としてもよい。また、樹脂に凝集抑制剤を含ませる場合には、樹脂と凝集抑制剤とは一体化させることが好ましい。すなわち、樹脂に凝集抑制剤を含ませる場合には、樹脂と凝集抑制剤とを一体に有する複合体であることが好ましい。
 本明細書では、複合体というときには、樹脂を成分の一つとして他のものと一体に形成された粒子をいう。他のものとは、凝集抑制剤や着色材などをいうが、主成分となる樹脂と異なる形状、大きさ、材質、機能を有するものも含まれる。
 樹脂に、凝集抑制剤が配合された場合には、配合されない場合に比較して、樹脂及び凝集抑制剤を一体に有する複合体を、互いに凝集させにくくすることができる。凝集抑制剤としては、各種使用しうるが、本実施形態のシート製造装置100では、水を使用しない又はほとんど使用しないため、複合体の表面に配置される(コーティング(被覆)等でもよい。)種のものを使用することが好ましい。
 このような凝集抑制剤としては、無機物からなる微粒子が挙げられ、これを複合体の表面に配置することで、非常に優れた凝集抑制効果を得ることができる。なお、凝集とは、同種又は異種の物体が、静電気力やファンデルワールス力によって物理的に接して存在する状態を指す。また、複数の物体の集合体(例えば粉体)において、凝集していない状態という場合には、必ずしも当該集合体を構成する物体のすべてが離散して配置されることを指すものではない。すなわち、凝集していない状態には、集合体を構成する物体の一部が凝集している状態も含まれ、そのような凝集した物体の量が、集合体全体の10質量%以下、好ましくは5質量%以下程度となっていても、この状態を、複数の物体の集合体において「凝集していない状態」に含めるものとする。さらに、粉体等を袋詰め等した場合には、粉体の粒子同士は接触して存在する状態となるが、柔和な撹拌、気流による分散、自由落下など、粒子を破壊しない程度の外力を加えることにより、粒子を離散した状態にすることができる場合は、凝集していない状態に含めるものとする。
 凝集抑制剤の材質の具体例としては、シリカ、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化セリウム、酸化マグネシウム、酸化ジルコニウム、チタン酸ストロンチウム、チタン酸バリウム、炭酸カルシウムを挙げることができる。なお、凝集抑制剤の材質の一部(例えば酸化チタンなど)は、着色材の材質と同じとなるが、凝集抑制剤の粒子径は着色材の粒子径よりも小さい点で相違する。そのため、凝集抑制剤は、製造されるシートの色調に対して大きく影響せず、着色材とは区別可能である。ただし、シートの色調を調節する際には、凝集抑制剤の粒子径が小さくても、若干の光の散乱等の効果が生じる場合があるため、そのような効果を考慮することがより好ましい。
 凝集抑制剤の粒子の平均粒子径(数平均粒子直径)は、特に限定されないが、好ましくは、0.001~1μmであり、より好ましくは、0.008~0.6μmである。凝集抑制剤の粒子は、いわゆるナノパーティクルの範疇に近く、粒子径が小さいことから、一次粒子となっていることが一般的である。しかし、凝集抑制剤の粒子は、一次粒子の複数が結合して高次の粒子となっていてもよい。凝集抑制剤の一次粒子の粒子径が上記範囲内であれば、樹脂の表面に良好にコーティングを行うことができ、複合体の十分な凝集抑制効果を付与することができる。樹脂(粒子)の表面に凝集抑制剤が配置された複合体の粉体は、ある複合体と他の複合体の間に凝集抑制剤が存在することになり、互いの凝集が抑制される。なお、樹脂と凝集抑制剤とを一体でなく別体とする場合には、ある樹脂粒子と他の樹脂粒子の間に凝集抑制剤が常に存在するとは限らないため、樹脂粒子同士の凝集抑制効果は一体とした場合に比較して小さくなる場合がある。
 樹脂と凝集抑制剤とを一体にした複合体における凝集抑制剤の含有量は、複合体100質量部に対して、0.1質量部以上5質量部以下が好ましい。このような含有量であれば、上記効果を得ることができる。また、上記効果を高め及び/又は製造されるシートSやウェブWから凝集抑制剤が脱落することを抑制する、などの観点からすると、含有量は複合体100質量部に対して、好ましくは0.2質量部以上4質量部以下、より好ましくは0.5質量部以上3質量部以下である。
 凝集抑制剤を樹脂の表面へ配置する場合、複合体表面における凝集抑制剤が被覆する割合(面積比:本明細書ではこれを被覆率と称する場合がある。)は、20%以上100%以下とすれば、十分な凝集抑制効果を得ることができる。被覆率は、FMミキサー等の装置への仕込みによって調節することができる。さらに凝集抑制剤、樹脂の比表面積が既知であれば、仕込み時の各成分の質量(重量)によって調節することもできる。また、被覆率は、各種の電子顕微鏡により測定することもできる。なお、凝集抑制剤が、樹脂から脱落しにくい態様で配置された複合体では、凝集抑制剤と樹脂とが一体であるということができる。
 複合体に凝集抑制剤が配合されると、複合体の凝集を非常に生じにくくすることができるため、混合部30において樹脂(複合体)と繊維(解繊物)とをさらに容易に混ぜ合せることができる。すなわち、凝集抑制剤と樹脂との複合体が配合されると、複合体が速やかに空間に拡散し、凝集抑制剤が配合されない場合に比較して、より均一な繊維と添樹脂との混合物を形成することができる。
 1.4.4.2.着色材
 樹脂は、着色材を含む添加物としてもよい。また、樹脂に着色材を含ませる場合には、樹脂と着色材とは一体化させることが好ましい。すなわち、樹脂に着色材を含ませる場合には、樹脂と着色材とを一体に有する複合体であることが好ましい。
 樹脂及び着色材を一体に有する複合体とは、着色材がシート製造装置100内において、及び/又は、製造されるシートSにおいて、バラバラになり難い(脱落し難い)状態のことをいう。すなわち、樹脂及び着色材を一体に有する複合体とは、樹脂によって着色材が互いに接着されている状態、樹脂に着色材が構造的(機械的)に固定されている状態、樹脂と着色材とが静電気力、ファンデルワールス力等により凝集している状態、及び樹脂と着色材とが化学結合されている状態にあることを指す。また、複合体が樹脂及び着色材を一体に有する状態とは、着色材が樹脂に内包されている状態でも着色材が樹脂に付着している状態でもよく、その2つの状態が同時に存在する状態を含む。
 樹脂及び着色材を一体に有した複合体は、シート製造装置100内で各種の処理を受ける際やシートに成形された際に着色材が樹脂から脱落しにくい態様であれば、これらの態様に限定されず、着色材が樹脂の粒子の表面に静電気力や、ファンデルワールス力によって付着している状態であっても、着色材が樹脂粒子から脱落しにくければよい。また、上記例示した複数の態様を互いに組み合わせた態様であっても、着色材が複合体から脱落しにくい態様であればいずれも採用することができる。
 なお、着色材の複合体における配置は、「1.4.4.1.凝集抑制剤」の項で述べた凝集抑制剤の複合体における好ましい配置と概念的に同様である。ただし、凝集抑制剤は、着色材よりも粒子径が小さいことに注意する。
 着色材は、本実施形態のシート製造装置100によって製造されるシートSの色を所定のものとする機能を有する。着色材としては、染料又は顔料を用いることができ、複合体において樹脂と一体とした場合に、より良好な隠ぺい力や発色性が得られる観点からは顔料を用いることが好ましい。
 顔料としては、その色、種類ともに、特に限定されず、例えば、一般的なインクに使用される各種の色(白、青、赤、黄、シアン、マゼンダ、イエロー、黒、特色(パール、金属光沢)等)の顔料を使用することができる。顔料は無機顔料でもよいし、有機顔料でもよい。顔料としては、特開2012-87309号公報や特開2004-250559号公報に記載された周知の顔料を用いることができる。また、亜鉛華、酸化チタン、アンチモン白、硫化亜鉛、クレー、シリカ、ホワイトカーボン、タルク、アルミナホワイト等の白色顔料等を用いてもよい。これら顔料は、単独で用いてもよいし、適宜混合して用いてもよい。なお、白色の顔料を使用する場合には、前記例示したもののうち、酸化チタンを主成分とする粒子(顔料粒子)を含む粉体からなる顔料を使用することが、酸化チタンの屈折率の高さから、少ない配合量で、製造されるシートにおける白色度を高めることが容易な点でより好ましい。
 1.4.5.粗砕部
 シート製造装置は粗砕部を含んでもよい。図1に示すシート製造装置100では、解繊部20の上流側に粗砕部10が配置されている。粗砕部10は、パルプシートや古シート(例えばA4サイズの古紙)などの原料を、空気中で裁断して解繊部20に対してより適切な大きさの被解繊物を供給する。被解繊物の形状や大きさは、特に限定されないが、例えば、数cm角の被解繊物である。図示の例では、粗砕部10は、粗砕刃11を有し、粗砕刃11によって、投入された原料を裁断することができる。粗砕部10には、原料を連続的に投入するための自動投入部(図示せず)が設けられていてもよい。
 粗砕部10の具体的な例としては、シュレッダーが挙げられる。図示の例では、粗砕部10によって裁断されたシートは、ホッパー15で受けてから管81を介して、被解繊物として解繊部20へ搬送される。管81は、解繊部20の導入口21と連通している。
 1.4.6.選別部
 図示は省略するが、本実施形態のシート製造装置は、選別部を有してもよい。選別部は、解繊部20において解繊処理された解繊物を、繊維の長さによって選別する。したがって選別部は、解繊部20の下流で、混合部30よりも上流に設けられる。
 選別部としては、篩(ふるい)を用いることができる。ここで、選別部は、網(フィルター、スクリーン)を有し、網を通過可能な大きさのものと、通過できない大きさのものとを選別する。選別部は、上述のほぐし部70と同様に構成することができるが、ほぐし部70のように導入された材料の全てを通過させるのではなく、一部の成分を除去する機能を有する。選別部の例としては、モーターによって回転することができる回転式の篩である。選別部の網は、金網、切れ目が入った金属板を引き延ばしたエキスパンドメタル、金属板にプレス機等で穴を形成したパンチングメタルを用いることができる。
 選別部を設けることにより、解繊物又は混合物に含まれる、網の目開きの大きさより小さい繊維又は粒子と、網の目開きの大きさより大きい繊維や未解繊片やダマとを分けることができる。そして、選別された物質は、製造されるシートに応じて選択して用いることがでる。また、選別部によって取除かれた物質は、解繊部20に戻してもよい。
 1.4.7.加圧部
 本実施形態のシート製造装置100は、図示しない加圧部を有してもよい。加圧部は、混合部30の下流側であって、加熱部60の上流側に配置されることができる。加圧部は、ほぐし部70、シート成形部75を経て、シート状に形成されたウェブWを加熱せずに加圧するものであってもよい。従って、加圧部は、ヒーター等の加熱手段を有していない。すなわち、加圧部は、カレンダー処理を行う構成である。
 加圧部では、ウェブWを加圧(圧縮)することにより、ウェブW中の繊維同士の間隔(距離)が縮められ、ウェブWの密度を高めることができる。加圧部は、ローラーによりウェブWを挟み込んで加圧するように構成されることができ、一対の加圧ローラーを有する態様を採用することができる。
 加圧部では、加熱されず加圧のみ行われるので、機能材中に樹脂が含まれる場合には樹脂は溶融しない。また、機能材中に樹脂が含まれない場合においては、加圧部はウェブWの密度を高める機能を有する。加圧部では、ウェブWが圧縮され、ウェブW中の繊維同士の間隔(距離)が縮められる。すなわち、高密度化されたウェブWが形成される。加圧部の加圧力は、加熱部60による加圧力より大きくなるように設定されることが好ましい。例えば、加圧部の加圧力は、500~3000kgf、加熱部60の加圧力は、30~200kgfに設定することが好ましい。このように、加熱部60よりも加圧部の加圧力の方を大きくすることにより、加圧部によってウェブWに含まれる繊維間の距離を十分短くでき、その状態で加熱加圧することにより薄くて高密度で高強度のシートSを形成することができる。
 また、加熱ローラー61の径より加圧ローラーの径の方が大きくなるように設定されてもよい。換言すれば、ウェブWの搬送方向において、上流側に配置された加圧ローラーの径が、下流側に配置された加熱ローラー61の径よりも大きくしてもよい。加圧ローラーの径を大きくすると、未だ圧縮されていない状態のウェブWを噛み込ませて効率よく搬送することが可能となる。一方、加圧ローラーを通過したウェブWは圧縮された状態にあり、搬送しやすいため、加圧ローラーよりも下流側に配置された加熱ローラー61の径を小さくすることができる。これにより、装置構成を小型化することができる。なお、加熱ローラー61及び加圧ローラーの径は、製造されるウェブWの厚み等に応じて適宜設定される。
 1.4.8.切断部
 シート製造装置は切断部90を含んでもよい。図1に示すように、本実施形態のシート製造装置100は、加熱部60よりも下流側に、ウェブW(シートS)の搬送方向と交差する方向にシートを切断する切断部90としての第1切断部90a及び第2切断部90bが配置されている。切断部90は、必要に応じて設けられることができる。第1切断部90aは、カッターを備え、連続状のシートを所定の長さに設定された切断位置に従って枚葉状に裁断する。また、第1切断部90aよりシートSの搬送方向の下流側には、シートSの搬送方向に沿ってシートSを切断する第2切断部90bが配置されている。第2切断部90bは、カッターを備え、シートSの搬送方向における所定の切断位置に従って裁断(切断)する。これにより、所望するサイズのシートSが形成される。そして、切断されたシートSはスタッカー95等に積載される。
 1.5.作用効果
 本実施形態のシート製造装置100は、水を用いた抄き工程を経て坪量80g/m2以上のシートを形成する場合に比較して、非常に少ないエネルギーで坪量80g/m2以上のシートを形成することができる。すなわち、本実施形態のシート製造装置100の加熱部60によって、坪量80g/m2以上のシートを形成する際にウェブWに対して投入するエネルギーは、繊維と等質量以上の質量の水分を含むウェブを乾燥させて坪量80g/m2以上のシートとする際に消費されるエネルギーのおよそ0.014倍以上0.28倍以下となる。これにより投入するエネルギーを小さくすることができる。また、それによりシート製造装置にかかるコストを下げられる場合がある。また、樹脂を用いて繊維を結着することができる。なお、坪量80g/m2以上のシートを形成する際に投入するエネルギーは、坪量80g/m2以上のシートを形成する際に必要なエネルギーと同じである。
 2.その他の事項
 本明細書において、「均一」との文言は、均一な分散や混合という場合には、2種以上又は2相以上の成分を定義できる物体において、1つの成分の他の成分に対する相対的な存在位置が、系全体において一様、又は系の各部分において互いに同一若しくは実質的に等しいことを指す。本明細書において、「均一」「同じ」「等間隔」など、密度、距離、寸法などが等しいことを意味する言葉を用いている。これらは、等しいことが望ましいが、完全に等しくすることは難しいため、誤差やばらつきなどの累積で値が等しくならずにずれるのも含むものとする。
 本発明は、上述した実施形態に限定されるものではなく、さらに種々の変形が可能である。例えば、本発明は、実施形態で説明した構成と実質的に同一の構成(機能、方法及び結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。
 10…粗砕部、11…粗砕刃、15…ホッパー、20…解繊部、21…導入口、22…排出口、30…混合部、50…分級部、51…導入口、52…円筒部、53…逆円錐部、54…下部排出口、55…上部排出口、56…受け部、60…加熱部、60a…第1加熱部、60b…第2加熱部、61…加熱ローラー、70…ほぐし部、71…導入口、75…シート成形部、76…メッシュベルト、77…張架ローラー、78…サクション機構、81,82,84,86…管、87…供給口、88…樹脂供給部、90…切断部、90a…第1切断部、90b…第2切断部、95…スタッカー、100…シート製造装置、G…ガイド、W…ウェブ、S…シート。

Claims (5)

  1.  繊維と樹脂とを含んで堆積したウェブを加熱加圧し、複数の前記繊維を前記樹脂を介して結着して坪量80g/m2以上のシートを形成する際に、前記繊維と等質量以上の質量の水分を含むウェブを乾燥させて坪量80g/m2以上のシートとする際に消費されるエネルギーの0.014倍以上0.28倍以下のエネルギーを投入することを特徴とする、シート製造装置。
  2.  繊維と樹脂とを含んで堆積したウェブを加熱加圧し、複数の前記繊維を前記樹脂を介して結着して坪量80g/m2以上のシートを形成する際に投入するエネルギーが、前記シートのA4サイズ1枚あたり、174J以上3600J以下であることを特徴とする、シート製造装置。
  3.  前記ウェブを加熱加圧するより前に、前記繊維に水分を添加せず、
     前記エネルギーは、174J以上2600J以下であることを特徴とする、請求項2に記載のシート製造装置。
  4.  前記ウェブを加熱加圧する前に、前記繊維を調湿し、
     前記エネルギーは、174J以上3600J以下であることを特徴とする、請求項2に記載のシート製造装置。
  5.  前記ウェブの加熱には、加熱ローラーを用いることを特徴とする、請求項1ないし請求項4のいずれか1項に記載のシート製造装置。
PCT/JP2015/002058 2014-04-14 2015-04-13 シート製造装置 WO2015159531A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15779448.8A EP3133197B1 (en) 2014-04-14 2015-04-13 Sheet manufacturing device and method
US15/300,568 US10358752B2 (en) 2014-04-14 2015-04-13 Sheet manufacturing apparatus
CN201580019483.2A CN106471170B (zh) 2014-04-14 2015-04-13 薄片制造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014082553A JP6442857B2 (ja) 2014-04-14 2014-04-14 シート製造装置
JP2014-082553 2014-04-14

Publications (1)

Publication Number Publication Date
WO2015159531A1 true WO2015159531A1 (ja) 2015-10-22

Family

ID=54323755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002058 WO2015159531A1 (ja) 2014-04-14 2015-04-13 シート製造装置

Country Status (5)

Country Link
US (1) US10358752B2 (ja)
EP (1) EP3133197B1 (ja)
JP (1) JP6442857B2 (ja)
CN (1) CN106471170B (ja)
WO (1) WO2015159531A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6707842B2 (ja) * 2015-01-13 2020-06-10 セイコーエプソン株式会社 シート製造装置及びシート製造方法
CN107849766B (zh) * 2015-07-03 2020-12-29 精工爱普生株式会社 薄片制备装置、薄片制备方法、树脂粉体及薄片
JP6804837B2 (ja) * 2015-11-19 2020-12-23 セイコーエプソン株式会社 シート製造装置
SE539948C2 (en) * 2016-03-18 2018-02-06 The Core Company Ab ISOSTATIC PRESSURE FORMING OF HEATED DRY CELLULOSE FIBERS
WO2018043078A1 (ja) * 2016-08-31 2018-03-08 セイコーエプソン株式会社 シート製造装置
JP6988277B2 (ja) * 2017-08-31 2022-01-05 セイコーエプソン株式会社 シート製造装置
TWI727265B (zh) * 2018-02-28 2021-05-11 日商精工愛普生股份有限公司 網材形成裝置及片材製造裝置
JP7400394B2 (ja) * 2019-11-25 2023-12-19 セイコーエプソン株式会社 解繊方法および繊維体成形方法
JP7543674B2 (ja) * 2020-03-30 2024-09-03 セイコーエプソン株式会社 成形体の製造方法
JP7540182B2 (ja) * 2020-03-31 2024-08-27 セイコーエプソン株式会社 繊維成形体製造用原料および繊維成形体の製造方法
JP2022052117A (ja) * 2020-09-23 2022-04-04 セイコーエプソン株式会社 繊維構造体、及び繊維構造体の製造装置
JP2022138863A (ja) * 2021-03-11 2022-09-26 セイコーエプソン株式会社 成形体の製造方法
CN113693823B (zh) * 2021-07-22 2022-12-13 嘉恒医药(江苏)有限公司 无胶尿布专用芯层生产设备
JP7209914B1 (ja) * 2021-07-28 2023-01-20 旭化成株式会社 セルロース微細繊維及びその製造方法、不織布、並びに繊維強化樹脂及びその製造方法
JP2023036184A (ja) 2021-09-02 2023-03-14 セイコーエプソン株式会社 シート製造方法、及びシート製造装置
JP2024082371A (ja) * 2022-12-08 2024-06-20 セイコーエプソン株式会社 熱融着ボード製造装置、及び、混合装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08503255A (ja) * 1993-03-04 1996-04-09 ワッカー−ケミー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 繊維用バインダーとしての架橋性分散体粉末
JP2012144819A (ja) * 2011-01-12 2012-08-02 Seiko Epson Corp 紙再生装置及び紙再生方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2379163A (en) 1943-07-24 1945-06-26 Westinghouse Electric Corp Producing molded products
US4309246A (en) * 1977-06-20 1982-01-05 Crown Zellerbach Corporation Papermaking apparatus and method
JPH01148888A (ja) * 1987-12-03 1989-06-12 Kimberly Clark Corp 二次繊維を含有した新聞印刷用紙
EP0354546A3 (en) * 1988-08-11 1990-08-01 The B.F. Goodrich Company Porous nonwoven flat sheet
US5057166A (en) 1989-03-20 1991-10-15 Weyerhaeuser Corporation Method of treating discontinuous fibers
US5064689A (en) 1989-03-20 1991-11-12 Weyerhaeuser Company Method of treating discontinuous fibers
US5230959A (en) 1989-03-20 1993-07-27 Weyerhaeuser Company Coated fiber product with adhered super absorbent particles
DE69333678T2 (de) 1992-08-17 2005-03-03 Weyerhaeuser Co., Tacoma Bindemittel für Partikel
US5411636A (en) * 1993-05-21 1995-05-02 Kimberly-Clark Method for increasing the internal bulk of wet-pressed tissue
US5935879A (en) * 1994-09-21 1999-08-10 Owens Corning Fiberglas Technology, Inc. Non-woven fiber mat and method for forming same
JPH08120551A (ja) 1994-10-21 1996-05-14 Komatsu Felt Seizosho:Kk 防虫・抗菌フェルト及び不織布並びにその製造方法
CA2350140A1 (en) 1998-11-13 2000-05-25 Mitsui Chemicals, Incorporated Organic polymer/inorganic fine particle-dispersed aqueous solution having excellent stability and uses thereof
JP2007113010A (ja) 1998-11-13 2007-05-10 Mitsui Chemicals Inc 透明性に優れる有機重合体/無機微粒子複合体及びその用途
US6984276B2 (en) * 2001-12-21 2006-01-10 Invista North America S.Arl. Method for preparing high bulk composite sheets
EP1570976A1 (de) * 2004-03-04 2005-09-07 Alcan Technology & Management Ltd. Verarbeitung von zyklischen Oligomeren zu thermoplastischen PBT-Kunststoffen
JP4943874B2 (ja) 2007-01-28 2012-05-30 株式会社シード 古紙再生装置の抄紙装置
US8257551B2 (en) * 2008-03-31 2012-09-04 Kimberly Clark Worldwide, Inc. Molded wet-pressed tissue
CN101718024A (zh) * 2009-12-15 2010-06-02 汕头市奥山服饰有限公司 保暖絮片及其制造方法
CN102869822A (zh) 2010-04-13 2013-01-09 3M创新有限公司 无机纤维幅材及制备和使用方法
EP2664708B1 (en) * 2011-01-12 2017-04-12 Seiko Epson Corporation Paper recycling system and paper recycling process
JP6507468B2 (ja) * 2014-01-23 2019-05-08 セイコーエプソン株式会社 紙製造装置、紙製造方法及び紙
US9215941B1 (en) 2014-11-26 2015-12-22 Mcs Industries, Inc. Frame assembly
TW201700831A (zh) * 2015-04-06 2017-01-01 Seiko Epson Corp 片材製造裝置及片材製造方法
CN107849766B (zh) * 2015-07-03 2020-12-29 精工爱普生株式会社 薄片制备装置、薄片制备方法、树脂粉体及薄片

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08503255A (ja) * 1993-03-04 1996-04-09 ワッカー−ケミー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 繊維用バインダーとしての架橋性分散体粉末
JP2012144819A (ja) * 2011-01-12 2012-08-02 Seiko Epson Corp 紙再生装置及び紙再生方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3133197A4 *

Also Published As

Publication number Publication date
JP6442857B2 (ja) 2018-12-26
EP3133197A1 (en) 2017-02-22
US10358752B2 (en) 2019-07-23
JP2015203163A (ja) 2015-11-16
CN106471170A (zh) 2017-03-01
EP3133197A4 (en) 2017-12-06
CN106471170B (zh) 2019-04-23
EP3133197B1 (en) 2022-08-24
US20170114484A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6442857B2 (ja) シート製造装置
JP6127992B2 (ja) シート製造装置及びシート製造方法
JP6269235B2 (ja) シート製造装置
JP6264986B2 (ja) シート製造装置
JP6443407B2 (ja) シート製造装置及びシート製造方法
WO2015111104A1 (ja) 紙製造装置、紙製造方法及びこれらにより製造される紙
JP6609898B2 (ja) シート製造装置、シート製造方法、及びこれらにより製造されるシート、並びに、これらに用いる複合体、その収容容器、及び複合体の製造方法
TWI652390B (zh) Sheet manufacturing device
JP6439929B2 (ja) シート製造装置及びシート製造方法
JP6361209B2 (ja) シート製造装置、シート製造方法及びシート
WO2016163118A1 (ja) シート製造装置及びシート製造方法
JP2015183321A (ja) シート及びシート製造装置
JP6311369B2 (ja) シート製造装置
JP2016079533A (ja) シート製造装置及びシート製造方法
JP2019023318A (ja) 複合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779448

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15300568

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015779448

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015779448

Country of ref document: EP