WO2015158272A1 - 贵金属掺杂二氧化钛纳米粉制备氢气传感器的方法 - Google Patents
贵金属掺杂二氧化钛纳米粉制备氢气传感器的方法 Download PDFInfo
- Publication number
- WO2015158272A1 WO2015158272A1 PCT/CN2015/076697 CN2015076697W WO2015158272A1 WO 2015158272 A1 WO2015158272 A1 WO 2015158272A1 CN 2015076697 W CN2015076697 W CN 2015076697W WO 2015158272 A1 WO2015158272 A1 WO 2015158272A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- titanium dioxide
- powder
- dioxide nano
- noble metal
- hydrogen
- Prior art date
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 42
- 239000004408 titanium dioxide Substances 0.000 title claims abstract description 21
- 239000011858 nanopowder Substances 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 title claims abstract description 13
- 229910000510 noble metal Inorganic materials 0.000 title claims abstract description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title abstract description 25
- 238000004519 manufacturing process Methods 0.000 title abstract description 4
- 229910052751 metal Inorganic materials 0.000 claims abstract description 9
- 239000002184 metal Substances 0.000 claims abstract description 9
- 239000008367 deionised water Substances 0.000 claims abstract description 7
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 7
- 238000002156 mixing Methods 0.000 claims abstract description 7
- 239000000843 powder Substances 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000005245 sintering Methods 0.000 claims abstract description 5
- 238000000227 grinding Methods 0.000 claims abstract description 4
- 238000003825 pressing Methods 0.000 claims abstract description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 36
- 239000001257 hydrogen Substances 0.000 claims description 35
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 12
- 239000010931 gold Substances 0.000 claims description 6
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 239000010970 precious metal Substances 0.000 claims description 4
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 3
- 238000004544 sputter deposition Methods 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 210000001161 mammalian embryo Anatomy 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 238000000206 photolithography Methods 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 150000002431 hydrogen Chemical class 0.000 description 13
- 239000000919 ceramic Substances 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000004570 mortar (masonry) Substances 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000001755 magnetron sputter deposition Methods 0.000 description 3
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 3
- 230000001699 photocatalysis Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000007084 catalytic combustion reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- -1 tin oxide hydrogen Chemical class 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002127 nanobelt Substances 0.000 description 1
- 239000002106 nanomesh Substances 0.000 description 1
- 239000002073 nanorod Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001603 reducing effect Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0009—General constructional details of gas analysers, e.g. portable test equipment
- G01N33/0027—General constructional details of gas analysers, e.g. portable test equipment concerning the detector
- G01N33/0036—General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
- G01N33/005—H2
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
- G01N27/125—Composition of the body, e.g. the composition of its sensitive layer
- G01N27/127—Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
Definitions
- the invention belongs to the technical field of hydrogen sensor preparation, and in particular relates to a method for preparing a hydrogen sensor by doping titanium dioxide nano powder with noble metal.
- Conventional oxide semiconductor type hydrogen sensors have disadvantages such as high energy consumption, low sensitivity, and high operating temperature.
- a tin oxide hydrogen sensor which is relatively common on the market, which forms a thick film on a ceramic substrate by screen printing, and then is sintered into a porous ceramic by high temperature.
- On the back side of the ceramic substrate there is a heating circuit for heating the tin oxide ceramic, so that the resistance has a large response to hydrogen at a higher temperature and the detection is completed.
- High-temperature heating not only makes the device circuit more complicated, but also hydrogen is a flammable and explosive gas, which increases the risk during the test. Therefore, there is an urgent need for a semiconductor hydrogen sensor that can operate at room temperature.
- nanostructured metal oxide semiconductors responds well to hydrogen at room temperature.
- these nanomaterials are currently a one-dimensional structure, including nanowires, nanorods, nanobelts, nanotubes, etc., or their composites, including nanoarrays, nanomesh structures, and the like.
- These nanostructures generally have poor consistency and are not suitable for mass production, which seriously restricts their commercial application in hydrogen sensors.
- the technical problem to be solved by the present invention is to provide a method for preparing a hydrogen sensor by doping a titanium dioxide nanopowder with a noble metal.
- the present invention is doped with hydrogen molecules
- the noble metal material having a cracking action causes hydrogen to be decomposed into highly active hydrogen atoms at room temperature, and the hydrogen atoms react with titanium dioxide to lower the electric resistance, thereby enabling the hydrogen gas sensor to operate at room temperature.
- Titanium dioxide nanopowder is used as raw material.
- traditional ceramic preparation process including tableting, sintering and electrode preparation, the prepared materials have good performance consistency and can be mass-produced to meet the requirements of commercial application of hydrogen sensor.
- the pressure of the embryo body can be 10 MPa.
- step 3 the green body is sintered at a temperature of 350-600 ° C. 0.5-2 In an hour, a connection is formed between the titanium dioxide particles, but no serious grain growth occurs, and densification is not complete, thereby obtaining a block having a certain strength and a certain porosity.
- Step 4 a pair of metal electrodes are formed on the surface of the block by a method such as sputtering or photolithography.
- the metal electrode may be platinum, gold, silver or the like.
- the metal electrodes are formed in pairs to measure the electrical resistance between the two electrodes.
- the invention uses titanium dioxide nano powder as raw material and is doped with a certain concentration of Pt, Pd and Au.
- the precious metal powder is formed into a certain shape by pressure forming, and after being sintered at an appropriate temperature, a nano-block having a certain porosity is obtained, and then a metal electrode is prepared on the surface of the nano-block by sputtering.
- a hydrogen sensor that responds well to hydrogen at room temperature.
- the process is simple and controllable, the sample is consistent, the repeatability is good, and the nano-block having a certain porosity is obtained by doping the precious metal and controlling the sintering temperature.
- the hydrogen sensor based on the block has a good response to hydrogen, which can effectively reduce its working temperature until room temperature.
- Figure 1 is a SEM image of a TiO 2 nanoblock sintered at 550 °C doped with 5 wt% Pt in Example 2.
- Example 2 is a 550 ° C sintered titanium dioxide nano-block resistance doping with 5 wt% Pt in Example 2, room temperature versus 1% Hydrogen response curve.
- Example 1 Using commercially available nano titanium dioxide photocatalytic material P25 as raw material, adding 1 wt% of Pd The powder, deionized water, was ball milled by a ball mill for 4 hours, dried at 110 ° C, and then deionized water was used as a binder to grind and granulate in an agate mortar. Through the mold, to 10MPa The pressure was pressed into a disc having a diameter of 12 mm and a thickness of 1 mm. Heat the wafer at 350 ° C in a box furnace 2 After hours, remove it with the oven to room temperature. A pair of Pt 2 mm wide, 5 mm long, and 3 mm apart is formed on one surface of the wafer by magnetron sputtering. Electrode.
- a pair of leads are soldered to the pair of electrodes and connected to a resistance meter to measure the electrical resistance between the two electrodes.
- Hydrogen in the environment can significantly reduce the measured resistance, and the higher the hydrogen concentration, the greater the magnitude of the resistance drop.
- the ambient hydrogen concentration can be measured based on the measured resistance.
- Example 2 Using a commercially available nano titanium dioxide photocatalytic material P25 as a raw material, a suspension was prepared in deionized water, 5 wt% of Pt powder was added, and the mixture was uniformly stirred by magnetic stirring for 4 hours, and the mixture was separated by centrifugation. Platinum powder P25, dried at 110 ° C, and then deionized water as a binder, ground and granulated in an agate mortar. A disk having a diameter of 12 mm and a thickness of 1 mm was pressed by a die at a pressure of 10 MPa. The wafer was heat treated at 550 ° C for 2 hours in a box furnace and taken out while cooling to room temperature. It can be seen from Fig.
- the ceramics obtained under such conditions have a titanium dioxide grain size of less than 100 nm and a large number of voids. This is very advantageous for the diffusion of hydrogen into the interior of the ceramic.
- a pair of Au electrodes having a width of 2 mm, a length of 5 mm, and a distance of 3 mm were formed on one surface of the wafer by magnetron sputtering.
- a pair of leads were soldered to the pair of electrodes, a 15 volt DC voltage was applied between the pair of electrodes, and the current passing between the pair of electrodes was measured.
- the resistance of titanium dioxide decreases with the increase of hydrogen concentration. The larger the hydrogen concentration, the larger the measured current.
- the measured resistance can be known by measuring the obtained resistance.
- Example 3 Using commercially available nano titanium dioxide photocatalytic material P25 as raw material, adding 10% by weight of Au powder, mixing in an agate mortar for 4 hours, and then using alcohol as a binder, grinding and granulating in an agate mortar .
- a disk having a diameter of 12 mm and a thickness of 1 mm was pressed by a die at a pressure of 10 MPa.
- the wafer was heat-treated at 600 ° C for 0.5 hour in a box furnace and taken out while cooling to room temperature.
- a pair of Pt electrodes each having a width of 2 mm, a length of 5 mm, and a distance of 3 mm were formed on one surface of the wafer by magnetron sputtering.
- Soldering a pair of leads to the pair of electrodes, connecting with the resistance meter to measure the resistance between the two electrodes, the hydrogen in the environment can significantly reduce the measured resistance, and the higher the hydrogen concentration, the greater the magnitude of the resistance drop, according to The measured resistance can be used to measure the ambient hydrogen concentration.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Electrochemistry (AREA)
- Combustion & Propulsion (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
一种贵金属掺杂二氧化钛纳米粉制备氢气传感器的方法,包括如下步骤:1)将二氧化钛纳米粉料和二氧化钛纳米粉料质量1~10%的贵金属粉料混合;2)将掺杂后的二氧化钛纳米粉料与去离子水混合,研磨造粒,采用模具压制成坯体;3)将坯体在350-600摄氏度温度下烧结0.5-2小时;4)在烧结后的纳米块体表面形成成对的金属电极。该氢气传感器对氢气具有良好的响应,可有效降低其工作温度,直至室温。
Description
本发明属于氢气传感器制备技术领域,尤其是涉及一种 贵金属掺杂二氧化钛纳米粉制备氢气传感器的方法 。
背景技术
在化工、半导体、食品加工以及能源生产等众多领域,都需要对环境氢气浓度进行实时监测。当前氢气传感器一般可分为热传导型、催化燃烧型、电化学型及半导体型几大类。其中热传导和催化燃烧型传感器的灵敏度偏低,且对氢气选择性不佳;电化学氢气传感器在室温下具有较高的灵敏度和较快的响应速度,目前应用最为广泛。但其使用的电解液易泄漏、挥发,使该氢气传感器寿命较短,且价格也比较昂贵;半导体型传感器由于具有稳定性好、结构简单、价格便宜和易于复合等特点,特别适用于还原性气体的检测,正越来越引起人们的广泛重视。
传统的氧化物半导体型氢传感器尚存在耗能高、灵敏度低、工作温度较高等缺点。例如市场上比较常见的氧化锡氢气传感器,它是通过丝网印刷在陶瓷基片上形成厚膜,再经过高温烧结成为多孔陶瓷。而陶瓷基片的背面,则有一个加热电路,对氧化锡陶瓷进行加热,使其电阻在较高温度下对氢气具有较大的响应而完成检测。而高温加热不仅使器件电路更加复杂,而且氢气是易燃易爆气体,更增加了测试过程中的风险。因此人们迫切需要能够工作在室温的半导体氢气传感器。
人们发现许多纳米结构的金属氧化物半导体的电阻在室温下对氢气具有很好的响应。但目前这些纳米材料要么是一种一维结构,包括纳米线、纳米棒、纳米带、纳米管等等,要么是它们的复合体,包括纳米阵列、纳米网状结构等等。这些纳米结构普遍存在一致性较差、不适合大批量生产等问题,严重制约了它们在氢气传感器中的商业应用。
发明内容
本发明 要解决的技术问题是提供 一种 贵金属掺杂 二氧化钛纳米粉制备氢气传感器的方法。
本发明通过掺杂对氢 分子
具有裂解作用的贵金属材料,使氢气在室温下被分解成高活性的氢原子,氢原子与二氧化钛反应使其电阻下降,从而使氢气传感器能够在室温工作。
本发明以
二氧化钛纳米粉料为原料,通过传统的陶瓷制备工艺,包括压片、烧结、电极制备,所制备的材料性能一致性好、可批量化生产,满足氢气传感器商业化应用的要求。
本发明的 技术方案包括如下步骤:
1 )将二氧化钛纳米粉料和二氧化钛纳米粉料质量 1~10% 的贵金属粉料混合;
2 )将掺杂后的二氧化钛纳米粉料与去离子水混合,研磨造粒,采用模具压制成坯体;
3 )将坯体在 350-600 摄氏度温度下烧结 0.5-2 小时;
4 )在烧结后的纳米块体表面形成成对的金属电极。
步骤 2 )中,压制成胚体的压力可以为 10MPa 。
步骤 3 )中,将坯体在 350-600 摄氏度温度下烧结 0.5-2
小时,使二氧化钛颗粒之间形成连接,但不出现严重的晶粒生长,致密化也不完全,从而得到具有一定强度、一定孔隙率的块体。
步骤 4
)中,通过溅射、光刻等方法,在块体表面形成成对的金属电极。所述的金属电极可以为铂、金、银等。金属电极要成对形成,以便对两个电极之间的电阻进行测量。
本发明以二氧化钛纳米粉料为原料,掺杂一定浓度的 Pt 、 Pd 、 Au
等贵金属粉料,通过压力成型制成一定形状的坯体,经过适当的温度烧结,得到具有一定孔隙率的纳米块体,再通过溅射的方法在纳米块体表面制备金属电极,就能够得到在室温下对氢气具有良好响应的氢气传感器。
本发明方法
工艺简单可控、样品的一致性、重复性好,而且通过掺杂贵金属、控制烧结温度以得到具有一定孔隙率的纳米块体,
基于该块体制备的氢气传感器对氢气具有良好的响应,可有效降低其工作温度,直至室温。
附图说明
图 1 为实施例 2 中 掺杂 5wt%Pt 的 550 ℃烧结的二氧化钛纳米块体 SEM 图。
图 2 为实施例 2 中掺杂 5wt%Pt 的 550 ℃烧结的二氧化钛纳米块体电阻室温对 1%
氢气的响应曲线图。
具体实施方式
实施例 1 :以市售的纳米二氧化钛光催化材料 P25 为原料,加入 1wt% 的 Pd
粉,以去离子水为媒介,通过球磨机球磨 4 小时, 110 摄氏度烘干,再以去离子水作为粘结剂,在玛瑙研钵中研磨造粒。通过模具,以 10MPa
的压力压制成直径为 12 毫米、厚度为 1 毫米的圆片。在箱式炉中对该圆片在 350 摄氏度热处理 2
小时,随炉冷却至室温取出。通过磁控溅射,在圆片的一个表面上形成一对宽 2 毫米、长 5 毫米、相距 3 毫米的 Pt
电极。对该对电极焊接一对引线引出,与电阻计连接以测量两个电极之间的电阻。环境中的氢气可使测量到的电阻显著下降,而且氢气浓度越高电阻下降的幅度越大,根据测量到的电阻即可进行环境氢气浓度测量。
实施例 2 :以市售的纳米二氧化钛光催化材料 P25 为原料,以去离子水配成悬浮液,加入 5wt% 的
Pt 粉,通过磁力搅拌 4 小时,使其混合均匀,通过离心分离出掺有铂粉的 P25 , 110
摄氏度烘干,再以去离子水作为粘结剂,在玛瑙研钵中研磨造粒。通过模具,以 10MPa 的压力压制成直径为 12 毫米、厚度为 1
毫米的圆片。在箱式炉中对该圆片在 550 摄氏度热处理 2 小时,随炉冷却至室温取出。从附图 1 可看到,这种条件得到的陶瓷,二氧化钛晶粒多数小于 100
纳米,具有较多的空隙。这对于氢气扩散到陶瓷的内部是非常有利的。通过磁控溅射,在圆片的一个表面上形成一对宽 2 毫米、长 5 毫米、相距 3 毫米的 Au
电极。对该对电极焊接一对引线引出,在该对电极间施加一个 15
伏的直流电压,并测量通过这对电极之间的电流。二氧化钛的电阻随着氢气浓度的增加而降低,氢气浓度越大,测量到的电流就越大,根据欧姆定律计算出的电阻就越大,见附图
2 ,在一个管式炉中,当通入 1%H2+N2 时,测量计算出的电阻迅速下降 500
倍,而当通入空气后,电阻又迅速恢复,重复性良好。根据电阻与氢气浓度的对应关系,通过测量得到的电阻就可以知道被测的氢气浓度。
实施例3:以市售的纳米二氧化钛光催化材料P25为原料,加入10wt%的Au粉,在玛瑙研钵中进行混合4小时,再以酒精作为粘结剂,在玛瑙研钵中研磨造粒。通过模具,以10MPa的压力压制成直径为12毫米、厚度为1毫米的圆片。在箱式炉中对该圆片在600摄氏度热处理0.5小时,随炉冷却至室温取出。通过磁控溅射,在圆片的一个表面上形成一对宽2毫米、长5毫米、相距3毫米的Pt电极。对该对电极焊接一对引线引出,与电阻计连接以测量两个电极之间的电阻,环境中的氢气可使测量到的电阻显著下降,而且氢气浓度越高电阻下降的幅度越大,根据测量到的电阻即可进行环境氢气浓度测量。
Claims (5)
- 贵金属掺杂 二氧化钛纳米粉制备氢气传感器的方法,其特征在于,包括如下步骤:1 ) 将二氧化钛纳米粉料和二氧化钛纳米粉料质量 1~10% 的贵金属粉料混合;2 )将掺杂后的二氧化钛纳米粉料与去离子水混合,研磨造粒,采用模具压制成坯体;3 )将坯体在 350-600 摄氏度温度下烧结 0.5-2 小时;4 )在烧结后的纳米块体表面形成成对的金属电极 。
- 根据权利要求 1 所述的方法,其特征在于,所述贵金属为 Pt 、 Pd 或 Au 。
- 根据权利要求 1 或 2 所述的方法,其特征在于, 步骤 2 )中,压制成胚体的压力为 10MPa 。
- 根据权利要求 1 或 2 所述的方法,其特征在于, 步骤 4 )中,通过溅射或光刻方法,在块体表面形成成对的金属电极。
- 根据权利要求 4 所述的方法,其特征在于, 所述的金属电极为铂、金或银。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410154763.1A CN103926285B (zh) | 2014-04-17 | 2014-04-17 | 贵金属掺杂二氧化钛纳米粉制备氢气传感器的方法 |
CN201410154763.1 | 2014-04-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015158272A1 true WO2015158272A1 (zh) | 2015-10-22 |
Family
ID=51144582
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/076697 WO2015158272A1 (zh) | 2014-04-17 | 2015-04-16 | 贵金属掺杂二氧化钛纳米粉制备氢气传感器的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103926285B (zh) |
WO (1) | WO2015158272A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3702769A1 (en) * | 2019-02-27 | 2020-09-02 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Capacitive hydrogen sensor |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103926285B (zh) * | 2014-04-17 | 2016-04-27 | 武汉大学 | 贵金属掺杂二氧化钛纳米粉制备氢气传感器的方法 |
CN107024513B (zh) * | 2016-02-01 | 2021-08-24 | 武汉市义光亿科贸有限公司 | 气敏元件、气敏装置和系统 |
CN107290397A (zh) * | 2017-06-04 | 2017-10-24 | 郑州大学 | 一种氢气传感器的制备方法及氢气传感器 |
CN107894448B (zh) * | 2017-11-09 | 2020-05-01 | 福州大学 | 一种硼掺杂二氧化钛的光助气敏元件及制备方法与应用 |
CN107884453A (zh) * | 2017-11-13 | 2018-04-06 | 青海民族大学 | 一种钯修饰二氧化钛纳米管阵列肖特基结氢敏传感器及其制备方法 |
CN114235904B (zh) * | 2021-12-17 | 2022-11-01 | 电子科技大学 | 一种ppb级氢气传感器及其制备方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005338051A (ja) * | 2003-12-17 | 2005-12-08 | Ngk Spark Plug Co Ltd | 水素ガスセンサ |
US20060264325A1 (en) * | 2005-05-18 | 2006-11-23 | Enerage, Inc. | Supported metal electrocatalyst materials and the method for forming the same |
CN101625335A (zh) * | 2009-08-19 | 2010-01-13 | 河北理工大学 | 一种厚膜型极限电流氢气传感器及其制备方法 |
JP2010210242A (ja) * | 2009-03-06 | 2010-09-24 | Atsumi Tec:Kk | 水素センサ |
CN102297881A (zh) * | 2011-05-26 | 2011-12-28 | 东南大学 | 基于复合二氧化钛纳米管的氢气传感器制备方法 |
CN102495045A (zh) * | 2011-11-07 | 2012-06-13 | 华中科技大学 | 一种光纤氢气传感器用氢敏材料及其制备方法 |
CN103336092A (zh) * | 2013-06-14 | 2013-10-02 | 浙江大学 | 基于涡街与压电薄膜的氢气传感器及其制备方法 |
CN103364449A (zh) * | 2012-03-31 | 2013-10-23 | 湖北大学 | 一种表面覆盖Pt电极的TiO2纳米管阵列室温氢气传感器 |
CN103926285A (zh) * | 2014-04-17 | 2014-07-16 | 武汉大学 | 贵金属掺杂二氧化钛纳米粉制备氢气传感器的方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7011737B2 (en) * | 2004-04-02 | 2006-03-14 | The Penn State Research Foundation | Titania nanotube arrays for use as sensors and method of producing |
CN101290310B (zh) * | 2007-04-20 | 2012-01-11 | 中国科学院大连化学物理研究所 | 一种压电式氢气传感器及其制备和应用 |
US8652993B2 (en) * | 2011-08-18 | 2014-02-18 | University Of Central Florida Research Foundation, Inc. | Doped palladium containing oxidation catalysts |
CN102502794B (zh) * | 2011-10-28 | 2014-01-29 | 安徽师范大学 | 多孔纳米二氧化锡的制备方法 |
-
2014
- 2014-04-17 CN CN201410154763.1A patent/CN103926285B/zh not_active Expired - Fee Related
-
2015
- 2015-04-16 WO PCT/CN2015/076697 patent/WO2015158272A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005338051A (ja) * | 2003-12-17 | 2005-12-08 | Ngk Spark Plug Co Ltd | 水素ガスセンサ |
US20060264325A1 (en) * | 2005-05-18 | 2006-11-23 | Enerage, Inc. | Supported metal electrocatalyst materials and the method for forming the same |
JP2010210242A (ja) * | 2009-03-06 | 2010-09-24 | Atsumi Tec:Kk | 水素センサ |
CN101625335A (zh) * | 2009-08-19 | 2010-01-13 | 河北理工大学 | 一种厚膜型极限电流氢气传感器及其制备方法 |
CN102297881A (zh) * | 2011-05-26 | 2011-12-28 | 东南大学 | 基于复合二氧化钛纳米管的氢气传感器制备方法 |
CN102495045A (zh) * | 2011-11-07 | 2012-06-13 | 华中科技大学 | 一种光纤氢气传感器用氢敏材料及其制备方法 |
CN103364449A (zh) * | 2012-03-31 | 2013-10-23 | 湖北大学 | 一种表面覆盖Pt电极的TiO2纳米管阵列室温氢气传感器 |
CN103336092A (zh) * | 2013-06-14 | 2013-10-02 | 浙江大学 | 基于涡街与压电薄膜的氢气传感器及其制备方法 |
CN103926285A (zh) * | 2014-04-17 | 2014-07-16 | 武汉大学 | 贵金属掺杂二氧化钛纳米粉制备氢气传感器的方法 |
Non-Patent Citations (1)
Title |
---|
LV , YI ET AL.: "Pd Doped TiO_2 Nanotube Arrays: Preparation and Hydrogen-Sensing Performance.", CHINESE JOURNAL OF INORGANIC CHEMISTRY., vol. 26, no. 4, 30 April 2010 (2010-04-30), pages 627 - 632 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3702769A1 (en) * | 2019-02-27 | 2020-09-02 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Capacitive hydrogen sensor |
WO2020175994A1 (en) | 2019-02-27 | 2020-09-03 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Capacitive hydrogen sensor |
Also Published As
Publication number | Publication date |
---|---|
CN103926285B (zh) | 2016-04-27 |
CN103926285A (zh) | 2014-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015158272A1 (zh) | 贵金属掺杂二氧化钛纳米粉制备氢气传感器的方法 | |
CN105911105B (zh) | SnO2掺杂催化剂的CO传感材料及其制备方法和应用 | |
Meng et al. | Preparation and gas sensing properties of undoped and Pd-doped TiO2 nanowires | |
WO2018082585A1 (zh) | 一种多孔氧化锌纳米片负载高分散纳米贵金属复合气敏材料的合成方法 | |
Zhao et al. | A room temperature sub-ppm NO 2 gas sensor based on WO 3 hollow spheres | |
KR101671405B1 (ko) | 반도체 가스센서용 금속/반도체 코어-쉘구조의 나노입자 혼합형 가스감지물질 및 이를 이용한 반도체 가스센서 | |
TWI603080B (zh) | Micro gas sensor and its manufacturing method | |
CN102636522A (zh) | 石墨烯/二氧化锡纳米复合电阻型薄膜气体传感器及其制作方法 | |
Deng et al. | A high sensitive and low detection limit of formaldehyde gas sensor based on hierarchical flower-like CuO nanostructure fabricated by sol–gel method | |
CN107698252A (zh) | 一种陶瓷材料作为高温稳定压电能量收集材料的应用及制备方法 | |
CN103558261A (zh) | 一种室温氢气传感器的制备方法 | |
JP2023520825A (ja) | 自己加熱型ガスセンサー、ガス感受性材料、その製造方法及び使用 | |
CN104569081A (zh) | In2O3微米花/SnO2纳米粒子复合材料的乙醇气体传感器及制备方法 | |
CN105699440B (zh) | 一种氧化钨纳米花氢气传感器的制备方法 | |
CN112730531A (zh) | 一种基于三氧化钼纳米片的硫化氢气体传感器制备方法 | |
JP6241943B2 (ja) | ボロンドープダイヤモンドナノ粒子の製造方法 | |
CN110687185A (zh) | 基于SnO2@Fe2O3纳米异质结构敏感材料的低功耗丙酮气体传感器及其制备方法 | |
Asal et al. | Acetone gas sensing features of zinc oxide/tin dioxide nanocomposite for diagnosis of diabetes | |
CN108760848A (zh) | 以BiFeO3为敏感电极的CeO2基混成电位型丙酮传感器、制备方法及其应用 | |
CN108303494B (zh) | 立杆式大气环境监测装置 | |
CN109211982A (zh) | 一种高稳定二氧化锡纳米陶瓷基一氧化碳室温传感器及其制备方法 | |
CN108760836B (zh) | 一种低温乙醇检测单元 | |
Wang et al. | Effect of Ce3+ and Pd2+ doping on coral-like nanostructured SnO2 as acetone gas sensor | |
JP2011075421A (ja) | ガス感知体及びガスセンサ | |
CN108562615B (zh) | 一种室温工作的二氧化氮泄漏检测装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15779623 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15779623 Country of ref document: EP Kind code of ref document: A1 |