CN103336092A - 基于涡街与压电薄膜的氢气传感器及其制备方法 - Google Patents

基于涡街与压电薄膜的氢气传感器及其制备方法 Download PDF

Info

Publication number
CN103336092A
CN103336092A CN2013102379997A CN201310237999A CN103336092A CN 103336092 A CN103336092 A CN 103336092A CN 2013102379997 A CN2013102379997 A CN 2013102379997A CN 201310237999 A CN201310237999 A CN 201310237999A CN 103336092 A CN103336092 A CN 103336092A
Authority
CN
China
Prior art keywords
hydrogen
piezoelectric
piezoelectric sensing
vortex street
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013102379997A
Other languages
English (en)
Other versions
CN103336092B (zh
Inventor
刘伟庭
陈然
傅新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201310237999.7A priority Critical patent/CN103336092B/zh
Publication of CN103336092A publication Critical patent/CN103336092A/zh
Application granted granted Critical
Publication of CN103336092B publication Critical patent/CN103336092B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种基于涡街与压电薄膜的氢气传感器及其制备方法。通过旋转涂覆方法,实现微米级压电薄膜的制备;之后,通过磁控溅射手段在微纳纤维上修饰气敏层与对照电极层;最后对复合压电膜极化封装组装部件实现基于涡街与压电薄膜的氢传感单元制备。本发明采用旋转涂覆与磁控溅射方法,实现气敏压电薄膜的制备;通过机械加工加工涡街。整个制备过程耗时短,耗能少,效率高;在材料方面仅用到少量的金属、聚合物溶液与靶材,材料成本低;通过对溶剂参数和操作参数的调整,可以更为精确的控制压电薄膜的厚度;通过调节溅射参数,可以实现气敏层厚度的调节。该传感器兼具流量检测与浓度检测的功能,可以同时检测管道的流量与氢气浓度,具有良好的动态特性与较高的灵敏度。

Description

基于涡街与压电薄膜的氢气传感器及其制备方法
技术领域
本发明涉及一种氢气传感器及其制备方法,尤其是涉及一种基于涡街与压电薄膜的氢气传感器及其制备方法。
背景技术
中国是近年来新能源和可再生能源增长速度最快的国家,其中,氢能源占全部可再生能源的12.1%(2004),因其高产能无污染的特性这一比重在继续扩大,但氢气的危险性决定必须对其合理有效的检测。因此,低碳制造和氢能源新兴产业的发展都急需灵敏度高、安全性好的气体检测技术的出现。从这两方面考虑,开展高灵敏度、高稳定性的气敏传感技术的基础科学问题和关键共性技术研究对低碳制造及氢能源新兴产业的发展,乃至十二五规划中的节能减排这一战略目标的实现都具有重要意义。
通过最近几十年的研究,已经有许多种气体检测技术得以工业化,其中应用最为广泛的方法是金属氧化物检测法和光谱分析法。前者以稳定的性能和简单的接口设计为其赢得了很大的市场,而后者的优势在于良好的选择性和高精度与灵敏度。而上述两种方法在用于检测氢气时则存在着局限:由于金属氧化物对还原性气体的响应具有普遍性,而对氢气物特殊的响应,因此金属氧化物检测方法对氢气的选择性较差;对于不会吸收红外光与紫外光的氢气来说,光谱分析的应用也受到了限制;同时,两种方法都存在动态特性差的问题,不适合管道中氢气的检测。
为了解决这些问题,有必要研究一种基于涡街与压电薄膜的氢气传感器,实现动态性能好、灵敏度高、微型化的氢气检测。
发明内容
本发明的目的在于提供一种基于涡街与压电薄膜的氢气传感器及其制备方法。利用机械加工、旋转涂覆与磁控溅射方法制备基于涡街与压电薄膜的氢气传感器,提高氢气传感器的灵敏度与动态特性,简化传感器的制备过程。
本发明解决其技术问题采用的技术方案是:
一、一种基于涡街与压电薄膜的氢气传感器
传感器一外筒壁,在外筒壁前端固定一涡街发生器,后端对称安装氢敏压电传感单元和对照压电传感单元;当气体流动时,涡街发生器产生气体涡街,氢敏压电传感单元和对照压电传感单元在气体涡街影响下受迫振动产生信号;当氢气浓度变化时,氢敏压电传感单元表面复合压电薄膜固有频率变化导致氢敏压电传感单元和对照压电传感单元输出信号相位差发生变化,根据输出信号相位差值测得氢气浓度;同时,当气体流量发生变化时,氢敏压电传感单元与对照压电传感单元输出信号频率发生变化,根据输出信号频率得到气体流量。
所述的氢敏压电传感单元由氢敏压电传感单元基底与复合压电薄膜构成,其中复合压电薄膜分为3层,Pd氢敏感层、PVDF压电层与Cu对照电极层,Pd氢敏感层与Cu对照电极层分别溅射在PVDF压电层两面,Cu对照电极层粘贴在氢敏压电传感单元基底上;对照压电传感单元由对照压电传感单元基底与复合压电薄膜构成,其中复合压电薄膜分为3层,Pd氢敏感层、PVDF压电层与Cu对照电极层,Pd氢敏感层与Cu对照电极层分别溅射在PVDF压电层两面,Pd氢敏感层粘贴在对照压电传感单元基底上;氢敏压电传感单元与对照压电传感单元输出信号均为PVDF压电层两端由于压电效应产生的信号。
二、一种基于涡街与压电薄膜的氢气传感器制备方法
本发明制备一种基于涡街与压电薄膜的氢气传感器的具体步骤如下:
(1)室温下,将二甲基甲酰胺(DMF)与丙酮按照质量比1:1混合作为溶剂,将PVDF-TrFE粉末加入溶剂中,搅拌混合得到质量分数15-20%的溶液;
(2)启动旋转涂覆设备;从旋转涂覆设备顶盖处向旋转涂覆设备的腔内注入溶液,制备5-25um的PVDF压电层薄膜。
(3)小心取下制得的PVDF压电层薄膜,将其送入磁控溅射腔内压紧;首先在PVDF压电层一面溅射Pd,形成100-150nm的Pd氢敏感层,达到指定厚度后翻转对另一面进行溅射Cu,形成100-150nm的Cu对照电极层;溅射完成后,取出冷却干燥,通过对两面施加电压极化。
(4)取极化后薄膜靠近中心厚度均匀部分,分割得到两块长10-20mm宽10-20mm相同大小的矩形薄膜。
(5)将矩形薄膜的Cu对照电极层粘贴在氢敏压电传感单元基底上,PDMS封装边缘,得到氢敏压电传感单元;将矩形薄膜的Pd氢敏感层粘贴在对照压电传感单元基底上,PDMS封装边缘,得到对照压电传感单元。
(6)将涡街发生器安装在外筒壁前端,将氢敏压电传感单元与对照压电传感单元安装在外筒壁后端对称位置,完成基于涡街与压电薄膜的氢气传感器制备。
附图说明
图1是基于涡街与压电薄膜的氢气传感器的主视图。
图2是基于涡街与压电薄膜的氢气传感器的左视剖面图。
图3是氢敏压电传感单元构成示意图。
图4是对照压电传感单元构成示意图。
图5是基于涡街与压电薄膜的氢气传感器制备流程图,其中图5a是复合压电膜的制备过程,图5b是复合压电膜的分割过程,图5c是氢敏压电传感单元与对照压电传感单元的装配封装过程,图5d是基于涡街与压电薄膜的氢气传感器的总装配过程。
图6是基于涡街与压电薄膜的氢气传感器工作原理示意图。
图中:1、涡街发生器,2、外筒壁,3、氢敏压电传感单元,4、对照压电传感单元,5、Cu对照电极层,6、PVDF压电层,7、Pd氢敏感层,8、氢敏压电传感单元基底,9、对照压电传感单元基底,10、流动气体,11、气体涡街。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
本发明提供了一种基于涡街与压电薄膜的氢气传感器及其制备方法。通过旋转涂覆方法,实现微米级压电薄膜的制备;之后,通过磁控溅射手段在微纳纤维上修饰气敏层与对照电极层;最后对氢敏压电膜极化封装组装部件实现基于涡街与压电薄膜的氢传感单元制备。本发明采用旋转涂覆与磁控溅射方法,实现气敏压电薄膜的制备;通过机械加工加工涡街。整个制备过程耗时短,耗能少,效率高;在材料方面仅用到少量的金属、聚合物溶液与靶材,材料成本低;通过对溶剂参数和操作参数的调整,可以更为精确的控制压电薄膜的厚度;通过调节溅射参数,可以实现气敏层厚度的调节。该传感器兼具流量检测与浓度检测的功能,可以同时检测管道的流量与氢气浓度,具有良好的动态特性与较高的灵敏度。
如图1与图2所示,基于涡街与压电薄膜的氢气传感器由涡街发生器1,外筒壁2,氢敏压电传感单元3,对照压电传感单元4构成。涡街发生器(1)固定在外筒壁(2)前端,氢敏压电传感单元(3)和对照压电传感单元(4)安装在外筒壁(2)后端对称位置。
如图3所示,氢敏压电传感单元3由氢敏压电传感单元基底8与复合压电薄膜构成,其中复合压电薄膜分为3层,Pd氢敏感层7、PVDF压电层6与Cu对照电极层5,Pd氢敏感层7与Cu对照电极层5分别溅射在PVDF压电层6两面,Cu对照电极层5粘贴在氢敏压电传感单元基底8上与外界隔绝。
如图4所示,对照压电传感单元4结构与氢敏压电传感单元3类似,由对照压电传感单元基底9与复合压电薄膜构成,其中复合压电薄膜同样分为3层,Pd氢敏感层7、PVDF压电层6与Cu对照电极层5,Pd氢敏感层7与Cu对照电极层5分别溅射在PVDF压电层6两面,Pd氢敏感层7粘贴在对照压电传感单元基底9上与外界隔绝。
基于涡街与压电薄膜的氢气传感器制备过程如图5所示,具体流程如下:
如图5a所示,首先须通过旋转涂覆法制备约为5-25um厚的PVDF压电层6薄膜。所用溶液为PVDF-TrFE聚合物溶液,须在旋转涂覆前室温下进行配制。首先将二甲基甲酰胺(DMF)与丙酮质量比1:1混合作为溶剂,然后将PVDF-TrFE粉末加入溶剂中电磁搅拌2小时左右,配置质量分数为20%的溶液。
然后将得到的PVDF压电层6送入磁控溅射腔内压紧安装完毕;首先在PVDF压电层6一面溅射Pd,形成100-150nm厚的Pd氢敏感层7,达到指定厚度后翻转对另一面进行溅射Cu,形成100-150nm厚的Cu对照电极层5;溅射完成后,取出冷却干燥,通过对两面施加10-15KV电压对压电薄膜进行极化完成复合压电薄膜的制备。
接下来如图5b所示,取复合压电薄膜靠近中心厚度较为均匀部分,分割得到长10-20mm宽10-20mm相同大小的矩形薄膜。
之后如图5c所示,将矩形薄膜的Cu对照电极层5粘贴在氢敏压电传感单元基底8上,PDMS封装边缘,得到氢敏压电传感单元3;将矩形薄膜的Pd氢敏感层7粘贴在对照压电传感单元基底9上,PDMS封装边缘,得到对照压电传感单元4。
最后如图5d所示,将涡街发生器1安装在外筒壁2前端,将氢敏压电传感单元3与对照压电传感单元4安装在外筒壁2后端对称位置,完成基于涡街与压电薄膜的氢气传感器制备。
最终得到的基于涡街与压电薄膜的氢气传感器的工作原理如图6所示。流动气体10经过涡街发生器1形成一系列气体涡街11,该涡街的圆频率满足:
w0=2πf=2πSrU1/d
其中Sr为斯特劳哈尔数,U1为气体的平均流速,d为涡街发生器的迎面宽度。
此时,氢敏压电传感单元3与对照压电传感单元4表面的复合压电薄膜受迫振动,而受迫振动稳定时两传感单元振动频率与涡街圆频率相同,因此可以由产生信号频率算出气体的流速U1,实现流量检测。
同时,稳定时两传感单元振动相位角满足:
Figure BDA00003342295200041
其中β=C/m,C为阻尼系数,m为质量,为一定值。
且两传感单元复合压电薄膜固有频率满足:
w1=w1(cH2)          w2=w2
即由于氢敏压电传感单元3表面Pd氢敏感层7与氢气的反应导致氢敏压电传感单元3的复合压电薄膜固有频率是一个与氢气浓度有关的函数(可实验测得),而对照压电传感单元安装4的复合压电薄膜固有频率是一个定值。
因此:
Figure BDA00003342295200052
两传感单元复合压电薄膜的振动相位差是一个氢气浓度有关的函数,即可以从氢敏压电传感单元3与对照压电传感单元4产生的信号相位差计算出氢气浓度,实现混合气体中氢气浓度检测的功能。

Claims (3)

1.一种基于涡街与压电薄膜的氢气传感器,其特征在于:它包括一外筒壁(2),在外筒壁(2)前端固定一涡街发生器(1),后端对称安装氢敏压电传感单元(3)和对照压电传感单元(4);当气体流动时,涡街发生器(1)产生气体涡街(11),氢敏压电传感单元(3)和对照压电传感单元(4)在气体涡街(11)影响下受迫振动产生信号;当氢气浓度变化时,氢敏压电传感单元(3)表面复合压电薄膜固有频率变化导致氢敏压电传感单元(3)和对照压电传感单元(4)输出信号相位差发生变化,根据输出信号相位差值测得氢气浓度;同时,当气体流量发生变化时,氢敏压电传感单元(3)与对照压电传感单元(4)输出信号频率发生变化,根据输出信号频率得到气体流量。
2.根据权利要求1所述的一种基于涡街与压电薄膜的氢气传感器,其特征在于:氢敏压电传感单元(3)由氢敏压电传感单元基底(8)与复合压电薄膜构成,其中复合压电薄膜分为3层,Pd氢敏感层(7)、PVDF压电层(6)与Cu对照电极层(5),Pd氢敏感层(7)与Cu对照电极层(5)分别溅射在PVDF压电层(6)两面, Cu对照电极层(5)粘贴在氢敏压电传感单元基底(8)上;对照压电传感单元(4)由对照压电传感单元基底(9)与复合压电薄膜构成,其中复合压电薄膜分为3层,Pd氢敏感层(7)、PVDF压电层(6)与Cu对照电极层(5),Pd氢敏感层(7)与Cu对照电极层(5)分别溅射在PVDF压电层(6)两面, Pd氢敏感层(7)粘贴在对照压电传感单元基底(9)上;氢敏压电传感单元(3)与对照压电传感单元(4)输出信号均为PVDF压电层(6)两端由于压电效应产生的信号。
3.一种权利要求1所述的基于涡街与压电薄膜的氢气传感器的制备方法,其特征在于:该方法的具体步骤如下:
(1)室温下,将二甲基甲酰胺(DMF)与丙酮按照质量比1:1混合作为溶剂,将PVDF-TrFE粉末加入溶剂中,搅拌混合得到质量分数15-20%的溶液;
(2)启动旋转涂覆设备;从旋转涂覆设备顶盖处向旋转涂覆设备的腔内注入溶液,制备5-25um的PVDF压电层(6)薄膜;
(3)小心取下制得的PVDF压电层(6)薄膜,将其送入磁控溅射腔内压紧;首先在PVDF压电层(6)一面溅射Pd,形成100-150nm的Pd氢敏感层(7),达到指定厚度后翻转对另一面进行溅射Cu,形成100-150nm的Cu对照电极层(5);溅射完成后,取出冷却干燥,通过对两面施加电压极化;
(4)取极化后薄膜靠近中心厚度均匀部分,分割得到两块长10-20mm宽10-20mm相同大小的矩形薄膜;
(5)将矩形薄膜的Cu对照电极层(5)粘贴在氢敏压电传感单元基底(8)上,PDMS封装边缘,得到氢敏压电传感单元(3);将矩形薄膜的Pd氢敏感层(7)粘贴在对照压电传感单元基底(9)上,PDMS封装边缘,得到对照压电传感单元(4);
(6)将涡街发生器(1)安装在外筒壁(2)前端,将氢敏压电传感单元(3)与对照压电传感单元(4)安装在外筒壁(2)后端对称位置,完成基于涡街与压电薄膜的氢气传感器制备。
CN201310237999.7A 2013-06-14 2013-06-14 基于涡街与压电薄膜的氢气传感器及其制备方法 Expired - Fee Related CN103336092B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310237999.7A CN103336092B (zh) 2013-06-14 2013-06-14 基于涡街与压电薄膜的氢气传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310237999.7A CN103336092B (zh) 2013-06-14 2013-06-14 基于涡街与压电薄膜的氢气传感器及其制备方法

Publications (2)

Publication Number Publication Date
CN103336092A true CN103336092A (zh) 2013-10-02
CN103336092B CN103336092B (zh) 2015-06-17

Family

ID=49244296

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310237999.7A Expired - Fee Related CN103336092B (zh) 2013-06-14 2013-06-14 基于涡街与压电薄膜的氢气传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN103336092B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015158272A1 (zh) * 2014-04-17 2015-10-22 武汉大学 贵金属掺杂二氧化钛纳米粉制备氢气传感器的方法
WO2016029530A1 (zh) * 2014-08-25 2016-03-03 浙江大学 基于theed纤维阵列的二氧化碳传感器及其制备方法
CN106160568A (zh) * 2016-02-03 2016-11-23 浙江大学 用于海洋立管的俘能发电装置
CN109555980A (zh) * 2018-12-21 2019-04-02 郑州大学 一种振动波微纳电容传感器及流体管道振动波监测阵列
CN109781205A (zh) * 2018-12-17 2019-05-21 杭州电子科技大学 一种压电液体体积传感器及其体积检测方法
CN114892150A (zh) * 2022-04-29 2022-08-12 广东氢芯智能科技有限公司 Mocvd双腔体生长氧化物氢敏薄膜设备及使用方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030052005A1 (en) * 2001-09-14 2003-03-20 Ngk Spark Plug Co., Ltd. Hydrogen sensor
JP2004513366A (ja) * 2000-11-10 2004-04-30 エイチアールエル ラボラトリーズ,エルエルシー 薄層金属水素化物水素センサ
CN101101278A (zh) * 2007-07-19 2008-01-09 南京工业大学 声表面波微氢气传感器及其制作工艺
CN101216448A (zh) * 2008-01-09 2008-07-09 浙江大学 基于钯-银丝状电极的氢气传感器
CN101290310A (zh) * 2007-04-20 2008-10-22 中国科学院大连化学物理研究所 一种压电式氢气传感器及其制备和应用
EP2175265A1 (en) * 2008-10-08 2010-04-14 IEE International Electronics & Engineering S.A.R.L. Hydrogen sensor and production method thereof
DE102012003607A1 (de) * 2012-02-22 2013-08-22 Daimler Ag Verfahren zum Herstellen eines Wasserstoff-Sensors oder einer integrierten Schaltung, Wasserstoff-Sensor oder integrierte Schaltung, und Brennstoffzelle oder Brennstoffzellensystem mit dem Wasserstoff-Sensor und/oder der integrierten Schaltung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004513366A (ja) * 2000-11-10 2004-04-30 エイチアールエル ラボラトリーズ,エルエルシー 薄層金属水素化物水素センサ
US20030052005A1 (en) * 2001-09-14 2003-03-20 Ngk Spark Plug Co., Ltd. Hydrogen sensor
CN101290310A (zh) * 2007-04-20 2008-10-22 中国科学院大连化学物理研究所 一种压电式氢气传感器及其制备和应用
CN101101278A (zh) * 2007-07-19 2008-01-09 南京工业大学 声表面波微氢气传感器及其制作工艺
CN101216448A (zh) * 2008-01-09 2008-07-09 浙江大学 基于钯-银丝状电极的氢气传感器
EP2175265A1 (en) * 2008-10-08 2010-04-14 IEE International Electronics & Engineering S.A.R.L. Hydrogen sensor and production method thereof
DE102012003607A1 (de) * 2012-02-22 2013-08-22 Daimler Ag Verfahren zum Herstellen eines Wasserstoff-Sensors oder einer integrierten Schaltung, Wasserstoff-Sensor oder integrierte Schaltung, und Brennstoffzelle oder Brennstoffzellensystem mit dem Wasserstoff-Sensor und/oder der integrierten Schaltung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘俊峰等: "氢气传感器的研究进展", 《传感器与微系统》 *
刘宏亮等: "基于钯及其复合膜的光纤氢气传感器特性研究", 《光学学报》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015158272A1 (zh) * 2014-04-17 2015-10-22 武汉大学 贵金属掺杂二氧化钛纳米粉制备氢气传感器的方法
WO2016029530A1 (zh) * 2014-08-25 2016-03-03 浙江大学 基于theed纤维阵列的二氧化碳传感器及其制备方法
CN106160568A (zh) * 2016-02-03 2016-11-23 浙江大学 用于海洋立管的俘能发电装置
CN109781205A (zh) * 2018-12-17 2019-05-21 杭州电子科技大学 一种压电液体体积传感器及其体积检测方法
CN109555980A (zh) * 2018-12-21 2019-04-02 郑州大学 一种振动波微纳电容传感器及流体管道振动波监测阵列
CN114892150A (zh) * 2022-04-29 2022-08-12 广东氢芯智能科技有限公司 Mocvd双腔体生长氧化物氢敏薄膜设备及使用方法
CN114892150B (zh) * 2022-04-29 2023-12-05 广东伟智创科技有限公司 Mocvd双腔体生长氧化物薄膜设备及使用方法

Also Published As

Publication number Publication date
CN103336092B (zh) 2015-06-17

Similar Documents

Publication Publication Date Title
CN103336092B (zh) 基于涡街与压电薄膜的氢气传感器及其制备方法
CN103196867B (zh) 局域等离子体谐振折射率传感器及其制造方法
Wang et al. Multi-field characteristics and eigenmode spatial structure of geodesic acoustic modes in DIII-D L-mode plasmas
CN102868183B (zh) 单相并网逆变器的基于多谐振滑模面的滑模变结构控制方法
CN103933876B (zh) 复合型孔道核孔滤膜及其制备方法
CN103469172A (zh) 石英晶体镀膜厚度控制方法及石英晶体镀膜装置
Liu et al. Modeling analysis and experimental study on the optical fiber hydrogen sensor based on Pd-Y alloy thin film
CN101871787B (zh) 一种薄膜磁阻传感器
CN103663353A (zh) 一种空气声质点振速传感器及其制造方法
CN201364330Y (zh) 一种基于聚合物薄膜的电子鼻
CN103274351A (zh) 基于mems的电化学地震检波器电极敏感核心及其制造方法
CN110231095A (zh) 一种等离激元声表面波谐振红外传感器
CN101625358B (zh) 准一维纳米材料场效应管电容电导同时检测生物传感器
CN105157906B (zh) 一种飞行器高速飞行过程中微压力测量装置及测量方法
CN103713347A (zh) 通过带为7550-13900nm的红外测温滤光片
CN106767362A (zh) 一种电容式微位移传感器检测电路
CN104020185A (zh) 一种高分子超薄膜相转变温度的测定方法
CN201697638U (zh) 一种薄膜磁阻传感器
CN203551819U (zh) 通过带为7550-13900nm的红外测温滤光片
CN109491004A (zh) 一种多角度矩形深截止宽带带通滤光片的制作方法
CN109596214A (zh) 一种激光器输出功率检测系统及检测方法
CN112577864B (zh) 硅微米柱阵列三电极电离式微系统雾霾传感器及制备方法
CN210514594U (zh) 磁场测量装置
CN109285910A (zh) 基于(AlxGa1-x)2O3材料MSM结构的紫外光电探测器及其制备方法
CN202297772U (zh) 纳米级高精度控制热丝化学气相沉积生长薄膜材料设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150617

Termination date: 20190614