CN201697638U - 一种薄膜磁阻传感器 - Google Patents

一种薄膜磁阻传感器 Download PDF

Info

Publication number
CN201697638U
CN201697638U CN2010202173801U CN201020217380U CN201697638U CN 201697638 U CN201697638 U CN 201697638U CN 2010202173801 U CN2010202173801 U CN 2010202173801U CN 201020217380 U CN201020217380 U CN 201020217380U CN 201697638 U CN201697638 U CN 201697638U
Authority
CN
China
Prior art keywords
layer
magnetic
thin
film magnetoresistive
non magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN2010202173801U
Other languages
English (en)
Inventor
王建国
薛松生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN2010202173801U priority Critical patent/CN201697638U/zh
Application granted granted Critical
Publication of CN201697638U publication Critical patent/CN201697638U/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

本实用新型涉及一种传感器,尤其是一种薄膜磁阻传感器,具体地说是一种用于磁场中电流、位置、移动角度,角速度等量检测的传感器。按照本实用新型提供的技术方案,所述薄膜磁阻传感器,包括种子层;参考层,位于种子层上,产生第一交换耦合场;非磁性隔离层,位于参考层上,将参考层与自由层相隔离;自由层,位于非磁性隔离层上,感应外磁场变化,并产生第二交换耦合场,所述第二交换耦合场与第一交换耦合场互相垂直。本实用新型磁滞小、测量精度和线性度高、线性范围可调、制作工艺简单、响应频率高、制造成本低及抗干扰能力强。

Description

一种薄膜磁阻传感器
技术领域
本实用新型涉及一种传感器,尤其是一种薄膜磁阻传感器,具体地说是一种用于磁场中电流、位置、移动角度,角速度等量检测的传感器。
背景技术
薄膜磁阻传感器广泛应用于数据存储(计算机硬盘,MRAM)、电流测量、位置测量、物体的移动速度、角度及角速度等测量领域。
薄膜磁阻传感器有多层膜结构及自旋阀结构。所述薄膜磁阻传感器的多层膜结构包括磁性层和非磁性层,它们交替的沉积在衬底上。所述薄膜磁阻传感器的自旋阀结构包括非磁性钉扎层(其材料包括MnIr或MnPt),磁性被钉扎层(其材料包括CoFeB或CoFe,或是SAF结构CoFe/Ru/CoFe等),非磁性隔离层(其材料包括Cu、AlO、MgO、HfO、ZrO或TaO等),磁性自由层(其材料包括CoFeB或CoFe,或是SAF结构CoFe/Ru/CoFe等)。
薄膜磁阻传感器在对磁场中的模拟量进行检测时,由于磁性材料本身有磁滞现象,测量时有回程差,影响到薄膜磁阻传感器测量的精度和线性度。为了避免这种现象,通常采用如下方法进行调整:1,利用磁性材料的形状各项异性提供一个垂直于外界待测磁场偏置磁场;2,在薄膜磁阻传感器元件的周围,沉积一层永磁薄膜,通过永磁薄膜提供一个垂直于外界待测磁场偏置磁场(计算机硬盘采用此方案);3,在薄膜磁阻传感器元件的周围,沉积一根电流线,通过电流提供一个偏置磁场。
采用第1种方法的特点是:工艺简单,但是形状各项异性提供的偏置磁场有限,并且限制了芯片的设计。采用第2种方法的特点是:偏置磁场的大小可由调解永磁薄膜的成分及厚度而改变,但是在实际应用中要避免大的外磁场的干扰,如果有大磁场的干扰,会改变偏置磁场的方向,从而影响传感器的性能。采用第3种方法的特点是:偏置磁场的大小可由改变电流的大小来调解,但是传感器的功耗会很大。
发明内容
本实用新型的目的是克服现有技术中存在的不足,提供一种薄膜磁阻传感器,其磁滞小、测量精度和线性度高、线性范围可调、制作工艺简单、响应频率高、制造成本低及抗干扰能力强。
按照本实用新型提供的技术方案,所述薄膜磁阻传感器,包括种子层;所述种子层上设有参考层,所述参考层上设有非磁性隔离层;所述非磁性隔离层上设有自由层。
所述自由层上设置保护层。所述参考层包括第一非磁性钉扎层与第一磁性被钉扎层;所述第一非磁性钉扎层位于种子层上,第一磁性被钉扎层位于第一非磁性钉扎层上;所述第一非磁性钉扎层与第一磁性被钉扎层间产生第一交换耦合场。所述自由层包括第二磁性被钉扎层与第二非磁性钉扎层;所述第二磁性被钉扎层位于非磁性隔离层上,第二非磁性钉扎层位于第二磁性被钉扎层上;所述第二磁性被钉扎层与第二非磁性钉扎层间产生第二交换耦合场。
所述非磁性隔离层的材料包括Cu、AlO、MgO、HFO、ZrO或TaO。所述第一非磁性钉扎层与第二非磁性钉扎层的材料包括MnIr或MnPt。所述保护层的材料包括Ta、Pt或Ti。所述第一磁性被钉扎层与第二磁性被钉扎层的材料包括CoFeB、CoFe、NiFe或CoFe、Ru与CoFe形成的复合层。
本实用新型的优点:通过在种子层上设置参考层与自由层,通过自由层感应外磁场的变化;所述参考层与自由层产生的第一交换耦合场与第二交换耦合场相垂直,降低了磁滞,提高了磁阻传感器的测量精度和线性度工艺。所述第一交换耦合场与第二交换耦合场通过加工厚度及回火工艺的不同,在遇到大磁场干扰时,抗干扰能力强,实施工艺简单,不会影响磁阻传感器的性能,且不会增大传感器的功耗。通过调节参考层与自由层的厚度,能够有效调整传感器的测量线性范围,相应频率高,制造成本低。
附图说明
图1为本实用新型的结构示意图。
图2为本实用新型的工作原理示意图。
图3为本实用新型在半桥使用状态连接原理图。
图4为图3的工作原理示意图。
图5为本实用新型在全桥使用状态连接原理图。
图6为图5的工作原理示意图。
具体实施方式
下面结合具体附图和实施例对本实用新型作进一步说明。
如图1所示:本实用新型包括种子层1、第一非磁性钉扎层2、第一磁性被钉扎层3、非磁性隔离层4、第二磁性被钉扎层5、第二非磁性钉扎层6及保护层7。
如图1所示,所述种子层上设有第一非磁性钉扎层2,所述第一非磁性钉扎层2上设有第一磁性被钉扎层3;所述第一磁性被钉扎层3与第一非磁性钉扎层2形成参考层,且产生第一交换耦合场;所述参考层产生第一交换耦合场的参考层磁矩方向如8所示。第一磁性被钉扎层3上设有非磁性隔离4,所述非磁性隔离4的材料可以为Cu、AlO、MgO、HFO、ZrO或TaO。非磁性隔离层4将参考层与自由层相隔离;所述自由层包括第二磁性被钉扎层5与第二非磁性钉扎层6。所述第二磁性被钉扎层5位于非磁性隔离层4上,第二磁性被钉扎层5上设有第二非磁性钉扎层6。所述第二磁性被钉扎层5与第二非磁性钉扎层6形成自由层,且产生第二交换耦合场,且第二交换耦合场的自由层磁矩方向如9所示。所述第二非磁性钉扎层6上设有保护层7,所述保护层7的材料可以为Ta、Pt或Ti。
所述第一非磁性钉扎层2与第二非磁性钉扎层6的Blocking温度不同,第一非磁性钉扎层2的Blocking温度通常要高于第二非磁性钉扎层6的Blocking温度;所述第一非磁性钉扎层2与第二非磁性钉扎层6的Blocking温度由第一非磁性钉扎层2与第二非磁性钉扎层6的材料和厚度来控制。所述第一非磁性钉扎层2与第二非磁性钉扎层6的材料可以为MnIr或MnPt。
薄膜磁阻传感器的薄膜镀完后,开始对薄膜进行回火。在较高的温度下和磁场强度大的外磁场作用下,第一非磁性钉扎层2与第一磁性被钉扎层3间产生的第一交换耦合场的方向与外磁场的方向相同。所述第一非磁性钉扎层2与第一磁性被钉扎层3产生的第一交换耦合场的场强达几千高斯。在较低的温度下和磁场强度大的外磁场共同作用下,第二磁性被钉扎层5与第二非磁性钉扎层6间产生的第二交换耦合场的方向与第一交换耦合场的方向垂直,所述第二交换耦合场的场强在上百高斯范围内。所述第二交换耦合场能够感应外部磁场的变化,从而完成检测外部磁场相对应的检测量。所述第一磁性被钉扎层3与第二磁性被钉扎层5的材料可以为CoFeB、CoFe、NiFe或CoFe、Ru与CoFe形成的复合层。
如图2所示,为本实用新型的工作原理示意图。薄膜磁阻传感器的磁阻随着自由层相对应的自由层磁矩方向9与参考层相对应的参考层磁矩方向8的夹角的变化而变化。当自由层相对应的自由层磁矩方向9随着外加磁场10的大小和方向的改变而变化时,薄膜磁阻传感器元件的磁阻也随之变化。当外加磁场10的方向与参考层相对应的参考层磁矩方向8平行时,即外加磁场10的方向与参考层磁矩方向8间的夹角为0度;同时外加磁场10的强度大于H1时,自由层相对应的自由层磁矩方向9与外加磁场10的方向平行,进而自由层相对应的自由层磁矩方向9与参考层相对应的参考层磁矩方向8平行,如11表示的方向所示,这时薄膜磁阻传感器元件的磁阻最小。当外加磁场10的方向与参考层相对应的参考层磁矩方向8反平行,即外加磁场10的方向与参考层磁矩方向8间的夹角为180度;同时外加磁场10的强度大于H2时,自由层相对应的自由层磁矩方向9与外加磁场10的方向平行,进而自由层相对应的自由层磁矩方向9与参考层相对应的参考层磁矩方向8反平行,如12表示的方向所示,这时薄膜磁阻传感器元件的磁阻最大。H1与H2之间的磁场范围就是薄膜磁阻传感器的测量范围,当磁场范围在H1与H2之间时,薄膜磁阻传感器具有较好的测量精度和线性度。所述磁场强度H1、H2可以通过对第一非磁性钉扎层2、第一磁性被钉扎层3、第二磁性被钉扎层5及第二非磁性钉扎层6的厚度和回火工艺来控制实现,工艺操作方便简单。
图3和图4为本实用新型工作在半桥使用状态下的连接原理图和工作原理示意图。如图3所示,所述第一薄膜磁阻传感器214与第二薄膜磁阻传感器215构成了半桥使用状态的检测元件。其中,第一薄膜磁阻元件214相对应的参考层磁矩方向8与第二薄膜磁阻元件215相对应的参考层磁矩方向8方向反平行。第一薄膜磁阻传感器214相对应的自由层磁矩方向9与第二薄膜磁阻传感器215相对应的自由层磁矩方向9相互平行。第一电极211与第二电极212是薄膜磁阻电桥半桥的电压输入端,第三电极213是薄膜磁阻电桥半桥的电压输出端。
如图4所示,为薄膜磁阻传感器组成半桥电桥的工作原理图。薄膜磁阻传感器电桥半桥的输出电压V随着外加磁场10的方向和大小的改变而发生变化。当外加磁场10的方向为负(-)且磁场强度大于H1时,从第三电极213检测薄膜磁阻传感器半桥电桥的输出电压最低。当外加磁场10的方向为正(+)且磁场强度大于H2时,从第三电极213检测薄膜磁阻半桥电桥的输出电压最高。H1与H2之间的磁场范围即为所述薄膜磁阻传感器半桥电桥的测量范围。
图5和图6为本实用新型工作在全桥使用状态下的连接原理图和工作原理示意图。如图5所示,所述第三薄膜磁阻传感器311,第四薄膜磁阻传感器312,第五薄膜磁阻传感器313与第六薄膜磁阻传感器314间构成了全桥使用状态的检测元件。其中,所述第三薄膜磁阻传感器311与第六薄膜磁阻传感器314相对应的参考层磁矩方向8与第四薄膜磁阻传感器312,第五薄膜磁阻传感器313相对应的参考层磁矩方向8方向反平行;所述第三薄膜磁阻传感器311,第四薄膜磁阻传感器312,第五薄膜磁阻传感器313与第六薄膜磁阻传感器314相对应的自由层磁矩方向9相互平行。第四电极315,第五电极316是薄膜磁阻传感器全桥电桥的电压输入端,第六电极317,第七电极318是薄膜磁阻传感器全桥电桥的电压输出端。
如图6所示,为薄膜磁阻传感器组成电桥全桥的工作原理。所述薄膜磁阻传感器全桥电桥的输出电压为V=Vout(+)-Vout(-)=317-318;随着外加磁场10的方向和大小的改变而发生变化。当外加磁场10的方向为负(-)且磁场强度大于H1时,薄膜磁阻传感器全桥电桥的输出电压最低。当外加磁场10的方向为正(+)且磁场强度大于H2时,薄膜磁阻传感器全桥电桥的输出电压最高。H1与H2之间的磁场范围就是薄膜磁阻传感器电桥全桥的测量范围。
本实用新型通过在种子层1上设置参考层与自由层,通过自由层感应外磁场的变化;所述参考层与自由层产生的第一交换耦合场与第二交换耦合场相垂直,降低了磁滞,提高了磁阻传感器的测量精度和线性度工艺。所述第一交换耦合场与第二交换耦合场通过加工厚度及回火工艺的不同,在遇到大磁场干扰时,抗干扰能力强,实施工艺简单,不会影响磁阻传感器的性能,且不会增大传感器的功耗。通过调节参考层与自由层的厚度,能够有效调整传感器的测量线性范围,相应频率高,制造成本低。

Claims (8)

1.一种薄膜磁阻传感器,其特征是,包括种子层;所述种子层上设有参考层,所述参考层上设有非磁性隔离层;所述非磁性隔离层上设有自由层。
2.根据权利要求1所述的薄膜磁阻传感器,其特征是:所述自由层上设置保护层。
3.根据权利要求1所述的薄膜磁阻传感器,其特征是:所述参考层包括第一非磁性钉扎层与第一磁性被钉扎层;所述第一非磁性钉扎层位于种子层上,第一磁性被钉扎层位于第一非磁性钉扎层上;所述第一非磁性钉扎层与第一磁性被钉扎层间产生第一交换耦合场。
4.根据权利要求1所述的薄膜磁阻传感器,其特征是:所述自由层包括第二磁性被钉扎层与第二非磁性钉扎层;所述第二磁性被钉扎层位于非磁性隔离层上,第二非磁性钉扎层位于第二磁性被钉扎层上;所述第二磁性被钉扎层与第二非磁性钉扎层间产生第二交换耦合场。
5.根据权利要求1所述的薄膜磁阻传感器,其特征是:所述非磁性隔离层的材料包括Cu、AlO、MgO、HFO、ZrO或TaO。
6.根据权利要求3或4所述的薄膜磁阻传感器,其特征是:所述第一非磁性钉扎层与第二非磁性钉扎层的材料包括MnIr或MnPt。
7.根据权利要求2所述的薄膜磁阻传感器,其特征是:所述保护层的材料包括Ta、Pt或Ti。
8.根据权利要求3或4所述的薄膜磁阻传感器,其特征是:所述第一磁性被钉扎层与第二磁性被钉扎层的材料包括CoFeB、CoFe、NiFe或CoFe、Ru与CoFe形成的复合层。
CN2010202173801U 2010-06-01 2010-06-01 一种薄膜磁阻传感器 Expired - Lifetime CN201697638U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010202173801U CN201697638U (zh) 2010-06-01 2010-06-01 一种薄膜磁阻传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010202173801U CN201697638U (zh) 2010-06-01 2010-06-01 一种薄膜磁阻传感器

Publications (1)

Publication Number Publication Date
CN201697638U true CN201697638U (zh) 2011-01-05

Family

ID=43398886

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010202173801U Expired - Lifetime CN201697638U (zh) 2010-06-01 2010-06-01 一种薄膜磁阻传感器

Country Status (1)

Country Link
CN (1) CN201697638U (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101871787A (zh) * 2010-06-01 2010-10-27 王建国 一种薄膜磁阻传感器
US9228855B2 (en) 2012-03-07 2016-01-05 Crocus Technology Inc. Magnetic logic units configured to measure magnetic field direction
US9350359B2 (en) 2014-01-28 2016-05-24 Crocus Technology Inc. Magnetic logic units configured as analog circuit building blocks
US9503097B2 (en) 2014-01-28 2016-11-22 Crocus Technology Inc. Analog circuits incorporating magnetic logic units

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101871787A (zh) * 2010-06-01 2010-10-27 王建国 一种薄膜磁阻传感器
CN101871787B (zh) * 2010-06-01 2012-05-23 王建国 一种薄膜磁阻传感器
US9228855B2 (en) 2012-03-07 2016-01-05 Crocus Technology Inc. Magnetic logic units configured to measure magnetic field direction
US9267816B2 (en) 2012-03-07 2016-02-23 Crocus Technology Inc. Magnetic logic units configured to measure magnetic field direction
US9310223B2 (en) 2012-03-07 2016-04-12 Crocus Technology Inc. Magnetic logic units configured to measure magnetic field direction
US9395209B2 (en) 2012-03-07 2016-07-19 Crocus Technology Inc. Magnetic logic units configured to measure magnetic field direction
US9395210B2 (en) 2012-03-07 2016-07-19 Crocus Technology Inc. Magnetic logic units configured to measure magnetic field direction
US9350359B2 (en) 2014-01-28 2016-05-24 Crocus Technology Inc. Magnetic logic units configured as analog circuit building blocks
US9503097B2 (en) 2014-01-28 2016-11-22 Crocus Technology Inc. Analog circuits incorporating magnetic logic units

Similar Documents

Publication Publication Date Title
CN101871787B (zh) 一种薄膜磁阻传感器
CN102721427B (zh) 一种薄膜磁阻传感器元件及薄膜磁阻电桥
CN102590768B (zh) 一种磁电阻磁场梯度传感器
EP2860530A1 (en) Magnetoresistance gear sensor
CN102680009B (zh) 线性薄膜磁阻传感器
CN103645369B (zh) 一种电流传感装置
CN205809273U (zh) 一种无需置位/复位装置的各向异性磁电阻amr传感器
CN103323795A (zh) 一体式三轴磁传感器
CN201697638U (zh) 一种薄膜磁阻传感器
CN202216701U (zh) 巨磁阻效应节气门角度位置传感器
CN103033770A (zh) 巨磁阻抗效应二维磁场传感器
CN101915900A (zh) 非晶丝磁阻抗传感器以及基于非晶丝磁阻抗效应的磁场探测方法
CN105136349B (zh) 一种磁性压力传感器
CN203132562U (zh) 线性薄膜磁阻传感器、线性薄膜磁阻传感器电路及闭环电流传感器与开环电流传感器
CN109545956A (zh) 一种电压可调控的各向异性磁阻传感器及其制备方法
CN101915898A (zh) 非晶丝磁阻抗传感器以及基于非晶丝磁阻抗效应的磁场探测方法
CN102692242B (zh) 具有聚磁层的线性薄膜磁阻传感器
CN202582773U (zh) 基于自旋重取向的高灵敏度薄膜微型温度传感器
CN202994175U (zh) 一种薄膜磁阻传感器元件及薄膜磁阻电桥半桥和全桥
CN202853817U (zh) Mems隧道磁阻高度压力传感器
CN103383441B (zh) 一种数字式自旋阀磁场传感器及其制备技术
CN201876534U (zh) 非晶丝磁阻抗传感器
CN205388456U (zh) 位移传感器和位移传感测量系统
CN202994176U (zh) 具有聚磁层的线性薄膜磁阻传感器及线性薄膜磁阻传感器电路
CN202853816U (zh) 隧道磁阻压力传感器

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Assignee: Jiangsu Duowei Technology Co., Ltd.

Assignor: Wang Jianguo|Xue Songsheng

Contract record no.: 2011990000353

Denomination of utility model: Thin-film magnetoresistive sensor

Granted publication date: 20110105

License type: Exclusive License

Record date: 20110509

CX01 Expiry of patent term

Granted publication date: 20110105

CX01 Expiry of patent term