WO2015156061A1 - アセトアルデヒドの製造方法 - Google Patents

アセトアルデヒドの製造方法 Download PDF

Info

Publication number
WO2015156061A1
WO2015156061A1 PCT/JP2015/056505 JP2015056505W WO2015156061A1 WO 2015156061 A1 WO2015156061 A1 WO 2015156061A1 JP 2015056505 W JP2015056505 W JP 2015056505W WO 2015156061 A1 WO2015156061 A1 WO 2015156061A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
acetic acid
distillation column
acetaldehyde
ethanol
Prior art date
Application number
PCT/JP2015/056505
Other languages
English (en)
French (fr)
Inventor
河辺正人
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to JP2016512633A priority Critical patent/JP6405367B2/ja
Publication of WO2015156061A1 publication Critical patent/WO2015156061A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/41Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by hydrogenolysis or reduction of carboxylic groups or functional derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/80Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/81Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • C07C45/82Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation

Definitions

  • the present invention relates to a method for producing acetaldehyde by hydrogenation of acetic acid.
  • This application claims the priority of Japanese Patent Application No. 2014-081440 for which it applied to Japan on April 10, 2014, and uses the content here.
  • Acetaldehyde is an industrially important intermediate and is used in large quantities as a raw material for ethyl acetate, peracetic acid, pyridine derivatives, pentaerythritol, crotonaldehyde, paraaldehyde and the like.
  • acetaldehyde is mainly produced by Wacker oxidation of ethylene.
  • acetic acid can be produced at a lower cost than methanol and carbon monoxide, and production of acetaldehyde by hydrogenation of acetic acid is becoming an option due to the rise in ethylene prices.
  • the realization depends on how the economy can be improved.
  • JP-A-11-322658 A method for producing acetaldehyde by hydrogenation of acetic acid is disclosed in JP-A-11-322658. According to this, when acetic acid is hydrogenated in the presence of excess hydrogen over an iron oxide catalyst containing 2.5 to 90% by weight of palladium, in addition to the main product acetaldehyde, methane, ethane, ethylene, carbon dioxide , A gaseous product containing acetone, ethanol, ethyl acetate, water, unreacted acetic acid is obtained.
  • This gaseous product comes into contact with an acetic acid solution in an absorber, condenses and separates acetaldehyde, acetone, ethanol, ethyl acetate, water, and acetic acid, and then contains hydrogen gas containing non-condensable gases such as methane, ethane, ethylene, and carbon dioxide. Is recycled and reused in the reaction.
  • reaction condensate (reaction crude liquid) obtained by the absorber contains acetaldehyde as a target product, acetone, ethanol, ethyl acetate, water as a by-product, and acetic acid as an unreacted product.
  • acetaldehyde is first separated from the reaction crude liquid by a distillation column, and then acetic acid is separated from the bottom by acetic acid from the bottom, and acetone, ethyl acetate, and water are separated from the tower top.
  • the azeotropy of ethyl acetate and water is used to increase the separation efficiency of acetic acid and water, which are difficult to separate.
  • Acetone, ethyl acetate, and water distilled from the top of the column are separated into an organic phase (ethyl acetate phase) and an aqueous phase with a decanter, and a part of the organic phase is circulated to the acetic acid column as a dehydrating azeotropic agent.
  • the object of the present invention is to easily and economically separate and purify the product acetaldehyde, unreacted acetic acid and other valuable substances from the reaction crude liquid when hydrogenating acetic acid to produce acetaldehyde. It is to provide a method.
  • the present inventors have studied a method for separating and purifying a product acetaldehyde, unreacted acetic acid, and other valuable materials from the reaction crude liquid. After separating acetaldehyde in the distillation column, acetic acid is separated from the bottom in the second distillation column, acetone, ethanol, ethyl acetate and water are separated from the top, and the top distillate is brought into contact with water to bring ethanol into the aqueous phase. It was found that acetic acid and water can be separated stably and at low cost by extracting and separating the present invention, and the present invention has been completed.
  • the present invention is a method for producing acetaldehyde by hydrogenation of acetic acid, the step of separating acetaldehyde from a reaction crude liquid obtained by hydrogenating acetic acid in a first distillation column, the step of separating acetaldehyde from a liquid after acetaldehyde separation.
  • a manufacturing method is provided.
  • the organic phase after extraction and separation of the ethanol into an aqueous phase may be refluxed to the second distillation column.
  • the production method further includes an absorption step of charging a reaction fluid obtained by hydrogenating acetic acid into an absorption tower and absorbing a condensed component in the reaction fluid with an absorption liquid to obtain a reaction crude liquid. You may use the organic phase after carrying out extraction separation to the phase as an absorption liquid of the said absorption process.
  • a step of separating a low-boiling component having a boiling point lower than that of ethyl acetate in a third distillation column from a liquid after separating unreacted acetic acid in the second distillation column You may include the process of isolate
  • separating unreacted acetic acid in the said 2nd distillation tower, and the 4th distillation tower from the liquid after water separation And a step of separating a low boiling point component having a boiling point lower than that of ethyl acetate and a mixed solution of ethanol and ethyl acetate.
  • the present invention relates to the following.
  • a method for producing acetaldehyde by hydrogenation of acetic acid the step of separating acetaldehyde in a first distillation column from a reaction crude liquid obtained by hydrogenating acetic acid, the second distillation column from a solution after separation of acetaldehyde And a step of separating unreacted acetic acid, and a step of contacting at least part of the distillate of the second distillation column with water to extract and separate ethanol in the distillate into an aqueous phase.
  • the method further includes an absorption step in which a reaction fluid obtained by hydrogenating acetic acid is charged into an absorption tower, and a condensed component in the reaction fluid is absorbed with an absorption liquid to obtain a reaction crude liquid, and the ethanol is extracted into an aqueous phase.
  • the method for producing acetaldehyde according to [1] wherein the separated organic phase is used as an absorbing liquid in the absorbing step.
  • a step of separating a low-boiling component having a boiling point lower than that of ethyl acetate in a third distillation column from the liquid after separating unreacted acetic acid in the second distillation column and
  • the method for producing acetaldehyde according to any one of [1] to [3], comprising a step of separating a mixed liquid of ethanol and ethyl acetate and water from the liquid in a fourth distillation column.
  • the product acetaldehyde, unreacted acetic acid and other valuables can be separated and purified easily and economically from the reaction crude liquid.
  • the method for producing acetaldehyde according to the present invention is a method for producing acetaldehyde by hydrogenation of acetic acid, the step of separating acetaldehyde from a reaction crude liquid obtained by hydrogenating acetic acid in a first distillation column, Separating the unreacted acetic acid from the liquid in the second distillation column, contacting at least a part of the distillate in the second distillation column with water, and extracting and separating ethanol in the distillate into an aqueous phase. It has.
  • acetic acid is obtained from the bottom, and mainly acetone, ethanol, ethyl acetate, and water are distilled from the top.
  • ethanol in the distillate of the second distillation column is extracted and separated into an aqueous phase, so that the concentration of ethanol and water in the organic phase after separation with a decanter is increased and acetic acid and Problems such as reduced water separation efficiency and no distillate distillate are eliminated, and unreacted acetic acid can be recovered stably and at low cost.
  • the organic phase after the ethanol is extracted and separated into an aqueous phase can be refluxed, for example, to the second distillation column.
  • an absorption step in which a reaction fluid obtained by hydrogenating acetic acid in the reaction system is charged into an absorption tower and a condensed component in the reaction fluid is absorbed by the absorption liquid to obtain a reaction crude liquid, the ethanol is added to the water phase
  • the organic phase after extraction and separation can be used as an absorption liquid in this absorption step.
  • FIG. 1 is a schematic flow diagram of a reaction system showing an example of the method for producing acetaldehyde of the present invention.
  • FIG. 2 is a schematic flow diagram of a purification system showing an example of the production method of acetaldehyde of the present invention
  • FIG. 3 is a schematic flow diagram of a purification system showing another example of the production method of acetaldehyde of the present invention.
  • FIG. 4 is a schematic flow diagram of a purification system showing still another example of the method for producing acetaldehyde of the present invention.
  • the hydrogen gas is supplied from the hydrogen facility P through the line 1, pressurized by the compressor I- 1, passes through the buffer tank J- 1, and merges with the circulating gas in the line 2.
  • evaporator A acetic acid evaporator
  • Acetic acid is supplied from the acetic acid tank K-1 to the evaporator A from the line 4 using the pump N-1, and the evaporated acetic acid is heated together with hydrogen gas by the heat exchangers (heaters) L-1 and L-2. Then, it is charged into the reactor B filled with the catalyst from the line 5.
  • the evaporator A is provided with a circulation pump N-2.
  • acetic acid is hydrogenated to produce non-condensable methane, ethane, ethylene, carbon dioxide, condensable acetone, ethanol, ethyl acetate, and water in addition to the main product acetaldehyde.
  • Hydrogenation of acetic acid can be performed by a known method.
  • acetic acid is reacted with hydrogen in the presence of a catalyst.
  • the catalyst is not particularly limited as long as it generates acetaldehyde by hydrogenation of acetic acid.
  • metal oxides such as iron oxide, germanium oxide, tin oxide, vanadium oxide, and zinc oxide can be used. .
  • noble metals such as palladium and platinum
  • the amount of the precious metal added is, for example, about 0.5 to 90% by weight with respect to the whole catalyst.
  • a preferable catalyst is iron oxide to which a noble metal such as palladium or platinum is added.
  • the catalyst Before the catalyst is used for hydrogenation of acetic acid, the catalyst may be subjected to a reduction treatment by, for example, contacting with hydrogen in advance.
  • the reduction treatment is performed, for example, under conditions of 50 to 500 ° C. and 0.1 to 5 MPa.
  • the reaction temperature is, for example, 250 to 400 ° C, preferably 270 to 350 ° C. If the reaction temperature is too low, by-products such as ethanol increase, and if the reaction temperature is too high, by-products such as acetone increase, and in either case, the selectivity for acetaldehyde tends to decrease.
  • the reaction pressure may be normal pressure, reduced pressure, or increased pressure, but is generally in the range of 0.1 to 10 MPa, preferably 0.1 to 3 MPa.
  • the conversion rate of acetic acid in the reactor is desirably 70% or less (for example, 5 to 70%).
  • by-products ethanol, ethyl acetate, etc.
  • the reaction between acetic acid and hydrogen mainly consists of unconverted acetic acid, unconverted hydrogen, acetaldehyde generated from the reaction, water, and other products (ethanol, ethyl acetate, acetone, etc.). A gaseous reaction product is obtained.
  • the non-condensable gas and the condensable component can be separated from the gaseous reaction product, and the condensable component can be used as a reaction crude liquid.
  • the method for separating the non-condensable gas and the condensable component from the gaseous reaction product is not particularly limited.
  • a reaction fluid obtained by hydrogenating acetic acid is charged into an absorption tower, and the condensed component in the reaction fluid is obtained.
  • the condensable component a mixture of the condensable component and the absorbing solution
  • absorbed in the absorbing solution is also included in the “reaction crude liquid”.
  • the non-condensable gas dissolved in the absorption liquid is diffused and the non-condensable gas is discharged.
  • a diffusion step for recycling the liquid after the discharge of the reactive gas to the absorption tower, hydrogen and other non-condensable gas components can be efficiently separated.
  • the absorption step for example, a reaction fluid obtained by hydrogenating acetic acid is charged into an absorption tower, a condensed component in the reaction fluid is absorbed by the absorption liquid, and a non-condensable gas is dissolved in the absorption liquid.
  • This absorption step is usually performed by supplying the reaction fluid and absorption liquid obtained in the reaction step to the absorption tower and bringing them into contact with each other in the absorption tower.
  • the absorption tower is not particularly limited, and a known or well-known gas absorption device such as a packed tower, a plate tower, a spray tower, a wet wall tower, or the like can be used.
  • the pressure of the bottoms of the absorption tower is reduced to dissipate the non-condensable gas dissolved in the absorption liquid, and the liquid after the non-condensable gas emission is recycled to the absorption tower.
  • the effluent of the absorption tower obtained in the absorption process (absorbed liquid after absorbing and dissolving condensed components and non-condensable gas) is supplied to the stripped tower with reduced pressure, and non-condensed. This is done by releasing the sex gas.
  • the stripping tower is not particularly limited, and a known or well-known gas stripping apparatus such as a packed tower, a plate tower, a spray tower, a wet wall tower, a gas-liquid separator, or the like can be used.
  • the reaction fluid flowing out from the reactor B passes through the heat exchanger L-1 through the line 6 and is then cooled by the heat exchangers (coolers) M-1 and M-2. More charged in the lower part of the absorption tower C.
  • the absorption tower C is charged with a bottoms of a diffusion tower D (to be described later) from the line 9 (hereinafter also referred to as “circulating liquid”) as an absorption liquid.
  • the circulating fluid absorbs and dissolves mainly non-condensable gases such as hydrogen, methane, ethane, ethylene, and carbon dioxide.
  • absorption tower replenishment liquid a distillate of an acetic acid recovery tower F, which will be described later, contains a large amount of azeotropic solvent (solvent azeotropic with water) from line 11.
  • azeotropic solvent solvent azeotropic with water
  • the top phase liquid or the upper phase liquid (organic phase) obtained in the ethanol extraction step is charged as the absorbing liquid.
  • the absorption tower replenisher absorbs non-condensable gas and acetaldehyde, which is a low-boiling condensable component.
  • the upper phase liquid distilled from the acetic acid recovery tower F or the upper phase liquid (organic phase) obtained in the ethanol extraction process is supplied to the line 11 through the line 15 and the cooler M-3.
  • the bottoms of the stripping tower D (line 9) (circulating liquid) and the upper phase liquid of the acetic acid recovery tower F distilled or the upper phase liquid (organic phase) obtained in the ethanol extraction step (line 11) (absorption tower) The charging position of the replenishing liquid) to the absorption tower C can be appropriately selected in consideration of the absorption efficiency of acetaldehyde and non-condensable gas, etc., but the circulating liquid is to the middle stage of the absorption tower C, and the absorption tower replenishing liquid is It is preferable to charge in the upper part of the absorption tower C.
  • the bottoms of the absorption tower C is divided into a line 14 supplied to the purification process and a line 8 charged into the stripping tower D.
  • the bottoms of the line 14 are stored as a reaction crude liquid in the reaction crude liquid tank K-2 and used for a purification process.
  • the line 8 is depressurized by the diffusion tower D, and hydrogen, methane, ethane, ethylene and carbon dioxide, which are non-condensable gases dissolved in the absorption liquid, are diffused from the line 10, and the liquid after the non-condensable gas is diffused is from the line 9.
  • Q-2 is a vent.
  • the entire amount of the effluent of the absorption tower C can be charged into the diffusion tower D, a part of the liquid after the non-condensable gas emission can be recycled to the absorption tower, and the remainder can be used as a crude reaction liquid used for the purification process. Good (see examples).
  • the pressure of the bottoms of the absorption tower is reduced to dissipate the non-condensable gas dissolved in the absorption liquid.
  • Gas can be separated efficiently. This is due to the difference in solubility between hydrogen and other non-condensable gases. For example, at 30 ° C., the solubility of hydrogen and methane in ethyl acetate when the partial pressure is 1 atm is 0.01 NL / L and 0.48 NL / L, respectively. Is 48 times easier to dissolve than hydrogen.
  • the liquid after the non-condensable gas is diffused is recycled to the absorption tower, so that the non-condensable gas other than hydrogen gas is efficiently absorbed and dissolved, and as a result, the purge loss of hydrogen gas is greatly reduced. it can.
  • the non-condensable gas that has not been absorbed and dissolved in the absorption liquid in the absorption tower C is pressurized by the compressor I-2 through the buffer tank J-3 from the top of the absorption tower C through the line 12, and is then supplied to the buffer tank J-2. Then, the hydrogen gas in the line 1 is merged by the line 2 and supplied to the evaporator A from the line 3. The non-condensable gas is purged from the line 13 as necessary.
  • Q-1 is a vent.
  • the extraction upper phase liquid (organic phase) is used.
  • the upper distillate liquid and the upper extract liquid (organic phase) are azeotropic solvent-containing liquids containing a large amount of an azeotropic solvent (a solvent azeotropic with water such as ethyl acetate).
  • the lower phase liquid in the case of separating the distillate from the acetic acid recovery tower F contains a lot of water and forms an aqueous phase.
  • the absorption liquid charged into the absorption tower C may be only the bottom liquid (circulating liquid) of the absorption tower C, but the bottom liquid of the absorption tower C contains a lot of acetaldehyde having a low boiling point of 21 ° C.
  • an absorption liquid not containing acetaldehyde is preferable.
  • an azeotropic solvent-containing liquid distilled liquid from the acetic acid recovery tower F used for separating unreacted acetic acid and by-product water by azeotropic distillation as in the above example is used.
  • an acetic acid aqueous solution such as a liquid after separation of acetaldehyde from the bottoms of the absorption tower C A bottom of the acetaldehyde product tower E
  • an organic phase obtained by bringing at least a part of the distillate of the acetic acid recovery tower F described later into contact with water and extracting and separating ethanol in the distillate into an aqueous phase may be used as the absorbent.
  • a liquid containing 10% by weight or more (preferably 30% by weight or more, more preferably 50% by weight or more, particularly preferably 75% by weight or more) of ethyl acetate is preferable.
  • the azeotropic solvent content in the azeotropic solvent-containing liquid is, for example, 10% by weight or more, preferably 30% by weight or more, more preferably 50% by weight or more, particularly Preferably it is 75 weight% or more.
  • the acetic acid aqueous solution is used as the absorbing solution, the acetic acid content in the acetic acid aqueous solution is, for example, 10 to 95% by weight, preferably 50 to 90% by weight, and more preferably 60 to 80% by weight.
  • the azeotropic solvent forms an azeotrope with water, lowers the boiling point, and separates with water to facilitate separation of acetic acid and water.
  • azeotropic solvents include esters such as isopropyl formate, propyl formate, butyl formate, isoamyl formate, ethyl acetate, isopropyl acetate, propyl acetate, butyl acetate, methyl propionate, ethyl propionate, methyl butyrate, ethyl butyrate, Isopropyl butyrate, etc., as ketones, methyl ethyl ketone, methyl propyl ketone, methyl isobutyl ketone, diethyl ketone, ethyl propyl ketone, etc., as aliphatic hydrocarbons, pentane, hexane, heptane, etc. as alicyclic hydrocarbons Includes cyclo
  • ethyl acetate is preferable as an azeotropic solvent because it exists as a by-product of acetic acid hydrogenation, and thus the recovery step of the azeotropic solvent can be omitted.
  • propyl acetate (boiling point 102 ° C), isobutyl acetate (boiling point 117 ° C), sec-butyl acetate (boiling point 112 ° C), isopropyl propionate (boiling point 110 ° C), methyl butyrate (boiling point 102 ° C), ethyl isobutyrate (boiling point) 110 ° C.) having an boiling point of 100 ° C.
  • an ester having a boiling point of 100 ° C. to 118 ° C. at normal pressure is also preferable as an azeotropic solvent.
  • methane which is the main component of non-condensable gases, dissolves better in azeotropic solvents that are less polar than aqueous polar acetic acid solutions, so azeotropic solvents are suitable for absorbing non-condensable gases and absorb An azeotropic solvent is also suitable as the liquid.
  • the number of plates (theoretical plate number) of the absorption tower C is, for example, 1 to 20, preferably 3 to 10.
  • the temperature in the absorption tower C is, for example, 0 to 70 ° C.
  • the pressure in the absorption tower C is, for example, 0.1 to 5 MPa (absolute pressure).
  • the temperature in the diffusion tower D is, for example, 0 to 70 ° C.
  • the pressure in the stripping tower D may be lower than the pressure in the absorption tower C, for example, 0.05 to 4.9 MPa (absolute pressure).
  • the difference between the pressure in the absorption tower C and the pressure in the diffusion tower D (the former-the latter) can be appropriately selected from the viewpoint of the emission efficiency of the non-condensable gas and the suppression of the loss of acetaldehyde, and is, for example, 0.05 to 4.9 MPa.
  • the pressure is preferably 0.5 to 2 MPa.
  • reaction crude liquid obtained in the reaction system is subjected to a purification step (purification system), and acetaldehyde is obtained as a product. Further, unreacted acetic acid and by-product components can be collected and recycled to the reactor as necessary.
  • the purification system includes a step of separating acetaldehyde from the reaction crude liquid obtained by hydrogenating acetic acid in the first distillation column (hereinafter sometimes referred to as “acetaldehyde purification step”), a liquid after separation of acetaldehyde.
  • a step of separating unreacted acetic acid from the second distillation column (hereinafter sometimes referred to as “acetic acid recovery step”), and at least a part of the distillate of the second distillation column is brought into contact with water. It includes a step of extracting and separating ethanol in the distillate into an aqueous phase (hereinafter sometimes referred to as “ethanol extraction step”).
  • the reaction crude liquid is charged into a first distillation column (acetaldehyde product column), and acetaldehyde is separated and recovered from the top of the column. From the bottom of the column, an acetic acid aqueous solution containing unreacted acetic acid and by-produced water (usually further containing other products such as ethanol and ethyl acetate) is discharged.
  • a first distillation column acetaldehyde product column
  • the tower top pressure in the acetaldehyde product tower is usually 0.1 MPa or more, preferably 0.5 to 2 MPa, and the gauge pressure is usually 0.0 MPaG or more, preferably 0.4 to 1.9 MPaG.
  • the number of plates (theoretical plate number) of the acetaldehyde product column is, for example, 10 to 50, preferably 20 to 40.
  • the bottom liquid (bottom liquid) in the acetaldehyde product tower is charged into the second distillation tower (acetic acid recovery tower), and an azeotropic solvent (solvent azeotropic with water) is included from the top of the tower. Charge the liquid.
  • the ethanol extraction step at least a part of the top distillate of the acetic acid recovery tower is charged into an ethanol extractor and brought into contact with separately charged water (extractant) to remove ethanol contained in the top distillate. Extract and separate to the aqueous phase (lower phase) side.
  • the liquid supplied to the ethanol extraction apparatus may be a part or all of the top distillate of the acetic acid recovery tower, and the upper phase liquid (distillation top) obtained by separating the top distillate of the acetic acid recovery tower. Part or all of the liquid phase).
  • the type of the ethanol extraction apparatus may be a batch type or a continuous type, and the number of plates (theoretical plate number) is, for example, 1 to 10.
  • the method of extraction may be cocurrent contact or countercurrent multistage contact, but countercurrent multistage contact with good ethanol separation efficiency is preferred.
  • a mixer / settler, spray tower, baffle tower, perforated plate tower, packed tower, stirring type extraction tower, pulsation extraction tower, centrifugal extractor, or the like can be used.
  • a part or all of the organic phase (upper phase liquid) flowing out from the ethanol extraction apparatus may be refluxed in the second distillation column, or may be used as an absorption liquid in the absorption tower as described above.
  • the remainder of the organic phase (upper phase liquid) flowing out from the ethanol extraction apparatus is supplied to, for example, a delow boiling tower described later.
  • the water phase (lower phase liquid) which flows out from an ethanol extraction apparatus is supplied to the delow boiling tower mentioned later, for example.
  • the remaining liquid not subjected to the ethanol extraction apparatus may be refluxed, for example, in an acetic acid recovery tower, and used as an absorbent in the absorption tower. May be.
  • the lower phase liquid (distillation lower phase liquid) obtained by separating the tower top distillate is supplied to, for example, a delow boiling tower described later.
  • Acetic acid is recovered from the bottom of the acetic acid recovery tower. This acetic acid can be recycled to the reaction system.
  • the number of plates (theoretical plate number) of the acetic acid recovery tower is, for example, 10 to 50, preferably 10 to 30. Distillation may be performed under normal pressure, reduced pressure, or increased pressure.
  • the liquid not used in the ethanol extraction device the organic phase (upper phase liquid) obtained in the ethanol extraction step and the liquid not used for refluxing to the acetic acid recovery tower and the aqueous phase (lower phase) Liquid
  • it can be separated into (a) a low-boiling component having a lower boiling point than ethyl acetate, (b) a mixture of ethanol and ethyl acetate, and (c) water using two distillation columns. . There are two methods for this.
  • the liquid after separation of the unreacted acetic acid (the liquid not supplied to the ethanol extraction device out of the top distillate of the acetic acid recovery tower, the organic phase (upper phase liquid) obtained in the ethanol extraction step)
  • a low-boiling component having a boiling point lower than that of ethyl acetate is separated from the liquid not used for refluxing to the acetic acid recovery tower and the aqueous phase (lower phase liquid) in the third distillation tower (de-low boiling step).
  • the de-low boiling step a part (if necessary) of the distillate upper phase liquid of the acetic acid recovery tower and the distillate lower phase liquid are charged into the third distillation column (delow boiling tower), The boiling component is recovered, and a liquid containing ethanol, ethyl acetate, and water is discharged from the bottom of the tower.
  • the column bottom liquid is supplied to a fourth distillation column (ethanol / ethyl acetate recovery column) described later.
  • the number of plates (theoretical plate number) of the third distillation column (delow boiling column) is, for example, 10 to 50, preferably 20 to 40. Distillation may be performed under normal pressure, reduced pressure, or increased pressure.
  • the bottom liquid of the third distillation tower (delow boiling tower) is charged into a fourth distillation tower (ethanol / ethyl acetate recovery tower), and ethanol and ethyl acetate are added from the top of the tower. Collect and drain water from the bottom of the tower.
  • the number of plates (theoretical plate number) of the fourth distillation column is, for example, 5 to 50, preferably 10 to 20. Distillation may be performed under normal pressure, reduced pressure, or increased pressure.
  • a part (if necessary) of the distillate upper phase liquid of the second distillation column (acetic acid recovery column) and the distillate lower phase solution are charged into a third distillation column (water separation column), A low-boiling component having a boiling point lower than that of ethyl acetate, ethanol and ethyl acetate are distilled from the top of the column, and water is discharged from the bottom of the column.
  • the column top liquid is supplied to a fourth distillation column (low boiling point component recovery column) described later.
  • the number of plates (theoretical plate number) of the third distillation column (water separation column) is, for example, 5 to 50, preferably 10 to 20. Distillation may be performed under normal pressure, reduced pressure, or increased pressure.
  • the top liquid of the third distillation column (water separation column) is charged into the fourth distillation column (low boiling point component recovery column), and the boiling point is higher than ethyl acetate such as acetone from the top of the column.
  • Low low boiling point components are recovered, and a mixture of ethanol and ethyl acetate is recovered from the bottom of the column.
  • the number of plates (theoretical plate number) of the fourth distillation column (low boiling point component recovery column) is, for example, 10 to 50, preferably 20 to 40. Distillation may be performed under normal pressure, reduced pressure, or increased pressure.
  • FIGS. 2 to 4 are schematic flow diagrams showing a purification system including the first method, respectively.
  • the reaction crude liquid is charged from the reaction crude liquid tank K-2 to the first distillation column (acetaldehyde product column) E through the line 16 using the pump N-4.
  • the first distillation column (acetaldehyde product column) E the non-condensable gas is purged from the line 17 from the top of the column, and the product acetaldehyde is distilled from the line 18.
  • the bottoms of the first distillation column (acetaldehyde product column) E is supplied to the second distillation column (acetic acid recovery column) F from the line 19.
  • M-5 and M-6 are coolers
  • R-1 is a receiver
  • N-5 and N-6 are pumps
  • Q-3 is a vent
  • O-1 is a reboiler
  • K-3 is a product acetaldehyde tank.
  • an azeotropic solvent-containing liquid (a part of the extraction upper phase liquid described later) is charged from the line 41 to the top of the column, and unreacted acetic acid is discharged from the bottoms of the line 24. Is recovered, stored in the recovered acetic acid tank K-4, and recycled to the reaction system. Acetone, ethanol, ethyl acetate, water, and an azeotropic solvent are distilled off at the top of the second distillation column (acetic acid recovery column) F, and the distillate is charged into the lower part of the ethanol extraction device V from line 35. .
  • water W is charged from the line 36, and the distillate from the line 35 and the water from the line 36 come into contact with each other in countercurrent to perform extraction.
  • a part of the upper phase liquid (organic phase) of the line 39 (if necessary) and the lower phase liquid (aqueous phase) of the line 38 are removed from the line 48 through the third distillation column (delow boiling). (Tower) G is charged.
  • a part of the upper phase liquid (organic phase) after the extraction treatment by the ethanol extraction apparatus V is stored in the absorption liquid tank K-6 from the line 40, and into the absorption tower C from the line 15 and the line 11 as described above. Is also charged and absorbs acetaldehyde.
  • An azeotropic solvent (such as ethyl acetate) in the azeotropic solvent tank K-5 is supplied from the line 42 to the absorbing liquid tank K-6.
  • a part of the upper phase liquid (organic phase) after being extracted by the ethanol extraction apparatus is refluxed into the distillation column from the line 41 as described above.
  • M-7 is a cooler
  • R-4 and R-5 are receivers
  • N-7, N-10, N-11, N-17, N-18 and N-19 are pumps
  • O-2 is a reboiler. is there.
  • Low boiling components such as acetone are distilled from the top of the third distillation column (delow boiling column) G from the line 26, and the bottoms of the line 28 are charged into the fourth distillation column (ethanol / ethyl acetate recovery column) H. It is. A part of the column top distillate is refluxed from the line 27 into the distillation column.
  • M-8 is a cooler
  • R-2 is a receiver
  • N-12 and N-13 are pumps
  • O-3 is a reboiler
  • K-7 is a low boiling point component tank.
  • the mixture of ethanol, ethyl acetate and azeotropic solvent obtained in the line 29 can be further separated by distillation or extraction, if necessary.
  • FIG. 3 is the same as FIG. 2 except that the liquid flow around the second distillation column and the extraction apparatus is different from the example shown in FIG.
  • an azeotropic solvent-containing liquid (an upper phase liquid (organic phase) of an ethanol extraction device V described later) is charged from the lines 37 and 41 at the top of the column. Unreacted acetic acid is recovered from the bottoms of the line 24, stored in the recovered acetic acid tank K-4, and recycled to the reaction system. Acetone, ethanol, ethyl acetate, water, and an azeotropic solvent are distilled off at the top of the second distillation column (acetic acid recovery column) F. After separation with a decanter S, the upper phase liquid is obtained from lines 45 and 47. It is charged in the lower part of the ethanol extraction device V.
  • water W is charged from the line 36, and the decanter upper-phase liquid from the line 47 and the water from the line 36 come into contact with each other in countercurrent, and extraction is performed.
  • the lower decanter phase water in the line 44 and the extracted lower phase liquid (aqueous phase) in the line 38 are charged into the third distillation column (delow boiling column) G through the line 48.
  • a part of the upper phase liquid of the decanter S is stored in the absorption liquid tank K-6 from the line 45 and the line 46, and is also charged into the absorption tower C from the line 15 and the line 11 as described above to absorb acetaldehyde.
  • An azeotropic solvent (such as ethyl acetate) in the azeotropic solvent tank K-5 is supplied from the line 42 to the absorbing liquid tank K-6.
  • M-7 is a cooler
  • R-5 is a receiver
  • N-7, N-10, N-11, N-18, N-19, N-20 and N-21 are pumps
  • O-2 is a reboiler. is there.
  • FIG. 4 is the same as FIG. 2 except that the liquid flow around the second distillation column and the extraction apparatus is different from the example shown in FIG.
  • an azeotropic solvent-containing liquid (a part of the upper phase liquid of the decanter S described later) is charged to the top of the column from line 45 and line 49. Unreacted acetic acid is recovered from the 24 bottoms, stored in the recovered acetic acid tank K-4, and recycled to the reaction system. Acetone, ethanol, ethyl acetate, water, and an azeotropic solvent are distilled off at the top of the second distillation column (acetic acid recovery column) F, and after separation with a decanter S, a part of the upper phase liquid is line 45 and A line 47 is charged into the lower part of the ethanol extraction device V.
  • water W is charged from the line 36, and the decanter upper-phase liquid from the line 47 and the water from the line 36 come into contact with each other in countercurrent, and extraction is performed.
  • the lower decanter phase water in the line 44 and the extracted lower phase liquid (aqueous phase) in the line 38 are charged into the third distillation column (delow boiling column) G through the line 48.
  • the extraction upper phase liquid is stored in the absorption liquid tank K-6 through the line 37 and the line 40, and is also charged into the absorption tower C through the line 15 and the line 11 as described above, and absorbs acetaldehyde.
  • An azeotropic solvent (such as ethyl acetate) in the azeotropic solvent tank K-5 is supplied from the line 42 to the absorbing liquid tank K-6.
  • M-7 is a cooler
  • R-5 is a receiver
  • N-7, N-10, N-11, N-18, N-20, N-21 and N-22 are pumps
  • O-2 is a reboiler. is there.
  • Example 1 Acetic acid was hydrogenated by the apparatus shown in FIG. Gas from the top of an absorption tower (scrubber) C-1 (gas flowing from line 12 to line 32) 1,882NL / hr, which will be described later, is pressurized by compressor I-2 and circulated from line 2 to the inlet of evaporator A In order to keep the pressure constant at 0.4 MPa (gauge pressure), 118 NL / hr of hydrogen (line 1) is boosted from the hydrogen cylinder P by the compressor I-1 and merged with the circulating gas, and the evaporator is fed by the line 3 A was charged.
  • J-1, J-2 and J-3 are buffer tanks.
  • Acetic acid is supplied from the acetic acid tank K-1 through the line 4 at 700 g / hr, and heated together with hydrogen from the line 3 to 300 ° C. in the evaporator (evaporator with electric heater) A, and the resulting mixture of hydrogen and acetic acid is obtained.
  • the gas was charged into a reactor (reactor with electric heater) B having an outer diameter of 43.0 mm ⁇ filled with 627 ml of a catalyst supporting 40 parts by weight of Pd metal with respect to 100 parts by weight of Fe 2 O 3 as a catalyst.
  • the pressure in the evaporator A and the reactor B is 1.7 MPa (gauge pressure).
  • the reaction temperature is 300 ° C.
  • N-1 is a pump.
  • the reaction gas (line 6) flowing out from the reactor B is cooled to 30 ° C. by a cooler (cooler) M-11, and an absorption tower (outside diameter 48.6 ⁇ ) filled with 1 mm high 6 mm ⁇ porcelain Raschig ring from the line 7 ( Scrubber) The bottom of C-1.
  • the pressure in the absorption tower (scrubber) C-1 is 1.7 MPa (gauge pressure).
  • N-3 is a pump
  • M-4 is a cooler.
  • 1.4 weight of acetone which is a liquid having a composition corresponding to the upper phase liquid (organic phase) (line 40) obtained by the ethanol extraction apparatus V of FIG.
  • reaction crude liquid was charged (circulated) from the middle part of the absorption tower (scrubber) C-1 from the line 9 at 30 ° C. and 4,500 g / hr.
  • the remainder of the liquid after gas emission was taken out from the line 14 as a reaction crude liquid and stored in the reaction crude liquid tank K-2.
  • the composition of the reaction crude liquid was 8.3% by weight of acetaldehyde, 1.1% by weight of acetone, 5.2% by weight of ethanol, 54.0% by weight of ethyl acetate, 7.1% by weight of water, and 24.3% by weight of acetic acid.
  • the production amount was 1,730 g / hr.
  • This reaction crude liquid was purified by the flow shown in FIG.
  • the bottoms contained 1.1 wt% acetone, 5.7 wt% ethanol, 59.0 wt% ethyl acetate, 7.7 wt% water, and 26.5 wt% acetic acid.
  • This bottoms is charged into the 10th stage (theoretical plate number) from the top of the second distillation column (acetic acid recovery column) F consisting of a 100 mm ⁇ metal distillation column having a theoretical plate number of 30.
  • the upper phase liquid (organic phase) 260 g / hr of apparatus V was charged and distilled at a pressure of 190 kPa gauge.
  • the top vapor temperature was 103 ° C.
  • 1,423 g / hr of the distillate was condensed in the condenser M-7 and cooled to 20 ° C.
  • the distillate contained 1.5% by weight of acetone, 7.3% by weight of ethanol, 82.0% by weight of ethyl acetate, and 9.2% by weight of water.
  • the total amount of this distillate is fed from line 35 to ethanol extraction device V consisting of a 40 mm ⁇ glass ring and plate extraction tower with a theoretical plate number of three, and water is further charged from line 36 at 100 g / hr and contacted in countercurrent.
  • the upper phase liquid (organic phase) 1,275 g / hr was extracted from the line 37 and the lower phase liquid (aqueous phase) 249 g / hr was extracted from the line 38.
  • the upper phase solution is 1.4% by weight of acetone, 5.1% by weight of ethanol, 89.5% by weight of ethyl acetate, 4.0% by weight of water, and the lower phase solution is 1.4% by weight of acetone, 15. 4 wt%, ethyl acetate 11.1 wt%, water 72.1 wt%.
  • 260 g / hr of the upper phase liquid is refluxed from the line 41 to the second distillation column (acetic acid recovery column) F, and the remaining 1,015 g / hr is used as an absorption liquid in the acetic acid hydrogenation reaction step.
  • the bottom temperature of the second distillation column (acetic acid recovery column) F was 157 ° C., and the bottoms were continuously extracted from the line 24 at 422 g / hr so that the liquid level was constant.
  • the bottoms contained 0.1% by weight of water and 99.9% by weight of acetic acid.
  • the lower phase liquid is charged to the 10th stage (theoretical plate number) from the top of the third distillation column (delow boiling column) G consisting of a glass distillation column with a 40 mm ⁇ vacuum jacket having 30 theoretical plates. Distilled at 270.
  • the top vapor temperature was 59 ° C.
  • the distillate 5 g / hr contained 79.1 wt% acetone, 3.7 wt% ethanol, 15.0 wt% ethyl acetate, and 2.2 wt% water.
  • the bottom temperature was 73 ° C., and the bottoms were continuously extracted from the line 28 at 244 g / hr so that the liquid level was constant.
  • the bottoms contained 15.6% by weight ethanol, 11.0% by weight ethyl acetate and 73.4% by weight water.
  • the bottoms were charged into the fifth stage (theoretical plate number) from the top of a fourth distillation column (ethanol / ethyl acetate recovery column) H consisting of a glass distillation column with a 40 mm ⁇ vacuum jacket having a theoretical plate number of 10 and 40 kPa (absolute) And distilled at a reflux ratio of 1.2.
  • the top vapor temperature was 50 ° C.
  • the distillate 72 g / hr contained 52.7% by weight of ethanol, 37.3% by weight of ethyl acetate, and 10.0% by weight of water.
  • the bottom temperature was 81 ° C., and the bottoms were continuously extracted from the line 31 at 172 g / hr so that the liquid level was constant.
  • the bottoms contained 0.1% by weight of ethanol and 99.9% by weight of water. Although the operation was continued for a long time, stable operation was possible.
  • Example 1 Comparative Example The reaction crude liquid of Example 1 was purified by the flow shown in FIG. From the top of the first distillation column (acetaldehyde product column) E consisting of a 50 mm ⁇ vacuum jacketed glass distillation column with 30 theoretical plates to the 20th plate (theoretical plate number), the above obtained by hydrogenation of acetic acid from line 16 The reaction crude liquid was charged and distilled at normal pressure and a reflux ratio of 3. The top vapor temperature was 21 ° C., and 144 g / hr of product acetaldehyde was cooled to 10 ° C. and extracted from the line 18.
  • the bottom liquid temperature was 79 ° C., and the bottoms were continuously extracted from the line 19 at 1,586 g / hr so that the liquid level was constant.
  • the bottoms contained 1.1 wt% acetone, 5.7 wt% ethanol, 59.0 wt% ethyl acetate, 7.7 wt% water, and 26.5 wt% acetic acid. This bottoms is charged into the 20th stage (theoretical plate number) from the top of the second distillation column (acetic acid recovery column) F consisting of a 100 mm ⁇ metal distillation column having a theoretical plate number of 30.
  • the upper phase liquid 1,500 g / hr obtained by separating the distillate from the column (acetic acid recovery column) F with a decanter S was charged and distilled at a pressure of 190 kPa gauge.
  • the top vapor temperature is 103 ° C.
  • the distillate is condensed by condenser M-7, cooled to 20 ° C., separated by decanter S, and 1,500 g / hr of the upper phase liquid is second as described above.
  • the mixture was refluxed to the distillation column (acetic acid recovery column) F, and 1,000 g / hr was recycled as an absorption liquid in the acetic acid hydrogenation reaction step.
  • the upper phase liquid contained 1.6% by weight of acetone, 7.6% by weight of ethanol, 83.7% by weight of ethyl acetate, and 7.1% by weight of water. Therefore, the ethanol concentration and the water concentration in the absorption liquid charged to the upper stage of the absorption tower (scrubber) C-1 in the reaction system were higher than those in Example 1.
  • the reaction crude liquid and the absorption liquid charged to the upper stage of the absorption tower (scrubber) C-1 of the reaction system that is, the distillate of the second distillation tower (acetic acid recovery tower) F are decanter S.
  • the ethanol concentration and water concentration in the upper phase liquid separated in (1) continued to rise, and finally, the distillate from the second distillation column (acetic acid recovery column) F became uniform and could not be separated, and the operation could be continued. lost.
  • acetaldehyde when producing acetaldehyde from acetic acid, industrially important intermediates such as acetaldehyde, unreacted acetic acid and other valuable materials are separated easily and economically from the reaction crude liquid as a product. Can be purified.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 酢酸を水素化してアセトアルデヒドを製造するに際し、反応粗液から、製品であるアセトアルデヒド、未反応の酢酸及びその他の有価物を、簡便且つ高い経済性で分離、精製できる方法を提供する。 本発明のアセトアルデヒドの製造方法は、酢酸の水素化によりアセトアルデヒドを製造する方法であって、酢酸を水素化して得られた反応粗液から第1蒸留塔でアセトアルデヒドを分離する工程、アセトアルデヒド分離後の液から第2蒸留塔で未反応の酢酸を分離する工程、第2蒸留塔の留出液の少なくとも一部を水と接触させて前記留出液中のエタノールを水相に抽出分離する工程を含む。

Description

アセトアルデヒドの製造方法
 本発明は、酢酸の水素化によりアセトアルデヒドを製造する方法に関する。本願は、2014年4月10日に日本に出願した、特願2014-081440号の優先権を主張し、その内容をここに援用する。
 アセトアルデヒドは工業的に重要な中間体であり、酢酸エチル、過酢酸、ピリジン誘導体、ペンタエリスリトール、クロトンアルデヒド、パラアルデヒドなどの原料として大量に使用されている。
 従来、アセトアルデヒドは、主にエチレンのWacker酸化により製造されている。しかし、近年、酢酸がメタノールと一酸化炭素より安価に製造できるようになったことや、エチレン価格の上昇により、酢酸の水素化によるアセトアルデヒドの製造も、1つの選択肢になりつつあり、本プロセスが実現できるかは、いかにその経済性を高めることができるかにかかっている。
 酢酸の水素化によりアセトアルデヒドを製造する方法は、特開平11-322658号公報に開示されている。これによると、2.5ないし90重量%のパラジウムを含む酸化鉄触媒上で、酢酸を過剰の水素の存在下で水素化すると、主生成物のアセトアルデヒド以外に、メタン、エタン、エチレン、二酸化炭素、アセトン、エタノール、酢酸エチル、水、未反応の酢酸を含むガス状生成物が得られる。このガス状生成物は吸収器で酢酸溶液と接触し、アセトアルデヒド、アセトン、エタノール、酢酸エチル、水、酢酸を凝縮分離した後、メタン、エタン、エチレン、二酸化炭素の非凝縮性ガスを含む水素ガスは反応に循環・再利用される。
特開平11-322658号公報
 前記吸収器で得られた反応凝縮液(反応粗液)は、目的物であるアセトアルデヒド、副生成物であるアセトン、エタノール、酢酸エチル、水、未反応物である酢酸を含んでいるが、この反応粗液から、如何に効率よく製品であるアセトアルデヒドを分離し、未反応物である酢酸を回収し、その他の有価物を分離できるかが、本プロセスの経済性を左右する。前記特許文献1には、上記反応粗液から、まず、蒸留カラムでアセトアルデヒドを分離し、続いて酢酸カラムで、ボトムより酢酸を、塔頂よりアセトン、酢酸エチル、水を分離する方法が記載されている。この方法では、酢酸エチルと水の共沸を利用して、分離が困難である酢酸と水の分離効率を上げている。塔頂から留出したアセトン、酢酸エチル、水はデカンタで有機相(酢酸エチル相)と水相に分液し、有機相の一部は脱水共沸剤として酢酸カラムに循環される。しかし、この方法では、酢酸の水素化において副生成物のエタノールが多い場合、酢酸カラムの留出液中のエタノール濃度が上昇し、デカンタで分液後の有機相中のエタノールおよび水濃度が上昇して、酢酸と水の分離効率が低下する。さらにエタノールが多くなると、ついには留出液が分液しなくなり、運転が継続できなくなる。
 したがって、本発明の目的は、酢酸を水素化してアセトアルデヒドを製造するに際し、反応粗液から、製品であるアセトアルデヒド、未反応の酢酸及びその他の有価物を、簡便且つ高い経済性で分離、精製できる方法を提供することにある。
 本発明者らは、上記課題を解決するため、反応粗液から製品であるアセトアルデヒド、未反応物である酢酸、その他の有価物を分離・精製する方法を検討したところ、反応粗液から第1蒸留塔でアセトアルデヒドを分離した後、第2蒸留塔で、ボトムより酢酸を、塔頂よりアセトン、エタノール、酢酸エチル、水を分離し、塔頂留出液を水と接触させて水相にエタノールを抽出分離することにより、安定かつ低コストで酢酸と水が分離できることを見出し、本発明を完成した。
 すなわち、本発明は、酢酸の水素化によりアセトアルデヒドを製造する方法であって、酢酸を水素化して得られた反応粗液から第1蒸留塔でアセトアルデヒドを分離する工程、アセトアルデヒド分離後の液から第2蒸留塔で未反応の酢酸を分離する工程、第2蒸留塔の留出液の少なくとも一部を水と接触させて前記留出液中のエタノールを水相に抽出分離する工程を含むアセトアルデヒドの製造方法を提供する。
 上記製造方法において、前記エタノールを水相に抽出分離した後の有機相を前記第2蒸留塔に還流してもよい。
 上記製造方法においては、さらに、酢酸を水素化した反応流体を吸収塔に仕込み、該反応流体中の凝縮成分を吸収液で吸収して反応粗液を得る吸収工程を含むとともに、前記エタノールを水相に抽出分離した後の有機相を前記吸収工程の吸収液として用いてもよい。
 また、上記製造方法においては、さらに、前記第2蒸留塔で未反応の酢酸を分離した後の液から第3蒸留塔で酢酸エチルよりも沸点の低い低沸点成分を分離する工程、及び、低沸点成分分離後の液から第4蒸留塔でエタノール及び酢酸エチルの混合液と水とを分離する工程を含んでいてもよい。
 また、上記製造方法においては、さらに、前記第2蒸留塔で未反応の酢酸を分離した後の液から第3蒸留塔で水を分離する工程、及び、水分離後の液から第4蒸留塔で酢酸エチルよりも沸点の低い低沸点成分とエタノール及び酢酸エチルの混合液とを分離する工程を含んでいてもよい。
 すなわち、本発明は、以下に関する。
[1]酢酸の水素化によりアセトアルデヒドを製造する方法であって、酢酸を水素化して得られた反応粗液から第1蒸留塔でアセトアルデヒドを分離する工程、アセトアルデヒド分離後の液から第2蒸留塔で未反応の酢酸を分離する工程、第2蒸留塔の留出液の少なくとも一部を水と接触させて前記留出液中のエタノールを水相に抽出分離する工程を含むアセトアルデヒドの製造方法。
[2]前記エタノールを水相に抽出分離した後の有機相を前記第2蒸留塔に還流する[1]に記載のアセトアルデヒドの製造方法。
[3]さらに、酢酸を水素化した反応流体を吸収塔に仕込み、該反応流体中の凝縮成分を吸収液で吸収して反応粗液を得る吸収工程を含むとともに、前記エタノールを水相に抽出分離した後の有機相を前記吸収工程の吸収液として用いる[1]に記載のアセトアルデヒドの製造方法。
[4]さらに、前記第2蒸留塔で未反応の酢酸を分離した後の液から第3蒸留塔で酢酸エチルよりも沸点の低い低沸点成分を分離する工程、及び、低沸点成分分離後の液から第4蒸留塔でエタノール及び酢酸エチルの混合液と水とを分離する工程を含む[1]~[3]の何れか1項に記載のアセトアルデヒドの製造方法。
[5]さらに、前記第2蒸留塔で未反応の酢酸を分離した後の液から第3蒸留塔で水を分離する工程、及び、水分離後の液から第4蒸留塔で酢酸エチルよりも沸点の低い低沸点成分とエタノール及び酢酸エチルの混合液とを分離する工程を含む[1]~[3]の何れか1項に記載のアセトアルデヒドの製造方法。
[6]反応温度が、250~400℃である[1]~[5]の何れか1項に記載のアセトアルデヒドの製造方法。
[7]反応圧力が、0.1~10MPaである[1]~[6]の何れか1項に記載のアセトアルデヒドの製造方法。
[8]酢酸の転化率が5~70%である[1]~[7]の何れか1項に記載のアセトアルデヒドの製造方法。
[9]吸収液として、酢酸エチルを10重量%以上含む[1]~[8]の何れか1項に記載のアセトアルデヒドの製造方法。
[10]吸収液として共沸溶剤含有液を用いる[1]~[9]の何れか1項に記載のアセトアルデヒドの製造方法。
[11]前記共沸溶剤含有液中の共沸溶剤含有量が、10重量%以上である[10]に記載のアセトアルデヒドの製造方法。
 本発明によれば、酢酸からアセトアルデヒドを製造するに際し、反応粗液から、製品であるアセトアルデヒド、未反応の酢酸及びその他の有価物を、簡便且つ高い経済性で分離、精製できる。
本発明のアセトアルデヒドの製造方法の一例を示す概略フロー図(反応系)である。 本発明のアセトアルデヒドの製造方法の一例を示す概略フロー図(精製系;図1の続き)である。 本発明のアセトアルデヒドの製造方法の他の例を示す概略フロー図(精製系;図1の続き)である。 本発明のアセトアルデヒドの製造方法のさらに他の例を示す概略フロー図(精製系;図1の続き)である。 比較例におけるアセトアルデヒドの製造方法の概略フロー図(精製系)である。 実施例におけるアセトアルデヒドの製造方法の概略フロー図(反応系)である。
 本発明のアセトアルデヒドの製造方法は、酢酸の水素化によりアセトアルデヒドを製造する方法であって、酢酸を水素化して得られた反応粗液から第1蒸留塔でアセトアルデヒドを分離する工程、アセトアルデヒド分離後の液から第2蒸留塔で未反応の酢酸を分離する工程、第2蒸留塔の留出液の少なくとも一部を水と接触させて前記留出液中のエタノールを水相に抽出分離する工程を具備している。
 第2蒸留塔では、ボトムより酢酸が得られ、塔頂より、主にアセトン、エタノール、酢酸エチル、水が留出する。本発明の製造方法によれば、第2蒸留塔の留出液中のエタノールを水相に抽出分離するので、デカンタで分液後の有機相中のエタノール及び水の濃度が上昇して酢酸と水の分離効率が低下したり、留出液が分液しなくなるという不具合が解消され、未反応の酢酸を安定かつ低コストで回収することが可能となる。前記エタノールを水相に抽出分離した後の有機相は、例えば、前記第2蒸留塔に還流させることができる。また、反応系において酢酸を水素化した反応流体を吸収塔に仕込み、該反応流体中の凝縮成分を吸収液で吸収して反応粗液を得る吸収工程を設ける場合には、前記エタノールを水相に抽出分離した後の有機相は、この吸収工程の吸収液として用いることができる。
 以下、本発明を、必要に応じて図面を参照しつつ詳細に説明する。図1は、本発明のアセトアルデヒドの製造方法の1例を示す反応系の概略フロー図である。図2は、本発明のアセトアルデヒドの製造方法の1例を示す精製系の概略フロー図であり、図3は、本発明のアセトアルデヒドの製造方法の他の例を示す精製系の概略フロー図であり、図4は、本発明のアセトアルデヒドの製造方法のさらに他の例を示す精製系の概略フロー図である。
 [反応系]
 図1に示す例では、水素ガスは水素設備Pからライン1により供給され、コンプレッサーI-1で加圧され、バッファータンクJ-1を経て、ライン2の循環ガスと合流して、ライン3により蒸発器A(酢酸蒸発器)に仕込まれる。蒸発器Aには、酢酸タンクK-1からポンプN-1を用いてライン4より酢酸が供給され、気化した酢酸が水素ガスと共に熱交換器(加熱器)L-1、L-2で加熱され、ライン5より触媒を充填した反応器Bに仕込まれる。蒸発器Aには循環ポンプN-2が備えられている。反応器Bで酢酸は水素化され、主生成物のアセトアルデヒドのほか、非凝縮性のメタン、エタン、エチレン、二酸化炭素、凝縮性のアセトン、エタノール、酢酸エチル、水が生成する。
 酢酸の水素化は公知の方法で行うことができる。例えば、酢酸を触媒の存在下で水素と反応させる。前記触媒としては、酢酸の水素化によりアセトアルデヒドを生成させるものであれば特に限定されず、例えば、酸化鉄、酸化ゲルマニウム、酸化スズ、酸化バナジウム、酸化亜鉛等の金属酸化物などを用いることができる。また、これらの金属酸化物に、パラジウム、白金等の貴金属を添加したものを触媒として用いてもよい。この場合の貴金属の添加量は触媒全体に対して、例えば0.5~90重量%程度である。中でも、好ましい触媒は、パラジウム、白金等の貴金属を添加した酸化鉄である。触媒は、酢酸の水素化に用いる前に、予め、例えば水素と接触させることにより還元処理を施してもよい。還元処理は、例えば、50~500℃、0.1~5MPaの条件で行われる。
 反応温度は、例えば250~400℃、好ましくは270~350℃である。反応温度が低すぎるとエタノール等の副生が増大し、反応温度が高すぎるとアセトン等の副生が増大し、いずれの場合もアセトアルデヒドの選択率が低下しやすくなる。反応圧力は、常圧、減圧、加圧下のいずれであってもよいが、一般に、0.1~10MPa、好ましくは0.1~3MPaの範囲である。
 反応器への水素と酢酸の供給比(モル比)は、一般に、水素/酢酸=0.5~50、好ましくは、水素/酢酸=2~25である。
 反応器における酢酸の転化率は70%以下(例えば5~70%)であることが望ましい。酢酸の転化率が70%を超えると、副生物(エタノール、酢酸エチル等)が生成しやすくなり、アセトアルデヒドの選択率が低下する。したがって、反応器における滞留時間、水素の空間速度を、上記酢酸の転化率が70%以下となるように調整することが望ましい。
 酢酸と水素との反応により、前述したように、主に、未転化の酢酸、未転化の水素、反応で生成したアセトアルデヒド、水、及びその他の生成物(エタノール、酢酸エチル、アセトン等)からなるガス状反応生成物が得られる。
 前記ガス状反応生成物から非凝縮性ガスと凝縮性成分とを分離し、該凝縮性成分を反応粗液とすることができる。前記ガス状反応生成物から非凝縮性ガスと凝縮性成分とを分離する方法としては、特に限定されないが、例えば、酢酸を水素化した反応流体を吸収塔に仕込み、該反応流体中の凝縮成分を吸収液で吸収することにより、凝縮性成分と非凝縮性のガスとを分離できる(吸収工程)。本発明においては、このような吸収液に吸収された凝縮性成分(凝縮性成分と吸収液の混合物)も「反応粗液」に含める。なお、上記吸収工程では、非凝縮性ガスの一部が吸収液に溶解するが、吸収塔の缶出液の圧力を減じることにより、吸収液に溶解した非凝縮性ガスを放散させ、該非凝縮性ガス放散後の液を吸収塔にリサイクルする工程(放散工程)を設けることにより、水素と他の非凝縮性ガス成分とを効率よく分離できる。
 前記吸収工程では、例えば、酢酸を水素化した反応流体を吸収塔に仕込み、該反応流体中の凝縮成分を吸収液で吸収するとともに、非凝縮性ガスを吸収液に溶解する。この吸収工程は、通常、反応工程で得られた反応流体と吸収液とを吸収塔に供給し、吸収塔内で両者を接触させることにより行われる。吸収塔としては、特に限定されず、公知乃至周知のガス吸収装置、例えば、充填塔、棚段塔、スプレー塔、濡れ壁塔などを使用できる。
 また、前記放散工程では、吸収塔の缶出液の圧力を減じて吸収液に溶解した非凝縮性ガスを放散し、該非凝縮性ガス放散後の液を吸収塔にリサイクルする。この放散工程は、通常、吸収工程で得られた吸収塔の缶出液(凝縮成分および非凝縮性ガスを吸収、溶解した後の吸収液)を圧力を減じた放散塔に供給し、非凝縮性ガスを放散することにより行われる。放散塔としては、特に限定されず、公知乃至周知のガス放散装置、例えば、充填塔、棚段塔、スプレー塔、濡れ壁塔、気液分離器などを使用できる。
 図1に示す例では、反応器Bから流出した反応流体はライン6により前記熱交換器L-1を経た後、熱交換器(冷却器)M-1、M-2で冷却され、ライン7より吸収塔Cの下方部に仕込まれる。吸収塔Cには、吸収液として、ライン9より後述する放散塔Dの缶出液(以後、「循環液」と称する場合がある)が仕込まれる。循環液は主に非凝縮性ガスである水素、メタン、エタン、エチレン、二酸化炭素を吸収、溶解する。また、循環液以外の吸収液(以後、「吸収塔補給液」と称する場合がある)として、ライン11より共沸溶剤(水と共沸する溶剤)を多く含む後述する酢酸回収塔Fの留出上相液、又はエタノール抽出工程で得られる上相液(有機相)が吸収液として仕込まれる。吸収塔補給液は非凝縮性ガスとともに低沸点の凝縮性成分であるアセトアルデヒドを吸収する。なお、前記酢酸回収塔Fの留出上相液、又はエタノール抽出工程で得られる上相液(有機相)はライン15を通り冷却器M-3を経て前記ライン11に供給される。放散塔Dの缶出液(ライン9)(循環液)及び、前記酢酸回収塔Fの留出上相液、又はエタノール抽出工程で得られる上相液(有機相)(ライン11)(吸収塔補給液)の吸収塔Cへの仕込位置は、アセトアルデヒドおよび非凝縮性ガスの吸収効率等を考慮して適宜選択できるが、前記循環液は吸収塔Cの中段部へ、前記吸収塔補給液は吸収塔Cの上方部へ仕込むのが好ましい。
 吸収塔Cの缶出液は、精製工程に供給されるライン14と放散塔Dに仕込まれるライン8に分かれる。ライン14の缶出液は反応粗液として反応粗液タンクK-2に貯留され、精製工程に供される。ライン8は放散塔Dで減圧され、ライン10より吸収液に溶解した非凝縮性ガスである水素、メタン、エタン、エチレン、二酸化炭素が放散され、該非凝縮性ガス放散後の液はライン9より吸収塔Cにリサイクルされる。Q-2はベントである。なお、吸収塔Cの缶出液の例えば全量を放散塔Dに仕込み、非凝縮性ガス放散後の液の一部を吸収塔にリサイクルし、残りを精製工程に供される反応粗液としてもよい(実施例参照)。
 上記方法では、非凝縮性ガスを吸収液に溶解させた後、吸収塔の缶出液の圧力を減じて、吸収液に溶解した非凝縮性ガスを放散させるので、水素と他の非凝縮性ガスとを効率よく分離できる。これは、水素と他の非凝縮性ガスの溶解度の違いによる。例えば、30℃において、分圧が1atmである時の水素およびメタンの酢酸エチルに対する溶解度は、それぞれ、0.01NL/Lおよび0.48NL/Lであり、これは、酢酸エチルに対して、メタンが水素よりも48倍溶解しやすいことを示す。そして、上記方法では、さらに、非凝縮性ガス放散後の液を吸収塔にリサイクルするので、水素ガス以外の非凝縮性ガスが効率よく吸収、溶解され、その結果、水素ガスのパージロスを大きく低減できる。
 吸収塔Cで吸収液に吸収、溶解しなかった非凝縮性ガスは、吸収塔Cの塔頂からライン12によりバッファータンクJ-3を経てコンプレッサーI-2で加圧され、バッファータンクJ-2を経て、ライン2により前記ライン1の水素ガスと合流してライン3より蒸発器Aに供給される。なお、上記非凝縮性ガスは必要に応じてライン13よりパージされる。Q-1はベントである。
 上記の例では、吸収塔Cで用いる吸収液として、吸収塔Cの缶出液からアセトアルデヒドを分離した後の酢酸と水を含む混合液(酢酸水溶液)から酢酸を回収する工程(未反応の酢酸と副生した水とを共沸蒸留により分離する工程)における酢酸回収塔Fの留出上相液、又は前記酢酸回収塔Fの留出液の少なくとも一部をエタノール抽出工程に供して得られる抽出上相液(有機相)を用いている。この留出上相液や抽出上相液(有機相)は、共沸溶剤(酢酸エチル等の水と共沸する溶剤)を多く含む共沸溶剤含有液である。なお、酢酸回収塔Fの留出液を分液させる場合の下相液は水を多く含み、水相を形成している。
 吸収塔Cに仕込まれる吸収液としては、吸収塔Cの缶出液(循環液)のみでもよいが、吸収塔Cの缶出液には沸点が21℃と低いアセトアルデヒドが多く含まれているので、アセトアルデヒドの回収率を向上させるため、アセトアルデヒドを含まない吸収液が好ましい。例えば、吸収液としては、上記の例のような、未反応の酢酸と副生した水とを共沸蒸留により分離する際に使用する共沸溶剤含有液(酢酸回収塔Fの留出液をデカンタで分離した、共沸溶剤を多く含む上相液)のほか、吸収塔Cの缶出液からアセトアルデヒドを分離した後の液等の酢酸水溶液(酢酸と水を含む混合液;例えば、後述するアセトアルデヒド製品塔Eの缶出液)が好ましい。また、後述する酢酸回収塔Fの留出液の少なくとも一部を水と接触させて前記留出液中のエタノールを水相に抽出分離した後の有機相を、上記吸収液として使用するのも好ましい。吸収液としては、酢酸エチルを10重量%以上(好ましくは30重量%以上、より好ましくは50重量%以上、特に好ましくは75重量%以上)含む液が好ましい。
 吸収液として前記共沸溶剤含有液を用いる場合、共沸溶剤含有液中の共沸溶剤含有量は、例えば、10重量%以上、好ましくは30重量%以上、さらに好ましくは50重量%以上、特に好ましくは75重量%以上である。また、吸収液として前記酢酸水溶液を用いる場合、酢酸水溶液中の酢酸の含有量は、例えば、10~95重量%、好ましくは50~90重量%、さらに好ましくは60~80重量%である。
 前記共沸溶剤は水と共沸混合物を形成して沸点を下げ、かつ、水と分液することで酢酸と水の分離を容易にする。共沸溶剤の例としては、エステルとしては、ギ酸イソプロピル、ギ酸プロピル、ギ酸ブチル、ギ酸イソアミル、酢酸エチル、酢酸イソプロピル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、酪酸エチル、酪酸イソプロピル、などが、ケトンとしては、メチルエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、ジエチルケトン、エチルプロピルケトンなどが、脂肪族炭化水素としては、ペンタン、ヘキサン、ヘプタンなどが、脂環式炭化水素としては、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサンなどが、芳香族炭化水素としては、ベンゼン、トルエンなどが挙げられる。
 これらの中でも、酢酸エチルは酢酸の水素化の副生成物として存在するため、共沸溶剤の回収工程を省略することができるので、共沸溶剤として好ましい。
 また、酢酸プロピル(沸点102℃)、酢酸イソブチル(沸点117℃)、酢酸sec-ブチル(沸点112℃)、プロピオン酸イソプロピル(沸点110℃)、酪酸メチル(沸点102℃)、イソ酪酸エチル(沸点110℃)など、常圧における沸点が100℃から118℃のエステルは、水との共沸混合物の水の比率が高く、かつ、酢酸より沸点が低いため、酢酸回収塔Fにおいて酢酸と水の分離をより容易にする。また、これらのエステルは、エタノールとも共沸しないか、または、エタノールとの共沸混合物のエタノールの比率が低く、共沸溶剤の分離・回収が比較的容易である。したがって、常圧における沸点が100℃から118℃のエステルも共沸溶剤として好ましい。
 また、非凝縮性ガスの主成分であるメタンは、極性の高い酢酸水溶液よりも極性の低い共沸溶剤によく溶解するため、共沸溶剤は非凝縮性ガスの吸収液に適しており、吸収液としても、共沸溶剤が適している。
 吸収塔Cに供給される前記吸収塔補給液(ライン11)の供給量と反応流体(ライン7)の供給量との比(重量比)は、例えば、前者/後者=0.1~10であり、好ましくは前者/後者=0.3~2である。また、吸収塔Cに供給される前記循環液(ライン9)の量と反応流体(ライン7)の供給量との比(重量比)は、例えば、前者/後者=0.05~20であり、好ましくは前者/後者=0.1~10である。
 吸収塔Cの段数(理論段数)は、例えば1~20、好ましくは3~10である。また、吸収塔Cにおける温度は、例えば、0~70℃であり、吸収塔Cにおける圧力は、例えば、0.1~5MPa(絶対圧)である。
 放散塔Dにおける温度は、例えば、0~70℃である。放散塔Dにおける圧力は、吸収塔Cの圧力より低ければよく、例えば、0.05~4.9MPa(絶対圧)である。吸収塔Cの圧力と放散塔Dの圧力との差(前者-後者)は、非凝縮性ガスの放散効率やアセトアルデヒドのロス抑制の観点から適宜選択できるが、例えば、0.05~4.9MPa、好ましくは0.5~2MPaである。
 [精製系]
 反応系で得られた反応粗液は精製工程(精製系)に供され、アセトアルデヒドが製品として得られる。また、未反応の酢酸や、副生した各成分を回収し、必要に応じて反応器にリサイクルすることができる。
 本発明において、精製系は、酢酸を水素化して得られた反応粗液から第1蒸留塔でアセトアルデヒドを分離する工程(以下、「アセトアルデヒド精製工程」と称する場合がある)、アセトアルデヒド分離後の液から第2蒸留塔で未反応の酢酸を分離する工程(以下、「酢酸回収工程」と称する場合がある)、及び、第2蒸留塔の留出液の少なくとも一部を水と接触させて前記留出液中のエタノールを水相に抽出分離する工程(以下、「エタノール抽出工程」と称する場合がある)を含んでいる。
 前記アセトアルデヒド精製工程では、例えば、前記反応粗液を第1蒸留塔(アセトアルデヒド製品塔)に仕込み、塔頂からアセトアルデヒドを分離、回収する。塔底からは、未反応の酢酸と副生した水(通常、さらにエタノール、酢酸エチル等のその他の生成物を含む)を含む酢酸水溶液が排出される。
 アセトアルデヒド製品塔における塔頂圧力は、通常、0.1MPa以上、好ましくは0.5~2MPaであり、ゲージ圧としては、通常、0.0MPaG以上、好ましくは0.4~1.9MPaGである。アセトアルデヒド製品塔の段数(理論段数)は、例えば10~50、好ましくは20~40である。
 前記酢酸回収工程では、前記アセトアルデヒド製品塔における塔底液(缶出液)を第2蒸留塔(酢酸回収塔)に仕込み、また、塔頂部から共沸溶剤(水と共沸する溶剤)を含む液を仕込む。
 前記エタノール抽出工程では、酢酸回収塔の塔頂留出液の少なくとも一部をエタノール抽出装置に仕込み、別途仕込まれる水(抽剤)と接触させて、塔頂留出液中に含まれるエタノールを水相(下相)側に抽出分離する。エタノール抽出装置に供する液としては、酢酸回収塔の塔頂留出液の一部又は全部であってもよく、酢酸回収塔の塔頂留出液を分液させた上相液(留出上相液)の一部又は全部であってもよい。
 エタノール抽出装置の形式は、回分式でも連続式でもよく、また、段数(理論段数)は、例えば1~10である。抽出の方式は、並流接触でも向流多段接触でもよいが、エタノールの分離効率がよい、向流多段接触が好ましい。向流多段抽出装置としては、ミキサー・セトラー、スプレー塔、バッフル塔、多孔板塔、充填塔、撹拌型抽出塔、脈動抽出塔、遠心抽出機などが使用できる。
 エタノール抽出装置に仕込む水(抽剤)とエタノール抽出装置に供する液(前記塔頂留出液又は留出上相液)との比率は、例えば、前者/後者=0.01~1である。
 エタノール抽出装置から流出する有機相(上相液)の一部又は全部は、第2蒸留塔内に還流させるか、または、前述したように、前記吸収塔における吸収液として利用してもよい。エタノール抽出装置から流出する有機相(上相液)の残りは、例えば、後述する脱低沸塔に供給される。また、エタノール抽出装置から流出する水相(下相液)は、例えば、後述する脱低沸塔に供給される。
 なお、前記塔頂留出液又は留出上相液のうち、エタノール抽出装置に供しない残りの液は、例えば、酢酸回収塔内に還流させてもよく、前記吸収塔における吸収液として利用してもよい。また、前記塔頂留出液を分液させた下相液(留出下相液)は、例えば、後述する脱低沸塔に供給される。
 酢酸回収塔の塔底から、酢酸が回収される。この酢酸は反応系にリサイクルすることができる。
 酢酸回収塔の段数(理論段数)は、例えば10~50、好ましくは10~30である。蒸留は、常圧、減圧、加圧のいずれの条件で行ってもよい。
 酢酸回収塔の塔頂留出液のうちエタノール抽出装置に供しない液、エタノール抽出工程で得られる有機相(上相液)のうち酢酸回収塔への還流に用いない液と水相(下相液)については、例えば、2つの蒸留塔を用いて、(a)酢酸エチルよりも沸点の低い低沸点成分と、(b)エタノール及び酢酸エチルの混合液と、(c)水とに分離できる。この方法として2つの方法がある。
 [第1の方法]
 前記第1の方法では、前記未反応酢酸分離後の液(前記酢酸回収塔の塔頂留出液のうちエタノール抽出装置に供しない液、エタノール抽出工程で得られる有機相(上相液)のうち酢酸回収塔への還流に用いない液と水相(下相液))から、まず、第3蒸留塔で(a)酢酸エチルよりも沸点の低い低沸点成分を分離し(脱低沸工程)、次いで、該低沸点成分分離後の液から第4蒸留塔で(b)エタノール及び酢酸エチルの混合液と(c)水とを分離する(エタノール・酢酸エチル回収工程)。
 前記脱低沸工程では、前記酢酸回収塔の留出上相液の一部(必要に応じて)と留出下相液を第3蒸留塔(脱低沸塔)に仕込み、塔頂から低沸点成分を回収し、塔底からエタノールと酢酸エチルと水を含む液を排出させる。塔底液は、後述する第4蒸留塔(エタノール・酢酸エチル回収塔)に供給される。
 第3蒸留塔(脱低沸塔)の段数(理論段数)は、例えば10~50、好ましくは20~40である。蒸留は、常圧、減圧、加圧のいずれの条件で行ってもよい。
 前記エタノール・酢酸エチル回収工程では、前記第3蒸留塔(脱低沸塔)の塔底液を第4蒸留塔(エタノール・酢酸エチル回収塔)に仕込み、塔頂から、エタノールと酢酸エチルとを回収し、塔底から水を排出する。
 第4蒸留塔(エタノール・酢酸エチル回収塔)の段数(理論段数)は、例えば5~50、好ましくは10~20である。蒸留は、常圧、減圧、加圧のいずれの条件で行ってもよい。
 [第2の方法]
 前記第2の方法では、前記未反応酢酸分離後の液(前記酢酸回収塔の塔頂留出液のうちエタノール抽出装置に供しない液、エタノール抽出工程で得られる有機相(上相液)のうち酢酸回収塔への還流に用いない液と水相(下相液))から、まず、第3蒸留塔で(c)水を分離し(水分離工程)、水分離後の液から第4蒸留塔で(a)酢酸エチルよりも沸点の低い低沸点成分と(b)エタノール及び酢酸エチルの混合液とを分離する(低沸点成分回収工程)。
 前記水分離工程では、前記第2蒸留塔(酢酸回収塔)の留出上相液の一部(必要に応じて)と留出下相液を第3蒸留塔(水分離塔)に仕込み、塔頂から酢酸エチルよりも沸点の低い低沸点成分とエタノールと酢酸エチルとを留出させ、塔底から水を排出させる。塔頂液は、後述する第4蒸留塔(低沸点成分回収塔)に供給される。
 第3蒸留塔(水分離塔)の段数(理論段数)は、例えば5~50、好ましくは10~20である。蒸留は、常圧、減圧、加圧のいずれの条件で行ってもよい。
 前記低沸点成分回収工程では、前記第3蒸留塔(水分離塔)の塔頂液を第4蒸留塔(低沸点成分回収塔)に仕込み、塔頂から、アセトン等の酢酸エチルよりも沸点の低い低沸点成分を回収し、塔底からエタノールと酢酸エチルの混合液を回収する。
 第4蒸留塔(低沸点成分回収塔)の段数(理論段数)は、例えば10~50、好ましくは20~40である。蒸留は、常圧、減圧、加圧のいずれの条件で行ってもよい。
 図2~図4は、それぞれ、前記第1の方法を含む精製系を示す概略フロー図である。
 図2に示す例では、反応粗液は、反応粗液タンクK-2からポンプN-4を用いてライン16より第1蒸留塔(アセトアルデヒド製品塔)Eに仕込まれる。第1蒸留塔(アセトアルデヒド製品塔)Eでは、塔頂からライン17より非凝縮性ガスをパージし、ライン18より製品アセトアルデヒドが留出する。第1蒸留塔(アセトアルデヒド製品塔)Eの缶出液はライン19より第2蒸留塔(酢酸回収塔)Fに供される。M-5及びM-6は冷却器、R-1は受器、N-5、N-6はポンプ、Q-3はベント、O-1はリボイラー、K-3は製品アセトアルデヒドタンクである。
 第2蒸留塔(酢酸回収塔)Fにおいて、塔頂にはライン41より共沸溶剤含有液(後述する抽出上相液の一部)が仕込まれ、ライン24の缶出液から未反応の酢酸が回収されて、回収酢酸タンクK-4に貯留され、反応系にリサイクルされる。第2蒸留塔(酢酸回収塔)Fの塔頂にはアセトン、エタノール、酢酸エチル、水、および、共沸溶剤が留出し、留出液はライン35よりエタノール抽出装置Vの下方部に仕込まれる。
 抽出装置Vの上方部には、ライン36より水Wが仕込まれ、前記ライン35からの留出液とライン36からの水とが向流で接触し、抽出が行われる。エタノール抽出装置Vで処理後、ライン39の上相液(有機相)の一部(必要に応じて)とライン38の下相液(水相)がライン48より第3蒸留塔(脱低沸塔)Gに仕込まれる。エタノール抽出装置Vで抽出処理された後の上相液(有機相)の一部は、ライン40より吸収液タンクK-6に貯留され、前述したようにライン15及びライン11より吸収塔Cにも仕込まれ、アセトアルデヒドを吸収する。吸収液タンクK-6には、共沸溶剤タンクK-5中の共沸溶剤(酢酸エチル等)がライン42より供給される。エタノール抽出装置で抽出処理された後の上相液(有機相)の一部は、上述したように、ライン41より蒸留塔内に還流される。M-7は冷却器、R-4、R-5は受器、N-7、N-10、N-11、N-17、N-18、N-19はポンプ、O-2はリボイラーである。
 第3蒸留塔(脱低沸塔)Gの塔頂からライン26よりアセトン等の低沸点成分が留出し、ライン28の缶出液は第4蒸留塔(エタノール・酢酸エチル回収塔)Hに仕込まれる。塔頂留出液の一部はライン27より蒸留塔内に還流される。M-8は冷却器、R-2は受器、N-12、N-13はポンプ、O-3はリボイラー、K-7は低沸点成分タンクである。
 第4蒸留塔(エタノール・酢酸エチル回収塔)Hの塔頂からライン29よりエタノール、酢酸エチル(副生成物)、共沸溶剤(酢酸エチル等)を回収し、塔底液(水)はライン31より排水される。塔頂留出液の一部はライン30より蒸留塔内に還流される。M-9、M-10は冷却器、R-3は受器、N-14、N-15はポンプ、O-4はリボイラー、K-8は回収エタノール/酢酸エチルタンクである。
 ライン29で得られたエタノール、酢酸エチル、および、共沸溶剤の混合物は、必要により、さらに蒸留や抽出を行ない分離することができる。
 図3に示す例は、第2蒸留塔及び抽出装置まわりの液の流れが図2に示した例と異なり、それ以外は図2と同様である。
 この例では、第2蒸留塔(酢酸回収塔)Fにおいて、塔頂には、共沸溶剤含有液(後述するエタノール抽出装置Vの上相液(有機相))がライン37及び41より仕込まれ、ライン24の缶出液から未反応の酢酸が回収されて、回収酢酸タンクK-4に貯留され、反応系にリサイクルされる。第2蒸留塔(酢酸回収塔)Fの塔頂にはアセトン、エタノール、酢酸エチル、水、および、共沸溶剤が留出し、デカンタSで分液後、上相液はライン45及びライン47よりエタノール抽出装置Vの下方部に仕込まれる。
 抽出装置Vの上方部には、ライン36より水Wが仕込まれ、前記ライン47からのデカンタ上相液とライン36からの水とが向流で接触し、抽出が行われる。エタノール抽出装置Vで処理後、ライン44のデカンタ下相水とライン38の抽出下相液(水相)がライン48より第3蒸留塔(脱低沸塔)Gに仕込まれる。デカンタSの上相液の一部は、ライン45及びライン46より吸収液タンクK-6に貯留され、前述したようにライン15及びライン11より吸収塔Cにも仕込まれ、アセトアルデヒドを吸収する。吸収液タンクK-6には、共沸溶剤タンクK-5中の共沸溶剤(酢酸エチル等)がライン42より供給される。M-7は冷却器、R-5は受器、N-7、N-10、N-11、N-18、N-19、N-20、N-21はポンプ、O-2はリボイラーである。
 図4に示す例は、第2蒸留塔及び抽出装置まわりの液の流れが図2に示した例と異なり、それ以外は図2と同様である。
 この例では、第2蒸留塔(酢酸回収塔)Fにおいて、塔頂には、共沸溶剤含有液(後述するデカンタSの上相液の一部)がライン45及びライン49より仕込まれ、ライン24の缶出液から未反応の酢酸が回収されて、回収酢酸タンクK-4に貯留され、反応系にリサイクルされる。第2蒸留塔(酢酸回収塔)Fの塔頂にはアセトン、エタノール、酢酸エチル、水、および、共沸溶剤が留出し、デカンタSで分液後、上相液の一部はライン45及びライン47よりエタノール抽出装置Vの下方部に仕込まれる。
 抽出装置Vの上方部には、ライン36より水Wが仕込まれ、前記ライン47からのデカンタ上相液とライン36からの水とが向流で接触し、抽出が行われる。エタノール抽出装置Vで処理後、ライン44のデカンタ下相水とライン38の抽出下相液(水相)がライン48より第3蒸留塔(脱低沸塔)Gに仕込まれる。抽出上相液は、ライン37及びライン40より吸収液タンクK-6に貯留され、前述したようにライン15及びライン11により吸収塔Cにも仕込まれ、アセトアルデヒドを吸収する。吸収液タンクK-6には、共沸溶剤タンクK-5中の共沸溶剤(酢酸エチル等)がライン42より供給される。M-7は冷却器、R-5は受器、N-7、N-10、N-11、N-18、N-20、N-21、N-22はポンプ、O-2はリボイラーである。
 以下に、実施例に基づいて本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
 実施例1
 図6に示される装置により酢酸の水素化を行った。
 後述する吸収塔(スクラバー)C-1の塔頂からのガス(ライン12からライン32を流れるガス)1,882NL/hrをコンプレッサーI-2で昇圧してライン2より循環させ、蒸発器A入口圧力が0.4MPa(ゲージ圧)で一定になるように、水素ボンベPより118NL/hrの水素(ライン1)をコンプレッサーI-1で昇圧し、前記循環ガスと合流させてライン3により蒸発器Aに仕込んだ。J-1、J-2、J-3はバッファータンクである。
 酢酸タンクK-1からライン4により酢酸を700g/hrで供給し、ライン3からの水素と共に蒸発器(電気ヒーター付蒸発器)Aで300℃まで昇温し、得られた水素と酢酸の混合ガスを、触媒としてFe23100重量部に対してPd金属を40重量部担持した触媒627mlを充填した外径43.0mmφの反応器(電気ヒーター付反応器)Bに仕込んだ。蒸発器A内、反応器B内の圧力は1.7MPa(ゲージ圧)である。また、反応温度は300℃である。N-1はポンプである。
 反応器Bから流出した反応ガス(ライン6)は冷却器(クーラー)M-11で30℃まで冷却し、ライン7より6mmφ磁製ラシヒリングを高さ1m充填した外径48.6φの吸収塔(スクラバー)C-1の下部に仕込んだ。吸収塔(スクラバー)C-1内の圧力は、1.7MPa(ゲージ圧)である。N-3はポンプ、M-4は冷却器(クーラー)である。
 吸収塔(スクラバー)C-1の上段には、前記図2のエタノール抽出装置Vで得られた上相液(有機相)(ライン40)に相当する組成の液である、アセトン1.4重量%、エタノール5.1重量%、酢酸エチル89.5重量%、水4.0重量%からなる30℃の吸収液1,029g/hrをライン33より仕込んだ。K-9は吸収液タンク、N-16はポンプ、34はライン、M-12は冷却器(クーラー)である。
 吸収塔(スクラバー)C-1の缶出液(ライン8)は、吸収塔(スクラバー)C-1のボトムの液面が一定になるように、常圧の気液分離器Uに抜き取り、溶存ガスを放散させた。放散したガスはライン10より分離除去した。ガス放散後の液の一部はライン9より30℃、4,500g/hrで吸収塔(スクラバー)C-1の中間部より仕込んだ(循環させた)。
 前記ガス放散後の液の残りはライン14から反応粗液として取り出し、反応粗液タンクK-2に貯留した。反応粗液の組成は、アセトアルデヒド8.3重量%、アセトン1.1重量%、エタノール5.2重量%、酢酸エチル54.0重量%、水7.1重量%、酢酸24.3重量%であり、その製造量は、1,730g/hrであった。
 この反応粗液を図2に示すフローで精製した。
 理論段数30段の50mmφ真空ジャケット付ガラス製蒸留塔からなる第1蒸留塔(アセトアルデヒド製品塔)Eの塔頂から20段目(理論段数)に、ライン16より酢酸の水素化で得た上記の反応粗液を仕込み、常圧、還流比3で蒸留した。塔頂ベーパー温度は21℃で、製品アセトアルデヒド144g/hrを10℃に冷却してライン18から抜き取った。ボトム液温度は79℃で、液面が一定になるように、缶出液を連続的にライン19から1,586g/hrで抜き取った。缶出液は、アセトン1.1重量%、エタノール5.7重量%、酢酸エチル59.0重量%、水7.7重量%、酢酸26.5重量%を含んでいた。
 この缶出液を理論段数30段の100mmφ金属製蒸留塔からなる第2蒸留塔(酢酸回収塔)Fの塔頂から10段目(理論段数)に仕込み、さらに、ライン41から後述するエタノール抽出装置Vの上相液(有機相)260g/hrを仕込み、190kPaゲージの圧力で蒸留した。塔頂ベーパー温度は103℃で、留出液1,423g/hrはコンデンサーM-7で凝縮して20℃に冷却した。留出液は、アセトン1.5重量%、エタノール7.3重量%、酢酸エチル82.0重量%、水9.2重量%を含んでいた。
 この留出液全量をライン35から理論段数3段の40mmφガラス製リング&プレート式抽出塔からなるエタノール抽出装置Vに仕込み、さらに、ライン36から水を100g/hrで仕込み、向流で接触し、ライン37から上相液(有機相)1,275g/hrを、ライン38から下相液(水相)249g/hrを抜き取った。上相液は、アセトン1.4重量%、エタノール5.1重量%、酢酸エチル89.5重量%、水4.0重量%を、下相液は、アセトン1.4重量%、エタノール15.4重量%、酢酸エチル11.1重量%、水72.1重量%を含んでいた。
 上相液の260g/hrは上記のようにライン41から第2蒸留塔(酢酸回収塔)Fへ還流し、残りの1,015g/hrは酢酸の水素化反応工程の吸収液としてライン40およびライン15からリサイクルした。第2蒸留塔(酢酸回収塔)Fのボトム温度は157℃で、液面が一定になるように、缶出液を連続的にライン24から422g/hrで抜き取った。缶出液は、水0.1重量%、酢酸99.9重量%を含んでいた。
 下相液は、理論段数30段の40mmφ真空ジャケット付ガラス製蒸留塔からなる第3蒸留塔(脱低沸塔)Gの塔頂から10段目(理論段数)に仕込み、常圧、還流比270で蒸留した。塔頂ベーパー温度は59℃で、留出液5g/hrはアセトン79.1重量%、エタノール3.7重量%、酢酸エチル15.0重量%、水2.2重量%を含んでいた。ボトム温度は73℃で、液面が一定になるように、缶出液を連続的にライン28から244g/hrで抜き取った。缶出液はエタノール15.6重量%、酢酸エチル11.0重量%、水73.4重量%を含んでいた。
 缶出液は、理論段数10段の40mmφ真空ジャケット付ガラス製蒸留塔からなる第4蒸留塔(エタノール・酢酸エチル回収塔)Hの塔頂から5段目(理論段数)に仕込み、40kPa(絶対圧)、還流比1.2で蒸留した。塔頂ベーパー温度は50℃で、留出液72g/hrはエタノール52.7重量%、酢酸エチル37.3重量%、水10.0重量%を含んでいた。ボトム温度は81℃で、液面が一定になるように、缶出液を連続的にライン31から172g/hrで抜き取った。缶出液は、エタノール0.1重量%、水99.9重量%を含んでいた。
 長時間運転を継続したが、安定した運転が可能であった。
 比較例
 実施例1の反応粗液を図5に示すフローで精製した。
 理論段数30段の50mmφ真空ジャケット付ガラス製蒸留塔からなる第1蒸留塔(アセトアルデヒド製品塔)Eの塔頂から20段目(理論段数)に、ライン16より酢酸の水素化で得た上記の反応粗液を仕込み、常圧、還流比3で蒸留した。塔頂ベーパー温度は21℃で、製品アセトアルデヒド144g/hrを10℃に冷却してライン18から抜き取った。ボトム液温度は79℃で、液面が一定になるように、缶出液を連続的にライン19から1,586g/hrで抜き取った。缶出液は、アセトン1.1重量%、エタノール5.7重量%、酢酸エチル59.0重量%、水7.7重量%、酢酸26.5重量%を含んでいた。
 この缶出液を理論段数30段の100mmφ金属製蒸留塔からなる第2蒸留塔(酢酸回収塔)Fの塔頂から20段目(理論段数)に仕込み、さらに、ライン23から該第2蒸留塔(酢酸回収塔)Fの留出液をデカンタSで分液した上相液1,500g/hrを仕込み、190kPaゲージの圧力で蒸留した。塔頂ベーパー温度は103℃で、留出液はコンデンサーM-7で凝縮して20℃に冷却し、デカンタSで分液後、上相液の1,500g/hrは上記のように第2蒸留塔(酢酸回収塔)Fへ還流し、1,000g/hrは酢酸の水素化反応工程の吸収液としてリサイクルした。上相液は、アセトン1.6重量%、エタノール7.6重量%、酢酸エチル83.7重量%、水7.1重量%を含んでいた。
 したがって、反応系の吸収塔(スクラバー)C-1の上段に仕込まれる吸収液中のエタノール濃度および水濃度は、実施例1よりも上昇した。
 さらに運転を継続すると、反応粗液、および、反応系の吸収塔(スクラバー)C-1の上段に仕込まれる吸収液、すなわち、第2蒸留塔(酢酸回収塔)Fの留出液をデカンタSで分液した上相液中のエタノール濃度および水濃度は上昇し続け、ついには、第2蒸留塔(酢酸回収塔)Fの留出液は均一になって分液せず、運転が継続できなくなった。
 本発明によれば、酢酸からアセトアルデヒドを製造するに際し、反応粗液から製品として、工業的に重要な中間体であるアセトアルデヒド、未反応の酢酸及びその他の有価物を、簡便且つ高い経済性で分離、精製できる。
 A  蒸発器
 B  反応器
 C  吸収塔
 C-1  スクラバー
 D  放散塔
 E  第1蒸留塔(アセトアルデヒド製品塔)
 F  第2蒸留塔(酢酸回収塔)
 G  第3蒸留塔
 H  第4蒸留塔
 I-1~I-2  コンプレッサー
 J-1~J-3  バッファータンク
 K-1  酢酸タンク
 K-2  反応粗液タンク
 K-3  アセトアルデヒド製品タンク
 K-4  回収酢酸タンク
 K-5  共沸溶剤(酢酸エチル)タンク
 K-6  吸収液タンク
 K-7  低沸点成分タンク
 K-8  回収エタノール/酢酸エチルタンク
 K-9  吸収液タンク
 L-1~L-2  加熱器
 M-1~M-12  冷却器(クーラー)
 N-1~N-22  ポンプ(送液ポンプ)
 O-1~O-4  リボイラー
 P  水素設備(水素ボンベ)
 Q-1~Q-3  ベント
 R-1~R-5  受器(タンク)
 S  デカンタ
 T  排水設備
 U  気液分離器
 V  エタノール抽出装置
 W  水
 1~49 ライン

Claims (5)

  1.  酢酸の水素化によりアセトアルデヒドを製造する方法であって、酢酸を水素化して得られた反応粗液から第1蒸留塔でアセトアルデヒドを分離する工程、アセトアルデヒド分離後の液から第2蒸留塔で未反応の酢酸を分離する工程、第2蒸留塔の留出液の少なくとも一部を水と接触させて前記留出液中のエタノールを水相に抽出分離する工程を含むアセトアルデヒドの製造方法。
  2.  前記エタノールを水相に抽出分離した後の有機相を前記第2蒸留塔に還流する請求項1記載のアセトアルデヒドの製造方法。
  3.  さらに、酢酸を水素化した反応流体を吸収塔に仕込み、該反応流体中の凝縮成分を吸収液で吸収して反応粗液を得る吸収工程を含むとともに、前記エタノールを水相に抽出分離した後の有機相を前記吸収工程の吸収液として用いる請求項1記載のアセトアルデヒドの製造方法。
  4.  さらに、前記第2蒸留塔で未反応の酢酸を分離した後の液から第3蒸留塔で酢酸エチルよりも沸点の低い低沸点成分を分離する工程、及び、低沸点成分分離後の液から第4蒸留塔でエタノール及び酢酸エチルの混合液と水とを分離する工程を含む請求項1~3の何れか1項に記載のアセトアルデヒドの製造方法。
  5.  さらに、前記第2蒸留塔で未反応の酢酸を分離した後の液から第3蒸留塔で水を分離する工程、及び、水分離後の液から第4蒸留塔で酢酸エチルよりも沸点の低い低沸点成分とエタノール及び酢酸エチルの混合液とを分離する工程を含む請求項1~3の何れか1項に記載のアセトアルデヒドの製造方法。
PCT/JP2015/056505 2014-04-10 2015-03-05 アセトアルデヒドの製造方法 WO2015156061A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016512633A JP6405367B2 (ja) 2014-04-10 2015-03-05 アセトアルデヒドの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-081440 2014-04-10
JP2014081440 2014-04-10

Publications (1)

Publication Number Publication Date
WO2015156061A1 true WO2015156061A1 (ja) 2015-10-15

Family

ID=54287642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056505 WO2015156061A1 (ja) 2014-04-10 2015-03-05 アセトアルデヒドの製造方法

Country Status (2)

Country Link
JP (1) JP6405367B2 (ja)
WO (1) WO2015156061A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114702375A (zh) * 2022-05-18 2022-07-05 陕西延长石油(集团)有限责任公司 一种乙醇制乙醛产品的分离系统及方法
JP2023525235A (ja) * 2020-12-03 2023-06-15 エルジー・ケム・リミテッド アクリル酸の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11322658A (ja) * 1998-04-30 1999-11-24 Eastman Chem Co 酢酸からのアセトアルデヒドの製造方法およびこの製造方法に用いる触媒
JP2011529494A (ja) * 2008-07-31 2011-12-08 セラニーズ・インターナショナル・コーポレーション 担持金属触媒を用いる酢酸からのアセトアルデヒドの直接及び選択的な製造
WO2014119185A1 (ja) * 2013-01-30 2014-08-07 株式会社ダイセル アセトアルデヒドの製造方法
WO2015020039A1 (ja) * 2013-08-08 2015-02-12 株式会社ダイセル アセトアルデヒドの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11322658A (ja) * 1998-04-30 1999-11-24 Eastman Chem Co 酢酸からのアセトアルデヒドの製造方法およびこの製造方法に用いる触媒
JP2011529494A (ja) * 2008-07-31 2011-12-08 セラニーズ・インターナショナル・コーポレーション 担持金属触媒を用いる酢酸からのアセトアルデヒドの直接及び選択的な製造
WO2014119185A1 (ja) * 2013-01-30 2014-08-07 株式会社ダイセル アセトアルデヒドの製造方法
WO2015020039A1 (ja) * 2013-08-08 2015-02-12 株式会社ダイセル アセトアルデヒドの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023525235A (ja) * 2020-12-03 2023-06-15 エルジー・ケム・リミテッド アクリル酸の製造方法
JP7460256B2 (ja) 2020-12-03 2024-04-02 エルジー・ケム・リミテッド アクリル酸の製造方法
CN114702375A (zh) * 2022-05-18 2022-07-05 陕西延长石油(集团)有限责任公司 一种乙醇制乙醛产品的分离系统及方法
CN114702375B (zh) * 2022-05-18 2023-10-13 陕西延长石油(集团)有限责任公司 一种乙醇制乙醛产品的分离系统及方法

Also Published As

Publication number Publication date
JP6405367B2 (ja) 2018-10-17
JPWO2015156061A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
JP6291420B2 (ja) 酢酸の製造方法
JP6700327B2 (ja) アセトアルデヒドの製造方法
JP6359769B2 (ja) 酢酸の製造方法
KR101805240B1 (ko) 아세트산의 제조 방법
MX2011004844A (es) Carbonilacion de metanol con eliminacion de aldehido.
WO2017057142A1 (ja) 酢酸の製造方法及び製造装置
EP3027595B1 (en) Alkylene oxide separation systems, methods, and apparatuses
JP2015526466A (ja) 酢酸製造プロセスから過マンガン酸塩還元性化合物を回収する方法
KR102355059B1 (ko) 아세트산 제조 유닛에서 오프가스를 처리하기 위한 방법 및 장치
JP6405367B2 (ja) アセトアルデヒドの製造方法
WO2016051987A1 (ja) アセトアルデヒドの製造方法
JP6391596B2 (ja) プロペンの不均一系触媒反応による酸化のプロセスガスからのアクロレインの分離方法
US20190151769A1 (en) Process for producing acetic acid
US9133094B2 (en) Apparatus and process for nitration selectivity flexibility enabled by azeotropic distillation
US9192877B2 (en) Apparatus and process for using a nitroalkane as an entrainer for azeotropic removal of water from aqueous acid solution
JP6723151B2 (ja) 酢酸とアセトアルデヒドと酢酸エチルの製造方法
JP6483808B2 (ja) 酢酸の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15777293

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016512633

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15777293

Country of ref document: EP

Kind code of ref document: A1