JP6700327B2 - アセトアルデヒドの製造方法 - Google Patents

アセトアルデヒドの製造方法 Download PDF

Info

Publication number
JP6700327B2
JP6700327B2 JP2018047617A JP2018047617A JP6700327B2 JP 6700327 B2 JP6700327 B2 JP 6700327B2 JP 2018047617 A JP2018047617 A JP 2018047617A JP 2018047617 A JP2018047617 A JP 2018047617A JP 6700327 B2 JP6700327 B2 JP 6700327B2
Authority
JP
Japan
Prior art keywords
liquid
line
acetic acid
ethyl acetate
distillation column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018047617A
Other languages
English (en)
Other versions
JP2018109065A (ja
Inventor
正人 河辺
正人 河辺
能久 水谷
能久 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Corp filed Critical Daicel Corp
Publication of JP2018109065A publication Critical patent/JP2018109065A/ja
Application granted granted Critical
Publication of JP6700327B2 publication Critical patent/JP6700327B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/41Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by hydrogenolysis or reduction of carboxylic groups or functional derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/009Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in combination with chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/34Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
    • B01D3/40Extractive distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/81Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/52Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • C07C67/54Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、酢酸の水素化によりアセトアルデヒドを製造する方法に関する。また、本発明は、酢酸の水素化によりアセトアルデヒド及び酢酸エチルを製造する方法に関する。本願は、2013年8月8日に日本に出願した特願2013−165622号、2013年8月19日に日本に出願した特願2013−169907号、2013年8月27日に日本に出願した特願2013−175179号及び特願2013−175557号、2013年10月28日に日本に出願した特願2013−223356号、2014年4月10日に日本に出願した特願2014−081441号、特願2014−081442号、特願2014−081443号、特願2014−081444号及び特願2014−081445号の優先権を主張し、その内容をここに援用する。
アセトアルデヒドは工業的に重要な中間体であり、酢酸エチル、過酢酸、ピリジン誘導体、ペンタエリスリトール、クロトンアルデヒド、パラアルデヒドなどの原料として大量に使用されている。
従来、アセトアルデヒドは、主にエチレンのWacker酸化により製造されている。しかし、近年、酢酸がメタノールと一酸化炭素より安価に製造できるようになったことや、エチレン価格の上昇により、酢酸の水素化によるアセトアルデヒドの製造も、1つの選択肢になりつつあり、本プロセスが実現できるかは、いかにその経済性を高めることができるかにかかっている。
酢酸の水素化によりアセトアルデヒドを製造する方法は、特開平11−322658号公報に開示されている。これによると、2.5ないし90重量%のパラジウムを含む酸化鉄触媒上で、酢酸を過剰の水素の存在下で水素化すると、主生成物のアセトアルデヒド以外に、メタン、エタン、エチレン、二酸化炭素、アセトン、エタノール、酢酸エチル、水、未反応の酢酸を含むガス状生成物が得られる。このガス状生成物は吸収器で酢酸溶液と接触し、アセトアルデヒド、アセトン、エタノール、酢酸エチル、水、酢酸を凝縮分離した後、メタン、エタン、エチレン、二酸化炭素の非凝縮性ガスを含む水素ガスは反応に循環・再利用される。
吸収器で得られた凝縮液は、アセトアルデヒド回収のためのカラムに仕込まれ、コンデンサーで凝縮しないオフガス、留出液から製品アセトアルデヒド、缶出液からアセトン、エタノール、酢酸エチル、水を含む酢酸溶液が得られる。吸収器で得られた凝縮液には水素、メタン、エタン、エチレン、二酸化炭素などの非凝縮性ガスが溶解しており、アセトアルデヒド回収のためのカラムでは、非凝縮性ガスとアセトアルデヒドは塔頂に分配し、留出液である製品アセトアルデヒドにも、水素、メタン、エタン、エチレン、二酸化炭素などの非凝縮性ガスが溶解することになる。
特開平11−322658号公報
しかし、前記特許文献1に記載の方法では、酢酸を水素化してアセトアルデヒドを製造する際、工程が煩雑であったり、コストが高い、純度が低いなどの問題があった。したがって、本発明の目的は、酢酸から純度の高いアセトアルデヒドを低コストで、工業的に効率よく製造する方法を提供することにある。
特に、前記特許文献1に記載の方法では、上記循環ガスは60〜95モル%の水素純度を維持するため、一部をパージする必要がある。循環ガスが60〜95モル%の水素純度を維持するために循環ガスの一部をパージすると、非凝縮性ガスに加えて、反応に使用されない多量の水素ガスをパージしてロスすることになる。例えば、アセトアルデヒドの選択率80モル%で非凝縮性ガスの選択率を5モル%とすると、水素ガスの純度を90モル%に維持するためには、非凝縮性ガス5モル%分をパージするために、同時にアセトアルデヒドの約56モル%分の水素ガスもパージする必要があり、水素コストが上昇して経済性を低下させる。また、水素ガスの純度を60モル%の純度に維持するためには、非凝縮性ガス5モル%分をパージするために、同時にパージする水素ガス量はアセトアルデヒドの約9モル%分で済むが、水素ガスの分圧が60%に低下して反応速度を低下させるため、反応器の容積を大きくするか、反応圧力を高くして反応速度の低下を補う必要があり、これも設備費が増大して本プロセスの経済性を低下させる。
したがって、本発明の他の目的は、酢酸を水素化してアセトアルデヒドを製造する際に、多量の水素ガスのパージロスがなく、また、設備費も大きく増大させずに、低コストでアセトアルデヒドを製造する方法を提供することにある。
また、前記特許文献1に記載の方法で得られる製品アセトアルデヒドは、水素、メタン、エタン、エチレン、二酸化炭素などの非凝縮性ガスを不純物として含んでおり、満足できる品質のものではない。蒸留塔に窒素等のイナートガスを導入して、水素、メタン、エタン、エチレン、二酸化炭素などの非凝縮性ガスの濃度を下げ、製品アセトアルデヒドに溶解する非凝縮性ガス量を低減することも考えられるが、アセトアルデヒドの沸点が21℃と低いため、イナートガスに同伴されて多量のアセトアルデヒドがロスする。
したがって、本発明の他の目的は、酢酸を水素化してアセトアルデヒドを製造する際に、高収率で、しかも非凝縮性ガス含量の極めて少ない高純度の製品アセトアルデヒドを得る方法を提供することにある。
また、前記特許文献1に記載の方法では、前記吸収器で得られた反応凝縮液は、目的物であるアセトアルデヒド、副生成物であるアセトン、エタノール、酢酸エチル、水、未反応物である酢酸を含んでいるが、この反応凝縮液から、如何に効率よく製品であるアセトアルデヒドを分離し、未反応物である酢酸を回収し、その他の有価物を分離できるかが、本プロセスの経済性を左右する。前記特許文献1には、上記反応凝縮液からアセトアルデヒド、酢酸、水、酢酸エチル、アセトンを分離精製する方法が記載されている。しかしながら、この方法では、アセトアルデヒド及び酢酸を回収後、他の成分をストリッパーと3つの蒸留塔を用いて分離しており、工程が煩雑で、高コストとなる。
したがって、本発明の他の目的は、酢酸を水素化してアセトアルデヒドを製造するに際し、反応粗液から、製品であるアセトアルデヒド、未反応の酢酸及びその他の有価物を、簡便且つ高い経済性で分離、精製できる方法を提供することにある。
また、前記特許文献1に記載の方法のように酢酸からアセトアルデヒドを製造する方法においては、反応粗液から、まず、アセトアルデヒド製品塔でアセトアルデヒドを蒸留分離し、続いて、酢酸回収塔で未反応の酢酸を蒸留分離するのが好ましい。酢酸回収塔では、水と共沸混合物を形成して沸点を下げ、かつ、水と分液することで酢酸と水の分離を容易にするため、共沸溶剤を使用することが好ましい。特に、酢酸エチルは酢酸の水素化の副生成物として存在するので、共沸溶剤の回収工程を省略できることから、共沸溶剤として好ましい。酢酸回収塔では、塔頂留出液をデカンターに導き、上相(共沸溶剤相)と下相(水相)に分液させる。留出上相液は蒸留塔内に還流され、留出下相液は次工程に供給される。酢酸回収塔の塔底からは、酢酸が回収される。この酢酸は反応系にリサイクルすることができる。留出下相液には、副生物であるアセトン、エタノール、水以外に共沸溶剤が溶解しているため、共沸溶剤の一部は酢酸回収塔から排出される。したがって、共沸溶剤を補給するか、または、留出下相液に溶解する共沸溶剤を回収して酢酸回収塔にリサイクルする必要がある。共沸溶剤を補給する場合には、補給する共沸溶剤費用のため高コストとなり、また、共沸溶剤を回収する場合には、共沸溶剤はエタノールとも共沸するため、留出下相液から共沸溶剤のみを分離・回収するためには煩雑な工程が必要となり、やはり高コストとなる。
したがって、本発明の他の目的は、酢酸を水素化してアセトアルデヒドを製造する際に、低コストでかつ簡便に共沸溶剤を分離・回収・リサイクルできるアセトアルデヒドの製造方法を提供することにある。
また、前記特許文献1に記載の方法では、前記留出下相液は脱低沸塔に仕込み、塔頂より酢酸エチルよりも沸点の低い低沸点成分を回収できる。脱低沸塔缶出液はエタノール・酢酸エチル回収塔に仕込み、塔頂よりエタノール及び酢酸エチルの混合液を回収し、塔底から水を排出することができる。エタノール・酢酸エチル回収塔で塔頂より得られるエタノール及び酢酸エチルの混合液からエタノールと酢酸エチルを分離するためには、エタノールと酢酸エチルが共沸(共沸組成 エタノール/酢酸エチル重量比=31/69)するため、煩雑なプロセスが必要となり、有価物として得られるエタノール及び酢酸エチルのコストが高くなる。
したがって、本発明の他の目的は、酢酸を水素化してアセトアルデヒドを製造する際に副生するエタノール及び酢酸エチルの混合液を、低コストでかつ簡便に有価物として利用する方法を提供することにある。
また、本発明のさらに他の目的は、酢酸からアセトアルデヒド及び酢酸エチルを工業的に効率よく製造する方法を提供することにある。
本発明者らは、上記課題を解決するため、循環ガス中の非凝縮性ガスを選択的に分離する検討を行った結果、循環ガス中の非凝縮性ガスを吸収液に溶解した後、吸収液の圧力を減じて、吸収液に溶解した非凝縮性ガスを放散するとともに、非凝縮性ガス放散後の液を吸収塔にリサイクルすることにより、循環ガスから非凝縮性ガスを選択的に分離でき、水素ガスのパージロスを大きく低減できることを見出した。
また、本発明者らは、上記課題を解決するため、アセトアルデヒドから非凝縮性ガスを分離する方法の検討を行った結果、アセトアルデヒドを分離する蒸留塔の原料仕込み段と塔頂の間の段から、液状のアセトアルデヒドを取り出すことにより、非凝縮性ガスを含まないか又はほとんど含まない高純度の製品アセトアルデヒドが得られることを見出した。
また、本発明者らは、上記課題を解決するため、反応粗液から製品であるアセトアルデヒド、未反応物である酢酸、その他の有価物を分離・精製する方法を検討したところ、反応粗液からアセトアルデヒド及び酢酸をそれぞれ回収した後、2つの蒸留塔を用いることにより、アセトン等の低沸点成分と、エタノール及び酢酸エチルの混合液と、水とを効率よく、しかも低コストで分離できることを見出した。
また、本発明者らは、上記課題を解決するため、反応粗液から製品であるアセトアルデヒド、未反応物である酢酸、その他の有価物を分離・精製する方法を検討したところ、共沸溶剤として酢酸エチルを用い、蒸留により特定の成分を分離した後、エタノールを含む留分の一部または全部に酢酸を加え、酸性触媒の存在下、該エタノールをエステル化し、当該アセトアルデヒド製造工程の適宜な箇所にリサイクルすることで、共沸溶剤である酢酸エチルを低コストかつ簡便にリサイクルできることを見出した。
また、本発明者らは、上記課題を解決するため、エタノール・酢酸エチル回収塔で塔頂より得られるエタノール及び酢酸エチルの混合液を有価物として利用する方法を検討したところ、共沸溶剤を用い、蒸留により特定の成分を分離した後、エタノール・酢酸エチル回収塔で塔頂より得られるエタノール及び酢酸エチルの混合液の一部または全部に酢酸を加え、酸性触媒の存在下、該エタノールをエステル化し、酢酸エチルを製造することにより、エタノールと酢酸エチルを分離する煩雑なプロセスが不要となることを見出した。
また、本発明者らは、上記課題を解決するため、反応粗液からエタノールや共沸溶剤を分離する方法を検討したところ、前記アセトアルデヒド、未反応の酢酸及び水を分離した後のエタノール及び共沸溶剤の混合液の一部又は全部に酢酸を加え、酸性触媒の存在下、該エタノールをエステル化して酢酸エチルに変換し、エステル化反応液を蒸留して、塔頂より該酢酸エチルを回収し、塔底より共沸溶剤を回収してリサイクルすることで、共沸溶剤などを低コストかつ簡便にリサイクルできることを見出した。
本発明はこれらの知見に基づき、更に検討を重ねて完成したものである。
すなわち、本発明は以下に関する。
[1] 酢酸の水素化によりアセトアルデヒドを製造する方法であって、酢酸を水素化した反応流体を吸収塔に仕込み、該反応流体中の凝縮成分を吸収液で吸収するとともに、非凝縮性ガスを吸収液に溶解する工程と、吸収塔の缶出液の圧力を減じて吸収液に溶解した非凝縮性ガスを放散し、該非凝縮性ガス放散後の液を吸収塔にリサイクルする工程を含むことを特徴とするアセトアルデヒドの製造方法(第1の態様)。
[2] 吸収塔の吸収液に、吸収塔の缶出液からアセトアルデヒドを分離した後の酢酸水溶液の一部を用いる上記[1]に記載のアセトアルデヒドの製造方法(第1の態様)。
[3] 吸収塔の吸収液に、未反応の酢酸と水とを共沸蒸留により分離する際に使用する共沸溶剤含有液の一部を用いる上記[1]に記載のアセトアルデヒドの製造方法(第1の態様)。
[4] 吸収塔の吸収液に、共沸溶剤を10重量%以上含む溶剤を用いる上記[1]に記載のアセトアルデヒドの製造方法(第1の態様)。
[5] 酢酸の水素化によりアセトアルデヒドを製造する方法であって、酢酸を水素化して得られた反応粗液を蒸留塔で蒸留するに際し、該蒸留塔の反応粗液仕込み段と塔頂との間の段から液相のアセトアルデヒドを取り出すことを特徴とするアセトアルデヒドの製造方法(第2の態様)。
[6] 酢酸の水素化によりアセトアルデヒドを製造する方法であって、酢酸を水素化して得られた反応粗液から第1蒸留塔でアセトアルデヒドを分離する工程、アセトアルデヒド分離後の液から第2蒸留塔で未反応の酢酸を分離する工程、(1)未反応の酢酸分離後の液から第3蒸留塔で酢酸エチルよりも沸点の低い低沸点成分を分離する工程、低沸点成分分離後の液から第4蒸留塔でエタノール及び酢酸エチルの混合液と水とを分離する工程、又は、(2)未反応の酢酸分離後の液から第3蒸留塔で水を分離する工程、水分離後の液から第4蒸留塔で酢酸エチルよりも沸点の低い低沸点成分とエタノール及び酢酸エチルの混合液とを分離する工程を含むアセトアルデヒドの製造方法(第3の態様)。
[7] 第2蒸留塔の塔頂ベーパー温度が第1蒸留塔、第3蒸留塔及び第4蒸留塔から選ばれる少なくとも1つの蒸留塔のボトム温度より高くなるように圧力を調整して運転し、第2蒸留塔の塔頂ベーパーを第1蒸留塔、第3蒸留塔及び第4蒸留塔から選ばれる少なくとも1つの蒸留塔の加熱の熱源に使用する上記[6]に記載のアセトアルデヒドの製造方法(第3の態様)。
[8] 酢酸の水素化によりアセトアルデヒドを製造する方法であって、酢酸を水素化して得られた反応粗液から、第1蒸留塔でアセトアルデヒドを分離する工程、アセトアルデヒド分離後の液から第2蒸留塔で共沸溶剤として酢酸エチルを用いて未反応の酢酸を分離する工程、(1)未反応の酢酸分離後の液から第3蒸留塔で酢酸エチルよりも沸点の低い低沸点成分を分離する工程、低沸点成分分離後の液から第4蒸留塔でエタノール及び酢酸エチルの混合液と水とを分離する工程、又は、(2)未反応の酢酸分離後の液から第3蒸留塔で水を分離する工程、水分離後の液から第4蒸留塔で酢酸エチルよりも沸点の低い低沸点成分とエタノール及び酢酸エチルの混合液とを分離する工程、前記エタノール及び酢酸エチルの混合液の一部または全部に酢酸を加え、酸性触媒の存在下、該エタノールをエステル化して酢酸エチルに変換する工程、共沸溶剤である酢酸エチルをリサイクルする工程を含むアセトアルデヒドの製造方法(第4の態様)。
[9] 酢酸の水素化によりアセトアルデヒド及び酢酸エチルを製造する方法であって、酢酸を水素化して得られた反応粗液から、第1蒸留塔でアセトアルデヒドを分離する工程、アセトアルデヒド分離後の液から第2蒸留塔で共沸溶剤として酢酸エチルを用いて未反応の酢酸を分離する工程、(1)未反応の酢酸分離後の液から第3蒸留塔で酢酸エチルよりも沸点の低い低沸点成分を分離する工程、低沸点成分分離後の液から第4蒸留塔でエタノール及び酢酸エチルの混合液と水とを分離する工程、又は、(2)未反応の酢酸分離後の液から第3蒸留塔で水を分離する工程、水分離後の液から第4蒸留塔で酢酸エチルよりも沸点の低い低沸点成分とエタノール及び酢酸エチルの混合液とを分離する工程、前記エタノール及び酢酸エチルの混合液の一部または全部に酢酸を加え、酸性触媒の存在下、該エタノールをエステル化して酢酸エチルに変換する工程、該酢酸エチルを製品として回収する工程を含むアセトアルデヒド及び酢酸エチルの製造方法(第5の態様)。
[10] 酢酸の水素化によりアセトアルデヒド及び酢酸エチルを製造する方法であって、酢酸を水素化して得られた反応粗液から第1蒸留塔でアセトアルデヒドを分離する工程、アセトアルデヒド分離後の液から第2蒸留塔で共沸溶剤を用いて未反応の酢酸を分離する工程、(1)未反応の酢酸分離後の液から第3蒸留塔でエタノールよりも沸点の低い低沸点成分を分離する工程、低沸点成分分離後の液から第4蒸留塔でエタノール及び共沸溶剤の混合液と水を分離する工程、又は、(2)未反応の酢酸分離後の液から第3蒸留塔で水を分離する工程、水分離後の液から第4蒸留塔でエタノールよりも沸点の低い低沸点成分とエタノール及び共沸溶剤の混合液を分離する工程、前記エタノール及び共沸溶剤の混合液の一部又は全部に酢酸を加え、酸性触媒の存在下、該エタノールをエステル化して酢酸エチルに変換する工程、エステル化反応液から第5蒸留塔で塔頂より該酢酸エチルを回収し、塔底より共沸溶剤を回収してリサイクルする工程を含むアセトアルデヒド及び酢酸エチルの製造方法(第6の態様)。
[11] 共沸溶剤が、常圧における沸点が100℃から118℃のエステルである、上記[10]に記載のアセトアルデヒド及び酢酸エチルの製造方法(第6の態様)。
[12] 第2蒸留塔の塔頂ベーパー温度が第1蒸留塔、第3蒸留塔、第4蒸留塔及び第5蒸留塔から選ばれる少なくとも1つの蒸留塔のボトム温度より高くなるように圧力を調整して運転し、第2蒸留塔の塔頂ベーパーを第1蒸留塔、第3蒸留塔、第4蒸留塔及び第5蒸留塔から選ばれる少なくとも1つの蒸留塔の加熱の熱源に使用する上記[10]又は[11]に記載のアセトアルデヒド及び酢酸エチルの製造方法(第6の態様)。
本発明によれば、酢酸から純度の高いアセトアルデヒドを低コストで、工業的に効率よく製造することができる。
特に、本発明の第1の態様によれば、酢酸からアセトアルデヒドを製造するに際し、多量の水素ガスのパージロスがなく、また、設備費を大きく増大させずに、低コストでアセトアルデヒドを製造することができる。
特に、本発明の第2の態様によれば、反応粗液からアセトアルデヒドを分離する蒸留塔において、アセトアルデヒドを、該蒸留塔の反応粗液仕込み段と塔頂との間の段から液相の状態で取り出すため、アセトアルデヒドのロスが少なく、しかも非凝縮性ガスを含まないか又は非凝縮性ガス含量が極めて少ない高純度の製品アセトアルデヒドを得ることができる。
特に、本発明の第3の態様によれば、酢酸からアセトアルデヒドを製造するに際し、反応粗液から、製品であるアセトアルデヒド、未反応の酢酸及びその他の有価物を、簡便且つ高い経済性で分離、精製できる。
特に、本発明の第4の態様によれば、酢酸からアセトアルデヒドを製造するに際し、反応粗液から特定成分を分離した後、副生したエタノールを酢酸エチルに変換するので、低コストでかつ簡便に酢酸エチルを当該アセトアルデヒド製造工程の適宜な箇所に有効にリサイクルできる。
特に、本発明の第5の態様によれば、酢酸からアセトアルデヒドおよび酢酸エチルを製造するに際し、反応粗液から特定成分を分離した後、エタノール及び酢酸エチルの混合液を酢酸エチルに変換するので、エタノールと酢酸エチルを分離する煩雑なプロセスなしにエタノール及び酢酸エチルの混合液を有価物として利用できる。また、酢酸からアセトアルデヒド及び酢酸エチルを工業的に効率よく製造できる。
特に、本発明の第6の態様によれば、エタノール及び共沸溶剤の混合液の一部又は全部に酢酸を加え、酸性触媒の存在下、該エタノールをエステル化して酢酸エチルに変換し、酢酸エチルと共沸溶剤を分離するので、低コストでかつ簡便に共沸溶剤などをリサイクルできる。
本発明のアセトアルデヒド(及び酢酸エチル)の製造方法の一例を示す概略フロー図[反応系-1(酢酸と水素の反応)]である。 本発明の第2の態様によるアセトアルデヒドの製造方法の一例を示す概略フロー図(図1の続き)である。 本発明の第3の態様によるアセトアルデヒドの製造方法の一例を示す概略フロー図(精製系;図1の続き)である。 本発明の第3の態様によるアセトアルデヒドの製造方法の他の例を示す精製系の概略フロー図(精製系;図1の続き)である。 本発明の第4の態様によるアセトアルデヒドの製造方法の一例を示す概略フロー図(精製系;図1の続き)である。 本発明の第4の態様によるアセトアルデヒドの製造方法の他の例を示す概略フロー図(精製系;図1の続き)である。 本発明の第5の態様によるアセトアルデヒド及び酢酸エチルの製造方法の一例を示す概略フロー図[精製系及び反応系−2(エタノールと酢酸の反応);図1の続き]である。 本発明の第5の態様によるアセトアルデヒド及び酢酸エチルの製造方法の他の例を示す概略フロー図[精製系及び反応系−2(エタノールと酢酸の反応);図1の続き]である。 実施例におけるアセトアルデヒドの製造方法の概略フロー図である。 実施例における本発明の第2の態様の概略フロー図である。 本発明の第6の態様によるアセトアルデヒド及び酢酸エチルの製造方法の一例を示す概略フロー図[精製系;図1の続き]である。 本発明の第6の態様によるアセトアルデヒド及び酢酸エチルの製造方法の他の例を示す概略フロー図[精製系;図1の続き]である。
本発明の第1の態様であるアセトアルデヒドの製造方法は、酢酸の水素化によりアセトアルデヒドを製造する方法であって、酢酸を水素化した反応流体を吸収塔に仕込み、該反応流体中の凝縮成分を吸収液で吸収するとともに、非凝縮性ガスを吸収液に溶解する工程(吸収工程)と、吸収塔の缶出液の圧力を減じて吸収液に溶解した非凝縮性ガスを放散し、該非凝縮性ガス放散後の液を吸収塔にリサイクルする工程(放散工程)を含む。
また、本発明の第2の態様であるアセトアルデヒドの製造方法は、酢酸の水素化によりアセトアルデヒドを製造する方法であって、酢酸を水素化して得られた反応粗液を蒸留塔で蒸留するに際し、該蒸留塔の反応粗液仕込み段と塔頂との間の段からアセトアルデヒドを液相で取り出すことを特徴とする。
また、本発明の第3の態様であるアセトアルデヒドの製造方法は、酢酸の水素化によりアセトアルデヒドを製造する方法であって、酢酸を水素化して得られた反応粗液から第1蒸留塔でアセトアルデヒドを分離し、第2蒸留塔で未反応の酢酸を分離した後、2つの蒸留塔を用いて、(a)酢酸エチルよりも沸点の低い低沸点成分と、(b)エタノール及び酢酸エチルの混合液と、(c)水とを分離する。
前記2つの蒸留塔を用いて、(a)酢酸エチルよりも沸点の低い低沸点成分と、(b)エタノール及び酢酸エチルの混合液と、(c)水とを分離する方法には2つの方法がある。第1の方法は、(1)未反応の酢酸分離後の液から第3蒸留塔で(a)酢酸エチルよりも沸点の低い低沸点成分を分離する工程、低沸点成分分離後の液から第4蒸留塔で(b)エタノール及び酢酸エチルの混合液と(c)水とを分離する工程を含む方法である。第2の方法は、(2)未反応の酢酸分離後の液から第3蒸留塔で(c)水を分離する工程、水分離後の液から第4蒸留塔で(a)酢酸エチルよりも沸点の低い低沸点成分と(b)エタノール及び酢酸エチルの混合液を分離する工程を含む方法である。
また、本発明の第4の態様であるアセトアルデヒドの製造方法は、酢酸の水素化によりアセトアルデヒドを製造する方法であって、酢酸を水素化して得られた反応粗液から、共沸溶剤として酢酸エチルを用い、蒸留により、アセトアルデヒド、未反応の酢酸及び水を分離した後のエタノールを含む留分の一部または全部に酢酸を加え、酸性触媒の存在下、該エタノールをエステル化して酢酸エチルに変換し、共沸溶剤である酢酸エチルをリサイクルする。
また、本発明の第5の態様であるアセトアルデヒド及び酢酸エチルの製造方法は、酢酸の水素化によりアセトアルデヒド及び酢酸エチルを製造する方法であって、酢酸を水素化して得られた反応粗液から、共沸溶剤を用い、蒸留により、アセトアルデヒド、未反応の酢酸及び水を分離し、前記アセトアルデヒドを製品として回収するとともに、前記アセトアルデヒド、未反応の酢酸及び水を分離した後のエタノール及び酢酸エチルの混合液の一部又は全部に酢酸を加え、酸性触媒の存在下、該エタノールをエステル化して酢酸エチルに変換し、該酢酸エチルを製品として回収する。
また、本発明の第6の態様であるアセトアルデヒド及び酢酸エチルの製造方法は、酢酸の水素化によりアセトアルデヒド及び酢酸エチルを製造する方法であって、酢酸を水素化して得られた反応粗液から、共沸溶剤を用い、蒸留により、アセトアルデヒド、未反応の酢酸及び水を分離し、前記アセトアルデヒドを製品として回収するとともに、前記アセトアルデヒド、未反応の酢酸及び水を分離した後のエタノール及び共沸溶剤の混合液の一部又は全部に酢酸を加え、酸性触媒の存在下、該エタノールをエステル化して酢酸エチルに変換し、エステル化反応液を蒸留して、塔頂より該酢酸エチルを回収し、塔底より共沸溶剤を回収してリサイクルする。
以下、本発明を、必要に応じて図面を参照しつつ詳細に説明する。
[反応系-1(酢酸と水素の反応)]
図1に示す例では、水素ガスは水素設備Pからライン1により供給され、コンプレッサーI−1で加圧され、バッファータンクJ−1を経て、ライン2の循環ガスと合流して、ライン3により蒸発器A(酢酸蒸発器)に仕込まれる。蒸発器Aには、酢酸タンクK−1からポンプN−1を用いてライン4より酢酸が供給され、気化した酢酸が水素ガスと共に熱交換器(加熱器)L−1、L−2で加熱され、ライン5より触媒を充填した反応器Bに仕込まれる。蒸発器Aには循環ポンプN−2が備えられている。反応器Bで酢酸は水素化され、主生成物のアセトアルデヒドのほか、非凝縮性のメタン、エタン、エチレン、二酸化炭素、凝縮性のアセトン、エタノール、酢酸エチル、水が生成する。
酢酸の水素化は公知の方法で行うことができる。例えば、酢酸を触媒の存在下で水素と反応させる。前記触媒としては、酢酸の水素化によりアセトアルデヒドを生成させるものであれば特に限定されず、例えば、酸化鉄、酸化ゲルマニウム、酸化スズ、酸化バナジウム、酸化亜鉛等の金属酸化物などを用いることができる。また、これらの金属酸化物に、パラジウム、白金等の貴金属を添加したものを触媒として用いてもよい。この場合の貴金属の添加量は触媒全体に対して、例えば0.5〜90重量%程度である。中でも、好ましい触媒は、パラジウム、白金等の貴金属を添加した酸化鉄である。触媒は、酢酸の水素化に用いる前に、予め、例えば水素と接触させることにより還元処理を施してもよい。還元処理は、例えば、50〜500℃、0.1〜5MPaの条件で行われる。
反応温度は、例えば250〜400℃、好ましくは270〜350℃である。反応温度が低すぎるとエタノール等の副生が増大し、反応温度が高すぎるとアセトン等の副生が増大し、いずれの場合もアセトアルデヒドの選択率が低下しやすくなる。反応圧力は、常圧、減圧、加圧下のいずれであってもよいが、一般に、0.1〜10MPa、好ましくは0.1〜3MPaの範囲である。
反応器への水素と酢酸の供給比(モル比)は、一般に、水素/酢酸=0.5〜50、好ましくは、水素/酢酸=2〜25である。
反応器における酢酸の転化率は50%以下(例えば5〜50%)であることが望ましい。酢酸の転化率が50%を超えると、副生物(エタノール、酢酸エチル等)が生成しやすくなり、アセトアルデヒドの選択率が低下する。したがって、反応器における滞留時間、水素の空間速度を、上記酢酸の転化率が50%以下となるように調整することが望ましい。
酢酸と水素との反応により、前述したように、主に、未転化の酢酸、未転化の水素、反応で生成したアセトアルデヒド、水、及びその他の生成物(エタノール、酢酸エチル、アセトン等)からなるガス状反応生成物が得られる。
前記ガス状反応生成物から非凝縮性ガスと凝縮性成分とを分離し、該凝縮性成分を反応粗液とすることができる。前記ガス状反応生成物から非凝縮性ガスと凝縮性成分とを分離する方法としては、特に限定されないが、例えば、酢酸を水素化した反応流体を吸収塔に仕込み、該反応流体中の凝縮成分を吸収液で吸収することにより、凝縮性成分と非凝縮性のガスとを分離できる(吸収工程)。本発明においては、このような吸収液に吸収された凝縮性成分(凝縮性成分と吸収液の混合物)も「反応粗液」に含める。なお、上記吸収工程では、非凝縮性ガスの一部が吸収液に溶解するが、吸収塔の缶出液の圧力を減じることにより、吸収液に溶解した非凝縮性ガスを放散させ、該非凝縮性ガス放散後の液を吸収塔にリサイクルする工程(放散工程)を設けることにより、水素と他の非凝縮性ガス成分とを効率よく分離できる。
本発明における吸収工程では、酢酸を水素化した反応流体を吸収塔に仕込み、該反応流体中の凝縮成分を吸収液で吸収するとともに、非凝縮性ガスを吸収液に溶解する。この吸収工程は、通常、反応工程で得られた反応流体と吸収液とを吸収塔に供給し、吸収塔内で両者を接触させることにより行われる。吸収塔としては、特に限定されず、公知乃至周知のガス吸収装置、例えば、充填塔、棚段塔、スプレー塔、濡れ壁塔などを使用できる。
また、本発明における放散工程では、吸収塔の缶出液の圧力を減じて吸収液に溶解した非凝縮性ガスを放散し、該非凝縮性ガス放散後の液を吸収塔にリサイクルする。この放散工程は、通常、吸収工程で得られた吸収塔の缶出液(凝縮成分および非凝縮性ガスを吸収、溶解した後の吸収液)を圧力を減じた放散塔に供給し、非凝縮性ガスを放散することにより行われる。放散塔としては、特に限定されず、公知乃至周知のガス放散装置、例えば、充填塔、棚段塔、スプレー塔、濡れ壁塔、気液分離器などを使用できる。
図1に示す例では、反応器Bから流出した反応流体はライン6により前記熱交換器L−1を経た後、熱交換器(冷却器)M−1、M−2で冷却され、ライン7より吸収塔Cの下方部に仕込まれる。吸収塔Cには、吸収液として、ライン9より後述する放散塔Dの缶出液(以後、「循環液」と称する場合がある)が仕込まれる。循環液は主に非凝縮性ガスである水素、メタン、エタン、エチレン、二酸化炭素を吸収、溶解する。また、循環液以外の吸収液(以後、「吸収塔補給液」と称する場合がある)として、ライン11より共沸溶剤(水と共沸する溶剤)を多く含む後述する酢酸回収塔Fの留出上相液が吸収液として仕込まれる。吸収塔補給液は非凝縮性ガスとともに低沸点の凝縮性成分であるアセトアルデヒドを吸収する。なお、前記酢酸回収塔Fの留出上相液はライン15を通り冷却器M−3を経て前記ライン11に供給される。放散塔Dの缶出液(ライン9)(循環液)及び酢酸回収塔Fの留出上相液(ライン11)(吸収塔補給液)の吸収塔Cへの仕込位置は、アセトアルデヒドおよび非凝縮性ガスの吸収効率等を考慮して適宜選択できるが、前記循環液は吸収塔Cの中段部へ、前記吸収塔補給液は吸収塔Cの上方部へ仕込むのが好ましい。
吸収塔Cの缶出液は、精製工程に供給されるライン14と放散塔Dに仕込まれるライン8に分かれる。ライン14の缶出液は反応粗液として反応粗液タンクK−2に貯留され、精製工程に供される。ライン8は放散塔Dで減圧され、ライン10より吸収液に溶解した非凝縮性ガスである水素、メタン、エタン、エチレン、二酸化炭素が放散され、該非凝縮性ガス放散後の液はライン9より吸収塔Cにリサイクルされる。Q−2はベントである。なお、吸収塔Cの缶出液の例えば全量を放散塔Dに仕込み、非凝縮性ガス放散後の液の一部を吸収塔にリサイクルし、残りを精製工程に供される反応粗液としてもよい(実施例参照)。
本発明では、非凝縮性ガスを吸収液に溶解させた後、吸収塔の缶出液の圧力を減じて、吸収液に溶解した非凝縮性ガスを放散させるので、水素と他の非凝縮性ガスとを効率よく分離できる。これは、水素と他の非凝縮性ガスの溶解度の違いによる。例えば、30℃において、分圧が1atmである時の水素およびメタンの酢酸エチルに対する溶解度は、それぞれ、0.01NL/Lおよび0.48NL/Lであり、これは、酢酸エチルに対して、メタンが水素よりも48倍溶解しやすいことを示す。そして、本発明では、さらに、非凝縮性ガス放散後の液を吸収塔にリサイクルするので、水素ガス以外の非凝縮性ガスが効率よく吸収、溶解され、その結果、水素ガスのパージロスを大きく低減できる。
吸収塔Cで吸収液に吸収、溶解しなかった非凝縮性ガスは、吸収塔Cの塔頂からライン12によりバッファータンクJ−3を経てコンプレッサーI−2で加圧され、バッファータンクJ−2を経て、ライン2により前記ライン1の水素ガスと合流してライン3より蒸発器Aに供給される。なお、上記非凝縮性ガスは必要に応じてライン13よりパージされる。Q−1はベントである。
上記の例では、吸収塔Cで用いる吸収液として、吸収塔Cの缶出液からアセトアルデヒドを分離した後の酢酸と水を含む混合液(酢酸水溶液)から酢酸を回収する工程(未反応の酢酸と副生した水とを共沸蒸留により分離する工程)における酢酸回収塔Fの留出上相液を用いている。この留出上相液は、共沸溶剤(水と共沸する溶剤)を多く含む共沸溶剤含有液である。なお、酢酸回収塔Fの留出下相液は水を多く含み、水相を形成している。
吸収塔Cに仕込まれる吸収液としては、吸収塔Cの缶出液(循環液)のみでもよいが、吸収塔Cの缶出液には沸点が21℃と低いアセトアルデヒドが多く含まれているので、アセトアルデヒドの回収率を向上させるため、アセトアルデヒドを含まない吸収液が好ましい。例えば、吸収液としては、上記の例のような、未反応の酢酸と副生した水とを共沸蒸留により分離する際に使用する共沸溶剤含有液(酢酸回収塔Fの留出液をデカンターで分離した、共沸溶剤を多く含む上相液)のほか、吸収塔Cの缶出液からアセトアルデヒドを分離した後の液等の酢酸水溶液(酢酸と水を含む混合液;例えば、後述するアセトアルデヒド製品塔Eの缶出液)が好ましい。また、吸収液としては、酢酸エチルを10重量%以上(好ましくは30重量%以上、より好ましくは50重量%以上、特に好ましくは75重量%以上)含む液が好ましい。
吸収液として前記共沸溶剤含有液を用いる場合、共沸溶剤含有液中の共沸溶剤含有量は、例えば、10重量%以上、好ましくは30重量%以上、さらに好ましくは50重量%以上、特に好ましくは75重量%以上である。また、吸収液として前記酢酸水溶液を用いる場合、酢酸水溶液中の酢酸の含有量は、例えば、10〜95重量%、好ましくは50〜90重量%、さらに好ましくは60〜80重量%である。
前記共沸溶剤は水と共沸混合物を形成して沸点を下げ、かつ、水と分液することで酢酸と水の分離を容易にする。共沸溶剤の例としては、エステルとしては、ギ酸イソプロピル、ギ酸プロピル、ギ酸ブチル、ギ酸イソアミル、酢酸エチル、酢酸イソプロピル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、酪酸エチル、酪酸イソプロピル、などが、ケトンとしては、メチルエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、ジエチルケトン、エチルプロピルケトンなどが、脂肪族炭化水素としては、ペンタン、ヘキサン、ヘプタンなどが、脂環式炭化水素としては、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサンなどが、芳香族炭化水素としては、ベンゼン、トルエンなどが挙げられる。
これらの中でも、酢酸エチルは酢酸の水素化の副生成物として存在するため、共沸溶剤の回収工程を省略することができるので、共沸溶剤として好ましい。
また、酢酸プロピル(沸点102℃)、酢酸イソブチル(沸点117℃)、酢酸sec-ブチル(沸点112℃)、プロピオン酸イソプロピル(沸点110℃)、酪酸メチル(沸点102℃)、イソ酪酸エチル(沸点110℃)など、常圧における沸点が100℃から118℃のエステルは、水との共沸混合物の水の比率が高く、かつ、酢酸より沸点が低いため、酢酸回収塔Fにおいて酢酸と水の分離をより容易にする。また、これらのエステルは、エタノールとも共沸しないか、または、エタノールとの共沸混合物のエタノールの比率が低く、共沸溶剤の分離・回収が比較的容易である。したがって、常圧における沸点が100℃から118℃のエステルも共沸溶剤として好ましい。
また、非凝縮性ガスの主成分であるメタンは、極性の高い酢酸水溶液よりも極性の低い共沸溶剤によく溶解するため、共沸溶剤は非凝縮性ガスの吸収液に適しており、吸収液としても、酢酸エチルが適している。
吸収塔Cに供給される前記吸収塔補給液(ライン11)の供給量と反応流体(ライン7)の供給量との比(重量比)は、例えば、前者/後者=0.1〜10であり、好ましくは前者/後者=0.3〜2である。また、吸収塔Cに供給される前記循環液(ライン9)の量と反応流体(ライン7)の供給量との比(重量比)は、例えば、前者/後者=0.05〜20であり、好ましくは前者/後者=0.1〜10である。
吸収塔Cの段数(理論段数)は、例えば1〜20、好ましくは3〜10である。また、吸収塔Cにおける温度は、例えば、0〜70℃であり、吸収塔Cにおける圧力は、例えば、0.1〜5MPa(絶対圧)である。
放散塔Dにおける温度は、例えば、0〜70℃である。放散塔Dにおける圧力は、吸収塔Cの圧力より低ければよく、例えば、0.05〜4.9MPa(絶対圧)である。吸収塔Cの圧力と放散塔Dの圧力との差(前者−後者)は、非凝縮性ガスの放散効率やアセトアルデヒドのロス抑制の観点から適宜選択できるが、例えば、0.05〜4.9MPa、好ましくは0.5〜2MPaである。
[精製工程(精製系)]
反応系で得られた反応粗液は精製工程(精製系)に供され、アセトアルデヒドが製品として得られる。また、未反応の酢酸や、副生した各成分を回収し、必要に応じて反応器にリサイクルすることができる。精製工程は、例えば、反応粗液からアセトアルデヒドを分離、回収するアセトアルデヒド精製工程、アセトアルデヒドを分離した後の液から、共沸蒸留により未反応の酢酸と水とを分離し、酢酸を回収する酢酸回収工程、酢酸を分離した後の液から、低沸点成分を分離、除去する脱低沸工程、低沸点成分を分離、除去した後の液から、エタノール及び/又は酢酸エチルを分離、回収するエタノール・酢酸エチル回収工程の1又は2以上の工程を含むことができる。
前記アセトアルデヒド精製工程では、例えば、前記反応粗液を蒸留塔(アセトアルデヒド製品塔)に仕込み、塔頂からアセトアルデヒドを分離、回収する。塔底からは、未反応の酢酸と副生した水(通常、さらにエタノール、酢酸エチル等のその他の生成物を含む)を含む酢酸水溶液が排出される。
本発明において、精製系は、酢酸を水素化して得られた反応粗液から第1蒸留塔でアセトアルデヒドを分離する工程(以下、「アセトアルデヒド精製工程」と称する場合がある)、アセトアルデヒド分離後の液から第2蒸留塔で未反応の酢酸を分離する工程(以下、「酢酸回収工程」と称する場合がある)を含んでいる。
前記アセトアルデヒド精製工程では、例えば、前記反応粗液を第1蒸留塔(アセトアルデヒド製品塔)に仕込み、塔頂からアセトアルデヒドを分離、回収する。塔底からは、未反応の酢酸と副生した水(通常、さらにエタノール、酢酸エチル等のその他の生成物を含む)を含む酢酸水溶液が排出される。
アセトアルデヒド製品塔における塔頂圧力は、通常、0.1MPa以上、好ましくは0.5〜2MPaであり、ゲージ圧としては、通常、0.0MPaG以上、好ましくは0.4〜1.9MPaGである。アセトアルデヒド製品塔の段数(理論段数)は、例えば10〜50、好ましくは20〜40である。蒸留は、常圧、減圧、加圧のいずれの条件で行ってもよい。
前記酢酸回収工程では、前記アセトアルデヒド製品塔における塔底液(缶出液)を第2蒸留塔(酢酸回収塔)に仕込むとともに、塔頂部から共沸溶剤(水と共沸する溶剤)を含む液を流入する。塔頂留出液をデカンターに導き(この際、酢酸エチル又は共沸溶剤を補充してもよい)、上相(有機相)と下相(水相)に分液させる。留出上相液の一部は、蒸留塔内に還流させるが、前述したように、その一部を前記吸収塔における吸収液として利用してもよい。留出上相液の残りと留出下相液は、例えば、後述する脱低沸塔に供給される。
酢酸回収塔の塔底から、酢酸が回収される。この酢酸は反応系にリサイクルすることができる。
酢酸回収塔の段数(理論段数)は、例えば10〜50、好ましくは10〜30である。蒸留は、常圧、減圧、加圧のいずれの条件で行ってもよい。
前記脱低沸工程では、前記酢酸回収塔の留出上相液の一部と留出下相液を蒸留塔(脱低沸塔)に仕込み、塔頂から低沸点成分を回収し、塔底からエタノールと酢酸エチルと水を含む液を排出させる。塔底液は、例えば、後述するエタノール・酢酸エチル回収塔に供給される。
脱低沸塔の段数(理論段数)は、例えば10〜50、好ましくは20〜40である。蒸留は、常圧、減圧、加圧のいずれの条件で行ってもよい。
前記エタノール・酢酸エチル回収工程では、前記脱低沸塔の塔底液をエタノール・酢酸エチル回収塔に仕込み、塔頂から、エタノールと酢酸エチルとを回収し、塔底から水を排出する。
エタノール・酢酸エチル回収塔の段数(理論段数)は、例えば5〜50、好ましくは10〜20である。蒸留は、常圧、減圧、加圧のいずれの条件で行ってもよい。
また、本発明の第2の態様では、前記アセトアルデヒド精製工程において、前記反応粗液を蒸留塔(アセトアルデヒド製品塔)に仕込み、該蒸留塔の反応粗液仕込み段と塔頂との間の段[塔頂から第1段目(最上段)も含む]から液相の(液状の)アセトアルデヒドを取り出す。このため、非凝縮性ガスを全く含まないか、又は含んでいたとしてもその含量が極めて少ない高純度の製品アセトアルデヒドを得ることができる。
アセトアルデヒド製品塔の形式は、棚段塔でも充填塔でもよい。棚段塔の場合のトレイの構造は、泡鐘トレイ、多孔板トレイ、バルブトレイなど、特に限定さることはない。充填塔の場合の充填物についても、規則充填物、不規則充填物のいずれでもよい。段数についても、必要とする収率で必要とする品質の製品アセトアルデヒドが得られればよく、特に限定されるものではないが、一般的に、理論段数として10段から50段程度から選定される。段数が少ないとアセトアルデヒドの収率が低下したり、品質が低下し、また、所定の収率や品質を得るために還流を多く取る必要があり、分離に必要な熱量が多くなる。
製品アセトアルデヒドをサイドカットする段数は、反応粗液を仕込む段より上で、かつ、塔頂より下である。仕込み段に近づくと、アセトン、酢酸エチル、水など、沸点の高い物質が多く混入する傾向となるため、製品アセトアルデヒドをサイドカットする位置としては、最上段(1段目)から5段目程度が望ましい。
蒸留塔の塔底からは、未反応の酢酸と副生した水(通常、さらにエタノール、酢酸エチル等のその他の生成物を含む)を含む酢酸水溶液が排出される。
図2に示す例では、反応粗液は、反応粗液タンクK−2からポンプN−4を用いてライン16より第1蒸留塔(アセトアルデヒド製品塔)Eに仕込まれる。第1蒸留塔(アセトアルデヒド製品塔)Eでは、塔頂からライン17より非凝縮性ガスをパージし、冷却器M−5で凝縮した液は、ライン32より蒸留塔に還流される。アセトアルデヒド製品塔Eのライン16の仕込み位置と塔頂との間の段からライン18を通じて液相のアセトアルデヒドが取り出される。このアセトアルデヒドは冷却器M−6で冷却された後、製品アセトアルデヒドタンクK−3に貯留される。第1蒸留塔(アセトアルデヒド製品塔)Eの缶出液はライン19により酢酸回収塔Fに供される。R−1は受器、N−5、N−6はポンプ、Q−3はベント、O−1はリボイラーである。
酢酸回収塔Fにおいて、塔頂にはライン23より共沸溶剤含有液が仕込まれ、ライン24の缶出液から未反応の酢酸が回収されて、回収酢酸タンクK−4に貯留され、反応系にリサイクルされる。酢酸回収塔Fの塔頂にはアセトン、エタノール、酢酸エチル、水、および、共沸溶剤が留出し、デカンターSで分液後、ライン20の上相液の一部(必要に応じて)とライン21の下相水が脱低沸塔Gに仕込まれる。デカンターSには、共沸溶剤タンクK−5中の共沸溶剤(酢酸エチル等)がライン25より供給される。デカンターSの上相液の一部は、ライン22より吸収液タンクK−6に貯留され、前述したようにライン15およびライン11から吸収塔Cにも仕込まれ、アセトアルデヒドを吸収する。デカンターSの上相液の一部はライン23により蒸留塔内に還流される。M−7は冷却器、N−7、N−8、N−9、N−10、N−11はポンプ、O−2はリボイラーである。
脱低沸塔Gの塔頂からライン26よりアセトン等の低沸点成分が留出し、ライン28の缶出液はエタノール・酢酸エチル回収塔Hに仕込まれる。塔頂留出液の一部はライン27により蒸留塔内に還流される。M−8は冷却器、R−2は受器、N−12、N−13はポンプ、O−3はリボイラー、K−7は低沸点成分タンクである。
エタノール・酢酸エチル回収塔Hの塔頂からライン29よりエタノール、酢酸エチル(副生成物)、共沸溶剤(酢酸エチル等)を回収し、塔底液(水)はライン31より排水される。M−9、M−10は冷却器、R−3は受器、N−14、N−15はポンプ、O−4はリボイラー、K−8は回収エタノール/酢酸エチルタンクである。
ライン29で得られたエタノール、酢酸エチル、および、共沸溶剤の混合物は、必要により、さらに蒸留や抽出を行ない分離することができる。
反応粗液からアセトアルデヒドと未反応酢酸を分離した後の液には、(a)アセトン等の酢酸エチルよりも沸点の低い低沸点成分、(b)エタノール及び酢酸エチル、(c)水が含まれている。これらの成分を分離する方法として、例えば、以下の2つの方法がある。
[第1の方法]
前記第1の方法は、(1)未反応の酢酸分離後の液から第3蒸留塔で(a)酢酸エチルよりも沸点の低い低沸点成分を分離する工程、低沸点成分分離後の液から第4蒸留塔で(b)エタノール及び酢酸エチルの混合液と(c)水とを分離する工程を含む方法である。より詳細には、前記未反応酢酸分離後の液から、まず、第3蒸留塔で(a)酢酸エチルよりも沸点の低い低沸点成分を分離し(脱低沸工程)、次いで、該低沸点成分分離後の液から第4蒸留塔で(b)エタノール及び酢酸エチルの混合液と(c)水とを分離する(エタノール・酢酸エチル回収工程)。
前記脱低沸工程では、前記酢酸回収塔の留出上相液の一部(必要に応じて)と留出下相液を第3蒸留塔(脱低沸塔)に仕込み、塔頂から低沸点成分を回収し、塔底からエタノールと酢酸エチルと水を含む液を排出させる。塔底液は、後述する第4蒸留塔(エタノール・酢酸エチル回収塔)に供給される。
第3蒸留塔(脱低沸塔)の段数(理論段数)は、例えば10〜50、好ましくは20〜40である。蒸留は、常圧、減圧、加圧のいずれの条件で行ってもよい。
前記エタノール・酢酸エチル回収工程では、前記第3蒸留塔(脱低沸塔)の塔底液を第4蒸留塔(エタノール・酢酸エチル回収塔)に仕込み、塔頂から、エタノールと酢酸エチルとを回収し、塔底から水を排出する。
第4蒸留塔(エタノール・酢酸エチル回収塔)の段数(理論段数)は、例えば5〜50、好ましくは10〜20である。蒸留は、常圧、減圧、加圧のいずれの条件で行ってもよい。
[第2の方法]
前記第2の方法では、(2)未反応の酢酸分離後の液から第3蒸留塔で(c)水を分離する工程、水分離後の液から第4蒸留塔で(a)酢酸エチルよりも沸点の低い低沸点成分と(b)エタノール及び酢酸エチルの混合液を分離する工程を含む方法である。より詳細には、前記未反応酢酸分離後の液から、まず、第3蒸留塔で(c)水を分離し(水分離工程)、水分離後の液から第4蒸留塔で(a)酢酸エチルよりも沸点の低い低沸点成分と(b)エタノール及び酢酸エチルの混合液とを分離する(低沸点成分回収工程)。
前記水分離工程では、前記第2蒸留塔(酢酸回収塔)の留出上相液の一部(必要に応じて)と留出下相液を第3蒸留塔(水分離塔)に仕込み、塔頂から酢酸エチルよりも沸点の低い低沸点成分とエタノールと酢酸エチルとを留出させ、塔底から水を排出させる。塔頂液は、後述する第4蒸留塔(低沸点成分回収塔)に供給される。
第3蒸留塔(水分離塔)の段数(理論段数)は、例えば5〜50、好ましくは10〜20である。蒸留は、常圧、減圧、加圧のいずれの条件で行ってもよい。
前記低沸点成分回収工程では、前記第3蒸留塔(水分離塔)の塔頂液を第4蒸留塔(低沸点成分回収塔)に仕込み、塔頂から、アセトン等の酢酸エチルよりも沸点の低い低沸点成分を回収し、塔底からエタノールと酢酸エチルの混合液を回収する。
第4蒸留塔(低沸点成分回収塔)の段数(理論段数)は、例えば10〜50、好ましくは20〜40である。蒸留は、常圧、減圧、加圧のいずれの条件で行ってもよい。
図3は本発明の第3の態様における前記第1の方法を含む精製系を示す概略フロー図であり、図4は本発明の第3の態様における前記第2の方法を含む精製系を示す概略フロー図である。
図3に示す例では、反応粗液は、反応粗液タンクK−2からポンプN−4を用いてライン16より第1蒸留塔(アセトアルデヒド製品塔)Eに仕込まれる。第1蒸留塔(アセトアルデヒド製品塔)Eでは、塔頂からライン17より非凝縮性ガスをパージし、ライン18より製品アセトアルデヒドが留出する。第1蒸留塔(アセトアルデヒド製品塔)Eの缶出液はライン19により第2蒸留塔(酢酸回収塔)Fに供される。M−5及びM−6は冷却器、R−1は受器、N−5、N−6はポンプ、Q−3はベント、O−1はリボイラー、K−3は製品アセトアルデヒドタンクである。
第2蒸留塔(酢酸回収塔)Fにおいて、塔頂にはライン23より共沸溶剤含有液が仕込まれ、ライン24の缶出液から未反応の酢酸が回収されて、回収酢酸タンクK−4に貯留され、反応系にリサイクルされる。第2蒸留塔(酢酸回収塔)Fの塔頂にはアセトン、エタノール、酢酸エチル、水、および、共沸溶剤が留出し、デカンターSで分液後、ライン20の上相液の一部(必要に応じて)とライン21の下相水が第3蒸留塔(脱低沸塔)Gに仕込まれる。デカンターSには、共沸溶剤タンクK−5中の共沸溶剤(酢酸エチル等)がライン25より供給される。デカンターSの上相液の一部は、ライン22より吸収液タンクK−6に貯留され、前述したようにライン15およびライン11から吸収塔Cにも仕込まれ、アセトアルデヒドを吸収する。デカンターSの上相液の一部はライン23により蒸留塔内に還流される。M−7は冷却器、N−7、N−8、N−9、N−10、N−11はポンプ、O−2はリボイラーである。
第3蒸留塔(脱低沸塔)Gの塔頂からライン26よりアセトン等の低沸点成分が留出し、ライン28の缶出液は第4蒸留塔(エタノール・酢酸エチル回収塔)Hに仕込まれる。塔頂留出液の一部はライン27により蒸留塔内に還流される。M−8は冷却器、R−2は受器、N−12、N−13はポンプ、O−3はリボイラー、K−7は低沸点成分タンクである。
第4蒸留塔(エタノール・酢酸エチル回収塔)Hの塔頂からライン29よりエタノール、酢酸エチル(副生成物)、共沸溶剤(酢酸エチル等)を回収し、塔底液(水)はライン31より排水される。塔頂留出液の一部はライン30により蒸留塔内に還流される。M−9、M−10は冷却器、R−3は受器、N−14、N−15はポンプ、O−4はリボイラー、K−8は回収エタノール/酢酸エチルタンクである。
ライン29で得られたエタノール、酢酸エチル、および、共沸溶剤の混合物は、必要により、さらに蒸留や抽出を行ない分離することができる。
図4に示す例では、反応粗液は、反応粗液タンクK−2からポンプN−4を用いてライン16より第1蒸留塔(アセトアルデヒド製品塔)Eに仕込まれる。第1蒸留塔(アセトアルデヒド製品塔)Eでは、塔頂からライン17より非凝縮性ガスをパージし、ライン18より製品アセトアルデヒドが留出する。第1蒸留塔(アセトアルデヒド製品塔)Eの缶出液はライン19により第2蒸留塔(酢酸回収塔)Fに供される。M−5、M−6は冷却器、R−1は受器、N−5、N−6はポンプ、Q−3はベント、O−1はリボイラー、K−3は製品アセトアルデヒドタンクである。
第2蒸留塔(酢酸回収塔)Fにおいて、塔頂にはライン23より共沸溶剤含有液が仕込まれ、ライン24の缶出液から未反応の酢酸が回収されて、回収酢酸タンクK−4に貯留され、反応系にリサイクルされる。第2蒸留塔(酢酸回収塔)Fの塔頂にはアセトン、エタノール、酢酸エチル、水、および、共沸溶剤が留出し、デカンターSで分液後、ライン20の上相液の一部(必要に応じて)とライン21の下相水が第3蒸留塔(この場合は、水分離塔として機能する)Gに仕込まれる。デカンターSには、共沸溶剤タンクK−5中の共沸溶剤(酢酸エチル等)がライン25より供給される。デカンターSの上相液の一部は、ライン22より吸収液タンクK−6に貯留され、前述したようにライン15およびライン11から吸収塔Cにも仕込まれ、アセトアルデヒドを吸収する。デカンターSの上相液の一部はライン23により蒸留塔内に還流される。M−7は冷却器、N−7、N−8、N−9、N−10、N−11はポンプ、O−2はリボイラーである。
第3蒸留塔(水分離塔)Gの塔頂からライン26よりアセトン等の低沸点成分、エタノール、酢酸エチルが留出し、第4蒸留塔(この場合は、低沸点成分回収塔として機能する)Hに仕込まれる。塔底液(水)はライン31より排水される。塔頂留出液の一部はライン27により蒸留塔内に還流される。M−8、M−10は冷却器、R−2は受器、N−13、N−14はポンプ、O−3はリボイラー、K−7は低沸点成分タンクである。
第4蒸留塔(低沸点成分回収塔)Hの塔頂からライン29よりアセトン等の低沸点成分を回収し、塔底からライン28よりエタノール、酢酸エチル(副生成物)、共沸溶剤(酢酸エチル等)の混合液が回収される。塔頂留出液の一部はライン30により蒸留塔内に還流される。M−9、M−10は冷却器、R−3は受器、N−12、N−14、N−15はポンプ、O−4はリボイラー、K−7は低沸点成分タンク、K−8は回収エタノール/酢酸エチルタンクである。
ライン28で得られたエタノール、酢酸エチル、および、共沸溶剤の混合物は、必要により、さらに蒸留や抽出を行ない分離することができる。
本発明の第3の態様では、前記第2蒸留塔の塔頂ベーパー温度が第1蒸留塔、第3蒸留塔及び第4蒸留塔から選ばれる少なくとも1つの蒸留塔のボトム温度(塔底温度)より高くなるように圧力を調整して運転し、第2蒸留塔の塔頂ベーパーを第1蒸留塔、第3蒸留塔及び第4蒸留塔から選ばれる少なくとも1つの蒸留塔(ボトム温度が前記第2蒸留塔の塔頂ベーパー温度より低い蒸留塔)の加熱の熱源に使用してもよい。例えば、第2蒸留塔の塔頂ベーパーを、第1蒸留塔、第3蒸留塔、第4蒸留塔のいずれか1塔の蒸留塔の加熱の熱源に使用してもよいし、2塔又は3塔の蒸留塔の加熱の熱源に使用してもよい。このようにすることで、精製系全体のエネルギーコストを大きく低減できる。
第2蒸留塔の塔頂ベーパー温度が第1蒸留塔、第3蒸留塔、第4蒸留塔のボトム温度より高くなるようにする方法として、例えば、第2蒸留塔の塔頂圧力を第1蒸留塔、第3蒸留塔、第4蒸留塔の塔頂圧力より高い圧力に設定して運転する方法がある。例えば、第2蒸留塔を加圧で運転し、他の蒸留塔を常圧で運転したり、第2蒸留塔を加圧で運転し、他の蒸留塔を減圧で運転したり、また、第2蒸留塔を常圧で運転し、他の蒸留塔を減圧で運転することで、第2蒸留塔の塔頂ベーパー温度を他の蒸留塔のボトム温度より高くすることができる。
この場合、第2蒸留塔の塔頂ベーパー温度tと他の蒸留塔のボトム温度txとの差(t−tx)は、例えば1〜100℃、好ましくは5〜50℃である。
[エタノールの酢酸エチルへの変換]
前述したように、酢酸回収塔の留出下相液には、副生物であるアセトン、エタノール、水以外に酢酸エチルが溶解しているため、酢酸エチルの一部は酢酸回収塔から排出される。したがって、酢酸エチルを補給するか、または、留出下相液に溶解する酢酸エチルを回収して酢酸回収塔にリサイクルする必要がある。酢酸エチルを補給する場合には、補給する酢酸エチル費用のため高コストとなり、また、酢酸エチルを回収する場合には、酢酸エチルはエタノールとも共沸するため、留出下相液から酢酸エチルのみを分離・回収するためには煩雑な工程が必要となり、やはり高コストとなる。
本発明の第4の態様では、これらの問題を解決するため、反応粗液から、蒸留により、アセトアルデヒド、未反応の酢酸及び水を分離した後のエタノールを含む留分に酢酸を加え、酸性触媒の存在下、該エタノールを酢酸エチルに変換し、酢酸エチル/エタノール比(重量比)を高くする。変換後の液の酢酸エチル/エタノール比(重量比)は、好ましくは1以上、より好ましくは3以上である。
前記エタノールを含む留分としては、例えば、前記第1の方法における第4蒸留塔の塔頂から得られるエタノール及び酢酸エチルの混合液、前記第2の方法における第4蒸留塔の塔底から得られるエタノールと酢酸エチルの混合液などが挙げられる。
酸性触媒は、エタノールと酢酸をエステル化する能力のある酸性触媒であれば、均一触媒でも固体触媒でもよい。均一触媒の場合、硫酸やリン酸などの鉱酸やパラトルエンスルホン酸やメタンスルホン酸などの有機酸が選ばれ、固体触媒の場合、イオン交換樹脂やゼオライトなどが選ばれる。
反応器は、完全混合層でもプラグフローでも、これらを組み合わせたものでもよく、さらに、より反応を進めるため、途中で生成物である水や酢酸エチルの一部または全部を分離してもよい。また、反応器は、固体触媒を充填した固定床でもよく、蒸留塔内に触媒を存在させ、エステル化反応と生成物の分離を同時に行ってもよい。エステル化反応液に酸性触媒を含んでいる場合には、酸性触媒を常法により分離できる。
エステル化反応における反応温度は、例えば、30〜150℃、好ましくは40〜100℃である。反応は減圧下、常圧下、加圧下のいずれの条件で行ってもよい。
エタノールから変換された酢酸エチルは、前記吸収塔の吸収液、アセトアルデヒド製品塔の仕込液、酢酸回収塔への還流液(塔頂仕込液)等として、当該アセトアルデヒド製造工程で利用することができる。分離した酸性触媒は再びエステル化反応にリサイクルすることが可能である。
図5は本発明の第4の態様における前記第1の方法を含む精製系(エタノールのエステル化工程を含む)を示す概略フロー図であり、図6は本発明の第4の態様における前記第2の方法を含む精製系(エタノールのエステル化工程を含む)を示す概略フロー図である。
図5に示す例では、反応粗液は、反応粗液タンクK−2からポンプN−4を用いてライン16より第1蒸留塔(アセトアルデヒド製品塔)Eに仕込まれる。第1蒸留塔(アセトアルデヒド製品塔)Eでは、塔頂からライン17より非凝縮性ガスをパージし、ライン18より製品アセトアルデヒドが留出する。第1蒸留塔(アセトアルデヒド製品塔)Eの缶出液はライン19により第2蒸留塔(酢酸回収塔)Fに供される。M−5及びM−6は冷却器、R−1は受器、N−5、N−6はポンプ、Q−3はベント、O−1はリボイラー、K−3は製品アセトアルデヒドタンクである。
第2蒸留塔(酢酸回収塔)Fにおいて、塔頂にはライン23より酢酸エチル含有液が仕込まれ、ライン24の缶出液から未反応の酢酸が回収されて、回収酢酸タンクK−4に貯留され、反応系にリサイクルされる。第2蒸留塔(酢酸回収塔)Fの塔頂にはアセトン、エタノール、酢酸エチル、水、および、共沸溶剤が留出し、デカンターSで分液後、ライン20の上相液の一部(必要に応じて)とライン21の下相水が第3蒸留塔(脱低沸塔)Gに仕込まれる。デカンターSには、酢酸エチルタンクK−5中の酢酸エチルがライン25より供給される。デカンターSの上相液の一部は、ライン22より吸収液タンクK−6に貯留され、前述したようにライン15およびライン11から吸収塔Cにも仕込まれ、アセトアルデヒドを吸収する。デカンターSの上相液の一部はライン23により蒸留塔内に還流される。M−7は冷却器、N−7、N−8、N−9、N−10、N−11はポンプ、O−2はリボイラーである。
第3蒸留塔(脱低沸塔)Gの塔頂からライン26よりアセトン等の低沸点成分が留出し、ライン28の缶出液は第4蒸留塔(エタノール・酢酸エチル回収塔)Hに仕込まれる。塔頂留出液の一部はライン27により蒸留塔内に還流される。M−8は冷却器、R−2は受器、N−12、N−13はポンプ、O−3はリボイラー、K−7は低沸点成分タンクである。
第4蒸留塔(エタノール・酢酸エチル回収塔)Hの塔頂からライン29よりエタノール、酢酸エチルを回収し、塔底液(水)はライン31より排水される。塔頂留出液の一部はライン30により蒸留塔内に還流される。M−9、M−10は冷却器、R−3は受器、N−14、N−15はポンプ、O−4はリボイラー、K−8は回収エタノール/酢酸エチルタンクである。
ライン35のエタノール/酢酸エチル混合物の一部または全部は、酢酸エチルの濃度を上げるため、ライン36より酢酸を加え、加熱器O−5によりエステル化反応温度に昇温して、ライン37から酸性触媒が存在するエステル化反応器Vに供給し、エタノールをエステル化した後、ライン38によりアセトアルデヒド製品塔E等にリサイクルされる。残りのエタノール/酢酸エチル混合物は、必要により、さらにエステル化反応や蒸留や抽出を行ない分離することができる。
図6に示す例では、反応粗液は、反応粗液タンクK−2からポンプN−4を用いてライン16より第1蒸留塔(アセトアルデヒド製品塔)Eに仕込まれる。第1蒸留塔(アセトアルデヒド製品塔)Eでは、塔頂からライン17より非凝縮性ガスをパージし、ライン18より製品アセトアルデヒドが留出する。第1蒸留塔(アセトアルデヒド製品塔)Eの缶出液はライン19により第2蒸留塔(酢酸回収塔)Fに供される。M−5、M−6は冷却器、R−1は受器、N−5、N−6はポンプ、Q−3はベント、O−1はリボイラー、K−3は製品アセトアルデヒドタンクである。
第2蒸留塔(酢酸回収塔)Fにおいて、塔頂にはライン23より酢酸エチル含有液が仕込まれ、ライン24の缶出液から未反応の酢酸が回収されて、回収酢酸タンクK−4に貯留され、反応系にリサイクルされる。第2蒸留塔(酢酸回収塔)Fの塔頂にはアセトン、エタノール、酢酸エチル、水、および、共沸溶剤が留出し、デカンターSで分液後、ライン20の上相液の一部(必要に応じて)とライン21の下相水が第3蒸留塔(この場合は、水分離塔として機能する)Gに仕込まれる。デカンターSには、酢酸エチルタンクK−5中の共沸溶剤(酢酸エチル等)がライン25より供給される。デカンターSの上相液の一部は、ライン22より吸収液タンクK−6に貯留され、前述したようにライン15およびライン11から吸収塔Cにも仕込まれ、アセトアルデヒドを吸収する。デカンターSの上相液の一部はライン23により蒸留塔内に還流される。M−7は冷却器、N−7、N−8、N−9、N−10、N−11はポンプ、O−2はリボイラーである。
第3蒸留塔(水分離塔)Gの塔頂からライン26よりアセトン等の低沸点成分、エタノール、酢酸エチルが留出し、第4蒸留塔(この場合は、低沸点成分回収塔として機能する)Hに仕込まれる。塔底液(水)はライン31より排水される。塔頂留出液の一部はライン27により蒸留塔内に還流される。M−8、M−10は冷却器、R−2は受器、N−13、N−14はポンプ、O−3はリボイラーである。
第4蒸留塔(低沸点成分回収塔)Hの塔頂からライン29よりアセトン等の低沸点成分を回収し、塔底からライン28よりエタノール、酢酸エチル(副生成物)、共沸溶剤(酢酸エチル等)の混合液が回収される。塔頂留出液の一部はライン30により蒸留塔内に還流される。M−9は冷却器、R−3は受器、N−12、N−15はポンプ、O−4はリボイラー、K−7は低沸点成分タンク、K−8は回収エタノール/酢酸エチルタンクである。
ライン39のエタノール/酢酸エチル混合物の一部または全部は、酢酸エチルの濃度を上げるため、ライン40より酢酸を加え、加熱器O−5によりエステル化反応温度に昇温して、ライン41から酸性触媒が存在するエステル化反応器Vに供給し、エタノールをエステル化した後、ライン42によりアセトアルデヒド製品塔E等にリサイクルされる。残りのエタノール/酢酸エチル混合物は、必要により、さらにエステル化反応や蒸留や抽出を行ない分離することができる。
[反応系-2(エタノールと酢酸の反応)]
前述したように、エタノールと酢酸エチルが共沸するため、副生するエタノール及び酢酸エチルの混合液からエタノールと酢酸エチルを分離するためには、煩雑なプロセスが必要となり、有価物として得られるエタノールおよび酢酸エチルのコストが高くなる。
本発明の第5の態様では、これらの問題を解決するため、反応粗液から、蒸留により、アセトアルデヒド、未反応の酢酸及び水を分離した後のエタノール及び酢酸エチルの混合液の一部または全部に酢酸を加え、酸性触媒の存在下、該エタノールを酢酸エチルに変換する。エタノールを酢酸エチルに変換する方法は、英国特許 第710,803号、旧ソ連邦特許 第857,109等に例示されている。
前記エタノール及び酢酸エチルの混合液としては、例えば、前記第1の方法における第4蒸留塔の塔頂から得られるエタノール及び酢酸エチルの混合液、前記第2の方法における第4蒸留塔の塔底から得られるエタノールと酢酸エチルの混合液、第3蒸留塔の塔頂から得られる低沸点成分を含んだエタノール及び酢酸エチルの混合液などが挙げられる。
前記エステル化反応後の反応液からは、通常の酢酸エチル反応液の分離・精製方法を使用して、未反応原料を回収・リサイクルし、製品酢酸エチルを得ることができる。
酸性触媒は、エタノールと酢酸をエステル化する能力のある酸性触媒であれば、均一触媒でも固体触媒でもよい。均一触媒の場合、硫酸やリン酸などの鉱酸やパラトルエンスルホン酸やメタンスルホン酸などの有機酸が選ばれ、固体触媒の場合、イオン交換樹脂やゼオライトなどが選ばれる。
反応器は、完全混合槽でもプラグフローでも、これらを組み合わせたものでもよく、さらに、より反応を進めるため、途中で生成物である水や酢酸エチルの一部または全部を分離してもよい。また、反応器は、固体触媒を充填した固定床でもよく、蒸留塔内に触媒を存在させ、エステル化反応と生成物の分離を同時に行ってもよい。エステル化反応液に酸性触媒を含んでいる場合には、酸性触媒を常法により分離できる。
エステル化反応における反応温度は、例えば、30〜150℃、好ましくは40〜100℃である。反応は減圧下、常圧下、加圧下のいずれの条件で行ってもよい。
エステル化反応後の反応液からは、通常の酢酸エチル反応液の分離・精製方法を使用して、未反応原料を回収・リサイクルし、製品酢酸エチルを得ることができる。
図7は本発明の第5の態様における前記第1の方法を含む精製系(前記反応系-2を含む)を示す概略フロー図であり、図8は本発明の第5の態様における前記第2の方法を含む精製系(前記反応系-2を含む)を示す概略フロー図である。
図7に示す例では、反応粗液は、反応粗液タンクK−2からポンプN−4を用いてライン16より第1蒸留塔(アセトアルデヒド製品塔)Eに仕込まれる。第1蒸留塔(アセトアルデヒド製品塔)Eでは、塔頂からライン17より非凝縮性ガスをパージし、ライン18より製品アセトアルデヒドが留出する。第1蒸留塔(アセトアルデヒド製品塔)Eの缶出液はライン19により第2蒸留塔(酢酸回収塔)Fに供される。M−5及びM−6は冷却器、R−1は受器、N−5、N−6はポンプ、Q−3はベント、O−1はリボイラー、K−3は製品アセトアルデヒドタンクである。
第2蒸留塔(酢酸回収塔)Fにおいて、塔頂にはライン23より酢酸エチル含有液が仕込まれ、ライン24の缶出液から未反応の酢酸が回収されて、回収酢酸タンクK−4に貯留され、反応系にリサイクルされる。第2蒸留塔(酢酸回収塔)Fの塔頂にはアセトン、エタノール、酢酸エチル、水が留出し、デカンターSで分液後、ライン20の上相液の一部(必要に応じて)とライン21の下相水が第3蒸留塔(脱低沸塔)Gに仕込まれる。デカンターSには、酢酸エチルタンクK−5中の酢酸エチルがライン25より供給される。デカンターSの上相液の一部は、ライン22より吸収液タンクK−6に貯留され、前述したようにライン15およびライン11から吸収塔Cにも仕込まれ、アセトアルデヒドを吸収する。デカンターSの上相液の一部はライン23により蒸留塔内に還流される。M−7は冷却器、N−7、N−8、N−9、N−10、N−11はポンプ、O−2はリボイラーである。
第3蒸留塔(脱低沸塔)Gの塔頂からライン26よりアセトン等の低沸点成分が留出し、ライン28の缶出液は第4蒸留塔(エタノール・酢酸エチル回収塔)Hに仕込まれる。塔頂留出液の一部はライン27により蒸留塔内に還流される。M−8は冷却器、R−2は受器、N−12、N−13はポンプ、O−3はリボイラー、K−7は低沸点成分タンクである。
第4蒸留塔(エタノール・酢酸エチル回収塔)Hの塔頂からライン29よりエタノール及び酢酸エチルの混合液を回収し、塔底液(水)はライン31より排水される。塔頂留出液の一部はライン30により蒸留塔内に還流される。M−9、M−10は冷却器、R−3は受器、N−14、N−15はポンプ、O−4はリボイラー、K−8は回収エタノール/酢酸エチルタンクである。
ライン35のエタノール/酢酸エチル混合物の一部または全部は、ライン36より酢酸を加え、加熱器O−5によりエステル化反応温度に昇温して、ライン37から酸性触媒が存在するエステル化反応器Vに供給し、エタノールをエステル化した後、ライン38により酢酸エチル精製工程Xに供給され、通常の酢酸エチル反応液の分離精製方法を使用して未反応原料を回収し、製品酢酸エチルを得ることができる。
図8に示す例では、反応粗液は、反応粗液タンクK−2からポンプN−4を用いてライン16より第1蒸留塔(アセトアルデヒド製品塔)Eに仕込まれる。第1蒸留塔(アセトアルデヒド製品塔)Eでは、塔頂からライン17より非凝縮性ガスをパージし、ライン18より製品アセトアルデヒドが留出する。第1蒸留塔(アセトアルデヒド製品塔)Eの缶出液はライン19により第2蒸留塔(酢酸回収塔)Fに供される。M−5及びM−6は冷却器、R−1は受器、N−5、N−6はポンプ、Q−3はベント、O−1はリボイラー、K−3は製品アセトアルデヒドタンクである。
第2蒸留塔(酢酸回収塔)Fにおいて、塔頂にはライン23より酢酸エチル含有液が仕込まれ、ライン24の缶出液から未反応の酢酸が回収されて、回収酢酸タンクK−4に貯留され、反応系にリサイクルされる。第2蒸留塔(酢酸回収塔)Fの塔頂にはアセトン、エタノール、酢酸エチル、水が留出し、デカンターSで分液後、ライン20の上相液の一部(必要に応じて)とライン21の下相水が第3蒸留塔(この場合は、水分離塔として機能する)Gに仕込まれる。デカンターSには、酢酸エチルタンクK−5中の酢酸エチルがライン25より供給される。デカンターSの上相液の一部は、ライン22より吸収液タンクK−6に貯留され、前述したようにライン15およびライン11から吸収塔Cにも仕込まれ、アセトアルデヒドを吸収する。デカンターSの上相液の一部はライン23により蒸留塔内に還流される。M−7は冷却器、N−7、N−8、N−9、N−10、N−11はポンプ、O−2はリボイラーである。
第3蒸留塔(水分離塔)Gの塔頂からライン26よりアセトン等の低沸点成分、エタノール、酢酸エチルが留出し、第4蒸留塔(この場合は、低沸点成分回収塔として機能する)Hに仕込まれる。塔底液(水)はライン31より排水される。塔頂留出液の一部はライン27により蒸留塔内に還流される。M−8、M−10は冷却器、R−2は受器、N−13、N−14はポンプ、O−3はリボイラーである。
第4蒸留塔(低沸点成分回収塔)Hの塔頂からライン29よりアセトン等の低沸点成分を回収し、塔底からライン28よりエタノール及び酢酸エチルの混合液が回収される。塔頂留出液の一部はライン30により蒸留塔内に還流される。M−9は冷却器、R−3は受器、N−12、N−15はポンプ、O−4はリボイラー、K−7は低沸点成分タンク、K−8は回収エタノール/酢酸エチルタンクである。
ライン39のエタノール/酢酸エチル混合物の一部または全部は、ライン40より酢酸を加え、加熱器O−5によりエステル化反応温度に昇温して、ライン41から酸性触媒が存在するエステル化反応器Vに供給し、エタノールをエステル化した後、ライン42により酢酸エチル精製工程Xに供給され、通常の酢酸エチル反応液の分離精製方法を使用して未反応原料を回収・リサイクルし、製品酢酸エチルを得ることができる。
図11は本発明の第6の態様における前記第1の方法を含む精製系を示す概略フロー図であり、図12は本発明の第6の態様における前記第2の方法を含む精製系を示す概略フロー図である。特に、本発明の第6の態様では、(1)未反応の酢酸分離後の液から第3蒸留塔でエタノールよりも沸点の低い低沸点成分を分離する工程、低沸点成分分離後の液から第4蒸留塔でエタノール及び共沸溶剤の混合液と水を分離する工程を含み(前記第1の方法)、又は、(2)未反応の酢酸分離後の液から第3蒸留塔で水を分離する工程、水分離後の液から第4蒸留塔でエタノールよりも沸点の低い低沸点成分とエタノール及び共沸溶剤の混合液を分離する工程を含む(前記第2の方法)。共沸溶剤としては、前述の共沸溶剤を用いることができる。
図11に示す例では、反応粗液は、反応粗液タンクK−2からポンプN−4を用いてライン16より第1蒸留塔(アセトアルデヒド製品塔)Eに仕込まれる。第1蒸留塔(アセトアルデヒド製品塔)Eでは、塔頂からライン17より非凝縮性ガスをパージし、ライン18より製品アセトアルデヒドが留出する。第1蒸留塔(アセトアルデヒド製品塔)Eの缶出液はライン19により第2蒸留塔(酢酸回収塔)Fに供される。M−5及びM−6は冷却器、R−1は受器、N−4、N−5、N−6はポンプ、Q−3はベント、O−1はリボイラー、K−3は製品アセトアルデヒドタンクである。
第2蒸留塔(酢酸回収塔)Fの塔頂にはアセトン、エタノール、酢酸エチル、水、および、共沸溶剤が留出する。この留出液をデカンターSで分液後、ライン48の上相液の一部とライン21の下相水が第3蒸留塔(脱低沸塔)Gに仕込まれる。第2蒸留塔(酢酸回収塔)Fにおいて、塔頂にはライン23より、デカンターSで分液後の上記上相液の一部が仕込まれ、ライン24の缶出液から未反応の酢酸が回収されて、回収酢酸タンクK−4に貯留され、反応系にリサイクルされる。また、デカンターSの上相液の一部は、ライン22より吸収液タンクK−6に貯留され、前述したようにライン15およびライン11から吸収塔Cにも仕込まれ、アセトアルデヒドを吸収する。M−7は冷却器、R−4は受器、N−7、N−17、N−18、N−19、N−20、N−21はポンプ、O−2はリボイラーである。
第3蒸留塔(図11では脱低沸塔)Gの塔頂からライン26よりアセトン等の低沸点成分が留出し、ライン28の缶出液は第4蒸留塔(エタノール回収塔)Hに仕込まれる。塔頂留出液の一部はライン27により蒸留塔内に還流される。M−8は冷却器、R−2は受器、N−13及びN−22はポンプ、O−3はリボイラー、K−7は低沸点成分タンクである。
第4蒸留塔(図11ではエタノール回収塔)Hの塔頂からライン29よりエタノール、酢酸エチル(副生成物)、共沸溶剤(酢酸エチル等)を回収し、塔底液(水)はライン31より排水される。塔頂留出液の一部はライン30により蒸留塔内に還流される。M−9及びM−10は冷却器、R−3は受器、N−14、N−15、N−23はポンプ、O−4はリボイラー、K−8は回収エタノールタンクである。
ライン29で得られたエタノール回収塔の留出液にライン49から酢酸が供給され、酸性触媒(好ましくは、強酸性イオン交換樹脂)が充填されたエステル化反応器Vに仕込まれ、エステル化反応により酢酸エチルに変換される。このエステル化反応液は、ライン38からエステル化反応液タンクK−11に貯留され、ライン44にて第5蒸留塔(酢酸エチル分離塔)Yに仕込まれる。N−24はポンプ、O−5はリボイラーである。
第5蒸留塔(酢酸エチル分離塔)Yの塔頂には、酢酸エチルが留出し、塔頂留出液の一部はライン45により蒸留塔内に還流される。流出した酢酸エチルをライン46にて酢酸エチルタンクK−12に貯留し、ライン50により酢酸エチル精製工程Xに供給され、通常の酢酸エチル反応液の分離精製方法を使用して未反応原料を回収し、製品酢酸エチルを得ることができる。また、塔底の缶出液は、ライン47にて反応粗液タンクK−2などにリサイクルされる。M−13は冷却器、R−5は受器、N−25及びN−26はポンプ、O−6はリボイラーである。
図12に示す例では、反応粗液は、反応粗液タンクK−2からポンプN−4を用いてライン16より第1蒸留塔(アセトアルデヒド製品塔)Eに仕込まれる。第1蒸留塔(アセトアルデヒド製品塔)Eでは、塔頂からライン17より非凝縮性ガスをパージし、ライン18より製品アセトアルデヒドが留出する。第1蒸留塔(アセトアルデヒド製品塔)Eの缶出液はライン19により第2蒸留塔(酢酸回収塔)Fに供される。M−5及びM−6は冷却器、R−1は受器、N−4、N−5、N−6はポンプ、Q−3はベント、O−1はリボイラー、K−3は製品アセトアルデヒドタンクである。
第2蒸留塔(酢酸回収塔)Fの塔頂にはアセトン、エタノール、酢酸エチル、水、および、共沸溶剤が留出する。この留出液をデカンターSで分液後、ライン48の上相液の一部とライン21の下相水が第3蒸留塔(エタノール回収塔)Gに仕込まれる。第2蒸留塔(酢酸回収塔)Fにおいて、塔頂にはライン23より、デカンターSで分液後の上記上相液の一部が仕込まれ、ライン24の缶出液から未反応の酢酸が回収されて、回収酢酸タンクK−4に貯留され、反応系にリサイクルされる。また、デカンターSの上相液の一部は、ライン22より吸収液タンクK−6に貯留され、前述したようにライン15およびライン11から吸収塔Cにも仕込まれ、アセトアルデヒドを吸収する。M−7は冷却器、R−4は受器、N−7、N−17、N−18、N−19、N−20、N−21はポンプ、O−2はリボイラーである。
第3蒸留塔(図12ではエタノール回収塔)Gの塔頂からライン29よりエタノール、酢酸エチル(副生成物)、共沸溶剤(酢酸エチル等)を回収し、塔底液(水)はライン31より排水される。塔頂留出液の一部はライン30により蒸留塔内に還流される。M−9、M−10は冷却器、R−3は受器、N−14、N−15、N−23はポンプ、O−4はリボイラー、K−8は回収エタノールタンクである。
第4蒸留塔(図12では脱低沸塔)Hの塔頂からライン26よりアセトン等の低沸点成分が留出し、ライン28の缶出液はエステル化反応工程に仕込まれる。塔頂留出液の一部はライン27により蒸留塔内に還流される。M−8は冷却器、R−2は受器、N−13及びN−22はポンプ、O−3はリボイラー、K−7は低沸点成分タンクである。
ライン28の缶出液にライン49から酢酸が供給され、酸性触媒(好ましくは、強酸性イオン交換樹脂)が充填されたエステル化反応器Vに仕込まれ、エステル化反応により酢酸エチルに変換される。このエステル化反応液は、ライン38からエステル化反応液タンクK−11に貯留され、ライン44にて、第5蒸留塔(酢酸エチル分離塔)Yに仕込まれる。N−24はポンプ、O−5はリボイラーである。
第5蒸留塔(酢酸エチル分離塔)Yの塔頂には、酢酸エチルが留出し、塔頂留出液の一部はライン45により蒸留塔内に還流される。流出した酢酸エチルをライン46にて酢酸エチルタンクK−12に貯留し、ライン50により酢酸エチル精製工程Xに供給され、通常の酢酸エチル反応液の分離精製方法を使用して未反応原料を回収し、製品酢酸エチルを得ることができる。また、塔底の缶出液は、ライン47にて反応粗液タンクK−2などにリサイクルされる。M−13は冷却器、R−5は受器、N−25及びN−26はポンプ、O−6はリボイラーである。
本発明の第6の態様である、図11及び図12に示す上述の方法では、エタノールの一部を酢酸エチルに変換して分離するため、低コストでかつ簡便に共沸溶剤などをリサイクルできる。特に、沸点100℃〜118℃のエステルが共沸溶剤の場合は、エタノールと共沸溶剤が分離しにくいため、エタノールの一部を酢酸エチルに変換して分離し、共沸溶剤をリサイクルすることが有効である。
また、本発明の第6の態様である、図11及び図12に示す上述の方法では、第2蒸留塔の塔頂ベーパー温度が第1蒸留塔、第3蒸留塔、第4蒸留塔及び第5蒸留塔から選ばれる少なくとも1つの蒸留塔のボトム温度(塔底温度)より高くなるように圧力を調整して運転し、第2蒸留塔の塔頂ベーパーを第1蒸留塔、第3蒸留塔、第4蒸留塔及び第5蒸留塔から選ばれる少なくとも1つの蒸留塔(ボトム温度が前記第2蒸留塔の塔頂ベーパー温度より低い蒸留塔)の加熱の熱源に使用してもよい。例えば、第2蒸留塔の塔頂ベーパーを、第1蒸留塔、第3蒸留塔、第4蒸留塔、第5蒸留塔のいずれか1塔の蒸留塔の加熱の熱源に使用してもよいし、2塔、3塔又は4塔の蒸留塔の加熱の熱源に使用してもよい。このようにすることで、精製系全体のエネルギーコストを大きく低減できる。
第2蒸留塔の塔頂ベーパー温度が第1蒸留塔、第3蒸留塔、第4蒸留塔、第5蒸留塔のボトム温度より高くなるようにする方法として、例えば、第2蒸留塔の塔頂圧力を第1蒸留塔、第3蒸留塔、第4蒸留塔、第5蒸留塔の塔頂圧力より高い圧力に設定して運転する方法がある。例えば、第2蒸留塔を加圧で運転し、他の蒸留塔を常圧で運転したり、第2蒸留塔を加圧で運転し、他の蒸留塔を減圧で運転したり、また、第2蒸留塔を常圧で運転し、他の蒸留塔を減圧で運転することで、第2蒸留塔の塔頂ベーパー温度を他の蒸留塔のボトム温度より高くすることができる。
この場合、第2蒸留塔の塔頂ベーパー温度tと他の蒸留塔のボトム温度txとの差(t−tx)は、例えば1〜100℃、好ましくは5〜50℃である。
以下に、実施例に基づいて本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
なお、以下の実施例1、2及び比較例1、2は本発明の第1の態様を示すものであり、以下の実施例3及び比較例3は本発明の第2の態様を示すものであり、以下の実施例4及び実施例5は、本発明の第3の態様を示すものであり、以下の実施例6は、本発明の第4の態様を示すものであり、以下の実施例7は、本発明の第5の態様を示すものである。以下の実施例8は、本発明の第6の態様を示すものである。
実施例1
図9に示される装置により酢酸の水素化を行った。
後述する吸収塔(スクラバー)C−1の塔頂からのガス(ライン12からライン32を流れるガス)1,926NL/hrをコンプレッサーI−2で昇圧してライン2より循環させ、蒸発器A入口圧力が1.7MPa(ゲージ圧)で一定になるように、水素ボンベPより74NL/hrの水素(ライン1)をコンプレッサーI−1で昇圧し、前記循環ガスと合流させてライン3により蒸発器Aに仕込んだ。J−1、J−2、J−3はバッファータンクである。
酢酸タンクK−1からライン4により酢酸を680g/hrで供給し、ライン3からの水素と共に蒸発器(電気ヒーター付蒸発器)Aで300℃まで昇温し、得られた水素と酢酸の混合ガスを、触媒としてFe23100重量部に対してPd金属を40重量部担持した触媒157mlを充填した外径43.0mmφの反応器(電気ヒーター付反応器)Bに仕込んだ。蒸発器A内、反応器B内の圧力は1.7MPa(ゲージ圧)である。また、反応温度は300℃である。N−1はポンプである。
反応器Bから流出した反応ガス(ライン6)は冷却器(クーラー)M−11で30℃まで冷却し、ライン7より6mmφ磁製ラシヒリングを高さ1m充填した外径48.6φの吸収塔(スクラバー)C−1の下部に仕込んだ。吸収塔(スクラバー)C−1内の圧力は、1.7MPa(ゲージ圧)である。N−3はポンプ、M−4は冷却器(クーラー)である。
吸収塔(スクラバー)C−1の上段には、前記図3の酢酸回収塔Fの留出上相液ライン15に相当する組成の液である、アセトン3.1重量%、エタノール12.4重量%、酢酸エチル73.0重量%、水11.5重量%からなる30℃の吸収液1,000g/hrをライン33より仕込んだ。K−9は吸収液タンク、N−16はポンプ、34はライン、M−12は冷却器(クーラー)である。
吸収塔(スクラバー)C−1の缶出液(ライン8)は、吸収塔(スクラバー)C−1のボトムの液面が一定になるように、常圧の気液分離器Uに抜き取り、溶存ガスを放散させた。放散したガスはライン10より分離除去した。ガス放散後の液の一部はライン9より30℃、10L/hrで吸収塔(スクラバー)C−1の中間部より仕込んだ(循環させた)。
前記ガス放散後の液の残りはライン14から反応粗液として取り出し、反応粗液タンクK−2に貯留した。反応粗液の組成は、アセトアルデヒド7.2重量%、アセトン2.0重量%、エタノール8.0重量%、酢酸エチル44.0重量%、水10.2重量%、酢酸28.6重量%であり、その製造量は、1,667g/hrであった。
吸収塔(スクラバー)C−1の塔頂ガスライン12に接続されたベントQ−1行きのライン13からパージガスは流さなかったが、蒸発器Aに循環されるライン32のガス組成は、二酸化炭素0.6mol%、メタン1.1mol%、エタンおよびエチレン1.2mol%、プロパンおよびプロピレン0.7mol%、アセトアルデヒド0.2mol%、水素96.2mol%で安定していた。
比較例1
図9に示される装置により酢酸の水素化を行った。
後述する吸収塔(スクラバー)C−1の塔頂からのガス(ライン12からライン32を流れるガス)1,926NL/hrをコンプレッサーI−2で昇圧してライン2より循環させ、蒸発器A入口圧力が1.7MPa(ゲージ圧)で一定になるように、水素ボンベPより74NL/hrの水素(ライン1)をコンプレッサーI−1で昇圧し、前記循環ガスと合流させてライン3により蒸発器Aに仕込んだ。J−1、J−2、J−3はバッファータンクである。
酢酸タンクK−1からライン4により酢酸を680g/hrで供給し、ライン3からの水素と共に蒸発器(電気ヒーター付蒸発器)Aで300℃まで昇温し、得られた水素と酢酸の混合ガスを、触媒としてFe23100重量部に対してPd金属を40重量部担持した触媒157mlを充填した外径43.0mmφの反応器(電気ヒーター付反応器)Bに仕込んだ。蒸発器A内、反応器B内の圧力は1.7MPa(ゲージ圧)である。また、反応温度は300℃である。N−1はポンプである。
反応器Bから流出した反応ガス(ライン6)は冷却器(クーラー)M−11で30℃まで冷却し、ライン7より6mmφ磁製ラシヒリングを高さ1m充填した外径48.6φの吸収塔(スクラバー)C−1の下部に仕込んだ。吸収塔(スクラバー)C−1内の圧力は、1.7MPa(ゲージ圧)である。N−3はポンプ、M−4は冷却器(クーラー)である。
吸収塔(スクラバー)C−1の上段には、前記図3の酢酸回収塔Fの留出上相液ライン15に相当する組成の液である、アセトン3.1重量%、エタノール12.4重量%、酢酸エチル73.0重量%、水11.5重量%からなる30℃の吸収液1,000g/hrをライン33より仕込んだ。K−9は吸収液タンク、N−16はポンプ、34はライン、M−12は冷却器(クーラー)である。
吸収塔(スクラバー)C−1の缶出液(ライン8)は、吸収塔(スクラバー)C−1のボトムの液面が一定になるように、常圧の気液分離器Uに抜き取り、溶存ガスを放散させた。放散したガスはライン10より分離除去した。この例では、ガス放散後の液の全量をライン14を通して反応粗液タンクK−2に抜き取り、吸収塔(スクラバー)C−1の缶出液(ライン8)を吸収塔(スクラバー)C−1に循環することを行わなかった。
運転を継続すると、徐々に蒸発器Aに循環されるライン32のガス中の二酸化炭素およびメタン濃度が上昇し、水素の仕込み量が低下したため、ベントQ−1行きのライン13より41NL/hrでガスのパージを行い、水素の蒸発器Aへの仕込み量も38NL/hr増やして112NL/hrにしたところ、ライン32のガス組成は、二酸化炭素1.5mol%、メタン1.5mol%、エタンおよびエチレン2.4mol%、プロパンおよびプロピレン1.9mol%、水素92.7mol%で安定した。
ライン14[吸収塔(スクラバー)C−1の缶出液ライン8と直接つながっている]からは、アセトアルデヒド7.2重量%、アセトン2.0重量%、エタノール8.0重量%、酢酸エチル44.0重量%、水10.2重量%、酢酸28.6重量%の反応粗液が1,667g/hr得られた。
実施例2
図9に示される装置により酢酸の水素化を行った。
後述する吸収塔(スクラバー)C−1の塔頂からのガス(ライン12からライン32を流れるガス)1,923NL/hrをコンプレッサーI−2で昇圧してライン2より循環させ、蒸発器A入口圧力が1.7MPa(ゲージ圧)で一定になるように、水素ボンベPより77NL/hrの水素(ライン1)をコンプレッサーI−1で昇圧し、前記循環ガスと合流させてライン3により蒸発器Aに仕込んだ。J−1、J−2、J−3はバッファータンクである。
酢酸タンクK−1からライン4により酢酸を677g/hrで供給し、ライン3からの水素と共に蒸発器(電気ヒーター付蒸発器)Aで300℃まで昇温し、得られた水素と酢酸の混合ガスを、触媒としてFe23100重量部に対してPd金属を40重量部担持した触媒157mlを充填した外径43.0mmφの反応器(電気ヒーター付反応器)Bに仕込んだ。蒸発器A内、反応器B内の圧力は1.7MPa(ゲージ圧)である。また、反応温度は300℃である。N−1はポンプである。
反応器Bから流出した反応ガス(ライン6)は冷却器(クーラー)M−11で30℃まで冷却し、ライン7より6mmφ磁製ラシヒリングを高さ1m充填した外径48.6φの吸収塔(スクラバー)C−1の下部に仕込んだ。吸収塔(スクラバー)C−1内の圧力は、1.7MPa(ゲージ圧)である。N−3はポンプ、M−4は冷却器(クーラー)である。
吸収塔(スクラバー)C−1の上段には、前記図3のアセトアルデヒド製品塔Eの缶出液ライン19に相当する組成の液である、アセトン0.4重量%、エタノール1.8重量%、酢酸エチル0.8重量%、水10.2重量%、酢酸86.8重量%からなる30℃の吸収液1,000g/hrをライン33より仕込んだ。K−9は吸収液タンク、N−16はポンプ、34はライン、M−12は冷却器(クーラー)である。
吸収塔(スクラバー)C−1の缶出液(ライン8)は、吸収塔(スクラバー)C−1のボトムの液面が一定になるように、常圧の気液分離器Uに抜き取り、溶存ガスを放散させた。放散したガスはライン10より分離除去した。ガス放散後の液の一部はライン9より30℃、26L/hrで吸収塔(スクラバー)Cの中間部より仕込んだ(循環させた)。
前記ガス放散後の液の残りはライン14から反応粗液として取り出し、反応粗液タンクK−2に貯留した。反応粗液の組成は、アセトアルデヒド7.2重量%、アセトン0.4重量%、エタノール1.7重量%、酢酸エチル0.7重量%、水9.4重量%、酢酸80.6重量%であり、その製造量は、1,659g/hrであった。
吸収塔(スクラバー)C−1の塔頂ガスライン12に接続されたベントQ−1行きのライン13からパージガスは流さなかったが、蒸発器Aに循環されるライン32のガス組成は、二酸化炭素1.2mol%、メタン1.1mol%、エタンおよびエチレン1.2mol%、プロパンおよびプロピレン0.7mol%、アセトアルデヒド0.2mol%、水素95.6mol%で安定していた。
比較例2
図9に示される装置により酢酸の水素化を行った。
後述する吸収塔(スクラバー)C−1の塔頂からのガス(ライン12からライン32を流れるガス)1,923NL/hrをコンプレッサーI−2で昇圧してライン2より循環させ、蒸発器A入口圧力が1.7MPa(ゲージ圧)で一定になるように、水素ボンベPより77NL/hrの水素(ライン1)をコンプレッサーI−1で昇圧し、前記循環ガスと合流させてライン3により蒸発器Aに仕込んだ。J−1、J−2、J−3はバッファータンクである。
酢酸タンクK−1からライン4により酢酸を677g/hrで供給し、ライン3からの水素と共に蒸発器(電気ヒーター付蒸発器)Aで300℃まで昇温し、得られた水素と酢酸の混合ガスを、触媒としてFe23100重量部に対してPd金属を40重量部担持した触媒157mlを充填した外径43.0mmφの反応器(電気ヒーター付反応器)Bに仕込んだ。蒸発器A内、反応器B内の圧力は1.7MPa(ゲージ圧)である。また、反応温度は300℃である。N−1はポンプである。
反応器Bから流出した反応ガス(ライン6)は冷却器(クーラー)M−11で30℃まで冷却し、ライン7より6mmφ磁製ラシヒリングを高さ1m充填した外径48.6φの吸収塔(スクラバー)C−1の下部に仕込んだ。吸収塔(スクラバー)C−1内の圧力は、1.7MPa(ゲージ圧)である。N−3はポンプ、M−4は冷却器(クーラー)である。
吸収塔(スクラバー)C−1の上段には、前記図3のアセトアルデヒド製品塔Eの缶出液ライン19に相当する組成の液である、アセトン0.4重量%、エタノール1.8重量%、酢酸エチル0.8重量%、水10.2重量%、酢酸86.8重量%からなる30℃の吸収液1,000g/hrをライン33より仕込んだ。K−9は吸収液タンク、N−16はポンプ、34はライン、M−12は冷却器(クーラー)である。
吸収塔(スクラバー)C−1の缶出液(ライン8)は、吸収塔(スクラバー)C−1のボトムの液面が一定になるように、常圧の気液分離器Uに抜き取り、溶存ガスを放散させた。放散したガスはライン10より分離除去した。この例では、ガス放散後の液の全量をライン14を通して反応粗液タンクK−2に抜き取り、吸収塔(スクラバー)C−1の缶出液(ライン8)を吸収塔(スクラバー)C−1に循環することを行わなかった。
運転を継続すると、徐々に蒸発器Aに循環されるライン32のガス中の二酸化炭素およびメタン濃度が上昇し、水素の仕込み量が低下したため、ベントQ−1行きのライン13より41NL/hrでガスのパージを行い、水素の蒸発器Aへの仕込み量も38NL/hr増やして115NL/hrにしたところ、ライン32のガス組成は、二酸化炭素1.5mol%、メタン1.5mol%、エタンおよびエチレン2.4mol%、プロパンおよびプロピレン1.9mol%、水素92.7mol%で安定した。
ライン14[吸収塔(スクラバー)C−1の缶出液ライン8と直接つながっている]からは、アセトアルデヒド7.2重量%、アセトン0.4重量%、エタノール1.7重量%、酢酸エチル0.7重量%、水9.4重量%、酢酸80.6重量%の反応粗液が1,659g/hr得られた。
実施例3
図10に示す理論段数30段の40mmφ真空ジャケット付ガラス製蒸留塔Eを使用して、常圧で、酢酸の水素化で得た反応粗液から製品アセトアルデヒドをサイドカットで分離した。
前記蒸留塔Eの塔頂から20段目(理論段数)に、ライン16より酢酸の水素化で得た反応粗液をポンプで連続的に1,000g/hr仕込んだ。反応粗液は、アセトアルデヒド7.2重量%、アセトン2.0重量%、エタノール8.0重量%、酢酸エチル44.0重量%、水10.2重量%、酢酸28.6重量%を含んでいた。
留出液量が300ml/hrとなるようにボトムの熱媒温度を調節し、留出液は全量ポンプN−6で連続的にライン32から塔頂に還流した。
最上段の液を15℃に冷却して、ポンプN−16で連続的にライン18から72g/hrでサイドカットした。
ボトムの液面が一定になるように、缶出液を30℃に冷却してポンプN−5で連続的にライン19から928g/hr抜き取った。
ライン18のサイドカット液は、低沸成分を1.8重量%含む、純度98.2重量%のアセトアルデヒドであった。
ライン19の缶出液は、アセトアルデヒド0.1重量%、アセトン2.1重量%、エタノール8.7重量%、酢酸エチル47.3重量%、水11.0重量%、酢酸30.8重量%を含んでいた。
比較例3
図10に示す理論段数30段の40mmφ真空ジャケット付ガラス製蒸留塔Eを使用して、常圧で、酢酸の水素化で得た反応粗液から製品アセトアルデヒドを分離した。
前記蒸留塔Eの塔頂から20段目(理論段数)に、ライン16より酢酸の水素化で得た反応粗液をポンプで連続的に1,000g/hr仕込んだ。反応粗液は、アセトアルデヒド7.2重量%、アセトン2.0重量%、エタノール8.0重量%、酢酸エチル44.0重量%、水10.2重量%、酢酸28.6重量%を含んでいた。
留出液は、300ml/hrをポンプで連続的にラインN−6からライン32により塔頂に還流し、製品アセトアルデヒド72g/hrをポンプN−17で連続的にライン33から抜き取った。
留出受器の液面が一定になるようにボトムの熱媒温度を調節した。ライン18からはサイドカットしなかった。
ボトムの液面が一定になるように、缶出液を30℃に冷却してポンプN−5で連続的にライン19から928g/hr抜き取った。
ライン33の留出液は、低沸成分を3.5重量%含む、純度96.5重量%のアセトアルデヒドであった。
ライン19の缶出液は、アセトアルデヒド0.1重量%、アセトン2.1重量%、エタノール8.7重量%、酢酸エチル47.3重量%、水11.0重量%、酢酸30.8重量%を含んでいた。
実施例4
実施例1の方法で得られた反応粗液を図3に示すフローで精製した。
理論段数30段の50mmφ真空ジャケット付ガラス製蒸留塔からなる第1蒸留塔(アセトアルデヒド製品塔)Eの塔頂から20段目(理論段数)に、ライン16で酢酸の水素化で得た上記の反応粗液を仕込み、常圧、還流比3で蒸留した。塔頂ベーパー温度は21℃で、製品アセトアルデヒド120g/hrを10℃に冷却してライン18から抜き取った。ボトム液温度は79℃で、液面が一定になるように、缶出液を連続的にライン19から1,547g/hrで抜き取った。缶出液は、アセトン2.1重量%、エタノール8.7重量%、酢酸エチル47.5重量%、水11.0重量%、酢酸30.8重量%を含んでいた。
この缶出液を理論段数30段の100mmφ金属製蒸留塔からなる第2蒸留塔(酢酸回収塔)Fの塔頂から20段目(理論段数)に仕込み、さらに、ライン23から該第2蒸留塔(酢酸回収塔)Fの留出液をデカンターSで分液した上相液1,500g/hrを仕込み、190kPaゲージの圧力で蒸留した。塔頂ベーパー温度は103℃で、留出液はコンデンサーM−7で凝縮して20℃に冷却し、デカンターSで分液後、上相液の1,500g/hrは上記のように第2蒸留塔(酢酸回収塔)Fへ還流し、1,000g/hrは酢酸の水素化反応工程の吸収液としてリサイクルした。ボトム温度は157℃で、液面が一定になるように、缶出液を連続的にライン24から477g/hrで抜き取った。缶出液は、水0.1重量%、酢酸99.9重量%を含んでいた。デカンター下相液79g/hrは、アセトン3.1重量%、エタノール13.8重量%、酢酸エチル13.0重量%、水70.1重量%を含んでいた。
下相液は、理論段数30段の40mmφ真空ジャケット付ガラス製蒸留塔からなる第3蒸留塔(脱低沸塔)Gの塔頂から10段目(理論段数)に仕込み、常圧、還流比210で蒸留した。塔頂ベーパー温度は59℃で、留出液3g/hrはアセトン79.2重量%、エタノール3.6重量%、酢酸エチル15.0重量%、水2.2重量%を含んでいた。ボトム温度は73℃で、液面が一定になるように、缶出液を連続的にライン28から76g/hrで抜き取った。缶出液は、エタノール14.2重量%、酢酸エチル12.9重量%、水72.9重量%を含んでいた。
缶出液は、理論段数10段の40mmφ真空ジャケット付ガラス製蒸留塔からなる第4蒸留塔(エタノール・酢酸エチル回収塔)Hの塔頂から5段目(理論段数)に仕込み、40kPa(絶対圧)、還流比1.1で蒸留した。塔頂ベーパー温度は49℃で、留出液23g/hrはエタノール47.1重量%、酢酸エチル42.9重量%、水10.0重量%を含んでいた。ボトム温度は78℃で、液面が一定になるように、缶出液を連続的にライン31から53g/hrで抜き取った。缶出液は、エタノール0.1重量%、水99.9重量%を含んでいた。
表1に各蒸留塔の塔頂温度およびボトム温度をまとめた。
第2蒸留塔(酢酸回収塔)Fの塔頂温度は第1蒸留塔(アセトアルデヒド製品塔)Eおよび第3蒸留塔(脱低沸塔)Gおよび第4蒸留塔(エタノール・酢酸エチル回収塔)Hのボトム温度より高いことから、第2蒸留塔(酢酸回収塔)Fの塔頂ベーパーを第1蒸留塔(アセトアルデヒド製品塔)E、第3蒸留塔(脱低沸塔)G、第4蒸留塔(エタノール・酢酸エチル回収塔)Hから選ばれる少なくとも1つの蒸留塔の加熱に使用することができる。
実施例5
実施例1の方法で得られた反応粗液を図3に示すフローで精製した。
第1蒸留塔(アセトアルデヒド製品塔)Eの缶出液を理論段数30段の100mmφ金属製蒸留塔からなる第2蒸留塔(酢酸回収塔)Fの塔頂から20段目(理論段数)に仕込み、さらに、ライン23から第2蒸留塔(酢酸回収塔)Fの留出液をデカンターSで分液した上相液1,500g/hrを仕込み、常圧で蒸留した点以外は実施例4と同様にして、酢酸の水素化で得られた反応粗液を精製した。
第2蒸留塔(酢酸回収塔)Fの塔頂ベーパー温度は70℃で、留出液はコンデンサーM−7で凝縮して40℃に冷却し、デカンターSで分液後、上相液の2,000g/hrは上記のように第2蒸留塔(酢酸回収塔)Fへ還流し、1,000g/hrは酢酸の水素化反応工程の吸収液としてリサイクルした。ボトム温度は121℃で、液面が一定になるように、缶出液を連続的にライン24から477g/hrで抜き取った。缶出液は、水0.1重量%、酢酸99.9重量%を含んでいた。デカンター下相液79g/hrは、アセトン3.1重量%、エタノール13.8重量%、酢酸エチル13.0重量%、水70.1重量%を含んでいた。
表1に第2蒸留塔(酢酸回収塔)Fの運転圧力を常圧にした場合の塔頂温度およびボトム温度を示す。
この方法においても、実施例4と同様、製品アセトアルデヒド、未反応酢酸、エタノール及び酢酸エチル、アセトン等の低沸点成分を、短い工程で効率よく、分離、回収できる。
但し、第2蒸留塔(酢酸回収塔)Fの塔頂温度は第1蒸留塔(アセトアルデヒド製品塔)E、第3蒸留塔(脱低沸塔)Gおよび第4蒸留塔(エタノール・酢酸エチル回収塔)Hのボトム温度より低いので、第2蒸留塔(酢酸回収塔)Fの塔頂ベーパーを他の蒸留塔の加熱に使用することはできない。
Figure 0006700327
実施例6
実施例1の方法で得られた反応粗液を図5に示すフローで精製した。
理論段数30段の50mmφ真空ジャケット付ガラス製蒸留塔からなる第1蒸留塔(アセトアルデヒド製品塔)Eの塔頂から20段目(理論段数)に、ライン16で酢酸の水素化で得た上記の反応粗液を仕込み、常圧、還流比3で蒸留した。塔頂ベーパー温度は21℃で、製品アセトアルデヒド120g/hrを10℃に冷却してライン18から抜き取った。ボトム液温度は79℃で、液面が一定になるように、缶出液を連続的にライン19から1,547g/hrで抜き取った。缶出液は、アセトン2.1重量%、エタノール8.7重量%、酢酸エチル47.5重量%、水11.0重量%、酢酸30.8重量%を含んでいた。
この缶出液を理論段数30段の100mmφ金属製蒸留塔からなる第2蒸留塔(酢酸回収塔)Fの塔頂から20段目(理論段数)に仕込み、さらに、ライン23から該第2蒸留塔(酢酸回収塔)Fの留出液をデカンターSで分液した上相液1,500g/hrを仕込み、190kPaゲージの圧力で蒸留した。塔頂ベーパー温度は103℃で、留出液はコンデンサーM−7で凝縮して20℃に冷却し、デカンターSで分液後、上相液の1,500g/hrは上記のように第2蒸留塔(酢酸回収塔)Fへ還流し、1,000g/hrは酢酸の水素化反応工程の吸収液としてリサイクルした。
ボトム温度は157℃で、液面が一定になるように、缶出液を連続的にライン24から477g/hrで抜き取った。缶出液は、水0.1重量%、酢酸99.9重量%を含んでいた。デカンター下相液79g/hrは、アセトン3.1重量%、エタノール13.8重量%、酢酸エチル13.0重量%、水70.1重量%を含んでいた。
下相液は、理論段数30段の40mmφ真空ジャケット付ガラス製蒸留塔からなる第3蒸留塔(脱低沸塔)Gの塔頂から10段目(理論段数)に仕込み、常圧、還流比210で蒸留した。塔頂ベーパー温度は59℃で、留出液3g/hrはアセトン79.2重量%、エタノール3.6重量%、酢酸エチル15.0重量%、水2.2重量%を含んでいた。ボトム温度は73℃で、液面が一定になるように、缶出液を連続的にライン28から76g/hrで抜き取った。缶出液は、エタノール14.2重量%、酢酸エチル12.9重量%、水72.9重量%を含んでいた。
缶出液は、理論段数10段の40mmφ真空ジャケット付ガラス製蒸留塔からなる第4蒸留塔(エタノール・酢酸エチル回収塔)Hの塔頂から5段目(理論段数)に仕込み、40kPa(絶対圧)、還流比1.1で蒸留した。塔頂ベーパー温度は49℃で、留出液23g/hrはエタノール47.1重量%、酢酸エチル42.9重量%、水10.0重量%を含んでいた。ボトム温度は78℃で、液面が一定になるように、缶出液を連続的にライン31から53g/hrで抜き取った。缶出液は、エタノール0.1重量%、水99.9重量%を含んでいた。
エタノール47.1重量%、酢酸エチル42.9重量%、水10.0重量%からなるエタノール・酢酸エチル回収塔の留出液100重量部に酢酸245重量部を加え、100g/hrの仕込流量で、強酸性イオン交換樹脂50mlを充填した内径20mmφ、長さ300mmのガラス製ジャケット付反応器Vに仕込み、70℃に昇温した。
反応器出口の組成は、エタノール3.2重量%、酢酸エチル32.4重量%、水7.0重量%、酢酸57.4重量%であった。反応器出口液の酢酸エチル/エタノール重量比は10.1/1.0であり、反応器入口液の酢酸エチル/エタノール重量比0.91/1.0から酢酸エチルの割合が約11倍に増加しているので、反応器出口液を吸収塔、アセトアルデヒド製品塔、酢酸回収塔などに仕込むことにより、酢酸エチルを補給することができる。
実施例7
実施例1の方法で得られた反応粗液を図7に示すフローで精製した。
理論段数30段の50mmφ真空ジャケット付ガラス製蒸留塔からなる第1蒸留塔(アセトアルデヒド製品塔)Eの塔頂から20段目(理論段数)に、ライン16で酢酸の水素化で得た上記の反応粗液を仕込み、常圧、還流比3で蒸留した。塔頂ベーパー温度は21℃で、製品アセトアルデヒド120g/hrを10℃に冷却してライン18から抜き取った。ボトム液温度は79℃で、液面が一定になるように、缶出液を連続的にライン19から1,547g/hrで抜き取った。缶出液は、アセトン2.1重量%、エタノール8.7重量%、酢酸エチル47.5重量%、水11.0重量%、酢酸30.8重量%を含んでいた。
この缶出液を理論段数30段の100mmφ金属製蒸留塔からなる第2蒸留塔(酢酸回収塔)Fの塔頂から20段目(理論段数)に仕込み、さらに、ライン23から該第2蒸留塔(酢酸回収塔)Fの留出液をデカンターSで分液した上相液1,500g/hrを仕込み、190kPaゲージの圧力で蒸留した。塔頂ベーパー温度は103℃で、留出液はコンデンサーM−7で凝縮して20℃に冷却し、デカンターSで分液後、上相液の1,500g/hrは上記のように第2蒸留塔(酢酸回収塔)Fへ還流し、1,000g/hrは酢酸の水素化反応工程の吸収液としてリサイクルした。
ボトム温度は157℃で、液面が一定になるように、缶出液を連続的にライン24から477g/hrで抜き取った。缶出液は、水0.1重量%、酢酸99.9重量%を含んでいた。デカンター下相液79g/hrは、アセトン3.1重量%、エタノール13.8重量%、酢酸エチル13.0重量%、水70.1重量%を含んでいた。
下相液は、理論段数30段の40mmφ真空ジャケット付ガラス製蒸留塔からなる第3蒸留塔(脱低沸塔)Gの塔頂から10段目(理論段数)に仕込み、常圧、還流比210で蒸留した。塔頂ベーパー温度は59℃で、留出液3g/hrはアセトン79.2重量%、エタノール3.6重量%、酢酸エチル15.0重量%、水2.2重量%を含んでいた。ボトム温度は73℃で、液面が一定になるように、缶出液を連続的にライン28から76g/hrで抜き取った。缶出液は、エタノール14.2重量%、酢酸エチル12.9重量%、水72.9重量%を含んでいた。
缶出液は、理論段数10段の40mmφ真空ジャケット付ガラス製蒸留塔からなる第4蒸留塔(エタノール・酢酸エチル回収塔)Hの塔頂から5段目(理論段数)に仕込み、40kPa(絶対圧)、還流比1.1で蒸留した。塔頂ベーパー温度は49℃で、留出液23g/hrはエタノール47.1重量%、酢酸エチル42.9重量%、水10.0重量%を含んでいた。ボトム温度は78℃で、液面が一定になるように、缶出液を連続的にライン31から53g/hrで抜き取った。缶出液は、エタノール0.1重量%、水99.9重量%を含んでいた。
エタノール47.1重量%、酢酸エチル42.9重量%、水10.0重量%からなるエタノール・酢酸エチル回収塔の留出液(エタノール/酢酸エチル重量比=52/48)100重量部に酢酸245重量部を加え、100g/hrの仕込流量でライン37から、強酸性イオン交換樹脂50mlを充填した内径20mmφ、長さ300mmのガラス製ジャケット付反応器Vに仕込み、70℃に昇温した。
反応器出口の組成(ライン38)は、エタノール3.2重量%、酢酸エチル32.4重量%、水7.0重量%、酢酸57.4重量%(エタノール/酢酸エチル重量比=9/91)であった。
エタノール・酢酸エチル回収塔の留出液のエタノール/酢酸エチル重量比=52/48は、エタノールと酢酸エチルの共沸組成 エタノール/酢酸エチル重量比=31/69よりもエタノールが過剰であるため、酢酸エチルを分離するためには煩雑なプロセスが必要である。
一方、反応器出口液のエタノール/酢酸エチル重量比=9/91は、エタノールと酢酸エチルの共沸組成よりも酢酸エチルが過剰であり、酢酸エチルの分離が容易である。すなわち、該反応器出口液を酢酸エチル精製工程Xに供して、蒸留および抽出などの慣用の方法により未反応エタノール、水、および酢酸を分離除去することにより、製品酢酸エチルを得ることができる。
実施例8
図9に示される装置により酢酸の水素化を行った。
後述する吸収塔(スクラバー)C−1の塔頂からのガス(ライン12からライン32を流れるガス)1,073NL/hrをコンプレッサーI−2で昇圧してライン2より循環させ、蒸発器A入口圧力が1.7MPa(ゲージ圧)で一定になるように、水素ボンベPより94NL/hrの水素(ライン1)をコンプレッサーI−1で昇圧し、前記循環ガスと合流させてライン3により蒸発器Aに仕込んだ。J−1、J−2、J−3はバッファータンクである。
酢酸タンクK−1からライン4により酢酸を428g/hrで供給し、ライン3からの水素と共に蒸発器(電気ヒーター付蒸発器)Aで300℃まで昇温し、得られた水素と酢酸の混合ガスを、触媒としてFe23を100重量部に対してPd金属を40重量部担持した触媒92mlを充填した外径43.0mmφの反応器(電気ヒーター付反応器)Bに仕込んだ。蒸発器A内、反応器B内の圧力は1.7MPa(ゲージ圧)である。また、反応温度は300℃である。N−1はポンプである。
反応器Bから流出した反応ガス(ライン6)は冷却器(クーラー)M−11で30℃まで冷却し、ライン7より6mmφ磁製ラシヒリングを高さ1m充填した外径48.6φの吸収塔(スクラバー)C−1の下部に仕込んだ。吸収塔(スクラバー)C−1内の圧力は、1.7MPa(ゲージ圧)である。N−3はポンプ、M−4は冷却器(クーラー)である。
吸収塔(スクラバー)C−1の上段には、図11の酢酸回収塔Fの留出液をデカンターSで分液した上相液ライン48に相当する組成の液である、アセトン0.9重量%、エタノール13.1重量%、イソ酪酸エチル79.5重量%、水6.5重量%からなる30℃の吸収液63g/hrをライン33より仕込んだ。K−9は吸収液タンク、N−16はポンプ、34はライン、M−12は冷却器(クーラー)である。
吸収塔(スクラバー)C−1の缶出液(ライン8)は、吸収塔(スクラバー)C−1のボトムの液面が一定になるように、常圧の気液分離器Uに抜き取り、溶存ガスを放散させた。放散したガスはライン10より分離除去した。ガス放散後の液の一部はライン9より30℃、3L/hrで吸収塔(スクラバー)C−1の中間部より仕込んだ(循環させた)。
前記ガス放散後の液の残りはライン14から反応粗液として取り出し、反応粗液タンクK−2に貯留した。反応粗液の組成は、アセトアルデヒド25.2重量%、アセトン0.4重量%、エタノール6.3重量%、イソ酪酸エチル9.9重量%、水14.2重量%、酢酸44.0重量%であり、その製造量は、497g/hrであった。
吸収塔(スクラバー)C−1の塔頂ガスライン12に接続されたベントQ−1行きのライン13からパージガスは流さなかったが、蒸発器Aに循環されるライン32のガス組成は、二酸化炭素3.2mol%、メタン1.1mol%、エタンおよびエチレン1.2mol%、プロパンおよびプロピレン0.7mol%、アセトアルデヒド0.2mol%、水素93.6mol%で安定していた。
このようにして得られた反応粗液を図11に示すフローで精製した。
理論段数30段の50mmφ真空ジャケット付ガラス製蒸留塔からなる第1蒸留塔(アセトアルデヒド製品塔)Eの塔頂から20段目(理論段数)に、ライン16で酢酸の水素化で得た上記の反応粗液と後述する第5蒸留塔(酢酸エチル分離塔)缶出液の混合液539g/hr、アセトアルデヒド23.3重量%、アセトン0.3重量%、エタノール6.5重量%、イソ酪酸エチル9.8重量%、水14.2重量%、酢酸45.9重量%を仕込み、常圧、還流比0.7で蒸留した。塔頂ベーパー温度は21℃で、製品アセトアルデヒド130g/hrを10℃に冷却してライン18から抜き取った。ボトム液温度は105℃で、液面が一定になるように、缶出液を連続的にライン19から409g/hrで抜き取った。缶出液は、アセトン0.4重量%、エタノール8.5重量%、イソ酪酸エチル13.0重量%、水18.7重量%、酢酸59.4重量%を含んでいた。
この缶出液を理論段数30段の100mmφ金属製蒸留塔からなる第2蒸留塔(酢酸回収塔)Fの塔頂から20段目(理論段数)に仕込み、さらに、ライン23から該第2蒸留塔(酢酸回収塔)Fの留出液をデカンターSで分液した上相液563g/hrを仕込み、190kPaゲージの圧力で蒸留した。塔頂ベーパー温度は109℃で、留出液はコンデンサーM−7で凝縮して20℃に冷却した後、デカンターSで分液し、上相液の563g/hrは上記のように第2蒸留塔(酢酸回収塔)Fへ還流し、63g/hrは酢酸の水素化反応工程の吸収液としてリサイクルした。
ボトム温度は153℃で、液面が一定になるように、缶出液を連続的にライン24から256g/hrで抜き取った。缶出液は、イソ酪酸エチル5.6重量%、酢酸94.4重量%を含んでいた。デカンター下相液105g/hrは、アセトン1.2重量%、エタノール25.5重量%、イソ酪酸エチル3.4重量%、水69.9重量%を含んでいた。
下相液は、理論段数30段の40mmφ真空ジャケット付ガラス製蒸留塔からなる第3蒸留塔(脱低沸塔)Gの塔頂から5段目(理論段数)に仕込み、常圧、還流比25で蒸留した。塔頂ベーパー温度は49℃で、留出液2g/hrはアセトアルデヒド15.6重量%、アセトン69.4重量%、エタノール10.0重量%、イソ酪酸エチル2.1重量%、水2.9重量%を含んでいた。ボトム温度は85℃で、液面が一定になるように、缶出液を連続的にライン28から103g/hrで抜き取った。缶出液は、エタノール25.7重量%、イソ酪酸エチル3.4重量%、水70.9重量%を含んでいた。
缶出液は、理論段数20段の40mmφ真空ジャケット付ガラス製蒸留塔からなる第4蒸留塔(エタノール回収塔)Hの塔頂から15段目(理論段数)に仕込み、常圧、還流比1.6で蒸留した。塔頂ベーパー温度は78℃で、留出液33g/hrはエタノール81.2重量%、イソ酪酸エチル10.8重量%、水8.0重量%を含んでいた。ボトム温度は102℃で、液面が一定になるように、缶出液を連続的にライン31から70g/hrで抜き取った。缶出液は、エタノール0.1重量%、水99.9重量%を含んでいた。
エタノール81.2重量%、イソ酪酸エチル10.8重量%、水8.0重量%からなるエタノール回収塔の留出液100重量部に酢酸73重量部を加え、100g/hrの仕込流量でライン49から、強酸性イオン交換樹脂50mlを充填した内径20mmφ、長さ300mmのガラス製ジャケット付反応器Vに仕込み、70℃に昇温してエステル化した。
反応器出口の組成(ライン38)は、エタノール10.3重量%、酢酸エチル40.3重量%、イソ酪酸エチル4.2重量%、水11.3重量%、酢酸33.9重量%であった。
エステル化反応液を、理論段数30段の40mmφ真空ジャケット付ガラス製蒸留塔からなる第5蒸留塔(酢酸エチル分離塔)の塔頂から10段目(理論段数)に仕込み、常圧、還流比2.0で蒸留した。塔頂ベーパー温度は70℃で、留出液43g/hrはエタノール11.8重量%、酢酸エチル79.4重量%、水8.8重量%を含んでいた。ボトム温度は103℃で、液面が一定になるように、缶出液を連続的にライン47から41g/hrで抜き取った。缶出液は、エタノール8.8重量%、イソ酪酸エチル8.5重量%、水14.0重量%、酢酸68.7重量%を含んでいた。
A 蒸発器
B 反応器
C 吸収塔
C−1 スクラバー
D 放散塔
E 第1蒸留塔(アセトアルデヒド製品塔)
F 第2蒸留塔(酢酸回収塔)
G 第3蒸留塔
H 第4蒸留塔
I−1〜I−2 コンプレッサー
J−1〜J−3 バッファータンク
K−1 酢酸タンク
K−2 反応粗液タンク
K−3 アセトアルデヒド製品タンク
K−4 回収酢酸タンク
K−5 酢酸エチルタンク
K−6 吸収液タンク
K−7 低沸点成分タンク
K−8 回収エタノール/酢酸エチルタンク
K−9 吸収液タンク
K−10 アセトアルデヒド製品タンク
K−11 エステル化反応液タンク
K−12 酢酸エチルタンク
L−1〜L−2 加熱器
M−1〜M−13 冷却器(クーラー)
N−1〜N−25 ポンプ(送液ポンプ)
O−1〜O−4 リボイラー
O−5 加熱器
O−6 リボイラー
P 水素設備(水素ボンベ)
Q−1〜Q−3 ベント
R−1〜R−5 受器(タンク)
S デカンター
T 排水設備
U 気液分離器
V エステル化反応器
W 酢酸
X 酢酸エチル精製工程
Y 第5蒸留塔(酢酸エチル分離塔)
1〜50 ライン
本発明は、酢酸の水素化によりアセトアルデヒドを工業的に製造することに利用することができる。

Claims (1)

  1. 酢酸の水素化によりアセトアルデヒドを製造する方法であって
    酸を水素化して得られた反応粗液を蒸留塔で蒸留するに際し、該蒸留塔の理論段数が10段から50段であり、
    蒸留塔の反応粗液仕込み段と塔頂との間の段であって、最上段(1段目)から5段目の間から液相のアセトアルデヒドを取り出すことを特徴とするアセトアルデヒドの製造方法。
JP2018047617A 2013-08-08 2018-03-15 アセトアルデヒドの製造方法 Active JP6700327B2 (ja)

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
JP2013165622 2013-08-08
JP2013165622 2013-08-08
JP2013169907 2013-08-19
JP2013169907 2013-08-19
JP2013175557 2013-08-27
JP2013175179 2013-08-27
JP2013175179 2013-08-27
JP2013175557 2013-08-27
JP2013223356 2013-10-28
JP2013223356 2013-10-28
JP2014081441 2014-04-10
JP2014081442 2014-04-10
JP2014081442 2014-04-10
JP2014081443 2014-04-10
JP2014081441 2014-04-10
JP2014081445 2014-04-10
JP2014081444 2014-04-10
JP2014081444 2014-04-10
JP2014081445 2014-04-10
JP2014081443 2014-04-10

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015530898A Division JP6321654B2 (ja) 2013-08-08 2014-08-05 アセトアルデヒドの製造方法

Publications (2)

Publication Number Publication Date
JP2018109065A JP2018109065A (ja) 2018-07-12
JP6700327B2 true JP6700327B2 (ja) 2020-05-27

Family

ID=52461370

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015530898A Active JP6321654B2 (ja) 2013-08-08 2014-08-05 アセトアルデヒドの製造方法
JP2018047617A Active JP6700327B2 (ja) 2013-08-08 2018-03-15 アセトアルデヒドの製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015530898A Active JP6321654B2 (ja) 2013-08-08 2014-08-05 アセトアルデヒドの製造方法

Country Status (4)

Country Link
US (1) US20160176796A1 (ja)
JP (2) JP6321654B2 (ja)
TW (1) TW201509896A (ja)
WO (1) WO2015020039A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015156061A1 (ja) * 2014-04-10 2015-10-15 株式会社ダイセル アセトアルデヒドの製造方法
JP6650351B2 (ja) * 2016-06-21 2020-02-19 株式会社ダイセル 触媒、触媒の製造方法、及びアルデヒド類の製造方法
CN112057946A (zh) * 2020-08-10 2020-12-11 金沂蒙集团有限公司 一种乙醛合成丁烯醛的废水资源化利用的方法及装置
KR102690124B1 (ko) * 2020-12-03 2024-07-30 주식회사 엘지화학 아크릴산의 제조 공정
CN114702375B (zh) * 2022-05-18 2023-10-13 陕西延长石油(集团)有限责任公司 一种乙醇制乙醛产品的分离系统及方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL136043C (ja) * 1967-05-22
JPS60226839A (ja) * 1984-04-25 1985-11-12 Mitsubishi Chem Ind Ltd アセトアルデヒドの精製方法
JPH0199603A (ja) * 1987-10-09 1989-04-18 Nippon Steel Chem Co Ltd 蒸留塔の制御方法
JP3581725B2 (ja) * 1994-06-30 2004-10-27 ダイセル化学工業株式会社 アセトアルデヒドとヨウ化メチルの分離方法
JP3956396B2 (ja) * 1994-07-29 2007-08-08 三菱化学株式会社 高純度イソアルデヒドの製造方法
US6121498A (en) * 1998-04-30 2000-09-19 Eastman Chemical Company Method for producing acetaldehyde from acetic acid
JP2001072623A (ja) * 1999-06-28 2001-03-21 Tokuyama Corp 塩素化炭化水素の精製方法
US6515187B1 (en) * 2001-10-03 2003-02-04 Atofina Chemicals, Inc. Process for recovering acrolein or propionaldehyde from dilute aqueous streams
JP2006096764A (ja) * 2005-11-18 2006-04-13 Daicel Chem Ind Ltd アセトアルデヒドの分離除去方法
JP2010065001A (ja) * 2008-09-12 2010-03-25 Nippon Refine Kk 発酵もろみからエタノールと水を分離、回収する方法および装置
WO2014119185A1 (ja) * 2013-01-30 2014-08-07 株式会社ダイセル アセトアルデヒドの製造方法

Also Published As

Publication number Publication date
WO2015020039A1 (ja) 2015-02-12
US20160176796A1 (en) 2016-06-23
JPWO2015020039A1 (ja) 2017-03-02
JP6321654B2 (ja) 2018-05-09
TW201509896A (zh) 2015-03-16
JP2018109065A (ja) 2018-07-12

Similar Documents

Publication Publication Date Title
JP6700327B2 (ja) アセトアルデヒドの製造方法
KR101805240B1 (ko) 아세트산의 제조 방법
JP3659109B2 (ja) エチレングリコールと炭酸エステルの併産方法
KR100269194B1 (ko) 메틸 메타크릴레이트의 제조 방법
JP6359769B2 (ja) 酢酸の製造方法
WO2014097867A1 (ja) 酢酸の製造方法
US8845972B2 (en) Process and apparatus for efficient recovery of dichlorohydrins
KR20100016452A (ko) 다이클로로하이드린 회수를 위한 다단계 방법 및 장치
MXPA06010637A (es) Utilizacion del calor de reaccion del acido acetico en otras plantas de procesamiento.
JP2010523704A (ja) ポリヒドロキシ脂肪族炭化水素化合物の塩化水素処理中の蒸気相精製の方法および装置
JP2010523703A (ja) ジクロロヒドリンの共沸回収方法及び装置
KR102355059B1 (ko) 아세트산 제조 유닛에서 오프가스를 처리하기 위한 방법 및 장치
JP6502951B2 (ja) アセトアルデヒドの製造方法
JP2010523699A (ja) 蒸留の間の重質副生成物の形成を低減する方法および装置
KR20100016455A (ko) 공증류에 의한 다이클로로하이드린 회수 방법 및 장치
JP6405367B2 (ja) アセトアルデヒドの製造方法
US10661196B2 (en) Process for producing acetic acid
CS198231B2 (en) Method of the partial separation of water from gas mixture arising in vinyl acetate preparation
KR20100133369A (ko) 개선된 수소화 방법
JP6723151B2 (ja) 酢酸とアセトアルデヒドと酢酸エチルの製造方法
JP6483808B2 (ja) 酢酸の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200430

R150 Certificate of patent or registration of utility model

Ref document number: 6700327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150