WO2015155932A1 - 半導体基板及び半導体素子 - Google Patents

半導体基板及び半導体素子 Download PDF

Info

Publication number
WO2015155932A1
WO2015155932A1 PCT/JP2015/001196 JP2015001196W WO2015155932A1 WO 2015155932 A1 WO2015155932 A1 WO 2015155932A1 JP 2015001196 W JP2015001196 W JP 2015001196W WO 2015155932 A1 WO2015155932 A1 WO 2015155932A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
concentration
semiconductor substrate
transition metal
channel layer
Prior art date
Application number
PCT/JP2015/001196
Other languages
English (en)
French (fr)
Inventor
憲 佐藤
洋志 鹿内
博一 後藤
篠宮 勝
慶太郎 土屋
和徳 萩本
Original Assignee
サンケン電気株式会社
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンケン電気株式会社, 信越半導体株式会社 filed Critical サンケン電気株式会社
Priority to CN201580018718.6A priority Critical patent/CN106165072B/zh
Priority to KR1020167027607A priority patent/KR102121096B1/ko
Priority to US15/300,472 priority patent/US20170133217A1/en
Publication of WO2015155932A1 publication Critical patent/WO2015155932A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/0251Graded layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02581Transition metal or rare earth elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28568Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising transition metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET

Definitions

  • the present invention relates to a semiconductor substrate and a semiconductor element manufactured using the semiconductor substrate.
  • a semiconductor substrate using a nitride semiconductor is used for a power element that operates at high frequency and high output.
  • a high electron mobility transistor HEMT
  • HEMT high electron mobility transistor
  • a semiconductor substrate using a nitride semiconductor As a semiconductor substrate using a nitride semiconductor, a semiconductor substrate in which a buffer layer, a GaN layer, and a barrier layer made of AlGaN are sequentially stacked on a Si substrate is known.
  • the lower layer (high resistance layer) of the GaN layer increases the electrical resistance in the vertical direction and the horizontal direction, so that the breakdown voltage can be increased by improving the off characteristics of the transistor and suppressing the leakage in the vertical direction. Therefore, the GaN layer is doped with carbon, deep levels are formed in the GaN crystal, and n-type conduction is suppressed.
  • the upper layer of the GaN layer functions as a channel layer, and when a level for trapping carriers is formed, mobility decreases due to impurity scattering and current collapse (a phenomenon in which the reproducibility of output current characteristics deteriorates) Therefore, it is necessary to sufficiently reduce the concentration of carbon or the like (see Patent Documents 1-3).
  • Patent Document 4 discloses that high resistance is achieved by adding Fe to the GaN layer (see FIG. 6), and carbon may be further added to stabilize the energy level of Fe. It is disclosed (see FIG. 7).
  • the carbon concentration may be gradually decreased toward the third GaN layer 124 functioning as a channel layer at the same timing as Fe.
  • Fe and carbon are not so much contained in the region of the second GaN layer 122 on the third GaN layer 124 side, the resistance in the thickness direction and the lateral direction is lowered, and this region functions sufficiently as a high resistance layer. There was a problem of not doing.
  • the present invention has been made in view of the above problems, and a semiconductor substrate capable of realizing a high-resistance layer having higher resistance while reducing the carbon concentration and the transition metal concentration in the channel layer, and the semiconductor substrate. It is an object to provide a semiconductor element manufactured using a semiconductor substrate.
  • the present invention comprises a substrate, a buffer layer on the substrate, a nitride-based semiconductor on the buffer layer, a high resistance layer containing a transition metal and carbon, and the high resistance layer.
  • the semiconductor substrate is characterized in that the decreasing rate of the carbon concentration toward the channel layer is larger than the decreasing rate of the transition metal concentration toward the channel layer.
  • a reduction layer that is in contact with the channel layer and decreases in the transition metal concentration from the buffer layer side to the channel layer side in the high resistance layer is provided, and the reduction rate that decreases toward the carbon concentration channel layer is reduced.
  • the transition metal concentration larger than the rate of decrease toward the channel layer, the carbon concentration can be increased to a region closer to the channel layer side of the decreasing layer, while the carbon concentration in the channel layer can be decreased. Therefore, the carbon concentration and the transition metal concentration in the channel layer can be lowered while maintaining the high resistance on the channel layer side of the high resistance layer.
  • the average carbon concentration of the channel layer is lower than the average carbon concentration of the decreasing layer.
  • the carbon concentration up to the portion where the carbon concentration of the decreasing layer on the buffer layer side decreases increases from the buffer layer side toward the channel layer side or is constant.
  • the decrease in the concentration of the transition metal can be compensated for by carbon, so that the decrease in resistance due to the decrease in the concentration of the transition metal in the decreasing layer can be more reliably suppressed.
  • the sum of the carbon concentration and the transition metal concentration is preferably 1 ⁇ 10 18 atoms / cm 3 or more and 1 ⁇ 10 20 atoms / cm 3 or less.
  • the high resistance of the reduced layer can be suitably maintained.
  • the thickness of the reduction layer is 500 nm or more and 3 ⁇ m or less
  • the transition metal in the reduction layer has a concentration of 1 ⁇ 10 19 atoms / cm 3 or more and 1 ⁇ 10 20 atoms / cm 3 or less. It is preferable that the concentration is reduced to 10 16 atoms / cm 3 or less. If the thickness of the reduced layer is 500 nm or more, the concentration of the transition metal can be reduced to a sufficiently low concentration, and if the thickness of the reduced layer is 3 ⁇ m or less, cracks are likely to occur in the periphery of the substrate. Can be prevented. Further, the concentration gradient of the transition metal in the decreasing layer can be preferably used.
  • the high resistance layer preferably further includes a layer having a constant concentration of the transition metal.
  • the high resistance layer can be made thicker, so that the leakage current in the vertical direction (thickness direction) can be further reduced.
  • the transition metal can be Fe.
  • Fe can be suitably used as the transition metal.
  • the present invention also provides a semiconductor device manufactured using the above semiconductor substrate, wherein an electrode is provided on the channel layer.
  • the carbon concentration can be increased to a region closer to the channel layer side of the decreasing layer, while the carbon concentration in the channel layer can be decreased. Therefore, while maintaining the high resistance on the channel layer side of the high resistance layer, the carbon concentration and the transition metal concentration in the channel layer can be reduced, and the decrease in carrier mobility in the channel layer can be suppressed while maintaining the vertical resistance.
  • the electric resistance in the direction it is possible to increase the breakdown voltage by suppressing the vertical leakage of the transistor.
  • the carbon concentration in the channel layer can be increased to a region closer to the channel layer side of the decreasing layer, while the carbon concentration in the channel layer can be decreased.
  • the concentration of the transition metal it is possible to increase the resistance of the high resistance layer on the channel layer side, and to suppress the decrease in carrier mobility in the channel layer, and to increase the vertical resistance
  • the transistor The breakdown voltage can be increased by improving the off characteristics and suppressing the leakage in the vertical direction. Accordingly, a high-quality power element such as a HEMT can be manufactured by using the semiconductor substrate of the present invention.
  • FIG. It is the figure which showed concentration distribution of the depth direction of the semiconductor substrate which shows an example of embodiment of this invention. It is sectional drawing of the semiconductor substrate which shows an example of embodiment of this invention. It is sectional drawing of the semiconductor element which shows an example of embodiment of this invention. It is the figure which showed the Vds dependence of the current collapse of an Example and the comparative example 1.
  • FIG. It is the figure which showed the relationship between the vertical direction leakage current of Example and Comparative Example 2, and a vertical direction voltage. It is the figure which showed the concentration distribution of the depth direction of the semiconductor substrate which added Fe to the conventional GaN layer. It is the figure which showed concentration distribution of the depth direction of the semiconductor substrate which added Fe and carbon to the conventional GaN layer.
  • FIG. 6 is a diagram showing a concentration distribution in a depth direction of a semiconductor substrate of Comparative Example 1.
  • FIG. 10 is a diagram showing a concentration distribution in a depth direction of a semiconductor substrate of Comparative Example 2.
  • the region of the second GaN layer 122 on the side of the third GaN layer 124 does not contain much Fe or carbon, and the resistance in the thickness direction and the lateral direction is lowered, so that it does not function sufficiently as a high resistance layer. There was a problem.
  • the present inventors have intensively studied a semiconductor substrate capable of realizing a high resistance layer having higher resistance while lowering the carbon concentration and the transition metal concentration in the channel layer.
  • a decreasing layer that contacts the channel layer and decreases in the transition metal concentration from the buffer layer side toward the channel layer side is provided in the high resistance layer, and the decreasing rate that decreases toward the carbon concentration channel layer transitions.
  • the carbon concentration can be increased to a region closer to the channel layer side of the decrease layer, while the carbon concentration in the channel layer can be decreased. Therefore, it has been found that a high resistance layer having higher resistance can be realized while lowering the carbon concentration and the transition metal concentration in the channel layer, and has led to the present invention.
  • FIG. 1 is a diagram showing a concentration distribution in the depth direction of an example semiconductor substrate of the present invention
  • FIG. 2 is a cross-sectional view of the example semiconductor substrate of the present invention.
  • a semiconductor substrate 10 shown in FIG. 2 includes a substrate 12, a buffer layer 14 provided on the substrate 12, and a nitride-based semiconductor (for example, GaN) provided on the buffer layer 14, and includes a transition metal and carbon.
  • a high resistance layer 15 containing impurities and an active layer 22 provided on the high resistance layer 15 are provided.
  • the substrate 12 is a substrate made of, for example, Si or SiC.
  • the buffer layer 14 is configured by, for example, a stacked body in which a first layer made of a nitride semiconductor and a second layer made of a nitride semiconductor having a composition different from that of the first layer are repeatedly stacked. Layer.
  • the first layer is made of, for example, Al y Ga 1-y N
  • the second layer is made of, for example, Al x Ga 1-x N (0 ⁇ x ⁇ y ⁇ 1).
  • the first layer can be AlN and the second layer can be GaN.
  • the active layer 22 has a channel layer 18 made of a nitride semiconductor and a barrier layer 20 made of a nitride semiconductor provided on the channel layer 18.
  • the channel layer 18 is made of, for example, GaN
  • the barrier layer 20 is made of, for example, AlGaN.
  • the high resistance layer 15 includes a constant layer 16 in which the transition metal is constant, and a decreasing layer 17 in contact with the channel layer 18 and in which the transition metal decreases from the buffer layer 14 side toward the channel layer 18 side.
  • FIG. 1-2 shows a case where the high resistance layer 15 includes the constant layer 16, the high resistance layer 15 may not include the constant layer 16.
  • the buffer layer 14 may contain Fe and carbon.
  • the portion where the carbon concentration decreases is closer to the channel layer 18 than the portion where the transition metal concentration decreases, and the positions where the carbon concentration and the transition metal concentration decrease differ in the thickness direction. Further, the decreasing rate that decreases toward the channel layer 18 having a carbon concentration is larger than the decreasing rate that decreases toward the channel layer 18 having a transition metal concentration.
  • the reducing layer 17 is provided in the high resistance layer 15 so as to be in contact with the channel layer 18 and the transition metal concentration decreases from the buffer layer 14 side toward the channel layer 18 side.
  • the decreasing rate decreasing in this way larger than the decreasing rate decreasing toward the channel layer 18 of the transition metal concentration, the carbon concentration can be increased to a region closer to the channel layer 18 side of the decreasing layer 17, while the channel Since the carbon concentration in the layer 18 can be lowered, the resistance of the high resistance layer 15 on the channel layer 18 side can be increased while the carbon concentration in the channel layer 18 and the transition metal concentration are lowered.
  • the average carbon concentration of the channel layer 18 is preferably lower than the average carbon concentration of the decreasing layer 17. With such a configuration, it is possible to maintain the high resistance of the decreasing layer while suppressing the occurrence of current collapse in the channel layer and the decrease in carrier mobility.
  • the carbon concentration up to the portion where the carbon concentration of the reducing layer 17 decreases increases from the buffer layer 14 side toward the channel layer 18 side or is constant.
  • the decrease in the transition metal concentration can be compensated by carbon. It is possible to suppress a decrease in resistance.
  • the sum of the carbon concentration and the transition metal concentration is preferably 1 ⁇ 10 18 atoms / cm 3 or more and 1 ⁇ 10 20 atoms / cm 3 or less.
  • the high resistance of the reduced layer can be suitably maintained.
  • the thickness of the reduction layer 17 is 500 nm or more and 3 ⁇ m or less, and the transition metal in the reduction layer 17 is 1 ⁇ 10 19 atoms / cm 3 or more and 1 ⁇ 10 20 atoms / cm 3 or less in concentration. It is preferable that the concentration is reduced to ⁇ 10 16 atoms / cm 3 or less. If the thickness of the reduction layer is 500 nm or more, the transition metal concentration can be reduced to a sufficiently low concentration, and if the thickness of the reduction layer is 3 ⁇ m or less, the semiconductor substrate can be prevented from becoming too thick. Further, the concentration gradient of the transition metal in the decreasing layer can be preferably used.
  • transition metal it can be set as Fe which is easy to make resistance higher than carbon.
  • Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, etc. can also be used as a transition metal.
  • the concentration of Fe can be controlled by controlling the flow rate of Cp 2 Fe (bisclopentadienyl iron) in addition to the autodoping effect by surface segregation or the like. Since Fe is auto-doped by segregation or the like as described above, it is difficult to rapidly reduce the Fe concentration.
  • Carbon is added when carbon contained in a source gas (TMG (trimethylgallium), etc.) is taken into the film when the nitride-based semiconductor layer is grown by MOVPE (metal organic vapor phase epitaxy). Although it is performed, it can also be performed by a doping gas such as propane. Further, the carbon concentration can be rapidly decreased by controlling the growth temperature of the nitride-based semiconductor layer, the pressure in the furnace, and the like. Therefore, compared with the concentration of transition metals such as Fe, the carbon concentration can be easily and rapidly reduced.
  • a source gas TMG (trimethylgallium), etc.
  • MOVPE metal organic vapor phase epitaxy
  • FIG. 3 is a cross-sectional view of an example semiconductor device of the present invention.
  • the semiconductor element 11 is manufactured using the semiconductor substrate 10 according to an example of the present invention, and includes a first electrode 26, a second electrode 28, and a control electrode 30 provided on the active layer 22.
  • the first electrode 26 and the second electrode 28 are configured so that current flows from the first electrode 26 to the second electrode 28 through the two-dimensional electron gas layer 24 formed in the channel layer 18. Has been placed.
  • the current flowing between the first electrode 26 and the second electrode 28 can be controlled by the potential applied to the control electrode 30.
  • the semiconductor element 11 is manufactured using the semiconductor substrate 10 of an example of the present invention, and the carbon concentration can be increased to a region closer to the channel layer 18 side of the reduction layer 17, while the carbon in the channel layer 18 is increased. Since the concentration can be lowered, the carbon concentration and the transition metal concentration in the channel layer 18 can be lowered while maintaining the high resistance on the channel layer side of the high resistance layer 15, and the carrier movement in the channel layer 18 can be reduced.
  • the electrical resistance in the vertical direction and the horizontal direction while suppressing a decrease in the degree of the transistor, it is possible to improve the off characteristics of the transistor and to increase the breakdown voltage by suppressing the vertical leakage.
  • a silicon substrate is used as the substrate 12, a buffer layer 14 in which Fe is added to a laminate in which an AlN layer and a GaN layer are repeatedly laminated, and a GaN layer as the high resistance layer 15 is used.
  • the decreasing layer 17 in which the Fe concentration decreases is provided in the high resistance layer 15. Further, the Fe concentration was reduced to about 1 ⁇ 10 16 atoms / cm 3 or less in a region of about 1 ⁇ m from the surface of the semiconductor substrate 10.
  • the Fe concentration was controlled by controlling the flow rate of Cp 2 Fe (bisclopentadienyl iron) in addition to the effect of autodoping by segregation.
  • the decreasing layer 17 carbon is added so that the carbon concentration increases toward the surface to compensate for the decrease in Fe concentration. Further, the carbon concentration is rapidly decreased to about 1 ⁇ 10 16 atoms / cm 3 in a region of about 1 ⁇ m from the surface of the semiconductor substrate 10. In this embodiment, since Fe is added to the high resistance layer 15, the resistance can be effectively increased.
  • the concentration profile of the semiconductor substrate produced as described above was measured by SIMS analysis. As a result, it was confirmed that the carbon concentration and the Fe concentration had a concentration distribution as shown in FIG.
  • a semiconductor element as shown in FIG. 3 was fabricated using the semiconductor substrate.
  • the dependence of current collapse on Vds potential difference between the electrode 26 and the electrode 28
  • the relationship between the vertical leakage current and the vertical voltage were measured.
  • the results are shown in Fig. 4-5.
  • the vertical axis in FIG. 4, 'the ratio of: R ON' not collapse state (normal state) of the on-resistance R ON and collapse states ON resistor R ON is R ON ratio defined by / R ON, or raised on-resistance is indicated by how much collapse in R oN ratio.
  • Comparative Example 1 A semiconductor substrate was produced in the same manner as in the example. However, the decreasing layer was not formed, and had a concentration distribution in the depth direction as shown in FIG. In the semiconductor substrate of Comparative Example 1, Fe has a tail in the channel layer 18. Using the semiconductor substrate described above, a semiconductor element as shown in FIG. 3 (however, the reduction layer 17 was not formed) was produced. In the manufactured semiconductor element, the dependence of current collapse on Vds (potential difference between the electrode 26 and the electrode 28) was measured. The result is shown in FIG.
  • FIG. 2 A semiconductor substrate was produced in the same manner as in the example. However, only the carbon was added to the high resistance layer 16 without adding Fe, and the concentration distribution in the depth direction as shown in FIG. 10 was obtained. Using the semiconductor substrate described above, a semiconductor element as shown in FIG. 3 (however, the reduction layer 17 was not formed) was produced. In the manufactured semiconductor element, the relationship between the longitudinal leakage current and the longitudinal voltage was measured. The result is shown in FIG.
  • the current collapse is suppressed in the semiconductor element of the example as compared with the semiconductor element of Comparative Example 1. This is considered to be because the Fe and carbon concentrations in the channel layer are sufficiently low. Further, as can be seen from FIG. 5, in the semiconductor element of the example, the vertical leakage current is lower than that of the semiconductor element of Comparative Example 2. This is considered to be due to the fact that a higher resistance is realized in the reduced layer by supplementing the portion in which the Fe concentration is reduced in the reduced layer with carbon.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

 本発明は、基板と、前記基板上のバッファ層と、前記バッファ層上の窒化物系半導体からなり、遷移金属及び炭素を含む高抵抗層と、前記高抵抗層上の窒化物系半導体からなるチャネル層とを有する半導体基板であって、前記高抵抗層は、前記チャネル層に接するとともに前記バッファ層側から前記チャネル層側に向かって前記遷移金属の濃度が減少する減少層を有し、炭素濃度の前記チャネル層に向かって減少する減少率は、前記遷移金属の濃度の前記チャネル層に向かって減少する減少率よりも大きいことを特徴とする半導体基板である。これにより、チャネル層内の炭素濃度及び遷移金属の濃度を下げつつ、高抵抗層のチャネル層側の領域の高抵抗化を図ることができる半導体基板が提供できる。

Description

半導体基板及び半導体素子
 本発明は、半導体基板及びこの半導体基板を用いて作製された半導体素子に関する。
 窒化物半導体を用いた半導体基板は、高周波かつ高出力で動作するパワー素子等に用いられている。特に、マイクロ波、準ミリ波、ミリ波等の高周波帯域において増幅を行うのに適したものとして、例えば高電子移動度トランジスタ(High Electron Mobility Transistor:HEMT)等が知られている。
 窒化物半導体を用いた半導体基板として、Si基板上に、バッファ層、GaN層、AlGaNからなるバリア層が順次積層された半導体基板が知られている。
 GaN層のうち下部の層(高抵抗層)は、縦方向及び横方向の電気抵抗を高めることで、トランジスタのオフ特性向上、縦方向リークの抑制により高耐圧化が可能となる。そのためGaN層に炭素をドープし、GaN結晶中に深い準位を形成し、n型の伝導を抑制させる。
 一方、GaN層のうち上部の層は、チャネル層として機能し、キャリアをトラップさせる準位が形成されると不純物散乱による移動度の低下や電流コラプス(出力電流特性の再現性が劣化する現象)の要因となりうるため、炭素等の濃度を十分低下させる必要がある(特許文献1-3参照)。
 また、特許文献4には、GaN層にFeを添加することで高抵抗化を図ることが開示され(図6参照)、Feのエネルギー準位を安定化させるために炭素をさらに添加することも開示されている(図7参照)。
特許第5064824号公報 特開2006-332367号公報 特開2013-070053号公報 特開2012-033646号公報 特許第5013218号公報
 しかしながら、特許文献5に開示されているようにGaN層にFeを添加すると、その上層のGaN層にもFeが裾を引くように含まれてしまうので、Feのエネルギー準位を安定化させるために上層のGaN層にも炭素を添加する必要がある。
 しかしながら、図6に示すGaN層116の電子供給層118側の領域119はチャネル層として機能するので、上述したように能動層となるGaN層に炭素を添加することは好ましくない。
 そこで、図8に示すように、第2のGaN層122において、Feと同じタイミングでチャネル層として機能する第3のGaN層124側に向かって炭素濃度を徐々に減少させることも考えられるが、その場合、第2のGaN層122の第3のGaN層124側の領域でFeも炭素もあまり含有しておらず、厚み方向及び横方向の抵抗が下がり、この領域は高抵抗層として十分機能しなくなるという問題があった。
 本発明は、上記問題点に鑑みてなされたものであって、チャネル層内の炭素濃度及び遷移金属の濃度を下げつつ、より高い抵抗の高抵抗層を実現することができる半導体基板、及びこの半導体基板を用いて作製された半導体素子を提供することを目的とする。
 上記目的を達成するために、本発明は、基板と、前記基板上のバッファ層と、前記バッファ層上の窒化物系半導体からなり、遷移金属及び炭素を含む高抵抗層と、前記高抵抗層上の窒化物系半導体からなるチャネル層とを有する半導体基板であって、前記高抵抗層は、前記チャネル層に接するとともに前記バッファ層側から前記チャネル層側に向かって前記遷移金属の濃度が減少する減少層を有し、炭素濃度の前記チャネル層に向かって減少する減少率は、前記遷移金属の濃度の前記チャネル層に向かって減少する減少率よりも大きいことを特徴とする半導体基板を提供する。
 このように、高抵抗層内にチャネル層に接するとともにバッファ層側からチャネル層側に向かって遷移金属の濃度が減少する減少層を設けて、炭素濃度のチャネル層に向かって減少する減少率が遷移金属の濃度のチャネル層に向かって減少する減少率よりも大きくすることで、減少層のチャネル層側により近い領域まで、炭素濃度を高くできる一方で、チャネル層内の炭素濃度を下げることができるので、高抵抗層のチャネル層側の高抵抗を維持しつつ、チャネル層内の炭素濃度及び遷移金属の濃度を下げることができる。
 このとき、前記チャネル層の平均炭素濃度が前記減少層の平均炭素濃度よりも低いことが好ましい。
 このような構成により、チャネル層内の電流コラプスの発生やキャリアの移動度の低下を抑制しつつ、高抵抗層における厚み方向のより高い高抵抗化を図ることができる。
 このとき、前記バッファ層側の前記減少層の炭素濃度が減少する部分までの炭素濃度は、前記バッファ層側から前記チャネル層側に向かって増加しているか、又は、一定であることが好ましい。
 このような構成により、遷移金属の濃度の減少を炭素によって補うことができるので、減少層における遷移金属の濃度の減少に起因する抵抗の減少をより確実に抑制することができる。
 このとき、前記減少層において、炭素濃度と遷移金属の濃度の和が、1×1018atoms/cm以上、1×1020atoms/cm以下であることが好ましい。
 炭素濃度と遷移金属の濃度の和が上記の範囲であれば、好適に減少層の高抵抗を維持することができる。
 このとき、前記減少層の厚さが500nm以上、3μm以下であり、前記減少層において前記遷移金属は1×1019atoms/cm以上、1×1020atoms/cm以下の濃度から1×1016atoms/cm以下の濃度に減少していることが好ましい。
 減少層の厚さが500nm以上であれば、遷移金属の濃度を十分低い濃度にまで減少させることができ、減少層の厚さが3μm以下であれば、基板周辺部でクラックが生じやすくなることを防止できる。
 また、減少層における遷移金属の濃度勾配として、上記の濃度勾配を好適に用いることができる。
 このとき、前記高抵抗層はさらに、前記遷移金属の濃度が一定である層を有することが好ましい。
 このような構成により、高抵抗層をより厚くすることができるので、縦方向(厚み方向)のリーク電流をより小さくすることができる。
 このとき、前記遷移金属をFeとすることができる。
 このように、遷移金属としてFeを好適に用いることができる。
 また、本発明は、上記の半導体基板を用いて作製された半導体素子であって、前記チャネル層上に電極が設けられているものであることを特徴とする半導体素子を提供する。
 このように本発明の半導体基板を用いて作製された半導体素子であれば、減少層のチャネル層側により近い領域まで、炭素濃度を高くできる一方で、チャネル層内の炭素濃度を下げることができるので、高抵抗層のチャネル層側の高抵抗を維持しつつ、チャネル層内の炭素濃度及び遷移金属の濃度を下げることができ、チャネル層内のキャリアの移動度の低下を抑制しつつ、縦方向の電気抵抗を高めることでトランジスタの縦方向リークの抑制による高耐圧化が可能となる。
 以上のように、本発明によれば、減少層のチャネル層側により近い領域まで、炭素濃度を高くできる一方で、チャネル層内の炭素濃度を下げることができるので、チャネル層内の炭素濃度及び遷移金属の濃度を下げつつ、高抵抗層のチャネル層側の高抵抗化を図ることができ、チャネル層内のキャリアの移動度の低下を抑制しつつ、縦方向の電気抵抗を高めることでトランジスタのオフ特性向上、縦方向リークの抑制により高耐圧化が可能となる。従って、本発明の半導体基板により、高品質のHEMT等のパワー素子を作製することができる。
本発明の実施形態の一例を示す半導体基板の深さ方向の濃度分布を示した図である。 本発明の実施形態の一例を示す半導体基板の断面図である。 本発明の実施形態の一例を示す半導体素子の断面図である。 実施例及び比較例1の電流コラプスのVds依存性を示した図である。 実施例及び比較例2の縦方向リーク電流と縦方向電圧との関係を示した図である。 従来のGaN層にFeを添加した半導体基板の深さ方向の濃度分布を示した図である。 従来のGaN層にFe及び炭素を添加した半導体基板の深さ方向の濃度分布を示した図である。 従来のGaN層にFe及び炭素を添加し、炭素濃度に勾配をつけた半導体基板の深さ方向の濃度分布を示した図である。 比較例1の半導体基板の深さ方向の濃度分布を示した図である。 比較例2の半導体基板の深さ方向の濃度分布を示した図である。
 前述のように、GaN層にFeを添加すると、その上層のGaN層にもFeが裾を引くように含まれてしまうので、Feのエネルギー準位を安定化させるために上層のGaN層にも炭素を添加する必要があるが、図6に示すGaN層116の電子供給層118側の領域119はチャネル層として機能するので、上述したように能動層となるGaN層に炭素を添加することは好ましくない。
 そこで、図8に示すように、第2のGaN層122においてFeと同じタイミングでチャネル層として機能する第3のGaN層124側に向かって炭素濃度を徐々に減少させることも考えられるが、その場合、第2のGaN層122の第3のGaN層124側の領域でFeも炭素もあまり含有しておらず、厚み方向及び横方向の抵抗が下がり、高抵抗層として十分に機能しなくなるという問題があった。
 そこで、本発明者らは、チャネル層内の炭素濃度及び遷移金属の濃度を下げつつ、より高い抵抗の高抵抗層を実現することができる半導体基板について鋭意検討を重ねた。その結果、高抵抗層内にチャネル層に接するとともにバッファ層側からチャネル層側に向かって遷移金属の濃度が減少する減少層を設けて、炭素濃度のチャネル層に向かって減少する減少率が遷移金属の濃度のチャネル層に向かって減少する減少率よりも大きくすることで、減少層のチャネル層側により近い領域まで、炭素濃度を高くできる一方で、チャネル層内の炭素濃度を下げることができるので、チャネル層内の炭素濃度及び遷移金属の濃度を下げつつ、より高い抵抗の高抵抗層を実現することができることを見出し、本発明をなすに至った。
 以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。
 まず、本発明の一例の半導体基板について、図1-2を参照しながら説明する。
 図1は本発明の一例の半導体基板の深さ方向の濃度分布を示した図であり、図2は本発明の一例の半導体基板の断面図である。
 図2に示す半導体基板10は、基板12と、基板12上に設けられたバッファ層14と、バッファ層14上に設けられた窒化物系半導体(例えば、GaN)からなり、遷移金属及び炭素を不純物として含む高抵抗層15と、高抵抗層15上に設けられた能動層22を有している。
 ここで、基板12は、例えば、Si又はSiCからなる基板である。また、バッファ層14は、例えば、窒化物系半導体からなる第一の層と、第一の層と組成の異なる窒化物系半導体からなる第二の層とが繰り返し積層された積層体で構成される層である。
 第一の層は例えば、AlGa1-yNからなり、第二の層は例えば、AlGa1-xN(0≦x<y≦1)からなる。
 具体的には、第一の層はAlNとすることができ、第二の層はGaNとすることができる。
 能動層22は、窒化物系半導体からなるチャネル層18と、チャネル層18上に設けられた窒化物系半導体からなるバリア層20とを有している。チャネル層18は例えば、GaNからなり、バリア層20は例えば、AlGaNからなる。
 高抵抗層15は、遷移金属が一定である一定層16と、チャネル層18に接するとともに遷移金属がバッファ層14側からチャネル層18側に向かって減少している減少層17を含んでいる。
 なお、図1-2において、高抵抗層15が一定層16を含んでいる場合を示しているが、高抵抗層15は一定層16を含んでいなくてもよい。
 また、バッファ層14はFe、炭素を含んでいてもよい。
 高抵抗層15において、炭素濃度が減少する部分は遷移金属の濃度が減少する部分よりもチャネル層18側にあり、炭素濃度と遷移金属の濃度の減少する位置が厚み方向で異なっている。また、炭素濃度のチャネル層18に向かって減少する減少率は、遷移金属の濃度のチャネル層18に向かって減少する減少率よりも大きい。
 上記のように高抵抗層15内にチャネル層18に接するとともにバッファ層14側からチャネル層18側に向かって遷移金属の濃度が減少する減少層17を設けて、炭素濃度のチャネル層18に向かって減少する減少率が遷移金属の濃度のチャネル層18に向かって減少する減少率よりも大きくすることで、減少層17のチャネル層18側により近い領域まで、炭素濃度を高くできる一方で、チャネル層18内の炭素濃度を下げることができるので、チャネル層18内の炭素濃度及び遷移金属の濃度を下げつつ、高抵抗層15のチャネル層18側の高抵抗化を図ることができる。
 半導体基板10において、チャネル層18の平均炭素濃度が減少層17の平均炭素濃度よりも低いことが好ましい。
 このような構成により、チャネル層内の電流コラプスの発生やキャリアの移動度の低下を抑制しつつ、減少層の高抵抗を維持することができる。
 半導体基板10において、減少層17の前述の炭素濃度が減少する部分までの炭素濃度は、バッファ層14側からチャネル層18側に向かって増加しているか、又は、一定であることが好ましい。
 遷移金属の濃度の減少する領域より炭素濃度の減少する領域をチャネル層側にすることにより、遷移金属の濃度の減少を炭素によって補うことができるので、減少層における遷移金属の濃度の減少に起因する抵抗の減少を抑制することができる。
 減少層17において、炭素濃度と遷移金属の濃度の和が、1×1018atoms/cm以上、1×1020atoms/cm以下であることが好ましい。
 炭素濃度と遷移金属の濃度の和が上記の範囲であれば、好適に減少層の高抵抗を維持することができる。
 半導体基板10において、減少層17の厚さが500nm以上、3μm以下であり、減少層17において遷移金属は1×1019atoms/cm以上、1×1020atoms/cm以下の濃度から1×1016atoms/cm以下の濃度に減少していることが好ましい。
 減少層の厚さが500nm以上であれば、遷移金属の濃度を十分低い濃度にまで減少させることができ、減少層の厚さが3μm以下であれば半導体基板が厚くなりすぎることを防止できる。
 また、減少層における遷移金属の濃度勾配として、上記の濃度勾配を好適に用いることができる。
 遷移金属として、炭素よりも高抵抗化しやすいFeとすることができる。なお、遷移金属としてSc、Ti、V、Cr、Mn、Co、Ni、Cu、Zn等を用いることもできる。
 なお、Feの濃度の制御は、表面偏析等によるオートドープの効果に加え、CpFe(ビスクロペンタジエニル鉄)の流量制御により行うことができる。
 Feは上記のように偏析等によりオートドープされるため、Feの濃度を急激に減少させることは難しい。
 なお、炭素の添加は、窒化物系半導体層をMOVPE(有機金属気相成長)法によって成長させるときに、原料ガス(TMG(トリメチルガリウム)等)に含まれる炭素が膜中に取り込まれることによって行われるものであるが、プロパン等のドーピングガスによって行うこともできる。
 また、炭素濃度は、窒化物系半導体層の成長温度、炉内圧力等を制御することで、急激に減少させることもできる。
 従って、Fe等の遷移金属の濃度に比べて、炭素濃度は容易に急激に減少させることができる。
 次に、本発明の一例の半導体素子について、図3を参照しながら説明する。
 図3は本発明の一例の半導体素子の断面図である。
 半導体素子11は、本発明の一例の半導体基板10を用いて作製されたものであり、能動層22上に設けられた第一電極26、第二電極28、制御電極30を有している。
 半導体素子11において、第一電極26及び第二電極28は、第一電極26から、チャネル層18内に形成された二次元電子ガス層24を介して、第二電極28に電流が流れるように配置されている。
 第一電極26と第二電極28との間に流れる電流は、制御電極30に印可される電位によってコントロールすることができる。
 半導体素子11は、本発明の一例の半導体基板10を用いて作製されたものであり、減少層17のチャネル層18側により近い領域まで、炭素濃度を高くできる一方で、チャネル層18内の炭素濃度を下げることができるので、高抵抗層15のチャネル層側の高抵抗を維持しつつ、チャネル層18内の炭素濃度及び遷移金属の濃度を下げることができ、チャネル層18内のキャリアの移動度の低下を抑制しつつ、縦方向及び横方向の電気抵抗を高めることでトランジスタのオフ特性向上、縦方向リークの抑制により高耐圧化が可能となる。
 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例)
 図2の半導体基板10において、基板12としてシリコン基板を用い、バッファ層14として、AlN層とGaN層とが繰り返し積層された積層体にFeを添加したものを用い、高抵抗層15としてGaN層を用い、高抵抗層15中にFeの濃度が減少する減少層17を設けた。
 また、半導体基板10の表面から1μm程度の領域において、Feの濃度は、1×1016atoms/cm程度以下に減少するようにした。なお、Feの濃度の制御は、偏析によるオートドープの効果に加え、CpFe(ビスクロペンタジエニル鉄)の流量制御により行った。
 さらに、減少層17において、炭素濃度が表面に向かって増加するように炭素を添加し、Feの濃度減少を補うようにした。
 また、半導体基板10の表面から1μm程度の領域において、炭素濃度は、1×1016atoms/cm程度に急激に減少するようにした。
 本実施例においては、高抵抗層15にFeが添加されているために、効果的に高抵抗化することができる。
 上記のようにして作製した半導体基板についてSIMS分析により濃度プロファイルを測定した。その結果、炭素濃度、Fe濃度について図1に示すような濃度分布を有していることが確認された。
 上記の半導体基板を用いて、図3に示すような半導体素子を作製した。
 作製された半導体素子において、電流コラプスのVds(電極26と電極28の電位差)依存性、及び、縦方向リーク電流と縦方向電圧との関係を測定した。その結果を図4-5に示す。なお、図4の縦軸は、コラプスでない状態(通常の状態)のオン抵抗RONとコラプス状態のオン抵抗RON’の比:RON’/RONで定義されるRON比であり、RON比でどの程度コラプスによりオン抵抗が上がったかが示されている。
(比較例1)
 実施例と同様にして半導体基板を作製した。ただし、減少層は形成せずに、図9に示すような深さ方向の濃度分布を有するものとした。比較例1の半導体基板においては、チャネル層18においてFeが裾を引いている。
 上記の半導体基板を用いて、図3に示すような半導体素子(ただし、減少層17は形成されていない)を作製した。
 作製された半導体素子において、電流コラプスのVds(電極26と電極28の電位差)依存性を測定した。その結果を図4に示す。
(比較例2)
 実施例と同様にして半導体基板を作製した。ただし、高抵抗層16にFeを添加せずに、炭素のみを添加して、図10に示すような深さ方向の濃度分布を有するものとした。
 上記の半導体基板を用いて、図3に示すような半導体素子(ただし、減少層17は形成されていない)を作製した。
 作製された半導体素子において、縦方向リーク電流と縦方向電圧との関係を測定した。その結果を図5に示す。
 図4からわかるように、実施例の半導体素子においては、比較例1の半導体素子と比較して、電流コラプスが抑制されている。これはチャネル層においてFe及び炭素濃度が十分低くなっていることによるものと考えられる。
 また、図5からわかるように、実施例の半導体素子においては、比較例2の半導体素子と比較して、縦方向リーク電流が低くなっている。これは減少層においてFeの濃度が減少している分を炭素で補填することで、減少層においてより高い抵抗が実現されていることによると考えられる。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (8)

  1.  基板と、
     前記基板上のバッファ層と、
     前記バッファ層上の窒化物系半導体からなり、遷移金属及び炭素を含む高抵抗層と、
     前記高抵抗層上の窒化物系半導体からなるチャネル層と
    を有する半導体基板であって、
     前記高抵抗層は、前記チャネル層に接するとともに前記バッファ層側から前記チャネル層側に向かって前記遷移金属の濃度が減少する減少層を有し、
     炭素濃度の前記チャネル層に向かって減少する減少率は、前記遷移金属の濃度の前記チャネル層に向かって減少する減少率よりも大きいことを特徴とする半導体基板。
  2.  前記チャネル層の平均炭素濃度が、前記減少層の平均炭素濃度よりも低いことを特徴とする請求項1に記載の半導体基板。
  3.  前記バッファ層側の前記減少層の炭素濃度が減少する部分までの炭素濃度は、前記バッファ層側から前記チャネル層側に向かって増加しているか、又は、一定であることを特徴とする請求項1又は請求項2に記載の半導体基板。
  4.  前記減少層において、炭素濃度と遷移金属の濃度の和が、1×1018atoms/cm以上、1×1020atoms/cm以下であることを特徴とする請求項1から請求項3のいずれか一項に記載の半導体基板。
  5.  前記減少層の厚さが500nm以上、3μm以下であり、前記減少層において前記遷移金属は1×1019atoms/cm以上、1×1020atoms/cm以下の濃度から1×1016atoms/cm以下の濃度に減少していることを特徴とする請求項1から請求項4のいずれか一項に記載の半導体基板。
  6.  前記高抵抗層はさらに、前記遷移金属の濃度が一定である層を有することを特徴とする請求項1から請求項5のいずれか一項に記載の半導体基板。
  7.  前記遷移金属はFeであることを特徴とする請求項1から請求項6のいずれか一項に記載の半導体基板。
  8.  請求項1から請求項7のいずれか一項に記載の半導体基板を用いて作製された半導体素子であって、前記チャネル層上に電極が設けられているものであることを特徴とする半導体素子。
PCT/JP2015/001196 2014-04-09 2015-03-05 半導体基板及び半導体素子 WO2015155932A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580018718.6A CN106165072B (zh) 2014-04-09 2015-03-05 半导体基板及半导体元件
KR1020167027607A KR102121096B1 (ko) 2014-04-09 2015-03-05 반도체 기판 및 반도체 소자
US15/300,472 US20170133217A1 (en) 2014-04-09 2015-03-05 Semiconductor substrate and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014080323A JP6283250B2 (ja) 2014-04-09 2014-04-09 半導体基板及び半導体素子
JP2014-080323 2014-04-09

Publications (1)

Publication Number Publication Date
WO2015155932A1 true WO2015155932A1 (ja) 2015-10-15

Family

ID=54287524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001196 WO2015155932A1 (ja) 2014-04-09 2015-03-05 半導体基板及び半導体素子

Country Status (6)

Country Link
US (1) US20170133217A1 (ja)
JP (1) JP6283250B2 (ja)
KR (1) KR102121096B1 (ja)
CN (1) CN106165072B (ja)
TW (1) TWI614895B (ja)
WO (1) WO2015155932A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017079304A (ja) * 2015-10-22 2017-04-27 三菱電機株式会社 半導体装置
EP3226304A1 (en) * 2016-03-28 2017-10-04 Nxp B.V. Semiconductor devices with an enhanced resistivity region and methods of fabrication therefor
CN107546261A (zh) * 2016-06-29 2018-01-05 江西省昌大光电科技有限公司 半绝缘GaN薄膜及高电子迁移率晶体管外延结构
CN107546260A (zh) * 2016-06-29 2018-01-05 江西省昌大光电科技有限公司 一种半绝缘GaN薄膜及其制备方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6249868B2 (ja) * 2014-04-18 2017-12-20 サンケン電気株式会社 半導体基板及び半導体素子
JP6660052B2 (ja) * 2016-02-24 2020-03-04 国立大学法人京都工芸繊維大学 光スイッチング素子
KR102238369B1 (ko) * 2016-08-18 2021-04-08 레이던 컴퍼니 이온 주입을 이용한 고저항 나이트라이드 버퍼층의 반도체 물질 성장
JP6615075B2 (ja) 2016-09-15 2019-12-04 サンケン電気株式会社 半導体デバイス用基板、半導体デバイス、及び、半導体デバイス用基板の製造方法
JP6781095B2 (ja) 2017-03-31 2020-11-04 エア・ウォーター株式会社 化合物半導体基板
JP6841344B2 (ja) * 2017-12-01 2021-03-10 三菱電機株式会社 半導体装置の製造方法、半導体装置
WO2020047825A1 (en) * 2018-09-07 2020-03-12 Enkris Semiconductor, Inc. Semiconductor structure and manufacturing method thereof
JP2020113693A (ja) 2019-01-16 2020-07-27 エア・ウォーター株式会社 化合物半導体基板
CN113439342B (zh) * 2019-02-01 2024-05-31 苏州晶湛半导体有限公司 一种半导体结构及其制备方法
CN111613535B (zh) * 2019-02-26 2023-10-13 苏州晶湛半导体有限公司 一种半导体结构及其制备方法
US11101378B2 (en) 2019-04-09 2021-08-24 Raytheon Company Semiconductor structure having both enhancement mode group III-N high electron mobility transistors and depletion mode group III-N high electron mobility transistors
US11201217B2 (en) * 2019-07-24 2021-12-14 Coorstek Kk Nitride semiconductor substrate
US11545566B2 (en) * 2019-12-26 2023-01-03 Raytheon Company Gallium nitride high electron mobility transistors (HEMTs) having reduced current collapse and power added efficiency enhancement

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235935A (ja) * 2004-02-18 2005-09-02 Furukawa Electric Co Ltd:The 高電子移動度トランジスタ
JP2007251144A (ja) * 2006-02-20 2007-09-27 Furukawa Electric Co Ltd:The 半導体素子
JP2008205146A (ja) * 2007-02-20 2008-09-04 Fujitsu Ltd 化合物半導体装置及びその製造方法
JP2011204891A (ja) * 2010-03-25 2011-10-13 Panasonic Corp トランジスタ及びその製造方法
JP2012033646A (ja) * 2010-07-29 2012-02-16 Sumitomo Electric Ind Ltd 半導体装置
JP2013206976A (ja) * 2012-03-27 2013-10-07 Fujitsu Ltd 化合物半導体装置及びその製造方法
JP2014042025A (ja) * 2012-08-22 2014-03-06 Lg Electronics Inc 窒化物半導体素子及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013218B1 (ja) 1970-01-30 1975-05-17
JP4792814B2 (ja) 2005-05-26 2011-10-12 住友電気工業株式会社 高電子移動度トランジスタ、電界効果トランジスタ、エピタキシャル基板、エピタキシャル基板を作製する方法およびiii族窒化物系トランジスタを作製する方法
US8796738B2 (en) 2011-09-21 2014-08-05 International Rectifier Corporation Group III-V device structure having a selectively reduced impurity concentration
JP6119165B2 (ja) * 2012-09-28 2017-04-26 富士通株式会社 半導体装置
US9306009B2 (en) * 2013-02-25 2016-04-05 Cree, Inc. Mix doping of a semi-insulating Group III nitride
US9245992B2 (en) * 2013-03-15 2016-01-26 Transphorm Inc. Carbon doping semiconductor devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235935A (ja) * 2004-02-18 2005-09-02 Furukawa Electric Co Ltd:The 高電子移動度トランジスタ
JP2007251144A (ja) * 2006-02-20 2007-09-27 Furukawa Electric Co Ltd:The 半導体素子
JP2008205146A (ja) * 2007-02-20 2008-09-04 Fujitsu Ltd 化合物半導体装置及びその製造方法
JP2011204891A (ja) * 2010-03-25 2011-10-13 Panasonic Corp トランジスタ及びその製造方法
JP2012033646A (ja) * 2010-07-29 2012-02-16 Sumitomo Electric Ind Ltd 半導体装置
JP2013206976A (ja) * 2012-03-27 2013-10-07 Fujitsu Ltd 化合物半導体装置及びその製造方法
JP2014042025A (ja) * 2012-08-22 2014-03-06 Lg Electronics Inc 窒化物半導体素子及びその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017079304A (ja) * 2015-10-22 2017-04-27 三菱電機株式会社 半導体装置
CN106935644A (zh) * 2015-10-22 2017-07-07 三菱电机株式会社 半导体装置
CN106935644B (zh) * 2015-10-22 2020-10-30 三菱电机株式会社 半导体装置
EP3226304A1 (en) * 2016-03-28 2017-10-04 Nxp B.V. Semiconductor devices with an enhanced resistivity region and methods of fabrication therefor
CN107240609A (zh) * 2016-03-28 2017-10-10 恩智浦美国有限公司 具有增强型电阻率区的半导体装置及其制造方法
US10128364B2 (en) 2016-03-28 2018-11-13 Nxp Usa, Inc. Semiconductor devices with an enhanced resistivity region and methods of fabrication therefor
CN107240609B (zh) * 2016-03-28 2022-01-25 恩智浦美国有限公司 具有增强型电阻率区的半导体装置及其制造方法
CN107546261A (zh) * 2016-06-29 2018-01-05 江西省昌大光电科技有限公司 半绝缘GaN薄膜及高电子迁移率晶体管外延结构
CN107546260A (zh) * 2016-06-29 2018-01-05 江西省昌大光电科技有限公司 一种半绝缘GaN薄膜及其制备方法

Also Published As

Publication number Publication date
TW201543682A (zh) 2015-11-16
JP2015201574A (ja) 2015-11-12
KR20160138090A (ko) 2016-12-02
TWI614895B (zh) 2018-02-11
US20170133217A1 (en) 2017-05-11
JP6283250B2 (ja) 2018-02-21
CN106165072A (zh) 2016-11-23
KR102121096B1 (ko) 2020-06-09
CN106165072B (zh) 2020-02-28

Similar Documents

Publication Publication Date Title
JP6283250B2 (ja) 半導体基板及び半導体素子
KR102121097B1 (ko) 반도체 기판 및 반도체 소자
JP5064824B2 (ja) 半導体素子
US9184258B2 (en) GaN based semiconductor device and method of manufacturing the same
JP5696392B2 (ja) 半導体装置
EP3311414B1 (en) Doped barrier layers in epitaxial group iii nitrides
JP6539128B2 (ja) 半導体デバイス用基板、半導体デバイス、並びに半導体デバイスの製造方法
JP6615075B2 (ja) 半導体デバイス用基板、半導体デバイス、及び、半導体デバイス用基板の製造方法
US9793363B1 (en) GaN semiconductor device comprising carbon and iron
KR102293962B1 (ko) 반도체 장치의 제조 방법, 반도체 장치
WO2015008430A1 (ja) 半導体装置
CN109638074B (zh) 具有n-p-n结构背势垒的高电子迁移率晶体管及其制作方法
JP6261437B2 (ja) 半導体基板の製造方法、及び半導体素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15777047

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15300472

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167027607

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15777047

Country of ref document: EP

Kind code of ref document: A1