WO2015152126A1 - 車両用駆動装置 - Google Patents

車両用駆動装置 Download PDF

Info

Publication number
WO2015152126A1
WO2015152126A1 PCT/JP2015/059858 JP2015059858W WO2015152126A1 WO 2015152126 A1 WO2015152126 A1 WO 2015152126A1 JP 2015059858 W JP2015059858 W JP 2015059858W WO 2015152126 A1 WO2015152126 A1 WO 2015152126A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
electrical machine
rotating electrical
hydraulic control
transmission mechanism
Prior art date
Application number
PCT/JP2015/059858
Other languages
English (en)
French (fr)
Inventor
須山大樹
服部克彦
出塩幸彦
Original Assignee
アイシン・エィ・ダブリュ株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社, トヨタ自動車株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to CN201580015660.XA priority Critical patent/CN106163850B/zh
Priority to DE112015000947.7T priority patent/DE112015000947B4/de
Priority to US15/126,177 priority patent/US10183567B2/en
Publication of WO2015152126A1 publication Critical patent/WO2015152126A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • B60K6/405Housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/22Friction clutches with axially-movable clutching members
    • F16D13/38Friction clutches with axially-movable clutching members with flat clutching surfaces, e.g. discs
    • F16D13/52Clutches with multiple lamellae ; Clutches in which three or more axially moveable members are fixed alternately to the shafts to be coupled and are pressed from one side towards an axially-located member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/12Details not specific to one of the before-mentioned types
    • F16D25/14Fluid pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/042Guidance of lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0434Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0434Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control
    • F16H57/0436Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/045Lubricant storage reservoirs, e.g. reservoirs in addition to a gear sump for collecting lubricant in the upper part of a gear case
    • F16H57/0452Oil pans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/24Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/02Overheat protection, i.e. means for protection against overheating
    • F16D2300/021Cooling features not provided for in group F16D13/72 or F16D25/123, e.g. heat transfer details
    • F16D2300/0214Oil or fluid cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/06Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch
    • F16D25/062Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces
    • F16D25/063Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially
    • F16D25/0635Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs
    • F16D25/0638Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs with more than two discs, e.g. multiple lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/12Details not specific to one of the before-mentioned types
    • F16D25/123Details not specific to one of the before-mentioned types in view of cooling and lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/912Drive line clutch
    • Y10S903/914Actuated, e.g. engaged or disengaged by electrical, hydraulic or mechanical means

Definitions

  • the present invention relates to a rotating electrical machine, a transmission mechanism provided in a power transmission path connecting the rotating electrical machine and wheels, a fluid coupling that drives and connects the rotating electrical machine and the transmission mechanism, and a rotating electrical machine housing space that houses the rotating electrical machine.
  • the present invention relates to a vehicle drive device including a case in which a transmission mechanism accommodation space for accommodating a transmission mechanism and a fluid coupling accommodation space for accommodating a fluid coupling are formed as independent spaces.
  • Patent Document 1 As a conventional technique of the vehicle drive device as described above, there is a technique described in, for example, Japanese Patent Application Laid-Open No. 2011-105195 (Patent Document 1). In the description of the background art section, the names of related members in Patent Document 1 are quoted in [].
  • an oil reservoir [oil reservoir 101] that stores oil to be supplied to the rotating electrical machine is formed in a lower portion of the space in the case that houses the rotating electrical machine [electric motor 1].
  • the rotating electrical machine is cooled by scooping up the oil in the oil reservoir by the rotation of the rotor [rotor 13].
  • the rotational resistance of the rotor is likely to increase, and the energy efficiency of the apparatus is accordingly reduced.
  • the vehicle drive device is generally provided with an oil reservoir for storing oil to be supplied to the transmission mechanism. Therefore, a configuration in which the oil in the oil reservoir is supplied to the rotating electrical machine is conceivable.
  • Patent Document 2 there is a technique described in JP2013-095389A (Patent Document 2).
  • the oil in the first oil storage unit U1 provided in communication with the transmission mechanism accommodation space is supplied to the rotating electrical machine MG, and the oil after being supplied to the rotating electrical machine MG is
  • the oil collected in the second oil reservoir U2 provided in communication with the accommodation space SG is supplied to the first oil reservoir U1 via the drain oil passage AD. And as indicated in Drawing 3 and Drawing 5 etc.
  • drain oil way AD is the 1st discharge extended in the horizontal direction from the 1st opening part ADo opened toward the 1st oil storage part U1.
  • the oil passage AF and the second opening AOEo opening in the second oil reservoir U2 extend in a direction facing downward from the horizontal direction (a direction inclined downward by about 45 degrees) to the first discharge oil passage AF.
  • a second exhaust oil passage AE communicating therewith.
  • JP 2011-105195 A (paragraph 0045, FIG. 2, etc.)
  • JP 2013-095389 A (paragraph 0072, FIG. 5 etc.)
  • the second opening AEo of the second discharge oil passage AE is provided so as to open above the lowermost end of the rotating electrical machine MG. Therefore, the oil above the second opening AEo in the second oil reservoir U2 is introduced into the discharge oil passage AE and supplied to the first oil reservoir U1, but is more than the second opening AEo. The lower oil is unlikely to flow into the drain oil passage AE and may stay in the second oil reservoir U2.
  • the relatively high-temperature oil after being used for cooling the rotating electrical machine MG stays in the second oil reservoir U2
  • the cooling of the rotating electrical machine MG that is partially immersed in the oil in the second oil reservoir U2 Efficiency may be reduced.
  • the characteristic configuration of the vehicle drive device includes a rotating electrical machine, a transmission mechanism provided in a power transmission path connecting the rotating electrical machine and wheels, and a fluid that drives and connects the rotating electrical machine and the transmission mechanism.
  • a coupling, a rotating electrical machine housing space for housing the rotating electrical machine, a transmission mechanism housing space for housing the transmission mechanism, and a fluid coupling housing space for housing the fluid coupling are formed as mutually independent spaces; and the transmission mechanism
  • a first oil storage section provided in communication with the storage space and capable of storing oil; a hydraulic pump for supplying the oil in the first oil storage section to the rotating electrical machine and the speed change mechanism; and in the rotating electrical machine storage space
  • a second oil reservoir that can store oil, and a discharge oil passage that discharges oil from the second oil reservoir to the first oil reservoir.
  • Front of transmission mechanism in the axial direction It is formed between the rotating electrical machine housing space and the transmission mechanism housing space, and is configured so that oil is not supplied around the fluid coupling, and the drain oil passage opens toward the second oil reservoir.
  • the lowermost end portion of the introduction opening portion is located below the lowermost end portion of the rotating electrical machine.
  • oil is supplied to the rotating electrical machine accommodation space and the speed change mechanism accommodation space, so that oil is not supplied around the fluid coupling in the fluid coupling accommodation space formed between them in the axial direction. It is configured.
  • the oil in the first oil reservoir is Can be supplied to the rotating electrical machine. Therefore, oil can be appropriately supplied to the rotating electrical machine, and the rotational resistance of the rotor can be suppressed lower than when the oil is pumped up by rotation of the rotor and supplied to the rotating electrical machine.
  • the 2nd oil storage part provided in the rotary electric machine accommodation space and the discharge oil path which discharges the oil of the said 2nd oil storage part to the 1st oil storage part are provided, it supplied to the rotary electric machine
  • the subsequent oil can be collected in the second oil reservoir, and the oil collected in the second oil reservoir can be supplied to the first oil reservoir via the discharge oil passage. That is, an oil circulation path is formed for collecting the oil supplied to the rotating electrical machine by the hydraulic pump in the first oil reservoir that sucks the oil by the hydraulic pump.
  • the lowest end part of the introduction opening part opened toward the 2nd oil storage part of a discharge oil path is located below the lowest end part of a rotary electric machine, it flows down from upper direction.
  • the oil accumulated in the second oil reservoir can be introduced into the discharge oil passage from the introduction opening located below. Therefore, it can suppress that a part of oil retains and can circulate oil appropriately. Therefore, it can suppress that the cooling efficiency of a rotary electric machine falls resulting from oil stagnating in a 2nd oil storage part.
  • FIG. 3 is a partially enlarged view of FIG. 2. It is a fragmentary sectional view in the position different from FIG. 2 of the vehicle drive device which concerns on embodiment. It is a figure which shows schematic structure of the hydraulic control system of the 2nd hydraulic control apparatus which concerns on embodiment.
  • the “axial direction L”, “radial direction R”, and “circumferential direction” are the input shafts of the speed change mechanism TM (transmission input shafts, in this example, It is defined with reference to the axis of the intermediate axis M) (axis X shown in FIG. 2).
  • the rotating electrical machine MG, the first clutch C1, and the torque converter TC are all arranged coaxially with the transmission mechanism TM, each of the rotating electrical machine MG, the first clutch C1, and the torque converter TC is provided.
  • Axial direction”, “radial direction”, and “circumferential direction” respectively correspond to “axial direction L”, “radial direction R”, and “circumferential direction” of transmission mechanism TM.
  • “Axial direction first side L1” is a side (left side in FIG. 2) from the output shaft (shift output shaft, output shaft O in this example) of the speed change mechanism TM toward the shift input shaft side along the axial direction L.
  • “Axial second side L2” represents the side opposite to the axial first side L1 (the right side in FIG. 2).
  • the “radial inner side R1” represents the inner side in the radial direction R
  • the “radial outer side R2” represents the outer side in the radial direction R.
  • “upper” and “lower” are defined with reference to the vertical direction V (see FIG. 2) in a state where the vehicle drive device 1 is mounted on a vehicle (vehicle mounted state).
  • “Upper” represents the upper part in FIG. 2
  • “Lower” represents the lower part in FIG.
  • the direction about each member represents the direction in the state in which the said member was assembled
  • FIG. Further, terms relating to the direction, position, etc. of each member are used as a concept including a state having a difference due to an allowable error in manufacturing.
  • driving connection refers to a state in which two rotating elements are connected so as to be able to transmit driving force, and the two rotating elements are connected so as to rotate integrally
  • the two rotating elements are used as a concept including a state in which a driving force can be transmitted via one or more transmission members.
  • a transmission member include various members that transmit rotation at the same speed or a variable speed, and include, for example, a shaft, a gear mechanism, a belt, a chain, and the like.
  • an engagement device that selectively transmits rotation and driving force for example, a friction engagement device or a meshing engagement device may be included.
  • the “rotary electric machine” is used as a concept including any of a motor (electric motor), a generator (generator), and a motor / generator functioning as both a motor and a generator as necessary.
  • the vehicle drive device 1 includes an input shaft I (input member) that is drivingly connected to an internal combustion engine E, a rotating electrical machine MG, a torque converter TC, a speed change mechanism TM, and a speed change mechanism TM. And an output shaft O that is drivingly connected to the wheel W, and a case 3.
  • the torque converter TC (fluid joint) includes a joint input side member 2 that is drivingly connected to the rotating electrical machine MG, and a joint output side member 4 that forms a pair with the joint input side member 2.
  • the speed change mechanism TM is drivingly connected to the joint output side member 4 via the intermediate shaft M.
  • the speed change mechanism TM is drivingly connected to the rotating electrical machine MG via the torque converter TC.
  • the vehicle drive device 1 further includes a first clutch C1 (friction engagement device) that can change the state of engagement between the input shaft I and the joint input side member 2.
  • the rotating electrical machine MG and the speed change mechanism TM are drivingly connected via a torque converter TC, and the first clutch C1 is in an engaged state between the input shaft I and the joint input side member 2. Is changed, the state of engagement between the input shaft I and the speed change mechanism TM is changed.
  • the arrangement order of the members along the power transmission path between the input shaft I and the output shaft O is as follows.
  • the transmission mechanism TM is provided.
  • the internal combustion engine E is a prime mover that is driven by combustion of fuel inside the engine to extract power, and for example, a gasoline engine or a diesel engine can be used.
  • the input shaft I is drivingly connected to an output shaft (crankshaft or the like) of the internal combustion engine E via a damper 16 (see FIG. 2, omitted in FIG. 1).
  • the input shaft I may be driven and connected to the output shaft of the internal combustion engine E without using the damper 16.
  • the input shaft I may be formed integrally with any one of the two members to be driven and connected (for example, the output shaft of the internal combustion engine E). It can also be set as the structure currently formed separately.
  • the first clutch C1 is provided between the input shaft I and the rotating electrical machine MG (rotor member 21) in the power transmission path, and functions as an internal combustion engine disconnecting clutch that disconnects the internal combustion engine E from the wheels W.
  • the speed change mechanism TM is provided in a power transmission path that connects the rotating electrical machine MG and the wheels W.
  • the speed change mechanism TM is provided between the torque converter TC and the output shaft O in the power transmission path.
  • the speed change mechanism TM is configured by a mechanism (for example, an automatic stepped speed change mechanism or the like) that can change the speed ratio stepwise or steplessly, and an intermediate shaft M (speed change input) that is drivingly connected to the joint output side member 4.
  • the rotation speed of the shaft is changed at a predetermined gear ratio, and is transmitted to an output shaft O (shift output shaft) that is drivingly connected to the output differential gear device DF.
  • the output shaft O is drivingly connected to the wheels W via the output differential gear device DF, and the rotation and torque transmitted to the output shaft O are transmitted to the left and right wheels via the output differential gear device DF. It is distributed to W and transmitted. Accordingly, the vehicle drive device 1 can cause the vehicle to travel by transmitting the torque of one or both of the internal combustion engine E and the rotating electrical machine MG to the wheels W. That is, the vehicle drive device 1 is configured as a drive device for a hybrid vehicle, and more specifically, is configured as a one-motor parallel type hybrid drive device.
  • the output shaft O may be formed integrally with one of the two members to be driven and connected (for example, a drive shaft or the like), or may be separated from both of the two members. It can also be set as the structure currently formed.
  • the input shaft I, the first clutch C1, the rotating electrical machine MG, the torque converter TC, the intermediate shaft M, the speed change mechanism TM, and the output shaft O are all arranged on the axis X (see FIG. 2).
  • the vehicle drive device 1 according to the present embodiment has a uniaxial configuration suitable for mounting on an FR (Front Engine Rear Drive) type vehicle.
  • FIG. 2 is a cross-sectional view of a part of the vehicle drive device 1 according to the present embodiment cut along a vertical plane including the axis X, and FIGS. FIG. In FIGS. 2 and 3, specific configurations of the torque converter TC and the speed change mechanism TM are not shown.
  • the rotating electrical machine MG includes a stator St and a rotor member 21.
  • the stator St is fixed to the case 3 and includes coil end portions Ce on both sides in the axial direction L.
  • the rotor member 21 includes a rotor Ro disposed so as to face the stator St, and a rotor support member 22 that rotatably supports the rotor Ro with respect to the case 3. ing.
  • the rotor Ro is disposed on the radially inner side R1 of the stator St, and the rotor support member 22 is formed to extend from the rotor Ro to the radially inner side R1, and supports the rotor Ro from the radially inner side R1. ing.
  • the rotor support member 22 includes a rotor holding portion 25 that holds the rotor Ro, and a radially extending portion 26.
  • the rotor holding portion 25 is formed in a cylindrical shape having an outer peripheral portion in contact with the inner peripheral surface of the rotor Ro and a flange portion in contact with a side surface in the axial direction L of the rotor Ro.
  • the radially extending portion 26 is formed in an annular plate shape extending from the portion on the second axial side L2 toward the radially inner side R1 with respect to the central portion of the rotor holding portion 25 in the axial direction L.
  • the radially extending portion 26 includes a first axial projecting portion 23 that is a cylindrical projecting portion projecting toward the second axial side L2 at the end of the radially inner side R1, and the first axial direction
  • a second axial projecting portion 24 that is a cylindrical projecting portion projecting toward the side L1 is provided.
  • the first axial projecting portion 23 is a supported portion that is supported in the radial direction R so as to be rotatable with respect to the case 3 (specifically, a second support wall portion 32 described later) by a bearing 96.
  • the 2nd axial direction protrusion part 24 comprises the connection part with the connection member 10 mentioned later.
  • An annular plate-like plate member 27 is attached to the rotor support member 22 so as to rotate integrally.
  • the plate-like member 27 is attached to the first axial side L1 with respect to the central portion of the rotor holding portion 25 in the axial direction L.
  • the radially outer side R2 of the rotor holding portion 25 is partitioned by the rotor holding portion 25 and the both sides of the axial direction L are partitioned by the radially extending portion 26 and the plate-like member 27.
  • Space is formed.
  • This space is a space that is oil-tightly partitioned by a seal member or the like that is appropriately disposed in each part, and a working hydraulic chamber H1 and a circulating hydraulic chamber H2 of the first clutch C1 described later are formed in this space. ing.
  • the first clutch C1 is an engagement device that can be operated by hydraulic pressure to change the state of engagement.
  • the first clutch C1 selectively connects the input shaft I and the rotating electrical machine MG.
  • the engagement state of the two engagement members engaged by the first clutch C1 is a state in which the two engagement members are engaged (including a slip engagement state), The two engaging members can be changed to a state where they are not engaged (released state).
  • the driving force is transmitted between the input shaft I and the rotor member 21, and in the state where the two engaging members are released, the input shaft I and No driving force is transmitted to or from the rotor member 21.
  • the first clutch C ⁇ b> 1 has a radially outer side R ⁇ b> 2 defined by the rotor holding portion 25, and both sides in the axial direction L are defined by the radially extending portion 26 and the plate-like member 27. It is arranged in an oil-tight space that is partitioned. Thereby, the first clutch C1 is disposed at a position having a portion overlapping with the rotating electrical machine MG when viewed in the radial direction of the rotating electrical machine MG (in this example, the same direction as the radial direction R).
  • the first clutch C ⁇ b> 1 is disposed on the inner side R ⁇ b> 1 in the radial direction from the rotor Ro, and overlaps the central region in the axial direction L of the rotor Ro when viewed in the radial direction R.
  • “having overlapping portions when viewed in a predetermined direction” means that the viewpoint is moved in each direction orthogonal to the visual line direction with the predetermined direction as the visual line direction. In this case, it means that a viewpoint where two members appear to overlap each other exists in at least a part of the region.
  • the first clutch C1 is configured as a wet multi-plate clutch mechanism.
  • the first clutch C1 includes a clutch hub 51, a friction member 53, a piston 54, and an urging member 55, all of which have a portion overlapping with the rotor Ro when viewed in the radial direction R. Placed in position.
  • the rotor holding part 25 of the rotor support member 22 functions as a clutch drum.
  • the first clutch C1 has a pair of input-side friction member and output-side friction member as the friction member 53, and the input-side friction member is supported from the radially inner side R1 by the outer periphery of the clutch hub 51, and the output side The friction member is supported from the radially outer side R ⁇ b> 2 by the inner peripheral portion of the rotor holding portion 25.
  • the clutch hub 51 is connected to the flange portion Ia of the input shaft I at the radially inner end R1.
  • the working hydraulic chamber H ⁇ b> 1 of the first clutch C ⁇ b> 1 is formed by being surrounded by the radially extending portion 26 and the second axial projecting portion 24 of the rotor support member 22 and the piston 54.
  • the circulation hydraulic chamber H2 of the first clutch C1 is mainly surrounded by the rotor holding portion 25 (clutch drum) of the rotor support member 22, the plate-like member 27 attached to the rotor support member 22, and the piston 54.
  • the clutch hub 51 and the friction member 53 are housed inside.
  • the working hydraulic chamber H1 and the circulating hydraulic chamber H2 are arranged separately on both sides in the axial direction L with respect to the piston 54, and are separated from each other in an oil-tight manner by a seal member.
  • both the working hydraulic pressure chamber H1 and the circulating hydraulic pressure chamber H2 are in the radial inner side R1 from the rotor Ro, and overlap with the rotor Ro and the axial direction L as viewed in the radial direction R. Has been placed.
  • the urging member 55 presses the piston 54 toward the friction member 53 in the axial direction L (in this example, the first axial direction L1).
  • the first clutch C1 is engaged or released according to the balance with the pressing force. That is, in the present embodiment, the piston 54 is slid along the axial direction L in accordance with the hydraulic pressure difference (differential pressure) between the working hydraulic chamber H1 and the circulating hydraulic chamber H2, and the engagement of the first clutch C1.
  • the state of the event can be controlled.
  • the circulating hydraulic chamber H2 is basically in a state of being filled with oil having a predetermined pressure or higher while the vehicle is running, and the friction member 53 is cooled by the oil.
  • the torque converter TC drives and connects the rotating electrical machine MG and the speed change mechanism TM.
  • the joint input side member 2 that is drivingly connected to the rotor member 21 of the rotating electrical machine MG and the joint input side member 2 are paired.
  • a joint output side member 4 that is driven and connected to the wheel W.
  • the torque converter TC includes a pump impeller 61, a turbine runner 62, a second clutch C2 as a lock-up clutch, and a cover (not shown) as shown in FIG.
  • the cover portion is connected so as to rotate integrally with a pump impeller 61 disposed inside, and also rotates integrally with a pump drive shaft described later. It is connected.
  • the joint input side member 2 is comprised by these pump impellers 61, the cover part, and the pump drive shaft.
  • the second clutch C2, the turbine runner 62, and the like are accommodated in the internal space surrounded by these members. That is, the joint input side member 2 also serves as a housing that houses the main body of the torque converter TC (hereinafter simply referred to as the torque converter TC).
  • the internal space is a space partitioned in an oil-tight manner.
  • the joint output side member 4 includes a turbine runner 62, and the turbine runner 62 is connected to the intermediate shaft M. Thereby, the joint output side member 4 is drivingly connected to the wheel W via the intermediate shaft M, the speed change mechanism TM, the output shaft O, and the output differential gear device DF.
  • the joint input side member 2 is connected to the rotor member 21 through the connecting member 10 so as to rotate integrally.
  • a cylindrical projecting portion 32 a is formed on the second support wall portion 32 of the case 3.
  • the connecting member 10 includes a cylindrical axially extending portion extending in the axial direction L through the radial inner side R1 of the cylindrical protruding portion 32a, and the axial first side L1 from the cylindrical protruding portion 32a in the radial direction. And an annular plate-shaped radially extending portion extending in the R direction.
  • the cover part which comprises the joint input side member 2 is spline-connected with the said axial direction extension part of the connection member 10, and the cover part and the connection member 10 cannot be relatively moved to the axial direction by the fastening member 90.
  • the second axially projecting portion 24 of the rotor member 21 is connected to the radially extending portion of the connecting member 10 so as to integrally rotate in a state of being relatively movable in the axial direction L.
  • the joint input side member 2 and the rotor member 21 are drivingly connected so as to rotate integrally.
  • Case The case 3 houses the rotating electrical machine MG, the torque converter TC, the speed change mechanism TM, and the first clutch C1.
  • the case 3 includes a first support wall portion 31, a second support wall portion 32, a third support wall portion 33, and a peripheral wall portion 34.
  • the peripheral wall 34 is formed in a substantially cylindrical shape covering the outer periphery of the rotating electrical machine MG, the first clutch C1, the torque converter TC, the speed change mechanism TM, and the like.
  • the first support wall portion 31, the second support wall portion 32, and the third support wall portion 33 are configured so as to divide the space in the case formed on the radially inner side R1 of the peripheral wall portion 34 in the axial direction L. It arrange
  • the case 3 includes a rotating electrical machine housing space SG in which the rotating electrical machine MG is housed, a fluid coupling housing space SC in which the torque converter TC is housed, and a transmission mechanism housing space in which the speed change mechanism TM is housed.
  • SM is formed.
  • the first clutch C1 is housed in the rotating electrical machine housing space SG.
  • the rotating electrical machine accommodation space SG, the fluid coupling accommodation space SC, and the transmission mechanism accommodation space SM are formed in the order described from the axial first side L1. That is, the fluid coupling housing space SC is formed between the rotating electrical machine housing space SG and the transmission mechanism housing space SM in the axial direction L of the transmission mechanism TM.
  • the rotating electrical machine MG, the first clutch C1, the torque converter TC, and the speed change mechanism TM are arranged in this order from the axial first side L1 to the axial second side L2. That is, the rotating electrical machine MG, the first clutch C1, and the torque converter TC are disposed on the first axial side L1 with respect to the speed change mechanism TM.
  • the rotating electrical machine accommodation space SG, the fluid coupling accommodation space SC, and the transmission mechanism accommodation space SM are formed as independent spaces.
  • spaces independent of each other means that they are partitioned in an oil-tight manner. Such a configuration is realized by appropriately arranging a seal member in each part.
  • the rotating electrical machine accommodation space SG, the fluid coupling accommodation space SC, and the transmission mechanism accommodation space SM are all formed as annular spaces. Specifically, the rotating electrical machine accommodation space SG is formed between the first support wall portion 31 and the second support wall portion 32 in the axial direction L.
  • the fluid coupling housing space SC is formed between the second support wall portion 32 and the third support wall portion 33 in the axial direction L.
  • the transmission mechanism accommodation space SM is formed between the third support wall 33 in the axial direction L and a support wall (not shown) disposed on the second axial side L2 from the third support wall 33. ing.
  • the case 3 can be separated into a first case portion 3a and a second case portion 3b disposed on the second axial side L2 from the first case portion 3a. It is configured.
  • the first case portion 3a and the second case portion 3b are connected to each other at the joint portion 5.
  • the peripheral wall portions 34 are fastened and fixed to each other by fastening bolts (not shown). ing.
  • the part which the 1st case part 3a comprises among the surrounding wall parts 34 is made into the 1st surrounding wall part 34a, and the part which the 2nd case part 3b comprises is made into the 2nd surrounding wall part 34b.
  • the first case portion 3a is a portion that forms the rotating electrical machine accommodation space SG. Specifically, the first case portion 3a includes a first support wall portion 31 and a second support wall portion 32, and the rotating electrical machine accommodation space SG is formed only by the first case portion 3a. In the present embodiment, a storage space for the damper 16 is further formed by the first case portion 3a.
  • the second case portion 3b is a portion that forms the transmission mechanism accommodation space SM. Specifically, the second case portion 3b has a third support wall portion 33, and the transmission mechanism accommodation space SM is formed only by the second case portion 3b.
  • the fluid coupling housing space SC is formed in the region in the axial direction L including the joint portion 5 between the first case portion 3a and the second case portion 3b by the cooperation of the first case portion 3a and the second case portion 3b. Has been.
  • the rotating electrical machine housing space SG and the transmission mechanism housing space SM are configured to be supplied with oil.
  • oil is supplied for lubrication and cooling of each part of the rotating electrical machine MG, as well as for lubrication and cooling of the first clutch C1, and driving of the hydraulic servo.
  • oil is supplied for lubrication and cooling of each gear mechanism of the transmission mechanism TM, and for lubrication, cooling, and driving of a hydraulic servo of a plurality of engagement devices of the transmission mechanism TM. Is done.
  • the inside of the said rotary electric machine accommodation space SG and the transmission mechanism accommodation space SM is in the state (wet state) where oil exists.
  • the fluid coupling housing space SC is configured so that oil is not supplied around the torque converter TC.
  • it is comprised so that oil may not be supplied except the space which accommodates the main body of torque converter TC.
  • the internal space surrounded by the joint input side member 2 in the fluid coupling housing space SC is in an oil-tight state to which oil is supplied, and the region excluding the internal space is The oil is not present (dry state).
  • a second oil storage unit U2 capable of storing oil is provided in the rotating electrical machine accommodation space SG.
  • the lower part of the rotating electrical machine accommodation space SG constitutes the second oil reservoir U2.
  • the transmission mechanism accommodation space SM communicates with the first oil reservoir U1 that can store oil.
  • the transmission mechanism accommodation space SM is a first oil disposed below the lower surface of the second case portion 3 b that forms the transmission mechanism accommodation space SM and below the transmission mechanism accommodation space SM. It communicates with the first accommodation space S ⁇ b> 1 surrounded by the bread 11.
  • the oil after being supplied to the speed change mechanism TM is stored in the first accommodation space S1 that communicates with the speed change mechanism accommodation space SM via a fourth hole P5 (described later). That is, the first storage space S1 constitutes the first oil storage unit U1.
  • the first support wall portion 31 is on the first axial side L1 from the rotating electrical machine MG (in this example, between the rotating electrical machine MG and the damper 16 in the axial direction L). It is formed to extend in the radial direction R and the circumferential direction. A through hole in the axial direction L is formed at the central portion in the radial direction R of the first support wall 31 formed in a disk shape, and the input shaft I is inserted through this through hole.
  • the first support wall portion 31 has a shape that is offset in the axial direction L such that the portion on the radially inner side R1 is positioned on the second axial side L2 relative to the portion on the radially outer side R2 as a whole. .
  • the 2nd support wall part 32 is formed so that it may extend in the radial direction R and the circumferential direction between the rotary electric machine MG and the torque converter TC in the axial direction L, as shown in FIG. .
  • a through hole penetrating in the axial direction L is formed in the center portion in the radial direction R of the second support wall portion 32 formed in a disk shape, and the connecting member 10 is disposed in the through hole. .
  • the joint input side member 2 disposed on the second axial side L2 with respect to the second support wall 32 via the connecting member 10 and the axially first side L1 with respect to the second support wall 32.
  • the disposed rotor member 21 is drivingly connected so as to rotate integrally.
  • the cylindrical support part 32a which protrudes toward the axial direction 1st side L1 is formed in the edge part of radial direction inner side R1 of the 2nd support wall part 32, and the 2nd support wall
  • the portion 32 has a thick portion (boss portion) having a predetermined thickness in the axial direction L at the end of the radially inner side R1.
  • the cylindrical projecting portion 32 a is disposed on the radially inner side R ⁇ b> 1 from the rotor member 21 and at a position having a portion overlapping the rotor member 21 when viewed in the radial direction R.
  • a first oil passage A1 and a second oil passage A2 are formed inside the second support wall portion 32.
  • the first oil passage A1 communicates with the working hydraulic chamber H1 of the first clutch C1, and supplies oil for operating the piston 54 to the working hydraulic chamber H1.
  • the second oil passage A2 communicates with the circulation hydraulic chamber H2 of the first clutch C1, and is an oil supply passage for supplying oil for cooling the friction member 53 to the circulation hydraulic chamber H2. is there.
  • the first oil passage A1 extends from the inside of the cylindrical protrusion 32a toward the first axial side L1, and then has a communication hole 32c and a sleeve formed in the cylindrical protrusion 32a.
  • the hydraulic pressure chamber H ⁇ b> 1 communicates with the through hole 94 c formed in the member 94 and the through hole 24 c formed in the second axial projecting portion 24 of the rotor support member 22.
  • the sleeve member 94 restricts oil from flowing in the axial direction L through a radial gap between the outer peripheral surface of the cylindrical protrusion 32 a and the inner peripheral surface of the second axial protrusion 24. It is provided for.
  • the second oil passage A2 extends in the cylindrical protruding portion 32a toward the first axial side L1, and then the first axial side L1 of the cylindrical protruding portion 32a. It is formed so that it may open to the end surface of.
  • the said opening of 2nd oil path A2 is opened to the clearance gap of the axial direction L formed between the connection member 10 and the cylindrical protrusion part 32a.
  • a gap that penetrates the second axial projection 24 in the radial direction R is formed at a portion where the second axial projection 24 is connected to the coupling member 10.
  • the second oil passage A2 communicates with the circulating hydraulic chamber H2 through these two gaps.
  • the third support wall portion 33 has a second axial side L2 from the torque converter TC (in this example, between the torque converter TC and the speed change mechanism TM in the axial direction L). Are formed so as to extend in the radial direction R and the circumferential direction. Although detailed illustration is omitted, a through hole in the axial direction L is formed in the center portion in the radial direction R of the third support wall portion 33 formed in a disc shape, and an intermediate shaft is formed in the through hole. M (not shown) is inserted.
  • the third support wall 33 is provided with a hydraulic pump 9 that generates hydraulic pressure for supplying oil to each part of the vehicle drive device 1.
  • a suction oil passage (not shown) and a discharge oil passage AB for the hydraulic pump 9 are formed inside the third support wall portion 33.
  • First peripheral wall portion A first hole portion P1, a second hole portion P2, and a sixth hole portion P7 are formed in the first peripheral wall portion 34a.
  • the recessed part P4 is formed in the 1st surrounding wall part 34a.
  • the 1st hole P1 is a hole which connects the inner peripheral surface and outer peripheral surface of the 1st surrounding wall part 34a, and as shown in FIG. 3, in this embodiment, it is in the lower part of the 1st surrounding wall part 34a. Is formed.
  • the recessed part P4 is a part recessed in radial direction inner side R1 formed in the outer peripheral part of the 1st surrounding wall part 34a, and is formed in the lower part of the 1st surrounding wall part 34a in this embodiment.
  • the recessed part P4 is formed in the downward side protrusion part which protruded below the other part in the lower part of the 1st surrounding wall part 34a.
  • the first hole portion P1 is formed so as to penetrate a part of the bottom portion (portion having a surface facing downward) of the concave portion P4 in the radial direction R (here, the vertical direction). Further, the first hole P1 is formed at a position having a portion overlapping with the rotating electrical machine MG when viewed in the radial direction R (here, the vertical direction). That is, the 1st hole P1 is provided in the part which forms the rotary electric machine accommodation space SG in the 1st surrounding wall part 34a.
  • the first hole P ⁇ b> 1 that constitutes a part of the discharge oil path AD has a peripheral wall opening 36 (described later, an introduction opening) that opens toward the rotating electrical machine accommodation space SG. ADi).
  • the peripheral wall opening 36 opens toward the second oil reservoir U2 below the rotating electrical machine housing space SG.
  • the surrounding wall opening part 36 is provided so that the lowest end part of the said surrounding wall opening part 36 (introduction opening part ADi) may be located below the lowest end part MGu of the rotary electric machine MG. ing.
  • the lowermost end portion of the peripheral wall opening 36 (introduction opening ADi) is the lowermost portion of the peripheral edge of the peripheral wall opening 36.
  • the peripheral portion of the peripheral wall opening 36 is also a cylindrical inner periphery. It has a shape along the surface. Therefore, the lowermost end portion of the peripheral wall opening 36 is a portion positioned vertically below the axis X at the peripheral edge of the peripheral wall opening 36 formed along the cylindrical inner peripheral surface. Further, the lowermost end MGu of the rotating electrical machine MG is a portion positioned at the lowest position among members constituting the rotating electrical machine MG. In the present embodiment, as shown in FIG. 3, the lowermost end MGu of the rotating electrical machine MG is a portion located vertically below the axis X on the outer peripheral surface of the stator St formed in a cylindrical shape.
  • the second hole P2 is a hole extending in the axial direction L through the first peripheral wall 34a.
  • a wall portion 63 that defines the periphery of the recess P ⁇ b> 4 is formed at the lower portion of the first peripheral wall portion 34 a so as to protrude downward.
  • the second hole portion P2 penetrates the wall portion 63 provided on the second axial side L2 with respect to the concave portion P4 in the axial direction L.
  • the 2nd hole P2 is mutually connected in the junction part 5 with the 3rd hole P3 (after-mentioned) formed in the 2nd surrounding wall part 34b of the 2nd case part 3b.
  • the 2nd hole P2 is provided in the part which forms the fluid coupling accommodation space SC among the 1st surrounding wall parts 34a. That is, the second hole P2 is provided on the second axial side L2 with respect to the first hole P1.
  • the second hole P2 is an independent hole that is not communicated with the fluid coupling housing space SC.
  • the sixth hole portion P7 is a hole portion extending in the axial direction L through the first peripheral wall portion 34a.
  • the sixth hole portion P7 is provided in a portion of the first peripheral wall portion 34a that forms the fluid coupling housing space SC.
  • the position is higher than the second hole P2 and is different in the circumferential direction from the second hole P2.
  • the sixth hole P7 is connected to the second hydraulic control device 82 on the first axial side L1 and is formed in the second case 3b on the second axial side L2. Connected to P6.
  • the 6th hole P7 is formed in the position different from the 2nd hole P2 and the circumferential direction, it has shown with the broken line in FIG.2 and FIG.3.
  • the second peripheral wall portion 34b is provided with a third hole portion P3, a fourth hole portion P5, and a fifth hole portion P6.
  • the third hole portion P3 is a hole portion extending in the axial direction L at the lower portion of the second peripheral wall portion 34b.
  • the third hole P3 is provided in a portion of the second peripheral wall portion 34b that forms the fluid coupling housing space SC.
  • the third hole P3 is provided below the fluid coupling housing space SC and is an independent hole that does not communicate with the fluid coupling housing space SC.
  • the third hole portion P3 is connected to the second hole portion P2 formed in the first case portion 3a on the first axial side L1, and the first accommodation space S1 (on the second axial side L2). It is connected to the first oil reservoir U1). Moreover, in this embodiment, the 3rd hole P3 is comprised so that it may incline upwards as it goes to the axial direction 2nd side L2 from the axial direction 1st side L1.
  • the third hole portion P3 that constitutes a part of the discharge oil passage AD includes a discharge opening ADo that opens toward the first accommodation space S1 (first oil storage portion U1).
  • the discharge opening ADo is such that the lowermost end AHo of the discharge opening ADo is positioned below the lowermost end Rou of the rotor Ro of the rotating electrical machine MG.
  • the lowermost end AHo of the discharge opening ADo is a portion located at the lowest position in the peripheral edge of the discharge opening ADo.
  • the lowermost end portion Rou of the rotor Ro is a lowermost portion of the members constituting the rotor Ro, and in this embodiment, the axial center on the outer peripheral surface of the rotor Ro formed in a cylindrical shape. This is a portion located vertically below X.
  • the fourth hole portion P5 is a hole portion that communicates the inner peripheral surface and the outer peripheral surface of the second peripheral wall portion 34b.
  • the fourth hole portion P5 is provided so as to penetrate in the radial direction R at the lower portion of the second peripheral wall portion 34b.
  • the fourth hole P5 is provided in a portion of the second peripheral wall portion 34b that forms the transmission mechanism accommodation space SM.
  • the fourth hole portion P5 is formed at a position having a portion overlapping with the central portion in the axial direction L of the transmission mechanism TM when viewed in the radial direction R, and also when viewed from below, the transmission mechanism TM. Is formed at a position having an overlapping portion.
  • the transmission mechanism accommodation space SM communicates with the first accommodation space S1 provided below the transmission mechanism accommodation space SM via the fourth hole P5.
  • the fifth hole P6 is a hole that extends in the axial direction L through the second peripheral wall 34b.
  • the fifth hole portion P6 is provided in a portion of the second peripheral wall portion 34b that forms the fluid coupling housing space SC.
  • the fifth hole P6 is located on the lower side of the fluid coupling housing space SC, more specifically on the upper side of the third hole P3 and on the third hole P3 as shown in FIG. Are provided at different positions in the circumferential direction and are independent holes that do not communicate with the fluid coupling housing space SC.
  • the fifth hole portion P6 is connected to the sixth hole portion P7 formed in the first case portion 3a on the first axial side L1, and the first hydraulic control device on the second axial side L2. 81.
  • the 5th hole P6 is comprised so that it may incline below as it goes to the axial direction 1st side L1 from the axial direction 2nd side L2.
  • the 5th hole P6 is formed in the position where the 3rd hole P3 differs in the circumferential direction, it has shown with the broken line in FIG.2 and FIG.3.
  • the 2nd exhaust oil path AH which is a part of exhaust oil path AD is comprised by the 2nd hole P2 of the 1st surrounding wall part 34a, and the 3rd hole P3 of the 2nd surrounding wall part 34b.
  • a third oil passage A3 is configured by the sixth hole portion P7 formed in the first peripheral wall portion 34a and the fifth hole portion P6 formed in the second peripheral wall portion 34b.
  • the second hole P2, the third hole P3, the fifth hole P6, and the sixth hole P7 are all holes that are not communicated with the fluid coupling housing space SC. Therefore, the third oil passage A3 and the second discharge oil passage AH constituted by these are also independent oil passages that do not communicate with the fluid coupling housing space SC.
  • Hydraulic Pump The pump drive shaft that drives the hydraulic pump 9 is drivingly connected to rotate integrally with the pump impeller 61 of the torque converter TC as described above. Since the pump impeller 61 is drivingly connected to the rotating electrical machine MG and the internal combustion engine E as shown in FIG. 1, the hydraulic pump 9 is driven by the internal combustion engine E or the rotating electrical machine MG as a driving force source for the wheels W. Oil is discharged. And the hydraulic pump 9 supplies the oil of the 1st oil storage part U1 to the transmission mechanism TM and the rotary electric machine MG. Specifically, the hydraulic pressure generated by the hydraulic pump 9 is controlled by a first hydraulic control device 81 (described later), and the controlled hydraulic pressure is supplied to the torque converter TC and the speed change mechanism TM. Controlled by the device 82, the controlled hydraulic pressure is supplied to the first clutch C1. In the present embodiment, the oil supplied to the circulating hydraulic chamber H2 of the first clutch C1 is supplied to the rotating electrical machine MG after flowing through the circulating hydraulic chamber H2.
  • the vehicle drive device 1 includes a first hydraulic control device 81 as a hydraulic control device that controls the hydraulic pressure supplied from the hydraulic pump 9, and a second hydraulic control device 82 separately from the first hydraulic control device 81. I have.
  • the first hydraulic control device 81 is a device that controls the hydraulic pressure supplied from the hydraulic pump 9 and supplies the controlled hydraulic pressure to the torque converter TC and the speed change mechanism TM. As shown in FIG. 2, in this embodiment, the 1st hydraulic control apparatus 81 is provided in the 2nd case part 3b, and is provided in the lower part of the 2nd case part 3b in this example. Specifically, the first hydraulic control device 81 is fixed to the outer peripheral portion of the second peripheral wall portion 34b of the second case portion 3b (in this example, a portion having a surface facing downward in the outer peripheral portion).
  • the first hydraulic control device 81 is disposed at a position having a portion overlapping with the speed change mechanism TM when viewed in the radial direction R that is the radial direction of the speed change mechanism TM.
  • the first hydraulic control device 81 is disposed at a position overlapping the transmission mechanism TM and the entire axial direction L when viewed in the radial direction R.
  • the case 3 includes a first oil pan 11 attached to the lower portion of the second case portion 3b, and the space surrounded by the second case portion 3b and the first oil pan 11 is as described above.
  • a first housing space S1 (first oil reservoir U1) for housing the first hydraulic control device 81 is provided.
  • the first accommodation space S1 is formed at a position having a portion overlapping with the speed change mechanism TM when viewed from below.
  • the first hydraulic control device 81 is disposed at a position having a portion overlapping with the speed change mechanism TM when viewed from below in a state of being accommodated in the first accommodating space S1.
  • the first hydraulic control device 81 includes a plurality of hydraulic control valves and an oil flow path.
  • the hydraulic control valve provided in the first hydraulic control device 81 includes a transmission mechanism hydraulic control valve (not shown) that controls the hydraulic pressure supplied to the transmission mechanism TM, and a fluid coupling hydraulic pressure that controls the hydraulic pressure supplied to the torque converter TC. And a control valve (not shown).
  • the hydraulic pressure supplied to the speed change mechanism TM is used to control the engagement state of each engagement device provided in the speed change mechanism TM, and is used to lubricate and cool the gear mechanism and the bearing provided in the speed change mechanism TM.
  • the hydraulic pressure supplied to the torque converter TC is used as power transmission oil in the torque converter TC and is supplied to the working hydraulic chamber of the second clutch C2 to control the engagement state of the second clutch C2. Used to do. Then, the oil that has been supplied to the speed change mechanism TM and the torque converter TC is returned to the first oil pan 11 disposed below the speed change mechanism TM.
  • an oil cooler heat exchanger for cooling the oil is connected in series or in parallel to the oil circulation path via the hydraulic pump 9, the first hydraulic control device 81, the torque converter TC, and the speed change mechanism TM. Is provided.
  • the oil cooler is provided on the second case portion 3b side.
  • at least the oil supplied to the heat generating part is configured to be returned to the first oil pan 11 via the oil cooler, or at least the oil supplied to the heat generating part is supplied to the oil supply part via the oil cooler. It can be set as the structure supplied to.
  • the line pressure that is the discharge pressure (output pressure) of the hydraulic pump 9 is controlled by a line pressure control valve (not shown).
  • a line pressure control valve for example, a pressure regulator valve is used as the line pressure control valve, and the line pressure is controlled based on the reference pressure supplied to the reference pressure chamber.
  • the line pressure control valve is provided in the first hydraulic control device 81, and the hydraulic pressure controlled (regulated) by the line pressure control valve is controlled by the second hydraulic pressure control via the third oil passage A3. Supplied to device 82.
  • the second hydraulic control device 82 is a device that controls the hydraulic pressure supplied from the hydraulic pump 9 and supplies the controlled hydraulic pressure to the first clutch C1. As shown in FIG. 2, in the present embodiment, the second hydraulic control device 82 is provided in the first case portion 3a.
  • the 1st case part 3a is arrange
  • the first hydraulic control device 81 is arranged on the second axial side L2 from the joint portion 5 between the first case portion 3a and the second case portion 3b, and the second hydraulic control device 82 It arrange
  • the second hydraulic control device 82 is disposed below the upper end of the first hydraulic control device 81.
  • the second hydraulic control device 82 is provided at the lower part of the first case portion 3a. Specifically, the second hydraulic pressure control device 82 is accommodated in the concave portion P4 formed on the outer peripheral portion of the first peripheral wall portion 34a, and the bottom portion of the concave portion P4 (portion having a surface facing downward). It is fixed to.
  • the case 3 includes a second oil pan 12 attached to the lower portion of the first case portion 3a.
  • the 2nd oil pan 12 is attached to the 1st surrounding wall part 34a so that the whole recessed part P4 (1st hole P1) may be covered.
  • a space surrounded by the first case portion 3a and the second oil pan 12 constitutes a second accommodation space S2 in which the second hydraulic control device 82 is accommodated.
  • the second storage space S2 is a space surrounded by the first oil pan 12 and the portion of the first case portion 3a that forms the first hole P1 and the recess P4.
  • This second housing space S2 is formed at a position below the rotating electrical machine housing space SG and having a portion overlapping the rotating electrical machine MG when viewed in the vertical direction.
  • the 2nd accommodation space S2 is connected with the 2nd oil storage part U2 of the rotary electric machine accommodation space SG via the surrounding wall opening part 36 provided in the upper part (ceiling part) of the said 2nd accommodation space S2. . Therefore, the second storage space S2 is basically filled with oil supplied from the second oil storage unit U2.
  • the second accommodation space S2 is also communicated with the second hole P2 constituting the second discharge oil passage AH. That is, the second storage space S2 communicates with the first storage space S1 (first oil storage portion U1) via the second discharge oil passage AH.
  • the discharge oil passage AD is composed of a first discharge oil passage AG and a second discharge oil passage AH.
  • the oil supplied from the second oil storage unit U2 to the second storage space S2 is the oil discharged to the first oil storage unit U1 via the second discharge oil passage AH.
  • a route has been built. That is, in the present embodiment, the second accommodation space S2 constitutes the first discharge oil passage AG. Therefore, the peripheral wall opening 36, which is a communication portion between the second storage space S2 and the second oil reservoir U2, is an introduction opening ADi that opens toward the second oil reservoir U2 provided in the drain oil passage AD. .
  • the second hydraulic control device 82 is disposed in the second accommodation space S2 that constitutes the first exhaust oil passage AG (exhaust oil passage AD). Therefore, the second hydraulic control device 82 corresponds to a “hydraulic control device”.
  • the second oil pan 12 is attached to the peripheral portion of the recess P4 in the outer peripheral portion of the first peripheral wall portion 34a.
  • the 2nd oil pan 12 is attached to the 1st surrounding wall part 34a in the state inclined in the downward direction as it goes to the axial direction 2nd side L2 from the axial direction 1st side L1.
  • the second housing space S2 is configured as a space whose bottom (lower part) is inclined downward as it goes from the first axial side L1 to the second axial side L2.
  • the second oil pan 12 is provided independently of the first oil pan 11. That is, the first oil pan 11 and the second oil pan 12 are composed of different members, and are attached to different positions of the case 3. Specifically, the first oil pan 11 is disposed on the second axial side L2 from the joint portion 5 between the first case portion 3a and the second case portion 3b, and the second oil pan 12 is disposed on the joint portion 5. It arrange
  • the second hydraulic control device 82 is disposed at a position having a portion overlapping with the rotating electrical machine MG when viewed in the radial direction of the rotating electrical machine MG (in this example, the same direction as the radial direction R). .
  • the second hydraulic control device 82 is arranged so that the portion on the first axial side L1 of the second hydraulic control device 82 overlaps with the rotating electrical machine MG (specifically, the stator St) when viewed in the radial direction R.
  • the rotary electric machine MG is arranged so as to be shifted to the second axial side L2. Accordingly, the second accommodation space S2 is also shifted from the second axial side L2.
  • the second hydraulic control device 82 is further disposed at a position having a portion overlapping with the rotating electrical machine MG when viewed from below.
  • the second hydraulic control device 82 is located at a position having a portion overlapping with the first clutch C1 when viewed in the radial direction of the first clutch C1 (the same direction as the radial direction R in this example).
  • the second hydraulic control device 82 includes the clutch hub 51, the piston 54, the friction member 53, the clutch drum (in this example, the rotor holding portion 25), the working hydraulic chamber H1, and the first clutch C1. It arrange
  • the second hydraulic control device 82 is disposed at a position having an overlapping portion when viewed in the radial direction R with respect to the servo mechanism (the piston 54 and the working hydraulic chamber H1).
  • the second hydraulic control device 82 includes a hydraulic control valve that controls the hydraulic pressure supplied to the first clutch C1.
  • the second hydraulic control device 82 includes a plurality of hydraulic control valves (the first hydraulic control valve 41, the second hydraulic control valve 42, and the third hydraulic control valve 43) and oil that communicates with the hydraulic control valve.
  • a valve body 83 provided with a path.
  • the oil discharged by the hydraulic pump 9 is supplied to the second hydraulic control device 82 via the first hydraulic control device 81 and the third oil passage A3.
  • the line pressure controlled by the first hydraulic control device 81 is supplied to the third oil passage A3 and supplied to the second hydraulic control device 82.
  • the second hydraulic control device 82 controls the line pressure, and supplies the post-control hydraulic pressure to the first clutch C1 via the first oil passage A1.
  • the second hydraulic control device 82 includes a first hydraulic control valve 41 and a second hydraulic control valve 42 as hydraulic control valves.
  • the first hydraulic control valve 41 is a hydraulic control valve that controls the hydraulic pressure supplied to the working hydraulic chamber H1 of the first clutch C1.
  • the second hydraulic control valve 42 is a hydraulic control valve that controls (regulates) the hydraulic pressure supplied to the circulating hydraulic chamber H2 of the first clutch C1.
  • the first hydraulic control valve 41 is a linear solenoid valve having an electromagnetic part and a pressure regulating part.
  • the electromagnetic part is a part that functions as an actuator that controls the position of the valve body (spool).
  • the pressure adjusting unit is a part that functions as a valve, and the pressure adjusting unit is inserted into a valve insertion hole formed in the valve body 83.
  • the first hydraulic control valve 41 includes an input port 41a to which oil of line pressure is supplied, an output port 41b for discharging oil to the first oil passage A1, a feedback port 41c for generating feedback pressure, and oil A first discharge port 41d and a second discharge port 41e for discharging (draining) are provided.
  • the first hydraulic control valve 41 is configured to communicate with both the first oil passage A1 and the third oil passage A3, and the valve body 83 includes a part of the first oil passage A1. Part of the third oil passage A3 is formed.
  • the first discharge port 41d of the first hydraulic control valve 41 adjusts the amount of oil supplied from the output port 41b to the first oil passage A1 in accordance with the feedback pressure, as appropriate. It has a function of discharging to the 43 side. Further, the first discharge port 41d has a function of discharging a part of the oil in the first oil passage A1 to the third hydraulic control valve 43 side when the hydraulic pressure supplied to the working hydraulic chamber H1 is reduced.
  • the third hydraulic control valve 43 sets the input port and the output port of the third hydraulic control valve 43 when the hydraulic pressure supplied to the input port of the third hydraulic control valve 43 is a predetermined value or more. It is a valve that communicates.
  • the third hydraulic control valve 43 functions as a stopper for the oil in the first oil passage A1, and restricts the backflow of oil from the third hydraulic control valve 43 toward the first hydraulic control valve 41. Functions as a check valve.
  • the oil output from the output port of the third hydraulic control valve 43 is discharged to the second storage space S2.
  • the second discharge port 41e of the first hydraulic control valve 41 has a function of discharging the oil into the second storage space S2 when the oil in the spring chamber becomes high pressure.
  • the second hydraulic control valve 42 is a pressure regulating valve that performs both opening and closing of the input port 42a and opening and closing of the first discharge port 42d.
  • the second hydraulic control valve 42 includes an input port 42a to which line pressure oil is supplied, an output port 42b for discharging oil to the second oil passage A2, a feedback port 42c for generating feedback pressure, and oil.
  • a first discharge port 42d and a second discharge port 42e for discharging (draining) are provided. Then, the hydraulic pressure controlled by the second hydraulic control valve 42 is supplied to the circulating hydraulic chamber H2 of the first clutch C1 via the second oil passage A2.
  • the first discharge port 42d of the second hydraulic control valve 42 appropriately stores oil in order to adjust the amount of oil supplied from the output port 42b to the second oil passage A2 according to the feedback pressure. It has a function of discharging to the space S2.
  • the second discharge port 42e of the second hydraulic control valve 42 has a function of discharging the oil into the second storage space S2 when the oil in the spring chamber becomes high pressure.
  • the second hydraulic control valve 42 is configured to communicate with the second oil passage A2, and a part of the second oil passage A2 is formed in the valve body 83.
  • the second hydraulic pressure control device 82 is disposed in the second accommodation space S2 that constitutes the first discharge oil passage AG. Therefore, the oil discharged from the oil discharge port of the second hydraulic control device 82 to the second storage space S2 is first in the first storage space S1 via the first discharge oil passage AG and the second discharge oil passage AH. It is discharged to the oil reservoir U1.
  • the first discharge port 41d and the second discharge port 41e of the first hydraulic control valve 41 and the first discharge port 42d and the second discharge port 42e of the second hydraulic control valve 42 are the second The “oil discharge port” of the hydraulic control device 82 is configured.
  • the oil after being supplied to the circulating hydraulic chamber H ⁇ b> 2 of the first clutch C ⁇ b> 1 via the second oil passage A ⁇ b> 2 is supplied to the coil of the rotating electrical machine MG via the bearing 96.
  • a distribution path for oil to be supplied to the end portion Ce is formed.
  • the bearing 96 that supports the rotor Ro and the rotating electrical machine MG including the coil end portion Ce can be cooled by using the oil that has been supplied to the circulating hydraulic chamber H2.
  • the oil discharged by the hydraulic pump 9 is configured to be supplied to the rotating electrical machine MG.
  • the oil after having been supplied to the rotary electric machine MG is stored in the second oil storage portion U2 of the rotary electric machine accommodation space SG.
  • the height of the oil level of the second oil reservoir U2 varies depending on the operating state of the vehicle drive device 1, but at least during the driving of the rotating electrical machine MG, a large amount of oil is used for cooling the stator coils and the like. Since the oil is supplied to the rotating electrical machine accommodation space SG, the oil level is basically positioned above the lowermost end of the introduction opening ADi. In the example shown in FIG.
  • the height of the oil surface of the second oil reservoir U2 is lower than the lowest end portion Rou of the rotor Ro of the rotating electrical machine MG and from the lowest end portion MGu of the rotating electrical machine MG (stator core). Located above.
  • the height of the oil level of the first oil storage unit U1 also varies depending on the operating state of the vehicle drive device 1, but basically in the state where the acceleration / deceleration does not act on the vehicle drive device 1, A surface will be in the state located below the lowest end AHo of discharge opening part ADo. Therefore, the oil flows from the second oil reservoir U2 toward the first oil reservoir U1 due to the height difference between the oil level of the second oil reservoir U2 and the oil level of the first oil reservoir U1. That is, the oil in the second oil storage unit U2 is discharged to the first oil storage unit U1 through the discharge oil passage AD.
  • the relatively high temperature oil stored in the second oil storage unit U2 is supplied to the oil surface of the first oil storage unit U1 and the second oil storage unit U2.
  • the oil can be returned to the first oil reservoir U1 via the drain oil passage AD.
  • the oil flowing down from above and accumulated in the second oil reservoir U2 can be sequentially introduced into the discharge oil passage AD from the introduction opening ADi located at the position.
  • the second oil storage unit U2 can discharge the oil flow downward without disturbing the oil flow path AD, so that a part of the relatively high temperature oil after cooling the rotating electrical machine MG is the first. It can suppress staying in the two oil storage part U2, and can circulate oil appropriately. Therefore, it can suppress that the cooling efficiency of the rotary electric machine MG falls resulting from oil stagnating in the 2nd oil storage part U2. Further, since the second hydraulic control device 82 is disposed in the discharged oil passage AD, the oil discharged from the oil discharge port of the second hydraulic control device 82 into the discharged oil passage AD is also combined with the first oil. It can supply to the storage part U1.
  • the second hydraulic control device 82 has both ends in the oil distribution direction (introduction opening ADi and discharge opening ADo) open, and the oil is discharged to the discharge oil passage AD having a relatively low internal hydraulic pressure.
  • the resistance to the oil discharged from the oil discharge port is less than that in the second storage space S2 which is a substantially sealed space filled with oil as in Document 2 and has a relatively high internal hydraulic pressure. Therefore, it is easy to ensure the accuracy of hydraulic adjustment by the second hydraulic control device 82.
  • the configuration in which the oil discharged from the hydraulic pump 9 is supplied to the second hydraulic control device 82 via the first hydraulic control device 81 and the third oil passage A3 has been described as an example.
  • the embodiment of the vehicle drive device is not limited to this, and the second hydraulic control device 82 includes a line pressure control valve, and the oil discharged from the hydraulic pump 9 is the first hydraulic control device.
  • a configuration may also be adopted in which the pressure is directly supplied to the second hydraulic control device 82 without going through 81.
  • the second hydraulic control device 82 is disposed in the discharge oil passage AD, and the oil discharged from the oil discharge port of the second hydraulic control device 82 is transferred to the first discharge oil passage AG (
  • the embodiment of the vehicle drive device is not limited to this, and a configuration in which the second hydraulic control device 82 is not disposed in the discharge oil path AD may be employed. In that case, the oil discharged from the oil discharge port of the second hydraulic control device 82 may be discharged to the first oil storage unit U1 via an oil path different from the discharged oil path AD. it can.
  • the configuration in which the second hydraulic control device 82 is disposed at a position having a portion overlapping the rotating electrical machine MG when viewed in the radial direction of the rotating electrical machine MG has been described as an example.
  • the embodiment of the vehicle drive device is not limited to this, and the second hydraulic control device 82 does not have a portion overlapping with the rotating electrical machine MG when viewed in the radial direction of the rotating electrical machine MG.
  • a configuration may be adopted in which the rotating electrical machine MG is disposed at a position different from the rotating electrical machine MG in the axial direction.
  • the configuration in which the second hydraulic control device 82 is arranged at a position having a portion overlapping the first clutch C1 when viewed in the radial direction of the first clutch C1 has been described as an example.
  • the embodiment of the vehicle drive device is not limited to this, and the second hydraulic control device 82 does not have a portion overlapping the first clutch C1 when viewed in the radial direction of the first clutch C1.
  • it can also be set as the structure arrange
  • the configuration in which the first clutch C1 is provided has been described as an example.
  • the vehicle drive device 1 does not include the first clutch C1, and the input shaft I and the rotating electrical machine MG are always interlocked. It is also possible to adopt a configuration in which the motors are connected so as to rotate (for example, rotate integrally). Alternatively, the vehicle drive device 1 may not include both the first clutch C1 and the input shaft I, and the vehicle drive device 1 may be configured to travel the vehicle only by the torque of the rotating electrical machine MG.
  • the case 3 is separably formed into the first case portion 3a that forms the rotating electrical machine housing space SG and the second case portion 3b that forms the transmission mechanism housing space SM.
  • the configuration has been described as an example.
  • the embodiment of the vehicle drive device is not limited to this, and in which part the case 3 is formed so as to be separable can be appropriately changed.
  • the oil supplied from the second hydraulic control device 82 to the circulating hydraulic chamber H2 of the first clutch C1 is supplied to the rotating electrical machine MG after being discharged from the circulating hydraulic chamber H2.
  • the embodiment of the vehicle drive device is not limited to this, and the hydraulic pressure controlled by the first hydraulic control device 81 or the second hydraulic control device 82 does not pass through the first clutch C1, It can also be set as the structure supplied to the rotary electric machine MG through the oil path provided separately from the two oil path A2. In such a case, the hydraulic pressure controlled by the second hydraulic control device 82 is supplied only to the operating hydraulic pressure chamber H1 of the first clutch C1 without supplying the hydraulic pressure to the circulating hydraulic pressure chamber H2 of the first clutch C1. You can also
  • the configuration in which the hydraulic pressure controlled by the first hydraulic control valve 41 of the second hydraulic control device 82 is directly supplied to the working hydraulic chamber H1 of the first clutch C1 has been described as an example.
  • the embodiment of the vehicle drive device is not limited to this, and includes a hydraulic control valve (not shown) different from the first hydraulic control valve 41, and the separate hydraulic control valve is controlled ( It is also possible to adopt a configuration in which the adjusted hydraulic pressure is supplied to the working hydraulic chamber H1 of the first clutch C1.
  • the another hydraulic control valve is a pressure regulating valve that regulates the line pressure by operating the hydraulic pressure controlled by the first hydraulic control valve 41 as a signal pressure.
  • a configuration provided in the hydraulic control device 82 is preferable.
  • the first housing space S1 that houses the first hydraulic control device 81 is the second case portion 3b and the first oil pan 11 that is attached to the lower portion of the second case portion 3b.
  • the configuration that is the enclosed space has been described as an example.
  • the embodiment of the vehicle drive device is not limited to this, and the first housing space S1 is formed only by the portion of the case 3 formed integrally with the second case portion 3b ( For example, it can also be set as the structure formed in the surrounding wall of the 2nd case part 3b.
  • the second housing space S2 for housing the second hydraulic control device 82 is composed of the first case portion 3a and the second oil pan 12 attached to the lower portion of the first case portion 3a.
  • the configuration that is the enclosed space has been described as an example.
  • the embodiment of the vehicle drive device is not limited to this, and the second housing space S2 is formed by only the portion of the case 3 formed integrally with the first case portion 3a ( For example, it can also be set as the structure formed in the surrounding wall of the 1st case part 3a.
  • the configuration in which the vehicle drive device 1 includes the torque converter TC having the torque amplification function as the fluid coupling has been described as an example.
  • the embodiment of the vehicle drive device is not limited to this, and the vehicle drive device 1 may include a fluid coupling that does not have a torque amplification function instead of the torque converter TC. it can.
  • the second oil pan 12 is attached so as to be inclined downward with respect to the axis X as it goes from the axial first side L1 to the axial second side L2.
  • the embodiment of the vehicle drive device is not limited to this.
  • the second oil pan 12 may be configured to be attached in parallel to the axis X without being inclined toward the second axial side L2.
  • the second housing space S2 is configured to be shifted to the second axial side L2 with respect to the rotating electrical machine MG.
  • the embodiment of the vehicle drive device is not limited to this.
  • positioned so that 2nd accommodation space S2 may overlap with the whole rotary electric machine MG in an axial direction may be sufficient.
  • the vehicle drive device (1) includes a rotating electrical machine (MG), a transmission mechanism (TM) provided in a power transmission path connecting the rotating electrical machine (MG) and the wheels (W), and the rotating electrical machine (MG).
  • a fluid coupling (TC) that drives and connects the transmission mechanism (TM), a rotating electrical machine accommodation space (SG) that accommodates the rotating electrical machine (MG), and a transmission mechanism accommodation space that accommodates the transmission mechanism (TM).
  • SM fluid coupling housing space
  • SC fluid coupling housing space for housing the fluid coupling (TC) are formed as independent spaces, and a case (3) is provided in communication with the transmission mechanism housing space (SM).
  • a first oil storage part (U1) capable of storing oil
  • a hydraulic pump (9) for supplying oil from the first oil storage part (U1) to the rotating electrical machine (MG) and the transmission mechanism (TM), Oil is stored in the rotating electrical machine housing space (SG).
  • a fluid second oil reservoir (U2) and a discharge oil passage (AD) for discharging the oil in the second oil reservoir (U2) to the first oil reservoir (U1), and the fluid coupling
  • a housing space (SC) is formed between the rotating electrical machine housing space (SG) and the transmission mechanism housing space (SM) in the axial direction of the transmission mechanism (TM), and the fluid coupling (TC).
  • the drain oil passage (AD) includes an introduction opening (ADi) that opens toward the second oil reservoir (U2), and the introduction opening (ADi) is configured so that oil is not supplied to the surroundings. Is located below the lowest end (MGu) of the rotating electrical machine (MG).
  • oil is supplied to the rotating electrical machine housing space (SG) and the speed change mechanism housing space (SM), and around the fluid coupling (TC) of the fluid coupling housing space (SC) formed between them in the axial direction. Is configured not to be supplied with oil.
  • the first oil storage is performed by the hydraulic pump (9).
  • the oil of the part (U1) can be supplied to the rotating electrical machine (MG). Therefore, the oil can be appropriately supplied to the rotating electrical machine (MG), and the rotor (Ro) is compared with the case where the oil is scraped up by the rotation of the rotor (Ro) and supplied to the rotating electrical machine (MG).
  • the rotation resistance can be kept low.
  • a second oil reservoir (U2) provided in the rotating electrical machine housing space (SG), and a discharge oil passage for discharging the oil of the second oil reservoir (U2) to the first oil reservoir (U1) ( AD) and the oil supplied to the rotating electrical machine (MG) can be recovered in the second oil reservoir (U2) and recovered in the second oil reservoir (U2).
  • Oil can be supplied to the first oil reservoir (U1) via the drain oil passage (AD). That is, an oil circulation path is formed for collecting the oil supplied to the rotating electrical machine (MG) by the hydraulic pump (9) in the first oil reservoir (U1) from which the hydraulic pump (9) sucks the oil. Is done.
  • the lowest end part of the introduction opening part (ADi) opened toward the 2nd oil storage part (U2) of a discharge oil path (AD) is the lowest end part of a rotary electric machine (MG). Since it is located below (MGu), the oil that flows down from above and accumulates in the second oil reservoir (U2) is introduced into the discharge oil passage (AD) from the introduction opening (ADi) located below. Can do. Therefore, it can suppress that a part of oil retains and can circulate oil appropriately. Therefore, it can suppress that the cooling efficiency of a rotary electric machine (MG) falls because oil stagnates in a 2nd oil storage part (U2).
  • the rotating electrical machine includes a stator (St) fixed to the case (3), and a rotor (Ro) disposed radially inward of the stator (St), and a discharge oil passage (AD ) Includes a discharge opening (ADo) that opens toward the first oil reservoir (U1), and the lowermost end (AHo) of the discharge opening (ADo) is the lowermost end (Rou) of the rotor (Ro). It is preferable that the configuration is located below the above.
  • the oil level of the second oil reservoir (U2) in a state where no inertial force is acting on the vehicle is suppressed from becoming higher than the lowest end (Rou) of the rotor (Ro).
  • it can suppress that the oil of a 2nd oil storage part (U2) is scooped up when a rotor (Ro) rotates, As a result, the rotational resistance of a rotor (Ro) can be suppressed low.
  • the input member (I) that is drivingly connected to the internal combustion engine and the radial inside (R1) of the rotating electrical machine (MG) are selectively disposed between the input member (I) and the rotating electrical machine (MG).
  • the hydraulic control device (82) is preferably arranged in the drain oil passage (AD).
  • the oil discharged when the hydraulic control valve (82) controls the hydraulic pressure (lowers the hydraulic pressure) can be discharged into the discharge oil passage (AD). Therefore, not only the oil supplied from the second oil reservoir (U2) to the discharge oil passage (AD) but also the oil discharged into the discharge oil passage (AD) by the hydraulic control valve (82), It can return to a 1st oil storage part (U1) via a discharge oil path (AD).
  • the technology according to the present disclosure includes a rotating electrical machine, a transmission mechanism provided in a power transmission path that connects the rotating electrical machine and wheels, a fluid coupling that drives and connects the rotating electrical machine and the transmission mechanism, and the rotating electrical machine that houses the rotating electrical machine.
  • the present invention can be suitably used for a vehicle drive device that includes a housing space, a transmission mechanism housing space that houses a transmission mechanism, and a fluid coupling housing space that houses a fluid coupling as independent spaces.

Abstract

 ロータの回転抵抗を低く抑えつつ、回転電機を効率的に冷却することができる車両用駆動装置を実現する。車両用駆動装置は、変速機構収容空間と連通して設けられる第一油貯留部と、第一油貯留部の油を回転電機及び変速機構に供給する油圧ポンプと、回転電機収容空間内に設けられる第二油貯留部と、第二油貯留部の油を第一油貯留部に排出する排出油路と、を備え、流体継手収容空間は、軸方向における回転電機収容空間と変速機構収容空間との間に形成されると共に、流体継手の周囲に油が供給されないように構成され、排出油路は、第二油貯留部に向かって開口する導入開口部を備え、導入開口部の最下端部が、回転電機の最下端部よりも下方に位置している。

Description

車両用駆動装置
 本発明は、回転電機と、回転電機と車輪とを結ぶ動力伝達経路に設けられた変速機構と、回転電機と変速機構とを駆動連結する流体継手と、回転電機を収容する回転電機収容空間と変速機構を収容する変速機構収容空間と流体継手を収容する流体継手収容空間とを互いに独立した空間として形成するケースと、を備える車両用駆動装置に関する。
 上記のような車両用駆動装置の従来技術として、例えば特開2011-105195号公報(特許文献1)に記載された技術がある。なお、この背景技術の欄の説明では、〔〕内に特許文献1における関連する部材名を引用して説明する。特許文献1に記載の構成では、回転電機〔電気モータ1〕を収容するケース内空間の下部に、回転電機に供給する油を貯留する油貯留部〔油溜部101〕が形成されている。そして、この構成では、特許文献1の段落0045及び図2に記載されているように、ロータ〔ロータ13〕の回転により油貯留部の油を掻き上げることで、回転電機を冷却する。特許文献1の構成では、ロータの回転により掻き上げた油を回転電機に供給する構成であるため、ロータの回転抵抗が大きくなり易く、それに応じて装置のエネルギ効率が低下してしまう。
 ところで、車両用駆動装置には一般的に変速機構に供給する油を貯留する油貯留部が備えられる。そこで、当該油貯留部の油を回転電機に供給する構成が考えられる。このような構成の一例として、特開2013-095389号公報(特許文献2)に記載された技術がある。特許文献2に記載の構成では、変速機構収容空間と連通して設けられる第一油貯留部U1の油を回転電機MGに供給し、当該回転電機MGに供給された後の油は、回転電機収容空間SGと連通して設けられる第二油貯留部U2にて回収され、当該回収された油は、排出油路ADを介して第一油貯留部U1に供給される。そして、特許文献2の図3及び図5等に記載されているように、排出油路ADは、第一油貯留部U1に向かって開口する第一開口部ADoから水平方向に延びる第一排出油路AFと、第二油貯留部U2内に開口する第二開口部AEoから水平方向より下側を向く方向(45度程度下側に傾斜した方向)に延びて第一排出油路AFに連通する第二排出油路AEとを備えている。
特開2011-105195号公報(段落0045、図2等) 特開2013-095389号公報(段落0072、図5等)
 しかし、上述した特許文献2に記載された構成では、第二排出油路AEの第二開口部AEoが、回転電機MGの最下端部よりも上方において開口するように設けられている。その為、第二油貯留部U2における第二開口部AEoよりも上方の油は、排出油路AEに導入されて、第一油貯留部U1に供給されるが、第二開口部AEoよりも下方の油は、排出油路AEに流入し難く、第二油貯留部U2内に滞留する場合がある。回転電機MGの冷却に用いられた後の比較的高温の油が、第二油貯留部U2に滞留すると、当該第二油貯留部U2内の油に部分的に浸かっている回転電機MGの冷却効率が低下する恐れがある。
 そこで、ロータの回転抵抗を低く抑えつつ、回転電機を効率的に冷却することができる車両用駆動装置の実現が望まれる。
 上記に鑑みた、車両用駆動装置の特徴構成は、回転電機と、前記回転電機と車輪とを結ぶ動力伝達経路に設けられた変速機構と、前記回転電機と前記変速機構とを駆動連結する流体継手と、前記回転電機を収容する回転電機収容空間と前記変速機構を収容する変速機構収容空間と前記流体継手を収容する流体継手収容空間とを互いに独立した空間として形成するケースと、前記変速機構収容空間と連通して設けられ、油を貯留可能な第一油貯留部と、前記第一油貯留部の油を前記回転電機及び前記変速機構に供給する油圧ポンプと、前記回転電機収容空間内に設けられ、油を貯留可能な第二油貯留部と、前記第二油貯留部の油を前記第一油貯留部に排出する排出油路と、を備え、前記流体継手収容空間は、前記変速機構の軸方向における前記回転電機収容空間と前記変速機構収容空間との間に形成されると共に、前記流体継手の周囲に油が供給されないように構成され、前記排出油路は、前記第二油貯留部に向かって開口する導入開口部を備え、前記導入開口部の最下端部が、前記回転電機の最下端部よりも下方に位置している点にある。
 上記の構成によれば、回転電機収容空間及び変速機構収容空間には油が供給され、軸方向でこれらの間に形成される流体継手収容空間の流体継手の周囲には油が供給されないように構成されている。このように、油が供給される空間が、油が供給されない空間を挟んで軸方向に離間している場合であっても、上記の構成によれば、油圧ポンプにより第一油貯留部の油を回転電機に供給することができる。よって、回転電機に油を適切に供給することができるとともに、ロータの回転により油を掻き上げて回転電機に油を供給する場合に比べて、ロータの回転抵抗を低く抑えることができる。また、回転電機収容空間内に設けられる第二油貯留部と、当該第二油貯留部の油を第一油貯留部に排出する排出油路とが設けられている為、回転電機に供給した後の油を、第二油貯留部に回収することができるとともに、第二油貯留部に回収した油を、排出油路を介して第一油貯留部に供給することができる。すなわち、油圧ポンプにより回転電機に供給された油を、当該油圧ポンプが油を吸引する第一油貯留部に回収するための油の流通経路が形成される。
 さらに、上記の構成によれば、排出油路の第二油貯留部に向かって開口する導入開口部の最下端部が、回転電機の最下端部よりも下方に位置する為、上方から流れ落ちて第二油貯留部に溜まる油を、下方に位置する導入開口部から排出油路内に導入させることができる。従って、一部の油が滞留することを抑制し、油を適切に循環させることができる。よって、第二油貯留部に油が滞留することに起因して回転電機の冷却効率が低下することを抑制できる。
実施形態に係る車両用駆動装置の概略構成を示す模式図である。 実施形態に係る車両用駆動装置の部分断面図である。 図2の一部拡大図である。 実施形態に係る車両用駆動装置の図2とは異なる位置での部分断面図である。 実施形態に係る第二油圧制御装置の油圧制御系の概略構成を示す図である。
 車両用駆動装置の実施形態について、図面を参照して説明する。なお、以下の説明では、特に区別して明記している場合を除き、「軸方向L」、「径方向R」、「周方向」は、変速機構TMの入力軸(変速入力軸、本例では中間軸M)の軸心(図2に示す軸心X)を基準として定義している。本実施形態では、回転電機MG、第一クラッチC1、及びトルクコンバータTCが、全て、変速機構TMと同軸上に配置されているため、回転電機MG,第一クラッチC1、及びトルクコンバータTCのそれぞれについての、「軸方向」、「径方向」、及び「周方向」は、それぞれ、変速機構TMの「軸方向L」、「径方向R」、及び「周方向」と一致する。そして、「軸方向第一側L1」は、軸方向Lに沿って変速機構TMの出力軸(変速出力軸、本例では出力軸O)から変速入力軸側へ向かう側(図2における左側)を表し、「軸方向第二側L2」は、軸方向第一側L1とは反対側(図2における右側)を表す。また、「径方向内側R1」は、径方向Rにおける内側を表し、「径方向外側R2」は、径方向Rにおける外側を表す。
 また、以下の説明では、「上」及び「下」は、車両用駆動装置1を車両に搭載した状態(車両搭載状態)での鉛直方向V(図2参照)を基準として定義しており、「上」は図2における上方を表し、「下」は図2における下方を表す。なお、各部材についての方向は、当該部材が車両用駆動装置1に組み付けられた状態での方向を表す。また、各部材についての方向や位置等に関する用語は、製造上許容され得る誤差による差異を有する状態も含む概念として用いている。
 なお、本願明細書において、「駆動連結」とは、2つの回転要素が駆動力を伝達可能に連結された状態を指し、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が一又は二以上の伝動部材を介して駆動力を伝達可能に連結された状態を含む概念として用いている。このような伝動部材としては、回転を同速で又は変速して伝達する各種の部材が含まれ、例えば、軸、歯車機構、ベルト、チェーン等が含まれる。また、このような伝動部材として、回転及び駆動力を選択的に伝達する係合装置、例えば摩擦係合装置や噛み合い式係合装置等が含まれていてもよい。
 また、本願において「回転電機」は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータのいずれをも含む概念として用いている。
1.車両用駆動装置の全体構成
 図1は、本実施形態に係る車両用駆動装置1の概略構成を示す模式図である。図1に示すように、この車両用駆動装置1は、内燃機関Eに駆動連結される入力軸I(入力部材)と、回転電機MGと、トルクコンバータTCと、変速機構TMと、変速機構TM及び車輪Wに駆動連結される出力軸Oと、ケース3と、を備えている。トルクコンバータTC(流体継手)は、回転電機MGに駆動連結される継手入力側部材2と、継手入力側部材2と対をなす継手出力側部材4とを備えている。また、変速機構TMは、中間軸Mを介して継手出力側部材4に駆動連結されている。すなわち、本実施形態では、変速機構TMは、トルクコンバータTCを介して回転電機MGに駆動連結されている。車両用駆動装置1は、更に、入力軸Iと継手入力側部材2との間の係合の状態を変更可能な第一クラッチC1(摩擦係合装置)を備えている。本実施形態では、回転電機MGと変速機構TMとは、トルクコンバータTCを介して駆動連結されており、第一クラッチC1は、入力軸Iと継手入力側部材2との間の係合の状態を変化させることで、入力軸Iと変速機構TMとの間の係合の状態を変化させる。入力軸Iと出力軸Oとの間の動力伝達経路に沿う各部材の並び順は、図1に示すように、入力軸Iの側から順に、第一クラッチC1、回転電機MG、トルクコンバータTC、変速機構TMとなっている。
 内燃機関Eは、機関内部における燃料の燃焼により駆動されて動力を取り出す原動機であり、例えばガソリンエンジンやディーゼルエンジン等を用いることができる。本実施形態では、入力軸Iはダンパ16(図2参照、図1では省略)を介して内燃機関Eの出力軸(クランクシャフト等)に駆動連結されている。入力軸Iが、ダンパ16を介さずに内燃機関Eの出力軸に駆動連結された構成とすることもできる。なお、入力軸Iは、駆動連結の対象とする2つの部材の内の何れか(例えば、内燃機関Eの出力軸)と一体的に形成されている構成とすることも、2つの部材の双方と別体に形成されている構成とすることもできる。
 第一クラッチC1は、動力伝達経路における入力軸Iと回転電機MG(ロータ部材21)との間に備えられており、車輪Wから内燃機関Eを切り離す内燃機関切離用クラッチとして機能する。変速機構TMは、回転電機MGと車輪Wとを結ぶ動力伝達経路に設けられ、本例では、動力伝達経路におけるトルクコンバータTCと出力軸Oとの間に設けられている。そして、変速機構TMは、変速比を段階的に或いは無段階に変更可能な機構(例えば自動有段変速機構等)で構成され、継手出力側部材4に駆動連結された中間軸M(変速入力軸)の回転速度を所定の変速比で変速して、出力用差動歯車装置DFに駆動連結された出力軸O(変速出力軸)へ伝達する。
 出力軸Oは、出力用差動歯車装置DFを介して車輪Wに駆動連結されており、出力軸Oに伝達された回転及びトルクは、出力用差動歯車装置DFを介して左右2つの車輪Wに分配されて伝達される。これにより、車両用駆動装置1は、内燃機関E及び回転電機MGの一方又は双方のトルクを車輪Wに伝達させて車両を走行させることができる。すなわち、この車両用駆動装置1は、ハイブリッド車両用の駆動装置として構成され、具体的には、1モータパラレル方式のハイブリッド駆動装置として構成されている。なお、出力軸Oは、駆動連結の対象とする2つの部材の内の何れか(例えば、ドライブシャフト等)と一体的に形成されている構成とすることも、2つの部材の双方と別体に形成されている構成とすることもできる。
 本実施形態では、入力軸I、第一クラッチC1、回転電機MG、トルクコンバータTC、中間軸M、変速機構TM、及び出力軸Oは、いずれも軸心X(図2参照)上に配置されており、本実施形態に係る車両用駆動装置1は、FR(Front Engine Rear Drive)方式の車両に搭載される場合に適した一軸構成とされている。
2.駆動装置の各部の構成
 次に、本実施形態に係る車両用駆動装置1の各部の構成について図2~図4を参照して説明する。なお、図2は、本実施形態に係る車両用駆動装置1の一部を、軸心Xを含む鉛直面に沿って切断した断面図であり、図3及び図4は、それぞれ図2の一部拡大図である。なお、図2及び図3では、トルクコンバータTC及び変速機構TMについての具体的構成の図示を省略している。
2-1.回転電機
 回転電機MGは、図2に示すように、ステータStとロータ部材21とを備えている。
ステータStは、ケース3に固定されるとともに、軸方向Lの両側にコイルエンド部Ceを備えている。また、ロータ部材21は、図3に示すように、ステータStと対向するように配置されるロータRoと、当該ロータRoをケース3に対して回転可能に支持するロータ支持部材22と、を備えている。本実施形態では、ロータRoは、ステータStの径方向内側R1に配置され、ロータ支持部材22は、ロータRoから径方向内側R1に延びるように形成されてロータRoを径方向内側R1から支持している。
 本実施形態では、図3及び図4に示すように、ロータ支持部材22は、ロータRoを保持するロータ保持部25と、径方向延在部26と、を備えている。ロータ保持部25は、ロータRoの内周面に接する外周部及びロータRoの軸方向Lの側面に接するフランジ部を有する円筒状に形成されている。径方向延在部26は、ロータ保持部25の軸方向Lの中央部に対して軸方向第二側L2の部分から径方向内側R1に向かって延びる円環板状に形成されている。径方向延在部26は、径方向内側R1の端部に、軸方向第二側L2に向かって突出する筒状の突出部である第一軸方向突出部23を備えるとともに、軸方向第一側L1に向かって突出する筒状の突出部である第二軸方向突出部24を備えている。第一軸方向突出部23は、軸受96によりケース3(具体的には後述する第二支持壁部32)に対して回転可能に径方向Rに支持される被支持部とされている。また、第二軸方向突出部24は、後述する連結部材10との連結部を構成している。
 ロータ支持部材22には、円環板状の板状部材27が一体回転するように取り付けられている。板状部材27は、ロータ保持部25の軸方向Lの中央部に対して軸方向第一側L1に取り付けられている。これにより、ロータ保持部25の径方向内側R1には、ロータ保持部25により径方向外側R2を区画されるとともに、軸方向Lの両側を径方向延在部26と板状部材27とにより区画される空間が形成される。この空間は、各部に適宜配置されたシール部材等により油密状に区画された空間とされ、この空間内に、後述する第一クラッチC1の作動油圧室H1と循環油圧室H2とが形成されている。
2-2.第一クラッチ
 第一クラッチC1は、油圧により動作して係合の状態を変更可能な係合装置である。本実施形態では、第一クラッチC1は、入力軸Iと回転電機MGとの間を選択的に連結する。第一クラッチC1は、当該第一クラッチC1によって係合される2つの係合部材の係合の状態を、当該2つの係合部材が係合した状態(スリップ係合した状態を含む)と、当該2つの係合部材が係合しない状態(解放した状態)とに変更可能に構成されている。そして、当該2つの係合部材が係合した状態では、入力軸Iとロータ部材21との間で駆動力の伝達が行われ、当該2つの係合部材が解放した状態では、入力軸Iとロータ部材21との間で駆動力の伝達が行われない。
 図3及び図4に示すように、第一クラッチC1は、ロータ保持部25により径方向外側R2を区画されるとともに、軸方向Lの両側を径方向延在部26と板状部材27とにより区画される油密状の空間に配置されている。これにより、第一クラッチC1は、回転電機MGの径方向(本例では、径方向Rと同じ方向)に見て回転電機MGと重複する部分を有する位置に配置されている。具体的には、第一クラッチC1は、ロータRoより径方向内側R1であって、径方向Rに見てロータRoの軸方向Lの中央部領域と重複する位置に配置されている。なお、本願明細書において、2つの部材の配置に関して、「所定方向に見て重複する部分を有する」とは、当該所定方向を視線方向として当該視線方向に直交する各方向に視点を移動させた場合に、2つの部材が重なって見える視点が少なくとも一部の領域に存在することを指す。
 本実施形態では、第一クラッチC1は、湿式多板クラッチ機構として構成されている。具体的には、第一クラッチC1は、クラッチハブ51、摩擦部材53、ピストン54、及び付勢部材55を備え、これらの部材は全て、径方向Rに見てロータRoと重複する部分を有する位置に配置されている。本例では、ロータ支持部材22のロータ保持部25が、クラッチドラムとして機能する。第一クラッチC1は、摩擦部材53として、対となる入力側摩擦部材と出力側摩擦部材とを有し、入力側摩擦部材はクラッチハブ51の外周部により径方向内側R1から支持され、出力側摩擦部材はロータ保持部25の内周部により径方向外側R2から支持されている。クラッチハブ51は、径方向内側R1の端部が入力軸Iのフランジ部Iaに連結されている。
 図4に示すように、第一クラッチC1の作動油圧室H1は、ロータ支持部材22の径方向延在部26及び第二軸方向突出部24と、ピストン54とにより囲まれて形成されている。また、第一クラッチC1の循環油圧室H2は、主に、ロータ支持部材22のロータ保持部25(クラッチドラム)、ロータ支持部材22に取り付けられた板状部材27、及びピストン54により囲まれて形成され、内部にクラッチハブ51及び摩擦部材53が収容されている。これらの作動油圧室H1と循環油圧室H2とは、ピストン54に対して軸方向Lの両側に分かれて配置されていると共に、シール部材により互いに油密状に区画されている。また、本実施形態では、作動油圧室H1及び循環油圧室H2の双方が、ロータRoより径方向内側R1であって、径方向Rに見てロータRoと軸方向Lの全域で重複する位置に配置されている。
 付勢部材55は、ピストン54を軸方向Lにおける摩擦部材53側(本例では軸方向第一側L1)に押圧する。これにより、作動油圧室H1内の油圧及び付勢部材55による軸方向第一側L1へのピストン54の押圧力と、循環油圧室H2内の油圧による軸方向第二側L2へのピストン54の押圧力とのバランスにより、第一クラッチC1が係合又は解放される。すなわち、本実施形態では、作動油圧室H1と循環油圧室H2との間の油圧の差(差圧)に応じてピストン54を軸方向Lに沿って摺動させて、第一クラッチC1の係合の状態を制御することができる。なお、循環油圧室H2は、基本的に、車両の走行中には所定圧以上の油で満たされた状態となり、当該油により摩擦部材53が冷却される。
2-3.トルクコンバータ
 トルクコンバータTCは、回転電機MGと変速機構TMとを駆動連結するものであり、回転電機MGのロータ部材21に駆動連結される継手入力側部材2と、継手入力側部材2と対をなすとともに車輪Wに駆動連結される継手出力側部材4と、を備えている。本実施形態では、トルクコンバータTCは、図1に示すように、ポンプインペラ61、タービンランナ62、ロックアップクラッチとしての第二クラッチC2、及びカバー部(図示せず)を備えている。トルクコンバータTCの詳細な構成についての説明は省略するが、カバー部は、内側に配置されたポンプインペラ61と一体回転するように連結されているとともに、後述するポンプ駆動軸とも一体回転するように連結されている。本実施形態では、これらのポンプインペラ61、カバー部、及びポンプ駆動軸により継手入力側部材2が構成されている。そして、これらの部材に囲まれた内部空間には、第二クラッチC2やタービンランナ62等が収容されている。すなわち、継手入力側部材2は、トルクコンバータTCの本体(以下、単にトルクコンバータTC)を内部に収容するハウジングの役割も果たしている。また、当該内部空間は、油密状に区画された空間となっている。継手出力側部材4はタービンランナ62により構成され、タービンランナ62は中間軸Mに連結されている。これにより、継手出力側部材4は、中間軸M、変速機構TM、出力軸O、及び出力用差動歯車装置DFを介して、車輪Wに駆動連結されている。
 本実施形態では、図4に示すように、継手入力側部材2は、連結部材10を介してロータ部材21と一体回転するように連結されている。具体的には、図4に示すように、ケース3の第二支持壁部32には筒状突出部32aが形成されている。連結部材10は、当該筒状突出部32aの径方向内側R1を通って軸方向Lに延びる筒状の軸方向延在部と、当該筒状突出部32aより軸方向第一側L1を径方向Rに延びる円環板状の径方向延在部とを有している。そして、継手入力側部材2を構成するカバー部は、連結部材10の上記軸方向延在部とスプライン連結されているとともに、カバー部と連結部材10とは締結部材90により軸方向に相対移動不能に互いに固定されている。また、ロータ部材21の第二軸方向突出部24は、連結部材10の上記径方向延在部と、軸方向Lに相対移動可能な状態で一体回転するように連結されている。これにより、継手入力側部材2とロータ部材21とが一体回転するように駆動連結されている。
2-4.ケース
 ケース3は、回転電機MG、トルクコンバータTC、変速機構TM、及び第一クラッチC1を収容する。本実施形態では、図2に示すように、ケース3は、第一支持壁部31と、第二支持壁部32と、第三支持壁部33と、周壁部34と、を備えている。周壁部34は、回転電機MG、第一クラッチC1、トルクコンバータTC、変速機構TM等の外周を覆う概略円筒状に形成されている。また、周壁部34の径方向内側R1に形成されるケース内空間を軸方向Lに区画するように、第一支持壁部31、第二支持壁部32、及び第三支持壁部33が、軸方向第一側L1から記載の順に配置されている。
 図2に示すように、ケース3は、回転電機MGが収容される回転電機収容空間SGと、トルクコンバータTCが収容される流体継手収容空間SCと、変速機構TMが収容される変速機構収容空間SMとを形成している。本実施形態では、第一クラッチC1は、回転電機収容空間SGに収容されている。回転電機収容空間SG、流体継手収容空間SC、及び変速機構収容空間SMは、軸方向第一側L1から記載の順に形成されている。すなわち、流体継手収容空間SCは、変速機構TMの軸方向Lにおける回転電機収容空間SGと変速機構収容空間SMとの間に形成されている。これにより、本実施形態では、軸方向第一側L1から軸方向第二側L2に向かって、回転電機MG及び第一クラッチC1、トルクコンバータTC、変速機構TMの順に配置されている。すなわち、回転電機MG、第一クラッチC1、及びトルクコンバータTCは、変速機構TMに対して軸方向第一側L1に配置されている。また、回転電機収容空間SG、流体継手収容空間SC、及び変速機構収容空間SMは、互いに独立した空間として形成されている。ここで、「互いに独立した空間」とは、互いに油密状に区画されていることを意味する。このような構成は、各部に適宜シール部材を配置することで実現されている。
 回転電機収容空間SG、流体継手収容空間SC、及び変速機構収容空間SMは、全て環状の空間として形成されている。具体的には、回転電機収容空間SGは、軸方向Lにおける第一支持壁部31と第二支持壁部32との間に形成されている。流体継手収容空間SCは、軸方向Lにおける第二支持壁部32と第三支持壁部33との間に形成されている。変速機構収容空間SMは、軸方向Lにおける第三支持壁部33と当該第三支持壁部33より軸方向第二側L2に配置された支持壁部(図示せず)との間に形成されている。そして、これらの回転電機収容空間SG、流体継手収容空間SC、及び変速機構収容空間SMは、全て、周壁部34により径方向外側R2を区画されている。また、ケース3内における第一支持壁部31より軸方向第一側L1の空間には、ダンパ16が収容されている。
 本実施形態では、図2に示すように、ケース3は、第一ケース部3aと、当該第一ケース部3aより軸方向第二側L2に配置される第二ケース部3bと、に分離可能に構成されている。これらの第一ケース部3aと第二ケース部3bとは、接合部5において互いに連結されており、本実施形態では、締結ボルト(図示せず)によりそれぞれの周壁部34同士が互いに締結固定されている。以下では、周壁部34の内、第一ケース部3aが構成する部分を第一周壁部34aとし、第二ケース部3bが構成する部分を第二周壁部34bとする。
 第一ケース部3aは、回転電機収容空間SGを形成する部分である。具体的には、第一ケース部3aは、第一支持壁部31と第二支持壁部32とを有し、第一ケース部3aのみにより回転電機収容空間SGが形成されている。本実施形態では、更に、第一ケース部3aによりダンパ16の収容空間が形成されている。第二ケース部3bは、変速機構収容空間SMを形成する部分である。具体的には、第二ケース部3bは、第三支持壁部33を有し、第二ケース部3bのみにより変速機構収容空間SMが形成されている。流体継手収容空間SCは、第一ケース部3aと第二ケース部3bとの接合部5を含む軸方向Lの領域に、第一ケース部3aと第二ケース部3bとが協働して形成されている。
 また、本実施形態では、回転電機収容空間SG及び変速機構収容空間SMは、内部に油が供給される構成となっている。具体的には、回転電機収容空間SGでは、回転電機MGの各部の潤滑及び冷却のため、並びに第一クラッチC1の潤滑、冷却、及び油圧サーボの駆動のために油が供給される。また、変速機構収容空間SMでは、変速機構TMの各ギヤ機構の潤滑及び冷却のため、並びに、変速機構TMの複数の係合装置の潤滑、冷却、及び油圧サーボの駆動のために油が供給される。これにより、当該回転電機収容空間SG及び変速機構収容空間SMの内部は油が存在する状態(ウェット状態)となっている。一方、流体継手収容空間SCは、トルクコンバータTCの周囲に油が供給されないように構成されている。本実施形態では、トルクコンバータTCの本体を収容する空間以外には油が供給されないように構成されている。具体的には、上述のように、流体継手収容空間SC内における継手入力側部材2に囲まれた内部空間は油が供給された油密状態となっており、当該内部空間を除いた領域は、油が存在しない状態(ドライ状態)となっている。
 また、回転電機収容空間SG内には、油を貯留可能な第二油貯留部U2が設けられている。本実施形態では、回転電機収容空間SGの下部が第二油貯留部U2を構成している。そして、回転電機MGに供給された後の油が、回転電機収容空間SGの下部に形成された当該第二油貯留部U2に貯留される。また、変速機構収容空間SMは、油を貯留可能な第一油貯留部U1と連通している。本実施形態では、図2に示すように、変速機構収容空間SMは、当該変速機構収容空間SMを形成する第二ケース部3bの下面と変速機構収容空間SMの下方に配置される第一オイルパン11とで囲まれる第一収容空間S1と連通している。そして、変速機構TMに供給された後の油は、第四孔部P5(後述)を介して変速機構収容空間SMと連通している第一収容空間S1に貯留される。すなわち、第一収容空間S1が、第一油貯留部U1を構成している。
2-4-1.第一支持壁部
 第一支持壁部31は、図2に示すように、回転電機MGより軸方向第一側L1(本例では、軸方向Lにおける回転電機MGとダンパ16との間)において径方向R及び周方向に延びるように形成されている。円板状に形成された第一支持壁部31の径方向Rの中心部には、軸方向Lの貫通孔が形成されており、この貫通孔に、入力軸Iが挿通されている。第一支持壁部31は、径方向内側R1の部分が全体として径方向外側R2の部分よりも軸方向第二側L2に位置するように、軸方向Lにオフセットされた形状を有している。
2-4-2.第二支持壁部
 第二支持壁部32は、図2に示すように、軸方向Lにおける回転電機MGとトルクコンバータTCとの間で、径方向R及び周方向に延びるように形成されている。円板状に形成された第二支持壁部32の径方向Rの中心部には、軸方向Lに貫通する貫通孔が形成されており、この貫通孔内に連結部材10が配置されている。この連結部材10を介して、第二支持壁部32に対して軸方向第二側L2に配置された継手入力側部材2と、第二支持壁部32に対して軸方向第一側L1に配置されたロータ部材21とが、一体回転するように駆動連結されている。
 図4に示すように、第二支持壁部32の径方向内側R1の端部には、軸方向第一側L1に向かって突出する筒状突出部32aが形成されており、第二支持壁部32は、軸方向Lに所定厚さを有する肉厚部(ボス部)を径方向内側R1の端部に有している。なお、筒状突出部32aは、ロータ部材21より径方向内側R1であって、径方向Rに見てロータ部材21と重複する部分を有する位置に配置されている。
 第二支持壁部32の内部には、第一油路A1と第二油路A2とが形成されている。第一油路A1は、図3及び図4に示すように、第一クラッチC1の作動油圧室H1に連通し、当該作動油圧室H1にピストン54の作動用の油を供給するための油供給路である。第二油路A2は、図4に示すように、第一クラッチC1の循環油圧室H2に連通し、当該循環油圧室H2に摩擦部材53の冷却用の油を供給するための油供給路である。図4に示すように、第一油路A1は、筒状突出部32aの内部を軸方向第一側L1に向かって延びた後、当該筒状突出部32aに形成された連通孔32c、スリーブ部材94に形成された貫通孔94c、及びロータ支持部材22の第二軸方向突出部24に形成された貫通孔24cを介して、作動油圧室H1に連通している。ここで、スリーブ部材94は、筒状突出部32aの外周面と第二軸方向突出部24の内周面との間の径方向の隙間を、油が軸方向Lに流通することを規制するために設けられている。
 また、図4に示すように、第二油路A2は、筒状突出部32aの内部を軸方向第一側L1に向かって延びた後、当該筒状突出部32aの軸方向第一側L1の端面に開口するように形成されている。第二油路A2の当該開口は、連結部材10と筒状突出部32aとの間に形成された軸方向Lの隙間に開口している。また、第二軸方向突出部24の連結部材10との連結部分には、当該第二軸方向突出部24を径方向Rに貫通する隙間が形成されている。これら2つの隙間を介して、第二油路A2が循環油圧室H2に連通している。
2-4-3.第三支持壁部
 第三支持壁部33は、図2に示すように、トルクコンバータTCより軸方向第二側L2(本例では、軸方向LにおけるトルクコンバータTCと変速機構TMとの間)において径方向R及び周方向に延びるように形成されている。詳細な図示は省略するが、円板状に形成された第三支持壁部33の径方向Rの中心部には、軸方向Lの貫通孔が形成されており、この貫通孔に、中間軸M(図示せず)が挿通されている。第三支持壁部33には、車両用駆動装置1の各部に油を供給するための油圧を発生する油圧ポンプ9が設けられている。そして、第三支持壁部33の内部には、油圧ポンプ9の吸入油路(図示せず)及び吐出油路ABが形成されている。
2-4-4.第一周壁部
 第一周壁部34aには、第一孔部P1と、第二孔部P2と、第六孔部P7とが形成されている。また、第一周壁部34aには、凹部P4が形成されている。第一孔部P1は、第一周壁部34aの内周面と外周面とを連通する孔部であり、本実施形態では、図3に示すように、第一周壁部34aの下部に形成されている。また、凹部P4は、第一周壁部34aの外周部に形成された径方向内側R1に窪んだ部分であり、本実施形態では、第一周壁部34aの下部に形成されている。具体的には、凹部P4は、第一周壁部34aの下部における他の部分よりも下方側に突出した下方側突出部に形成されている。また、第一孔部P1は、当該凹部P4の底部(下側を向く面を有する部分)の一部を径方向R(ここでは上下方向)に貫通するように形成されている。また、第一孔部P1は、径方向R(ここでは上下方向)に見て、回転電機MGと重複する部分を有する位置に形成されている。すなわち、第一孔部P1は、第一周壁部34aにおける回転電機収容空間SGを形成する部分に設けられている。
 排出油路AD(後述)の一部を構成する第一孔部P1は、図2及び図3に示すように、回転電機収容空間SGに向けて開口する周壁開口部36(後述の導入開口部ADi)を備えている。本実施形態では、周壁開口部36は、回転電機収容空間SGの下部の第二油貯留部U2に向かって開口している。そして、周壁開口部36は、図3に示すように、当該周壁開口部36(導入開口部ADi)の最下端部が、回転電機MGの最下端部MGuよりも下方に位置するように設けられている。ここで、周壁開口部36(導入開口部ADi)の最下端部とは、当該周壁開口部36の周縁部の中で最も下方に位置する部分である。本実施形態では、第一周壁部34aの内周面は、回転電機MGのステータコアの外周面に沿って円筒状に形成されているため、周壁開口部36の周縁部も円筒状の内周面に沿った形状となっている。よって、周壁開口部36の最下端部は、当該円筒状の内周面に沿って形成された周壁開口部36の周縁部における、軸心Xの鉛直下方に位置する部分である。また、回転電機MGの最下端部MGuとは、回転電機MGを構成する部材の中で最も下方に位置する部分である。本実施形態では、図3に示すように、回転電機MGの最下端部MGuは、円筒状に形成されたステータStの外周面のうち軸心Xの鉛直下方に位置する部分である。
 第二孔部P2は、第一周壁部34aを軸方向Lに延びる孔部である。本実施形態では、図3に示すように、第一周壁部34aの下部には、凹部P4の周囲を区画する壁部63が下方へ突出するように形成されている。第二孔部P2は、凹部P4に対して軸方向第二側L2に設けられた壁部63を、軸方向Lに貫通している。そして、第二孔部P2は、接合部5において、第二ケース部3bの第二周壁部34bに形成される第三孔部P3(後述)と互いに接続されている。第二孔部P2は、第一周壁部34aのうち、流体継手収容空間SCを形成する部分に設けられている。すなわち、第二孔部P2は、第一孔部P1よりも軸方向第二側L2に設けられている。また、第二孔部P2は、流体継手収容空間SCとは連通されない独立した孔部である。
 第六孔部P7は、第一周壁部34aを軸方向Lに延びる孔部である。本実施形態では、第六孔部P7は、第一周壁部34aのうち流体継手収容空間SCを形成する部分に設けられている。具体的には、流体継手収容空間SCの下方側、より具体的には、図3に示すように、第二孔部P2よりも上方側でかつ第二孔部P2とは周方向の異なる位置に設けられ、流体継手収容空間SCとは連通しない独立した孔部となっている。また、第六孔部P7は、軸方向第一側L1では、第二油圧制御装置82に接続されていると共に、軸方向第二側L2では第二ケース部3bに形成される第五孔部P6に接続されている。なお、第六孔部P7は、第二孔部P2と周方向の異なる位置に形成されているため、図2及び図3では破線で示している。
2-4-5.第二周壁部
 第二周壁部34bには、第三孔部P3と、第四孔部P5と、第五孔部P6とが設けられている。第三孔部P3は、第二周壁部34bの下部において軸方向Lに延びる孔部である。本実施形態では、第三孔部P3は、図3に示すように、第二周壁部34bのうち流体継手収容空間SCを形成する部分に設けられている。具体的には、第三孔部P3は、流体継手収容空間SCよりも下方に設けられ、流体継手収容空間SCとは連通しない独立した孔部となっている。また、第三孔部P3は、軸方向第一側L1では第一ケース部3aに形成される第二孔部P2に接続されていると共に、軸方向第二側L2では第一収容空間S1(第一油貯留部U1)に接続されている。また、本実施形態では、第三孔部P3は、軸方向第一側L1から軸方向第二側L2に向かうに従って上方側へ傾斜するように構成されている。
 また、排出油路AD(後述)の一部を構成する第三孔部P3は、第一収容空間S1(第一油貯留部U1)に向けて開口する排出開口部ADoを備えている。本実施形態では、排出開口部ADoは、図2及び図3に示すように、当該排出開口部ADoの最下端部AHoが、回転電機MGのロータRoの最下端部Rouよりも下方に位置するように配置されている。ここで、排出開口部ADoの最下端部AHoとは、排出開口部ADoの周縁部の中で最も下方に位置する部分である。また、ロータRoの最下端部Rouとは、ロータRoを構成する部材のうち最も下方に位置する部分のことであり、本実施形態では、円筒状に形成されたロータRoの外周面における軸心Xの鉛直下方に位置する部分である。
 図2に示すように、第四孔部P5は、第二周壁部34bの内周面と外周面とを連通する孔部である。本実施形態では、第四孔部P5は、第二周壁部34bの下部において、径方向Rに貫通するように設けられている。また、当該第四孔部P5は、第二周壁部34bのうち変速機構収容空間SMを形成する部分に設けられている。また、第四孔部P5は、径方向Rに見て、変速機構TMの軸方向Lの中央部と重複する部分を有する位置に形成されていると共に、下方から見ても、当該変速機構TMと重複する部分を有する位置に形成されている。そして、この第四孔部P5を介して、変速機構収容空間SMと、当該変速機構収容空間SMの下部に設けられる第一収容空間S1とが連通している。
 第五孔部P6は、第二周壁部34bを軸方向Lに延びる孔部である。本実施形態では、第五孔部P6は、第二周壁部34bのうち流体継手収容空間SCを形成する部分に設けられている。具体的には、第五孔部P6は、流体継手収容空間SCの下方側、より具体的には、図3に示すように、第三孔部P3よりも上方側でかつ第三孔部P3とは周方向の異なる位置に設けられ、流体継手収容空間SCとは連通しない独立した孔部となっている。また、第五孔部P6は、軸方向第一側L1では、第一ケース部3aに形成される第六孔部P7に接続されていると共に、軸方向第二側L2では第一油圧制御装置81に接続されている。また、本実施形態では、第五孔部P6は、軸方向第二側L2から軸方向第一側L1へ向かうに従って下方側へ傾斜するように構成されている。なお、第五孔部P6は、第三孔部P3と周方向の異なる位置に形成されているため、図2及び図3では破線で示している。
 そして、第一周壁部34aの第二孔部P2と第二周壁部34bの第三孔部P3とにより、排出油路ADの一部である第二排出油路AHが構成されている。また、第一周壁部34aに形成される第六孔部P7と第二周壁部34bに形成される第五孔部P6とにより第三油路A3が構成されている。上述のように、第二孔部P2、第三孔部P3、第五孔部P6及び第六孔部P7は、いずれも流体継手収容空間SCと連通されない孔部である。よって、これらから構成される第三油路A3及び第二排出油路AHも流体継手収容空間SCと連通されない独立した油路となっている。これにより、油が供給されてウェット状態である回転電機収容空間SG及び変速機構収容空間SMの間に、ドライ状態である流体継手収容空間SCが設けられていても、回転電機収容空間SGと変速機構収容空間SMとの間で適切に油の供給及び排出を行うことができる。
2-5.油圧ポンプ
 油圧ポンプ9を駆動するポンプ駆動軸は、上述したように、トルクコンバータTCのポンプインペラ61と一体回転するように駆動連結されている。このポンプインペラ61は、図1に示すように、回転電機MG及び内燃機関Eに駆動連結されているため、油圧ポンプ9は、車輪Wの駆動力源としての内燃機関E又は回転電機MGにより駆動されて油を吐出する。そして、油圧ポンプ9は、第一油貯留部U1の油を、変速機構TM及び回転電機MGに供給する。具体的には、油圧ポンプ9が生成した油圧は、後述する第一油圧制御装置81により制御されて制御後の油圧がトルクコンバータTC及び変速機構TMに供給されるとともに、後述する第二油圧制御装置82により制御されて制御後の油圧が第一クラッチC1に供給される。そして、本実施形態では、第一クラッチC1の循環油圧室H2に供給された油が、当該循環油圧室H2を流通した後に回転電機MGに供給される。
3.油圧の供給構成
 次に、本実施形態に係る車両用駆動装置1における油圧の供給構成について説明する。この車両用駆動装置1は、油圧ポンプ9から供給される油圧を制御する油圧制御装置として第一油圧制御装置81を備えるとともに、当該第一油圧制御装置81とは別に第二油圧制御装置82を備えている。
3-1.第一油圧制御装置
 第一油圧制御装置81は、油圧ポンプ9から供給される油圧を制御して、制御後の油圧をトルクコンバータTC及び変速機構TMに供給する装置である。図2に示すように、本実施形態では、第一油圧制御装置81は、第二ケース部3bに設けられており、本例では、第二ケース部3bの下部に設けられている。具体的には、第一油圧制御装置81は、第二ケース部3bの第二周壁部34bの外周部(本例では当該外周部における下側を向く面を有する部分)に固定されている。また、本実施形態では、第一油圧制御装置81は、変速機構TMの径方向である径方向Rに見て当該変速機構TMと重複する部分を有する位置に配置されている。本例では、図2に示すように、第一油圧制御装置81は、径方向Rに見て変速機構TMと軸方向Lの全域で重複する位置に配置されている。
 具体的には、ケース3は、第二ケース部3bの下部に取り付けられる第一オイルパン11を備えており、第二ケース部3bと第一オイルパン11とで囲まれる空間が、上述のように、第一油圧制御装置81を収容する第一収容空間S1(第一油貯留部U1)とされている。この第一収容空間S1は、下方から見て変速機構TMと重複する部分を有する位置に形成されている。そして、第一油圧制御装置81は、この第一収容空間S1に収容された状態で、下方から見て変速機構TMと重複する部分を有する位置に配置されている。
 第一油圧制御装置81は、複数の油圧制御弁と油の流路とを備えている。第一油圧制御装置81に備えられる油圧制御弁には、変速機構TMに供給する油圧を制御する変速機構油圧制御弁(図示せず)と、トルクコンバータTCに供給する油圧を制御する流体継手油圧制御弁(図示せず)とが含まれる。変速機構TMに供給された油圧は、変速機構TMが備える各係合装置の係合の状態の制御に用いられ、また、変速機構TMが備える歯車機構や軸受等の潤滑及び冷却に用いられる。トルクコンバータTCに供給された油圧は、トルクコンバータTC内の動力伝達用の油として用いられるとともに、第二クラッチC2の作動油圧室に供給されて、当該第二クラッチC2の係合の状態を制御するために用いられる。そして、変速機構TMやトルクコンバータTCに供給された後の油は、変速機構TMの下方に配置された第一オイルパン11に戻される。
 詳細は省略するが、油圧ポンプ9、第一油圧制御装置81、トルクコンバータTC、及び変速機構TMを経由する油の循環経路には、油を冷却するオイルクーラ(熱交換器)が直列或いは並列に設けられている。このオイルクーラは、第二ケース部3b側に設けられている。例えば、少なくとも発熱部位に供給された油が、オイルクーラを介して第一オイルパン11に戻される構成とすることや、少なくとも発熱部位に供給される油が、オイルクーラを介して油供給対象箇所に供給される構成とすることができる。
 油圧ポンプ9の吐出圧(出力圧)であるライン圧は、ライン圧制御弁(図示せず)により制御される。ライン圧制御弁は、例えばプレッシャーレギュレータバルブが用いられ、基準圧室に供給された基準圧に基づきライン圧が制御される。本実施形態では、ライン圧制御弁は、第一油圧制御装置81に備えられており、ライン圧制御弁により制御(調圧)された油圧が、第三油路A3を介して第二油圧制御装置82に供給される。
3-2.第二油圧制御装置
 第二油圧制御装置82は、油圧ポンプ9から供給される油圧を制御して、制御後の油圧を第一クラッチC1に供給する装置である。図2に示すように、本実施形態では、第二油圧制御装置82は、第一ケース部3aに設けられている。第一ケース部3aは、第一油圧制御装置81が設けられている第二ケース部3bより軸方向第一側L1に配置されている。よって、本実施形態では、第二油圧制御装置82は、第一油圧制御装置81より軸方向第一側L1に配置されている。具体的には、第一油圧制御装置81は、第一ケース部3aと第二ケース部3bとの接合部5より軸方向第二側L2に配置され、第二油圧制御装置82は、当該接合部5より軸方向第一側L1に配置されている。また、本実施形態では、第二油圧制御装置82は、第一油圧制御装置81の上端部よりも下方に配置されている。
 また、本実施形態では、第二油圧制御装置82は、第一ケース部3aの下部に設けられている。具体的には、第二油圧制御装置82は、第一周壁部34aの外周部に形成された凹部P4に収容された状態で、当該凹部P4の底部(下側を向く面を有する部分)に固定されている。ここで、ケース3は、第一ケース部3aの下部に取り付けられる第二オイルパン12を備えている。本実施形態では、第二オイルパン12は、凹部P4(第一孔部P1)の全体を覆うように、第一周壁部34aに取り付けられる。この第一ケース部3aと第二オイルパン12とで囲まれる空間が、第二油圧制御装置82を収容する第二収容空間S2を構成している。具体的には、第二収容空間S2は、第一孔部P1と凹部P4とを形成している第一ケース部3aの部分と第二オイルパン12とに囲まれた空間である。この第二収容空間S2は、回転電機収容空間SGよりも下方であって、上下方向に見て回転電機MGと重複する部分を有する位置に形成されている。そして、第二収容空間S2は、当該第二収容空間S2の上部(天井部)に設けられた周壁開口部36を介して、回転電機収容空間SGの第二油貯留部U2と連通している。よって、第二収容空間S2は、基本的に、第二油貯留部U2から供給される油で満たされる。
 また、第二収容空間S2は、第二排出油路AHを構成する第二孔部P2とも連通している。すなわち、第二収容空間S2は、第二排出油路AHを介して第一収容空間S1(第一油貯留部U1)に連通している。
 ここで、排出油路ADは、第一排出油路AGと第二排出油路AHとから構成されている。本実施形態では、上述のように、第二油貯留部U2から第二収容空間S2に供給された油が、第二排出油路AHを介して第一油貯留部U1に排出される油の経路が構築されている。すなわち、本実施形態では、この第二収容空間S2が、第一排出油路AGを構成している。よって、この第二収容空間S2と第二油貯留部U2との連通部分である周壁開口部36が、排出油路ADが備える第二油貯留部U2に向かって開口する導入開口部ADiである。また、第二油圧制御装置82は、上述のように、当該第一排出油路AG(排出油路AD)を構成する第二収容空間S2内に配置されている。よって、当該第二油圧制御装置82が、「油圧制御装置」に相当する。
 ここで、図3に示すように、第二オイルパン12は、第一周壁部34aの外周部における凹部P4の周辺部分に取り付けられている。この際、第二オイルパン12は、軸方向第一側L1から軸方向第二側L2に向かうに従って下方側へ傾斜した状態で第一周壁部34aに取り付けられている。すなわち、第二収容空間S2は、底部(下部)が軸方向第一側L1から軸方向第二側L2に向かうに従って下方側に傾斜した空間として構成されている。第二収容空間S2は、このように構成されることで、第二油貯留部U2から第二収容空間S2内に供給された油を適切かつ容易に第一油貯留部U1側へ導くことができる。
 なお、第二オイルパン12は、第一オイルパン11とは独立して設けられている。すなわち、第一オイルパン11と第二オイルパン12とは、互いに別の部材で構成され、ケース3の互いに異なる位置に取り付けられている。具体的には、第一オイルパン11は、第一ケース部3aと第二ケース部3bとの接合部5より軸方向第二側L2に配置され、第二オイルパン12は、当該接合部5より軸方向第一側L1に配置されている。
 図3に示すように、第二油圧制御装置82は、回転電機MGの径方向(本例では径方向Rと同じ方向)に見て回転電機MGと重複する部分を有する位置に配置されている。本例では、第二油圧制御装置82の軸方向第一側L1の部分が径方向Rに見て回転電機MG(具体的にはステータSt)と重複するように、第二油圧制御装置82は回転電機MGに対して軸方向第二側L2にずらして配置されている。これに伴い、第二収容空間S2も軸方向第二側L2にずらして配置されている。これにより、第一収容空間S1と第二収容空間S2との距離、すなわち、これらを連結する第二排出油路AHの軸方向の長さを短く抑えて、第二排出油路AHにおける油の流通抵抗を小さくすることができている。本実施形態では、更に、第二油圧制御装置82は、下方から見て回転電機MGと重複する部分を有する位置に配置されている。
 また、図3に示すように、第二油圧制御装置82は、第一クラッチC1の径方向(本例では径方向Rと同じ方向)に見て第一クラッチC1と重複する部分を有する位置に配置されている。本実施形態では、第二油圧制御装置82は、第一クラッチC1を構成するクラッチハブ51、ピストン54、摩擦部材53、クラッチドラム(本例では、ロータ保持部25)、作動油圧室H1、及び循環油圧室H2の中の少なくとも一部に対して、径方向Rに見て重複する部分を有する位置に配置されている。本例では、第二油圧制御装置82は、サーボ機構(ピストン54及び作動油圧室H1)に対して径方向Rに見て重複する部分を有する位置に配置されている。
 第二油圧制御装置82は、第一クラッチC1に供給する油圧を制御する油圧制御弁を備えている。本実施形態では、第二油圧制御装置82は、複数の油圧制御弁(第一油圧制御弁41、第二油圧制御弁42及び第三油圧制御弁43)と、当該油圧制御弁と連通する油路が設けられたバルブボディ83と、を備えている。本実施形態では、図3に示すように、油圧ポンプ9が吐出した油は、第一油圧制御装置81及び第三油路A3を介して第二油圧制御装置82に供給される。この第三油路A3には、上述したように、第一油圧制御装置81により制御されたライン圧が供給され、第二油圧制御装置82に供給する。そして第二油圧制御装置82が、当該ライン圧を制御し、当該制御後の油圧を第一油路A1を介して第一クラッチC1に供給する。具体的には、図5に示すように、第二油圧制御装置82は、油圧制御弁として、第一油圧制御弁41と第二油圧制御弁42とを備えている。第一油圧制御弁41は、第一クラッチC1の作動油圧室H1に供給する油圧を制御する油圧制御弁である。第二油圧制御弁42は、第一クラッチC1の循環油圧室H2に供給する油圧を制御(調圧)する油圧制御弁である。
 第一油圧制御弁41は、本実施形態では、電磁部と調圧部とを有するリニアソレノイド弁とされている。ここで、電磁部は、弁体(スプール)の位置を制御するアクチュエータとして機能する部分である。また、調圧部は、バルブとして機能する部分であり、この調圧部は、バルブボディ83に形成されたバルブ挿入孔に挿入されている。第一油圧制御弁41は、ライン圧の油が供給される入力ポート41aと、第一油路A1に油を吐出する出力ポート41bと、フィードバック圧を発生させるためのフィードバックポート41cと、油を排出(ドレン)する第一排出ポート41d及び第二排出ポート41eとを備えている。そして、電磁部への通電状態に応じた圧力の油が、第一油路A1を介して第一クラッチC1の作動油圧室H1に供給される。このように、第一油圧制御弁41は、第一油路A1及び第三油路A3の双方と連通するように構成されており、バルブボディ83には、第一油路A1の一部と第三油路A3の一部とが形成されている。
 第一油圧制御弁41の第一排出ポート41dは、フィードバック圧に応じて出力ポート41bから第一油路A1に供給される油の量を調整するために、油を適宜、第三油圧制御弁43側に排出する機能を有する。また、第一排出ポート41dは、作動油圧室H1へ供給する油圧を低下させる際に、第一油路A1内の油の一部を第三油圧制御弁43側に排出する機能を有する。ここで、第三油圧制御弁43は、当該第三油圧制御弁43の入力ポートに供給される油圧が所定値以上である場合に、当該第三油圧制御弁43の入力ポートと出力ポートとを連通する弁である。すなわち、この第三油圧制御弁43は、第一油路A1内の油の抜け止めとして機能するとともに、第三油圧制御弁43から第一油圧制御弁41に向かって油が逆流することを規制する逆止弁として機能する。第三油圧制御弁43の出力ポートから出力された油は、第二収容空間S2に排出される。また、第一油圧制御弁41の第二排出ポート41eは、バネ室内の油が高圧になった場合に、当該油を第二収容空間S2に排出する機能を有する。
 第二油圧制御弁42は、本実施形態では、入力ポート42aの開閉と第一排出ポート42dとの開閉との双方を行うタイプの調圧弁である。第二油圧制御弁42は、ライン圧の油が供給される入力ポート42aと、第二油路A2に油を吐出する出力ポート42bと、フィードバック圧を発生させるためのフィードバックポート42cと、油を排出(ドレン)する第一排出ポート42d及び第二排出ポート42eとを備えている。そして、第二油圧制御弁42による制御後の油圧が、第二油路A2を介して第一クラッチC1の循環油圧室H2に供給される。なお、第二油圧制御弁42の第一排出ポート42dは、フィードバック圧に応じて出力ポート42bから第二油路A2に供給される油の量を調整するために、油を適宜、第二収容空間S2へ排出する機能を有する。また、第二油圧制御弁42の第二排出ポート42eは、バネ室内の油が高圧になった場合に、当該油を第二収容空間S2に排出する機能を有する。このように、第二油圧制御弁42は、第二油路A2に連通するように構成されており、バルブボディ83には、第二油路A2の一部が形成されている。
 なお、上述のように、第二油圧制御装置82は、第一排出油路AGを構成する第二収容空間S2内に配置されている。よって、第二油圧制御装置82の油排出口から第二収容空間S2に排出された油は、当該第一排出油路AG及び第二排出油路AHを介して第一収容空間S1の第一油貯留部U1に排出される。ここで、本実施形態では、第一油圧制御弁41の第一排出ポート41d及び第二排出ポート41e、並びに第二油圧制御弁42の第一排出ポート42d及び第二排出ポート42eが、第二油圧制御装置82の「油排出口」を構成している。
 ところで、本実施形態では、図4に示すように、第二油路A2を介して第一クラッチC1の循環油圧室H2に供給された後の油を、軸受96を介して回転電機MGのコイルエンド部Ceに供給する油の流通経路が形成されている。これにより、循環油圧室H2に供給された後の油を利用して、ロータRoを支持する軸受96の冷却や、コイルエンド部Ceを含む回転電機MGの冷却が可能となっている。このように、油圧ポンプ9により吐出された油が回転電機MGに供給されるように構成されている。
 そして、図3に示すように、回転電機MGに供給された後の油は、回転電機収容空間SGの第二油貯留部U2に貯留される。第二油貯留部U2の油面の高さは、車両用駆動装置1の動作状態に応じて変動するが、少なくとも回転電機MGの駆動中は、ステータコイル等の冷却のために多量の油が回転電機収容空間SGに供給されるため、基本的には、導入開口部ADiの最下端部よりも上方に油面が位置する状態となる。図3に示す例では、第二油貯留部U2の油面の高さは、回転電機MGのロータRoの最下端部Rouより下方であって、回転電機MG(ステータコア)の最下端部MGuより上方に位置している。第一油貯留部U1の油面の高さも、車両用駆動装置1の動作状態に応じて変動するが、車両用駆動装置1に加減速度が作用していない状態では、基本的には、油面は、排出開口部ADoの最下端部AHoよりも下方に位置する状態となる。従って、第二油貯留部U2の油面と第一油貯留部U1の油面との高低差により、第二油貯留部U2から第一油貯留部U1へ向けて油が流動する。すなわち、第二油貯留部U2の油が、排出油路ADを通って第一油貯留部U1へ排出される。
 このように、本実施形態では、回転電機MGを冷却した後に第二油貯留部U2に貯留される比較的高温の油を、第一油貯留部U1の油面と第二油貯留部U2の油面との高低差を用いた簡易な構成で、排出油路ADを介して第一油貯留部U1に戻すことができる。この際、排出油路ADの導入開口部ADiの最下端部が、回転電機MGの最下端部MGuよりも下方に位置する為、上方から流れ落ちて第二油貯留部U2に溜まる油を、下方に位置する導入開口部ADiから排出油路AD内に順次導入させることができる。従って、第二油貯留部U2において下方へ向かう油の流れを乱すことなくそのまま排出油路ADへ排出することができるので、回転電機MGを冷却した後の比較的高温の油の一部が第二油貯留部U2に滞留することを抑制し、油を適切に循環させることができる。よって、第二油貯留部U2に油が滞留することに起因して回転電機MGの冷却効率が低下することを抑制できる。また、第二油圧制御装置82は、排出油路AD内に配置されている為、当該第二油圧制御装置82の油排出口から排出油路AD内に排出された油も併せて第一油貯留部U1に供給することができる。よって、第二油圧制御装置82の排出口から排出された油を第一油貯留部U1に戻す為の油路を別途設ける必要がない。また、第二油圧制御装置82は、油の流通方向における両端部(導入開口部ADi及び排出開口部ADo)が開口し、内部油圧が比較的低い排出油路ADに油を排出する為、特許文献2のように油で満たされた略密閉空間であり内部油圧の比較的高い第二収容空間S2に排出するよりも、油排出口から油を排出する際に受ける抵抗が少ない。よって、第二油圧制御装置82による油圧調整の精度を確保することも容易な構成となっている。
4.その他の実施形態
 最後に、この車両用駆動装置の、その他の実施形態について説明する。なお、以下のそれぞれの実施形態で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能である。
(1)上記の実施形態では、油圧ポンプ9が吐出した油が、第一油圧制御装置81及び第三油路A3を介して第二油圧制御装置82に供給される構成を例として説明した。しかし、この車両用駆動装置の実施形態はこれに限定されるものではなく、第二油圧制御装置82がライン圧制御弁を備える構成とし、油圧ポンプ9が吐出した油が、第一油圧制御装置81を介することなく直接、第二油圧制御装置82に供給される構成とすることもできる。
(2)上記の実施形態では、第二油圧制御装置82が、排出油路AD内に配置され、第二油圧制御装置82の油排出口から排出された油が、第一排出油路AG(第二収容空間S2)及び第二排出油路AH、すなわち排出油路ADを介して第一油貯留部U1に供給される構成を例として説明した。しかし、この車両用駆動装置の実施形態はこれに限定されるものではなく、第二油圧制御装置82が排出油路AD内に配置されない構成であってもよい。その場合には、第二油圧制御装置82の油排出口から排出された油が、排出油路ADとは別の油路を介して第一油貯留部U1に排出される構成とすることもできる。
(3)上記の実施形態では、第二油圧制御装置82が、回転電機MGの径方向に見て回転電機MGと重複する部分を有する位置に配置されている構成を例として説明した。しかし、この車両用駆動装置の実施形態はこれに限定されるものではなく、第二油圧制御装置82が、回転電機MGの径方向に見て回転電機MGと重複する部分を有さないように、回転電機MGの軸方向において回転電機MGとは異なる位置に配置されている構成とすることもできる。
(4)上記の実施形態では、第二油圧制御装置82が、第一クラッチC1の径方向に見て第一クラッチC1と重複する部分を有する位置に配置されている構成を例として説明した。しかし、この車両用駆動装置の実施形態はこれに限定されるものではなく、第二油圧制御装置82が、第一クラッチC1の径方向に見て第一クラッチC1と重複する部分を有さないように、第一クラッチC1の軸方向において第一クラッチC1とは異なる位置に配置されている構成とすることもできる。また、上記の実施形態では、第一クラッチC1が備えられる構成を例として説明したが、車両用駆動装置1が第一クラッチC1を備えずに、入力軸Iと回転電機MGとが常時連動して回転するように(例えば一体回転するように)駆動連結された構成とすることもできる。また、車両用駆動装置1が、第一クラッチC1及び入力軸Iの双方を備えず、車両用駆動装置1が、回転電機MGのトルクのみにより車両を走行させる構成とすることもできる。
(5)上記の実施形態では、ケース3が、回転電機収容空間SGを形成する第一ケース部3aと、変速機構収容空間SMを形成する第二ケース部3bとに分離可能に形成されている構成を例として説明した。しかし、この車両用駆動装置の実施形態はこれに限定されるものではなく、ケース3をどの部位において分離可能に形成するかについては、適宜変更可能である。
(6)上記の実施形態では、第二油圧制御装置82から第一クラッチC1の循環油圧室H2に供給された油が、当該循環油圧室H2から排出された後に回転電機MGに供給される構成を例として説明した。しかし、この車両用駆動装置の実施形態はこれに限定されるものではなく、第一油圧制御装置81又は第二油圧制御装置82により制御された油圧が、第一クラッチC1を介することなく、第二油路A2とは別に設けられた油路を介して回転電機MGに供給される構成とすることもできる。このような場合、第一クラッチC1の循環油圧室H2には油圧が供給されずに、第一クラッチC1の作動油圧室H1にのみ第二油圧制御装置82が制御した油圧が供給される構成とすることもできる。
(7)上記の実施形態では、第二油圧制御装置82の第一油圧制御弁41が制御した油圧が、直接第一クラッチC1の作動油圧室H1に供給される構成を例として説明した。しかし、この車両用駆動装置の実施形態はこれに限定されるものではなく、第一油圧制御弁41とは別の油圧制御弁(図示せず)を備え、当該別の油圧制御弁が制御(調圧)した油圧が第一クラッチC1の作動油圧室H1に供給される構成とすることもできる。この場合、当該別の油圧制御弁は、第一油圧制御弁41が制御した油圧を信号圧として動作することで、ライン圧を調圧する調圧弁とされ、この別の油圧制御弁は、第二油圧制御装置82に備えられる構成とすると好適である。
(8)上記の実施形態では、第一油圧制御装置81を収容する第一収容空間S1が、第二ケース部3bと、当該第二ケース部3bの下部に取り付けられる第一オイルパン11とで囲まれる空間とされる構成を例として説明した。しかし、この車両用駆動装置の実施形態はこれに限定されるものではなく、第一収容空間S1が、第二ケース部3bと一体的に形成されたケース3の部分のみにより形成される構成(例えば、第二ケース部3bの周壁内に形成された構成)とすることもできる。
(9)上記の実施形態では、第二油圧制御装置82を収容する第二収容空間S2が、第一ケース部3aと、当該第一ケース部3aの下部に取り付けられる第二オイルパン12とで囲まれる空間とされる構成を例として説明した。しかし、この車両用駆動装置の実施形態はこれに限定されるものではなく、第二収容空間S2が、第一ケース部3aと一体的に形成されたケース3の部分のみにより形成される構成(例えば、第一ケース部3aの周壁内に形成された構成)とすることもできる。
(10)上記の実施形態では、車両用駆動装置1が、流体継手としてトルク増幅機能を有するトルクコンバータTCを備える構成を例として説明した。しかし、この車両用駆動装置の実施形態はこれに限定されるものではなく、車両用駆動装置1が、トルクコンバータTCに代えて、トルク増幅機能を有さない流体継手を備える構成とすることもできる。
(11)上記の実施形態では、第二オイルパン12が、軸方向第一側L1から軸方向第二側L2に向かうに従って軸心Xに対して下方側に傾斜するように取り付けられる構成であったが、この車両用駆動装置の実施形態はこれに限定されるものではない。例えば、第二オイルパン12は、軸方向第二側L2に向かうに従って傾斜せずに、軸心Xと平行状に取り付けられる構成であってもよい。
(12)上記の実施形態では、第二収容空間S2は、回転電機MGに対して軸方向第二側L2にずらして配置されている構成であった。しかし、この車両用駆動装置の実施形態はこれに限定されるものではない。例えば、第二収容空間S2が、回転電機MGの全体と軸方向で重複するように配置される構成であってもよい。
(13)その他の構成に関しても、本明細書において開示された実施形態は全ての点で例示であって、車両用駆動装置の実施形態はこれに限定されない。すなわち、本願の特許請求の範囲に記載されていない構成に関しては、本開示の目的を逸脱しない範囲内で適宜改変することが可能である。
5.上記実施形態の概要
 以下、上記において説明した車両用駆動装置の概要について説明する。
 車両用駆動装置(1)は、回転電機(MG)と、前記回転電機(MG)と車輪(W)とを結ぶ動力伝達経路に設けられた変速機構(TM)と、前記回転電機(MG)と前記変速機構(TM)とを駆動連結する流体継手(TC)と、前記回転電機(MG)を収容する回転電機収容空間(SG)と前記変速機構(TM)を収容する変速機構収容空間(SM)と前記流体継手(TC)を収容する流体継手収容空間(SC)とを互いに独立した空間として形成するケース(3)と、前記変速機構収容空間(SM)と連通して設けられ、油を貯留可能な第一油貯留部(U1)と、前記第一油貯留部(U1)の油を前記回転電機(MG)及び前記変速機構(TM)に供給する油圧ポンプ(9)と、前記回転電機収容空間(SG)内に設けられ、油を貯留可能な第二油貯留部(U2)と、前記第二油貯留部(U2)の油を前記第一油貯留部(U1)に排出する排出油路(AD)と、を備え、前記流体継手収容空間(SC)は、前記変速機構(TM)の軸方向における前記回転電機収容空間(SG)と前記変速機構収容空間(SM)との間に形成されると共に、前記流体継手(TC)の周囲に油が供給されないように構成され、前記排出油路(AD)は、前記第二油貯留部(U2)に向かって開口する導入開口部(ADi)を備え、前記導入開口部(ADi)の最下端部が、前記回転電機(MG)の最下端部(MGu)よりも下方に位置している。
 すなわち、回転電機収容空間(SG)及び変速機構収容空間(SM)には油が供給され、軸方向でこれらの間に形成される流体継手収容空間(SC)の流体継手(TC)の周囲には油が供給されないように構成されている。このように、油が供給される空間が、油が供給されない空間を挟んで軸方向に離間している場合であっても、上記の構成によれば、油圧ポンプ(9)により第一油貯留部(U1)の油を回転電機(MG)に供給することができる。よって、回転電機(MG)に油を適切に供給することができるとともに、ロータ(Ro)の回転により油を掻き上げて回転電機(MG)に油を供給する場合に比べて、ロータ(Ro)の回転抵抗を低く抑えることができる。また、回転電機収容空間(SG)内に設けられる第二油貯留部(U2)と、当該第二油貯留部(U2)の油を第一油貯留部(U1)に排出する排出油路(AD)とが設けられている為、回転電機(MG)に供給した後の油を、第二油貯留部(U2)に回収することができるとともに、第二油貯留部(U2)に回収した油を、排出油路(AD)を介して第一油貯留部(U1)に供給することができる。すなわち、油圧ポンプ(9)により回転電機(MG)に供給された油を、当該油圧ポンプ(9)が油を吸引する第一油貯留部(U1)に回収するための油の流通経路が形成される。
 さらに、上記の構成によれば、排出油路(AD)の第二油貯留部(U2)に向かって開口する導入開口部(ADi)の最下端部が、回転電機(MG)の最下端部(MGu)よりも下方に位置する為、上方から流れ落ちて第二油貯留部(U2)に溜まる油を、下方に位置する導入開口部(ADi)から排出油路(AD)内に導入させることができる。従って、一部の油が滞留することを抑制し、油を適切に循環させることができる。よって、第二油貯留部(U2)に油が滞留することに起因して回転電機(MG)の冷却効率が低下することを抑制できる。
 ここで、回転電機(MG)は、ケース(3)に固定されたステータ(St)と、ステータ(St)の径方向内側に配置されたロータ(Ro)とを有し、排出油路(AD)は、第一油貯留部(U1)に向かって開口する排出開口部(ADo)を備え、排出開口部(ADo)の最下端部(AHo)が、ロータ(Ro)の最下端部(Rou)よりも下方に位置している構成とすると好適である。
 この構成によれば、車両に慣性力が作用していない状態における第二油貯留部(U2)の油面が、ロータ(Ro)の最下端部(Rou)よりも高くなることを抑制することができる。よって、ロータ(Ro)が回転する際に第二油貯留部(U2)の油が掻き上げられることを抑制でき、その結果、ロータ(Ro)の回転抵抗を低く抑えることができる。
 また、内燃機関に駆動連結される入力部材(I)と、回転電機(MG)の径方向内側(R1)に配置されて入力部材(I)と回転電機(MG)との間を選択的に連結する摩擦係合装置(C1)と、摩擦係合装置(C1)に供給する油圧を制御する油圧制御弁(41、42、43)を備えた油圧制御装置(82)と、をさらに備え、油圧制御装置(82)が、排出油路(AD)内に配置されている構成とすると好適である。
 この構成によれば、油圧制御弁(82)が油圧を制御する(油圧を低下させる)際に排出する油を、排出油路(AD)内に排出することができる。よって、第二油貯留部(U2)から排出油路(AD)に供給される油だけでなく、油圧制御弁(82)により排出油路(AD)内に排出された油も併せて、当該排出油路(AD)を介して第一油貯留部(U1)に戻すことができる。
 本開示に係る技術は、回転電機と、回転電機と車輪とを結ぶ動力伝達経路に設けられた変速機構と、回転電機と変速機構とを駆動連結する流体継手と、回転電機を収容する回転電機収容空間と変速機構を収容する変速機構収容空間と流体継手を収容する流体継手収容空間とを互いに独立した空間として形成するケースと、を備える車両用駆動装置に好適に利用することができる。
1:車両用駆動装置
3:ケース
9:油圧ポンプ
41:第一油圧制御弁(油圧制御弁)
42:第二油圧制御弁(油圧制御弁)
43:第三油圧制御弁(油圧制御弁)
82:第二油圧制御装置(油圧制御装置)
AD:排出油路
ADo:排出開口部
AHo:排出開口部の最下端部
ADi:導入開口部
AG:第一排出油路(排出油路)
AH:第二排出油路(排出油路)
C1:クラッチ(摩擦係合装置)
I:入力軸(入力部材)
MG:回転電機
MGu:モータ最下端部
R1:径方向内側
Ro:ロータ
Rou:ロータ最下端部
St:ステータ
SG:回転電機収容空間
SM:変速機構収容空間
SC:流体継手収容空間
St:ステータ
TM:変速機構
TC:トルクコンバータ(流体継手)
U1:第一油貯留部
U2:第二油貯留部
W:車輪
 

Claims (3)

  1.  回転電機と、
     前記回転電機と車輪とを結ぶ動力伝達経路に設けられた変速機構と、
     前記回転電機と前記変速機構とを駆動連結する流体継手と、
     前記回転電機を収容する回転電機収容空間と前記変速機構を収容する変速機構収容空間と前記流体継手を収容する流体継手収容空間とを互いに独立した空間として形成するケースと、
     前記変速機構収容空間と連通して設けられ、油を貯留可能な第一油貯留部と、
     前記第一油貯留部の油を前記回転電機及び前記変速機構に供給する油圧ポンプと、
     前記回転電機収容空間内に設けられ、油を貯留可能な第二油貯留部と、
     前記第二油貯留部の油を前記第一油貯留部に排出する排出油路と、を備え、
     前記流体継手収容空間は、前記変速機構の軸方向における前記回転電機収容空間と前記変速機構収容空間との間に形成されると共に、前記流体継手の周囲に油が供給されないように構成され、
     前記排出油路は、前記第二油貯留部に向かって開口する導入開口部を備え、
     前記導入開口部の最下端部が、前記回転電機の最下端部よりも下方に位置している車両用駆動装置。
  2.  前記回転電機は、前記ケースに固定されたステータと、前記ステータの径方向内側に配置されたロータとを有し、
     前記排出油路は、前記第一油貯留部に向かって開口する排出開口部を備え、
     前記排出開口部の最下端部が、前記ロータの最下端部よりも下方に位置している請求項1に記載の車両用駆動装置。
  3.  内燃機関に駆動連結される入力部材と、
     前記回転電機の径方向内側に配置されて前記入力部材と前記回転電機との間を選択的に連結する摩擦係合装置と、
     前記摩擦係合装置に供給する油圧を制御する油圧制御弁を備えた油圧制御装置と、をさらに備え、
     前記油圧制御装置が、前記排出油路内に配置されている請求項1又は2に記載の車両用駆動装置。
     
PCT/JP2015/059858 2014-04-01 2015-03-30 車両用駆動装置 WO2015152126A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580015660.XA CN106163850B (zh) 2014-04-01 2015-03-30 车辆用驱动装置
DE112015000947.7T DE112015000947B4 (de) 2014-04-01 2015-03-30 Fahrzeugantriebsvorrichtung
US15/126,177 US10183567B2 (en) 2014-04-01 2015-03-30 Vehicle drive device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-075554 2014-04-01
JP2014075554A JP6257419B2 (ja) 2014-04-01 2014-04-01 車両用駆動装置

Publications (1)

Publication Number Publication Date
WO2015152126A1 true WO2015152126A1 (ja) 2015-10-08

Family

ID=54240449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059858 WO2015152126A1 (ja) 2014-04-01 2015-03-30 車両用駆動装置

Country Status (5)

Country Link
US (1) US10183567B2 (ja)
JP (1) JP6257419B2 (ja)
CN (1) CN106163850B (ja)
DE (1) DE112015000947B4 (ja)
WO (1) WO2015152126A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107054054A (zh) * 2016-01-28 2017-08-18 舍弗勒技术股份两合公司 用于混合驱动装置的离合器装置
US10704666B2 (en) 2015-12-23 2020-07-07 Zf Friedrichshafen Ag Transmission

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015167964A1 (en) * 2014-04-29 2015-11-05 Cummins Inc. Electric machine with variable torque drive
JP2017520449A (ja) * 2014-06-11 2017-07-27 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲーSchaeffler Technologies AG & Co. KG ハイブリッドモジュール用のモジュール式のハウジング
JP5943127B1 (ja) * 2015-07-10 2016-06-29 トヨタ自動車株式会社 車両用駆動装置
US10071623B2 (en) * 2016-09-08 2018-09-11 Hyundai Motor Company Structure of power train for vehicle
EP3622191B1 (de) * 2017-05-11 2021-12-01 Schaeffler Technologies AG & Co. KG Schalteinheit für kühlöl und hybridmodul mit schalteinheit
WO2019001622A1 (de) * 2017-06-26 2019-01-03 Schaeffler Technologies AG & Co. KG Verfahren und steuer- und regeleinrichtung zur kompensation eines kupplungsmoments einer hybridtrennkupplung unter berücksichtung der drehzahl einer elektrischen maschine
DE102017213081A1 (de) * 2017-07-28 2019-01-31 Zf Friedrichshafen Ag Lastschaltgetriebe
DE102017213513A1 (de) * 2017-08-03 2019-02-07 Zf Friedrichshafen Ag Ölversorgungsanordnung eines Fahrzeuges mit einer elektrischen Maschine
DE102018219676A1 (de) * 2018-11-16 2020-05-20 Zf Friedrichshafen Ag Konuselement als Kupplung im K0-Bauraum
JP7087944B2 (ja) * 2018-11-19 2022-06-21 マツダ株式会社 車両のトランスファ構造
US20220016969A1 (en) * 2019-01-09 2022-01-20 Aisin Corporation Hybrid drive device
EP3886298B1 (en) * 2019-01-09 2024-03-06 Aisin Corporation Vehicle drive device
JPWO2020149411A1 (ja) * 2019-01-17 2021-11-11 株式会社アイシン 車両用駆動装置
JP7463957B2 (ja) * 2020-12-17 2024-04-09 トヨタ自動車株式会社 電気自動車用モータ取り付け構造

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979118A (ja) * 1995-09-11 1997-03-25 Toyota Motor Corp 内燃機関の電動発電機
JP2009071905A (ja) * 2007-09-10 2009-04-02 Komatsu Ltd パワーユニット
JP2011126320A (ja) * 2009-12-15 2011-06-30 Mitsubishi Fuso Truck & Bus Corp ハイブリッド電気自動車のクラッチ及びモータハウジング構造
JP2013095389A (ja) * 2011-11-04 2013-05-20 Aisin Aw Co Ltd 車両用駆動装置
JP2013095390A (ja) * 2011-11-04 2013-05-20 Aisin Aw Co Ltd 車両用駆動装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5382930B2 (ja) * 2009-07-29 2014-01-08 株式会社コーワ ガイドレール保全装置
JP2011105195A (ja) 2009-11-19 2011-06-02 Aisin Seiki Co Ltd ハイブリッド車両用駆動装置
JP5707656B2 (ja) * 2012-04-20 2015-04-30 アイシン・エィ・ダブリュ株式会社 車両用駆動装置
JP6215741B2 (ja) * 2014-03-14 2017-10-18 トヨタ自動車株式会社 ハイブリッド車両
DE102015226679A1 (de) * 2015-12-23 2017-06-29 Zf Friedrichshafen Ag Getriebe für ein Kraftfahrzeug

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979118A (ja) * 1995-09-11 1997-03-25 Toyota Motor Corp 内燃機関の電動発電機
JP2009071905A (ja) * 2007-09-10 2009-04-02 Komatsu Ltd パワーユニット
JP2011126320A (ja) * 2009-12-15 2011-06-30 Mitsubishi Fuso Truck & Bus Corp ハイブリッド電気自動車のクラッチ及びモータハウジング構造
JP2013095389A (ja) * 2011-11-04 2013-05-20 Aisin Aw Co Ltd 車両用駆動装置
JP2013095390A (ja) * 2011-11-04 2013-05-20 Aisin Aw Co Ltd 車両用駆動装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10704666B2 (en) 2015-12-23 2020-07-07 Zf Friedrichshafen Ag Transmission
CN107054054A (zh) * 2016-01-28 2017-08-18 舍弗勒技术股份两合公司 用于混合驱动装置的离合器装置
CN107054054B (zh) * 2016-01-28 2021-10-22 舍弗勒技术股份两合公司 用于混合驱动装置的离合器装置

Also Published As

Publication number Publication date
CN106163850B (zh) 2018-07-20
CN106163850A (zh) 2016-11-23
DE112015000947B4 (de) 2022-09-01
US10183567B2 (en) 2019-01-22
DE112015000947T5 (de) 2016-11-10
US20170080793A1 (en) 2017-03-23
JP6257419B2 (ja) 2018-01-10
JP2015196459A (ja) 2015-11-09

Similar Documents

Publication Publication Date Title
JP6257419B2 (ja) 車両用駆動装置
JP5793787B2 (ja) 車両用駆動装置
JP5425164B2 (ja) 車両用駆動装置
JP2013095390A5 (ja)
JP5149974B2 (ja) 車両用駆動装置
WO2011062264A1 (ja) 車両用駆動装置
WO2011062266A1 (ja) 車両用駆動装置
US20130193816A1 (en) Vehicle drive device
JP2012086826A (ja) 車両用駆動装置
CN110431332B (zh) 油供给装置
JP4900683B2 (ja) 油圧供給装置
JP4378825B2 (ja) 動力伝達装置
JP5250013B2 (ja) 車両用駆動装置
JP2012171371A (ja) 車両用駆動装置
JP5406815B2 (ja) 車両用駆動装置
CN114144324A (zh) 车辆用驱动装置
JP2014113890A (ja) 車両用駆動装置
JP2013177116A (ja) ハイブリッド駆動装置
JP2021160466A (ja) 車両用駆動装置
CN112572129A (zh) 车辆用驱动装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15773025

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015000947

Country of ref document: DE

Ref document number: 15126177

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15773025

Country of ref document: EP

Kind code of ref document: A1