WO2015151814A1 - 熱硬化性芳香族エステルの製造方法、及び熱硬化性芳香族エステル - Google Patents

熱硬化性芳香族エステルの製造方法、及び熱硬化性芳香族エステル Download PDF

Info

Publication number
WO2015151814A1
WO2015151814A1 PCT/JP2015/058055 JP2015058055W WO2015151814A1 WO 2015151814 A1 WO2015151814 A1 WO 2015151814A1 JP 2015058055 W JP2015058055 W JP 2015058055W WO 2015151814 A1 WO2015151814 A1 WO 2015151814A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
component
thermosetting
aromatic ester
aromatic
Prior art date
Application number
PCT/JP2015/058055
Other languages
English (en)
French (fr)
Inventor
中谷晃司
橋爪陽子
田口吉昭
坂本勝利
Original Assignee
株式会社ダイセル
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル, ポリプラスチックス株式会社 filed Critical 株式会社ダイセル
Publication of WO2015151814A1 publication Critical patent/WO2015151814A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • C08G63/605Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds the hydroxy and carboxylic groups being bound to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/065Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids the hydroxy and carboxylic ester groups being bound to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/46Polyesters chemically modified by esterification
    • C08G63/47Polyesters chemically modified by esterification by unsaturated monocarboxylic acids or unsaturated monohydric alcohols or reactive derivatives thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O

Definitions

  • the present invention relates to a method for producing a thermosetting aromatic ester and a novel thermosetting aromatic ester.
  • This application claims the priority of Japanese Patent Application No. 2014-0756515 for which it applied to Japan on April 2, 2014, and uses the content here.
  • Liquid crystal polymers typified by liquid crystal polyester are excellent in various properties such as heat resistance, moldability, chemical resistance, and mechanical strength, and are therefore used in various applications such as electric / electronic parts and automobile parts.
  • thermosetting liquid crystal polyester As a method for producing a liquid crystal polyester, a method by transesterification involving acetylation and deacetylation of a monomer is known.
  • a method for producing a thermosetting liquid crystal polyester there is known a method in which a curing agent such as a thermosetting agent is added to the liquid crystal polyester and melt mixed. Transfer molding is known as a semiconductor sealing technique.
  • thermosetting liquid crystal polymer material for example, a material in which a liquid crystal oligomer such as a main chain thermotropic liquid crystal ester is end-capped with a phenylacetylene, phenylmaleimide, or nadiimide reactive end group is known (see Patent Documents 1 to 3). ).
  • a material obtained by reacting a thermosetting liquid crystal oligomer having one or more soluble structural units in the main chain and having a thermosetting group at one or more terminals of the main chain with a specific fluorine compound A material obtained by reacting the thermosetting liquid crystal oligomer with a nano filler whose surface is substituted with an alkoxide metal compound is known (see Patent Document 5).
  • thermosetting liquid crystal polymer material for example, a material in which a polymerizable functional group is bonded to a terminal of a liquid crystal polymer via a spacer unit is also known (see Patent Document 6).
  • a material having radically polymerizable groups such as unsubstituted or substituted maleimide, unsubstituted or substituted nadiimide, ethynyl, and benzocyclobutene at both ends of the liquid crystal polyester is also known (see Patent Document 7).
  • Thermosetting aromatic polyesters such as liquid crystal polyesters having these polymerizable functional groups can be cured to obtain a cured product having excellent physical properties such as heat resistance.
  • a compound having a polymerizable functional group is further added to the aromatic polyester.
  • it is necessary to react and the manufacturing process is complicated.
  • curing of the compound having a polymerizable functional group during the synthesis of the aromatic polyester ( (Polymerization) reaction may proceed. Thereby, the viscosity in the system increases, molding such as transfer molding becomes difficult, and physical properties of the obtained cured product may be lowered.
  • thermosetting aromatic ester can be produced easily and with good productivity by melt polymerization of a compound having a reactive functional group and a thermopolymerizable functional group therein, and the present invention has been completed.
  • the present invention includes a monomer component containing at least a component (A) which is an aromatic diol or a monocarboxylic acid (mono or di) ester thereof and a component (B) which is an aromatic hydroxycarboxylic acid, and a hydroxyl group in the molecule. And / or a component (C) that is a compound having any one of a reactive functional group that reacts with an acyloxy group and a thermally polymerizable functional group represented by the following formulas (c1) to (c6).
  • a method for producing a thermosetting aromatic ester represented by the following formula (I) is provided.
  • n1 to n7 each represents an integer of 0 or more, and R 1 to R 7 are substituents, which are a C 1-6 alkyl group, a C 6-10 aryl group, a C 1-6 , respectively. Represents an alkoxy group, a C 6-10 aryloxy group, or a halogen atom, and when n1 to n7 is 2 or more, R 1 to R 7 may be the same or different.
  • [L in the above formula (I) is derived from the structural unit derived from the component (A) which is an aromatic diol or a monocarboxylic acid (mono or di) ester thereof and the component (B) which is an aromatic hydroxycarboxylic acid.
  • R A and R A ′ may be the same or different, and are a group represented by the above formula (II), a hydroxyl group, an acyloxy group, or another organic group.
  • the total ratio of the group represented by the above formula (II), the hydroxyl group and the acyloxy group is 70% or more of R A + R A ′ , and D in the above formula (II) represents a single bond or a linking group.
  • R a represents any one of the groups represented by the above formulas (c1) to (c6)]
  • the present invention provides a method for producing the thermosetting aromatic ester, wherein the thermosetting functional group in the component (C) has a curing start temperature of 350 ° C. or higher.
  • this invention provides the manufacturing method of the said thermosetting aromatic ester composition whose said component (C) is a compound represented by following formula (III).
  • R in the above formula (III) represents a hydroxyl group or a halogen atom
  • D represents a single bond or a linking group
  • R a is any one of the groups represented by the above formulas (c1) to (c6).
  • the present invention provides the thermosetting aromatic ester, wherein the component (C) is at least one compound selected from the group consisting of phenylethynylbenzoic acid, 4-stilbenecarboxylic acid, and cinnamic acid.
  • the component (C) is at least one compound selected from the group consisting of phenylethynylbenzoic acid, 4-stilbenecarboxylic acid, and cinnamic acid.
  • the component (A) contains 4,4′-dihydroxybiphenyl, hydroquinone, resorcinol, 2,6-naphthalenediol, 1,5-naphthalenediol, [1,1′-biphenyl] -4, 4′-diol, 4,4′-dihydroxydiphenyl ether, bis (4-hydroxyphenyl) methanone, bisphenol A, bisphenol F, bisphenol S, (phenylsulfonyl) benzene, [1,1′-biphenyl] -2,5-
  • a method for producing the aforementioned thermosetting aromatic ester which is a diol or a monocarboxylic acid (mono or di) ester thereof.
  • the aromatic hydroxycarboxylic acid is selected from the group consisting of 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 1-hydroxy-2-naphthoic acid, 3-hydroxy-2-naphthoic acid, 6-hydroxy-2-
  • the above thermosetting aromatic ester which is at least one compound selected from the group consisting of naphthoic acid, 5-hydroxy-1-naphthoic acid, 4′-hydroxy [1,1′-biphenyl] -4-carboxylic acid
  • a manufacturing method is provided.
  • thermosetting fragrance wherein the functional group ratio of the hydroxyl group to the carboxyl group (the former / the latter) is 1.02 or more in all the compounds of the component (A) and the component (B).
  • a method for producing a group ester is provided.
  • the present invention provides the method for producing the thermosetting aromatic ester, wherein the ratio of the component (A) to the total amount of the component (A) and the component (B) is 3 to 25 mol%.
  • the present invention provides a method for producing the thermosetting aromatic ester, wherein the temperature during the melt polymerization is 250 to 400 ° C.
  • the present invention provides the method for producing the thermosetting aromatic ester, wherein the thermosetting aromatic ester has an average degree of polymerization of 1 to 50.
  • the present invention provides a method for producing the thermosetting aromatic ester, wherein the melting point of the thermosetting aromatic ester is 250 ° C. or less.
  • thermosetting aromatic ester represented by the following formula (I).
  • [L in the above formula (I) is derived from the structural unit derived from the component (A) which is an aromatic diol or a monocarboxylic acid (mono or di) ester thereof and the component (B) which is an aromatic hydroxycarboxylic acid.
  • R A and R A ′ may be the same or different and are a group represented by the above formula (II), a hydroxyl group, an aliphatic acyloxy group, or another organic group; And the total proportion of the group represented by the formula (II), the hydroxyl group and the aliphatic acyloxy group is 70% or more of R A + R A ′ , and D in the formula (II) is a single bond or Represents a linking group, and R a represents any of the groups represented by the following formulas (c1) to (c6)] [In each formula, n1 to n7 each represents an integer of 0 or more, and R 1 to R 7 are substituents, which are a C 1-6 alkyl group, a C 6-10 aryl group, a C 1-6 , respectively. Represents an alkoxy group, a C 6-10 aryloxy group, or a halogen atom, and when
  • the linking group in the formula (II) is a divalent hydrocarbon group, a carbonyl group, an ether bond, an ester bond, a carbonate bond, an amide bond, or a group in which a plurality of these are linked.
  • the thermosetting aromatic ester is provided.
  • thermosetting aromatic ester wherein R a in the above formula (II) is (c1) or (c2).
  • thermosetting aromatic ester wherein the average degree of polymerization of the aromatic ester skeleton L in the above formula (I) is 1 to 50.
  • thermosetting aromatic ester having a thermosetting start temperature of 350 ° C. or higher.
  • thermosetting aromatic ester having a melting point of 250 ° C. or lower.
  • Component (C) which is a compound having any one of a reactive functional group that reacts with an acyloxy group and a thermally polymerizable functional group represented by formulas (c1) to (c6), is melt-polymerized
  • thermosetting aromatic ester according to [1], wherein the thermosetting functional group in the component (C) has a curing start temperature of 350 ° C. or higher.
  • thermosetting aromatic ester composition according to [1] or [2], wherein the component (C) is a compound represented by the formula (III).
  • component (C) is at least one compound selected from the group consisting of phenylethynylbenzoic acid, 4-stilbenecarboxylic acid, and cinnamic acid.
  • the component (A) (aromatic diol) is 4,4′-dihydroxybiphenyl, hydroquinone, resorcinol, 2,6-naphthalenediol, 1,5-naphthalenediol, [1,1′-biphenyl]- 4,4′-diol, 4,4′-dihydroxydiphenyl ether, bis (4-hydroxyphenyl) methanone, bisphenol A, bisphenol F, bisphenol S, (phenylsulfonyl) benzene, [1,1′-biphenyl] -2,
  • the method for producing a thermosetting aromatic ester according to any one of [1] to [4], which is a 5-diol or a monocarboxylic acid (mono or di) ester thereof.
  • thermosetting aromatic ester according to any one of [1] to [5], wherein the component (A) (aromatic diol) is a compound having a biphenyl structure.
  • the component (A) (monocarboxylic acid (mono or di) ester of aromatic diol) is an aliphatic carboxylic acid having 1 to 10 carbon atoms.
  • the aromatic hydroxycarboxylic acid (component (B)) is 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 1-hydroxy-2-naphthoic acid, 3-hydroxy-2-naphthoic acid, 6-hydroxy.
  • thermosetting aromatic ester any one of [7].
  • the functional group ratio of the hydroxyl group to the carboxyl group is 1.02 or more in all the compounds of the component (A) and the component (B)
  • thermosetting according to any one of [1] to [9], wherein the ratio of the component (A) to the total amount of the component (A) and the component (B) is 3 to 25 mol%.
  • a method for producing an aromatic ester [11]
  • the reactive functional group is at least one group selected from an ⁇ , ⁇ -unsaturated carbonyl group, an epoxy group, a maleimide group, an ester group, an acid anhydride group, and a carboxyl group.
  • thermosetting aromatic ester according to any one of [1] to [12], wherein the thermosetting start temperature of the component (C) is 350 to 450 ° C.
  • thermosetting start temperature of the component (C) is 350 to 450 ° C.
  • thermosetting start temperature of the component (C) is 350 to 450 ° C.
  • thermosetting start temperature of the component (C) is 350 to 450 ° C.
  • thermosetting start temperature of the component (C) is 350 to 450 ° C.
  • thermosetting start temperature of the component (C) is 350 to 450 ° C.
  • thermosetting start temperature of the component (C) is 350 to 450 ° C.
  • thermosetting start temperature of the component (C) is 350 to 450 ° C.
  • thermosetting start temperature of the component (C) is 350 to 450 ° C.
  • thermosetting start temperature of the component (C) is 350 to 450 ° C.
  • thermosetting start temperature of the component (C) is 350 to 450 ° C.
  • the linking group in formula (II) is a divalent hydrocarbon group, a carbonyl group, an ether bond, an ester bond, a carbonate bond, an amide bond, or a group in which a plurality of these are linked. Thermosetting aromatic ester.
  • R a in formula (II) is (c1) or (c2).
  • Tg glass transition temperature
  • the thermosetting aromatic ester according to any one of [17] to [23] which has a melting point of 250 ° C. or lower.
  • thermosetting aromatic ester of the present invention Since the method for producing a thermosetting aromatic ester of the present invention has the above-described configuration, the thermosetting aromatic ester can be produced easily and with high productivity. In addition, since the aromatic ester is included as an essential component, the obtained cured product is excellent in processability, dimensional stability, low linear expansion, high thermal conductivity, low hygroscopicity, and dielectric properties. Moreover, since the thermosetting aromatic ester of this invention has the said structure, the hardened
  • thermosetting aromatic ester The method for producing a thermosetting aromatic ester according to the present invention (sometimes referred to as “the method for producing the present invention”) is a method for producing a thermosetting aromatic ester represented by the following formula (I).
  • component (C) which is a compound having any one of the reactive functional group and the thermopolymerizable functional group represented by the following formulas (c1) to (c6).
  • n1 to n7 each represents an integer of 0 or more, and R 1 to R 7 are substituents, which are a C 1-6 alkyl group, a C 6-10 aryl group, a C 1-6 , respectively. Represents an alkoxy group, a C 6-10 aryloxy group, or a halogen atom, and when n1 to n7 is 2 or more, R 1 to R 7 may be the same or different.
  • [L in the above formula (I) is derived from the structural unit derived from the component (A) which is an aromatic diol or a monocarboxylic acid (mono or di) ester thereof and the component (B) which is an aromatic hydroxycarboxylic acid.
  • R A and R A ′ may be the same or different, and are a group represented by the above formula (II), a hydroxyl group, an acyloxy group, or another organic group.
  • the total ratio of the group represented by the above formula (II), the hydroxyl group and the acyloxy group is 70% or more of R A + R A ′ , and D in the above formula (II) represents a single bond or a linking group.
  • R a represents any one of the groups represented by the above formulas (c1) to (c6)]
  • the ratio of the other organic groups is not particularly limited, but is preferably 0 to 30%, more preferably 0 to 15% of R A + R A ′ (the whole end group).
  • the linking group is not particularly limited, and examples thereof include a divalent hydrocarbon group, a carbonyl group, an ether bond, an ester bond, a carbonate bond, an amide bond, and a group in which a plurality of these are linked.
  • the divalent hydrocarbon include an arylene group, an alkylene group, a cyclohexylene group, or a group in which two or more of these are bonded.
  • the arylene group include a phenylene group, a biphenylene group, and a naphthylene group.
  • the alkylene group include linear or branched alkylene groups having 1 to 4 carbon atoms such as a methylene group, an ethylene group, and a propylene group.
  • An aromatic ester is a polymer having an ester structure (for example, a polymer or an oligomer), and its melt (for example, a melt at 450 ° C. or lower) exhibits optical anisotropy (thermotropic liquid crystal polymer). ) In many cases.
  • hydroxyl group and / or acyloxy group means “one or both of a hydroxyl group and an acyloxy group”, and the same applies to others.
  • the aromatic diol or monocarboxylic acid (mono or di) ester thereof as the component (A) of the present invention is a group consisting of an aromatic diol, a monocarboxylic acid monoester of an aromatic diol, and a monocarboxylic acid diester of an aromatic diol. It is at least one compound selected from.
  • aromatic diol examples include 4,4′-dihydroxybiphenyl, hydroquinone, resorcinol, 2,6-naphthalenediol, 1,5-naphthalenediol, [1,1′-biphenyl] -4,4′-diol. 4,4′-dihydroxydiphenyl ether, bis (4-hydroxyphenyl) methanone, bisphenol A, bisphenol F, bisphenol S, (phenylsulfonyl) benzene, [1,1′-biphenyl] -2,5-diol, and these And derivatives thereof.
  • Examples of the derivative include compounds in which the aromatic ring of the aromatic diol is substituted with a substituent having 0 to 20 carbon atoms (preferably 0 to 10 carbon atoms) excluding a carboxyl group and an ester group.
  • the aromatic diol those having a biphenyl structure such as 4,4′-dihydroxybiphenyl are preferable from the viewpoint of excellent physical properties such as heat resistance when cured.
  • substituents examples include an alkyl group [eg, methyl group, ethyl group, etc.]; alkenyl group [eg, vinyl group, allyl group, etc.]; alkynyl group [eg, ethynyl group, propynyl group, etc.]; halogen atom [ For example, chlorine atom, bromine atom, iodine atom]; hydroxyl group; alkoxy group [for example, C 1-6 alkoxy group such as methoxy group, ethoxy group, propoxy group, isopropyloxy group, butoxy group, isobutyloxy group (preferably C 1-4 alkoxy group) etc.]; alkenyloxy group [eg C 2-6 alkenyloxy group such as allyloxy group (preferably C 2-4 alkenyloxy group etc.)]; aryloxy group [eg phenoxy group, tolyloxy group, such as a naphthyloxy group, C 1-4 alky
  • C 7-18 aralkyloxy groups such as phenethyloxy
  • An acyloxy group [for example, C 1-12 acyloxy group such as acetyloxy group, propionyloxy group, (meth) acryloyloxy group, benzoyloxy group, etc.]; mercapto group; alkylthio group [for example, methylthio group, ethylthio group, etc.] A C 1-6 alkylthio group (preferably a C 1-4 alkylthio group)]; an alkenylthio group [for example, a C 2-6 alkenylthio group such as an arylthio group (preferably a C 2-4 alkenylthio group)] ; arylthio group [e.g., phenylthio group, tolylthio group, such as a naphthylthio group, C 1-4 alkyl groups on the aromatic ring, C 2-4 alkenyl , Halogen
  • C 6-14 arylthio group which may have a substituent such as an alkoxy group]; aralkylthio group [for example, benzylthio group, C 7-18 aralkylthio such phenethylthio group Carboxyl group; alkoxycarbonyl group [eg, C 1-6 alkoxy-carbonyl group such as methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, butoxycarbonyl group, etc.]; aryloxycarbonyl group [eg, phenoxycarbonyl] Group, a tolyloxycarbonyl group, a C 6-14 aryloxy-carbonyl group such as a naphthyloxycarbonyl group]; an aralkyloxycarbonyl group [for example, a C 7-18 aralkyloxy-carbonyl group such as a benzyloxycarbonyl group]; Amino group; mono- or dialkylamino group [ E
  • a component (A) may have 1 type of the structural unit derived from aromatic diol, and may have 2 or more types.
  • the monocarboxylic acid monoester of the above aromatic diol has one ester group as a substituent together with the above substituent as the substituent of the aromatic diol, and the monocarboxylic acid diester of the above aromatic diol and Has two ester groups as substituents together with the above substituents as a substituent of the aromatic diol.
  • Examples of the monocarboxylic acid include aliphatic carboxylic acids having 1 to 10 carbon atoms such as acetic acid, propionic acid, butyric acid and isobutyric acid; alicyclic carboxylic acids having 3 to 12 carbon atoms such as cyclohexanecarboxylic acid; benzoic acid And aromatic carboxylic acids having 6 to 12 carbon atoms such as Among these, aliphatic carboxylic acids having 1 to 10 carbon atoms are preferable, aliphatic carboxylic acids having 2 to 4 carbon atoms are more preferable, and acetic acid is particularly preferable.
  • Component (B) of the present invention is an aromatic hydroxycarboxylic acid.
  • the aromatic hydroxycarboxylic acid include 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 1-hydroxy-2-naphthoic acid, 3-hydroxy-2-naphthoic acid, 6-hydroxy-2-naphthoic acid, Examples thereof include 5-hydroxy-1-naphthoic acid, 4′-hydroxy [1,1′-biphenyl] -4-carboxylic acid, and derivatives thereof.
  • Examples of the derivative include compounds in which the aromatic ring (aromatic ring) of the aromatic hydroxycarboxylic acid is substituted with a substituent having 0 to 20 carbon atoms (preferably 0 to 10 carbon atoms). As said substituent, the thing similar to the substituent in aromatic diol is illustrated.
  • a component (B) may have 1 type of aromatic hydroxycarboxylic acid, and may have 2 or more types.
  • component (A) and the component (B) in addition to the component (A) and the component (B), other monomer components may be included.
  • other monomer components include aromatic dicarboxylic acids, aromatic diamines, and aromatic amines or aromatic amides having a phenolic hydroxyl group.
  • aromatic dicarboxylic acid examples include phthalic acid, terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, [1,1′-biphenyl] -4,4′-dicarboxylic acid. And acid, 4,4′-oxybis (benzoic acid), 4,4′-thiobis (benzoic acid), 4- [2- (4-carboxyphenoxy) ethoxy] benzoic acid, and derivatives thereof.
  • the derivatives include compounds in which the aromatic ring of the aromatic dicarboxylic acid is substituted with a substituent having 0 to 20 carbon atoms (preferably 0 to 10 carbon atoms). As said substituent, the thing similar to the substituent in aromatic diol is illustrated.
  • aromatic ester may have 1 type of the structural unit derived from aromatic dicarboxylic acid, and may have 2 or more types.
  • aromatic diamine examples include 1,4-benzenediamine, 1,3-benzenediamine, 4-methyl-1,3-benzenediamine, 4- (4-aminobenzyl) phenylamine, 4- (4- Aminophenoxy) phenylamine, 3- (4-aminophenoxy) phenylamine, 4′-amino-3,3′-dimethyl [1,1′-biphenyl] -4-ylamine, 4′-amino-3,3 ′ -Bis (trifluoromethyl) [1,1'-biphenyl] -4-ylamine, 4-amino-N- (4-aminophenyl) benzamide, 4-[(4-aminophenyl) sulfonyl] phenylamine, bis ( 4-aminophenyl) methanone, and derivatives thereof.
  • Examples of the derivative include compounds in which the aromatic ring of the aromatic diamine is substituted with a substituent having 0 to 20 carbon atoms (preferably 0 to 10 carbon atoms). As said substituent, the thing similar to the substituent in aromatic hydroxycarboxylic acid is illustrated.
  • aromatic ester may have 1 type of the structural unit derived from aromatic diamine, and may have 2 or more types.
  • Examples of the aromatic amine or aromatic amide having a phenolic hydroxyl group include 4-aminophenol, 4-acetamidophenol, 3-aminophenol, 3-acetamidophenol, 6-amino-2-naphthol, 5-amino- Examples thereof include 1-naphthol, 4′-hydroxy- [1,1′-biphenyl] -4-amine, 4-amino-4′-hydroxydiphenylmethane, and derivatives thereof.
  • Examples of the derivatives include compounds in which an aromatic ring of the aromatic amine having a phenolic hydroxyl group is substituted with a substituent having 0 to 20 carbon atoms (preferably 0 to 10 carbon atoms).
  • aromatic ester it may have 1 type of the structural unit derived from the aromatic amine or aromatic amide which has a phenolic hydroxyl group, and may have 2 or more types.
  • the ratio of the total amount is not particularly limited, but is preferably 30% by weight or less (for example, 0 to 30% by weight), more preferably 10% by weight or less, and further preferably 5% by weight or less.
  • the ratio is 30% by weight or less, the hygroscopic resistance (hydrolysis resistance) of the cured product is difficult to decrease.
  • the blending ratio (blending amount) of component (B) and other monomer components is not particularly limited, but the blending amount of other monomer components is preferably 0 to 100 parts by weight with respect to 100 parts by weight of component (B). 0 to 50 parts by weight is more preferable, and 0 to 30 parts by weight is still more preferable.
  • Component (C) of the present invention is a compound having a reactive functional group and a thermally polymerizable functional group that react with a hydroxyl group and / or an acyloxy group in the molecule (in one molecule).
  • Component (C) is a compound having one or more reactive functional groups and one or more thermopolymerizable functional groups (thermosetting functional groups) in the molecule (in one molecule).
  • the above hydroxyl group and / or acyloxy group that reacts with the reactive functional group of component (C) is derived from component (A) or component (B).
  • the reactive functional group is not particularly limited as long as it is a functional group capable of reacting with a hydroxyl group or an acyloxy group.
  • an ⁇ , ⁇ -unsaturated carbonyl group for example, A ketone group having a carbon-carbon unsaturated bond between the ⁇ -position and the ⁇ -position of the carbonyl carbon, an ester group having a carbon-carbon unsaturated bond between the ⁇ -position and the ⁇ -position of the carbonyl carbon, and the ⁇ -position of the carbonyl carbon
  • an epoxy group for example, a maleimide group; an ester group
  • An acid anhydride group for example, maleic anhydride group etc.
  • a carboxyl group etc. are mentioned.
  • an ⁇ , ⁇ -unsaturated carbonyl group, an epoxy group, a maleimide group, an ester group, an acid anhydride group, and a carboxyl group are reactive functional groups that react with hydroxyl groups (as opposed to A hydroxyl-reactive functional group).
  • the carboxyl group is a reactive functional group that reacts with an acyloxy group (reactive functional group for acyloxy group).
  • a maleimide group and an acid anhydride group are reactive functional groups that react with an aromatic ring (cycloaddition reaction), and / or Alternatively, it is a reactive functional group that reacts with a conjugated diene structure (cycloaddition reaction).
  • a carboxyl group is preferable because it can react with a hydroxyl group to form an ester bond.
  • the number of reactive functional groups in component (C) may be one or more, and is not particularly limited, but is preferably 1 to 10, more preferably 1 to 5.
  • thermopolymerizable functional group is represented by the above formula: phenylethynyl group (c1), styryl group (c2), benzocyclobutene structure (c3), biphenylene structure (c4), nadiimide structure (c5), phenylmaleimide Structure (c6).
  • the phenylethynyl group (c1) or the styryl group (c2) is preferable because it is excellent in thermosetting and does not cause a polymerization (curing) reaction at a temperature at the time of aromatic ester synthesis (for example, 300 to 350 ° C.).
  • a component (C) may have 1 type of thermopolymerizable functional groups, and may have 2 or more types.
  • component (C) examples include compounds represented by the following formula (III).
  • R in the above formula (III) represents a hydroxyl group, an acyloxy group or a halogen atom
  • D represents a single bond or a linking group
  • R a represents a group represented by the above formulas (c1) to (c6). Represents either]
  • linking group examples include those similar to D in the above formula (II).
  • an arylene group especially phenylene group is preferable as a single bond or a coupling group from the point which is excellent in physical properties, such as heat resistance when it is set as hardened
  • Examples of the component (C) include 4-phenylethynylbenzoic acid, 4-stilbenecarboxylic acid, cinnamic acid, 1,2-dihydrobenzocyclobutene-1-carboxylic acid, 4-carboxybenzocyclobutene, and 2-biphenylene.
  • Examples thereof include carboxylic acid, 4-nadiimide benzoic acid, 4-phenylmaleimide benzoic acid and the like.
  • 4-phenylethynylbenzoic acid, 4-stilbenecarboxylic acid, and cinnamic acid are preferred because they are less likely to cause a crosslinking reaction at the temperature at the time of aromatic ester synthesis (for example, 250 to 320 ° C.).
  • thermosetting start temperature of the component (C) is not particularly limited, but is preferably 350 ° C. or higher (350 to 450 ° C.), more preferably 360 ° C. or higher, and further preferably 370 ° C. or higher.
  • the thermosetting start temperature is 350 ° C. or higher, the polymerization (curing) reaction hardly occurs at the temperature at the time of aromatic ester synthesis (eg, 300 to 350 ° C.).
  • thermosetting aromatic ester in the present invention can be obtained by melt polymerization of a monomer component containing at least the above component (A) and component (B), and component (C).
  • a monomer component containing at least the component (A) and the component (B) is subjected to a polymerization reaction (for example, polycondensation) to have an aromatic ester skeleton, and at least one molecular chain terminal has a hydroxyl group or an acyloxy group.
  • the polymerization reaction of the monomer component including at least the component (A) and the component (B) and the reaction of the hydroxyl group or acyloxy group of the aromatic ester with the component (C) include at least the component (A) and the component (B). It is preferable to carry out the reaction simultaneously in a state where the monomer component and component (C) are melted.
  • the blending ratio (blending amount) of component (A) and component (B) is not particularly limited, but the blending amount of component (B) is preferably 50 to 2000 parts by weight with respect to 100 parts by weight of component (A). 100 to 1500 parts by weight is more preferable, and 200 to 1000 parts by weight is even more preferable.
  • the blending amount of the component (B) is in the above range, the proportion of the aromatic ester having a hydroxyl group at the molecular chain end increases, and the reaction amount with the component (C) is improved.
  • the ratio of the component (A) to the total amount of the monomer components including at least the component (A) and the component (B) is not particularly limited, but is preferably 3 to 25 mol%, preferably 4 to 20 mol. % Is more preferable, and 5 to 15 mol% is more preferable.
  • the proportion of the component (A) is in the above range, the proportion of the aromatic ester having a hydroxyl group at the molecular chain end increases, and the reaction amount with the component (C) is improved.
  • the functional group ratio (the former / the latter) of the hydroxyl group and the carboxyl group is not particularly limited. 0.02 or more is preferable, 1.04 or more is more preferable, and 1.10 or more is more preferable.
  • the functional group ratio between the hydroxyl group and the carboxyl group is 1.02 or more, the proportion of the hydroxyl group is increased in the molecular chain end groups in all the compounds, and the reaction amount with the component (C) is improved.
  • the blending ratio (blending amount) of the monomer component containing at least the component (A) and the component (B) and the component (C) is not particularly limited, but the total amount of the monomer components containing at least the component (A) and the component (B)
  • the amount of component (C) is preferably 5 to 300 parts by weight, more preferably 7 to 250 parts by weight, and even more preferably 10 to 100 parts by weight with respect to 100 parts by weight (total amount).
  • the amount of component (C) is in the above range, a thermosetting ester having excellent curability can be obtained without adversely affecting the physical properties of the cured product.
  • the ratio of the component (C) to the total amount (total molar amount 100 mol%) of the monomer component containing at least the component (A) and the component (B) and the component (C) is not particularly limited, but is 2 to 60 mol%. Preferably, 3 to 50 mol% is more preferable, and 5 to 40 mol% is more preferable. When the ratio of the component (C) is in the above range, a thermosetting ester excellent in curability can be obtained without adversely affecting the physical properties of the cured product.
  • the temperature at the time of melt polymerization is not particularly limited, but is preferably 250 to 400 ° C, more preferably 270 to 380 ° C, and further preferably 290 to 360 ° C.
  • the temperature can be controlled to be constant during heating, or can be controlled to vary stepwise or continuously.
  • the time (heating time) during the melt polymerization is not particularly limited, but is preferably 200 to 1000 minutes, more preferably 400 to 600 minutes. When the time is in the above range, productivity does not decrease, and an aromatic ester having a thermally polymerizable functional group at the molecular chain terminal is obtained.
  • thermosetting aromatic ester represented by the above formula (I) can be obtained by distilling off the solvent used for the reaction after completion of the reaction.
  • thermosetting aromatic ester obtained by the production method of the present invention is a compound in which one or more aromatic esters and one or more compounds having a thermopolymerizable functional group are bonded by reaction (for example, addition reaction) (for example, Polymer or oligomer) and represented by the above formula (I).
  • thermosetting aromatic ester can be produced in a simple and excellent method by selecting the polymerizable functional group of the compound having a polymerizable functional group according to thermal properties. can get.
  • the cured product obtained by curing the thermosetting aromatic ester obtained in the present invention has excellent heat resistance, excellent workability, dimensional stability, low linear expansion, and high thermal conductivity. Properties, low hygroscopicity, and dielectric properties.
  • thermosetting aromatic ester of the present invention is a thermosetting aromatic ester represented by the following formula (I).
  • L in the above formula (I) is derived from the structural unit derived from the component (A) which is an aromatic diol or a monocarboxylic acid (mono or di) ester thereof and the component (B) which is an aromatic hydroxycarboxylic acid.
  • An aromatic ester skeleton containing a structural unit is represented, and R A and R A ′ may be the same or different, and are a group represented by the above formula (II), a hydroxyl group, an acyloxy group, or another organic group.
  • the total ratio of the group represented by the above formula (II), the hydroxyl group and the acyloxy group is 70% or more of R A + R A ′ , and D in the above formula (II) represents a single bond or a linking group.
  • R a represents any one of the groups represented by the above formulas (c1) to (c6)]
  • R A and R A ′ in the above formula (I) are a group represented by the above formula (II), a hydroxyl group, an acyloxy group, or another organic group, a group represented by the above formula (II),
  • the total ratio of the hydroxyl group and the acyloxy group is 70% or more of R A + R A ′ (the whole end group), but the ratio of the group represented by the above formula (II), the hydroxyl group, the acyloxy group, and the total is 80%.
  • the above is preferable, 90% or more is more preferable, and 100% is more preferable. Since this ratio is 70% or more, the cured product has excellent physical properties when cured.
  • the proportion of the other organic groups is not particularly limited, but is preferably 0 to 30%, more preferably 0 to 15% of R A + R A ′ (the whole end group). Although it does not restrict
  • the ratio of the structural unit derived from the component (A) to the total amount of these repeating structural units (total amount 100%) is preferably 10% or more, and more preferably 30% or more. Moreover, 10% or more is preferable and, as for the ratio of the structural unit derived from the said component (B), 20% or more is more preferable.
  • other monomer component structural units include structural units derived from aromatic dicarboxylic acids, structural units derived from aromatic diamines, structural units derived from aromatic amines or aromatic amides having a phenolic hydroxyl group.
  • aromatic dicarboxylic acid, aromatic diamine, and aromatic amine or aromatic amide having a phenolic hydroxyl group include those described above.
  • the average degree of polymerization of the aromatic ester skeleton L of the thermosetting aromatic ester represented by the above formula (I) is not particularly limited, but is preferably 1 to 50, more preferably 2 to 40, and further preferably 3 to 30 preferable.
  • the melting temperature can be kept relatively low, and handling during molding becomes easy.
  • a crosslinking density also becomes high, the hardened
  • the thermosetting aromatic ester in the present invention can be referred to as a thermosetting aromatic polyester.
  • the average degree of polymerization of the aromatic ester skeleton L can be determined by the amine decomposition HPLC method described in JP-A No. 5-271394.
  • the molecular weight of the thermosetting aromatic ester is not particularly limited, but is preferably 500 to 20000, more preferably 700 to 15000, and still more preferably 800 to 10,000. When the molecular weight is within the above range, the heat resistance of the cured product is hardly deteriorated.
  • the molecular weight of a thermosetting aromatic ester can be calculated
  • the glass transition temperature (Tg) of the thermosetting aromatic ester is not particularly limited, but is preferably 30 to 150 ° C, more preferably 40 to 120 ° C, and further preferably 50 to 100 ° C. When the glass transition temperature is in the above range, the heat resistance of the cured product is hardly deteriorated.
  • the glass transition temperature (Tg) can be measured by thermal analysis such as DSC or TGA or dynamic viscoelasticity measurement.
  • the melting point (Tm) of the thermosetting aromatic ester may or may not be a clearly measurable melting point, and is not particularly limited in some cases, but is preferably 250 ° C. or lower (80 to 250 ° C.), 220 ° C or lower is more preferable, 200 ° C or lower is more preferable, and 180 ° C or lower is particularly preferable.
  • fusing point (Tm) can be measured by thermal analysis and dynamic viscoelasticity measurement, such as DSC and TGA, for example.
  • thermosetting start temperature of the thermosetting aromatic ester is not particularly limited, but is preferably 350 ° C. or higher (350 to 400 ° C.), more preferably 360 ° C. or higher, and further preferably 370 ° C. or higher.
  • thermosetting start temperature is 350 ° C. or higher, thermosetting is not performed during the synthesis of the aromatic ester, and an increase in viscosity can be suppressed.
  • thermosetting aromatic ester of the present invention is not particularly limited, but can be obtained by the production method of the present invention described above.
  • thermosetting aromatic ester of the present invention has excellent physical properties such as heat resistance, processability, dimensional stability, low linear expansion, high thermal conductivity, low moisture absorption, and dielectric properties. It is a novel thermosetting aromatic ester.
  • a cured product (sometimes referred to as “cured product of the present invention”) is obtained by curing the thermosetting aromatic ester obtained by the production method of the present invention by heating. By heating, a reaction (crosslinking reaction) between the thermally polymerizable functional groups mainly proceeds, and a cured product is formed.
  • a metal catalyst, a curing accelerator, a crosslinking agent, an additive, and the like described later may be added.
  • a heating means a well-known thru
  • a metal catalyst When the thermosetting aromatic ester of the present invention is cured, a metal catalyst may be added to lower the curing start temperature of the polymerization reaction (curing reaction) of the thermopolymerizable functional group.
  • the metal catalyst acts on a triple bond of the phenylethynyl group and has a large function of lowering the curing start temperature (curing temperature).
  • the curing start temperature of the thermosetting aromatic ester when a metal catalyst is added is not particularly limited, but is preferably 280 ° C. or lower (200 to 280 ° C.). 260 ° C. or lower is more preferable, and 240 ° C. or lower is more preferable. When the curing start temperature is 280 ° C. or lower, curing can be performed within a practical temperature range.
  • the metal catalyst includes a metal compound, for example, a compound containing a group 13 element of the periodic table (boron B, aluminum Al, etc.) such as a transition metal compound or a boron compound.
  • the metal catalyst component in the reaction mixture may be a metal ion or the like obtained by ionizing a metal catalyst (metal compound). These metal catalysts can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • transition metal element examples include Group 3 elements in the periodic table (for example, lanthanoid elements such as lanthanum La, cerium Ce, and samarium Sm, and actinoid elements such as actinium Ac in addition to scandium Sc and yttrium Y), and periodic table 4 Group elements (titanium Ti, zirconium Zr, hafnium Hf, etc.), Group 5 elements (vanadium V, niobium Nb, tantalum Ta, etc.), Group 6 elements (chromium Cr, molybdenum Mo, tungsten W, etc.), Group 7 elements (manganese Mn Group 8 elements (iron Fe, ruthenium Ru, osmium Os, etc.), group 9 elements (cobalt Co, rhodium Rh, iridium Ir, etc.), group 10 elements (nickel Ni, palladium Pd, platinum Pt, etc.), group 11 Element (copper Cu, silver Ag, gold Au, etc.) etc.
  • the metal catalyst is a metal oxide containing the above element, a salt (organic acid salt, inorganic acid salt, etc.), a halide, a coordination compound (complex) containing the above metal element, a heteropolyacid or a salt thereof, etc. There are many.
  • the metal catalyst is not particularly limited as long as it contains the above-described metal element and has catalytic ability.
  • the metallocene such as nickelocene, ferrocene, cobaltocene, and ruthenocene; niobium chloride, tantalum chloride, chloride Metal chlorides such as molybdenum and tungsten chloride; organic tin compounds such as tetra (n-butyl) tin, tetraphenyltin and tin octylate; and organic zinc compounds such as zinc octylate.
  • nickelocene, niobium chloride, tantalum chloride, molybdenum chloride, and tungsten chloride are preferred because the stability of the metal catalyst and the effect of lowering the thermosetting start temperature are great, and nickelocene is particularly preferred.
  • metal chloride it is preferable to use tetra (n-butyl) tin or tetraphenyltin as a cocatalyst.
  • the blending amount of the metal catalyst is not particularly limited, but is preferably 0.01 to 5 parts by weight, preferably 0.05 to 3 parts per 100 parts by weight of the thermosetting aromatic ester represented by the formula (I). Part by weight is more preferred, and 0.1 to 2 parts by weight is even more preferred. If the amount is too small, the catalyst effect may be insufficient.
  • a curing accelerator In producing the cured product of the present invention, a curing accelerator may be used in order to accelerate the curing reaction and lower the thermal curing start temperature.
  • the curing accelerator includes a radical generator described later.
  • a radical generator an imidazole derivative, an organic base, its salt, etc. are mentioned. These curing accelerators can be used singly or in combination of two or more.
  • the radical generator the following can be used as light or thermal radical generators.
  • photo radical generator examples include benzophenone, acetophenone benzyl, benzyl dimethyl ketone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, dimethoxyacetophenone, dimethoxyphenylacetophenone, diethoxyacetophenone, 2-hydroxy-2- Methyl propiophenone, diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, diphenyl disulfite, methyl orthobenzoylbenzoate, ethyl 4-dimethylaminobenzoate (Nippon Kayaku Co., Ltd.
  • radical photopolymerization initiators can be used alone or in combination of two or more. Moreover, a photosensitizer can be added to the resin composition of this invention as needed.
  • the photo radical polymerization initiator for example, those activated by light having a wavelength of around 400 nm, such as diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, are preferable.
  • thermal radical generator examples include organic peroxides.
  • organic peroxides examples include dialkyl peroxides, acyl peroxides, hydroperoxides, ketone peroxides, and peroxyesters.
  • specific examples of the organic peroxide include benzoyl peroxide, t-butylperoxy-2-ethylhexanate, 2,5-dimethyl-2,5-di (2-ethylhexanoyl) peroxyhexane, t- Butyl peroxybenzoate, t-butyl peroxide, cumene hydroperoxide, dicumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-dibutylperoxyhexane, 2,4-dichlorobenzoyl peroxide Oxide, di-t-butylperoxy-diisopropylbenzene, 1,1-bis (t-butylperoxy) -3,
  • radical generators include 2,3-dimethyl-2,3-diphenylbutane. Of these, dicumyl peroxide and 2,3-dimethyl-2,3-diphenylbutane are preferable. One of these radical generators can be used alone, or two or more thereof can be used in combination.
  • a metal salt such as naphthenic acid such as cobalt naphthenate, manganese naphthenate, zinc naphthenate, cobalt octenoate, cobalt octenoate, manganese, lead, zinc, vanadium, etc. it can.
  • tertiary amines such as dimethylaniline can be used.
  • imidazole derivatives examples include 2-methylimidazole, 2-ethylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 1 -Cyanoethyl-2-ethyl-4-methylimidazole and the like. These imidazole derivatives can be used alone or in combination of two or more.
  • organic base and salts thereof examples include 1,8-diazabicyclo [5.4.0] undecene-7 (DBU) and salts thereof (for example, phenol salts, octylates, p-toluenesulfonates, Formate, tetraphenylborate salt); 1,5-diazabicyclo [4.3.0] nonene-5 (DBN) and salts thereof (eg, phosphonium salts, sulfonium salts, quaternary ammonium salts, iodonium salts); benzyl Tertiary amines such as dimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, N, N-dimethylcyclohexylamine; 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-ethyl-4-methyl Imidazoles such as imidazole; Phosphates such as phosphate esters and triphenylphosphine;
  • organic base and salts thereof examples include U-CAT SA 506, U-CAT SA 102, U-CAT 5003, U-CAT 18X (above, manufactured by San Apro Co., Ltd.), TPP-K, TPP-MK ( As described above, commercially available products such as Hokuko Chemical Co., Ltd. and PX-4ET (Nihon Chemical Industry Co., Ltd.) can also be used.
  • the blending amount of the curing accelerator is not particularly limited, but is preferably 0.05 to 5 parts by weight, preferably 0.1 to More preferred is 3 parts by weight. If the blending amount is too small, the curing accelerating effect may be insufficient, and if it is too large, the hue of the cured resin may be deteriorated.
  • Crosslinking agent a crosslinking agent that functions to lower the thermosetting start temperature
  • examples of the crosslinking agent include a thermopolymerizable functional group that is a molecular terminal group of a thermosetting aromatic ester and a functional group that can react by heating (reactive functional group) and a thermopolymerizable functional group (thermopolymerizable functional group).
  • thermopolymerizable functional group a thermopolymerizable functional group that can react by heating (reactive functional group) and a thermopolymerizable functional group (thermopolymerizable functional group).
  • thermopolymerizable functional group thermopolymerizable functional group
  • thermopolymerizable functional group thermopolymerizable functional group
  • examples thereof include maleimide derivatives and maleic anhydride derivatives.
  • These crosslinking agents can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • the curing start temperature of the thermosetting aromatic ester when the crosslinking agent is added is not particularly limited, but is preferably 280 ° C. or lower (200 to 280 ° C.), more preferably 260 ° C. or lower, and further preferably 240 ° C. or lower.
  • the curing start temperature is 280 ° C. or lower, curing can be performed within a practical temperature range.
  • maleimide derivatives include N-phenylmaleimide, N-ethylmaleimide, N- (2-oxypropyl) maleimide, N- (dimethylamino) maleimide, and N- (4-aminophenyl) malein.
  • N- (4-carboxyphenyl) maleimide N- (1-naphthyl) maleimide, N- (2-naphthyl) maleimide, N- (1-fluorenyl) maleimide, N- (2-biphenylyl) maleimide
  • Maleimide compounds such as N- (4-methoxyphenyl) maleimide; 4,4′-diphenylmethane bismaleimide, m-phenylenebismaleimide, 2,2′-bis [4- (4-maleimidophenoxy) phenyl] propane, ethylene Bismaleimide, o-phenylene bismaleimide, p-pheny Bismaleimide, m-toluylene bismaleimide, 4,4'-biphenylene bismaleimide, 4,4 '-[3,3'-dimethyl-biphenylene] bismaleimide, 4,4'-[3,3'-dimethyl Diphenylmethane] bismaleimide
  • maleic anhydride derivative examples include maleic anhydride, 2,3-dimethylmaleic anhydride, 2-phenylmaleic anhydride, 2- (diphenyl) maleic anhydride, 2- (1-hydroxyhexyl) maleic acid.
  • the blending amount of the crosslinking agent is not particularly limited, but is preferably 5 to 95 parts by weight, more preferably 10 to 90 parts by weight with respect to 100 parts by weight of the thermosetting aromatic ester represented by the above formula (I).
  • the amount is preferably 10 to 80 parts by weight.
  • an additive such as an inorganic filler can be included.
  • an inorganic filler is preferably used as the additive.
  • inorganic filler known or conventional inorganic fillers can be used, and are not particularly limited.
  • silica for example, natural silica, synthetic silica
  • aluminum oxide for example, ⁇ -alumina
  • oxidation Oxides such as titanium, zirconium oxide, magnesium oxide, cerium oxide, yttrium oxide, calcium oxide, zinc oxide and iron oxide
  • carbonates such as calcium carbonate and magnesium carbonate
  • sulfates such as barium sulfate, aluminum sulfate and calcium sulfate
  • Nitride such as aluminum nitride, silicon nitride, titanium nitride, boron nitride
  • hydroxide such as calcium hydroxide, aluminum hydroxide, magnesium hydroxide
  • the inorganic filler may have any structure such as a solid structure, a hollow structure, and a porous structure. Moreover, the said inorganic filler may be surface-treated with well-known surface treating agents, such as organosilicon compounds, such as organohalosilane, organoalkoxysilane, and organosilazane, for example.
  • organosilicon compounds such as organohalosilane, organoalkoxysilane, and organosilazane, for example.
  • an inorganic filler can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • silica sica filler
  • alumina alumina fine particles
  • the amount of the inorganic filler added in the production method of the present invention is not particularly limited, but is preferably 5 to 500 parts by weight with respect to 100 parts by weight of the thermosetting aromatic ester represented by the formula (I).
  • the amount is preferably 10 to 300 parts by weight, and more preferably 30 to 200 parts by weight.
  • Additives other than the above inorganic fillers are not particularly limited.
  • diamino compounds eg diaminodiphenylmethane etc.
  • diallyl compounds diallylbisphenol A etc.
  • triazines eg 1,3,5-tri-2] -Propenyl-1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, 1,3,5-tris (2-methyl-2-propenyl) -1,3,5-triazine -2,4,6 (1H, 3H, 5H) -trione, 1,3,5-tris (2,3-epoxypropyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, etc.].
  • diamino compounds eg diaminodiphenylmethane etc.
  • diallyl compounds diallylbisphenol A etc.
  • triazines eg 1,3,5-tri-2] -Propeny
  • additives other than the above inorganic filler other known or commonly used additives can be used as long as the effects of the present invention are not impaired.
  • organic resins such as silicone resins, epoxy resins, fluororesins; solvents; Stabilizers (antioxidants, ultraviolet absorbers, light stabilizers, heat stabilizers, etc.); flame retardants (phosphorous flame retardants, halogen flame retardants, inorganic flame retardants, etc.); flame retardant aids; reinforcing materials Nucleating agent; Coupling agent; Lubricant; Wax; Plasticizer; Release agent; Impact resistance improver; Hue improver; Fluidity improver; Colorant (dye, pigment, etc.); Dispersant; Defoaming agents; antibacterial agents; antiseptics; viscosity modifiers; thickeners can be used.
  • the said additive can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • the amount of additives other than the inorganic filler is not particularly limited, but is preferably 0 to 30 parts by weight, more preferably 100 parts by weight of the thermosetting aromatic ester represented by the formula (I). 1 to 20 parts by weight.
  • thermosetting start temperature (heating temperature) for curing the thermosetting aromatic ester is not particularly limited, but is preferably 250 ° C. or lower (170 to 250 ° C.), more preferably 210 to 250 ° C., and still more preferably. 220-250 ° C.
  • productivity does not decrease, the curing reaction proceeds sufficiently, and a cured product with good physical properties can be obtained.
  • the curing temperature can be controlled to be constant during curing, or can be controlled to vary stepwise or continuously.
  • the heating time (curing time) for curing the thermosetting aromatic ester is not particularly limited, but is preferably 30 to 600 minutes, more preferably 50 to 480 minutes, and further preferably 60 to 360 minutes.
  • the curing time is within the above range, the productivity of the cured product does not decrease, the curing reaction proceeds sufficiently, and the physical properties of the cured product are unlikely to decrease.
  • thermosetting aromatic ester can be performed under normal pressure, or can be performed under reduced pressure or under pressure.
  • said hardening can also be performed in one step, and can also be performed by dividing into two or more steps.
  • the 5% weight loss temperature (T d5 ) measured at a temperature rising rate of 10 ° C./min (in the air) of the cured product of the present invention is not particularly limited, but is preferably 350 ° C. or higher (350 to 500 ° C.), 380 ° C. or higher is more preferable, and 400 ° C. or higher is more preferable. If the 5% weight loss temperature is less than 350 ° C., the heat resistance may be insufficient depending on the application.
  • the 5% weight loss temperature can be measured by, for example, TG / DTA (simultaneous measurement of differential heat and thermogravimetry).
  • the activation energy of the thermal decomposition reaction in the air of the cured product of the present invention is not particularly limited, but is preferably 150 kJ / mol or more (for example, 150 to 350 kJ / mol), more preferably 180 kJ / mol or more, and 200 kJ / mol. The above is more preferable. If the activation energy is less than 150 kJ / mol, the heat resistance may be insufficient depending on the application.
  • the activation energy can be calculated by, for example, the Ozawa method.
  • the Ozawa method is a method in which TG measurement (thermogravimetry) is performed at three or more types of temperature increase rates, and the activation energy of the thermal decomposition reaction is calculated from the obtained thermogravimetric reduction data.
  • the cured product of the present invention is a cured product obtained by curing the thermosetting aromatic ester (compound) of the present invention, it has excellent heat resistance, and excellent workability and dimensional stability. , Low linear expansion, high thermal conductivity, low hygroscopicity, dielectric properties.
  • the cured product of the present invention can be used for various applications such as various members and various structural materials.
  • it since it is excellent in the above-mentioned various properties, it can be preferably used for applications such as films, prepregs, printed wiring boards, semiconductor encapsulants.
  • the thermosetting aromatic ester composition of the present invention is particularly a film thermosetting composition, a prepreg thermosetting composition, a printed wiring board thermosetting composition, and a semiconductor sealing material thermosetting. It can be preferably used as a composition.
  • Example 1 [Production of Thermosetting Aromatic Ester E (Decamer) Having Phenylethynyl Group at At least One End and Production of Cured Product] As shown in Table 1, 73.6 g (0.533 mol) of 4-hydroxybenzoic acid, 80.3 g of 6-hydroxy-2-naphthoic acid (0.426 mol), 4 mL, and a 500 mL flask equipped with a condenser and a stirrer were used.
  • Aromatic ester E was obtained.
  • the aromatic ester E obtained was calculated by calculating the number of terminals of the aromatic ester E (by the amine decomposition HPLC method described in JP-A No. 5-271394), and as a result of GPC measurement, It was estimated to be a body.
  • Nickelocene 2.0 g was added as a metal catalyst to 100 g of the resulting thermosetting aromatic ester E, melted and mixed at 170 ° C.
  • thermosetting aromatic ester F (decamer) having a styryl group at least at one end and production of cured product thereof
  • Table 1 73.5 g (0.532 mol) of 4-hydroxybenzoic acid, 80.1 g (0.426 mol) of 6-hydroxy-2-naphthoic acid, and 4 mL were added to a 500 mL flask equipped with a condenser and a stirrer.
  • thermosetting aromatic ester F was obtained as a result of calculation of the number of terminals of the aromatic ester F (by the amine decomposition HPLC method described in JP-A-5-271394) and GPC measurement. Of 10 mer. After adding 33.5 g of 4,4′-diphenylmethane bismaleimide as a cross-linking agent to 100 g of the resulting thermosetting aromatic ester F and melt mixing at 170 ° C.
  • the metal plate was sandwiched between metal plates and compressed and heated at 240 ° C. for 4 hours to advance the curing, and a uniform cured product was obtained.
  • the melt viscosity and exothermic peak temperature of the obtained composition, and the glass transition temperature, 5% weight loss temperature (T d5 ) and solid viscoelasticity of the obtained cured product were as shown in Table 2.
  • thermosetting aromatic ester G (decamer) having a cinnamoyl group at at least one end and production of cured product thereof
  • Table 1 80.0 g (0.579 mol) of 4-hydroxybenzoic acid, 87.1 g (0.463 mol) of 6-hydroxy-2-naphthoic acid, and 4 mL were added to a 500 mL flask equipped with a condenser and a stirrer.
  • thermosetting aromatic ester G was obtained as a result of calculation of the number of terminals of the aromatic ester (by the amine decomposition HPLC method described in JP-A No. 5-271394) and GPC measurement. It was estimated to be a 10-mer.
  • the composition is applied to a metal plate. The mixture was compressed and heated at 240 ° C. for 4 hours with a hot press and cured to obtain a uniform cured product.
  • the melt viscosity and exothermic peak temperature of the obtained composition, and the glass transition temperature, 5% weight loss temperature (T d5 ) and solid viscoelasticity of the obtained cured product were as shown in Table 2.
  • BP 4,4′-dihydroxybiphenyl
  • HBA 4-hydroxybenzoic acid
  • HNA 6-hydroxy-2-naphthoic acid
  • PEBA 4-phenylethynylbenzoic acid
  • SCA 4-stilbenecarboxylic acid
  • CNA cinnamic acid (3-phenyl -2-propenoic acid)
  • thermosetting aromatic esters obtained in the examples have a low exothermic peak temperature and a low crosslinking initiation temperature, so that they can be cured (thermosetting) at a relatively low temperature, and are obtained.
  • the cured product had a high 5% weight loss temperature and very excellent heat resistance.
  • thermosetting aromatic ester composition in the present invention is particularly a film thermosetting composition, a prepreg thermosetting composition, a printed wiring board thermosetting composition, and a semiconductor sealing material thermosetting. It can be preferably used as a composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

 本発明の熱硬化性エステルの製造方法は、重合性官能基を有する化合物の重合性官能基を熱的性質により選択することにより、簡便で生産性に優れる熱硬化性芳香族エステルを提供する。 本発明の熱硬化性芳香族エステルの製造方法は、芳香族ジオール又はそのモノカルボン酸(モノ又はジ)エステルである成分(A)と芳香族ヒドロキシカルボン酸である成分(B)とを少なくとも含むモノマー成分と、分子内に水酸基及び/又はアシルオキシ基と反応する反応性官能基及び熱重合性官能基を有する化合物である成分(C)と、を溶融重合させることを特徴とする。

Description

熱硬化性芳香族エステルの製造方法、及び熱硬化性芳香族エステル
 本発明は、熱硬化性芳香族エステルの製造方法、及び新規な熱硬化性芳香族エステルに関する。本願は、2014年4月2日に日本に出願した特願2014-076515号の優先権を主張し、その内容をここに援用する。
 液晶ポリエステルに代表される液晶ポリマーは、耐熱性、成形性、耐薬品性、機械強度等の各種特性に優れるため、電気・電子部品、自動車部品等の様々な用途に使用されている。近年、特に、加熱により硬化させることによって非常に高い耐熱性を有する硬化物を形成できる熱硬化性液晶ポリマー材料に注目が集められている。
 液晶ポリエステルの製造方法としては、モノマーをアセチル化及び脱アセチル化を伴う、エステル交換反応による方法が知られている。また、熱硬化性液晶ポリエステルの製造方法として、液晶ポリエステルに熱硬化剤などの硬化剤を加えて、溶融混合する方法が知られている。半導体の封止技術として、トランスファー成形が知られている。
 熱硬化性液晶ポリマー材料としては、例えば、主鎖サーモトロピック液晶エステル等の液晶オリゴマーをフェニルアセチレン、フェニルマレイミド、ナジイミド反応性末端基でエンドキャップした材料が知られている(特許文献1~3参照)。また、主鎖に一つ以上の可溶性構造単位を有し且つ主鎖の末端の一つ以上に熱硬化性基を有する熱硬化性液晶オリゴマーと特定のフッ素化合物とを反応させて得られる材料(特許文献4参照)、上記熱硬化性液晶オリゴマーとアルコキシド金属化合物で表面を置換したナノ充填剤とを反応させて得られる材料が知られている(特許文献5参照)。
 熱硬化性液晶ポリマー材料としては、例えば、液晶ポリマーの末端にスペーサー単位を介して重合性官能基が結合した材料も知られている(特許文献6参照)。また、液晶ポリエステルの両末端に、無置換又は置換マレイミド、無置換又は置換ナジイミド、エチニル、ベンゾシクロブテンなどのラジカル重合性基を有する材料も知られている(特許文献7参照)。
特表2004-509190号公報 米国特許第6939940号明細書 米国特許第7507784号明細書 特開2011-111619号公報 特開2011-084707号公報 特表2002-521354号公報 米国特許第5114612号明細書
 これらの重合性官能基を有する液晶ポリエステル等の熱硬化性芳香族ポリエステルは、硬化反応させることにより、優れた耐熱性などの物性を有する硬化物が得られる。しかしながら、芳香族ポリエステルに重合性官能基を導入するには、非常に高温(例えば、300~350℃)で芳香族ポリエステルを合成した後、さらに、芳香族ポリエステルに重合性官能基を有する化合物を加え反応させる必要があり、製造工程が煩雑である。また、上記の芳香族ポリエステルの合成と重合性官能基を有する化合物との反応を、同一系内で連続的に進行させると、芳香族ポリエステルの合成中に重合性官能基を有する化合物の硬化(重合)反応が進行することがある。これにより、系内の粘度が増し、トランスファー成形などの成形が困難となり、また、得られる硬化物の物性が低下する場合がある。
 従って、本発明の目的は、重合性官能基を有する化合物の重合性官能基を熱的性質により選択することにより、簡便で生産性に優れる重合性官能基を有する熱硬化性芳香族エステルの製造方法を提供することである。本発明の他の目的は、硬化することにより得られる硬化物が、耐熱性等の物性に優れる分子鎖末端に重合性官能基を有する新規な熱硬化性芳香族エステルを提供することである。
 本発明者らは、上記課題を解決するため鋭意検討した結果、特定の芳香族ジオール又はそのモノカルボン酸(モノ又はジ)エステルと、芳香族ヒドロキシカルボン酸及び/又は芳香族ジカルボン酸と、分子内に反応性官能基及び熱重合性官能基を有する化合物と、を溶融重合させることにより、熱硬化性芳香族エステルを簡便に且つ生産性良く製造できることを見出し、本発明を完成させた。
 すなわち、本発明は、芳香族ジオール又はそのモノカルボン酸(モノ又はジ)エステルである成分(A)と芳香族ヒドロキシカルボン酸である成分(B)とを少なくとも含むモノマー成分と、分子内に水酸基及び/又はアシルオキシ基と反応する反応性官能基及び下記式(c1)~(c6)で表される熱重合性官能基のいずれかを有する化合物である成分(C)と、を溶融重合させることを特徴とする下記式(I)で表される熱硬化性芳香族エステルの製造方法を提供する。
Figure JPOXMLDOC01-appb-C000008
[各式において、n1~n7は、それぞれ0以上の整数を表し、R1~R7は、置換基であって、それぞれC1-6アルキル基、C6-10アリール基、C1-6アルコキシ基、C6-10アリールオキシ基、又はハロゲン原子を表し、n1~n7が2以上の場合、それぞれR1~R7は、同一又は異なっていてもよい]
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
[上記式(I)中のLは、芳香族ジオール又はそのモノカルボン酸(モノ又はジ)エステルである成分(A)由来の構成単位と、芳香族ヒドロキシカルボン酸である成分(B)由来の構成単位を含む芳香族エステル骨格を表し、RA及びRA'は、同一又は異なっていてもよく、上記式(II)で表される基、水酸基、アシルオキシ基、又は他の有機基であり、上記式(II)で表される基、水酸基及びアシルオキシ基の合計の割合がRA+RA'の70%以上であり、上記式(II)中のDは、単結合又は連結基を表し、Raは、上記式(c1)~(c6)で表される基のいずれかを表す]
 さらに、本発明は、前記成分(C)における熱重合性官能基の硬化開始温度が350℃以上である前記の熱硬化性芳香族エステルの製造方法を提供する。
 さらに、本発明は、前記成分(C)が、下記式(III)で表される化合物である前記の熱硬化性芳香族エステル組成物の製造方法を提供する。
Figure JPOXMLDOC01-appb-C000011
[上記式(III)中のRは、水酸基又はハロゲン原子を表し、Dは、単結合又は連結基を表し、Raは、上記式(c1)~(c6)で表される基のいずれかを表す]
 さらに、本発明は、前記成分(C)が、フェニルエチニル安息香酸、4-スチルベンカルボン酸、及びけい皮酸からなる群より選択される少なくとも1つの化合物である前記の熱硬化性芳香族エステルの製造方法を提供する。
 さらに、本発明は、前記成分(A)が、4,4'-ジヒドロキシビフェニル、ヒドロキノン、レゾルシノール、2,6-ナフタレンジオール、1,5-ナフタレンジオール、[1,1'-ビフェニル]-4,4'-ジオール、4,4'-ジヒドロキシジフェニルエーテル、ビス(4-ヒドロキシフェニル)メタノン、ビスフェノールA、ビスフェノールF、ビスフェノールS、(フェニルスルホニル)ベンゼン、[1,1'-ビフェニル]-2,5-ジオール、又はこれらのモノカルボン酸(モノ又はジ)エステルである前記の熱硬化性芳香族エステルの製造方法を提供する。
 さらに、本発明は、前記芳香族ヒドロキシカルボン酸が、4-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、1-ヒドロキシ-2-ナフトエ酸、3-ヒドロキシ-2-ナフトエ酸、6-ヒドロキシ-2-ナフトエ酸、5-ヒドロキシ-1-ナフトエ酸、4'-ヒドロキシ[1,1'-ビフェニル]-4-カルボン酸からなる群より選択される少なくとも1つの化合物である前記の熱硬化性芳香族エステルの製造方法を提供する。
 さらに、本発明は、前記成分(A)と前記成分(B)の全化合物において、水酸基とカルボキシル基との官能基比(前者/後者)が、1.02以上である前記の熱硬化性芳香族エステルの製造方法を提供する。
 さらに、本発明は、前記成分(A)と前記成分(B)の総量に対する成分(A)の割合が、3~25モル%である前記の熱硬化性芳香族エステルの製造方法を提供する。
 さらに、本発明は、前記溶融重合時の温度が250~400℃である前記の熱硬化性芳香族エステルの製造方法を提供する。
 さらに、本発明は、前記熱硬化性芳香族エステルの平均重合度が、1~50である前記の熱硬化性芳香族エステルの製造方法を提供する。
 さらに、本発明は、前記熱硬化性芳香族エステルの融点が250℃以下である前記の熱硬化性芳香族エステルの製造方法を提供する。
 また、本発明は、下記式(I)で表される熱硬化性芳香族エステルを提供する。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
[上記式(I)中のLは、芳香族ジオール又はそのモノカルボン酸(モノ又はジ)エステルである成分(A)由来の構成単位と、芳香族ヒドロキシカルボン酸である成分(B)由来の構成単位を含む芳香族エステル骨格を表し、RA及びRA'は、同一又は異なっていてもよく、上記式(II)で表される基、水酸基、脂肪族アシルオキシ基、又は他の有機基であり、上記式(II)で表される基、水酸基及び脂肪族アシルオキシ基の合計の割合がRA+RA'の70%以上であり、上記式(II)中のDは、単結合又は連結基を表し、Raは、下記式(c1)~(c6)で表される基のいずれかを表す]
Figure JPOXMLDOC01-appb-C000014
[各式において、n1~n7は、それぞれ0以上の整数を表し、R1~R7は、置換基であって、それぞれC1-6アルキル基、C6-10アリール基、C1-6アルコキシ基、C6-10アリールオキシ基、又はハロゲン原子を表し、n1~n7が2以上の場合、それぞれR1~R7は、同一又は異なっていてもよい]
 さらに、本発明は、上記式(II)中の前記連結基が、2価の炭化水素基、カルボニル基、エーテル結合、エステル結合、カーボネート結合、アミド結合、これらが複数個連結した基である前記の熱硬化性芳香族エステルを提供する。
 さらに、本発明は、上記式(II)中のRaが、(c1)又は(c2)である前記の熱硬化性芳香族エステルを提供する。
 さらに、本発明は、上記式(I)中の芳香族エステル骨格Lの平均重合度が、1~50である前記の熱硬化性芳香族エステルを提供する。
 さらに、本発明は、熱硬化開始温度が、350℃以上である前記の熱硬化性芳香族エステルを提供する。
 さらに、本発明は、融点が250℃以下である前記の熱硬化性芳香族エステルを提供する。
 すなわち、本発明は以下に関する。
[1] 芳香族ジオール又はそのモノカルボン酸(モノ又はジ)エステルである成分(A)と芳香族ヒドロキシカルボン酸である成分(B)とを少なくとも含むモノマー成分と、分子内に水酸基及び/又はアシルオキシ基と反応する反応性官能基及び式(c1)~(c6)で表される熱重合性官能基のいずれかを有する化合物である成分(C)と、を溶融重合させることを特徴とする式(I)で表される熱硬化性芳香族エステルの製造方法。
[2] 前記成分(C)における熱重合性官能基の硬化開始温度が350℃以上である[1]に記載の熱硬化性芳香族エステルの製造方法。
[3] 前記成分(C)が、式(III)で表される化合物である[1]又は[2]に記載の熱硬化性芳香族エステル組成物の製造方法。
[4] 前記成分(C)が、フェニルエチニル安息香酸、4-スチルベンカルボン酸、及びけい皮酸からなる群より選択される少なくとも1つの化合物である[1]~[3]のいずれか1項に記載の熱硬化性芳香族エステルの製造方法。
[5] 前記成分(A)(芳香族ジオール)が、4,4'-ジヒドロキシビフェニル、ヒドロキノン、レゾルシノール、2,6-ナフタレンジオール、1,5-ナフタレンジオール、[1,1'-ビフェニル]-4,4'-ジオール、4,4'-ジヒドロキシジフェニルエーテル、ビス(4-ヒドロキシフェニル)メタノン、ビスフェノールA、ビスフェノールF、ビスフェノールS、(フェニルスルホニル)ベンゼン、[1,1'-ビフェニル]-2,5-ジオール、又はこれらのモノカルボン酸(モノ又はジ)エステルである[1]~[4]のいずれか1項に記載の熱硬化性芳香族エステルの製造方法。
[6] 前記成分(A)(芳香族ジオール)が、ビフェニル構造を有する化合物である[1]~[5]のいずれか1項に記載の熱硬化性芳香族エステルの製造方法。
[7] 前記成分(A)(芳香族ジオールのモノカルボン酸(モノ又はジ)エステル)が、炭素数1~10の脂肪族カルボン酸である[1]~[6]のいずれか1項に記載の熱硬化性芳香族エステルの製造方法。
[8] 前記芳香族ヒドロキシカルボン酸(成分(B))が、4-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、1-ヒドロキシ-2-ナフトエ酸、3-ヒドロキシ-2-ナフトエ酸、6-ヒドロキシ-2-ナフトエ酸、5-ヒドロキシ-1-ナフトエ酸、4'-ヒドロキシ[1,1'-ビフェニル]-4-カルボン酸からなる群より選択される少なくとも1つの化合物である[1]~[7]のいずれか1項に記載の熱硬化性芳香族エステルの製造方法。
[9] 前記成分(A)と前記成分(B)の全化合物において、水酸基とカルボキシル基との官能基比(前者/後者)が、1.02以上である[1]~[8]のいずれか1項に記載の熱硬化性芳香族エステルの製造方法。
[10] 前記成分(A)と前記成分(B)の総量に対する成分(A)の割合が、3~25モル%である[1]~[9]のいずれか1項に記載の熱硬化性芳香族エステルの製造方法。
[11] 前記反応性官能基が、α,β-不飽和カルボニル基、エポキシ基、マレイミド基、エステル基、酸無水物基、カルボキシル基から選択される少なくとも1つの基である[1]~[10]のいずれか1項に記載の熱硬化性芳香族エステルの製造方法。
[12] 前記反応性官能基の数が、1~10個である[1]~[11]のいずれか1項に記載の熱硬化性芳香族エステルの製造方法。
[13] 前記成分(C)の熱硬化開始温度が、350~450℃である[1]~[12]のいずれか1項に記載の熱硬化性芳香族エステルの製造方法。
[14] 前記溶融重合時の温度が、250~400℃である[1]~[13]のいずれか1項に記載の熱硬化性芳香族エステルの製造方法。
[15] 前記熱硬化性芳香族エステルの平均重合度が、1~50である[1]~[14]のいずれか1項に記載の熱硬化性芳香族エステルの製造方法。
[16] 前記熱硬化性芳香族エステルの融点が、250℃以下である[1]~[15]のいずれか1項に記載の熱硬化性芳香族エステルの製造方法。
[17] 式(I)で表される熱硬化性芳香族エステル。
[18] 式(II)中の連結基が、2価の炭化水素基、カルボニル基、エーテル結合、エステル結合、カーボネート結合、アミド結合、これらが複数個連結した基である[17]に記載の熱硬化性芳香族エステル。
[19] 式(II)中のRaが、(c1)又は(c2)である[17]又は[18]に記載の熱硬化性芳香族エステル。
[20] 平均重合度が、1~50である[17]~[19]のいずれか1項に記載の熱硬化性芳香族エステル。
[21] 分子量が、500~20000である[17]~[20]のいずれか1項に記載の熱硬化性芳香族エステル。
[22] ガラス転移温度(Tg)が、30~150℃である[17]~[21]のいずれか1項に記載の熱硬化性芳香族エステル。
[23] 熱硬化開始温度が、350℃以上である[17]~[22]のいずれか1項に記載の熱硬化性芳香族エステル。
[24] 融点が、250℃以下である[17]~[23]のいずれか1項に記載の熱硬化性芳香族エステル。
 本発明の熱硬化性芳香族エステルの製造方法は、上記構成を有するため、簡便に且つ生産性良く熱硬化性芳香族エステルを製造できる。また、芳香族エステルを必須の構成要素として含むため、得られる硬化物は、加工性、寸法安定性、低線膨張、高熱伝導、低吸湿性及び誘電特性にも優れる。また、本発明の熱硬化性芳香族エステルは、上記構成を有するため、得られる硬化物は、加工性、寸法安定性、低線膨張、高熱伝導、低吸湿性及び誘電特性にも優れる。
[熱硬化性芳香族エステルの製造方法]
 本発明の熱硬化性芳香族エステルの製造方法(「本発明の製造方法」と称する場合がある)は、下記式(I)で表される熱硬化性芳香族エステルの製造方法であり、芳香族ジオール又はそのモノカルボン酸(モノ又はジ)エステルである成分(A)と芳香族ヒドロキシカルボン酸である成分(B)とを少なくとも含むモノマー成分と、分子内に水酸基及び/又はアシルオキシ基と反応する反応性官能基及び下記式(c1)~(c6)で表される熱重合性官能基のいずれかを有する化合物である成分(C)と、を溶融重合させることを特徴とする。
Figure JPOXMLDOC01-appb-C000015
[各式において、n1~n7は、それぞれ0以上の整数を表し、R1~R7は、置換基であって、それぞれC1-6アルキル基、C6-10アリール基、C1-6アルコキシ基、C6-10アリールオキシ基、又はハロゲン原子を表し、n1~n7が2以上の場合、それぞれR1~R7は、同一又は異なっていてもよい]
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
[上記式(I)中のLは、芳香族ジオール又はそのモノカルボン酸(モノ又はジ)エステルである成分(A)由来の構成単位と、芳香族ヒドロキシカルボン酸である成分(B)由来の構成単位を含む芳香族エステル骨格を表し、RA及びRA'は、同一又は異なっていてもよく、上記式(II)で表される基、水酸基、アシルオキシ基、又は他の有機基であり、上記式(II)で表される基、水酸基及びアシルオキシ基の合計の割合がRA+RA'の70%以上であり、上記式(II)中のDは、単結合又は連結基を表し、Raは、上記式(c1)~(c6)で表される基のいずれかを表す]
 上記他の有機基とは、特に制限されないが、アリール基、カルボキシ基、アルキル基、これらが複数個連結した基などが挙げられる。上記他の有機基の割合は、特に制限されないが、RA+RA'(末端基全体)の0~30%が好ましく、0~15%がより好ましい。
 上記連結基としては、特に制限されないが、2価の炭化水素基、カルボニル基、エーテル結合、エステル結合、カーボネート結合、アミド結合、これらが複数個連結した基などが挙げられる。上記の2価の炭化水素としては、アリーレン基、アルキレン基、シクロヘキシレン基又はこれらが2以上結合した基などが挙げられる。上記アリーレン基としては、フェニレン基、ビフェニレン基、ナフチレン基などが挙げられる。また、上記アルキレン基としては、メチレン基、エチレン基、プロピレン基などの炭素数1~4の直鎖状又は分岐鎖状のアルキレン基などが挙げられる。
 芳香族エステルは、エステル構造を有する重合体(例えば、ポリマー又はオリゴマー)であって、その溶融体(例えば、450℃以下における溶融体)が光学的異方性を示す液晶エステル(サーモトロピック液晶ポリマー)である場合が多い。なお、上記「水酸基及び/又はアシルオキシ基」とは、「水酸基及びアシルオキシ基のいずれか一方又は両方」を意味し、他についても同様である。
[成分(A)]
 本発明の成分(A)である芳香族ジオール又はそのモノカルボン酸(モノ又はジ)エステルは、芳香族ジオール、芳香族ジオールのモノカルボン酸モノエステル、芳香族ジオールのモノカルボン酸ジエステルからなる群より選ばれる少なくとも1つの化合物である。
 上記芳香族ジオールとしては、例えば、4,4'-ジヒドロキシビフェニル、ヒドロキノン、レゾルシノール、2,6-ナフタレンジオール、1,5-ナフタレンジオール、[1,1'-ビフェニル]-4,4'-ジオール、4,4'-ジヒドロキシジフェニルエーテル、ビス(4-ヒドロキシフェニル)メタノン、ビスフェノールA、ビスフェノールF、ビスフェノールS、(フェニルスルホニル)ベンゼン、[1,1'-ビフェニル]-2,5-ジオール、及びこれらの誘導体などが挙げられる。上記誘導体としては、例えば、上記芳香族ジオールの芳香環に、カルボキシル基及びエステル基を除く、炭素数0~20(好ましくは炭素数0~10)の置換基が置換した化合物などが挙げられる。中でも、芳香族ジオールとしては、硬化物としたときに耐熱性等の物性に優れる点から、4,4'-ジヒドロキシビフェニルなどのビフェニル構造を有するものが好ましい。
 上記置換基としては、例えば、アルキル基[例えば、メチル基、エチル基など];アルケニル基[例えば、ビニル基、アリル基など];アルキニル基[例えば、エチニル基、プロピニル基など];ハロゲン原子[例えば、塩素原子、臭素原子、ヨウ素原子];ヒドロキシル基;アルコキシ基[例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロピルオキシ基、ブトキシ基、イソブチルオキシ基等のC1-6アルコキシ基(好ましくはC1-4アルコキシ基)など];アルケニルオキシ基[例えば、アリルオキシ基等のC2-6アルケニルオキシ基(好ましくはC2-4アルケニルオキシ基)など];アリールオキシ基[例えば、フェノキシ基、トリルオキシ基、ナフチルオキシ基等の、芳香環にC1-4アルキル基、C2-4アルケニル基、ハロゲン原子、C1-4アルコキシ基等の置換基を有していてもよいC6-14アリールオキシ基など];アラルキルオキシ基[例えば、ベンジルオキシ基、フェネチルオキシ基等のC7-18アラルキルオキシ基など];アシルオキシ基[例えば、アセチルオキシ基、プロピオニルオキシ基、(メタ)アクリロイルオキシ基、ベンゾイルオキシ基等のC1-12アシルオキシ基など];メルカプト基;アルキルチオ基[例えば、メチルチオ基、エチルチオ基等のC1-6アルキルチオ基(好ましくはC1-4アルキルチオ基)など];アルケニルチオ基[例えば、アリールチオ基等のC2-6アルケニルチオ基(好ましくはC2-4アルケニルチオ基)など];アリールチオ基[例えば、フェニルチオ基、トリルチオ基、ナフチルチオ基等の、芳香環にC1-4アルキル基、C2-4アルケニル基、ハロゲン原子、C1-4アルコキシ基等の置換基を有していてもよいC6-14アリールチオ基など];アラルキルチオ基[例えば、ベンジルチオ基、フェネチルチオ基等のC7-18アラルキルチオ基など];カルボキシル基;アルコキシカルボニル基[例えば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、ブトキシカルボニル基等のC1-6アルコキシ-カルボニル基など];アリールオキシカルボニル基[例えば、フェノキシカルボニル基、トリルオキシカルボニル基、ナフチルオキシカルボニル基等のC6-14アリールオキシ-カルボニル基など];アラルキルオキシカルボニル基[例えば、ベンジルオキシカルボニル基などのC7-18アラルキルオキシ-カルボニル基など];アミノ基;モノ又はジアルキルアミノ基[例えば、メチルアミノ基、エチルアミノ基、ジメチルアミノ基、ジエチルアミノ基等のモノ又はジ-C1-6アルキルアミノ基など];モノ又はジフェニルアミノ基[例えば、フェニルアミノ基など];アシルアミノ基[例えば、アセチルアミノ基、プロピオニルアミノ基、ベンゾイルアミノ基等のC1-11アシルアミノ基など];エポキシ基含有基[例えば、グリシジル基、グリシジルオキシ基、3,4-エポキシシクロヘキシル基など];オキセタニル基含有基[例えば、エチルオキセタニルオキシ基など];アシル基[例えば、アセチル基、プロピオニル基、ベンゾイル基など];オキソ基;イソシアネート基;これらの2以上が必要に応じてC1-6アルキレン基を介して結合した基などが挙げられる。なお、成分(A)は、芳香族ジオール由来の構成単位の1種を有するものであってもよいし、2種以上を有するものであってもよい。
 上記の芳香族ジオールのモノカルボン酸モノエステルとは、芳香族ジオールの置換基として、上記置換基と共に置換基としてエステル基を1つ有するものであり、上記の芳香族ジオールのモノカルボン酸ジエステルとは、芳香族ジオールの置換基として、上記置換基と共に置換基としてエステル基を2つ有するものである。上記モノカルボン酸としては、例えば、酢酸、プロピオン酸、酪酸、イソ酪酸等の炭素数1~10の脂肪族カルボン酸;シクロヘキサンカルボン酸等の炭素数3~12の脂環式カルボン酸;安息香酸等の炭素数6~12の芳香族カルボン酸などが挙げられる。これらの中でも、炭素数1~10の脂肪族カルボン酸が好ましく、炭素数2~4の脂肪族カルボン酸がより好ましく、酢酸が特に好ましい。
[成分(B)]
 本発明の成分(B)は、芳香族ヒドロキシカルボン酸である。上記芳香族ヒドロキシカルボン酸としては、例えば、4-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、1-ヒドロキシ-2-ナフトエ酸、3-ヒドロキシ-2-ナフトエ酸、6-ヒドロキシ-2-ナフトエ酸、5-ヒドロキシ-1-ナフトエ酸、4'-ヒドロキシ[1,1'-ビフェニル]-4-カルボン酸、及びこれらの誘導体などが挙げられる。上記誘導体としては、例えば、上記芳香族ヒドロキシカルボン酸の芳香環(芳香族環)に、炭素数0~20(好ましくは炭素数0~10)の置換基が置換した化合物等が挙げられる。上記置換基としては、芳香族ジオールにおける置換基と同様のものが例示される。なお、成分(B)は、芳香族ヒドロキシカルボン酸を1種有するものであってもよいし、2種以上を有するものであってもよい。
[その他のモノマー成分]
 本発明の製造方法では、上記成分(A)及び成分(B)以外にも、その他のモノマー成分を含んでもよい。その他のモノマー成分としては、例えば、芳香族ジカルボン酸、芳香族ジアミン及びフェノール性水酸基を有する芳香族アミン又は芳香族アミドなどが挙げられる。
 上記芳香族ジカルボン酸としては、例えば、フタル酸、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、[1,1'-ビフェニル]-4,4'-ジカルボン酸、4,4'-オキシビス(安息香酸)、4,4'-チオビス(安息香酸)、4-[2-(4-カルボキシフェノキシ)エトキシ]安息香酸、及びこれらの誘導体などが挙げられる。上記誘導体としては、例えば、上記芳香族ジカルボン酸の芳香環に、炭素数0~20(好ましくは炭素数0~10)の置換基が置換した化合物などが挙げられる。上記置換基としては、芳香族ジオールにおける置換基と同様のものが例示される。なお、芳香族エステルは、芳香族ジカルボン酸由来の構成単位の1種を有するものであってもよいし、2種以上を有するものであってもよい。
 上記芳香族ジアミンとしては、例えば、1,4-ベンゼンジアミン、1,3-ベンゼンジアミン、4-メチル-1,3-ベンゼンジアミン、4-(4-アミノベンジル)フェニルアミン、4-(4-アミノフェノキシ)フェニルアミン、3-(4-アミノフェノキシ)フェニルアミン、4'-アミノ-3,3'-ジメチル[1,1'-ビフェニル]-4-イルアミン、4'-アミノ-3,3'-ビス(トリフルオロメチル)[1,1'-ビフェニル]-4-イルアミン、4-アミノ-N-(4-アミノフェニル)ベンズアミド、4-[(4-アミノフェニル)スルホニル]フェニルアミン、ビス(4-アミノフェニル)メタノン、及びこれらの誘導体などが挙げられる。上記誘導体としては、例えば、上記芳香族ジアミンの芳香環に、炭素数0~20(好ましくは炭素数0~10)の置換基が置換した化合物などが挙げられる。上記置換基としては、芳香族ヒドロキシカルボン酸における置換基と同様のものが例示される。なお、芳香族エステルは、芳香族ジアミン由来の構成単位の1種を有するものであってもよいし、2種以上を有するものであってもよい。
 上記フェノール性水酸基を有する芳香族アミン又は芳香族アミドとしては、例えば、4-アミノフェノール、4-アセトアミドフェノール、3-アミノフェノール、3-アセトアミドフェノール、6-アミノ-2-ナフトール、5-アミノ-1-ナフトール、4'-ヒドロキシ-[1,1'-ビフェニル]-4-アミン、4-アミノ-4'-ヒドロキシジフェニルメタン、及びこれらの誘導体などが挙げられる。上記誘導体としては、例えば、上記フェノール性水酸基を有する芳香族アミンの芳香環に、炭素数0~20(好ましくは炭素数0~10)の置換基が置換した化合物などが挙げられる。上記置換基としては、芳香族ヒドロキシカルボン酸における置換基と同様のものが例示される。なお、芳香族エステルとしては、フェノール性水酸基を有する芳香族アミン又は芳香族アミド由来の構成単位の1種を有するものであってもよいし、2種以上を有するものであってもよい。
 上述の芳香族化合物(芳香族ジアミン、フェノール性水酸基を有する芳香族アミン又は芳香族アミド)の、芳香族エステルを構成する全構成単位に対する割合(上記構成単位が2種以上の場合は、それらの総量の割合)は、特に限定されないが、30重量%以下(例えば、0~30重量%)が好ましく、10重量%以下がより好ましく、5重量%以下がさらに好ましい。上記割合が30重量%以下であると、硬化物の耐吸湿性(耐加水分解性)が低下しにくい。
 成分(B)とその他のモノマー成分の配合割合(配合量)は、特に制限されないが、成分(B)100重量部に対して、その他のモノマー成分の配合量は、0~100重量部が好ましく、0~50重量部がより好ましく、0~30重量部がさらに好ましい。
[成分(C)]
 本発明の成分(C)は、分子内(一分子中)に、水酸基及び/又はアシルオキシ基と反応する反応性官能基及び熱重合性官能基を有する化合物である。成分(C)は、分子内(一分子中)に、上記反応性官能基を1つ以上と上記熱重合性官能基(熱硬化性官能基)を1つ以上有する化合物である。成分(C)の反応性官能基と反応する上記の水酸基及び/又はアシルオキシ基は、成分(A)又は成分(B)由来のものである。
 上記反応性官能基としては、水酸基又はアシルオキシ基と反応し得る官能基であればよく、特に限定されないが、上記反応が進行する温度の観点で、例えば、α,β-不飽和カルボニル基(例えば、カルボニル炭素のα位とβ位の間に炭素-炭素不飽和結合を有するケトン基、カルボニル炭素のα位とβ位の間に炭素-炭素不飽和結合を有するエステル基、カルボニル炭素のα位とβ位の間に炭素-炭素不飽和結合を有するアミド基、カルボニル炭素のα位とβ位の間に炭素-炭素不飽和結合を有するイミド基など);エポキシ基;マレイミド基;エステル基;酸無水物基(例えば、マレイン酸無水物基など);カルボキシル基などが挙げられる。なお、成分(C)は、上記反応性官能基の1種を有するものであってもよいし、2種以上を有するものであってもよい。
 なお、上記で例示した反応性官能基のうち、α,β-不飽和カルボニル基、エポキシ基、マレイミド基、エステル基、酸無水物基、カルボキシル基は、水酸基と反応する反応性官能基(対水酸基反応性官能基)である。また、上記で例示した反応性官能基のうち、カルボキシル基は、アシルオキシ基と反応する反応性官能基(対アシルオキシ基反応性官能基)である。さらに、上記で例示した反応性官能基のうち、マレイミド基、酸無水物基(特に、マレイン酸無水物基)は、芳香族環と反応(環化付加反応)する反応性官能基、及び/又は、共役ジエン構造と反応(環化付加反応)する反応性官能基である。中でも反応性官能基としては、水酸基と反応し、エステル結合を生成できる点より、カルボキシル基が好ましい。
 成分(C)における反応性官能基の数は、1個以上であればよく、特に限定されないが、1~10個が好ましく、より好ましくは1~5個である。
 上記熱重合性官能基は、上記式で表される、フェニルエチニル基(c1)、スチリル基(c2)、ベンゾシクロブテン構造(c3)、ビフェニレン構造(c4)、ナジイミド構造(c5)、フェニルマレイミド構造(c6)である。中でも、熱硬化性に優れ、芳香族エステル合成時の温度(例えば、300~350℃)で重合(硬化)反応を起さない点で、フェニルエチニル基(c1)又はスチリル基(c2)が好ましい。なお、成分(C)は、熱重合性官能基を1種有するものであってもよいし、2種以上を有するものであってもよい。
 成分(C)としては、具体的には、例えば、下記式(III)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000018
[上記式(III)中のRは、水酸基、アシルオキシ基又はハロゲン原子を表し、Dは、単結合又は連結基を表し、Raは、上記式(c1)~(c6)で表される基のいずれかを表す]
 上記連結基は、上記式(II)中のDと同様のものが挙げられる。中でも、式(III)中のDとしては、硬化物としたときの耐熱性等の物性に優れる点から、単結合、又は連結基として、アリーレン基(特に、フェニレン基)が好ましい。
 成分(C)としては、例えば、4-フェニルエチニル安息香酸、4-スチルベンカルボン酸、けい皮酸、1,2-ジヒドロベンゾシクロブテン-1-カルボン酸、4-カルボキシベンゾシクロブテン、2-ビフェニレンカルボン酸、4-ナジイミド安息香酸、4-フェニルマレイミド安息香酸などが挙げられる。中でも芳香族エステル合成時の温度(例えば、250~320℃)で架橋反応を起こしにくい点で、4-フェニルエチニル安息香酸、4-スチルベンカルボン酸、けい皮酸が好ましい。
 上記成分(C)の熱硬化開始温度は、特に制限されないが、350℃以上(350~450℃)が好ましく、360℃以上がより好ましく、370℃以上がさらに好ましい。熱硬化開始温度が350℃以上であると、芳香族エステル合成時の温度(例えば、300~350℃)で重合(硬化)反応が起きにくい。
 本発明における熱硬化性芳香族エステルは、上記成分(A)と成分(B)を少なくとも含むモノマー成分、及び成分(C)を溶融重合することにより得られる。上記溶融重合では、成分(A)と成分(B)を少なくとも含むモノマー成分の重合反応(例えば、縮重合)により、芳香族エステル骨格を有し、少なくとも一方の分子鎖末端に水酸基又はアシルオキシ基を有する芳香族エステルが得られる反応と、得られた芳香族エステルの水酸基又はアシルオキシ基と成分(C)の反応(例えば、付加反応)により、分子鎖末端に熱重合性官能基を有する芳香族エステルが得られる。上記の成分(A)と成分(B)を少なくとも含むモノマー成分の重合反応と、芳香族エステルの水酸基又はアシルオキシ基と成分(C)の反応は、成分(A)と成分(B)を少なくとも含むモノマー成分、及び成分(C)を溶融させた状態で同時に反応を行うことが好ましい。
 成分(A)と成分(B)の配合割合(配合量)は、特に制限されないが、成分(A)100重量部に対して、成分(B)の配合量は、50~2000重量部が好ましく、100~1500重量部がより好ましく、200~1000重量部がさらに好ましい。成分(B)の配合量が上記範囲であると、分子鎖末端に水酸基を有する芳香族エステルの割合が多くなり、成分(C)との反応量が向上する。
 成分(A)と成分(B)を少なくとも含むモノマー成分の総量(合計モル量100モル%)に対する成分(A)の割合は、特に制限されないが、3~25モル%が好ましく、4~20モル%がより好ましく、5~15モル%がさらに好ましい。成分(A)の割合が上記範囲であると、分子鎖末端に水酸基を有する芳香族エステルの割合が多くなり、成分(C)との反応量が向上する。
 成分(A)と成分(B)を少なくとも含むモノマー成分の全化合物(全化合物の分子鎖末端基)において、水酸基とカルボキシル基との官能基比(前者/後者)は、特に制限されないが、1.02以上が好ましく、1.04以上がより好ましく、1.10以上がさらに好ましい。水酸基とカルボキシル基との官能基比が、1.02以上であると、全化合物中の分子鎖末端基において、水酸基の割合が大きくなり、成分(C)との反応量が向上する。
 成分(A)と成分(B)を少なくとも含むモノマー成分、と成分(C)の配合割合(配合量)は、特に制限されないが、成分(A)と成分(B)を少なくとも含むモノマー成分の総量(合計量)100重量部に対して、成分(C)の配合量は、5~300重量部が好ましく、7~250重量部がより好ましく、10~100重量部がさらに好ましい。成分(C)の配合量が上記範囲であると、硬化物の物性に悪影響を与えず、硬化性に優れた熱硬化性エステルが得られる。
 成分(A)と成分(B)を少なくとも含むモノマー成分、と成分(C)の総量(合計モル量100モル%)に対する成分(C)の割合は、特に制限されないが、2~60モル%が好ましく、3~50モル%がより好ましく、5~40モル%がさらに好ましい。成分(C)の割合が上記範囲であると、硬化物の物性に悪影響を与えず、硬化性に優れた熱硬化性エステルが得られる。
 上記溶融重合時の温度(加熱温度)は、特に制限されないが、250~400℃が好ましく、270~380℃がより好ましく、290~360℃がさらに好ましい。温度が上記範囲であると、芳香族エステルを十分に溶融し、重合反応を進行することができる。なお、温度は、加熱する間一定となるように制御することもできるし、段階的又は連続的に変動するように制御することもできる。
 上記溶融重合時の時間(加熱時間)は、特に制限されないが、200~1000分が好ましく、400~600分がより好ましい。時間が上記範囲であると、生産性が低下せず、分子鎖末端に熱重合性官能基を有する芳香族エステルが得られる。
 本発明の製造方法では、特に制限されないが、簡便に熱硬化性芳香族エステルが得られる点から、溶融重合を一つの反応器中で行い、途中で単離や精製、溶剤の留去などを行なわず、反応温度を変化させることにより連続的に反応を行うことが好ましい。なお、上記式(I)で表される熱硬化性芳香族エステルは、反応完了後、反応に用いた溶剤などを留去することにより得られる。
 本発明の製造方法により得られる熱硬化性芳香族エステルは、芳香族エステルの1以上と熱重合性官能基を有する化合物の1以上とが反応(例えば、付加反応)により結合した化合物(例えば、ポリマー又はオリゴマー)であり、上記式(I)で表される。
 上述のように、本発明の製造方法は、重合性官能基を有する化合物の重合性官能基を熱的性質により選択することにより、簡便で生産性に優れた方法で熱硬化性芳香族エステルが得られる。また、本発明で得られた熱硬化性芳香族エステルを硬化させることにより得られる硬化物は、優れた耐熱性を有し、また、優れた加工性、寸法安定性、低線膨張、高熱伝導性、低吸湿性、誘電特性を有する。
[熱硬化性芳香族エステル]
 本発明の熱硬化性芳香族エステルは、下記式(I)で表される熱硬化性芳香族エステルであることを特徴とする。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
[上記式(I)中のLは、芳香族ジオール又はそのモノカルボン酸(モノ又はジ)エステルである成分(A)由来の構成単位と、芳香族ヒドロキシカルボン酸である成分(B)由来の構成単位を含む芳香族エステル骨格を表し、RA及びRA'は、同一又は異なっていてもよく、上記式(II)で表される基、水酸基、アシルオキシ基、又は他の有機基であり、上記式(II)で表される基、水酸基及びアシルオキシ基の合計の割合がRA+RA'の70%以上であり、上記式(II)中のDは、単結合又は連結基を表し、Raは、上記式(c1)~(c6)で表される基のいずれかを表す]
 上記式(I)中のRA及びRA'は、上記式(II)で表される基、水酸基、アシルオキシ基、又は他の有機基であり、上記式(II)で表される基、水酸基及びアシルオキシ基の合計の割合がRA+RA'(末端基全体)の70%以上であるが、上記式(II)で表される基、水酸基、アシルオキシ基、合計の割合は、80%以上が好ましく、90%以上がより好ましく、100%がさらに好ましい。この割合が70%以上であるため、硬化させたときの硬化物の物性に優れる。また、上記他の有機基の割合は、特に制限されないが、RA+RA'(末端基全体)の0~30%が好ましく、0~15%がより好ましい。上記他の有機基とは、特に制限されないが、アリール基、カルボキシ基、アルキル基、これらが複数個連結した基等が挙げられる。上記式(II)中のDである連結基としては、上述のものが挙げられる。また、成分(A)及び成分(B)としては、上述のものが挙げられる。
 これらの繰り返し構成単位の総量(合計量100%)に対する、上記成分(A)由来の構成単位の割合は、10%以上が好ましく、30%以上がより好ましい。また、上記成分(B)由来の構成単位の割合は、10%以上が好ましく、20%以上がより好ましい。
 上記構成単位(芳香族ジオール由来の構成単位、芳香族ヒドロキシカルボン酸由来の構成単位)以外の構成単位(「その他のモノマー成分構成単位」と称する場合がある)を有していてもよく、上記その他のモノマー成分構成単位としては、例えば、芳香族ジカルボン酸由来の構成単位、芳香族ジアミン由来の構成単位、フェノール性水酸基を有する芳香族アミン又は芳香族アミド由来の構成単位などが挙げられる。芳香族ジカルボン酸、芳香族ジアミン、及びフェノール性水酸基を有する芳香族アミン又は芳香族アミドとしては、上述のものが挙げられる。
 上記式(I)で表される熱硬化性芳香族エステルの芳香族エステル骨格Lの平均重合度は、特に限定されないが、1~50が好ましく、2~40がより好ましく、3~30がさらに好ましい。平均重合度が上記範囲であると、溶融温度が比較的低く抑えられるため、成形時の取扱が容易になる。また、架橋密度も高くなるため、機械特性に優れた硬化物が得られる。特に、平均重合度が2以上の場合、本発明における熱硬化性芳香族エステルを熱硬化性芳香族ポリエステルと呼ぶことができる。なお、芳香族エステル骨格Lの平均重合度は、特開平5-271394号公報に記載のアミン分解HPLC法により求めることができる。
 上記熱硬化性芳香族エステルの分子量は、特に制限されないが、500~20000であることが好ましく、700~15000がより好ましく、800~10000がさらに好ましい。分子量が、上記範囲であると、硬化物の耐熱性に劣りにくい。なお、熱硬化性芳香族エステルの分子量は、例えば、GPC測定により求めることができる。
 上記熱硬化性芳香族エステルのガラス転移温度(Tg)は、特に限定されないが、30~150℃が好ましく、40~120℃がより好ましく、50~100℃がさらに好ましい。ガラス転移温度が上記範囲であると、硬化物の耐熱性に劣りにくい。なお、ガラス転移温度(Tg)は、例えば、DSC、TGA等の熱分析や動的粘弾性測定により測定できる。
 上記熱硬化性芳香族エステルの融点(Tm)は、明確に測定可能な融点としてあってもなくてもよく、ある場合は特に限定されないが、250℃以下(80~250℃)が好ましく、220℃以下がより好ましく、200℃以下がさらに好ましく、180℃以下が特に好ましい。なお、融点(Tm)は、例えば、DSC、TGA等の熱分析や動的粘弾性測定により測定できる。
 上記熱硬化性芳香族エステルの熱硬化開始温度は、特に制限されないが、350℃以上(350~400℃)が好ましく、360℃以上がより好ましく、370℃以上がさらに好ましい。熱硬化開始温度が350℃以上であると、芳香族エステルの合成時に熱硬化せず、粘度の上昇を抑えることができる。
 本発明の熱硬化性芳香族エステルは、特に制限されないが、上述の本発明の製造方法により得ることができる。
 本発明の熱硬化性芳香族エステルは、硬化することにより得られる硬化物が、耐熱性、加工性、寸法安定性、低線膨張、高熱伝導性、低吸湿性、誘電特性などの物性に優れる新規な熱硬化性芳香族エステルである。
[硬化物]
 本発明の製造方法により得られた熱硬化性芳香族エステルを加熱によって硬化させることにより、硬化物(「本発明の硬化物」と称する場合がある)が得られる。加熱によって主に熱重合性官能基同士の反応(架橋反応)が進行し、硬化物が形成される。熱硬化性芳香族エステルを加熱によって硬化させる際に、後述する金属触媒、硬化促進剤、架橋剤、添加剤などを添加してもよい。なお、加熱の手段としては、公知乃至慣用の手段を利用することができ、特に限定されない。
[金属触媒]
 本発明の熱硬化性芳香族エステルを硬化する際には、熱重合性官能基の重合反応(硬化反応)の硬化開始温度を下げるために、金属触媒を添加してもよい。金属触媒は、特に芳香族エステルの熱重合性基としてフェニルエチニル基を導入した場合は、フェニルエチニル基の三重結合に作用し、硬化開始温度(硬化可能温度)を下げる働きが大きい。
 金属触媒を添加したときの熱硬化性芳香族エステルの硬化開始温度(特に、フェニルエチニル基を導入した場合の硬化開始温度)は、特に制限されないが、280℃以下(200~280℃)が好ましく、260℃以下がより好ましく、240℃以下がさらに好ましい。硬化開始温度が280℃以下であると、実用的な温度範囲で硬化させることができる。
 上記金属触媒としては、金属化合物、例えば、遷移金属化合物やホウ素化合物などのような周期表13族元素(ホウ素B、アルミニウムAlなど)を含む化合物が含まれる。なお、反応混合物中の金属触媒成分は、金属触媒(金属化合物)が、イオン化した金属イオンなどであってもよい。これらの金属触媒は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 上記遷移金属の元素としては、例えば、周期表3族元素(例えば、スカンジウムSc、イットリウムYの他、ランタンLa、セリウムCe、サマリウムSmなどのランタノイド元素、アクチニウムAcなどのアクチノイド元素)、周期表4族元素(チタンTi、ジルコニウムZr、ハフニウムHfなど)、5族元素(バナジウムV、ニオブNb、タンタルTaなど)、6族元素(クロムCr、モリブデンMo、タングステンWなど)、7族元素(マンガンMnなど)、8族元素(鉄Fe、ルテニウムRu、オスミウムOsなど)、9族元素(コバルトCo、ロジウムRh、イリジウムIrなど)、10族元素(ニッケルNi、パラジウムPd、白金Ptなど)、11族元素(銅Cu、銀Ag、金Auなど)などが挙げられる。通常、金属触媒は、上記元素を含む金属酸化物、塩(有機酸塩、無機酸塩など)、ハロゲン化物、上記金属元素を含む配位化合物(錯体)やヘテロポリ酸又はその塩などである場合が多い。
 上記金属触媒としては、前述の金属元素を含み、触媒能を有するものであれば特に限定されないが、具体的には、ニッケロセン、フェロセン、コバルトセン、ルテノセンなどのメタロセン;塩化ニオブ、塩化タンタル、塩化モリブデン、塩化タングステンなどの金属塩化物;テトラ(n-ブチル)スズ、テトラフェニルスズ、オクチル酸スズなどの有機スズ化合物、オクチル酸亜鉛などの有機亜鉛化合物などが挙げられる。中でも金属触媒の安定性や熱硬化開始温度を下げる働きが大きい点から、ニッケロセン、塩化ニオブ、塩化タンタル、塩化モリブデン、塩化タングステンが好ましく、特に、ニッケロセンが好ましい。また、金属塩化物を使用する場合は、共触媒としてテトラ(n-ブチル)スズ、テトラフェニルスズを用いることが好ましい。
 上記金属触媒の配合量は、特に制限されないが、上記式(I)で表される熱硬化性芳香族エステル100重量部に対して、0.01~5重量部が好ましく、0.05~3重量部がより好ましく、0.1~2重量部がさらに好ましい。配合量が少なすぎると触媒の効果が不十分となる場合がある。
[硬化促進剤]
 本発明の硬化物を製造する際には、硬化反応を促進し、熱硬化開始温度を下げるために、硬化促進剤を用いても良い。硬化促進剤には、後述するラジカル発生剤も含まれるものとする。
 上記硬化促進剤としては、硬化反応を促進する機能を有する化合物であれば、特に制限されないが、ラジカル発生剤、イミダゾール誘導体、有機塩基及びその塩などが挙げられる。これらの硬化促進剤は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
上記ラジカル発生剤としては、光又は熱ラジカル発生剤として下記のものを用いることができる。
 上記光ラジカル発生剤としては、例えば、ベンゾフェノン、アセトフェノンベンジル、ベンジルジメチルケトン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ジメトキシアセトフェノン、ジメトキシフェニルアセトフェノン、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド、ジフェニルジサルファイト、オルトベンゾイル安息香酸メチル、4-ジメチルアミノ安息香酸エチル(日本化薬(株)製 カヤキュアEPA等)、2,4-ジエチルチオキサンソン(日本化薬(株)製 カヤキュアDETX等)、2-メチル-1-[4-(メチル)フェニル]-2-モルホリノプロパノン-1(チバガイギ-(株)製 イルガキュア907等)、2-ジメチルアミノ-2-(4-モルホリノ)ベンゾイル-1-フェニルプロパン等の2-アミノ-2-ベンゾイル-1-フェニルアルカン化合物、テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、ベンジル、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、4,4-ビスジエチルアミノベンゾフェノン等のアミノベンゼン誘導体、2,2’-ビス(2-クロロフェニル)-4,5,4’,5’-テトラフェニル-1,2’-ビイミダゾ-ル(保土谷化学(株)製 B-CIM等)等のイミダゾール化合物、2,6-ビス(トリクロロメチル)-4-(4-メトキシナフタレン-1-イル)-1,3,5-トリアジン等のハロメチル化トリアジン化合物、2-トリクロロメチル-5-(2-ベンゾフラン2-イル-エテニル)-1,3,4-オキサジアゾール等のハロメチルオキサジアゾール化合物などが挙げられる。これらの光ラジカル重合開始剤は単独で、又は2種以上を組み合わせて使用することができる。また、本発明の樹脂組成物には、必要に応じて、光増感剤を加えることができる。上記光ラジカル重合開始剤としては、例えば、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシドのように、波長400nm付近の光で活性化するものが好ましい。
 上記熱ラジカル発生剤としては、例えば、有機過酸化物類などが挙げられる。上記有機過酸化物類としては、例えば、ジアルキルパーオキサイド、アシルパーオキサイド、ハイドロパーオキサイド、ケトンパーオキサイド、パーオキシエステル等を使用することができる。有機過酸化物の具体例としては、ベンゾイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサネート、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイル)パーオキシヘキサン、t-ブチルパーオキシベンゾエート、t-ブチルパーオキサイド、クメンハイドロパーオキサイド、ジクミルパーオキサイド、ジーt-ブチルパーオキサイド、2,5-ジメチル-2,5-ジブチルパーオキシヘキサン、2,4-ジクロロベンゾイルパーオキサイド、ジ-t-ブチルパーオキシ-ジイソプロピルベンゼン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、メチルエチルケトンパーオキシド、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート等が挙げられる。その他のラジカル発生剤としては、2,3-ジメチル-2,3-ジフェニルブタンが挙げられる。中でも、ジクミルパーオキサイド、2,3-ジメチル-2,3-ジフェニルブタンが好ましい。これらのラジカル発生剤は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 さらに、上記熱ラジカル発生剤とともに、ナフテン酸コバルト、ナフテン酸マンガン、ナフテン酸亜鉛、オクテン酸コバルト等のナフテン酸やオクテン酸のコバルト、マンガン、鉛、亜鉛、バナジウムなどの金属塩を併用することができる。同様に、ジメチルアニリン等の3級アミンも使用することができる。
 上記イミダゾール誘導体としては、2-メチルイミダゾール、2-エチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾールなどが挙げられる。これらのイミダゾール誘導体は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 上記有機塩基及びその塩としては、例えば、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、及びその塩(例えば、フェノール塩、オクチル酸塩、p-トルエンスルホン酸塩、ギ酸塩、テトラフェニルボレート塩);1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、及びその塩(例えば、ホスホニウム塩、スルホニウム塩、4級アンモニウム塩、ヨードニウム塩);ベンジルジメチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、N,N-ジメチルシクロヘキシルアミンなどの3級アミン;2-エチル-4-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾールなどのイミダゾール;リン酸エステル、トリフェニルホスフィンなどのホスフィン類;テトラフェニルホスホニウムテトラ(p-トリル)ボレートなどのホスホニウム化合物などが挙げられる。これらの有機塩基及びその塩は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 また、上記有機塩基及びその塩としては、U-CAT SA 506、U-CAT SA 102、U-CAT 5003、U-CAT 18X(以上、サンアプロ(株)製)、TPP-K、TPP-MK(以上、北興化学工業(株)製)、PX-4ET(日本化学工業(株)製)などの市販品を使用することもできる。
 上記硬化促進剤の配合量は、特に制限されないが、上記式(I)で表される熱硬化性芳香族エステル100重量部に対して、0.05~5重量部が好ましく、0.1~3重量部がより好ましい。配合量が少なすぎると硬化促進効果が不十分となる場合があり、また多すぎると、硬化樹脂の色相が悪化する場合がある。
[架橋剤]
 また、熱硬化開始温度を下げる働きをする架橋剤を用いてもよい。上記架橋剤としては、熱硬化性芳香族エステルの分子末端基である熱重合性官能基と加熱により反応し得る官能基(反応性官能基)と熱重合可能な官能基(熱重合性官能基)を有する化合物であればよく、特に限定されないが、マレイミド誘導体、無水マレイン酸誘導体などが挙げられる。これらの架橋剤は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 架橋剤を添加したときの熱硬化性芳香族エステルの硬化開始温度は、特に制限されないが、280℃以下(200~280℃)が好ましく、260℃以下がより好ましく、240℃以下がさらに好ましい。硬化開始温度が280℃以下であると、実用的な温度範囲で硬化させることができる。
 上記マレイミド誘導体としては、具体的には、例えば、N‐フェニルマレイミド、N‐エチルマレイミド、N-(2-オキシプロピル)マレイミド、N-(ジメチルアミノ)マレイミド、N‐(4-アミノフェニル)マレインイミド、N-(4-カルボキシフェニル)マレインイミド、N-(1-ナフチル)マレイミド、N-(2-ナフチル)マレイミド、N-(1-フルオレニル)マレイミド、N‐(2‐ビフェニリル)マレインイミド、N‐(4‐メトキシフェニル)マレインイミドなどのマレイミド化合物;4,4'-ジフェニルメタンビスマレイミド、m-フェニレンビスマレイミド、2,2'-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、エチレンビスマレイミド、o-フェニレンビスマレイミド、p-フェニレンビスマレイミド、m-トルイレンビスマレイミド、4,4'-ビフェニレンビスマレイミド、4,4'-[3,3'-ジメチル-ビフェニレン]ビスマレイミド、4,4'-[3,3'-ジメチルジフェニルメタン]ビスマレイミド、4,4'-[3,3'-ジエチルジフェニルメタン]ビスマレイミド、4,4'-ジフェニルプロパンビスマレイミド、4,4'-ジフェニルエーテルビスマレイミド、3,3'-ジフェニルスルホンビスマレイミド、4,4'-ジフェニルスルホンビスマレイミドなどのビスマレイミド化合物などが挙げられる。
 上記無水マレイン酸誘導体としては、無水マレイン酸、2,3‐ジメチルマレイン酸無水物、2-フェニルマレイン酸無水物、2-(ジフェニル)マレイン酸無水物、2-(1-ヒドロキシヘキシル)マレイン酸無水物、2-(4-メチルフェニル)マレイン酸無水物、2-[2-(ヘキシルオキシ)エチル]マレイン酸無水物、2,5-ジヒドロ-2,5-ジオキソ-3-フラン酢酸、2,5-ジヒドロ-2,5-ジオキソフラン-3-カルボン酸メチルなどが挙げられる。
 上記架橋剤の配合量は、特に制限されないが、上記式(I)で表される熱硬化性芳香族エステル100重量部に対して、5~95重量部が好ましく、10~90重量部がより好ましく、10~80重量部がさらに好ましい。
[添加剤]
 本発明の製造方法は、硬化物の性能を目的(用途)に応じて調整するため、無機フィラーなどの添加剤を含めることができる。中でも、添加剤としては、無機フィラーが好ましく用いられる。
 上記無機フィラーとしては、公知乃至慣用の無機フィラーを使用することができ、特に限定されないが、例えば、シリカ(例えば、天然シリカ、合成シリカなど)、酸化アルミニウム(例えば、α-アルミナなど)、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化セリウム、酸化イットリウム、酸化カルシウム、酸化亜鉛、酸化鉄などの酸化物;炭酸カルシウム、炭酸マグネシウムなどの炭酸塩;硫酸バリウム、硫酸アルミニウム、硫酸カルシウムなどの硫酸塩;窒化アルミニウム、窒化ケイ素、窒化チタン、窒化ホウ素などの窒化物;水酸化カルシウム、水酸化アルミニウム、水酸化マグネシウムなどの水酸化物;マイカ、タルク、カオリン、カオリンクレー、カオリナイト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、アメサイト、ベントナイト、アスベスト、ウォラストナイト、セピオライト、ゾノライト、ゼオライト、ハイドロタルサイト、フライアッシュ、脱水汚泥、ガラスビーズ、ガラスファイバー、ケイ藻土、ケイ砂、カーボンブラック、センダスト、アルニコ磁石、各種フェライト等の磁性粉、水和石膏、ミョウバン、三酸化アンチモン、マグネシウムオキシサルフェイト、シリコンカーバイド、チタン酸カリウム、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ酸アルミニウム、燐酸マグネシウム、銅、鉄などが挙げられる。上記無機フィラーは、中実構造、中空構造、多孔質構造等のいずれの構造を有していてもよい。また、上記無機フィラーは、例えば、オルガノハロシラン、オルガノアルコキシシラン、オルガノシラザン等の有機ケイ素化合物などの周知の表面処理剤により表面処理されたものであってもよい。なお、本発明の製造方法において無機フィラーは、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。中でも、特に、本発明の熱硬化性芳香族エステル組成物を半導体封止材用に使用する場合には、シリカ(シリカフィラー)等を使用することが好ましく、硬化物の熱伝導性や放熱特性を調整する場合には、アルミナ(アルミナ微粒子)等を使用することが好ましい。
 本発明の製造方法における上記無機フィラーの添加量は、特に限定されないが、上記式(I)で表される熱硬化性芳香族エステル100重量部に対して、5~500重量部が好ましく、より好ましくは10~300重量部であり、さらに好ましくは30~200重量部である。
 上記無機フィラー以外の添加剤としては、特に限定されないが、例えば、ジアミノ化合物[例えば、ジアミノジフェニルメタンなど]、ジアリル化合物[ジアリルビスフェノールAなど]、トリアジン類[例えば、1,3,5-トリ-2-プロペニル-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、1,3,5-トリス(2-メチル-2-プロペニル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、1,3,5-トリス(2,3-エポキシプロピル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオンなど]などが挙げられる。
 上記無機フィラー以外の添加剤としては、他にも本発明の効果を損なわない範囲で、公知乃至慣用の添加剤を使用でき、例えば、シリコーン樹脂、エポキシ樹脂、フッ素樹脂等の有機樹脂;溶剤;安定化剤(酸化防止剤、紫外線吸収剤、耐光安定剤、熱安定化剤など);難燃剤(リン系難燃剤、ハロゲン系難燃剤、無機系難燃剤など);難燃助剤;補強材;核剤;カップリング剤;滑剤;ワックス;可塑剤;離型剤;耐衝撃性改良剤;色相改良剤;流動性改良剤;着色剤(染料、顔料など);分散剤;消泡剤;脱泡剤;抗菌剤;防腐剤;粘度調整剤;増粘剤などが使用できる。なお、上記添加剤は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 上記無機フィラー以外の添加剤の配合量は、特に限定されないが、上記式(I)で表される熱硬化性芳香族エステル100重量部に対して、0~30重量部が好ましく、より好ましくは1~20重量部である。
 上記熱硬化性芳香族エステルを硬化させる際の熱硬化開始温度(加熱温度)は、特に限定されないが、250℃以下(170~250℃)が好ましく、より好ましくは210~250℃、さらに好ましくは220~250℃である。硬化温度が上記範囲であると、生産性が低下せず、硬化反応の進行が十分に進行し、物性の良い硬化物が得られる。なお、硬化温度は、硬化させる間一定となるように制御することもできるし、段階的又は連続的に変動するように制御することもできる。
 上記熱硬化性芳香族エステルを硬化させる際の加熱時間(硬化時間)は、特に限定されないが、30~600分が好ましく、50~480分がより好ましく、60~360分がさらに好ましい。硬化時間が上記範囲であると、硬化物の生産性が低下せず、硬化反応が十分に進行し、硬化物の物性が低下しにくい。
 上記熱硬化性芳香族エステルの硬化は、常圧下で行うこともできるし、減圧下又は加圧下で行うこともできる。また、上記硬化は、一段階で行うこともできるし、二段階以上の多段階に分けて行うこともできる。
 本発明の硬化物の、昇温速度10℃/分(空気中)で測定される5%重量減少温度(Td5)は、特に限定されないが、350℃以上(350~500℃)が好ましく、380℃以上がより好ましく、400℃以上がさらに好ましい。5%重量減少温度が350℃未満であると、用途によっては耐熱性が不十分となる場合がある。上記5%重量減少温度は、例えば、TG/DTA(示差熱・熱重量同時測定)などにより測定できる。
 本発明の硬化物の空気中における熱分解反応の活性化エネルギーは、特に限定されないが、150kJ/mol以上(例えば、150~350kJ/mol)が好ましく、180kJ/mol以上がより好ましく、200kJ/mol以上がさらに好ましい。上記活性化エネルギーが150kJ/mol未満であると、用途によっては耐熱性が不十分となる場合がある。なお、上記活性化エネルギーは、例えば、小沢法により算出することができる。小沢法とは、3種類以上の昇温速度でTG測定(熱重量測定)を行い、得られた熱重量減少のデータから熱分解反応の活性化エネルギーを算出する方法である。
 本発明の硬化物は、本発明の熱硬化性芳香族エステル(化合物)を硬化させることにより得られる硬化物であるため、優れた耐熱性を有し、また、優れた加工性、寸法安定性、低線膨張、高熱伝導性、低吸湿性、誘電特性を有する。
 本発明の硬化物は、各種部材や各種構造材等の種々の用途に使用することができる。特に、上述の各種特性に優れるため、フィルム、プリプレグ、プリント配線板、半導体封止材などの用途に好ましく使用できる。即ち、本発明の熱硬化芳香族エステル組成物は、特に、フィルム用熱硬化性組成物、プリプレグ用熱硬化性組成物、プリント配線板用熱硬化性組成物、半導体封止材用熱硬化性組成物などとして好ましく使用することができる。
 以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
実施例1
[末端の少なくとも一方にフェニルエチニル基を有する熱硬化性芳香族エステルE(10量体)の製造及びその硬化物の製造]
 コンデンサーと攪拌機を取り付けた500mLのフラスコに、表1に示すように、4-ヒドロキシ安息香酸73.6g(0.533mol)、6-ヒドロキシ-2-ナフトエ酸80.3g(0.426mol)、4,4'-ジヒドロキシビフェニル19.9g(0.107mol)、4-フェニルエチニル安息香酸47.4g(0.213mol)、無水酢酸122.1g(1.20mol)、及び酢酸カリウム10.0mg(0.10mol)を入れ、窒素雰囲気下で140℃まで徐々に温度を上げた後、温度を維持しながら3時間反応させてアセチル化反応を完結させた。次いで、0.8℃/分の速度で300℃まで昇温した後、温度を30分間維持しながら、酢酸及び未反応の無水酢酸を留去した。その後、フラスコ内を徐々に1Torrまで減圧して揮発成分を留去することで、芳香族ユニット(芳香族化合物に由来する構成単位)のみからなる分子鎖の末端の少なくとも一方にフェニルエチニル基を有する芳香族エステルEを得た。なお、得られた芳香族エステルEは、芳香族エステルEの末端数の算出(特開平5-271394号公報に記載のアミン分解HPLC法による)、及びGPC測定の結果、単量体の10量体であると見積もられた。
 得られた熱硬化性芳香族エステルE100gに金属触媒として、ニッケロセン2.0gを加え、170℃で10分間溶融混合し均一な組成物を得た後、その組成物を金属板に挟んでホットプレスで240℃にて4時間圧縮加熱して硬化を進行させ、均一な硬化物を得た。得られた組成物の溶融粘度及び発熱ピーク温度、及び得られた硬化物のガラス転移温度、5%重量減少温度(Td5)及び固体粘弾性の結果は、表2に示す通りであった。
実施例2
[末端の少なくとも一方にスチリル基を有する熱硬化性芳香族エステルF(10量体)の製造及びその硬化物の製造]
 コンデンサーと攪拌機を取り付けた500mLのフラスコに、表1に示すように、4-ヒドロキシ安息香酸73.5g(0.532mol)、6-ヒドロキシ-2-ナフトエ酸80.1g(0.426mol)、4,4'-ジヒドロキシビフェニル19.8g(0.106mol)、4-スチルベンカルボン酸47.7g(0.213mol)、無水酢酸121.9g(1.19mol)、及び酢酸カリウム10.0mg(0.10mol)を入れ、窒素雰囲気下で140℃まで徐々に温度を上げた後、温度を維持しながら3時間反応させてアセチル化反応を完結させた。次いで、0.8℃/分の速度で340℃まで昇温しながら、酢酸及び未反応の無水酢酸を留去した。その後、フラスコ内を徐々に1Torrまで減圧して揮発成分を留去することで、芳香族ユニット(芳香族化合物に由来する構成単位)のみからなる分子鎖の末端の少なくとも一方にスチリル基を有する芳香族エステルFを得た。なお、得られた熱硬化性芳香族エステルFは、芳香族エステルFの末端数の算出(特開平5-271394号公報に記載のアミン分解HPLC法による)、及びGPC測定の結果、単量体の10量体であると見積もられた。
 得られた熱硬化性芳香族エステルF100gに架橋剤として、4,4’-ジフェニルメタンビスマレイミドを33.5g加え、170℃で60分間溶融混合し均一な組成物を得た後、その組成物を金属板に挟んでホットプレスで240℃にて4時間圧縮加熱して硬化を進行させ、均一な硬化物を得た。得られた組成物の溶融粘度及び発熱ピーク温度、及び得られた硬化物のガラス転移温度、5%重量減少温度(Td5)及び固体粘弾性の結果は、表2に示す通りであった。
実施例3
[末端の少なくとも一方にシンナモイル基を有する熱硬化性芳香族エステルG(10量体)の製造及びその硬化物の製造]
 コンデンサーと攪拌機を取り付けた500mLのフラスコに、表1に示すように、4-ヒドロキシ安息香酸80.0g(0.579mol)、6-ヒドロキシ-2-ナフトエ酸87.1g(0.463mol)、4,4’-ジヒドロキシビフェニル21.6g(0.116mol)、けい皮酸(3-フェニル-2-プロペン酸)34.3g(0.232mol)、無水酢酸132.60g(1.30mol)、酢酸カリウム10.0mg(0.10mol)としたこと以外は実施例1と同様の操作を行い、芳香族ユニット(芳香族化合物に由来する構成単位)のみからなる分子鎖の末端の少なくとも一方にシンナモイル基を有する芳香族エステルGを得た。なお、得られた熱硬化性芳香族エステルGは、芳香族エステルの末端数の算出(特開平5-271394号公報に記載のアミン分解HPLC法による)、及びGPC測定の結果、単量体の10量体であると見積もられた。
 得られた芳香族エステルG100gに架橋剤として、4,4’-ジフェニルメタンビスマレイミドを33.5g加え、170℃で60分間溶融混合し均一な組成物を得た後、その組成物を金属板に挟んでホットプレスで240℃にて4時間圧縮加熱して硬化を進行させ、均一な硬化物を得た。得られた組成物の溶融粘度及び発熱ピーク温度、及び得られた硬化物のガラス転移温度、5%重量減少温度(Td5)及び固体粘弾性の結果は、表2に示す通りであった。
Figure JPOXMLDOC01-appb-T000021
 表1における略語の意味は、以下の通りである。
BP : 4,4'-ジヒドロキシビフェニル
HBA : 4-ヒドロキシ安息香酸
HNA : 6-ヒドロキシ-2-ナフトエ酸
PEBA : 4-フェニルエチニル安息香酸
SCA : 4-スチルベンカルボン酸
CNA : けい皮酸(3-フェニル-2-プロペン酸)
[溶融粘度]
 レオメーター(粘弾性測定装置)(商品名「MCR-302」、アントンパール社製)を用い、試料を昇温温度20℃/分で加熱しながら溶融させ、溶融後、粘度が最低となったときの温度と粘度を測定した。
[発熱ピーク温度・ガラス転移温度(Tg)]
 DSC(示差走査熱量測定)装置(商品名「DSC6200」、エスアイアイナノテクノロジー社製)を用い、窒素気流下(50ml/分)、昇温温度10℃/分にて、試料(5mg)を加熱して、発熱ピーク温度及びガラス転移温度(Tg)を測定した。
[5%重量減少温度(Td5)]
 TG-DTA(熱重量測定・示差熱分析)装置(商品名「EXSTAR6300」、エスアイアイナノテクノロジー社製)を用い、窒素気流下(300ml/分)、昇温温度10℃/分にて、試料(約5mg)を加熱して、重量が5%減少したときの温度を測定した。なお、リファレンスには、アルミナを用いた。
[固体粘弾性・ゴム状平坦領域の有無]
 DMA(動的粘弾性測定)装置(商品名「RSA-III」、ティー・エイ・インスツルメント社製)を用い、固体粘弾性及びゴム状平坦領域の有無を測定した。
Figure JPOXMLDOC01-appb-T000022
 表2に示すように、実施例で得られた熱硬化性芳香族エステルは、発熱ピーク温度が低く、架橋開始温度が低いため比較的低温で硬化(熱硬化)させることができ、なおかつ得られた硬化物は、5%重量減少温度が高く、非常に優れた耐熱性を有していた。
 本発明の製造方法で得られる熱硬化性芳香族エステルを硬化させた硬化物は、各種部材や各種構造材等の種々の用途に使用することができる。特に、加工性、寸法安定性、低線膨張、高熱伝導性、低吸湿性、誘電特性等の各種特性に優れるため、フィルム、プリプレグ、プリント配線板、半導体封止材などの用途に好ましく使用できる。即ち、本発明における熱硬化芳香族エステル組成物は、特に、フィルム用熱硬化性組成物、プリプレグ用熱硬化性組成物、プリント配線板用熱硬化性組成物、半導体封止材用熱硬化性組成物などとして好ましく使用することができる。

Claims (17)

  1.  芳香族ジオール又はそのモノカルボン酸(モノ又はジ)エステルである成分(A)と芳香族ヒドロキシカルボン酸である成分(B)とを少なくとも含むモノマー成分と、分子内に水酸基及び/又はアシルオキシ基と反応する反応性官能基及び下記式(c1)~(c6)で表される熱重合性官能基のいずれかを有する化合物である成分(C)と、を溶融重合させることを特徴とする下記式(I)で表される熱硬化性芳香族エステルの製造方法。
    Figure JPOXMLDOC01-appb-C000001
    [各式において、n1~n7は、それぞれ0以上の整数を表し、R1~R7は、置換基であって、それぞれC1-6アルキル基、C6-10アリール基、C1-6アルコキシ基、C6-10アリールオキシ基、又はハロゲン原子を表し、n1~n7が2以上の場合、それぞれR1~R7は、同一又は異なっていてもよい]
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    [上記式(I)中のLは、芳香族ジオール又はそのモノカルボン酸(モノ又はジ)エステルである成分(A)由来の構成単位と、芳香族ヒドロキシカルボン酸である成分(B)由来の構成単位を含む芳香族エステル骨格を表し、RA及びRA'は、同一又は異なっていてもよく、上記式(II)で表される基、水酸基、アシルオキシ基、又は他の有機基であり、上記式(II)で表される基、水酸基及びアシルオキシ基の合計の割合がRA+RA'の70%以上であり、上記式(II)中のDは、単結合又は連結基を表し、Raは、上記式(c1)~(c6)で表される基のいずれかを表す]
  2.  前記成分(C)における熱重合性官能基の硬化開始温度が350℃以上である請求項1に記載の熱硬化性芳香族エステルの製造方法。
  3.  前記成分(C)が、下記式(III)で表される化合物である請求項1又は2に記載の熱硬化性芳香族エステル組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    [上記式(III)中のRは、水酸基、アシルオキシ基又はハロゲン原子を表し、Dは、単結合又は連結基を表し、Raは、上記式(c1)~(c6)で表される基のいずれかを表す]
  4.  前記成分(C)が、フェニルエチニル安息香酸、4-スチルベンカルボン酸、及びけい皮酸からなる群より選択される少なくとも1つの化合物である請求項1~3のいずれか1項に記載の熱硬化性芳香族エステルの製造方法。
  5.  前記成分(A)が、4,4'-ジヒドロキシビフェニル、ヒドロキノン、レゾルシノール、2,6-ナフタレンジオール、1,5-ナフタレンジオール、[1,1'-ビフェニル]-4,4'-ジオール、4,4'-ジヒドロキシジフェニルエーテル、ビス(4-ヒドロキシフェニル)メタノン、ビスフェノールA、ビスフェノールF、ビスフェノールS、(フェニルスルホニル)ベンゼン、[1,1'-ビフェニル]-2,5-ジオール、又はこれらのモノカルボン酸(モノ又はジ)エステルである請求項1~4のいずれか1項に記載の熱硬化性芳香族エステルの製造方法。
  6.  前記芳香族ヒドロキシカルボン酸が、4-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、1-ヒドロキシ-2-ナフトエ酸、3-ヒドロキシ-2-ナフトエ酸、6-ヒドロキシ-2-ナフトエ酸、5-ヒドロキシ-1-ナフトエ酸、4'-ヒドロキシ[1,1'-ビフェニル]-4-カルボン酸からなる群より選択される少なくとも1つの化合物である請求項1~5のいずれか1項に記載の熱硬化性芳香族エステルの製造方法。
  7.  前記成分(A)と前記成分(B)の全化合物において、水酸基とカルボキシル基との官能基比(前者/後者)が、1.02以上である請求項1~6のいずれか1項に記載の熱硬化性芳香族エステルの製造方法。
  8.  前記成分(A)と前記成分(B)の総量に対する成分(A)の割合が、3~25モル%である請求項1~7のいずれか1項に記載の熱硬化性芳香族エステルの製造方法。
  9.  前記溶融重合時の温度が250~400℃である請求項1~8のいずれか1項に記載の熱硬化性芳香族エステルの製造方法。
  10.  前記熱硬化性芳香族エステルの平均重合度が、1~50である請求項1~9のいずれか1項に記載の熱硬化性芳香族エステルの製造方法。
  11.  前記熱硬化性芳香族エステルの融点が250℃以下である請求項1~10のいずれか1項に記載の熱硬化性芳香族エステルの製造方法。
  12.  下記式(I)で表される熱硬化性芳香族エステル。
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    [上記式(I)中のLは、芳香族ジオール又はそのモノカルボン酸(モノ又はジ)エステルである成分(A)由来の構成単位と、芳香族ヒドロキシカルボン酸である成分(B)由来の構成単位を含む芳香族エステル骨格を表し、RA及びRA'は、同一又は異なっていてもよく、上記式(II)で表される基、水酸基、脂肪族アシルオキシ基、又は他の有機基であり、上記式(II)で表される基、水酸基及び脂肪族アシルオキシ基の合計の割合がRA+RA'の70%以上であり、上記式(II)中のDは、単結合又は連結基を表し、Raは、下記式(c1)~(c6)で表される基のいずれかを表す]
    Figure JPOXMLDOC01-appb-C000007
    [各式において、n1~n7は、それぞれ0以上の整数を表し、R1~R7は、置換基であって、それぞれC1-6アルキル基、C6-10アリール基、C1-6アルコキシ基、C6-10アリールオキシ基、又はハロゲン原子を表し、n1~n7が2以上の場合、それぞれR1~R7は、同一又は異なっていてもよい]
  13.  上記式(II)中の前記連結基が、2価の炭化水素基、カルボニル基、エーテル結合、エステル結合、カーボネート結合、アミド結合、これらが複数個連結した基である請求項12に記載の熱硬化性芳香族エステル。
  14.  上記式(II)中のRaが、(c1)又は(c2)である請求項12又は13に記載の熱硬化性芳香族エステル。
  15.  平均重合度が、1~50である請求項12~14のいずれか1項に記載の熱硬化性芳香族エステル。
  16.  熱硬化開始温度が、350℃以上である請求項12~15のいずれか1項に記載の熱硬化性芳香族エステル。
  17.  融点が250℃以下である請求項12~16のいずれか1項に記載の熱硬化性芳香族エステル。
PCT/JP2015/058055 2014-04-02 2015-03-18 熱硬化性芳香族エステルの製造方法、及び熱硬化性芳香族エステル WO2015151814A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014076515A JP6412329B2 (ja) 2014-04-02 2014-04-02 熱硬化性芳香族エステルの製造方法
JP2014-076515 2014-04-02

Publications (1)

Publication Number Publication Date
WO2015151814A1 true WO2015151814A1 (ja) 2015-10-08

Family

ID=54240145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058055 WO2015151814A1 (ja) 2014-04-02 2015-03-18 熱硬化性芳香族エステルの製造方法、及び熱硬化性芳香族エステル

Country Status (3)

Country Link
JP (1) JP6412329B2 (ja)
TW (1) TW201540742A (ja)
WO (1) WO2015151814A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179119A (ja) * 2016-03-30 2017-10-05 株式会社ダイセル 熱硬化性化合物
WO2019100408A1 (zh) * 2017-11-27 2019-05-31 苏州大学 一种液晶阻燃发泡材料及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102453731B1 (ko) * 2018-03-29 2022-10-14 디아이씨 가부시끼가이샤 경화성 조성물 및 그 경화물

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114612A (en) * 1990-04-04 1992-05-19 The United States Of America As Represented By The Department Of Energy Liquid crystal polyester thermosets
JP2002521354A (ja) * 1998-07-24 2002-07-16 ロリク アーゲー 架橋性液晶化合物
JP2004509190A (ja) * 2000-09-13 2004-03-25 アメリカ合衆国 エステル、エステル−イミド及びエステル−アミドオリゴマーからなる液晶熱硬化物
JP2010037474A (ja) * 2008-08-07 2010-02-18 Polyplastics Co 全芳香族ポリエステル及びポリエステル樹脂組成物
JP2011208140A (ja) * 2010-03-26 2011-10-20 Samsung Electronics Co Ltd 液晶熱硬化性オリゴマーまたはポリマー、並びにこれを含む熱硬化性組成物および基板
JP2012149241A (ja) * 2010-12-27 2012-08-09 Toray Ind Inc 液晶性ポリエステル樹脂の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114612A (en) * 1990-04-04 1992-05-19 The United States Of America As Represented By The Department Of Energy Liquid crystal polyester thermosets
JP2002521354A (ja) * 1998-07-24 2002-07-16 ロリク アーゲー 架橋性液晶化合物
JP2004509190A (ja) * 2000-09-13 2004-03-25 アメリカ合衆国 エステル、エステル−イミド及びエステル−アミドオリゴマーからなる液晶熱硬化物
JP2010037474A (ja) * 2008-08-07 2010-02-18 Polyplastics Co 全芳香族ポリエステル及びポリエステル樹脂組成物
JP2011208140A (ja) * 2010-03-26 2011-10-20 Samsung Electronics Co Ltd 液晶熱硬化性オリゴマーまたはポリマー、並びにこれを含む熱硬化性組成物および基板
JP2012149241A (ja) * 2010-12-27 2012-08-09 Toray Ind Inc 液晶性ポリエステル樹脂の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179119A (ja) * 2016-03-30 2017-10-05 株式会社ダイセル 熱硬化性化合物
WO2019100408A1 (zh) * 2017-11-27 2019-05-31 苏州大学 一种液晶阻燃发泡材料及其制备方法

Also Published As

Publication number Publication date
TW201540742A (zh) 2015-11-01
JP2015196800A (ja) 2015-11-09
JP6412329B2 (ja) 2018-10-24

Similar Documents

Publication Publication Date Title
TWI621640B (zh) 熱硬化性液晶聚酯組成物及其硬化物
TWI596156B (zh) Resin composition, stretched film, circularly polarizing plate, and image display device
US11104788B2 (en) Composition, cured product and laminate
JP5296298B2 (ja) 結晶性樹脂組成物およびその製造方法
JP6412329B2 (ja) 熱硬化性芳香族エステルの製造方法
WO2017209236A1 (ja) 置換または非置換アリル基含有マレイミド化合物およびその製造方法、並びに前記化合物を用いた組成物および硬化物
JP6600972B2 (ja) オリゴフルオレンエポキシ樹脂、エポキシ樹脂組成物、及びその硬化物
JP6342202B2 (ja) 熱硬化性芳香族ポリエステル組成物
JP2006193691A (ja) 感光性ポリアミド酸及びこれを含有する感光性組成物
JP5996412B2 (ja) ビス(メタ)アクリロイル末端ベンジルエーテル化合物及びその製造方法
JP2015196802A (ja) 熱硬化性芳香族エステル、その組成物、その硬化物、及びその硬化物の製造方法
WO2015151815A1 (ja) 熱硬化性芳香族ポリエステル組成物及びその製造方法
JP2022059474A (ja) 反応性液晶ポリエステル、ポリエステル組成物、ポリエステル溶液、及び、硬化物
JP2015196799A (ja) 熱硬化性芳香族ポリエステル組成物の製造方法
WO2020095829A1 (ja) ランダム共重合体化合物、末端変性高分子化合物及びこれらの化合物を含む樹脂組成物
JP2015196801A (ja) 熱硬化性芳香族エステル組成物、その硬化物、及びその硬化物の製造方法
JP2000044636A (ja) 熱硬化性樹脂組成物及びこれを用いたコイルの製造法
JP6297892B2 (ja) 熱硬化性液晶ポリエステル組成物及びその硬化物
JP2015196798A (ja) 熱硬化性芳香族ポリエステル組成物の製造方法
WO2021149723A1 (ja) 樹脂組成物および該樹脂組成物からなる樹脂成形品
JP4947680B2 (ja) 新規硬化性ポリアミド及び重合性組成物
JP2017078180A (ja) 熱硬化性液晶ポリエステル組成物の製造方法及び硬化物の製造方法
JP2022116181A (ja) アルコキシ置換芳香族化合物
JPS61161248A (ja) アクリルアミド系オリゴマ−およびその製法
WO2024075746A1 (ja) 樹脂組成物及びその製造方法、並びに樹脂組成物の硬化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15773482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15773482

Country of ref document: EP

Kind code of ref document: A1